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Abstract 

In order to contribute to the reduction of greenhouse gas emissions, electric vehicles (EVs) should be 

charged using electricity from renewable energy sources.  This paper describes a study of 

photovoltaics (PV) utilization for EV charging in two Scandinavian cities: Tromsø in Norway and 

Uppsala in Sweden, with the objective to evaluate self-sufficiency and self-consumption. 

The suitable areas for PV were determined using building area statistics and utilization factors. The 

PV yield was simulated for integration scenarios of 10%-100% of the suitable area. EV charging 

patterns were generated using a stochastic model based on travel survey data. The scenarios include 

EV penetration of 10%-100% of the personal vehicle fleet.  

The results show that the PV energy yield could cover the EV load in most of the scenarios, but that 

the temporal load match could be improved. The energy balance was positive for all seasons and EV 

levels if the PV integration was over 50%. The highest self-sufficiency was achieved in Tromsø during 

summer, due to the longer days. For high EV penetration and low PV integration, the self-sufficiency 

was higher in Uppsala, indicating that installed PV power is more important than yield profile above a 

certain number of EVs. 

 Keywords: electric vehicle charging, solar potential, self-sufficiency, self-consumption 

1. Introduction 

In the recent years, the awareness of the impacts of climate change has increased, and the need to 

reduce the emissions of greenhouse gases globally is evident. The introduction of electric vehicles 

(EVs)1 in the transport sector has the potential to contribute significantly to reduced emissions of both 

greenhouse gases and harmful particles, provided that EVs are charged with electricity from renewable 

energy sources (RES) [1, 2]. 

 

1 Abbreviations: EV – Electric vehicle, BEV – Battery electric vehicle, PHEV – Plug-in hybrid electric 

vehicles, GIS – Geographical information system, LiDAR – Light detection and ranging, 

PV – photovoltaics, RES – Renewable energy sources, SOC – State of charge 
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Incorporating renewable energy sources (RES) in the electricity grid has been extensively studied [3]. 

For example, Olauson, et al. [4] showed that the long and short-term variabilities resulting from 

shifting to RES in the Nordic countries will not change from today's variability. The authors argued 

that with hydropower balancing, a fossil and nuclear power independency can be achieved in the 

Nordic region.  

There are many ways to model EV charging, where stochastic modelling was found to provide a better 

assessment of the system risks and deterministic models a better representation of worst case scenarios 

[5]. Refs. [6-9] relied on Markov chains to model the charging load of EVs. In [7], the authors used 

driving and parking states. In [6], an extended implementation where numerous driving states were 

employed. In [8], the authors decided to categorize the parking into three categories: work, home, 

other. Moreover, the authors alleviated the driving states from their model. In a recent paper [9], the 

authors used a Markov chain Monte Carlo model to study the impacts of uncontrolled charging on a 

local single phase distribution grid with 17 customers. The network was able to support at most 20% 

EV penetration level. In [10], the impact of EVs charging on the transformer of a residential grid was 

studied. The author showed that at 6.6 kW and 100% penetration, the transformer will operate 9.4% of 

the time above the rated capacity. This time decreased to 2.81% if charging was performed using 

1.92 kW chargers.  

A review of research regarding the combination of photovoltaic power generation and EV charging on 

city-scale was performed by Shepero, et al. [5]. Among other things, the authors found a lack of 

studies focusing on the combined variability in EV charging and PV modelling. Mureddu, et al. [11] 

investigated the energy balance between RES production and EV charging in the island of Sardinia in 

Italy. The results indicated that on an aggregated level, the RES can supply all EVs’ charging load. 

However, shortages were observed in the large cities. Moreover, the temporal aspects of both loads 

were not studied. Wu, et al. [12] developed a statistical method to account for the PV and EV 

variability in power flow analysis. The authors compared their method to the Monte Carlo power flow 

simulation on a 4.6 MVA grid in China with 3000 EVs and 1.5 MW PV capacity. In [13] the authors 

explored the impacts of 1700 EVs and 3.5 MWp PV to the IEEE 33-node test feeder. The mean of the 

EV charging starting time was estimated to be between 00:00 and 01:30 and the standard deviation 

was 4.1-6.2 hours. The results showed that the dispersion of EVs improved the mean of the voltage, 

however, the variance was higher compared with the concentration of charging EVs in the grid. As it 

was expected, the uncertainty of the voltage values were higher when new uncertain loads, such as EV 

load or energy yield from PV panels, were introduced. The authors noted that the uncertainty impacts 

of the PV on the bus voltages were higher than that of the EVs.  

Ko, et al. [14] investigated the trade-offs between vehicle energy consumption and on-site PV 

potential in the city of San Francisco, California. LiDAR and building footprint data were used to 

estimate the solar potential. The results showed that with the most efficient EVs (0.19 kWh/km) and 

PV panels (40.7%, achieved by multi-junction concentrators) positive net energy balance can take 

place in most of the studied zones in the city. In [15], a similar study was made on the city of 

Auckland, New Zealand. The authors showed that regardless of the population density, there will be 

net energy balance will be positive. O'Brien, et al. [16] analysed the household energy balancing 

including public transportation in the city of Toronto, Canada. The net energy balance was negative in 

all the cases and all the population densities except for the low-density houses when highly efficient 

PV panels (20%) and efficiency measures (30% reduction in energy use) were adopted in houses. 

Denholm and Margolis [17] studied scenarios of up to 50% PV integration in California, and found 
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that highly flexible energy systems, including EVs and optimised charging, could significantly reduce 

the need for energy storage. 

1.1. Contribution 

Several previous works studied the impacts of both EVs and PVs on the energy consumption on city 

scale. However, there are still some research gaps that need to be addressed, and the study presented 

here addresses the following of these: 

 In [14-16], deterministic models for city scale EV and PV modelling were used. Stochastic 

modelling is used in this paper. 

 None of the previous papers studied the self-consumption of the solar energy and the 

dependency on the season, which is done in this paper. 

 The solar potential analysis presented here also included building façades, and not only 

rooftops. 

 The EV and PV models are evaluated in two case studies for cities at high latitudes 

1.2. Electric vehicles in Sweden and Norway 

In 2017, battery electric vehicles (BEV) accounted for around 20% of the new car sales, and plug-in 

hybrid electric vehicles (PHEV) for around 18% in Norway. The current share of EVs in the personal 

vehicle fleet is around 5%, or 10% if PHEVs are also included [18] . 

Due to focused policies and economic incentives, Norway has a high share of EVs compared to most 

countries. In the National Transportation Plan for 2018-2029 [19], the Norwegian government states 

that all new personal vehicles sold should be “zero emission vehicles” by 2025. This is estimated to 

result in an BEV penetration level of up to 36% by 2025 and 60% by 2030, or 40% and 63% if PHEVs 

are included [20].  

Sweden has a goal of achieving a zero emission vehicle fleet by 2030 [21]. Some measures have been 

proposed to reach this goal such as 1) providing conditions required for renewable energy sources and 

electricity 2) encourage shift towards EVs and environmentally friendly vehicles 3) increase the 

carbon tax on cars. 

2. Method 

2.1. Overview 

The analysis in this paper combines estimations on PV energy yield from available roof and façade 

areas with simulations of EV charging energy load. The analysis was performed to a number of 

scenarios regarding the level of PV integration on buildings and the level of EV penetration in the 

personal vehicle fleet. A flowchart describing the methodology is shown in Figure 1. 
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Figure 1. Flowchart giving an overview of the methodology used in the study. 

The methodology for determining the solar-architecturally suitable area on roofs and facades is 

described in Section 2.2. The simulation of PV energy yield from the suitable areas is described in 

Section 2.3. The simulations of EV charging load are described in Section 2.5. Finally, Section 2.6 

outlines how the simulated data were combined to evaluate the self-sufficiency and self-consumption 

of solar power for EV charging.  

The methodology was applied to two case cities in Scandinavia: Tromsø in Northern Norway and 

Uppsala in Central Sweden. Building and EV statistics for the municipal area used in both cases. 

Tromsø (N 70°) is the largest city in Northern Norway, located 370 km north of the Arctic Circle. The 

76 000 inhabitants are distributed over two islands (Tromsøya and Kvaløya) and the main land. 

