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Abstract 

Multi-proxy analysis of gravity core PS56/029-1 have been performed in order to describe 

sedimentary processes and dynamics under pelagic, turbiditic and contouritic influences.  The 

purpose is to reconstruct climate-controlled environmental change in the Riiser Larsen Sea, 

Antarctica, through past glacial/interglacial cycles. The gravity core was retrieved during 

expedition ANTARKTIS XVII/2 of R/V Polarstern in 2000. Data analysis was carried out in a 

collaboration between the Alfred Wegner Institute, Helmholtz centre for polar and marine 

research in Germany and the Department of Geosciences at UiT The Artic University of 

Tromsø. 

The core was retrieved from a levee in the central part of a large channel system in the Riiser 

Larsen Sea, at c. 4000 m water depth and c. 200 km offshore Princess Ragnhild Coast, Queen 

Maud Land, Antarctica. A multi-proxy analysis was conducted in order to determine 

depositional environments through past glacial/interglacial cycles. The analysis included 

physical properties, e.g. magnetic susceptibility, p-wave velocity and wet-bulk density, 

interpretation of line-scan images and X-radiographs, qualitative element geochemical analysis 

using an Avaatech XRF Core Scanner and high resolution grain-size distribution analysis using 

a CILAS 1180 laser granulometer.  

Core PS56/029-1 reveals alternating repetitive intervals of poorly sorted and fine-grained 

sediment accumulated in lighter brownish and greyish coloured intervals. The deposits have a 

polymodal signature which is interpreted to reflect a mixed pelagic, turbiditic, and contouritic 

influence, and the more occasional influence of icebergs. Four lithofacies are defined: 

Laminated Grey Layer (LGL), Grey Layer Thin (GLT), Massive Lighter Layer (MML) and 

Red Brown Layer (RBL). The greyish coloured intervals LGL and GLT are interpreted to be 

deposited during glacial periods, including fine sediments attributed to the advancing ice-sheet, 

along with a more extensive sea-ice, and smaller coastal polynyas. More frequent turbidity 

currents are suggested to be the explaining factor. The lighter brownish coloured layers MLL 

and RBL are interpreted to be deposited during interglacial periods, including slightly coarser 

sediments attributed to a stable or retreating ice sheet, along with less extensive sea-ice cover, 

and stronger coastal polynyas. Increased bottom-water velocities and denser water masses 

created in coastal polynyas are suggested to be the explaining factors.  
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Abbreviations:  

 

AABW = Antarctic Bottom Water 

AIS = Antarctic Ice Sheet 

ACC = Antarctic Circumpolar Current 

APIS = Antarctic Peninsula Ice Sheet 

CDW = Circumpolar Deep Water 

EAIS = East Antarctica Ice Sheet 

GL = Grounding line 

GZW = Grounding zone wedge 

HSSW = High Salinity Shelf Water  

LGM = Last Glacial Maximum  

LGL = Laminated Grey Layer 

LSSW = Low Salinity Shelf Waters 

Ma = Million years ago 

MLL = Massive Lighter Layer 

MS = Magnetic susceptibility  

MSCL = Multi-Sensor Core Logger 

MSGL = Mega-scale glacial lineation 

NH = Northern Hemisphere  

RBL = Red Brown Layer 

RLS = Riiser Larsen Sea 

SH = Southern Hemisphere 

Sv = Sverdrup (106m3/s) 

TAM = Transantarctic Mountains 

UCDW = Upper Circumpolar Deep Water 

UTL = Undefined Transition Layer 

WAIS = West Antarctic Ice Sheet 

WDW = Warm Deep Water  
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1 Introduction 

1.1 Objectives  

The main objective of this Master’s thesis is to investigate sedimentary processes in the central 

part of a large channel system in the Riiser Larsen Sea (RLS), Antarctica, at approximately 

4000 m water depth and approximately 200 km offshore Princess Ragnhild Coast, Queen Maud 

Land. The objectives are to: 

 Describe sedimentary processes and dynamics under pelagic, turbiditic and contouritic 

influences, and to; 

 Reconstruct climate-controlled environmental change in the Riiser Larsen Sea through 

the past glacial/interglacial cycles.  

1.2 Motivation 
The Antarctic Ice Sheet (AIS) is the largest single mass of ice on earth, storing 27 million km3 

of ice at present, equivalent to a global sea level rise of 58 m (Fretwell et al., 2013a). Melting 

of ice sheets is likely the dominant contributor to sea level rise in the 21st century (Rignot et al., 

2011). At present, ice loss contribute c. 1.8 mm per year globally to sea level rise. Thinning of 

ice shelves and tidewater glaciers removing grounded ice or unstable parts of the ice in a large-

scale collapse could further increase the contribution to sea level rise from ice (Pritchard et al., 

2009; Rignot et al., 2011; DeConto and Pollard, 2016a).  

The Transantarctic Mountains (TAM) divide the Antarctic continent into two distinct regions, 

with colossal glaciers on both sides known as the East Antarctica Ice Sheet (EAIS) and the 

West Antarctica Ice Sheet (WAIS). In addition, the Antarctic Peninsula Ice Sheet (APIS) (part 

of WAIS) makes a 3rd subdivision of the ice masses in Antarctica (Fig. 1.1). The ice sheets 

contain kilometres of thick ice accumulations that locally drain towards the open ocean through 

fast flowing outlet glaciers and ice streams (Fig. 1.2). These works as pathways for the moving 

ice, transporting ice from the interior of the continent towards the ocean, capable of moving 

several meters of ice per day (Rignot et al., 2011). Ice shelves are formed as the ice sheet flows 

down to the coastline and flows onto the ocean (Rignot et al., 2011). The boundary between the 

floating ice shelf and the ice sheet is called the grounding line. Ice shelves are important 

contributors to the ice sheet dynamics because they give backstress, buttressing the ice by 
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lowering the velocity and loss of ice through ice streams and outlet glaciers (Van der Veen, 

1997; Pritchard et al., 2012; Matsuoka et al., 2015; DeConto and Pollard, 2016b). Between 

1992 and 2011 the ice sheets of East Antarctica and West Antarctica changed in mass by +14 

± 43 and -65 ± 26 gigatons per year respectively (Shepherd et al., 2012). It is likely that the 

EAIS and WAIS will respond differently to increased temperatures globally. 

 

 

Fig. 1.1: Map of the Antarctic continent and the surrounding Southern Ocean, including the East Antarctic Ice Sheet, 

the West Antarctic Ice Sheet, the Antarctic Peninsula Ice Sheet and the Transantarctic Mountains (EAIS, WAIS, 

APIS and TAM) displayed by white rectangles. Queen Maud Land and Riiser Larsen Sea (RLS) are displayed by 

white rectangles highlighted with a red outline. RLS is the study area of this Master’s thesis (modified after 

Geology.com (2018)).  
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Fig. 1.2: Map of the Antarctic continent, including ice velocities colour-coded to the legend to the left. Thick black 
lines delineate major ice divides, while thin black lines outline subglacial lakes. Queen Maud Land and Riiser Larsen 
Sea are displayed by rectangles outlined in red (modified after  Rignot (2011)).   

A large portion of the latest research has focused on the behaviour and dynamics of the WAIS 

and the APIS. Both have lost a great amount of ice volume recently, much due to ongoing and 

past acceleration of outlet glaciers, transporting ice from the interior towards the ocean 

(Vaughan and Doake, 1996; Oppenheimer, 1998; Vaughan and Spouge, 2002; Scambos et al., 

2003; Rignot, 2004; Cook et al., 2005). In contrast, EAIS seems to gain volume, due to an 

increase in accumulation of snow (Rignot, 2008; Shepherd et al., 2012) 

All grounded ice of the WAIS rests on land well below sea level and lies on bedrock that 

deepens inland and is characterized as a marine-based ice sheet (Fig. 1.3) (Bamber et al., 2009; 

Fretwell et al., 2013a). At present, floating ice shelves and ice tongues extend over the oceans 

in West Antarctica and buttress the ice (DeConto and Pollard, 2016b). They impede the seaward 

flow of ice and stabilize the marine grounding-zones. Higher ocean temperatures can result in 
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basal melting and eventual thinning of ice shelves and ice tongues. This would reduce the 

buttressing effect, favouring a seaward movement of the ice and result in grounding-zone 

thinning. This could accelerate the flow of non-floating ice near the coast and expose the ice 

sheet interior to floating. Researchers are concerned about the vulnerability and the stability of 

the WAIS in the future (Joghuhin, 2011; DeConto and Pollard, 2016b). At present, the 

possibility of a collapse of the ice sheet remains unknown. Estimates suggest that a collapse of 

the WAIS could rise the global sea level by as much as c. 3.4 m (Bamber et al., 2009; Joghuhin, 

2011; Fretwell et al., 2013a). For the APIS, the consequence of global warming is reported 

through the melting of the floating ice shelves. Temperatures have increased by 2-4°C during 

the last 50 years. For the last 30 years, ice shelves have retreated equal to an area of more than 

13.500 km2 (Scambos et al., 2004). Especially, the collapse of the Larsen B ice shelf, the Ross 

Ice Shelf and the Amundsen Sea embayment have been of great concern to scientists (Scambos 

et al., 2003; Rignot, 2004; Rignot, 2008; Pritchard et al., 2009).   

| 

Fig. 1.3: Map of the Antarctic continent, including bed elevations based on Fretwell et al. (2013b). Bed elevations 

are colour-coded based on the scale to the left, ranging from blue (low elevations) to red (high elevations). West 

Antarctica, East Antarctica and Riiser Larsen Sea are displayed by white rectangles. Differences in bed elevations 

between East Antarctica and West Antarctica are clearly visible (modified after Fretwell et al. (2013b).  
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The EAIS as the largest ice sheet on earth, comprises 77% of the entire continent and spans the 

continental area between longitudes of c. 45°W and c. 168°E (Rignot, 2011; Mackintosh et al., 

2014). Until recently, the EAIS has been assumed to be rather stable, because the ice rests on 

bed well above sea level and the ice sheet actually gains volume (Fig. 1.3) (Shepherd et al., 

2012; Fretwell et al., 2013b). However, in recent years researches have concluded that also the 

EAIS is affected by thinning, posing a threat to global sea levels (Pritchard et al., 2009).  

The Quaternary history of EAIS is important for several reasons, listed below:  

1. Recent research has shown that the EAIS rests on bed below sea level and 

therefore making the ice vulnerable to erosion by ocean currents (Mackintosh et 

al., 2014).  

2. Fast-flowing outlet glaciers (e.g. Phillipi Glacier and Totten Glacier) are 

currently loosing mass, while more slow-flowing outlet glaciers (e.g. in Enderby 

Land) are gaining mass (Pritchard et al., 2009; Shepherd et al., 2012). 

3. Ice sheets are important parts within the climate system because they change in 

response to planetary albedo, ice elevation, and atmospheric circulation. Ice 

sheet are also important for oceanic circulation and temperature, as they affect 

formation of deep waters (Pollard and DeConto, 2009; Mackintosh et al., 2014). 

4. Ice loss from the EAIS during the last interglacial likely contributed to the global 

sea level rise (Pingree et al., 2011), indicating the vulnerability of the EAIS in 

regards to climate change/warming.  

5. EAIS with its 21.76 * 106 unit of grounded ice, equivalent to c. 53 m of sea level 

rise can influence global sea level with just small changes in its ice volume 

(Lythe and Vaughan, 2001; Fretwell et al., 2013a).  

Knowledge and understanding of the factors controlling the advance and the subsequent retreat 

of the AIS in the past might contribute to our comprehension of more recent ice sheet behaviour.    

The contribution to sea level rise from Antarctica involves large uncertainties. Global warming 

may increase accumulation of snow on the continent’s interior, while the glaciers in coastal 

regions may experience a retreat as a result of warmer air and higher ocean temperatures leading 

to a removal of the buttressing effect from ice shelves (Rignot, 2008). In order to predict and 

understand collapses or retreats of the ice on Antarctica we need further knowledge about the 

changing precipitation, atmospheric temperature, oceanographic conditions, and the changes in 
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glacier dynamics that prevail in the region (Pritchard et al., 2009). Paleoenvironmental 

reconstruction using proxies from the geologic record allows us to reconstruct past climates and 

is the main tool to figure out the climate to come.  

1.3 Glacial history of Antarctica  
The behaviour, extent, and dynamics of the AIS through glacial/interglacial cycles, and the 

timing and style of the retreat has been the focus of multiple discussions and debates through 

the last decades, resulting in numerous articles on the topic (Huybrechts, 1990; Bentley, 1999; 

Denton and Hughes, 2002; Scambos et al., 2004; Rignot et al., 2013).  

Antarctica claims a long history of Cenozoic glaciation, which can be traced in the geological 

record (Anderson, 1999). After the break-up of Gondwana, Antarctica drifted southward 

resulting in a thermal isolation of the continent, favouring colder conditions (Lawver, 1992). 

Geological evidence strongly suggests that ice growth in Antarctica began in the earliest 

Oligocene (c. 34 Ma) or in the Eocene/Oligocene boundary, supported by enrichment in deep-

water marine δ18O values (Zachos et al., 1996; Coxall et al., 2005; Hay et al., 2005). The glacial 

build-up was asynchronous through the continent, favouring an earlier glaciation in the east 

(Zachos et al., 1996; Solli et al., 2007). The Drake Passage opened in Early Miocene (c. 24 

Ma), separating South America and the Antarctic Peninsula, leading to the development off the 

circumpolar current and the formation of cold waters in the Southern Hemisphere preventing 

warm tropical sea currents from flowing south (Pfuhl and McCave, 2005). By the middle 

Miocene, the alpine glaciers had formed into continental ice sheets of near present day size. 

This suggests the ice sheet configuration has been more or less the same for the last c. 14 Ma 

years, however substantial fluctuation occurred during the Quaternary (Ingólfsson, 2004). 

Through time, the coastal margins surrounding Antarctica have been glaciated several times 

(Zachos et al., 1996; DeConto and Pollard, 2003; Coxall et al., 2005; Bohaty et al., 2012).  

A recent study by Bentley et al. (2014) gathered all geological data available from the last 

glacial/interglacial cycle in order to make a combined reconstruction of the AIS (Fig. 1.4). The 

continent was divided into six sectors: East Antarctica (Mackintosh et al., 2014) , Ross Sea 

(Anderson et al., 2014), Amundsen-Bellingshausen Sea (Larter et al., 2014), Antarctic 

Peninsula (Cofaigh et al., 2014), Weddell Sea (Hillenbrand et al., 2014) and sub-Antarctic 

Islands (Hodgson et al., 2014).  
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Fig. 1.4: Map of the Antarctic continent, including the EAIS, the WAIS and the APIS. Ice sheet elevation is marked 

with blue shading, while ice shelves are coloured in white. Names mentioned in the text are displayed by white 

rectangles and black lines shows their sector boundaries. Riiser Larsen Sea is displayed by a red rectangle 

(modified after Bentley et al. (2014)).  

The global LGM (Last Glacial Maximum) (c. 26-21 ka BP) ice extent was more extensive 

compared to present levels (Davies, 2017). Reconstructions of the AIS extent during the LGM 

indicate it did not reach a synchronous maximum extent and the position of LGM varied widely 

in timing between different sectors of Antarctica (Bentley et al., 2014). By 20 ka BP the 

grounding line was near or at the continental shelf break around most of the Antarctic continent, 

except in the Weddell Sea, the Ross Sea and the Prydz Bay regions (Fig. 1.4). Some regions 

even experienced a maximum ice extent prior to 20 ka BP, and the retreat of the ice had already 

started by 20 ka BP. In the easternmost part of the APIS the retreat was underway by 18 ka BP 

(Fig. 1.4), while in Brainsfield Basin (located out of the northern tip of the Antarctic Peninsula) 

the initial retreat was at 17.5 ka BP. In contrast, only one location on the EAIS shows evidence 

of ice retreat on the continental shelf before 15 ka BP (Bentley et al., 2014), while the rest of 

the EAIS was close to its maximum at 15 ka BP (Bentley et al., 2014). In Amundsen Sea (Fig. 

1.4) the grounding line had retreated over most of it shelf by 15 ka BP. Along eastern and 

western side of the APIS the substantial recession occurred between 15 – 10 ka BP. In Ross 
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Sea (Fig. 1.4) the retreat of the EAIS occurred mostly after 13 ka BP, however the retreat was 

more rapid during the Holocene epoch. By 10 ka BP the retreat of the WAIS from Weddell Sea 

and eastern Ross Sea was ongoing. The AIS grounding line was at the innermost shelf around 

the Antarctic continent by 5 ka BP. The extension of the AIS is still controversial at LGM, 

involving large uncertainties. More research on the Antarctic continent is needed in order to get 

a more thorough understanding of the extent and the subsequent retreat of the ice. In the 

following sub-chapters (see Chapter 1.3.1 and 1.3.2) Weddell Sea and East Antarctica are 

investigated in more detail.  

1.3.1 Weddell Sea 
The Weddell Sea (Fig. 1.5) sector receives glacial drainage from EAIS, WAIS, and APIS, and 

is therefore an ideal region to investigate the asynchronous behaviour of the AIS through the 

last glacial/interglacial cycle (Bentley and Anderson, 1998; Joughin et al., 2006; Hillenbrand 

et al., 2014). The Weddell Sea is also an important site for the formation of Antarctic Bottom 

Water, feeding the Southern Ocean with dense, cold water which spreads northwards into the 

deep-sea basins of the Pacific, Atlantic and Indian Oceans (Nicholls et al., 2009; Fukamachi et 

al., 2010; Hillenbrand et al., 2014). Reconstructions of AIS dynamics through the last 

glacial/interglacial cycle in the Weddell Sea sector includes multiple studies (Elverhøi, 1981; 

Bentley and Anderson, 1998; Hein et al., 2011; Le Brocq et al., 2011; Larter et al., 2012; 

Bentley et al., 2014). However, conflicting evidence from terrestrial studies (Fogwill et al., 

2004; Hein et al., 2011), marine studies (Kuhn et al., 1993; Crawford et al., 1996; Larter et al., 

2012) and ice core studies (members et al., 2004; Mulvaney et al., 2007) show different 

outcomes concerning a consensus of the ice extent and thickness since LGM in the Weddell 

Sea sector (Hillenbrand et al., 2014).  
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Fig. 1.5: Map of the Weddell Sea sector, including shelf bathymetry and ice-sheet surface elevations (given in 
meters above sea level) according to Bed Map 2 (Fretwell et al., 2013a). Ice shelves are displayed in grey-green 
shading. Inset map shows the Weddell Sea sector outlined by a red line, in context with the Antarctic continent, 
including sub-ice sheets and ice shelves displayed in grey shading (EAIS, WAIS and APIS) (adapted from 
Hillenbrand et al. (2014)).  