Uppsala (59° N) is Sweden’s fourth largest municipality in terms of population, with around 220 000 

inhabitants. The city is located just 70 km north of the capital Stockholm.  
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2.2. Determination of solar-architecturally suitable area 

2.2.1. Calculation of roof and façade areas 

The available areas for PV installations were determined using the method proposed by IEA PVPS 

Task 7 [22]. Since detailed information about roof and façade areas is rarely available, this method is 

based on the ground floor area, Ag, of the buildings (the gross floor area) [22]. The suitable area for 

solar installations, Asol, is calculated as 

𝐴𝑠𝑜𝑙 = 𝐴𝑔 × 𝑢𝑟 + 𝐴𝑔 × 𝑢𝑓, ( 1 ) 

 

where ur and uf  are solar-architectural utilization factors for roof and façade areas, respectively.  

In the IEA PVPS Task 7 method [22], the architectural suitability takes into account limitations due to 

e.g. construction, historical considerations, and shading. The solar suitability takes into account the 

relative solar irradiation on surfaces based on e.g. orientation, tilt angle and location. Based on a 

number of case studies performed in the IEA member countries [22], rule-of-thumb values for the 

solar-architectural utilization factors were determined to ur = 0.4 and uf  = 0.15.  

In the present study, the gross building area in Tromsø municipality was calculated using statistical 

data on the number of buildings by type from Statistics Norway (SSB)2 [23] . This data were 

combined with the information on the average area of each building type, which is available in [24]. 

The calculated gross building area of residential and non-residential buildings in the municipality is 

shown in Table 1, where the buildings are grouped according to the categories used in the Norwegian 

Ground Property, Address and Building Register (GAB). A more detailed description of the 

calculations for Tromsø is available in [25]. 

The number of buildings and the gross building area in Uppsala, shown in Table 2, was extracted 

directly from the database of statistics from Statistics Sweden (SCB), which keeps data on the number 

of buildings and total gross area of buildings by type [26].  In the analysis presented in this paper, the 

buildings in both locations have been re-grouped into only two categories: residential and non-

residential buildings.  

2.2.2. Building orientation and roof tilt 

Since the estimation was based on statistical data and not on maps, it was necessary to make some 

assumptions regarding building orientation and roof tilt.  

All residential buildings were assumed to have sloped roofs with 30° roof tilt angle. All non-

residential buildings, i.e. all other buildings than residential buildings, were assumed to have flat roofs. 

The same utilization factor (ur = 0.4) was used for sloped as well as flat roofs [22].  

Based on the work by Kjellsson [16], the orientations  buildings were assumed to be equally 

distributed in all orientations (north, south, east and west). For sloped roofs, only buildings with roof 

orientations between east and west were considered to be suitable for solar energy utilization. To 

account for the orientation distribution, the suitable roof area was therefore divided into 12 evenly 

 

2 Data for Tromsø municipality were received upon request for SSB, since the data in the online 

database were only available at county level. 
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spaced intervals between east (-90°) to west (90°). For flat roofs it was assumed that a PV system 

could be placed more or less freely on the roof, and all suitable roof area was included in the solar 

potential analysis. 

The solar-suitable façade areas were calculated using the same utilization factor (uf  = 0.15) for 

residential and non-residential buildings. Only façade areas with and orientation between east and west 

were included (i.e. half of the available area). 

The estimated solar-architecturally suitable roof and façade areas of buildings are shown along with 

the gross building areas in Table 1 and Table 2 for Tromsø and Uppsala, respectively. 

Table 1. The estimated solar-architecturally suitable areas for PV installations in Tromsø. 

Code Building type No. of 
buildings 

Gross 
building 
area  

Area, 
roofs 

Area, 
façades  

   m2 m2 m2 

1 Dwelling 31 544 1 293 000 485 000 3 234 000 

2 Industrial building and warehouse 4 085 336 000 126 000 840 000 

3 Office and business building 447 81 000 30 000 201 000 

4 Transport and communication building 165 16 000 6 000 39 000 

5 Hotel  and restaurant building 265 21 000 8 000 52 000 

6 Building used for education, public 
entertainment and religious activities 

545 111 000 42 000 278 000 

7 Hospital and institutional care building 59 14 000 5 000 36 000 

8 Prison, building for emergency 
preparedness etc. 

34 3 000 1 000 7 000 

 Total 37 160 4 687 000 
(4.7 km2) 

1 875 000 
(1.9 km2) 

703 000 
(0.7 km2) 

 

Table 2. The estimated solar-architecturally suitable areas for PV installations in Uppsala 

Code Building type No. of 
buildings 

Gross 
building 
area  

Area, roofs Area, façades  

   m2 m2 m2 

1 Residential building 38 274 6 098 000 2 439 000 915 000 

2 Industrial building 828 886 000 354 000 133 000 

3 Building for public service purpose 2 025 1 273 000 509 000 191 000 

4 Building for business purpose 732 843 000 337 000 126 000 

5 Agricultural building 51 26 000 10 000 4 000 

6 Supplementary  building 48 925 4 432 000 1 773 000 665 000 

7 Other building 1 002 129 000 52 000 19 000 

 Total 91 837 13 687 000 
(13.7 km2) 

5 474 000 
(5.5 km2) 

2 053 000 
(2.0 km2) 

 

2.3. Assessment of PV yield  

2.3.1. Solar irradiation in Tromsø and Uppsala 

The annual relative solar irradiation, Ir, on surfaces with different orientations is shown in Figure 2 for 

Tromsø (top) and Uppsala (bottom), where 
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𝐼𝑟 = 𝐼𝑠/𝐼𝑚𝑎𝑥, ( 2 ) 

 

Is (kWh/m2) is the annual irradiation in surface s, and Imax (kWh/m2) is the highest annual irradiation 

on a surface at the specific location.  

 

 

 

Figure 2. The relative irradiation Ir on surfaces with different orientation (tilt and azimuth angles) in Tromsø (top) and Uppsala 

(bottom), given in percentage of the maximum possible irradiation.  

For Tromsø, surfaces with azimuth angles between approximately -80° (east) and +80° (west) and tilt 

angles of 5-90° receive at least 80% of the maximum possible irradiation, which is defined as “good 

areas” in the IEA PVPS Task 7 method [22]. This range of orientations also includes south-facing 

façades. The optimal orientation in Tromsø is 5° west with 60° tilt angle, which receives around 

980 kWh/m2 per year. Tromsø, in contrast to Uppsala, is located in a mountainous region, and reason 

for the optimal orientation not being completely south in Tromsø is shading from peaks in the south.  
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For Uppsala, the range of orientations defined as good areas are azimuth angles between -90° (east) 

and 90° (west) for tilt angles between 15° and 85°. For lower tilt angles, the range of azimuth 

orientations is even wider, and the “good” range of orientations also includes horizontal surfaces. The 

optimal orientation in Uppsala is south-facing with 40° tilt angle, which receives around 1200 kWh/m2 

per year.  

2.4. PV yield simulation 

The potential yield of PV systems installed on the solar-suitable area was simulated using the software 

PVsyst [28] using meteorological data from Meteonorm v 7 [29] and horizon line from PVGIS 5 [30]. 

The solar energy yield was simulated for a 5.4 kWp PV system with monocrystalline silicon modules 

(see Table 3), and then normalized to energy output per m2 roof or façade area. The module efficiency 

was set to around 18%, which is slightly higher than the average 17% for commercial modules today 

[31], in order to match a near future scenario. 

Table 3. Details of the simulated 5.4 kWp PV system, including 18 modules and one inverter. 

Module  

Type Jinkosolar, JKM300M-60 

Power 300 kWp 

Efficiency  18.42 % 

Module area 1.637 m2 

Number of modules 18 

Inverter  

Type AEG, AS-IR01-4600 

Inverter power 4.6 kW AC 

European efficiency 96.8% 

Power ratio (PV array/inverter) 1.17 

 

For residential building roofs, the PV system was simulated with a tilt angle of 30°, i.e. mounted flat 

on the roof, and individually for each the 12 orientation intervals described in Section 2.2.2.  

A different design approach was necessary for flat, non-residential roofs. There are basically two 

design strategies for PV systems on flat roofs: higher tilt angles and high energy output per module, or 

lower tilt angles but a higher number of modules on the same available area. High tilt angles require 

larger spacing between PV rows to avoid self-shading, e.g. around 2.7 m for PV modules with 30° tilt 

in Tromsø3. With lower tilt angles it is possible to fit a higher number of modules on the same area. 

The influence of PV system orientation on flat roofs on the energy output is discussed in more detail in 

for example [33] and [34].  

In practice, many large-scale PV systems use dual PV rows with low (10-20°) tilt angles, facing east 

and west (Figure 3) to fit as many modules as possible on a given area. Using dual rows, it is possible 

to mount the opposite facing module within this distance without causing additional shading, thereby 

increasing the space efficiency. Another potential benefit of dual rows is a more even energy yield 

 

3 Estimated using sun height of 15° as the limitation (around mid-February in Tromsø) for 1 m x 1.6 m 

modules with landscape orientation, using the calculation method described in [32]. 
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over the course of the day compared to south facing rows, due to higher energy yield in the morning 

and afternoon. It should, however, be noted that this type of system is more exposed to snow cover 

than a system with higher tilt angle, where the snow can more easily slide off the modules.  

 

Figure 3. East-west facing rows of PV modules with low tilt angle on one of Norway’s largest PV systems at ASKO Øst in Vestby. 

Photo: Jan Erik Røine/Norsk VVS (used with permission). 

With reference to the discussion above, PV installations on non-residential (flat) roofs were assumed 

to be installed with east/west facing rows at 15° tilt. As described in Section 2.2.2, building orientation 

was not considered for flat roofs. 

In the case of the façade areas, PV systems were assumed to be mounted flat on the facades, i.e. with 

90° tilt angle.  Similarly to the residential roof systems, the façade mounted PV systems were 

simulated individually for each of the 12 orientations intervals described in Section 2.2.2.  

For all three area categories (residential roofs, non-residential roofs, and facades), the annual energy 

output was normalized per installed PV area (kWh/m2) and multiplied with the total solar-

architecturally suitable area in each category to estimate the total solar energy potential.  

The normalized energy yield per installed power (kWp) and installed PV area (m2) roofs and façades 

for each of the orientations are shown in Table 4. In this case of flat roofs, the energy output is 

normalized by the projected system area on the flat roof, which also includes 0.6 m2 spacing between 

each PV module row. The energy output normalized by active PV area is 117 kWh/m2 and 

170 kWh/m2 for Tromsø and Uppsala, respectively. 

https://doi.org/10.1016/j.energy.2018.11.050


This is a postprint version of the final paper, which is accepted for publication in Energy: 

https://doi.org/10.1016/j.energy.2018.11.050 

 

 
Table 4. The normalized energy yield (kWh/kWp) for a PV system in Tromsø and Uppsala for the 12 orientations between east and 

west. The values were simulated in PVsyst and normalized by the installed area. 

Roof/façade 
orientation 

Energy yield, sloped roofs 
(30° tilt) 

Energy yield, flat roofs (15° 
tilt, dual orientation) 

Energy yield, façades 

 Tromsø Uppsala Tromsø Uppsala Tromsø Uppsala 

 kWh/kWp year kWh/kWp year kWh/kWp year kWh/kWp year kWh/kWp year kWh/kWp year 

-90° to -75° 637 882 

(same for all 
orientations) 

(same for all 
orientations) 

472 638 

-75° to -60° 675 938 517 706 

-60° to -45° 712 987 557 758 

-45° to -30° 745 1026 601 802 

-30° to -15° 767 1050 635 826 

-15° to 0° 783 1065 664 837 

0° to 15° 788 1066 677 752 

15° to 30° 782 1053 680 828 

30° to 45° 767 1030 667 809 

45° to 60° 739 991 635 766 

60° to 75° 705 946 593 714 

75° to 90° 657 885 511 616 

Avg. all 
orientations 

kWh/kWp 
kWh/m2  

 
 

730 
124 

 
 

993 
168 

 
 

580 
98 

 
 

840 
142 

 
 

601 
102 

 
 

754 
128 

2.4.1. PV simulation scenarios 

The energy yield from PV systems was estimated for five scenarios with increasing integration level, 

as shown in Table 5.  

Table 5. The assumptions in the simulated PV scenarios 

Parameter Simulated scenarios 

Integration level (percentage of suitable 
roof and façade areas) 

10%, 25%, 50%, 75%, 100% 

 

Integration level of PV in the urban environment is here defined as the percentage of the suitable roof 

and façade area (Table 1 and Table 2) that is used for PV installations, No distinction was made 

between new and old buildings, nor based on orientation of the buildings. That is, 10% of the roofs 

includes 10% of all suitable roofs, not just those with optimal orientation. 

2.5. EV charging simulations 

In this Section, a summary of the EV model is provided in Section 2.5.1 followed by the assumed 

model parameters in the simulations in Section 2.5.2. 

2.5.1. EV charging model 

The spatio-temporal mobility of EVs was modeled using a Markov chain model.The model is 

presented in detail in [35], and a brief summary of this model is provided here.  

Markov chains have been previously used to model the mobility of cars in cities [6, 8, 9]. A Markov 

chain is a memoryless stochastic process in which the probability of being in a specific state depends 

only on the previous state [36]. For example the stochastic process {𝑋𝑡}𝑡=0
∞  is a Markov process if 
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𝑃(𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖, … , 𝑋1, 𝑋0) = 𝑃(𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖) = 𝑝𝑖𝑗, ( 3 ) 

 

where i and j are in the set of the states of the process S and pij is the probability of switching from 

state i to state j [36]. 

The proposed model assumed that EVs mobilize between parking locations in the city. The states of 

the model S represented the parking profiles Home, Work and Other, i.e., S = {Home, Work, Other}. 

These three parking profiles were previously identified in [37], [38] and were used in [8]. These 

parking profiles represented parking to visit residential, workplace, and other buildings, respectively. 

The switching probabilities between states can be arranged in the 3 × 3 matrix M. 

𝑀 = (

𝑝11 𝑝12 𝑝13

𝑝21 𝑝22 𝑝23

𝑝31 𝑝32 𝑝33

), 
( 4 ) 

 

where the indices{1,2,3}represent the states Home, Work, Other. 

The mobility of cars in cities was shown to have a diurnal and weekday/weekend patterns [8] and [39]. 

The developed model accounts for these patterns by defining a non-homogeneous Markov chain such 

that the probability of switching between states 𝑝𝑖𝑗 became dependent on the time-of-transition, i.e., 

𝑝𝑖𝑗
𝜏 . The variable 𝜏 represented the minute of transition during the day – thereby accounting for the 

diurnal patterns – and whether the transition occurs in a weekday or a weekend. In total, the value of 𝜏 

was in the set {1, …,1440, 1441, … , 2880}, where the first 1440 values represented the minutes of a 

weekday and the second 1440 values represented the minutes of a weekend. The Swedish travel 

survey was used to estimate the probabilities of the Markov chain [40] consult [8] for a detailed 

description of this process.  

The state of charge (SOC) Et (kWh) of an EV at time t can be estimated from 

𝐸𝑡 = {

𝐸𝑡 + 𝐶 × ∆𝑡, if charging

𝐸𝑡 − 𝑑 × 𝜂,   if driving  
𝐸𝑡 ,                  else            

 

 

( 5 ) 

where C is the charging power (kW), d is the driving distance (km) travelled in every time-step, and 

𝜂 is the AC electricity consumption rate (kWh/km) [8]. In this study, a maximum SOC for the EV 

batteries was not explicitly specified in the model, instead the decrease in the SOC was modelled. This 

is to say that the authors assumed that the battery capacities of the EVs are large enough to meet the 

drivers' needs, possibly in the near future. The EVs in the study were assumed to charge 

opportunistically in all the parking locations. The charging load of EVs in the city PEV (kW) can be 

estimated as  

𝑃𝐸𝑉 = 𝐶 × 𝑛𝑡, 

 
( 6 ) 

where nt is the number of charging EVs in the city at time t. The authors simulated two summer and 

two winter weeks. The differences between summer and winter is attributed to the seasonal differences 

in the AC electricity consumption 𝜂. The authors assumed 𝜂 to be 0.25 kWh/km and 0.15 kWh/km for 

winter and summer, respectively [41]. EVs consume more energy during cold weathers due to heating, 

see [42, 43] for a detailed estimate of the impacts of the ambient temperature on 𝜂. 
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The large number of simulated EVs reduces the randomness in the daily charging load. In other words, 

the randomness in the individual mobility patterns is less conspicuous when a large number of EVs is 

simulated, see the results in [10] and [44]. Consequently, the charging load of the simulated winter and 

summer weeks was assumed to be representative of the winter and summer seasons. 