Due to the scarcity of data available in the Weddell Sea region, reconstructions of the LGM 

ice-sheet configuration shows different extents. Some studies argue for a thick ice-sheet 

covering the entire continental shelf (Bassett et al., 2007; Pollard and DeConto, 2009; Golledge 

et al., 2012), while others suggest a thinner ice-sheet extension covering only shallower parts 

of the shelf (Bentley et al., 2010; Whitehouse et al., 2012; Hillenbrand et al., 2014).  

Hillenbrand et al. (2014) proposes two alternative scenarios (A and B) of the LGM ice-sheet 

extent and the following retreat in the Weddell Sea sector, based upon the marine and terrestrial 

data available at present. Scenario A implies a more restricted advance during LGM compared 

to scenario B, which proposes a more extensive advance (Fig. 1.6 and Fig. 1.7).   
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Scenario A  

Scenario A (Fig. 1.6) uses terrestrial models to assume ice extent under LGM according to 

Bentley et al. (2010), Le Brocq et al. (2011) and Whitehouse et al. (2012). Following this 

scenario, all dates (even the oldest) from marine sediments cores are minimum ages from 

grounded ice retreat from the continental shelf. Grounding events recorded in sediments and 

subglacial bedforms were mostly pre-LGM. In this model the advance of the grounded ice-

sheet during LGM was restricted to the shelf offshore Ronne Ice Shelf and the grounding line 

was close to the present day-position or only slightly beyond it (Hillenbrand et al., 2014).  
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Fig. 1.6: Map showing grounded ice-sheet extent in the Weddell Sea sector according to Scenario A by Hillenbrand 
et al. (2014), in time intervals of 20 ka BP, 15 ka BP, 10 ka BP and 5 ka BP. Red circles indicates different core 
locations and the associated ice sheet elevation. Scale displaying depth in meters (from blue to orange shading) 
(GL: grounding line) (modified after Hillenbrand et al. (2014)).  

20 ka BP (Fig. 1.6): The ice-sheet reached its maximum extent at/or close to in the Ellsworth 

Mountains and maximum extent in the SE Antarctic Peninsula, while the ice-sheet in the 

Shackleton Range was at present day level or thinner (Fig. 1.5). Berkner Island (Fig. 1.5 and 

Fig. 1.6) operated as an independent ice dispersal centre, meaning the inland ice did not overrun 

the island (Hillenbrand et al., 2014).  

15 ka BP (Fig. 1.6): In Ellsworth Mountains the lower trimline was abandoned by the thinning 

ice-sheet, continuing into the Holocene. Ice in the Shackleton Range was close to present day 

levels or thinner. Whitehouse et al. (2012) propose a landward retreat of the ice along troughs 

and away from the continental shelf north of Berkner Island.  
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10 ka BP (Fig. 1.6): The grounding line was at the inner shelf in almost all regions, except 

north of the Berkner Island. Ice elevations in Shackleton Range were similar to the present day 

levels, or even lower. 

5 ka BP (Fig. 1.6): The grounding line was at or close to present day grounding line. Ice 

elevation in the Ellsworth Mountains was more than 160 m above present day levels. On the 

SE Antarctic Peninsula, the ice was c. 300 m thicker compared to present day level and the ice 

elevations in the Shackleton Range were at present day level or thinner. According to isotopic 

data from EDML, ice-sheet thinning in Central Queen Maud Land began at c. 5 ka BP.  

Scenario B 

Scenario B (Fig. 1.7) is based of the interpretation on marine sediment cores. The ages in 

Scenario B include a mixture of minimum and maximum ages for the previous ice-sheet retreat 

and the interpretation that the most extended of the apparent hiatuses observed in the Weddell 

Sea sector were the result of an advancing ice-sheet moving over the core sites. The dates 

constraining the termination of the hiatus from c. 31.0 and c. 21.5 cal ka BP seen north of the 

Riiser-Larsen and Filchner-Ronne ice shelves are ages near the previous grounding-line retreat 

(Hillenbrand et al., 2014). During LGM, grounded ice did extend to the shelf break north of 

Filchner-Ronne Ice Shelf according to this scenario. To keep consistency with the terrestrial 

data, this scenario requires only very thin, low profile for the ice on the continental shelf 

(Bentley et al., 2010).  
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Fig. 1.7: Grounded ice-sheet extent in the Weddell Sea sector in time intervals of 25 cal ka BP, 20 cal ka BP, 15 
cal ka BP, 10 cal ka BP and 5 cal ka BP, according to scenario B by Hillenbrand et al. (2014). Scale displaying 
depth in meters (from blue to orange shading) (modified after Hillenbrand et al. (2014)).  
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25 cal ka BP (Fig. 1.7): The grounded ice had retreated from the shelf offshore the Brunt Ice 

Shelf and the Quar Ice Shelf (Fig. 1.5), while the grounding line at the rest of the Weddell Sea 

sector was at the shelf break or further out. A moraine belt seen north of the Riiser-Larsen Ice 

Shelf (Fig. 1.5) may mark the outer position of the grounding-line at this time interval.  

20 cal ka BP (Fig. 1.7):  Based on data from different sites, the grounding line had started to 

retreat from the shelf break in most parts of the Weddell Sea.  

15 cal ka BP (Fig. 1.7): Both the WAIS and EAIS had retreated from their outer shelf locations 

north of the Filchner-Ronne Ice Shelf by this time. Larter et al. (2012) suggests a stop in the 

ice-sheet retreat followed by a minor re-advance in this time interval.  

10 cal ka BP (Fig. 1.7): The eastern outer shelf of Filchner Trough and the inner shelf north of 

Riiser Larsen Ice Shelf were ice free. While, the ice retreat continued in the rest of the Weddell 

Sea. 

5 cal ka BP (Fig. 1.7):  Only areas close to Coats Land coast were still covered with grounded 

ice at this time. The grounding line position in the western part of the Weddell Sea sector may 

have been close to present day calving lines of the Filchner-Ronne Ice Shelf. 

The maximum extent and retreat dynamics of the grounded ice in Weddell Sea Sector remain 

still uncertain (Hillenbrand et al., 2014). 

1.3.2 East Antarctica  
Since the EAIS is the largest continental ice mass on Earth, mapping and understanding of the 

ice-sheet evolution since LGM (data spanning back c. 30 000 years) is necessary to understand 

and model present-day and future ice sheet behaviour (Mackintosh et al., 2014). In comparison 

to WAIS, the LGM glacial history of EAIS is even more fragmentary and the documentation 

concerning the LGM expansion and subsequent contraction is still poorly documented 

(Ingólfsson et al., 1998; Bentley, 1999). Most of the continental margin around East Antarctica 

has not been investigated yet (Anderson et al., 2002; Livingstone et al., 2012), but there are 

areas of the margin for which there exist geological data (Fig. 1.8).  

For the continental margin, three areas are highly studied in East Antarctica. These are (1) Mac. 

Robertson Land Shelf, (2) Prydz Bay and (3) the George V Land – Terre Adelie Coast Shelf 

(Fig. 1.8) (Mackintosh et al., 2014). 
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Fig. 1.8: Map of the Antarctic continent displaying areas mentioned in the text, namely (1) Mac. Robertson Land 
Shelf, (2) Prydz Bay and (3) the George V Land – Terre Adelie Coast Shelf. Ice sheets are displayed in grey shading, 
including ice divides marked with grey lines. Fast moving ice streams and ice shelves are displayed in orange and 
yellow. Continental shelves are displayed in white shading and the more distal and deeper ocean is displayed in 
blue. LGM grounding zones position are taken from Anderson et al. (2002) (black lines) and Livingstone et al. (2012) 
(blue line) (modified after Mackintosh et al. (2014)). 

Ice extent of the EAIS during the LGM (Fig. 1.9a) 

Anderson et al. (2002) argue that the EAIS did not expand to the continental shelf edge during 

the LGM, but rather reached a maximum mid-shelf position in many locations, while 

Mackintosh et al. (2014) argue that the ice probably advanced close to the continental shelf 

margin at many locations during the LGM (Mackintosh et al., 2014). Evidence that support 

Mackintosh et al. (2014) interpretation is seen in Mac. Robertson Land (Fig. 1.8), where the 

outermost grounding zone wedge lies only c. 10 km from the shelf break and more than 90 km 

north of present-day ice margin. In addition, in this region, LGM ice was grounded in troughs 
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on the inner shelf, more than 1 km deep. In Prydz Bay (located outside Larsemann Hills in Fig. 

1.8), the expanding EAIS reached the shelf edge on the Four Ladies Bank. Meanwhile, the 

Lambert/Amery system (located in the bay below Prince Charles Mountains in Fig. 1.8) showed 

a more restricted advance. In George V Land/ Terre Adelie Coast (Fig. 1.8) the expanding ice 

sheet occupied the inner to mid shelf during LGM.  Geomorphological evidence hints towards 

past ice-sheet advance to the shelf edge. However, chronological constraints are currently 

lacking from the outer shelf in order to identify the extent of the ice-sheet. In many regions 

geological data are lacking, especially for Queen Maud Land, Enderby Land and much of 

Wilkes Land. Consequently, information about the LGM maximum extents or reconstructions 

of the LGM maximum extents are missing in these regions (Mackintosh et al., 2014).  

Geological evidence preserved in coastal oases and nunatak regions suggest thickening and 

expansion of EAIS at LGM (e.g. Lutzow-Holm Bay, Framnes Mountains, the Windmill Islands 

and Prince Charles Mountains) (Mackintosh et al., 2014). Evidence from the Framnes 

Mountains near the present coast, indicate a thickening of c. 400 m compared to present day 

(Fig. 1.8). Meanwhile, several inland nunataks located in East Antarctica (e.g. Sør Rondane 

Mountains, Wohlthat Massif and Grove Mountains) show no or limited evidence of LGM ice-

sheet thickening. Moreover, the ice surface elevation may have decreased in some of these 

locations at this time, this is supported by ice core evidence and numerical models (Mackintosh 

et al., 2014). 

To summarize, evidence concerning the LGM extent and thickening in East Antarctica is poor, 

and on most of the continental margins evidence is lacking or absent. In an overall perspective, 

the ice was thinner at its centre, thicker towards the ice margin, and expanding towards the 

continental shelf during the LGM.  
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Fig. 1.9: Map of Antarctica, including a) change in ice thickness at LGM compared to present and b) timing of 

deglaciation, rounded to the nearest thousand years (adapted from Mackintosh et al. (2014)). 

Timing of maximum ice extent and subsequent retreat (Fig. 1.9b) 

Ages concerning the timing and retreat of the ice extent and subsequent retreat is obtained from 

these methods: (1) marine 14C ages from sedimentary deposits on the continental shelf, (2) 

Terrestrial Cosmogenic Nuclide dating of glacial erratic’s in ice-free oases and (3) 14C and 

luminescence dates from terrestrial deposits (Mackintosh et al., 2014). It is not yet possible to 

time-slice reconstruct the EAIS deglaciation history with the same precision as it is done for 

WAIS (see Chapter 1.3.1). The first sign of early retreat of the EAIS is seen in the Prince 
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Charles Mountains (Fig. 1.8), which indicates a retreat in the Lambert/Amery system by c. 18 

ka BP (White et al., 2011). Golledge et al. (2012) suggest high sensitivity resulting from an 

abrupt post-glacial sea-level rise as the responsible factor for the retreat in the Lambert/Amery 

system. Together with Adelie Basin (Fig. 1.8), ice-sheet retreat was almost complete in these 

regions by c. 12 ka BP. At Nielsen Basin in Mac. Robertson Land (Fig. 1.8), deglaciation began 

by c. 14 ka BP, while in other regions (e.g. Svenner Channel, Windwell Islands, Lutzow-Holm 

Bay, Iceberg Alley and Framnes Mountains) deglaciation began at c. 12 ka BP and continued 

into the Holocene.  

With the data currently available, the EAIS respond to the LGM and transition to the Holocene 

as follows:  

 The onset of ice-sheet retreat began as early as c. 18 ka BP in the 

Lambert/Amery system.  

 Other regions did not retreat before c. 14 ka BP (coinciding with melt water 

plume 1a) (Mackintosh et al., 2011). 

 The majority of EAIS started to retreat at c. 12 ka BP (onset of Holocene). 

 By the middle Holocene present-day ice extent was reached (Mackintosh et al., 

2014).    

2 Study area 

2.1 Physiographic settings 

Antarctica is the Earth’s southernmost continent. It is located asymmetrically around the 

geographic South Pole in the Southern Hemisphere (SH), covering an area of c. 14 million km2 

including a coastline of c. 17.968 km. The Southern Ocean (south of 60° S) encircles the entire 

continent, connecting the Pacific, the Indian and the Atlantic Oceans (Anderson, 1999). 

Antarctica is an ice-dominated continent which can be divided into three major areas: East 

Antarctica, West Antarctica and the Antarctic Peninsula (Anderson, 1999).  

Queen Maud Land is a part of the EAIS and located within the territories claimed by Norway 

(Fig. 2.1). It is located as a triangle between the British Antarctic Territory to the west and the 

Australian Antarctic Territory to the east. The main offshore areas of Queen Maud Land are the 

easternmost part of the Weddell Sea, the Lazarev Sea and the Riiser Larsen Sea (RLS) offshore 

Princess Ragnhild Coast (Solli et al., 2007; Leitchenkov et al., 2008).  
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Matsuoka et al. (2015) argue for smaller fluctuations in the ice-sheet margin of Queen Maud 

Land (20°W – 45°E) through glacial/interglacial cycles compared to most other regions in 

Antarctica. The close location of the ice-sheet to the continental shelf break is proposed as one 

explaining factor. Currently, Queen Maud Land consist of 1500 km of ice-shelves, which are 

fed by outlet glaciers and punctuated by ice rises (Matsuoka et al., 2015). Characteristic of these 

ice shelves are the short distance from the grounding line to the calving front, which is normally 

less than 100 km (close to or beyond the continental shelf break) (Fig. 1.1) (Arndt et al., 2013; 

Mackintosh et al., 2014; Matsuoka et al., 2015). 

 

Fig. 2.1: Map of Antarctica, including Queen Maud Land, Princess Raghild Coast, Riiser Larsen Sea, Cosmonauts 

Sea, Lazarev Sea and Weddell Sea mentioned in the text. Limits of Australian and British claim are displayed with 

black lines, whereas limits of Norwegian claim is displayed by red lines (modified after Facebook (2018)).    

2.1.1 Riiser Larsen Sea (RLS) 

2.1.1.1 Geological development 
The RLS is located off the East Antarctic coastline facing the Indian Ocean and is one of three 

main marine basins offshore Queen Maud Land and Enderby Land (Fig. 2.1). The passive 

continental margin was formed after the breakup of Gondwana (late Jurassic to early 

Cretaceous), resulting in the formation of the conjugate spreading compartments RLS and the 
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Mozambique Basin (Fig. 2.2) (Marks and Tikku, 2001). The RLS is suggested to be the oldest 

of the basins, formed around 155 Ma ago (Solli et al., 2007). The RLS consists of two prominent 

basement ridges namely the Gunnerus Ridge to the east and the Astrid Ridge to the west (Fig. 

2.3). The Gunnerus Ridge is believed to be a former fragment of the continental crust (Kuvaas 

et al., 2004).  

 

Fig. 2.2: Map showing the paleo-geographic situation of the RLS at 120.4 ka BP, including the position of Princess 
Astrid and Ragnhild Coast. Model A (a and b) have large fracture zone offset, whereas Model B (c and d) aligns 
fracture zones and magnetic anomalies. Heavy black lines are isochrones. RLS and Princess Astrid and Ragnhild 
Coast are outlined in red (ANT – Antarctica, MB - Mozambique basin, AF – Africa and MAD – Madagascar) 
(modified after Marks and Tikku (2001)).   
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Fig. 2.3: Measured sediment thicknesses in the RLS, including sediment thickness scale on the right. Core location 

of PS56/029-1 is displayed with a ellipsoid (modified after Leitchenkov et al. (2008)). 

2.1.1.2 Physiographic setting 
The RLS is bordered by the Cosmonauts Sea to the east and by the Lazarev Sea to the west 

(between 14 °E and 30 °E) (Fig. 2.1). Located south of RLS is the Princess Ragnhild Coast and 

the Princess Astrid Coast of Queen Maud Land. The bathymetry of the RLS includes water 

depths exceeding 3000 meters and a relatively flat seafloor. The Gunnerus Ridge is located at 

shallow depths (500-1500 m), being 200-2500 m shallower than the adjacent RLS continental 

rise (Kuvaas et al., 2004). The shelf-ice edge in the RLS is located over 1000 m of water depth 

and the continental shelf is short or virtually absent (Thiede and Oerter, 2002). The continental 

slope in the RLS is steep and reaches down to 5000 m water depth where the seafloor of the 

RLS connects to the Enderby Abyssal Plain. The measured sediment thicknesses in the RLS 

indicate two areas of higher sediment thicknesses, namely one deposition centre on the western 

side of the Gunnerus Ridge and a smaller deposition centre located on the eastern side of the 

Astrid Ridge (Fig 2.3) (Leitchenkov et al., 2008).  

Few studies focus on the RLS area (e.g. Kuvaas et al. (2004), Solli et al. (2007), Aoki (2003), 

Matsuoka et al. (2015) and Leitchenkov et al. (2008)). Thus, the area is regarded as a nearly 

unexplored sector of Antarctica and information about the region is sparse. 
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The RLS is believed to be one of the first areas to be affected by the expanding ice sheet as it 

grew on Antarctica (DeConto and Pollard, 2003). Therefore, the region should be ideal to 

investigate the EAIS history (DeConto and Pollard, 2003; Solli et al., 2007). Large channel-

levee complexes located within RLS demonstrate the interaction between glacial and 

interglacial deposits, and the RLS should therefore be an ideal location to study climate-

controlled processes, e.g. deep-water production and ice-sheet dynamics (Kuvaas et al., 2004).  

2.1.1.3 Seismic stratigraphy  

Available data from the eastern RLS area shows different seismic facies interpreted as products 

of downslope and alongslope processes (Kuvaas et al., 2004) (Fig. 2.4). Sedimentation in RLS 

occur both in glacial and interglacial periods, but the turbiditic activity is higher towards glacial 

maxima (Kuvaas et al., 2004). 

 

 

Fig. 2.4: Bathymetric map of the RLS showing main sedimentary units displayed with colours, seismic profiles 
obtained in the area are displayed with grey straight lines and red lines show the seismic profile used in Fig. 2.5 
and Fig. 2.6. The overview map to the left shows the Antarctic continent, where the RLS is displayed with a red 
rectangle (modified from Kuvaas et al., 2004).  

Seismic facies in the RLS include well-stratified facies, chaotic, transparent, and wavy facies 

(see below for detailed description). A regional unconformity (RLS-4) shows the boundary 
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from pre-glacial to glacial deposits. Sediments above the unconformity result from a higher 

energy environment and enhanced terrigenous supply from the continent due to glacial activity, 

in contrast to pre-glacial deposits below  (Kuvaas et al., 2004; Solli et al., 2007). Seismic facies 

identified by Kuvaas et al. (2004) are listed below (Fig. 2.4): 

 Well-stratified facies (Fig. 2.5): These facies are the most common facies in 

the area and are observed in several units only differing in geometry and extent. 

The units of well-stratified facies are named extensive tabular units, units 

associated with scour-and-fill features and mounded units unrelated to scour-

and-fill features. Extensive tabular units are interpreted as (1) distal sheet-like 

turbidites alternating with hemipelagic deposits or (2) as sediment sheets 

emplaced by contour currents. It is not possible to distinguish between these two 

interpretations. Units associated with scour and fill features suggest that they are 

a part of a larger channel-levee complex. The mounded units unrelated to scour 

and fill features are interpreted as (1) a combination of turbidites and contourites 

or (2) only as contourites.  

 Chaotic and transparent facies (Fig. 2.5): These facies are often seen together 

in the seismic profiles, located on the lower slope and continental rise. The 

chaotic facies are interpreted to represent the uppermost part of debris-flow 

deposits, while the transparent facies are linked to debris-flow deposits in 

general. They both represent deposits from the initial phase of the channel 

activity, as a product of slumps originating higher up on the slope.  

 Wavy facies (Fig. 2.5): Interpretation of these facies is associated to the present 

day seafloor, and is only represented on the continental rise. Similar sediment 

waves are known to originate from both contour currents and turbidity currents.  
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Fig. 2.5: Seismic profile including the RLS-4 reflector and the seismic facies well-stratified, chaotic and transparent 

and wavy facies mentioned in the text. For location of the profile, see Fig. 2.4 (adapted from Kuvaas et al. (2004)).  

Additionally, small channel-levee systems are recognized in the RLS (Fig. 2.4 and Fig. 2.6). 

Containing well-stratified seismic facies made up of layers that show a thickening trend towards 

the channel axis. Deposits that are similar to extensive tabular units overlies these small 

channel-levee systems, suggesting distal turbidites and possible sediments deposited by bottom 

currents. Channel-levee complexes can reveal important information about the operating 

sedimentary processes, both downslope and alongslope activity. Downslope activity is 

observed through the channel margins containing both scour and fill features and flanking 

sediment ridges. Alongslope activity is observed through the different mounds located in RLS 

(Fig. 2.4). Channel-levee complexes in the RLS are highly asymmetrical and oblique due to the 

eastward migration caused by the Coriolis effect  (Kuvaas et al., 2004).   

Abyssal plain sediment ridges in RLS are associated with glaciomarine sediments and this 

indicate an environment influenced by an advancing ice sheet.  
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Fig. 2.6: Seismic profile including the presence of channel and levee at the foot of the Gunnerus Ridge in the RLS. 
For location of profile, see Fig. 2.4 (adapted from Kuvaas et al. (2004)). 

Multiple papers have discussed possibilities for distinguishing between sediments deposited by 

gravity-driven downslope currents and those deposited by alongslope processes (McCave and 

Tucholke, 1986; Myers and Piper, 1988; Rebesco and Stow, 2001; Stow et al., 2002; Solli et 

al., 2007). In polar regions this an issue which becomes more complicated as the sediment 

dispersal through glacial/interglacial cycles differ considerably and the Coriolis effect is so high 

(Kuvaas et al., 2004).  

2.2 Oceanography 

2.2.1 The Southern Ocean 

The Southern Ocean (Fig. 2.7) encircles the Antarctic continent and forms a link between the 

major ocean basins in the south, namely the Pacific, the Indian and Atlantic Oceans (Arrigo et 

al., 1998; Fahrbach, 2013). The area is an important sight for deep and intermediate water 

ventilation, transporting and mixing the water masses and properties from one basin to the next 

(Cunningham, 2005). The Southern Ocean with its physical properties is of great importance 

for the global climate, because it ventilates and regulates the global system through uptake and 

storing of heat, fresh water, oxygen and atmospheric CO2 (Böning et al., 2008). The Southern 

Ocean northern border is set to c. 60° south by the International Hydrographic Organization 

(Central Intelligence Agency, 2018), however geographers discuss both the boundary and the 

entire Southern Ocean’s existence (Anderson, 1999; Rosenberg, 2018). Some scientists argue 
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against the existence of the Southern Ocean, suggesting the waters surrounding Antarctica are 

merely extensions of the Pacific, the Indian and the Atlantic Oceans. While others scientists 

suggest the water masses surrounding Antarctica are a distinct body of water with its own 

properties. In this study, the Southern Ocean refers to the water masses surrounding Antarctica.  

 

Fig. 2.7: Map of the Southern Ocean and the surrounding Atlantic, Indian and Pacific Oceans. Including the Riiser 

Larsen Sea outlined by a red rectangle (modified after Fahrbach (2013)).  

Different water masses are identified within the Southern Ocean and are distinguished 

depending on salinity, temperature, and other physical properties. Water masses identified 

within the Southern Ocean are Antarctic Surface Water (ASW), the Circumpolar Deep Water 

(CDW) and the Antarctic Bottom water (AABW) (Carter et al., 2008) (Fig. 2.8).  
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Fig. 2.8: The oceanographic circulation pattern around the Antarctic continent, including the three major water 
masses the ASW, the CDW and the AABW outlined by red, all are mentioned in the text (modified after Davies 

(2014)). 

The ASW (Fig. 2.8) includes (1) the westward circumpolar flow of the Antarctic Coastal 

Current and (2) the eastward flow of the more distal Antarctic Circumpolar Current. Locally, 

ASW influences the entire water column, despite its occurrence within a deep bathymetric zone 

(Foldvik and Gammelsrød, 1988). The ASW originates from the continental shelf and runs in 

a northerly direction, mixing with Sub-Antarctic Surface Waters, before sinking and mixing 

with intermediate water masses (Fig. 2.8). The shelf waters around Antarctica can be divided 

into two groups, High Salinity Shelf Water (HSSW) or Low Salinity Shelf Water (LSSW). The 

salinity difference of these two waters is largely a result of the time the waters stay on the 

continental shelf, annual brine production by freezing of sea-ice, dilution from melting sea-ice, 

glacial ice and precipitation. The salinity of shelf waters controls whether Warm Deep Water 

(WDW) flows onto the shelf or not (Anderson, 1999).  

The CDW (Fig. 2.8 and Fig. 2.9) is the core of the Antarctic Circumpolar Current (ACC) and 

is composed of deep waters from all the World’s oceans (Orsi et al., 1995). It is a relatively 

warm and salty (T >0°C and >34.6, respectively) current flowing in a counter clockwise 

direction around the continent affecting the water column from c. 250 m to 4000 m (Fig. 2.8) 

(Orsi et al., 1995; Dinniman et al., 2011; Davies, 2014). The CDW can be further subdivided 

into the Upper Circumpolar Deep Water (UCDW) and Lower Circumpolar Deep Water 
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(LCDW) (Orsi et al., 1995). Low oxygen levels and high nutrition concentrations characterize 

the UCDW, whereas the LCDW is characterized by higher salinities. The differences between 

these two water masses are due to the different source regions, where UCDW originate from 

the Pacific and Indian Oceans and the LCDW derives from North Atlantic Deep Water (Fig. 

2.9) (Orsi et al., 1995; Whitworth et al., 1998; Dinniman et al., 2011).  

The AABW (Fig. 2.8 and Fig. 2.9) consists of dense water masses which are produced on the 

continental shelf. It runs over the continental shelf-edge before flowing into the ocean basins 

(Orsi et al., 1999). It is derived from interactions between the AIS and the water masses within 

the ACC. Most of the AABW production occurs in the Weddell Sea, some in the Ross Sea and 

off Wikes Land in association with subpolar gyres (e.g. the Weddell Sea Gyre, the Ross Sea 

Gyre and off Wikes Land) (Anderson, 1999; Orsi et al., 1999; Schröder and Fahrbach, 1999). 

High production rates of dense water masses are still not discovered in the RLS (Solli et al., 

2007).   

 

Fig. 2.9: Schematic section of the main water masses and frontal systems associated with the Antarctic continental 
margin. The ACC is towards the reader (including water masses: SAMW – Sub-Antarctic mode water, AAIW – 
Antarctic Intermediate Water, UCDW, LCDW, NADW – North Atlantic Deep Water and AABW and frontal systems 
ASF –Antarctic Slope Front, SB – Southern boundary of the ACC, SF – Southern Front, PF – Polar Front, SAF –

Sub-Antarctic Front and STF – Subtropical Front) (adapted from Carter et al. (2008)).  
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2.2.2 The Antarctic Circumpolar Current (ACC) 

Absence of land barriers in the Southern Ocean creates an ocean circulation pattern that flows 

undisturbed around the entire continent, namely the Antarctic circumpolar current (ACC) (Fig. 

2.8 and Fig. 2.9). In terms of circulation in the Southern Ocean the ACC is by far the main 

feature, transporting 137±8*106 m3s-1 of water through the Drake Passage. The age of the ACC 

is still debated. Lawver (1992) argues that the ACC was formed after the opening and deepening 

of the Drake Passage, and the Tasman-Antarctic gateway, located south of Tasmania around 

Eocene-Oligocene boundary, c. 34 Ma. However, others propose that the ACC was formed long 

after the Eocene-Oligocene boundary (Barker and Thomas, 2004; Pfuhl and McCave, 2005).  

The ACC is a wind driven current, flowing in a clockwise direction around the Antarctic 

Continent, powered by the westerly winds at c. 45-55° (Orsi, 1994). The current operates as a 

barrier in the Southern Ocean, separating the Southern Ocean from the warmer oceans further 

north, thus, helps maintain the ice sheet on Antarctica. The ACC connects the Atlantic, the 

Pacific, the Indian, and the Southern Ocean together through interaction in the interbasins 

(Rintoul, 2010) and affect the entire water column (Barker and Thomas, 2004).  

The ACC is associated with several fronts, which are transition zones between water masses 

(Fig. 2.9). From south to north these are the Antarctic Southern Front, the Subtropical Front, 

the Polar Front and the Subantarctic Front (Carter et al., 2008). The Subtropical Front is located 

north of the ACC and defines the northern boundary of the Southern Ocean. It separates warm, 

salty and subtropical waters from the colder sub-Antarctic waters in the south (Orsi et al., 1995) 

(Fig. 2.8). The fronts are characterized by sharp horizontal gradients (e.g. salinity, temperature, 

nutrients, oxygen and density), which marks the different boundaries between the water masses. 

These boundaries between the water masses slops down and away from the Antarctic continent 

(Fig. 2.9) (Orsi et al., 1995; Carter et al., 2008). 

The ACC has a profound implication for the global ocean circulation pattern and climate 

(Rintoul, 2010). Oceanographers have concluded that the ACC reflects the interplay between 

wind and the buoyancy exchange with the atmosphere, eddy fluxes and momentum, water mass 

modification and strong interactions between the flow and the bathymetry (Rintoul, 2010). 

Another important part of the ACC is the air-to-sea exchange of heat, fresh water and 

atmospheric gases (Böning et al., 2008). In addition, the ACC regime accounts for a large 

fraction of global ocean warming and c. 40 % of the global oceanic uptake of anthropogenic 

CO2 over the last two centuries (Böning et al., 2008).  
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2.3 Geomorphology of glaciated continental shelves  
The morphology of continental shelves at high latitudes have a distinct shape due to successive 

modification by repetitive glaciations through time (Fig. 2.10). This includes both large-scale 

morphological features such as banks and troughs, and smaller scale features such as mega-

scale glacial lineations, moraines and iceberg ploughmarks. These features provide evidence 

for the presence of grounded glaciers and icebergs in the past and at present (Vorren, 2003). 

During glaciations, ice works as an active agent of erosion, eroding troughs into the underlying 

strata. These troughs have acted as pathways for fast-flowing ice (so-called ice streams), 

draining the interior of the continental ice sheet (Vorren and Laberg, 1997; Anderson, 1999; 

Cofaigh et al., 2003; Livingstone et al., 2012). Mega-scale glacial lineations (MSGL) provide 

additional evidence of fast-flowing grounded ice streams (Clark, 1993). Marginal moraines and 

grounding zone wedges (GZW) show where the ice margin and/or grounding line has been 

temporarily (O'Brien et al., 1999; Dowdeswell et al., 2008; Batchelor and Dowdeswell, 2015). 

Iceberg ploughmarks and marginal moraines are more common on shallower banks where 

evidence of fast-flowing ice is lacking (Belderson et al., 1973; Lien et al., 1989). 

 

 

Fig. 2.10: Glaciated continental shelf with associated sedimentary features (adapted from Vorren (2003)). 
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The Antarctic continental shelf contains evidence of glacial erosion. This is evident through the 

great depth surrounding the Antarctic continent, its landward-sloping profile and the 

geomorphological features observed on the continental margin (Anderson, 1999; Wellner et al., 

2006). The East Antarctic continental shelf is narrow in comparison to the West Antarctic 

continental shelf, which is generally broad and mostly covered with ice (Anderson, 1999).   

2.3.1 Sea-ice 
Sea-ice growth and decay around the Antarctic continent influences both climate and ocean 

circulation in the Southern Hemisphere (SH), and differs greatly from sea-ice conditions in the 

Northern Hemisphere (NH) (Fig. 2.11) (Turner and Overland, 2009). Geographically, the 

Arctic is semi-enclosed by the surrounding landmasses, trapping sea-ice within the borders of 

the landmasses. In contrast, the Antarctic is open, favouring a northward movement of the sea-

ice towards warmer oceans. Antarctica therefore experience large seasonal variations in sea-ice 

extent, where winter maximum sea-ice cover (September) equals an area of c. 18.5 million km2 

on average, whereas the summer minimum sea-ice cover (February) decreases to an extent of 

c. 3.1 million km2 on average (Parkinson and Cavalieri, 2012).   

The Arctic and the Antarctic have experienced different climatic changes through the last 

decades resulting in uneven sea-ice development (National Snow & Ice Data Center, 2018c; 

National Snow & Ice Data Center, 2018a). Whereas the sea-ice extent in the Arctic has 

decreased dramatically, the sea-ice extent in the Antarctic has slightly increased (Turner and 

Overland, 2009; Sigmond and Fyfe, 2010). Topographic factors together with land-to-sea 

distribution can be one explanation for the dissimilar development, although an exact reason 

for the increase in the SH remains unknown. Basal melt of the ice shelves and a freshening of 

the oceans (Zhang, 2007) in addition to an increasingly higher level of ozone in the atmosphere, 

leading to stratospheric cooling and stronger winds (Gillett and Thompson, 2003; Shindell and 

Schmidt, 2004), are pointed out as some of the explaining factors. 
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Fig. 2.11: Satellite images showing sea-ice concentration of minimum and maximum coverage during March and 
September for a) Arctic and b) Antarctic between 1981 and 2010. Seasons are opposite between the SH and NH 
(SH – summer minimum in February. NH – summer minimum in September) (modified after National Snow & Ice 
Data Center (2018c)).  

2.3.2 Polynyas  
Polynyas are ice-free areas in ice-covered ocean (Zhang, 2007). Polynyas are kept ice-free by 

different processes that either prevent ice formation or remove newly formed ice. Two types of 

polynyas exists, namely open-water and coastal polynyas (Fig. 2.12) (Massom et al., 1998; 

Smith et al., 2010). Polynyas are areas of massive heat and gas exchange between the ocean 

and the atmosphere (Ishikawa et al., 1996). They can be important sites for bottom water 

production and often  include nutrient rich water masses (Ohshima et al., 2013; National Snow 

& Ice Data Center, 2018b).  
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Open ocean polynyas form due to the temperature difference of two inferring bodies of water. 

They form where water is located above freezing upwells, or when water originating from lower 

depths moves towards the surface. Heat-transfer from water to the ice will melt the ice and 

prevent formation of new ice (National Snow & Ice Data Center, 2018b).   

Coastal polynyas form due to the constant removal of newly formed ice by strong winds 

(Massom et al., 1998). The polynyas are kept ice-free due to the strong katabatic winds blowing 

in a persistent direction from the Antarctic continent. Water masses observed in coastal 

polynyas have high salt concentrations and the water will sink as it becomes dense and salty, 

process known as brine formation. The high density surface waters can then mix with the 

bottom currents (National Snow & Ice Data Center, 2018b). Smaller coastal polynyas can alter 

the freshwater flux by reducing the downward movement of high-density waters. The coastal 

polynyas in Antarctica are reported to form in the western side of the capes and/or along the 

eastern part of protected bays (Ishikawa et al., 1996). Two coastal polynyas are identified in 

eastern part of Queen Maud Land, namely Breid Bay and one along the shelf break (Ishikawa 

et al., 1996).   

 

Fig. 2.12: Figure showing open-ocean and coastal polynya formation (modified after National Snow & Ice Data 

Center (2018b)). 

2.3.3 Icebergs  
Icebergs are observed offshore the Antarctic continent (Swithinbank et al., 1977; Barnes and 

Lien, 1988). They originate from calving glaciers and ice shelfs, or decay into smaller icebergs 

and float with the operating atmospheric and oceanographic currents. Icebergs affect freshwater 
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flux in the ocean, and the formation and distribution of sea-ice and polynyas (Matsuoka et al., 

2015). Additionally, icebergs have the ability to scour the seafloor and/or mix sediments on the 

seafloor. 