2.5.2. EV simulation scenarios 

Several combinations of penetration levels and charging powers were simulated in this study. Each 

simulation presents a possible future scenario. A summary of the assumed parameters in the simulated 

scenarios is provided in Table 6. 

Table 6. The assumptions of the EV model parameters in the simulated scenarios. 

Parameter Simulated scenarios 

Penetration level 10%, 25%, 50%, 75%, 100% 
Charging power C 3.7 kW, 6.9 kW, 22 kW 

 

The current (May 2018) number of EVs in Tromsø is 1390 (784 BEV and 606 PHEV) [45] and 714 in 

Uppsala (217 BEV and 497 PHEV) [46]. The current situation was not simulated as a scenario, due to 

the relatively small number of EVs. The total number of personal vehicles is 33072 and 83147 in 

Tromsø and Uppsala, respectively. The current penetration level of EVs in both cities is 4.2% and 

0.9%, respectively. The authors chose to simulate various higher penetration levels, as shown in Table 

6, to represent different future cases. 

As regards the charging power C, the authors simulated three possible scenarios: 3.7 kW, 6.9 kW, and 

22 kW. The 3.7 kW charging power represents the 16 A single-phase charging. The 6.9 A represents 

the 10 A three-phase charging. A semi-fast charging was simulated using a 22 kW charger, which 

represent 32 A three-phase charging. The 3.7 kW and 22 kW chargers are used by 79% of the chargers 

in Uppsala [47], while the 6.9 kW was simulated following [7]. A study from 2016 revealed that 80% 

of Norwegian EV charging is done with 16A fuses, but that power levels between 2 kW and 22 kW 

are used in home charging [48]. The study also predicted that higher power levels will become more 

common in the coming years, as the battery capacity of EVs increase. 

Fast charging, with charging power levels of 50-150 kW, or even higher, was not simulated here, as 

this type of charging is so far not common in urban locations. Future development of fast charging is 

studied in e.g. [49]. 

2.6. Solar fraction and load fraction 

The self-consumption of solar power in buildings with and without EVs have been extensively 

studied, for example by [50]. Luthander, et al. [51] presented a review of the numerous metrics that are 

used to describe self-consumption and self-sufficiency.  

The solar power self-sufficiency, commonly referred to as the solar fraction (SF), describes how much 

of the load that can be covered by solar power. Using the terminology from [50] and [51], the solar 

fraction can be described by 

𝑆𝐹 =
∫ 𝑀(𝑡)𝑑𝑡

𝑡2

𝑡=𝑡1

∫ 𝐿(𝑡)𝑑𝑡
𝑡2

𝑡=𝑡1

 , 
( 7 ) 
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where M(t) is the instantaneously overlapping part of the PV generation profile, P(t), and the load 

profile, L(t), defined by 

𝑀(𝑡) = min {𝐿(𝑡), 𝑃(𝑡)} . ( 8 ) 

Correspondingly, the self-consumption of solar energy, here described by the load fraction (LF), is the 

fraction of the available solar power that is directly used by the load. LF is defined as [50, 51] 

𝐿𝐹 =
∫ 𝑀(𝑡)𝑑𝑡

𝑡2

𝑡=𝑡1

∫ 𝑃(𝑡)𝑑𝑡
𝑡2

𝑡=𝑡1

 . 
( 9 ) 

Both SF and LF are in the range [0, 1], where SF=1 means that the full energy demand is covered by 

solar energy, and LF=1 means that all solar energy is self-consumed to cover the load. The values of 

SF and LF depend, among other factors, on the integration period, which is typically one year, and the 

time resolution of the data. For yearly comparisons, the solar fraction can be calculated using monthly 

or even total yearly data. For a net zero energy building, the solar fraction equals the load fraction if 

calculated over a whole year [50]. This time resolution does not, however, capture the fluctuations in 

power which are important to minimise the strain on the electricity grid [52].  

In the study presented here, SF and LF were calculated for two weeks in winter (March) and two 

weeks in summer (July), using hourly time resolution. These two periods are assumed to cover the two 

“worst case” periods of the year, i.e. the highest EV load (winter) and the highest PV power output 

(summer). Tromsø has around two months without sun during the polar night between 27 November 

and 15 January. This period is not considered in this study, since the focus is on the load match 

between PV and EV, and how to improve it. 

In addition, the instantaneous solar fraction, SF(t), and load fraction, LF(t), were used in the analysis. 

They are here defined according to 

𝑆𝐹(t) =
𝑀(𝑡)

𝐿(𝑡)
, 

and 

( 10 ) 

𝐿𝐹(t) =
𝑀(𝑡)

𝑃(𝑡)
. 

( 11 ) 

Both the solar fraction and the load fraction describe the overlapping parts of the power and load 

profiles. The non-overlapping parts, i.e. the power that is exported and imported from the grid, are 

described by grid-integration factors [51]. An overview of grid-integration factors, with a focus on 

zero energy buildings, is given by  Sartori, et al. [52]. In the present study, the grid interaction was 

evaluated by evaluating the largest peaks in power exported to the grid (excess PV power) and power 

imported from the grid (unmet EV load). 

3. Results 

3.1. PV power output 

The solar energy yield from 10% of the estimated suitable areas on roofs and façades in shown in 

Figure 4 for Tromsø and for Uppsala. Total annual yield from the different integration levels are given 
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in Table 7. The hourly yield for one week in winter (March) and one week in summer (July) is shown 

for Tromsø and Uppsala in Figure 5 and Figure 6, respectively.  

The total simulated energy output in Uppsala is around four times that in Tromsø, mainly due to the 

larger building footprint area (and thereby available area for solar installations). The building footprint 

area in Uppsala is 2.9 times larger than in Tromsø, while the energy output is around 4 times larger. 

The energy output in the two cities normalized by the solar-suitable area on roofs and façades is 

110 kWh/m2 per year for Tromsø compared to 153 kWh/m2 per year for Uppsala. 

 

Figure 4. The monthly energy yield from 10% of suitable areas in Uppsala (left) and Tromsø (right). 

As the graph for Tromsø in Figure 4 shows, there is no yield during November, December and January 

in Tromsø since the sun never rises above the horizon during this time (the polar night).  

Table 7. The annual energy yield in GWh from PV installations on suitable areas in Uppsala and Tromsø.  

 Uppsala Tromsø 

PV int. 
level 

Res. 
roofs 

Non-res. 
roofs 

Façades Total Res. 
roofs 

Non-res. 
roofs 

Façades Total 

 GWh GWh GWh GWh GWh GWh GWh GWh 

10 % 44 42 28 115 17 6 5 28 

25 % 111 106 71 289 43 14 13 71 

50 % 222 212 142 577 87 28 27 142 

75 % 334 319 213 866 130 42 40 212 

100 % 445 425 284 1 154 173 56 54 283 

 

The potential in Tromsø was found to be largest from roofs of residential buildings (i.e. sloped roofs), 

which accounted for around 60% of the total energy yield. The relative contribution from façades was 

larger during the winter weeks for both locations, due to the lower sun angles, while to relative 

contribution from non-residential (flat) roofs was larger during summer. In Uppsala, the contribution 

from residential and non-residential roofs were almost equal in summer, while the contribution from 

residential roofs and façades was almost equal during the winter weeks. 
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Figure 5. The hourly PV yield in Tromsø for the first week in March and July with 10% PV integration. 

 

 

Figure 6. The hourly PV yield in Uppsala for the first week in March and July with 10% PV integration. 

3.2. EV charging load 

The charging load from different charging locations is shown for the first week in March for Uppsala 

(top) and Tromsø (bottom) in Figure 7. In both cases, the load is shown for 10% EV penetration and a 

charging power of 3.7 kW. The total charging load is shown as a dotted line in the graphs. The 

difference between the summer and winter week is a generally higher charging level during winter due 

to higher energy consumption of EVs at lower temperatures.  