Icebergs have the ability to (1) act as a barrier preventing the pack ice to move in its usual path 

and (2) to reduce the size of costal polynyas by preventing newly formed ice to move (Massom 

et al., 2001). An iceberg calving off the Ross Ice Shelf (WAIS) in 2000 restricted the normal 

drift of pack ice and led to a heavier spring/summer pack ice cover than recorded earlier (Arrigo 

et al., 2002).  

Aoki (2003) reported the iceberg drift speed in Queen Maud Land to increase westward. The 

icebergs investigated used on average c. 500 days to move from 70 °E to 10 °E, resulting in 

average iceberg drift speeds from 0.06 m/s in the Mawson regions to 0.14 m/s in the Greenwich 

Median region (Fig. 2.13). Seasonal variation in drift speed is high from autumn to early winter 

and low during spring (0.18 m/s in June-July and 0.02 m/s in October in the middle region and 

0.14 m/s in May and 0.003 m/s in November in the Suowa region, see figure 2.13). The 

magnitude of drift speed also increased westward (Aoki, 2003).  

 

Fig. 2.13: Iceberg drift off Queen Maud Land where B9A, C05, D11 and D12 represent icebergs under investigation 
and their drift along the continental coast. Core location of PS56/029-1 is displayed with a black square (modified 

after Aoki (2003)).  

2.4 Sedimentary processes and deposition 
The deep-marine environment consists of several different sedimentary processes, which in 

turn leads to sediments with unequal characteristics (Fig. 2.14). By studying marine sediments 

the different sedimentary processes can be revealed, giving crucial information about the time 

of deposition. In the following sub-chapters the downslope and alongslope processes active in 
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the RLS are explained, namely turbidites, contourites and pelagic settling (e.g. Kuvaas et al. 

(2004) and Solli et al. (2007)).    

 

Fig. 2.14: Deep-marine sedimentary environments and associated deposits and processes. Turbidite, channel and 
levee are marked with blue, pelagite & hemipelagite is marked with green and contourite is marked with orange. 
Red squares indicate sedimentary processes mentioned in the text (modified after Shanmugam (2006)). 

2.4.1 Turbidites  
A turbidity current (Fig. 2.14) is a turbulent moving, high velocity, gravity-driven current 

consisting of sediments temporarily suspended in water (Nichols, 2009). These currents are 

responsible for incising submarine canyons, the formation of fans and the layering on the 

abyssal plain. These currents have the ability to carry sediments up to 1000 km from the source 

region, travelling at speeds up to 90 kmh-1 (25ms-1) and carry sediment loads of 300 kgm-3 

(300gl-1) (Friedman et al., 1992; Stow and Mayall, 2000; EC, 2009; Nichols, 2009).  

Movement of the turbidity current is maintained by the density contrast between the sediment-

laden water and the surrounding undisturbed water. Particles fall out of suspension (starting 

with the coarsest particles first) due to decreasing slope angle and/or declining energy within 

the current, in which case the velocity of the current that does not allow grains to remain in 
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suspension. Sediments deposited by turbidity currents are characterized as normally graded 

deposits. A turbidity current can be subdivided into a head, body and tail (Nichols, 2009). 

Where the head is the steep leading edge of the current, roughly twice as thick as the body. It 

contains the coarsest grains within the current and is responsible for erosion of underlying, finer 

strata. Grains from the head are transported forward and upward to mix with the surrounding 

waters and are re-integrated through the body and tail. The body of the current has uniform 

thickness where the grains are kept in suspension by friction between the overlying water and 

bed. The body and tail are regions for deposition. The tail will decrease in thickness rapidly and 

become more diluted. The remaining sediments in suspension will deposit as the flow fades 

away (Stow and Mayall, 2000). Deposition by a turbidity current is called a turbidite, which is 

characterized as well sorted sediments containing rarely any mixtures of sediments. A turbidite 

will ideally form a succession called Bouma sequence, containing five units (Ta – Te) (Fig. 

2.15) (Bouma, 1964).  

 Ta: Consists of poorly sorted and structureless sand. Material falls out of suspension 

with reduced turbulence inhibiting the formation of bedforms.  

 Tb: Laminated sand, normally containing finer particles than ‘Ta’ and is better sorted. 

The laminae is a product of the separation of grains in the upper flow regime transport.  

 Tc: Cross-laminated medium to fine sand, can also contain climbing ripple lamination. 

This middle division characterize high sedimentation rates and moderate flow velocities 

in the ripple bedform stability field. Convolute lamination can also occur in this 

division.  

 Td: Consist of fine sand and silt, a result of the waning flow within the turbidity current. 

Horizontal laminae may occur, but is less defined than in ‘Tb’.  

 Te: Fine-grained sediments such as silt and clay dominate this uppermost part of the 

Bouma sequence. They fall out of suspension as the turbidity current has come to rest 

and is therefore a hemipelagic deposit.  

In nature, it is rare to find the complete Bouma sequence. Turbidites either lack bottom 

intervals, top intervals or bottom and top intervals of the sequence (Bouma, 1964; Stow and 

Shanmugam, 1980).  
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Fig. 2.15: The ideal Bouma sequence (Ta – Te), including the grain-size involved and the associated sedimentary 

features(adapted from Shanmugam (1997)). 

In the sedimentary record a turbidite is recognized as a deposit from a rapid and short-lasting 

event interrupting the “normal sedimentation”. Affecting the area with more energy compared 

to e.g. contourites. By studying the grain-size distribution obtained from analysis of marine 

sediments the signature of a turbidite might be coarse particles - less coarse particles - fine 

particles, thus showing the characteristic normal grading of sediments. Turbidites include well 

sorted sediments with an erosive lower boundary, whereas the occurrences of foraminifera are 

a minor component. Turbidites often cut wormholes and other bioturbation marks. Turbidites 

around the Antarctic continental margin consists of sediments with a high input of terrigenous 

sediments from the Antarctic continent (Rebesco et al., 2014). Additionally, a sediment core 

retrieved in the distal end of these turbidity currents, where turbidites are reduced to a fine-

grained sediment, could include characteristics that are less clear than the mentioned 

characteristics above. 

2.4.2 Contourites  
Contourites (Fig. 2.14) are defined as “sediments deposited or substantially reworked by the 

persistent action of bottom currents” (Stow, 2002; Stow et al., 2002; Rebesco et al., 2014). 

Contourites are significant in deep marine environments, but minor in continental shelf areas. 
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They consist of whatever particles that are within the bottom currents and the size depends upon 

the flow velocity, but the sediment size is normally within the range from mud to sand. 

Contourites are normally a product of a continuous flow, creating sheets or elongated bodies 

parallel to the basin margin on the seafloor. The characteristics of a contourite depends upon 

the flow velocity, the sediment supply, and degree of modification (e.g. bioturbation). In the 

sedimentary record contourites can be hard to recognize (e.g. they can be both normal and 

reverse graded) (Nichols, 2009). Bottom currents affect various type of sediments, both during 

and after deposition, which can make them difficult to identify in the sedimentary record. 

Additionally, the action of bottom currents does not exclude other sedimentary processes, e.g. 

turbidites. Contourites are generally hard to recognize in the sedimentary record because they 

lack a simple unambiguous diagnostic criteria (Rebesco et al., 2014). However, the sortable silt 

fraction (10-63 µm) is shown to be a highly useful current strength indicator (McCave et al., 

1995; Pfuhl and McCave, 2005). Particles below 10 µm are considered as “cohesive”, while 

particles above 10 µm are considered as “non-cohesive”. The “non-cohesive” fraction from 10 

to 63 µm has shown to be sortable by deep-marine currents. It is independent from sediment 

supply and varies only according to current speed, nevertheless, a constant sediment supply and 

a grain transport that only is affected by deep-marine currents are required for the creation of 

contourites (McCave et al., 1995). 

In the sedimentary record contourites are recognized as well sorted deposits including fine 

sediments, often clay to silt in size. Contouritic sediments often show indication of bioturbation. 

Normally, these currents initiate slowly before increasing gradually and decreasing again. Seen 

in the grain size distribution in the sedimentary record as finer – coarser – finer. 

2.4.3 Pelagic settling  
Pelagic sedimentation (Fig. 2.14) is the result of slow vertical settling of particles through the 

water column under the influence of gravity and in the absence of bottom and turbidity currents 

(Stoker et al., 1998). Pelagic muds are considered as the most common sediments in the deep-

sea. Pelagic mud deposits consist of biogenic (siliceous and calcareous oozes) and terrigenous 

components. The pelagic sediments in high latitude regions often contain high amounts of illite 

and chlorite (Kennish, 2000).  

There are three factors controlling the composition of the pelagic sediments: (1) The distance 

from major landmasses, which controls the dissolution of terrigenous or land-derived 

sediments. (2) The water depth affecting the preservation of calcareous and siliceous biogenic 
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particles as they settle through the water column. (3) The ocean fertility, which control the 

amount of biogenic particles produced in the uppermost part of the water column (e.g. Von 

Bodungen et al. (1995), Jones et al. (1998) and Navarrete et al. (2005)).    

In the sedimentary record pelagites are recognized as poorly sorted, including fine sediments 

with a relative constant lithological composition compared to turbidites. These sediments often 

show indications of bioturbation and the biogenic input is high compared to e.g. turbidites.  

2.5 Channel-levee complexes  
Channel-levee complexes consist of deep channels and higher levees (levees – ridges who 

frequently flank the channels). These complicated systems are found on the continental slope 

and are believed to be a result of climate-controlled processes, e.g. ice sheet dynamics and deep-

water production (Kuhn et al., 1993; Presti et al., 2003; Hass et al., in prep). Channel-levee 

complexes are morphodynamic structures with a long build-up phase, making them ideal to 

investigate climatically and related hydrographic fluctuation and changes through 

glacial/interglacial cycles. The associated sediments therefore allow us to interpret recent 

environmental conditions and paleoenvironment (Kuvaas and Kristoffersen, 1991).   

Channels are normally a product of erosion (Mosher et al., 2004). They may also form in a 

depositional environment as a product of lowered sediment accumulation in close proximity to 

gravity driven bottom currents (Gervais et al., 2001, McHugh and Ryan, 2000). Levees are 

higher areas flanking the channels normally not affected by erosion. However, the levees can 

move laterally if the associated channel moves its bed. Levees form as the channel gets over-

flooded, transporting sediment out of the channel and onto the levees as overbank deposits. In 

addition to overbank deposits, hemipelagic sediments accumulated through the water column, 

which build up the rest of the sediments on the levee (McHugh and Ryan, 2000). Hass et al. (in 

prep) suggest that the levee sediments can be an interesting tool for paleoceanographic and 

paleoclimatic investigations. This is because they are at the end of a chain of processes  

associated with climate-triggered oceanographic changes and contain sediments of high 

resolution.    

2.6 Sedimentation through a glacial/interglacial cycle 
Sediments deposited in glacial periods differ from sediments deposited in interglacial periods. 

Therefore, by studying marine sediments glacial and interglacial periods can be distinguished. 

A case study from the Antarctic Peninsula by Rebesco et al. (2002) suggest distinct sedimentary 
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processes connected to specific climatic conditions through a glacial/interglacial cycle (Fig. 

2.16).  

 

Fig. 2.16: Sedimentary processes prevailing through glacial/interglacial cycle, including a) interglacial, b) 

deglaciation, c) glacial and d) glaciation (modified after Rebesco et al. (2002)).  
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Transition from interglacial to glacial period. 

This stage is characteristic with deposition of structureless mud, with sparse IRD content. The 

sediments are of terrigenous origin, containing few or none planktonic foraminifera or diatoms. 

The clay mineral assemblage is close to smectite and free of kaolinite. Climatic setting 

associated with the transition from interglacial to glacial period is the advancing grounded ice 

sheet towards the edge of the continental shelf. Sediment laden plumes bring fine sediments to 

the upper rise, meanwhile diluting the smectite signal from the southwest flowing bottom 

currents. The attribution of sediments from turbidity currents is still not important. The existing 

sea-ice cover reduces the planktonic foraminifera signal, but in regions with polynyas the 

planktonic foraminifera signal can be present.  

Glaciation 

Interacting sedimentary processes in this climatic setting give rise to sub-facies of laminated, 

terrigenous sediments. Sedimentary features expected to be incorporated in this setting are: 1) 

laminated mud with silty laminae 2) laminated mud with IRD layers 3) layers and lenses 4) 

cross-stratified mud and 5) slumps and sand/gravelly-grained turbidites. Bulk sediment is 

terrigenous mud dominated by chlorite and illite, while smectite and kaolinite concentrations 

are low. Transportation of sediments towards the continental rise is by different downslope 

processes together with meltwater plumes (enhanced by the position of the grounded ice sheet).  

Deglaciation – transition from glacial to interglacial conditions 

The transition from glacial to interglacial conditions includes structureless mud with IRD 

layers. The sediment texture is characterized as hemipelagic mud, with a mineral clay 

assemblage of smectite with some kaolinitt. Foraminifera and diatom content is normally low.  

Interglacial 

Interglacial are characterized by bioturbated mud with sparse IRD content and with few IRD 

layers. The sediment composition is hemipelagic mud, with siliceous and calcareous 

microfossils. The clay assemblage contains high smectite values with less kaolinite. Pelagic 

settling of biogenic and terrigenous material through the water column predominantly makes 

up interglacial sediments.  
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3 Materials and methods  

This study is based on multi-proxy analysis of gravity core PS59/029-1. The analysis includes 

measurement of physical properties using a Multi Sensor Core Logger (MSCL), grains size 

distribution, visual core description, analysis of X-radiographs, line scan images, and 

qualitative element-geochemical analysis using a XRF core scanner. 

3.1 Sediment cores 

The sediment core was collected with a gravity corer on the 11th and 12th of February 2000 

(Table 3.1). The sediments were retrieved during expedition ANTARKTIS XVII/2 aboard the 

research vessel Polarstern (Thiede and Oerter, 2002). Details of the sediment core is provided 

in Table 3.1 below. 

Table 3.1: Core station, date, time, location and information on the core used in this study (Thiede and 

Oerter, 2002).  

Station Date Time 

(UTC) 

Lat.  

(S) 

Long. 

(E) 

Water 

depth 

(m) 

Penetration  

(m) 

Recovery  

(m) 

PS59/029-1 11.02.00 11:14 68°00,03’ 20°45,13’ 3850 16 12,67 

 

The gravity corer onboard Polarstern consisted of a long steel barrel with a heavy weight (c. 

1.5 tonnes) attached to its top (Fig. 3.1). The steel barrel contains a long plastic liner with a core 

cutter and core catcher securing it at the bottom. As the gravity corer penetrates through the 

seafloor sediments, the core cutter cuts into the sediments like a knife, making room for the 

sediments to be filled within the steel barrel and the plastic liner. The core catcher at the bottom 

makes sure that the sediments are kept at place when the gravity corer is pulled up again. After 

bringing the gravity corer up, the plastic liner is removed from the steel barrel and cut into up 

to one meter long sections. Each section is labelled with station and depth below seafloor. 



 

Page 44 

 

Fig. 3.1: Schematic figure of a gravity corer (adapted from USGS science for a changing world (2017)).  

Aboard the research vessel each one meter long core section was cut into two halves, creating 

a working and an archive half. Whereas the archive half was stored away in 4° C conditions, 

the working half was used for further investigations. The 12.67 m long gravity core PS56/029-

1 consists of 13 sections.  

In the next sections, the methods performed on the gravity core PS56/029-1 are presented.  

3.2 Laboratory work 

The laboratory work started in March 2017 and completed by September 2017. The main 

laboratory work (grain-size distribution analysis) was carried out at the geology laboratory of 

the Alfred Wegner Institute (AWI) on List, Sylt, Germany and AWI in Bremerhaven, Germany. 

The X-radiographs, visual core description, XRF core scanning and line-scan imaging was 

carried out at the laboratory of the Department of Geosciences, UiT The Arctic University of 

Norway in Tromsø (UiT). 

3.2.1 Visual core description  

A visual core description of the core surface is important in order to collect detailed 

observations and to distinguish characteristics throughout the core. A visual core description 
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provides a good initial impression of the sediment depositional history and of the sedimentary 

processes involved.  

Already aboard Polarstern in 2000, the core PS56/029-1 was logged (p. 227 in Thiede and 

Oerter (2002)). Still, I concluded to include my own visual core description into this study. For 

the visual core description done in year 2000, go to www.pangea.de and/or Thiede and Oerter 

(2002). 

The surface of the working half was cleaned and investigated. Special visible features/changes 

such as lithological transitions or boundaries, sedimentary structures or textures, grain-size 

changes, ice rafted debris (IRD), colour variation, occurrence or absence of foraminifera, and 

organic matter content were noted down. In this study the Munsell Soil Colour Chart was used 

to define sediment colours. MUNSELL is a colour chart with up to 199 different colour standard 

chips, which provide an exact description of the colours by direct comparison and numerical 

designation.  

3.2.2 X-radiographs 

GEOTEK X-ray core imaging provides information about the sediments internal structures by 

using electromagnetic radiation (Fig. 3.2). The X-radiographs enable detection of features not 

visible from the surface (e.g. bioturbation, lithological variations, shells and IRD). X-rays are 

sent through the core, after which the X-rays are attenuated by the sediments. The degree of 

attenuation depends on the sediment. In general, sediments with high-density features attenuate 

more X-rays (e.g. compact and coarse sediments, gravel rich sediments and small stones), 

whereas low-density deposits attenuate less X-rays (e.g. soft bioturbated sediments). The core 

image is given in greyscale, where the density differences are proportional to the grey values.  

The X-radiographs were taking on the working half of the core. The exposure time was 10 ms, 

the aperture was 11, the X-ray voltage was 119.99 kV and X-ray current strength was 224.2 W.  

http://www.pangea.de/
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Fig. 3.2: Photos of the GEOTEK MSCL-XCT X-ray used in this study (adapted from UiT the Arctic University of 

Norway (2018a)). 

3.2.3 Line-scan image 

A Jai L-107CC 3 CCD RGB Line Scan Camera installed on the Avaatech XRF Core Scanner 

was used for the acquisition of colour line-scan images. The camera has RGB channels at 630 

nm, 535 nm, and 450 nm in order to get an exquisite channel separation.  

 

Fig. 3.3: Photos of the Avaatech XRF Core Scanner used in this study, which is placed in a container at UiT, The 
Artic University of Norway (adapted from Uit the Arctic University of Norway (2018b)).  