There is a distinctive difference between workplace charging, with the highest peak during morning 

and midday, and residential charging, with the highest peak during the evening and night. The load 

profile of “Other” charging stations, for example at public parking places, is more evenly distributed 

during the day, although there is a small peak in the afternoon at the same time as for residential 

charging. This charging pattern is due to after-work activities such as shopping or visiting the gym.   
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Figure 7. The simulated residential, workplace, other, and total charging load for one 10% EV penetration in Uppsala (8315 EVs, 

top graph) Tromsø (3306 EVs, bottom graph). The load pattern is shown for one week in March with 3.7 kW charging power. Note 

that the scale on the y-axis is different for the two graphs.  

The influence of charging power is shown in Figure 8, where the simulated residential, workplace, 

other, and total charging profiles are shown for the three charging power levels 3.7 kW, 6.9 kW, and 

22 kW. The charging profiles are shown for two days in winter, i.e. the worst-case scenario in terms of 

EV charging load. The load profiles for Friday and Saturday to include one weekday and one day 

during the weekend. The scenario with 10% EV penetration in Uppsala is shown as an example, but 

the shape of the profiles are similar for Uppsala. The higher charging power results in higher peaks in 

charging power, but also in longer times with low or no charging, and the 3.7 kW charging power 

accordingly results in a smoother charging profile.  
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Figure 8. The influence of charging power on charging load profiles is shown for two randomly chosen days (Friday and Saturday) 

in winter with 10% EV penetration in Uppsala. 

3.3. Solar fraction and load fraction 

Table 8 to Table 11 show SF and LF for each of the scenarios. As defined in Section 2.6, SF describes 

to what extent the load is covered by solar energy over a defined time period, and LF to what extent 

the generated solar power that is used by the load. The higher SF is, the more of the EV charging is 

covered by solar power. The higher the LF is, the more of PV power can be used directly for EV 

charging. The greyed out cells in each of the tables show the scenarios for which there is a negative 

energy balance, i.e. when the total EV load is higher than the total PV yield.  

SF and LF for the two winter weeks (in March) in Table 8 for Tromsø and Table 10 for Uppsala, and 

for the two summer weeks (in July) in Table 9 (Tromsø) and Table 11 (Uppsala). The solar fraction 

and load fraction for the total aggregated charging load and 3.7 kW charging power is shown for the 

five EV integration levels and five PV integration levels. The PV integration level in the tables refers 

to the percentage of all solar-architecturally suitable areas on all types of buildings, i.e. roofs and 

façades on residential and non-residential buildings.  
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Table 8. The solar fraction (SF) for the total aggregated load in Tromsø for two weeks in March. The PV integration levels refer to 

the percentage of suitable areas on roofs and façades for all types of buildings. The charging power was 3.7 kW. 

EV 
penetration 

level  

PV integration level 

10 % 25 % 50 % 75 % 100 % 

SF LF SF LF SF LF SF LF SF LF 

10 % 0.41 0.17 0.43 0.07 0.43 0.04 0.44 0.02 0.44 0.02 

25 % 0.35 0.36 0.41 0.17 0.43 0.09 0.43 0.06 0.43 0.05 

50 % 0.30 0.62 0.36 0.30 0.41 0.17 0.43 0.12 0.43 0.09 

75 % 0.26 0.81 0.34 0.43 0.38 0.24 0.41 0.17 0.42 0.13 

100 % 0.22 0.90 0.32 0.53 0.36 0.30 0.39 0.22 0.41 0.17 

Table 9. The solar fraction (SF) for the total aggregated load in Tromsø for two weeks in July. The PV integration levels refer to 

the percentage of suitable areas on roofs and façades for all types of buildings. The charging power was 3.7 kW. 

EV 
penetration 

level  

PV integration level 

10 % 25 % 50 % 75 % 100 % 

SF LF SF LF SF LF SF LF SF LF 

10 % 0.82 0.08 0.87 0.03 0.89 0.02 0.89 0.01 0.90 0.01 

25 % 0.73 0.18 0.82 0.08 0.86 0.04 0.88 0.03 0.88 0.02 

50 % 0.63 0.31 0.76 0.15 0.82 0.08 0.84 0.05 0.86 0.04 

75 % 0.57 0.41 0.70 0.21 0.79 0.11 0.82 0.08 0.84 0.06 

100 % 0.52 0.50 0.66 0.26 0.76 0.15 0.80 0.10 0.82 0.08 

Table 10. The solar fraction (SF) for the total aggregated load in Uppsala for two weeks in March. The PV integration levels refer to 

the percentage of suitable areas on roofs and façades for all types of buildings. The charging power was 3.7 kW. 

EV 
penetration 

level  

PV integration level 

10 % 25 % 50 % 75 % 100 % 

SF LF SF LF SF LF SF LF SF LF 

10 % 0.48 0.12 0.49 0.05 0.49 0.03 0.49 0.02 0.49 0.01 

25 % 0.44 0.28 0.48 0.12 0.49 0.06 0.49 0.04 0.49 0.03 

50 % 0.38 0.49 0.46 0.23 0.48 0.12 0.49 0.08 0.49 0.06 

75 % 0.33 0.64 0.43 0.33 0.47 0.18 0.48 0.12 0.48 0.09 

100 % 0.29 0.75 0.41 0.42 0.46 0.23 0.47 0.16 0.48 0.12 

Table 11. The solar fraction (SF) for the total aggregated load in Uppsala for two weeks in July. The PV integration levels refer to 

the percentage of suitable areas on roofs and façades for all types of buildings. The charging power was 3.7 kW. 

EV 
penetration 

level  

PV integration level 

10 % 25 % 50 % 75 % 100 % 
SF LF SF LF SF LF SF LF SF LF 

10 % 0.82 0.05 0.83 0.02 0.83 0.01 0.83 0.01 0.83 0.00 

25 % 0.80 0.12 0.82 0.05 0.82 0.02 0.83 0.02 0.83 0.01 

50 % 0.76 0.22 0.80 0.09 0.82 0.05 0.82 0.03 0.82 0.02 

75 % 0.72 0.31 0.79 0.14 0.81 0.07 0.82 0.05 0.82 0.04 

100 % 0.67 0.39 0.78 0.18 0.80 0.09 0.81 0.06 0.82 0.05 
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3.4. Power peaks 

Figure 9 to Figure 12 shows the hourly EV charging load compared to the hourly PV yield for two 

weeks in March and July in Tromsø and Uppsala. The top graph in each figure shows the EV charging 

profile (power demand) and the PV yield (available power). Note that both profiles are shown on the 

positive left y-axis in the top graph. The dotted line in the top graph in each figure shows the 

instantaneous solar fraction SF(t) on the right y-axis. The bottom graph in each figure shows the 

surplus PV power (shown here as positive), and the unmet charging load (shown here as negative) 

during the same period. In all of the figures, the simulated EV charging power was 3.7 kW. 

 

Figure 9. The simulated EV charging load with 50% EV penetration and PV power from 10% of the suitable area on roofs and 

façades in Tromsø for two weeks in March.  

 

Figure 10. The simulated EV charging load with 50% EV penetration and PV power from 10% of the suitable area on roofs and 

façades in Tromsø for two weeks in July. 

The simulations for Tromsø is shown for the two winter weeks in Figure 9 and for the two summer 

weeks in Figure 10. The PV power peaks are reduced during both seasons. The EV charging load has 

two peaks, one during midday and one in the afternoon. Only the midday peak has a significant 

reduction, since the second peak generally occurs at times with little sunlight, especially during the 

two winter weeks. The afternoon peak is only reduced on mostly sunny days. 

In this scenario, the total PV yield was enough to meet the EV load during summer, but not during 

winter (Table 8 and Table 9). During the two weeks in March, the highest daily solar energy surplus 
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was 59 MWh and the highest daily unmet EV load was 117 MWh. The corresponding figures for July 

were 233 MWh and 65 MWh.  

 

Figure 11. The simulated EV charging load with 50% EV penetration and PV power from 10% of the suitable area on roofs and 

façades in Uppsala for two weeks in March. 

 

Figure 12. The simulated EV charging load with 50% EV penetration and PV power from 10% of the suitable area on roofs and 

façades in Uppsala for two weeks in July. 

The results for Uppsala shows a similar pattern. The peaks in solar power were reduced, in particular 

in the summer. For the EV charging, the most significant reduction was in the midday peak, but also in 

the afternoon peak during summer.  

As for Tromsø, the total PV yield was enough to meet the EV load during summer but not during 

winter (Table 10 and Table 11). During the two weeks in March, the highest daily solar energy surplus 

was 277 MWh and the highest daily unmet EV load was 292 MWh. The corresponding figures for 

July were 694 MWh and 70 MWh.  

4. Discussion 

4.1. Solar fraction, load fraction and power peaks 

The estimated values of the SF and LF for the aggregated load, given in Table 8 to Table 11, show that 

there is not a perfect match between solar energy availability and EV charging. However, there is a 

positive energy balance in most of the scenarios, that is, the total solar energy yield is higher than the 
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total EV charging load. If the PV integration exceeds 50% there isa positive net balance for all cases 

and seasons. 

 

The highest SF values, i.e. high solar coverage of the load, was achieved in Tromsø in the two summer 

weeks, with values between 0.82 and 0.90 for the lowest EV scenario. This can be explained by the 

longer days in Tromsø during summer, meaning that there is a higher load match between solar 

availability and charging load than during winter. For higher EV penetration levels and low PV 

integration levels, the simulations for Uppsala reach the highest SF values, suggesting that for a 

certain number of EVs the higher amount of solar energy (due to the higher number of available area 

in Uppsala compared to Tromsø) matters more than the shape of the PV yield profile. It is also 

interesting to note the similarities between the results in Table 8 and Table 10 (winter) andTable 9 and 

Table 11 (summer), even though the two cities have quite different climate conditions.  

The peak PV power was generally reduced when combined with EV charging, while the EV charging 

load was mostly reduced for the midday peak. Further reduction of the power peaks would be the 

result of an improved load match, i.e. a higher temporal coincidence between EV charging and PV 

yield. Increased load match could be achieved if energy storage solutions (residential or industrial) 

were to be implemented. Use of battery storage could increase the self-sufficiency (SF), since solar 

energy could be stored to other times of the day. Controlled charging of EVs, for example adjusting 

the charging power to the available solar radiation, could also improve the direct use of solar power. 

Battery storage and controlled charging will be the focus of further studies. 

4.2. Limitations and uncertainties 

The estimation of the suitable area on buildings was based on statistical data on building ground floor 

area combined with rule-of-thumb factors for e.g. shading, obstacles, and unusable areas on roofs and 

façades. For Uppsala, the building ground floor area was directly available, while in Tromsø it had to 

be calculated based on the number of buildings and average building areas for different building types. 

The ground floor area can vary significantly between individual buildings within the same type, 

especially for non-residential buildings and potentially large buildings such as warehouses. The 

available areas for solar installations were calculated from the ground floor area (combined with 

utilization factors). Even though these buildings were generally few in number, they can therefore 

potentially cause large errors in the roof and façade area estimations. 

Another uncertainty is the tilt angle and orientation of buildings. It is difficult to estimate the tilt angle 

of residential roofs, since this can vary significantly based on the type of building, the year of 

construction, and even building style of the neighbourhood. A tilt angle of 30 was assumed based on 

previous studies, for example by [53]. This is lower than optimal for Uppsala as well as Tromsø. More 

detailed methods are necessary to achieve more accurate estimations of the available area and the solar 

potential on specific buildings, for example using LiDAR data or image analysis [54, 55].  

This study focuses only on solar energy systems on buildings in urban areas. In terms of transportation 

patterns and solar energy potential, buildings in rural areas might be equally important. In addition, 

non-building structures in urban areas, such as carports, shading over parking lots, railings etc., might 

be of interest for solar energy utilization.  

The EV simulation method was based on Swedish travel survey data, which were here also used to 

simulate charging patterns in Norway. There might be differences in the driving patterns in the two 
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countries that are not taken into account in this study. For example, due to the shorter work hours in 

Norway, the charging patterns in the afternoon might differ from the Swedish ones.  

5. Conclusions 

The photovoltaic solar energy potential has been evaluated for Tromsø in Northern Norway and 

Uppsala in Central Sweden, using a method based on building area statistics. The energy yield was 

estimated for five integration levels of PV in the urban environment: 10%, 25%, 50%, 75% and 100% 

of the solar-architecturally suitable areas on the building roofs and façades.  

The energy load due to EV charging was evaluated for the same two locations, using a stochastic 

model based on travel survey data from Sweden. The charging patterns were simulated for residential, 

workplace, and other charging for five penetration levels of EVs in the personal vehicle fleet (10%, 

25%, 50%, 75% and 100%). 

The PV yield and EV load profiles were compared for all the different scenarios, using the solar 

fraction (SF) and the load fraction (LF). The values were compared for two weeks in winter (March) 

and two weeks in summer (July).  

The aggregated EV charging load can be covered by the total solar energy yield for most of the 

scenarios, except some of the scenarios with little PV integration and a high share of EVs in the 

vehicle fleet during winter. Moreover, if the PV integration exceeded 50%, the solar yield was enough 

to meet the charging load of EVs regardless of the EV penetration. The highest solar fractions were 

achieved for Tromsø during summertime, due to the midnight sun.   

The temporal load match between PV yield and EV charging was not perfect. When comparing the 

power peaks of EV charging and PV yield, it was seen that EV charging reduced the peaks in PV 

somewhat. In other words, the PV yield was, to some extent, self-consumed by EVs. Of the two EV 

charging peaks during the day, the earlier one was reduced or removed completely, while the charging 

peak later in the day was less affected.  

Further work will focus on methods and strategies for improving the load match, and thereby the self-

sufficiency and self-consumption, for example by the use of battery storage and controlled EV 

charging.  

6. Acknowledgements 

This project was funded by the EU H2020 ERA-Net Smart Grids Plus project “Increased Self 

Consumption of Photovoltaic Power for Electric Vehicle Charging in Virtual Networks" [grant 

numbers 004525-2015 (Sweden) and 259878 (Norway)]. 

References 

[1] Tran M, Banister D, Bishop J, McCulloch M. Realizing the electric-vehicle revolution 2012. 
10.1038/nclimate1429 
[2] Huo H, Cai H, Zhang Q, Liu F, He K. Life-cycle assessment of greenhouse gas and air emissions of 
electric vehicles: A comparison between China and the U.S. Atmospheric Environment. 
2015;108:107-16. https://doi.org/10.1016/j.atmosenv.2015.02.073 
[3] Ming T, de_Richter R, Liu W, Caillol S. Fighting global warming by climate engineering: Is the Earth 
radiation management and the solar radiation management any option for fighting climate change? 

https://doi.org/10.1016/j.energy.2018.11.050
ttps://doi.org/10.1016/j.atmosenv.2015.02.073
ttps://doi.org/10.1016/j.atmosenv.2015.02.073


This is a postprint version of the final paper, which is accepted for publication in Energy: 

https://doi.org/10.1016/j.energy.2018.11.050 

 

 