In order to get a line-scan image of good quality the core surfaces were cleaned and smoothened 

prior to image acquisition to provide the best possible conditions for a good image. The core 

section is then placed into the Avaatech XRF Core Scanner (Fig. 3.3). A ruler was placed next 

to the section to keep track of the depth (mm). The Avaatech XRF Core Scanner acquire an 

image with a resolution of 70 µm.  
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3.2.4 XRF core scanning data 

XRF-scanning or “X-ray fluorescence scanning” is a tool for rapid, continuous and non-

destructive determination of the qualitative element-geochemical composition of the sediments, 

frequently used on marine bottom sediments. It is successfully used for high-resolution time 

series, detailed sedimentary and climatic reconstructions on various timescales and for 

stratigraphic correlations (Haug et al., 2001; Bahr et al., 2005; Hepp et al., 2006; Tjallingii et 

al., 2007). The XRF core-scanning measurements were obtained directly from the working half 

surface with the Avaatech XRF core scanner at the Department of Geosciences, UiT The Arctic 

University of Norway in Tromsø.  

The Avaatech XRF core scanner is a core-scanning tool that analyse the chemical composition 

of the sediments at its uppermost micrometres, normally from Aluminium (Al, atomic number 

13) to Uranium (U, atomic number 92) (Tjallingii et al., 2007). The XRF-scanning principle is 

based on X-rays colliding with matter, which generates secondary radiation, i.e. fluorescence 

(Forwick, 2013). Making it possible to determine the qualitative element composition of 

powders and solid. The source of the X-rays is an X-ray tube, including a cathode (C) and an 

anode (A) (Fig. 3.4). The C is headed, emitting electrons in the direction of the A. The amounts 

of electrons emitted is linked to the electric current (l) (e.g. higher current equals larger amounts 

of emitted electrons). The emitted electrons are accelerated due to the voltage (U) between C 

and A (e.g. higher voltage equals stronger acceleration). In the end, the emitted electrons will 

collide with A resulting in X-ray emission. The A consist of rhodium (Rh), meaning Rh-

radiation is applied for the measurements (Forwick, 2013).     

 

Fig. 3.4: Illustration figure of a water-cooled X-ray tube (Forwick, 2013).  
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The Avaatech XRF core-scanner includes both a X-ray source, a helium chamber/measuring 

triangle, and a detector (Fig. 3.5). The measuring triangle “lands” on the sediment surface 

during data acquisition. The helium chamber is added to the measuring unit, because helium 

exposes smaller friction on the secondary radiation than air, making it easier to detect lighter 

elements (e.g. Al and Si). The split core surface is cleaned and covered with a 4 µm thin special 

foil to avoid desiccation of the sediment and contamination of the XRF measurements unit or 

the landing triangle (Forwick, 2013).  

 

Fig. 3.5: Photos of the Avaatech XRF Core Scanner used in this study. Left) detector, X-ray source and helium 
chamber/measuring triangle mentioned in the text. Right) triangle as it lands on the sediments during 
measurements (adapted from Forwick (2013)). 

The measurements were performed in two runs, because lighter elements require lower energy, 

whereas heavier elements require higher energy. In order to measure as many elements as 

possible, it is usual to perform several runs with different currents, voltages and filters. During 

scanning of core PS56/029-1, the following parameters were used:  

1. 10 kV, 1000 µA, 10 sec, to measure light elements from Mg to Co. 

2. 30 kV, 2000 µA, 10 sec, to measure medium-heavy elements from Ni to Mo. 

The down-core distance between the measurements was set to 5 mm. The cross-core slit size 

was set to 12 mm, whereas the down-core slit size was 10 mm.  

When all measurements are completed the results are presented in an excel sheet for further 

work, which include general core information and the respective element-geochemical 

compositions. The element-geochemical compositions in this study are presented, described, 

and discussed as trends relative to a calculated “Sum” or through element/element ratios. The 

“Sum” consists of the 10 most abundant elements for core PS56/029-1. Further work was done 

through software Grapher 8 and CorelDRAW 2017. Elements measured in core PS56/029-1 

include: aluminium (Al), silicon (Si), iron (Fe), sulphur (S), potassium (K), calcium (Ca), 
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titanium (Ti), chromium (Cr), copper (Cu), zinc (Zn), rubidium (Rb), bromine (Br), zirconium 

(Zr), strontium (Sr) and manganese (Mn). 

3.2.5 Multi-Sensor Core Logger (MSCL) 

The core was logged prior to opening with a GEOTEK MSCL (Fig. 3.6), aboard the research 

vessel Polarstern in 2000 (Thiede and Oerter, 2002). This is a non-destructive core logging 

method, revealing the physical properties of the sediments in a micro macro perspective (Weber 

et al., 1997). Parameters includes both actual values (e.g. p-wave velocity and gamma density) 

and proxies (e.g. magnetic susceptibility, natural gamma) (GEOTEK, 2016; GEOTEK, 2018).  

All sensors are calibrated prior to logging in order to avoid erroneous measurements. The cores 

are logged in room temperature in order to avoid any changes in the physical parameters during 

logging (Weber et al., 1997). The core sections are placed on the MSCL belt and pushed past 

the different sensors, which collect data during transportation on the belt (Fig. 3.6) (GEOTEK, 

2018).  

 

Fig. 3.6: The GEOTEK MSCL, including the main sensors (adapted from GEOTEK (2000)).  

3.2.5.1 Temperature measurements  

A standard platinum resistance thermometer probe is used to measure temperature and is 

necessary because changing temperature influence the physical parameters (e.g. p-wave 

velocity, wet-bulk density and MS are affected by the temperature) (Weber et al., 1997; 

GEOTEK, 2000).  Therefore, all core sections were adjusted to room temperature prior to 

measurements in order to avoid the influence of temperature changes.   



 

Page 50 

3.2.5.2 Thickness measurements  

With the help of two rectilinear displacement transducers attached on the p-wave transducers 

the thickness can be measured (Gunn and Best, 1998; GEOTEK, 2000). Core thickness is 

measured relative to a known reference thickness, thus any deviation from this reference 

thickness is measured. The thickness is then used to calculate p-wave velocity and wet-bulk 

density (GEOTEK, 2000).   

3.2.5.3 Wet-bulk density 

Wet-bulk density is a function of wet weight of the material (material plus liquid) divided by 

wet volume (total volume as a whole).  

𝑊𝑒𝑡 − 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑦 =  
𝑚𝑎𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒 
 

The operating principle include narrow beams of collimated gamma rays emitted from a 137Cs  

source and sent through the sediment core within the energy range of 0.662 MeV. The photons 

penetrating through the core are detected on the opposite side of the core (Gunn and Best, 1998; 

GEOTEK, 2000). A collimated beam of gamma-rays will be attenuated by Compton scattering 

as the gamma-rays pass through the sediment core (Evans, 1965). Photons are scattered as they 

react with electrons, involving a partial energy loss (Weber et al., 1997). Finally, measurement 

of photons passing through the core unattenuated provide information about the core density. 

The sensor only measures gamma rays within the same energy range as the source, namely 

around 0.662 MeV. Logically, a dense medium or a sediment will contain a dense composition 

of electrons and less photons will be emitted to the receiver (GEOTEK, 2000). In order to 

calculate the wet-bulk density, the thickness is necessary, described in section 3.2.5.2: 

Thickness measurements. 

3.2.5.4 P-wave amplitude 
P-wave amplitude is a measurement of the p-wave intensity when it arrives at the receiver. In 

order to measure the p-wave velocity, a p-wave pulse is sent through the core from a transducer 

acting as a transmitter to a receiver transducer on the other side of the core. The p-wave 

amplitude is normally used to obtain information about the contact between sediments and core 

liner. This contact will in turn affect both the p-wave amplitude and the p-wave velocity. A low 

p-wave amplitude reflect a bad contact, and may result in an incorrect p-wave velocity 

(Forwick, 2001). P-wave amplitude can also reveal porosity, e.g. high values may reflect lower 

porosity of the sediments (GEOTEK, 2000).  
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Through this study the p-wave amplitude was used to correct for anomalous p-wave velocities. 

At depths when the p-wave amplitude was below 80 the p-wave velocity was excluded.  

3.2.5.5 P-wave velocity 

A p-wave (primary wave) is an elastic body wave, or a seismic wave, also known as a 

compressional wave. The motion of the particles in the material is the same direction as the 

wave propagation. The speed of propagation depends on both the density of the medium, the 

modulus of incompressibility, and modulus of rigidity. The wave can be transmitted through 

all mediums (GPG, 2017). The p-wave velocity and/or rather changes in p-wave velocities can 

give important information about the characteristics of the sediments (e.g. Klages (2010)).   

The travelling time and traveling distance is recorded before the p-wave velocities are 

calculated by the equation:  

𝑉𝑝 =
𝑑

𝑡
 

Where Vp is velocity of the wave (m/s), d is distance travelled (m) and t is the time it take to 

travel distance d (s). 

3.2.5.6 Acoustic impedance 
When wet bulk density of the core is known the acoustic impedance can be calculated 

(GEOTEK, 2000). The acoustic impedance is the product of the wet bulk density and the p-

wave velocity. The acoustic impedance is calculated by the equation: 

𝑍 = 𝑉𝑝 ∗ 𝜌 

Where Z = impedance, Vp = p-wave velocity and 𝜌 = wet bulk density.  

3.2.5.7 Magnetic susceptibility (MS) 

Magnetic susceptibility (MS) is a dimensionless parameter that measures the degree of a 

material to be magnetized in response to an applied magnetic field (Mosher, 2007). The MS 

can have positive values (paramagnetic, ferromagnetic or antiferromagnetic) or negative values 

(diamagnetic), all depending on whether the magnetic field is strengthened or weakened by the 

presence of the material. The operating principle in the MS sensor is that an oscillator circuit 

produces a low intensity, non-saturating, alternating magnetic field. If the material under 

measuring has a magnetic susceptibility it will change the oscillator frequency (GEOTEK, 

2000). These data of pulsed frequency information is converted by the GEOTEK MSCL into 
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magnetic susceptibilities, as International System of Units (SI) or Centimetre-gram-second 

system of units (CGS) values (GEOTEK, 2000). In this study SI are used.   

Changes observed in the MS are excellent tool for core to core correlation (Jessen et al., 2010). 

Furthermore, the MS in marine sediments are highly dependent on glacial activity and 

oceanography (Jessen et al., 2010). Studies of the North Atlantic and Southern Norwegian Sea 

suggests that the MS are linked to bottom water activity, hence it can indicate deep-water 

production in the Nordic seas (Rasmussen et al., 1996; Rasmussen et al., 1998; Moros et al., 

2002). Occasionally overprinted by alternations concerning the sediment provenance, e.g. 

dilution with non-magnetic material or input of ice rafted particles with high magnetic material 

response (Pirrung et al., 2002; Jessen et al., 2010). Additionally, meltwater plumes and mass 

transportation are reported to alter and influence the MS on glaciated continental margins 

(Robinson et al., 2000; Rasmussen et al., 2007). Sediments densities linked to local glacial 

activity also affects MS (e.g. Hillenbrand et al. (2009)). Due to the close correlation to 

environmental changes the MS can be used as a correlative tool in deep sea sediments on local 

to global scales (Robinson et al., 1995; Jessen et al., 2010).   

3.2.6 Granulometry 

Granulometry or a size distribution of grains is a good tool for classifying sedimentary 

environments (e.g. Sun et al. (2002) and Hass et al. (2010)). Grain size is a fundamental 

property of a sediment particle, affecting how they are carried from their original position, 

through transport and deposition (Hass et al., 2010). The following analysis can reveal the 

sediment provenances, transport history, and depositional conditions (Blott and Pye, 2001). 

Core PS56/029-1 was sampled with 1 cm interval using a CILAS 1180 laser granulometer in 

order to obtain a high resolution grain-size distribution. 

3.2.6.1 Laser-diffractometry   

The CILAS 1180 laser-granulometer (Fig. 3.7) uses a laser diffraction and CCD (charge-

coupled device) camera to measure grain-sizes in the sample. The laser-granulometer is able to 

measure particles in the range of 0.04-2500 µm. Grains larger than > 2500 µm needs to be 

removed prior to measurements.  

When using the CILAS 1180 laser-granulometer a cup containing a mixture of sediments and 

water is brought directly from the shaker table to the machine, this prevents formation of 

aggregates. The mixture is gently poured into the machine using a plastic water bottle to gently 
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flush the material out of the cup. The mixture is mixed in the closed water circle driven by two 

peristatic pumps. The particles are kept in suspension by an ultrasound, whereas a self-

contained water circulation is transporting the particles through the CILAS 1180. The particles 

are transported through two sequenced measuring cells where laser beams are emitting 

monochromatic light. As the particles are passing the measuring cells will cause a diffraction 

angle. This diffraction pattern, characterized by concentric cells, is dependent on the particle 

grain-size diameter. Larger grain-sizes yield smaller diffraction angles and vice versa. Hence, 

particles with grain-sizes 0.04 to 500 µm (fine particles) are recorded in the first measuring cell 

on a photodiode-detection device and particles with grain-sizes 300 to 2500 µm (coarser 

particles) are recorded in the second measuring cell, where a CCD camera including a digital 

signal processing unit is located. The signal processing unit displays photo of every grain with 

the help of a laser beam. The photos are converted with the help of Relatime-Fast-Fourier-

Transformation into light spectrum. Lastly, the two spectra (laser diffraction and converted 

photos) are put together mathematically. The final stage is provided by Fraunhofer 

approximation or Mie-theory. Raw data is stored on the computer after measuring is done.  

 

Fig. 3.7: Illustration figure of the CILAS 1180 (adapted from SCRIBD (2018). 

After analysis using the CILAS 1180 laser granulometer, the grain size data need to be 

processed. The CILAS 1180 laser granulometer gives the raw data in a logarithmic scale (ɸ-

scale). The equation to convert metric to phi values is based on: 

ɸ = - log 2 d/d0 
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Where d (mm) is grain-size and d0 (mm) is consistent diameter = 1 mm.  

This information is further used for calculation in Matlab 7.6, to bring the measurements in 

order into one single file. Finally, the data are inserted into the program GRADISTAT 4.0 

(Blott and Pye, 2001), converting 200 samples each time, because the program only can 

covert 200 samples in one arithmetic procedure.   

The data is further processed using Excel. Grain-size statistics using GRADISTAT can include 

e.g. the mean, mode, skewness and sorting (Blott and Pye, 2001). These statistics can yield 

valuable information about the depositional environment of the sediment. The four grain-size 

parameters are explained below.  

Mean size (MG) (Table 3.2): Mean size indicates the average size of the sediment, which 

explain the kinetics energy involved when sediments are deposited. High velocity of the 

depositional process will result in an average size of coarser particles, and vice versa (Sahu, 

1964). The mean is calculated by using the formula below: 

 

𝑀𝐺 = exp
𝑙𝑛𝑃16 + 𝑙𝑛𝑃50 + 𝑙𝑛𝑃84

3
 

 

Where P16, P50 and P84 are the exact grain-size value of the cumulative curve at 16, 50 and 84 

percent, respectively (Folk and Ward, 1957).  

Sorting (σG) (Table 3.3): The sorting (standard deviation) reflects how the different grain sizes 

are spread out compared to the average and indicates changes in the kinetic energy of 

depositional process compared to the average (Blott and Pye, 2001). Good sorting reflects 

relatively stable conditions, meaning small variations in the sedimentary processes. Unstable 

conditions mean different processes are involved in order to deposit these sediments, and will 

result in poor sorting (Sahu, 1964). The standard deviation is expressed by the formula:  

𝜎𝐺 = exp(
𝑙𝑛𝑃16 − 𝑙𝑛𝑃84

4
+

𝑙𝑛𝑃5 − 𝑙𝑛𝑃95

6.6
) 

Where P5, P16, P84 and P95 are the exact grain-size value of the cumulative curve at 5, 16, 84 

and 95, respectively (Folk and Ward, 1957). 
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Skewness (SkG) (Table 3.3): Skewness measures the shape of the grain-size distribution curve. 

It explains if it is a symmetrical curve or if the grain sizes are deflected to one or the other side 

away from the average. For example if the curve leans towards the coarser side from the 

average, it is considered as coarsely-skewed, meaning a lower energy process of deposition 

than the mean is involved. Finely-skewed has a curve that bends towards the finer side from 

the average, indicating that the process of deposition has a higher energy than the average 

(Sahu, 1964).  Skewness is expressed by the formula:  

𝑆𝑘𝐺 =
𝑙𝑛𝑃16 + 𝑙𝑛𝑃84 − 2(𝑙𝑛𝑃50)

2(𝑙𝑛𝑃84 − 𝑙𝑛𝑃16)
+

𝑙𝑛𝑃5 + 𝑙𝑛𝑃95 − 2(𝑙𝑛𝑃50)

2(𝑙𝑛𝑃25 − 𝑙𝑛𝑃5)
 

Where P5, P16, P25, P50, P84 and P95 are the exact grain-size value of the cumulative curve at 5, 

16, 25, 50, 84 and 95, respectively (Folk and Ward, 1957).  

Kurtosis (KG) (Table 3.3): Kurtosis measures the degree of concentration of the grains 

compared to the average. It shows if the shape of the grain-size distribution curve is flat or 

peaked. It is the measure of the ratio of the sorting, in the interval of central 90% to the central 

50% of the distribution (Sahu, 1964). For example if the KG is 1.00 (normal Gaussian curve), it 

means that the sorting in the tails of the curve equals that of the central parts (Folk and Ward, 

1957). High numbers of kurtosis increase the likelihood that the distribution is well sorted, and 

visa versa (Cadigan, 1961). Kurtosis is expressed by the formula: 

 

𝐾𝐺 =
𝑙𝑛𝑃5 − 𝑙𝑛𝑃95

2.44 (𝑙𝑛𝑃25 − 𝑙𝑛𝑃75)
 

Where P5, P25, P75 and P95 are the exact grain-size value of the cumulative curve at 5, 25, 75 

and 95, respectively (Folk and Ward, 1957).  
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The descriptive terminology used in this thesis is adapted from the terminology used in 

GRADISTAT taken from Blott and Pye (2001) (Table 3.2).  

Table 3.2: Descriptive terminology adapted in the GRADISTAT program, modified from Udden (1914) and 

Wentworth (1922), Friedman and Sanders (1978) (Blott and Pye, 2001).  

 

  



 

Page 57 

Table 3.3: Classification of sediments according to sorting (σG), skewness (SKG) and kurtosis (KG). A classification 
modified from Folk and Ward (1957) (Blott and Pye, 2001).  