Renewable and Sustainable Energy Reviews. 2014;31:792-834. 
https://doi.org/10.1016/j.rser.2013.12.032 
[4] Olauson J, Ayob MN, Bergkvist M, Carpman N, Castellucci V, Goude A, et al. Net load variability in 
Nordic countries with a highly or fully renewable power system. Nature Energy. 2016;1:16175. 
https://doi.org/10.1038/nenergy.2016.175 
[5] Shepero M, Munkhammar J, Widén J, Bishop JDK, Boström T. Modeling of photovoltaic power 
generation and electric vehicles charging on city-scale: A review. Renewable and Sustainable Energy 
Reviews. 2018;89:61-71. https://doi.org/10.1016/j.rser.2018.02.034 
[6] Grahn P, Alvehag K, Söder L. PHEV Utilization Model Considering Type-of-Trip and Recharging 
Flexibility. IEEE Transactions on Smart Grid. 2014;5(1):139-48. 
https://doi.org/10.1109/TSG.2013.2279022 
[7] Grahn P, Munkhammar J, Widén J, Alvehag K, Söder L. PHEV Home-Charging Model Based on 
Residential Activity Patterns. IEEE Transactions on Power Systems. 2013;28(3):2507-15. 
https://doi.org/10.1109/TPWRS.2012.2230193 
[8] Rolink J, Rehtanz C. Large-Scale Modeling of Grid-Connected Electric Vehicles. IEEE Transactions 
on Power Delivery. 2013;28(2):894-902. https://do.org/10.1109/TPWRD.2012.2236364 
[9] Wang Y, Infield D. Markov Chain Monte Carlo simulation of electric vehicle use for network 
integration studies. International Journal of Electrical Power & Energy Systems. 2018;99:85-94. 
https://doi.org/10.1016/j.ijepes.2018.01.008 
[10] Muratori M. Impact of uncoordinated plug-in electric vehicle charging on residential power 
demand. Nature Energy. 2018;3(3):193-201. https://doi.org/10.1038/s41560-017-0074-z 
[11] Mureddu M, Facchini A, Scala A, Caldarelli G, Damiano A. A Complex Network Approach for the 
Estimation of the Energy Demand of Electric Mobility. Scientific Reports. 2018;8(1):268. 
https://doi.org/10.1038/s41598-017-17838-5 
[12] Wu C, Wen F, Lou Y, Xin F. Probabilistic load flow analysis of photovoltaic generation system 
with plug-in electric vehicles. International Journal of Electrical Power & Energy Systems. 
2015;64:1221-8. https://doi.org/10.1016/j.ijepes.2014.09.014 
[ 3] R  z R       z           J,     ández Jesus C, Jurado F. Voltage behaviour in radial distribution 
systems under the uncertainties of photovoltaic systems and electric vehicle charging loads. 
International Transactions on Electrical Energy Systems. 2017;28(2):e2490. 
https://doi.org/10.1002/etep.2490 
[14] Ko Y, Jang K, Radke JD. Toward a solar city: Trade-offs between on-site solar energy potential 
and vehicle energy consumption in San Francisco, California. International Journal of Sustainable 
Transportation. 2017;11(6):460-70. https://doi.org/10.1080/15568318.2016.1274807 
[15] Byrd H, Ho A, Sharp B, Kumar-Nair N. Measuring the solar potential of a city and its implications 
for energy policy. Energy Policy. 2013;61:944-52. https://doi.org/10.1016/j.enpol.2013.06.042 
[16] O'Brien WT, Kennedy CA, Athienitis AK, Kesik TJ. The Relationship between Net Energy Use and 
the Urban Density of Solar Buildings. Environment and Planning B: Planning and Design. 
2010;37(6):1002-21. https://doi.org/10.1068/b36030 
[17] Denholm P, Margolis R. Energy Storage Requirements for Achieving 50% Solar Photovoltaic 
Energy Penetration in California. Golden, Colorado, USA: National Renewable Energy Laboratory 
(NREL);  2016.  
[18] Statistics Norway (SSB). Over 140 000 electric cars in Norway. Online 2018. 
https://www.ssb.no/en/transport-og-reiseliv/artikler-og-publikasjoner/over-140-000-electric-cars-in-
norway 
[19] [The Norwegian National Transport Plan 2018-2029] Nasjonal Transportplan 2018-2029.  
Melding til Stortinget 2017. 
https://www.regjeringen.no/contentassets/7c52fd2938ca42209e4286fe86bb28bd/no/pdfs/stm2016
20170033000dddpdfs.pdf 

https://doi.org/10.1016/j.energy.2018.11.050
ttps://doi.org/10.1016/j.rser.2013.12.032
ttps://doi.org/10.1016/j.rser.2013.12.032
ttps://doi.org/10.1038/nenergy.2016.175
ttps://doi.org/10.1038/nenergy.2016.175
ttps://doi.org/10.1016/j.rser.2018.02.034
ttps://doi.org/10.1016/j.rser.2018.02.034
ttps://doi.org/10.1109/TSG.2013.2279022
ttps://doi.org/10.1109/TSG.2013.2279022
ttps://doi.org/10.1109/TPWRS.2012.2230193
ttps://doi.org/10.1109/TPWRS.2012.2230193
ttps://do.org/10.1109/TPWRD.2012.2236364
ttps://do.org/10.1109/TPWRD.2012.2236364
ttps://doi.org/10.1016/j.ijepes.2018.01.008
ttps://doi.org/10.1016/j.ijepes.2018.01.008
ttps://doi.org/10.1038/s41560-017-0074-z
ttps://doi.org/10.1038/s41560-017-0074-z
ttps://doi.org/10.1038/s41598-017-17838-5
ttps://doi.org/10.1038/s41598-017-17838-5
ttps://doi.org/10.1016/j.ijepes.2014.09.014
ttps://doi.org/10.1016/j.ijepes.2014.09.014
ttps://doi.org/10.1002/etep.2490
ttps://doi.org/10.1002/etep.2490
ttps://doi.org/10.1080/15568318.2016.1274807
ttps://doi.org/10.1080/15568318.2016.1274807
ttps://doi.org/10.1016/j.enpol.2013.06.042
ttps://doi.org/10.1016/j.enpol.2013.06.042
ttps://doi.org/10.1068/b36030
ttps://doi.org/10.1068/b36030
ttps://www.ssb.no/en/transport-og-reiseliv/artikler-og-publikasjoner/over-140-000-electric-cars-in-norway
ttps://www.ssb.no/en/transport-og-reiseliv/artikler-og-publikasjoner/over-140-000-electric-cars-in-norway
ttps://www.regjeringen.no/contentassets/7c52fd2938ca42209e4286fe86bb28bd/no/pdfs/stm201620170033000dddpdfs.pdf
ttps://www.regjeringen.no/contentassets/7c52fd2938ca42209e4286fe86bb28bd/no/pdfs/stm201620170033000dddpdfs.pdf


This is a postprint version of the final paper, which is accepted for publication in Energy: 

https://doi.org/10.1016/j.energy.2018.11.050 

 

 

[20] Fridstrøm L, Østli V. [Vehicle fleet forecasts based on stock-flow modeling] Kjøretøyparkens 
utvikling og klimagassutslipp - Framskrivinger med modellen BIG. Oslo: Transportøkonomisk Institutt 
- TØI.  
[21] The Government of Sweden. En sammanh ̊llen klimat- och energipolitik – Klimat.  2008.  
[22] IEA PVPS. Potential for building integrated photvoltaics 2002.  
[23] Number of buildings by building type. Municipalities. 2017. In: (SSB) SN, editor. Private 
communication: Holst Bloch, Vilni Verner 2017.  
[24] Holst Bloch VV. Arealstatistikk fra GAB og FKB Bygg. Datagrunnlag og metode for produksjon av 
arealtall. Oslo, Norway 2002. https://www.ssb.no/natur-og-miljo/artikler-og-
publikasjoner/arealstatistikk-fra-gab-og-fkb-bygg?fane=om#content 
[25] Good C, Boström T. Analysis of the solar energy potential on buildings in Tromsø.  Arctic 
Frontiers. Tromsø 2018.  
[26] (SCB) SS. Buildings within and outside of localities, number and ground space area, by region by 
region, type of area, type of property, observations and every fifth year. Statistics Database, scb.se 
2017. 
http://www.statistikdatabasen.scb.se/pxweb/en/ssd/START__MI__MI0810__MI0810B/ByggIochUta
nfTatort/table/tableViewLayout1/?rxid=86abd797-7854-4564-9150-c9b06ae3ab07# 
[27] Photovoltaic Geographical Information System (PVGIS) Ispra, Italy: European Commission, Joint 
Research Centre, Institute for Energy, Renewable Energy Unit;  1995-2017. 
http://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#PVP 
[28] Mermoud A. PVsyst. v 6.62 ed. Satigny, Switzerland: PVsyst SA;  2011.  
[29] Meteotest. Meteonorm 7. Bern, Switzerland 2017. http://www.meteonorm.com/ 
[30] Photovoltaic Geographical Information System (PVGIS) Ispra, Italy: European Commission, Joint 
Research Centre, Institute for Energy, Renewable Energy Unit;  1995-2017. 
http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php# 
[31] Fraunhofer  Institute for Solar Energy System (ISE). Photovoltaics report. Freiburg, Germany 
2018. 
https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-
Report.pdf 
[32] Deutsche Gesellschaft für Sonnenenergie. Planning and Installing Photovoltaic Systems: A Guide 
for Installers, Architects and Engineers: Earthscan,  2008.  
[33] Kanters J, Davidsson H. Mutual shading of PV modules on flat roofs: A parametric study. Energy 
Procedia. 2014;57:1706-15. 10.1016/j.egypro.2014.10.160 
[34] Good CS, Kristjansdottir T, Houlihan Wiberg AAM, Georges L, Hestnes AG. Influence of PV 
technology and system design on the emission balance of a net zero emission building concept. Solar 
Energy. 2016;130:89-100. http://dx.doi.org10.1016/j.solener.2016.01.038 
[35] Shepero M, Munkhammar J. Modelling charging of electric vehicles using mixture of user 
behaviours.  1st E- Mobility Integration Symposium. Berlin 2017.  
[36] Koralov LB, Sinai YG. Theory of Probability and Random Processes: Springer,  2012. 10.1007/978-
3-540-68829-7 
[37] Neaimeh M, Wardle R, Jenkins AM, Yi J, Hill G, Lyons PF, et al. A probabilistic approach to 
combining smart meter and electric vehicle charging data to investigate distribution network 
impacts. Applied Energy. 2015;157:688-98. https://doi.org/10.1016/j.apenergy.2015.01.144 
[38] Robinson AP, Blythe PT, Bell MC, Hübner Y, Hill GA. Analysis of electric vehicle driver recharging 
demand profiles and subsequent impacts on the carbon content of electric vehicle trips. Energy 
Policy. 2013;61:337-48. https://doi.org/10.1016/j.enpol.2013.05.074 
[39] Qi Y, Ishak S. A Hidden Markov Model for short term prediction of traffic conditions on freeways. 
Transportation Research Part C: Emerging Technologies. 2014;43:95-111. 
https://doi.org/10.1016/j.trc.2014.02.007 
[40] Swedish Institute for Transport and Communications Analysis, SIKA. RES 2005-2006 The National 
Travel Survey, Technical Report No. 2007:19.  2007.  