 

3.2.6.2 Sub-sampling   

In order to obtain the grain-size distribution on gravity core PS56/029-1 some preparations 

needed to be carried out. The working half of gravity core PS56/029-1 was sub-sampled with 

one cm intervals, from the top (1= 0 – 1 cm) to the bottom (1267 =1266 – 1267 cm). The 

sampling was performed at AWI, Bremerhaven, Germany. For each centimetre, a small 

sediment amount was sampled and placed in a box with just enough water to cover the sediment. 

The water was added to prevent the sediments to dry out during transportation to AWI on List, 

Sylt, Germany, for the actual measurements.   

3.2.6.3 Preparations  
To achieve a grain-size distribution of good quality throughout the core, the particle size 

analyser CILAS 1180 laser-granulometer was used (Fig. 3.7).  

Before the samples could be measured in the CILAS 1180 laser-granulometer, they were 

chemically treated in order to avoid erroneous measurements. Both organic and calcareous 

components need to be removed in order to get a clear pristine siliclastic signal. Additionally, 

it is important that all samples are free of aggregates before being measured. The first step of 

the chemical treatment was to add 96%-acetic acid (CH3COOH), in a proportion 1:3 with water 

in order to remove calcareous components. The samples were left over night in order to dissolve 

all calcareous contents. The acid was removed through suction before treated with water in a 

two-step process. The two-step water process was performed to be sure all acid was removed 

from the sediments. Water was added and left until the sediments had settled to the bottom of 

the cup, the water could then be removed through suction. This process was performed two 

times to be sure all acid was removed. Organic components in the samples were removed with 

hydrogen peroxide (H2O2) in a proportion 1:3 with water. The two-step rinsing process 

performed after the acid treatment was repeated after the hydrogen peroxide treatment. 

Afterwards, sodium polyphosphate [(NaPO3)n] was added to avoid any aggregates from 
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forming. After the chemical treatment, the samples were left on the shaker for 24 hours (with 

110 rotations per minute) before placing them into the ultrasonic bath for 10 minutes in order 

to dissolve all aggregates. Due to the relatively fine particles in core PS56/029-1 (high amounts 

of clay that are cohesive) the aggregates were not completely dissolved and could therefore not 

be measured directly through the CILAS 1180. To eliminate this issue, each sample was freeze 

dried in order to dissolve them completely, which successfully removed the last aggregates. 

The samples were then put on the shaker before placed in the ultrasonic bath in preparation for 

the measurements.  
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4 Lithostratigraphy 

In the following chapter, the results obtained with methods presented in Chapter 3: Materials 

and Methods are presented. 

4.1 Introduction 

The 12.67 m long gravity core PS56/029-1 was retrieved from a levee in the central part of a 

large channel system in the RLS at c. 4000 m water depth and c. 200 km offshore Princess 

Ragnhild Coast (Fig. 4.1). The core site was chosen with the goal of retrieving sediments from 

mass-transported (turbidites) and pelagic deposits (pelagites and contourites), deposits which 

can yield useful information about the paleoenvironment of the area (see Chapter 2).     

 

Fig. 4.1: Map of the RLS, including core location of PS56/029-1 (68°00.03’ S and 020°45.13’ E) displayed with a 

black circle.  

By compiling results from visual core description, X-radiographs, line-scan images, element 

geochemical, physical properties, and granulometry of core PS56/029-1 five lithofacies were 

distinguished. Description and presentation of the five lithofacies are further used to distinguish 

glacial/interglacial cycles. Due to the repetitive alternation of layers it was deemed more 

appropriate to described the core through lithofacies instead of dividing the core into units.  
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4.1.1 Lithological logs / visual core description  
The lithological log is based on interpretation of the sediment surface (e.g. colour variations, 

sedimentary structures, lithological transitions, presence and absence of foraminifera…). It is 

also supported by X-radiographs (e.g. lamination, changes in lithology and ice-rafted debris 

(IRD)) and line-scan images (e.g. bioturbation, changes in lithology and sharp lower 

boundaries) together with results obtained from grain-size analysis. The lithological log is 

presented together with line-scan images in figure 4.2. Colours are based on MUNSELLs colour 

chart and due to the frequent changes in colour, only the most prominent colours are displayed 

in the lithological log (Fig. 4.2). Alternating coloured intervals of olive greyish (5Y 5/2), dark 

greyish brown (2.5 Y 4/2) and dark greyish (5Y 4/1) are observed throughout the core.  

The lithological log also contains multiple lithofacies, which are distinguished and described 

below (see Chapter 4.1.11). Foraminifera and stones are marked as individual features in the 

log. The sediment core’s matrix is presented by its widths and consists mostly of mud. Hence, 

the legend in figure 4.2 only shows the description of mud, due to the lack of coarser sediments.   
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Fig 4.2: Lithological log of core PS56/029-1, including line-scan image, lithofacies (GLT – Grey Layer Thin, RBL – 
Red Brown Layer, MLL – Massive Lighter Layer, LGL – Laminated Grey Layer and UTL – Undefined Transition 
Layer), Munsell colour codes (2.5 Y 4/2 – dark greyish brown, 5Y 5/1 – grey, 5Y 5/2 – olive grey, 5Y 4/2 – olive 
grey and 5Y 4/1 – dark grey) and the occurrences of foraminifera and stones.   
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4.1.2 Grain-size analysis 
Volume percentages of clay, silt, sand and sortable silt (10-63µm) are presented vs. depth in 

figure 4.3. Grain-size parameters (mean, sorting, skewness and kurtosis) and mode(s) are 

presented vs. depth in figure 4.4. Mean (0-8 µm) and sortable silt (10-63 µm) are presented vs. 

depth in figure 4.5. Sortable silt (10-63 µm) including the five lithofacies, which are Laminated 

Grey Layer (LGL), Grey Layer Thin (GLT), Massive Lighter Layer (MLL), Red Brown Layer 

(RBL) and Undefined Transition Layer (UTL), are presented vs. depth in figure 4.6. Mean (0-

8 µm) with depths of coarser grain-sizes presented vs. depth in figure 4.7. Volume percentages 

of silt and silt 5 point running mean together with the five lithofacies LGL, GLT, MLL, RBL 

and UTL are presented vs. depth in figure 4.8.  
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Fig. 4.3: Line-scan image, lithological log and volume percentages of clay, silt, sand and sortable silt plotted vs. depth. 
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Fig. 4.4: Line-scan image, lithological log, mean (µm), mean (0-8 µm), sorting (µm), skewness (µm), kurtosis (µm) and mode(s) plotted vs. depth.



 

Page 65 

Volume percentages of clay, silt, sand and sortable silt (Fig. 4.3): Core PS56/029-1 consists 

mostly of clay and silt, with volume percentages 14.53-57.09 and 43.2-85.8, respectively. Sand 

is a minor component throughout the core, only present at three individual depths. These are 

1216 cm, 1182 cm and 340 cm, with volume percentages 36.35, 5.42 and 27.53, respectively. 

Volume percentages of sortable silt (10-63µm) fluctuate between 0 and 59.97, where the 

calculated average volume percentage of sortable silt (10-63 µm) is 5.63. The sortable silt (10-

63 µm) fraction increases at depths between 1219-1146 cm, 926-902 cm, 836 cm, 537-525 cm, 

436-414 cm, 339-337 cm, 104 cm and 27-8 cm, with volume percentages between 0-59.44, 0-

52.7, 46.15, 0-47.3, 0-41.3, 2-46.9, 59.97 and 0-32.05, respectively.      

Mean (MG) (Fig. 4.4): The average geometrical mean (µm) calculated by GRADISTAT varies 

between 2 and 8 µm, with lower exceptions of 1.5 µm and higher exceptions of 31.5 µm, where 

the average grain-size is 2.7 µm. Values indicating clay (< 2 µm) to silt (2 – 63 µm) in size. 

Grain-size fluctuations are detected throughout the 12.67 m long core, fluctuating from clay to 

very coarse silt. A coarser grain-size distribution is detected at depths between 1217-1214 cm, 

1183-1182 cm, 1163-1162 cm, 906 cm, 836 cm, 525-524 cm, 427-417 cm, 340-337 cm and 

104 cm, with grain-sizes between 4.22-31.56, 4.55-13, 4.1-8.7, 9.77, 6.78, 4.1-7.94, 2.4-6.89, 

2.4-19 and 8.7 (µm), respectively. 

Mean (0-8 µm) (Fig. 4.4) shows the fluctuations of the bulk of the cores sediments, with values 

between 0 and 8 µm, excluding higher exceptions in order to present the fluctuations within the 

core better.  

Sorting (σG) (Fig. 4.4): The average geometrical sorting (µm) calculated by GRADISTAT 

varies between 2 and 5 µm (moderately to poorly sorted). Most samples are poorly sorted, while 

only a few are very poorly sorted and moderately sorted. The sorting signal fluctuate throughout 

the core, with increased level of sorting detected at depths between 1222-1212 cm, 1187-1181 

cm, 1165-1163 cm, 923-917 cm, 836 cm, 530-524 cm, 437-414, 345-337 cm and 20-0 cm, 

including values between 2-4.3, 2-4.4, 2.2-4.2, 2.6-4.1, 4.1, 2-4.7, 2.2-4.2, 2-4.9 and 2-3.5 (µm), 

respectively.  

Skewness (SKG) (Fig. 4.4): The average geometrical skewness (µm) calculated by 

GRADISTAT varies between -0.2 and +0.1 (µm), with lower exceptions of -0.628 (µm) and 

higher exceptions of +0.182 (µm). Values indicating very fine skewed (-0.3 to -1.00), fine 

skewed (-0.3 to -0.1), symmetrical (-0.1 to +0.1) and coarse skewed (+0.1 to +0.3) sediments. 
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The skewness signal changes from very fine skewed to symmetrical skewed throughout the 

core. Coarse skewed sediments are present, but is a minor component. The core consists of 

sediments that are positively (very fine skewed and fine skewed) to symmetrically skewed.  

Kurtosis (KG) (Fig. 4.4): The average geometrical kurtosis (µm) calculated by GRADISTAT 

varies between 0.7 and 1.0 (µm), with lower exceptions of 0.63 and higher exceptions of 1.32. 

The core consists of sediments that are very platykurtic (<0.67), platykurtic (0.67-0.90), 

mesokurtic (0.90-1.11) and leptokurtic (1.11-1.5). 

Mode(s) (Fig. 4.4): The mode(s) calculated by GRADISTAT varies between unimodal and 

trimodal, where the dominate mode(s) signal is bimodal. The unimodal signal is absent between 

716 cm and up, while present from 717 cm and down. The unimodal signal include nine 

individual depths, where the average grain-size is 11.3 µm (minimum: 3.3 µm, maximum: 70.4 

µm). The bimodal signal include 1172 individual depths, where the average grain-size is 4.9 

µm (minimum: 1.5 µm, maximum: 14.3 µm). The trimodal signal is present throughout the 

core, but increases from 1000 cm and down. The trimodal signal include 83 individual depths, 

where the average grain-size is 9.6 µm (minimum: 1 µm, maximum: 37.7 µm).  

To summarize, core PS56/029-1 consists of poorly-sorted clay to fine silt sediments and include 

sediments that are positively to symmetrical skewed and platykurtic to mesokurtic. The 

polymodal signal include unimodal to trimodal signals, where bimodal predominates. 
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Fig. 4.5: Line-scan image and lithological log together with mean (0-8 µm) and sortable silt (10-63µm) plotted 

against depth.  

The sortable silt fraction include grain-sizes between 10 and 63 µm. Two individual depths of 

increased sortable silt are detected at 1220-1140 cm and 450-380 cm, highlighted in figure 4.5. 

The average grain-size for sortable silt (10-63 µm) throughout the core is 11.07 µm. The 

sortable silt at 1220-1140 cm (highlighted in green in figure 4.4) fluctuate between 10 and 40 

µm with three higher peaks. Where depths between 1220-1210 cm, 1190-1180 cm and 1175-

1160  include grain-sizes up to 40 µm, 35 µm and 30 µm, respectively. The sortable silt at 450-

350 cm (highlighted in yellow in figure 4.4) fluctuate between 10 and 26 µm.   
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Fig. 4.6: Line-scan image, lithofacies and sortable silt (µm) plotted against depth. Depth of increased sortable silt 

are highlighted with blue rectangles.   

The sortable silt (10-63 µm) signal is present in all lithofacies distinguished for core PS56/029-

1 (Fig. 4.6), but increases to higher values for lithofacies GLT.  
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Fig. 4.7: Line-scan image, lithological log and mean (µm) plotted against depth. Including three individual depths 

with a coarser grain-size distribution.     

A coarser grain-size distribution is detected at three individual intervals, located at depths 

between 1240-1160 cm, 940-860 cm and 440-380 cm (Fig. 4.7). The coarser grain-size 

distribution include grain-sizes up to 13 µm, 10 µm and 13 µm, respectively.   
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Fig. 4.8: Line-scan image, volume percentages of silt and silt 5 point running silt mean plotted vs. depth. Including 
the five lithofacies Red Brown Layer (RBL), Massive Lighter Layer (MLL), Grey Layer Thin (GLT, Laminated Grey 

Layer (LGL) and Undefined Transition Layer (UTL).  

Volume percentages of silt as the dominate grain-size in core PS56/029-1 (Fig. 4.3) are plotted 

against volume percentages of 5 point running silt mean, including lithofacies RBL, MLL, 

GLT, LGL and UTL (Fig. 4.8). Volume percentages of 5 point running silt mean increases at 

depths between 413-400 cm, 85-70 cm and 30-5 cm associated with lithofacies RBL, including 

volume percentages between 62 and 78. Volume percentages of 5 point running silt mean 

increases at depths 1264-1250 cm, 1180-1160 cm, 1080-160 cm and 720-705 cm associated 

with lithofacies MLL, including volume percentages between 55 and 75. Volume percentages 
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of 5 point running silt mean increases at depths 287-250 cm associated with lithofacies LGL, 

including volume percentages between 60 and 67. Volume percentages of 5 point running silt 

mean increases at depths 915-905 cm and 845-823 cm associated with lithofacies GLT, 

including volume percentages between 60 and 66. Volume percentages of 5 point running silt 

mean increases at depths 845-823, 495-478 cm and 418-413 cm associated with lithofacies 

UTL, including volume percentages between 58 and 73. Volume percentages of 5 point running 

silt mean increases to higher percentages more frequently in association with MLL and RBL 

compared to GLT, LGL and UTL (Fig. 4.8).  

4.1.3 Physical properties  
Magnetic susceptibility (10-8 SI (m3/kg)), p-wave amplitude, p-wave velocity (m/s), wet-bulk 

density (g/cm3) and acoustic impedance (g*m*cm-3*s-1) are presented vs. depth in figure 4.9. 

Changes in physical properties are used to desbribe and distinquish the five lithofacies 

distiguished in core PS56/029-1.  

4.1.4 Element geochemical properties 
The element geochemistry is presented in element/sum and element/element ratios plotted vs. 

depth in figure 4.10 and 4.11 (see chapter 3.2.4). Chlorine, phosphor and rhodium are not 

included because these signals would be misleading (e.g. Tjallingii et al. (2007) and Forwick 

(2013)). Chlorine is present in seawater, whereas phosphor and rhodium are present in the XRF 

core scanner, hence the measured amount of these elements will not exclusively represent the 

geochemical composition of the sediment. Changes in the element ratios (element/sum and 

element/element) are used to described and distinguish the five lithofacies in core PS56/029-1. 
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Fig. 4.9: Line-scan image, lithological log and physical properties (p-wave amplitude, p-wave velocity, magnetic susceptibility and acoustic impedance) plotted vs. depth. 
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Fig. 4.10: Line-scan image, lithological log and element geochemistry of core PS56/029-1 plotted vs. depth (including Al/Sum, Si/Sum, S/Sum, K/Sum, Ca/Sum, Ti/Sum and 
Cr/Sum).  
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Fig. 4.11: Line-scan image, lithological log and element geochemistry of core PS56/029-1 plotted vs. depth (including Cu/Sum, Zn/Sum, Rb/Sum, Br/Sum, Zr/Sum, Sr/Sum, 
Ca/Fe and Mn/Sum). 
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Fig. 4.12: Element geochemical ratios of Al/Sum, Si/Sum and K/Sum together with the five lithofacies GLT, RBL, 
MLL, LGL and UTL plotted against depth. Depths with increased geochemical ratios of Al/Sum. Si/Sum and K/Sum 
are highlighted with black rectangles. 

4.1.5 Presence/absence of foraminifera 
White circled features that resemble the shape of foraminifera and appear as interruptions or 

“wholes” on the sediment surface are interpreted as foraminifera. Foraminifera in core 

PS56/029-1 are visible with the naked eye, either present at the sediment surface and/or on line-

scan images (Fig. 4.2 and Fig. 4.13). In core PS56/029-1 repetitive intervals of foraminifera 

bearing zones are observed. Additionally, foraminifera bearing zones are supplemented by an 

increase in the element geochemical ratio of Ca/Sum (Fig. 4.14). Foraminifera bearing zones 

are detected at depths between 1267-1200 cm, 1180-1170 cm, 1123-1067 cm, 978-967 cm, 

867-817 cm, 790-708 cm, 424-337 cm, 282-106 cm, 102-43 cm and 10-0 cm (Fig. 4.2).  
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Fig. 4.13: a) Line-scan image of foraminifera bearing zone at depth 420-345 cm b) interpretation a (UTL – Undefined 
Transition Layer and RBL – Red-Brown Layer). 
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Fig. 4.14: Line-scan, lithofacies GLT, RBL, MLL, LGL and UTL and element geochemical ratio of Ca/Sum plotted 
against depth. Including depths with increased element geochemical ratio of Ca/Sum displayed by blue 
rectangles. 

Varying concentrations of calcium are detected throughout the core. Intervals of higher calcium 

concentration are detected at depths between 1267-1200 cm, 1123-1067 cm, 1080-1070 cm, 

1050-1018 cm, 978-967 cm, 867-817 cm, 790-708 cm, 390-337 cm, 282-106 cm, 102-43 cm 

and 10-0 cm. Intervals of increased calcium content occur more frequently and have higher 

concentrations within lithofacies RBL and MML compared to lithofacies LGL, GLT and UTL. 