https://doi.org/10.1016/j.energy.2018.11.050
ttps://www.ssb.no/natur-og-miljo/artikler-og-publikasjoner/arealstatistikk-fra-gab-og-fkb-bygg?fane=om#content

ttps://www.ssb.no/natur-og-miljo/artikler-og-publikasjoner/arealstatistikk-fra-gab-og-fkb-bygg?fane=om#content

ttp://www.statistikdatabasen.scb.se/pxweb/en/ssd/START__MI__MI0810__MI0810B/ByggIochUtanfTatort/table/tableViewLayout1/?rxid=86abd797-7854-4564-9150-c9b06ae3ab07#

ttp://www.statistikdatabasen.scb.se/pxweb/en/ssd/START__MI__MI0810__MI0810B/ByggIochUtanfTatort/table/tableViewLayout1/?rxid=86abd797-7854-4564-9150-c9b06ae3ab07#

ttp://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#PVP

ttp://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#PVP

ttp://www.meteonorm.com/
ttp://www.meteonorm.com/
ttp://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php#

ttp://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php#

ttps://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf
ttps://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf
ttp://dx.doi.org10.1016/j.solener.2016.01.038
ttp://dx.doi.org10.1016/j.solener.2016.01.038
ttps://doi.org/10.1016/j.apenergy.2015.01.144
ttps://doi.org/10.1016/j.apenergy.2015.01.144
ttps://doi.org/10.1016/j.enpol.2013.05.074
ttps://doi.org/10.1016/j.enpol.2013.05.074
ttps://doi.org/10.1016/j.trc.2014.02.007
ttps://doi.org/10.1016/j.trc.2014.02.007


This is a postprint version of the final paper, which is accepted for publication in Energy: 

https://doi.org/10.1016/j.energy.2018.11.050 

 

 

[41] Smith WJ. Can EV (electric vehicles)                ’                              ?       . 
2010;35(12):4514-21. https://doi.org/10.1016/j.energy.2010.07.029 
[42] Salisbury S. Cold Weather On-Road Testing of a 2015 Nissan Leaf. Tech. Rep. June ed 2016. 
http://avt.inl.gov 
[43] Besselink I, Hereijgers J, Van Oorschot P, Nijmeijer H. Evaluation of 20000 km driven with a 
battery electric vehicle.  Proceedings of the European Battery, Hybrid and Fuel Cell Electric Vehicle 
Congress. Brussels, Belgium 2011. p. p. 1-10.  
[44] Munkhammar J, Widén J, Grahn P, Rydén J. A Bernoulli Distribution Model for Plug-in Electric 
Vehicle Charging based on Time-use Data for Driving Patterns.  IEEE International Electric Vehicle 
Conference (IEVC), 17-19 Dec 2014, Florence, Italy 2014. 10.1109/IEVC.2014.7056224 
[45] Statens Vegvesen. Det sentrale motorvognregisteret.  
[46] Trafikanalys. Fordon i län och kommuner 2017, Statistik 2018:3  2018.  
[47] Karlsson E, Koch M, Wangenborg S. Electric vehicle charging infrastructure in Uppsala : Current 
state and potential [Student thesis]2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-295031 
[48] Skotland CH, Eggum E, Spilde D. [What does the electric vehicle mean for the power grid?] Hva 
betyr elbilen for strømnettet? In: Skotland CH, editor. NVEs hustrykkeri, Oslo: Norges energi og 
vassdragsdirektorat, NVE;  2016. 
https://www.nve.no/Media/4720/elbil_str%C3%B8mnett_rapport.pdf 
[49] Gnann T, Funke S, Jakobsson N, Plötz P, Sprei F, Bennehag A. Fast charging infrastructure for 
                 :      ’                 uture needs. Transportation Research Part D: Transport and 
Environment. 2018;62:314-29. https://doi.org/10.1016/j.trd.2018.03.004 
[50] Munkhammar J, Grahn P, Widén J. Quantifying self-consumption of on-site photovoltaic power 
generation in households with electric vehicle home charging. Solar Energy. 2013;97(Supplement 
C):208-16. https://doi.org/10.1016/j.solener.2013.08.015 
[51] Luthander R, Widén J, Nilsson D, Palm J. Photovoltaic self-consumption in buildings: A review. 
Applied Energy. 2015;142:80-94. https://doi.org/10.1016/j.apenergy.2014.12.028 
[52] Sartori I, Napolitano A, Voss K. Net zero energy buildings: A consistent definition framework. 
Energy and Buildings. 2012;48:220-32. https://doi.org/10.1016/j.enbuild.2012.01.032 
[53] Kjellsson E. Potential for Building Integrated Photovoltaics Study for Sweden - Report 1. Area of 
Building Envelopes. Lund, Sweden: Department of Building Physics, Lund University;  1999.  
[54] Kanters J, Wall M, Kjellsson E. The Solar Map as a Knowledge Base for Solar Energy Use. Energy 
Procedia. 2014;48:1597-606. http://dx.doi.org/10.1016/j.egypro.2014.02.180 
[55] Lingfors D, Bright JM, Engerer NA, Ahlberg J, Killinger S, Widén J. Comparing the capability of 
low- and high-resolution LiDAR data with application to solar resource assessment, roof type 
classification and shading analysis. Applied Energy. 2017;205:1216-30. 
https://doi.org/10.1016/j.apenergy.2017.08.045 

 

https://doi.org/10.1016/j.energy.2018.11.050
ttps://doi.org/10.1016/j.energy.2010.07.029
ttps://doi.org/10.1016/j.energy.2010.07.029
ttp://avt.inl.gov/
ttp://avt.inl.gov/
ttp://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-295031
ttp://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-295031
ttps://www.nve.no/Media/4720/elbil_str%C3%B8mnett_rapport.pdf
ttps://www.nve.no/Media/4720/elbil_str%C3%B8mnett_rapport.pdf
ttps://doi.org/10.1016/j.trd.2018.03.004
ttps://doi.org/10.1016/j.trd.2018.03.004
ttps://doi.org/10.1016/j.solener.2013.08.015
ttps://doi.org/10.1016/j.solener.2013.08.015
ttps://doi.org/10.1016/j.apenergy.2014.12.028
ttps://doi.org/10.1016/j.apenergy.2014.12.028
ttps://doi.org/10.1016/j.enbuild.2012.01.032
ttps://doi.org/10.1016/j.enbuild.2012.01.032
ttp://dx.doi.org/10.1016/j.egypro.2014.02.180
ttp://dx.doi.org/10.1016/j.egypro.2014.02.180
https://doi.org/10.1016/j.apenergy.2017.08.045