Additionally, the intervals of increased calcium concentration in lithofacies RBL and MLL 

coincide with foraminifer bearing zones.  
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4.1.6 Lamination  
Laminations are observed in X-ray photos of the core (Fig. 4.15), and they are also detected by 

grain size analysis as repetitive intervals of coarser grain-sizes (Fig. 4.16). Lamination is 

repetitive intervals of higher density layers than the surrounding matrix and are detected as thin 

lighter and “whiter” layers trough density variations. Intervals containing lamination include 

depths between 1212-1187 cm, 1152-1141 cm, 745-730 cm, 645-582 cm, 318-282 cm and 174-

129 cm.  

 

Fig. 4.15:  a) X-ray photo of lamination at depth 645-580 cm b) interpretation of a (LGL – Laminated Grey Layer). 
Lightness increases with density. 
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Fig. 4.16: Line-scan image, lithofacies GLT, RBL, MLL, LGL and UTL and mean (0-8µm) plotted against depth. 

Intervals containing lamination are displayed by blue rectangles.  

Intervals containing laminations include fluctuating grain-sizes (Fig. 4.16). The grain-sizes 

vary between 2 and 4.5 µm throughout the intervals containing lamination. Intervals with 

lamination in core PS56/029-1 occur in lithofacies LGL, whereas only one interval of 

lamination occur in UTL.  

4.1.7 Ice-rafted debris (IRD) 
IRD content in core PS56/029-1 is based on the interpretation of X-ray photos supplemented 

by visual core description (Fig. 4.2 and Fig. 4.17). Visual inspection of the core only reveals 

IRD visible on the sediment surface, and potential IRD in the underlying sediments cannot be 

detected without X-ray imaging. Therefore, in this study “white” higher density circles detected 
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on X-ray photos are interpreted as IRD (Fig. 4.17). Higher density features with a rounded  

shape are suggested to be IRD because there is no other likely explanation for the deposition of 

such features at core site PS56/029-1.   

The IRD concentration varies throughout the core, with certain intervals of particularly high 

coarser sediment concentrations. Higher IRD concentrations are detected at depth 30 cm and 

between 760 to 745 cm, whereas the IRD signal is absent between 400 and 100 cm (Fig. 4.2).  

 

 

Fig. 4.17: a) X-ray photo of IRD at depth 770-740 cm b) interpretation of a (LGL – Laminated Grey Layer and UTL 
– Undefined Transition Layer). Lightness increases with density.  
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4.1.8 Massive mud   
The interpretation of massive mud is based on X-ray photos, supplemented by line-scan images 

(Fig. 4.18). Massive layers lacking structures are normally found in core PS56/029-1 in 

association with lithofacies MLL and RBL.     

 

 

Fig. 4.18:  a) X-ray photo of massive mud at depth 900-870 cm b) interpretation of a (MLL – Massive Lighter Layer). 
Lightness increases with density. 

 

4.1.9 Sharp lower boundaries 
Interpretation of sharp lower boundaries are based on line-scan images and X-ray photos (Fig. 

4.19). Marked changes in physical properties and grain-size coincide with sharp lower 

boundaries in core PS56/029-1. Additionally, the element geochemical compositions are 

changed.  A sharp lower boundary is recognized in association with lithofacies LGL, GLT, 

UTL and MLL (see Chapter 4.1.11).  
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Fig. 4.19: a) Line-scan image of a sharp lower boundary at depth 313 cm in core PS56/029-1 b) interpretation of a 
(LGL – Laminated Grey Layer and MLL – Massive Lighter Layers).  

 

4.1.10 Bioturbation  
Bioturbation occurs when benthic organisms rework deposited sediment by burrowing, 

ingestion and defacation, and therefore disturbs the sediment stratigraphy. Bioturbation of the 

sediment is indicated by colour changes observed in the line-scan images of the core. 

Bioturbation is present in core PS56/029-1 in association with lithofacies MLL, RBL and UTL 

(see Chapter 4.1.11). Bioturbation is frequently occurring on the boundaries between lighter 

coloured layers to darker coloured layers.  
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Fig. 4.20: a) Line-scan image indicating bioturbation at depth 640 – 665 cm b) interpretation of a (UTL – Undefined 
Transition Layer and MLL – Massive Lighter Layers). 

4.1.11 Lithofacies 
Five lithofacies have been distinguished through visual core description, line-scan images, X-

ray photos and grain-size analysis, supplemented by marked changes in physical and 

geochemical properties (Fig. 4.2, Fig. 4.6, Fig. 4.8 and Fig. 4.12 – 4.21). In order to present the 

core as clearly as possible, the facies have been given names suitable for their characteristics, 

these are: 

1. Laminated Grey Layer (LGL).  

2. Grey Layer Thin (GLT). 

3. Massive Light Layer (MLL). 

4. Red Brown Layer (RBL). 

5. Undefined Transition Layer (UTL). 
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Fig. 4.21: Examples of lithofacies recognized in core PS56/029-1, including parameters mean (0-8 µm), sortable silt (10-63 µm), sorting (µm), p-wave velocity (m/s), magnetic 
susceptibility (MS) (10-8 SI) and mode (s) (GLT – Grey Layer thin, RBL – Red-Brown Layer, MLL – Massive Lighter Layers, LGL – Laminated Grey Layer and UTL – Undefined 

Transition Layer).  
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4.1.11.1 Laminated Grey Layer (LGL)  
Lithofacies “Laminated Grey Layer” (LGL) (Fig. 4.2, Fig. 4.6, Fig. 4.8, Fig. 4.12, Fig. 4.14-

4.17, Fig. 4.19 and Fig. 4.21) represent five dominate layers. LGL comprises predominantly of 

olive grey (5Y 5/2) to dark grey (5Y 4/1) silty clays. Interval thicknesses varies between 15 and 

66 cm. Volume percentages of clay varies between 14.5 and 50.8, whereas volume percentages 

of silt varies between 49.2 and 77.1. Sand and gravel are absent in these layers. Intervals 

comprised of these layers include lamination and a sharp lower boundary. Foraminifera are 

abundant. These five layers are detected at depths between 1210-1180 cm, 1170-1120 cm, 745-

730 cm, 646-580 cm and 320-260 cm.  

Lithofacies LGL shows constant and average MS values that vary between 800 and 1000 *10-

8 SI. The physical properties of p-wave velocity, wet-bulk density, acoustic impedance and 

grain-size varies between 1480 and 1490 m/s, 1.5 and 1.6 g/cm3, 1100 and 1200 gmcm-3s-1 and 

2 and 4 µm (very fine silt), respectively. Volume percentages of silt increases and decreases 

within these layers, corresponding to a coarser grain-size distribution and a finer grain-size 

distribution. Sorting values vary between 2 and 3 µm (poorly sorted). The sorting signal 

fluctuate throughout this lithofacies, corresponding to higher and lower values in the range of 

2-3 µm. Sorting values of 2-3 µm are some of the poorest-sorted values throughout the core. 

Geochemical properties of LGL include high element ratios of Al/Sum, Si/Sum, K/Sum and 

Rb/Sum and low element ratios of Ca/Sum, Cu/Sum and Ca/Fe. X-ray photos reveal clear signs 

of lamination within these intervals and line-scan images reveal a sharp lower boundary. IRD 

is absent, with one exception at depth 1202 cm. Lithofacies LGL consists of sediments that 

show a bimodal to trimodal trend, where the trimodal signal occur more frequent at depths 

between 1210-1180 cm and 1170-1120 cm compared to 745-730 cm, 646-580 cm and 320-260 

cm. The mode(s) signal resemble each other, but with a small detectable change from depths 

between 1210-180 cm and 1170-1120 cm compared to 745-730 cm, 646-580 cm and 320-260 

cm (Fig. 4.22). The bimodal and trimodal signal detected in LGL show two sharp higher peaks, 

in addition to a more rounded chaotic signal. The bimodal signal at depth 1170-1120 cm include 

grain-sizes up to 5.8 µm, while depth 640-580 cm include grain-sizes up to 5 µm. 
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Fig. 4.22: Mode(s) signal for lithofacies LGL at depth 640-580 cm and 1170-1120 cm.  

4.1.11.2 Grey Layer Thin (GLT) 
Lithofacies “Grey Layer Thin” (GLT) (Fig. 4.2, Fig. 4.6, Fig. 4.8, Fig. 4.12, Fig. 4.14, Fig. 4.16 

and Fig. 4.21) consists of olive grey (5Y 5/2) to dark grey (5Y 4/1) silty clays. These intervals 

occur frequently throughout the core with relatively thin interval thicknesses between 3 and 15 

cm, with an average interval thickness of 10 cm. Volume percentages of clay vary between 17.1 

and 50.9, whereas volume percentages of silt vary between 44.3 and 82.9. Characteristics of 

these intervals are a coarser grain-size distribution and a sharp lower boundary. Foraminifera 

are abundant. 

Lithofacies GLT include physical properties of high values (e.g. MS, p-wave velocity and wet-

bulk density). The MS, p-wave velocity and wet-bulk density varies between 865 and 1916 *10-

8 SI, 1500 to 1560 m/s and 1.6 to 1.9 g/cm3, respectively. The grain-size distribution shows 

grain-sizes between 2 and 5 µm, where some intervals of this lithofacies are coarser than other 

intervals. The sorting signal varies between 2.5 and 5 µm, a sorting value of 5 µm belongs to 

some of the highest sorting values detected throughout the core. Geochemical properties of 

GLT include high element ratios of Al/Sum and Si/Sum and low element ratios of Cu/Sum, 

Fe/Sum, Zn/Sum and Rb/Sum. X-ray photos reveal a high density layer cutting the sediments 

from below at the beginning of GLT and high density layers occur more or less always in 

association with GLT. The internal structure at depths between 977-974 cm and 838-835 cm 

reveal higher-density layers with lower-density layers in between, whereas the rest of GLT 

shows no internal structure. Line-scan images reveal a sharp lower boundary. IRD is 
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recognized, but occurrences are scattered, with grain diameters varying between 80 to 90 mm. 

Lithofacies GLT consists of sediments commonly showing a bimodal signal, with trimodal 

signal only present within a few intervals. The bimodal signal detected in GLT shows in general 

two sharp higher peaks and two more rounded lower peaks. The bimodal signal at depth 910-

903 cm include grain-sizes up to 4.4 µm, while depth 120-110 cm include grain-sizes up to 4.9 

µm.    

 

Fig. 4.23: Mode(s) signal at depth 910-903 cm and 120-110 cm for GLT. 

4.1.11.3 Massive Light Layers (MLL) 
Lithofacies “Massive Light Layers” (MLL) (Fig. 4.2, Fig. 4.6, Fig. 4.8, Fig. 4.12, Fig. 4.14, 

Fig. 4.16 and Fig. 4.18-4.21) comprises predominantly of olive grey (5Y 4/2) silty clays and 

silt. Interval thicknesses vary between 10 and 30 cm. Volume percentages of clay vary between 

22.2 and 56.1, whereas volume percentages of silt vary between 43.9 and 77.9. Intervals 

comprising MLL are considered as massive. Characteristics of this lithofacies are the 

occurrences of foraminifera and bioturbation. The lower boundary is strongly bioturbated, 

occurring with or without a sharp lower boundary. IRD occurs occasionally with grain 

diameters of 80 to 90 mm. This lithofacies occur frequently throughout the core, but increases 

towards the bottom of the core.  

Physical properties of lithofacies MLL include p-wave velocity, wet-bulk density and MS 

values between 1470 and 1480 m/s, 1.5 and 1.6 g/cm3 and 700 and 1000 *10-8 SI, respectively. 

The grain-size distribution include grain-sizes between 2 and 5 µm, with some layers containing 

more silt and others more clay. Lithofacies MLL consists of poorly sorted sediments, with 

values between 2 and 4 µm. Geochemical properties of MLL includes high element ratios of 
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Sr/Sum, Ca/Sum and Ca/Fe and low element ratios of Al/Sum, Si/Sum, K/Sum, Fe/Sum and 

Rb/Sum. In contrast, different geochemical properties are detected at one individual depth 

between 900-870 cm, including high element ratios of S/Sum, Fe/Sum and Cu/Sum and low 

element ratios of Ca/Sum, Sr/Sum and Ca/Fe. Line-scan images reveal a strongly bioturbated 

lower boundary, occurring with or without a sharp lower boundary. X-ray photos reveal 

massive sediments without internal structures. Lithofacies MLL include unimodal to trimodal 

sediments. Grain-size measurements reveal a slight change concerning the mode(s) signal from 

the uppermost MLL intervals to the lowermost MLL intervals, but the changes are minor (Fig. 

4.24). The unimodal to trimodal signal detected in MLL show in general two sharp higher peaks 

and a lower more chaotic signal. The mode(s) signal at depth 900-870 cm include grain-sizes 

up to 6 µm, while depth 655-645 cm include grain-sizes up to 5 µm. 

 

Fig. 4.24: Mode(s) signal for lithofacies MLL at depth 655-645 cm and 900-870 cm. 

4.1.11.4 Red Brown Layer (RBL)  
Lithofacies “Red Brown Layer” (RBL) (Fig 4.2, Fig. 4.7, Fig. 4.12-4.13, Fig. 4.15 and Fig. 

4.20) comprises of reddish to brownish coloured (2.5 Y 4/2 – dark greyish brown) silty clays. 

Interval thicknesses vary between 10 and 40 cm, located at depths between 1040-1030 cm, 953-

937 cm, 421-380 cm, 201-190 cm, 95-72 cm, 32-21 cm and 5-0 cm. Volume percentages of 

clay vary between 19.5 and 49.7, whereas volume percentages of silt vary between 48.6 and 

80.4. Characteristics of this lithofacies are the occurrences of foraminifera, bioturbation and 

IRD. The diameter of the IRD varies between 20 mm and 90 mm.      

Physical properties of RBL include p-wave velocity, wet-bulk density and MS between 1480 

m/s and 1500 m/s, 1.4 and 1.6 g/cm3 and 500 and 900 *10-8 SI, respectively. The lowest MS 
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value measured throughout the core is at depth 100-70 cm and include MS value of 500 *10-8 

SI. Lithofacies RBL has a coarser grain-distribution compared to the rest of the core, with grain-

sizes varying between 2 and 7 µm. The sorting signal varies between 2 and 4.2 µm. The most 

profound peak throughout the core is detected at depths between 420-380 cm, with sorting 

values up to 4.2 µm and grain-sizes up to 7 µm. Geochemical properties include high element 

ratios of S/Sum, Cu/Sum, Ca/Sum and Ca/Fe and low element ratios of Rb/Sum, Al/Sum, 

K/Sum and Fe/Sum. X-ray photos reveal sediments containing IRD (Fig. 4.23) and line-scan 

images show bioturbation. Lithofacies RBL at depth 420-380 cm also reveal a lower boundary 

going from a high-density layer to a low-density layer (Fig. 4.23). Lithofacies RBL include 

sediments that are bimodal to trimodal (Fig. 4.24). The bimodal to trimodal signal detected in 

RBL show in general a more chaotic signal compared to LGL, GLT and MLL. The mode(s) 

signal at depth 1040-1030 cm include grain-sizes up to 4.4 µm, while depth 95-72 cm include 

grain-sizes up to 6 µm. 

 

Fig. 4.25: a) X-ray photo of IRD in lithofacies RBL at the boundary between UTL and RBL at depth 420 cm b) 

interpretation of a. Lightness increases with density. 
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Fig. 4.26: Mode(s) signal for lithofacies RBL at depth 95-72 cm and 1040-1030 cm.  

4.1.11.5 Undefined Transition Layers (UTL) 
Lithofacies “Undefined Transition Layers” (UTL) (Fig. 4.2, Fig. 4.6, Fig. 4.8, Fig. 4.12, Fig. 

4.14, Fig 4.16, Fig. 4.18-4.21 and Fig. 4.23) represent transition zones between one lithofacies 

to the next. This lithofacies consist of a mixture of the previously described lithofacies (see 

Chapter 4.1.11.1 – 4.1.11.4) and contain physical and geochemical properties that grade from 

one lithofacies to the next. 

A summary of the characteristics of the different lithofacies distinguished in core PS56/029-1 

are given in Table 4.1.  

Table 4.1: Characteristics of lithofacies distinguished in core PS56/029-1.  

 LGL GLT MLL RBL 

Colour Olive grey to 

dark grey 

Olive grey to 

dark grey  

Olive grey Dark greyish 

brown 

Bed thickness (cm) 15-66 3-15 10-30 10-40 

Volume percentages 

Clay 

Sill 

 

14.5-50.8 

49.2-77.1 

 

17.1-50.9 

44.3-82.9 

 

22.2-56.1 

43.9-77.9 

 

19.5-49.7 

48.6-80.4 

Laminations  Yes  Yes and No  No No  

Massive  No No Yes No 
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Sharp lower boundary  Yes  Yes Yes and No No 

Bioturbation No No Yes Yes 

IRD Yes Yes Yes Yes  

Foraminifera Low Occasionally  High High 

MS (10-8SI) 800-1000 865-1916 700-1000 500-900 

P-wave velocity (m/s) 1480-1490 1500-1560 1470-1480 1480-1500 

Wet-bulk density 

(g/cm3) 

1.5-1.6 1.6-1.9 1.5-1.6 1.4-1.6 

Acoustic impedance 

(gmcm-3s-1) 

1100-1200 1100-1200 1100-1200 1100-1200 

Mean (µm) 2-4 2-5 2-5 2-7 

Sorting (µm) 2-3 2.5-5 2-4.2 2-4.2 

Skewness  -0.2-0.08 -0,5-0.09 -0.3-0.14 -0.2-0.05 

Kurtosis  0.7-0.95 0.5-1 0.7-1 0.7-1 

Mode (s) Bimodal and 

trimodal 

Bimodal and 

trimodal 

Unimodal to 

trimodal 

Bimodal and 

trimodal 

Geochemical ratios  

High 

Low 

 

Al, Si, K, Rb 

Ca, Cu, Ca/Fe 

 

Al, Si 

Cu, Fe, Zn, Rb 

 

Sr, Ca, Ca/Fe 

Al, Si, K, Fe, Rb 

 

S, Cu, Ca, Ca/Fe 

Rb, Al, K, Fe 
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5 Discussion  

Previous studies on the continental margin surrounding Antarctica have concluded that 

sediments on the continental slope and rise are typically deposited by alongslope currents and 

downslope gravitational processes (Kuvaas and Kristoffersen, 1991; Michels et al., 2001; 

Escutia et al., 2002; Rebesco et al., 2002; De Santis et al., 2003). Alongslope currents and 

gravitational processes are controlled by several factors, such as the continental margin 

morphology, variability and velocity of bottom and gravitational currents, the length of time 

the bottom and gravitational currents have operated, and the type and amount of sediments 

available (Rebesco et al., 2002; Kuvaas et al., 2004; Solli et al., 2008). Due to the sedimentary 

units (e.g. channel-levee structures, channels and different drifts) provided by Kuvaas et al. 

(2004) in the RLS, it is likely to assume that alongslope and downslope processes work 

simultaneously in order to deposit the sediments in the RLS and at core site PS56/029-1 (Fig. 

5.1) (e.g. Mienert et al. (1993), Mcginnis and Hayes (1995), Howe et al. (2004) and Solli et al. 

(2007)). 

Grain-size analysis, together with physical and element geochemical properties supplemented 

with line-scan images and X-radiographs, can provide essential information about marine 

sediments and their sedimentary environments (e.g. Weber et al. (1997), Blott and Pye (2001), 

Hepp et al. (2006) and Rothwell and Rack (2006)). Results from core PS56/029-1 reveal various 

trends provided in Chapter 4: Lithostratigraphy, which are discussed and explained in the 

following sub-chapters.   
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Fig. 5.1: Bathymetric map of the RLS, including main sedimentary units displayed with colours and seismic profiles 
obtained in the area are displayed with grey straight lines. Core location of PS56/029-1 is displayed with a black 
circle. Overview map to the left include area under investigation displayed with a red rectangle (modified after 
Kuvaas et al. (2004)). 

The lithological log (Fig 4.2) reveals evidence of changing depositional environments due to 

alternating repetitive intervals of lithofacies distinguished throughout the core. Sediment colour 

variation is considered to be diagnostic of changes in soil and marine sediment composition 

through several decades (e.g. Mix et al. (1992) and Rothwell and Rack (2006)). The colour of 

marine sediments has shown to be reliable indicators of important sedimentological 

components, e.g. free and bound iron, carbonate, different iron minerals (e.g. pyrite and 

hematite) and clay through geochemical investigations (Rothwell and Rack, 2006). The 

alternating colour change detected in core PS56/029-1 could reveal important information of 

the paleoenvironment and the sedimentary processes responsible for depositing the sediments. 

A previous study by Pudsey and Camerlenghi (1998) on sediment drifts on the Pacific margin 

of the Antarctic Peninsula showed a cyclicity between brown, bioturbated, diatom-bearing mud 

with foraminifera and radiolarians to grey, laminated, barren mud. The brown layers are 

interpreted as sediments deposited during interglacial periods, whereas the grey layers are 

interpreted to be deposited during glacial periods, an interpretation that is later supported by 

Rebesco et al. (2002) and Lucchi et al. (2002). The 12.67 m long core consists of repetitive 
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alternating lighter brownish (2.5 Y 4/2 – dark greyish brown and 5Y 5/2 – olive grey) and 

greyish (5Y 4/1 – dark grey and 5Y 5/1 – grey) coloured layers. The lighter brownish coloured 

layers include increased IRD content, occurrences of foraminifera and bioturbation, and 

occasionally a sharp lower boundary, whereas the grey coloured layers include sparse IRD, 

reduced foraminifera content, a sharp lower boundary and lamination. Physical and 

geochemical properties observed in the lighter brownish and greyish coloured layers 

correspond well to the observed colour changes. The MS increases for the greyish coloured 

layers, whereas the p-wave velocity and the wet-bulk density only increases for the greyish 

coloured layers with bed thicknesses between 3 and 15 cm. Element geochemical ratios of 

Al/Sum, Si/Sum, K/Sum and Rb/Sum are higher, whereas the element geochemical ratios of 

Ca/Sum and Cu/Sum are lower in the greyish coloured layers compared to the lighter brownish 

coloured layers. The lighter brownish coloured layers include slightly coarser grain-sizes and 

lower MS values compared to the greyish coloured layers. Element geochemical properties of 

the lighter brownish coloured layers show different results. Element geochemical ratios of 

S/Sum, Cu/Sum and Ca/Sum are higher, whereas the element geochemical ratios of Al/Sum, 

K/Sum and Cr/Sum are lower in the brownish coloured layers compared to the greyish and 

lighter coloured layers. Element geochemical ratios of the lighter coloured layers show no clear 

correlation. Based on the physical and geochemical properties, in addition to repetitive 

alternating colour variations, core PS56/029-1 possibly reveals cyclicity concerning sediments 

deposited during glacial/interglacial periods.  

The influence of glaciological, oceanic and atmospheric processes varies through 

glacial/interglacial cycles in the RLS (e.g. Schröder and Fahrbach (1999), Böning et al. (2008), 

Parkinson and Cavalieri (2012) and Mackintosh et al. (2014)). These processes create variations 

in the sediment supply to core site PS56/029-1, which can be observed through the sedimentary 

record (Fig. 4.2). Glaciological, oceanic and atmospheric processes in the RLS are as follows:  

1. Katabatic winds originating from the Antarctic continent, creating coastal polynyas, 

which are areas of brine formation (Fig. 5.2) (Ishikawa et al., 1996; Smith et al., 2010). 

2. Westward flowing coastal currents and the eastward flowing Antarctic Circumpolar 

Current (ACC), powered by the East Wind Drift and the West Wind Drift, respectively 

(Fig. 5.2) (Böning et al., 2008; Rintoul, 2010; Fahrbach, 2013). 

3. Decadal and seasonal changing sea-ice cover (Fig. 5.2) (Parkinson and Cavalieri, 2012). 

4. Icebergs drifting over the RLS, depositing ice-rafted debris (IRD) (Fig. 5.2) (Arrigo et 

al., 2002; Aoki, 2003). 
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5. The advance and subsequent retreat of the EAIS (Fig. 5.2) (Mackintosh et al., 2014).  

6. The impact of the easternmost part of the Weddell Gyre (Fig. 5.2 and Fig. 5.3) (Schröder 

and Fahrbach, 1999; Pudsey, 2000). 

 

 

 

Fig. 5.2: Schematic figure of glaciological, oceanic and atmospheric processes operating through glacial/interglacial 
cycles in the RLS. Including katabatic winds (1), coastal currents and the ACC (2), sea-ice and sea-ice formation 
(3), icebergs (4), the position of the EAIS (5) and the easternmost part of the Weddell Gyre (6) (modified after 
National Research Council (2011)). 
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Fig. 5.3: Schematic figure of the impact of the easternmost part of the Weddell Gyre between Astrid and Gunnerus 
Ridge outside Princess Ragnhild Coast and the westward flowing coastal current including core location of 
PS56/029-1 displayed by a ellipsoid (modified after Hass et al. (2016) after Schröder and Fahrbach (1999)). 

5.1 Location of core PS56/029-1 
Core PS56/029-1 was retrieved in a channel-levee complex on top of a levee on the western 

side of a channel (Fig. 5.4). These channel-levee structures are important, as they have shown 

to be suitable for paleoenvironmental reconstructions (e.g. Kuvaas and Kristoffersen (1991), 

Melles and Kuhn (1993), Harris (2000), Presti et al. (2003) and Hass et al. (2016)). The seafloor 

morphology of the RLS consists of channels up to hundreds of meters deep and several 

kilometres wide with levees located beside the channels (Hass et al., 2016; Hass et al., in prep). 

Channels act as active pathways for turbidity currents and dense water masses originating from 

the continental slope. Seasonal open-water conditions and polynyas are often associated with 

increased biogenic activity (Ishikawa et al., 1996; Arrigo and Van Dijken, 2003). Brine 

formation is associated with polynyas (Massom et al., 1998), which is recognized in the RLS 

(Hass et al., 2016). Icebergs are reported to drift over the RLS (Aoki, 2003), while bottom 

currents are reported to flow along the western slope of the Gunnerus Ridge (Neelov et al., 

1998; Kuvaas et al., 2004). 
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Fig. 5.4: Large-scale bathymetry of the western RLS, including core site PS56/029-1 (yellow circle). Channels are 
indicated by black lines and the outer position of the EAIS is displayed by light-grey colour (modified after Hass et 
al. (in prep)).  

The forward movement of the EAIS in the RLS is constantly brining terrigenous material onto 

the continental margin (Fig. 1.2), where it is distributed towards the Enderby Abyssal Plain. 

Excluding IRD, a successive sorting of the sediments heading towards the Enderby Abyssal 

Plain will lead to the coarsest particles settling out nearest the coast. Icebergs and sea-ice can 

deposit IRD and have the ability to carry coarse-grained material far away from the sediment 

source (Gilbert, 1990). Icebergs may travel up to several thousand kilometres from the glacial 

source before they are completely melted, while sea-ice melts from below as it drift into warmer 

oceans and from above due to increased radiative energy in summer (Dowdeswell, 2009). The 

grain-size distribution for core PS56/029-1 reveals fine-grained sediments, including grain-

sizes between 1.5 and 31.5 µm (clay and silt) (Fig. 4.4). The gravity core was retrieved c. 200 

km offshore the Princess Ragnhild Coast at c. 4000 m water depth and the fine-grained 

sediments could therefore be the result of the successive sorting from the continental shelf 

towards the core site (Fig. 5.4). Additionally, denser water masses and turbidity currents 

originating from the continental slope would only deposit sediments onto the levee if the current 

was strong and big enough to flood the levee. The coarsest material of the current are 
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concentrated in the channel, thus only the fine-grained material of the current will be deposited 

onto the levee (Nichols, 2009). The factors discussed in this sub-chapter could partly explain 

the fine-grained sediments for core PS56/029-1 detected in the sedimentary record (Fig. 4.2) 

and by the high volume percentages of clay and silt (Fig. 4.3). 

5.1.1 Bottom currents at core site PS56/029-1 
The influence of bottom currents on the glaciated continental margin surrounding Antarctica is 

evident through multiple studies (e.g. Lucchi et al. (2002), Rebesco et al. (2002), Kuvaas et al. 

(2004), Maldonado et al. (2005) and Hass et al. (2016)). Bottom currents are capable of 

affecting the seafloor by transporting, re-suspending, and/or controlling the deposition of the 

sediments in the area. The speed and direction of these bottom currents are controlled by the 

acting environmental forces, i.e. oceanic and glaciological processes (e.g. Pudsey and 

Camerlenghi (1998) and Rebesco et al. (2002)). Furthermore, the intensity and strength of these 

bottom currents will change according to the acting environmental forces through 

glacial/interglacial cycles (e.g. Rebesco et al. (2002), Kuvaas et al. (2004) and Hass et al. 

(2016)).  

Bottom currents in the RLS are reported to be present both in glacial and interglacial periods 

(e.g. Solli et al. (2007) and Kuvaas et al. (2004)), but with substantial variations in their 

strength. Weaker bottom currents predominate during glacials as a result of the ice-sheet 

growth, a more extensive sea-ice cover and smaller coastal polynyas (e.g. Pudsey (1992), 

McCave et al. (1995) and Ohshima et al. (2013)). The presence of an extensive sea-ice cover 

would reduce the strength of the bottom currents beneath the ice by preventing brine formation 

and oceanic circulation. Weaker katabatic winds would result in smaller coastal polynyas, 

which would reduce the heat exchange between the ocean and the atmosphere, leading to 

reduced brine formation. Hass et al. (2016) suggested that the position of the coastal polynyas 

in the study area was further north during colder times, since the study area was covered with 

sea-ice, hence preventing bottom-water formation is prevented during colder times. Stronger 

bottom currents predominate during interglacials as a result of the retreating ice-sheet, a less 

extensive sea-ice cover (sea-ice free conditions during austral summer and more sea-ice during 

austral winter), stronger coastal polynyas and a more active Weddell Gyre (Pudsey, 2000; Kuhn 

and Diekmann, 2002). Enhanced katabatic winds will encourage formation of coastal polynyas, 

thus increasing brine formation and consequently bottom water production in the study area. 

Stronger bottom currents in warmer/interglacial periods could lead to enhanced winnowing, i.e. 

removal of fine-grained material or longer suspension of fine-grained material, carrying 
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sediments over larger distances, thus, leaving behind coarser material. Grain-sizes of marine 

sediments are considered as a good proxy for bottom water strength, where stronger bottom 

currents lead to a coarsening of the sediments and weaker bottom currents lead to a fining of 

the sediments (e.g. McCave et al. (1995), McCave (2008) and Jessen and Rasmussen (2015)). 

Bottom current transported sediments deposited on channel levees during warmer/interglacial 

periods is expected to be coarser than those deposited during colder/glacial periods. 

Bottom currents can rework marine sediments and/or deposit contourites or contourite drifts 

(Stow et al., 2002). In the sedimentary record for core PS56/029-1 contourites are recognized 

as better sorted fine-grained sediments, including sortable silt (SS) (10-63 µm), bioturbation 

and foraminifera with occasionally IRD (see Chapter 5.2).  

The SS (10-63µm) fraction is a parameter frequently used in previous studies as a proxy for 

bottom water strength (e.g. Pfuhl and McCave (2005), McCave and Hall (2006) and McCave 

(2008)). Grain-sizes below 10 µm are considered as “cohesive”, while grain-sizes between 10 

and 63 µm are considered as “non-cohesive”. This “non-cohesive” fraction shows signs of size 

sorting by bottom currents, thus, an increase in SS (10-63µm) is interpreted as an increase in 

the strength of the bottom currents (e.g. McCave et al. (1995)). PS56/029-1 is a fine-grained 

sediment core, where the bulk composition of the sediments varies between 1.5 and 31.5 µm 

(Fig. 4.4), containing an average grain size of 2.7 µm. This suggests a substantial portion of the 

sediment is smaller than the boundary for SS analysis (10 µm) and is therefore excluded from 

the SS results. Signals of bottom current variations from the SS analysis should therefore be 

interpreted carefully and not exclusively be based on the SS parameter.  

The SS signal varies throughout the core, with certain intervals of particularly higher SS values 

(Fig. 4.6). Particularly increased SS signal is detected at two intervals, between 1220-1140 cm 

and 450-400 cm (Fig. 4.5). At these two intervals grains sizes up to 41.1 and 41.3 µm are 

observed. They might reflect two periods in time with stronger bottom currents in the RLS. The 

SS signal is also present in the five lithofacies distinguished in core PS56/029-1, which could 

imply that bottom currents of varying strength were present through glacial/interglacial cycles 

in the RLS. 

5.1.2 Pelagic settling at core site PS56/029-1 
Multiple studies on the glaciated continent margin surrounding Antarctica have shown that 

pelagic settling contribute to deposit sediments to the seafloor (e.g. Pudsey (2000), Lucchi et 

al. (2002) Solli et al. (2007)). Pelagic settling is associated with relatively calm oceanic 
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conditions in order for the particles to settle through the water column, including biogenic and 

terrigenous components (Kennish, 2000).  

Pelagic settling through the water column occur both in glacial and interglacial periods (e.g. 

Droxler and Schlager (1985)). Particles accumulate through the water column, including a high 

ratio of biogenic material (e.g. foraminifera and diatoms) contributing to the abundance of 

biogenic components in seafloor sediments. Open-water conditions, stronger coastal polynyas 

and sea-ice free regions are settings associated with increased biogenic activity (Jones et al., 

1998; Navarrete et al., 2005; Hass et al., 2016). Increased biogenic activity in near surface 

waters will lead to enhanced settling of material through the water column (Honjo et al., 1982). 

Open-water conditions, stronger coastal polynyas and sea-ice free regions are settings 

associated with warmer/interglacial periods (Ishikawa et al., 1996; Arrigo and Van Dijken, 

2003). It is therefore reasonable to assume that pelagic settling occur more frequent in 

warmer/interglacial periods compared to colder/glacial periods.  

Pelagic settling leads to the deposition of pelagic sediments or pelagite. In core PS56/029-1 

pelagic sediments are recognized as unsorted fine-grained sediments, including foraminifera 

and bioturbation. Visual core description and line-scan images show repetitive foraminifera 

bearing zones throughout the core (Fig. 4.2). Element geochemical ratios reveal repetitive 

intervals with higher and lower calcium ratios (Ca/Sum and Ca/Fe) (Fig. 4.10 and 4.11). 

Rothwell and Rack (2006) argue that the calcium content in marine sediments is a good 

indicator to distinguish sediments of glacial/interglacial origin in the Atlantic Ocean. Where 

sediments of interglacial periods have higher carbonate concentrations compared to sediments 

of glacial periods. Additionally, fluctuations in the element geochemical ratios of calcium and 

iron can reveal the relative abundance of biogenic carbonate and terrigenous material, 

respectively (Rothwell and Rack, 2006). Assuming that the same applies for sediments in the 

Southern Ocean. Element geochemical ratios reveal repetitive intervals with higher and lower 

calcium ratios (Ca/Sum and Ca/Fe). The results can be interpreted as changes in biogenic 

carbonate and terrigenous material, as well as carbonate source rock. The Ca/Sum and Ca/Fe 

ratios could derive from carbonate in the source rock that the glaciers erode into, which could 

lead to higher calcium amounts during glacials (Rüther et al., 2017). Alternatively, the high 

Ca/Sum and Ca/Fe can be related to increased foraminifera content in interglacial sediments. 

Where the calcium content is mainly from the calcium carbonate (CaCO3) tied up in the shells 

of the foraminifera. The latest interpretation is more likely for core PS56/029-1, because 
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increased calcium content is associated with intervals of increased foraminifera content (Fig. 

4.14).  

Core PS56/029-1 is a poorly-sorted fine-grained sediment core, including biogenic material. 

This, together with the long distance from the continent (c. 200 km offshore Princess Raghild 

Coast) it can be believed that pelagic settling through the water column are present through 

glacial/interglacial cycles. It is also reasonable to assume that pelagic settling can be one of 

several sedimentary processes operating simultaneously depositing sediments onto the levee, 

due to the polymodal signal in core PS56/029-1 (Fig. 4.4). A polymodal signal indicate that 

different depositional processes occur simultaneously (Hass et al., 2010). The polymodal 

signature in core PS56/029-1 include a unimodal, bimodal and trimodal signal, indicating 

sediments deposited by up to three different sedimentary processes. The unimodal signal occur 

only at nine individual depths (average grain-size 11.3 µm), the bimodal signal occur at 1172 

individual depths (average grain-size 4.9 µm), and the trimodal signal occur at 85 individual 

depths (average grain-size 9.5 µm). It is therefore reasonable to assume that core PS56/029-1 

consists of sediments deposited from several sedimentary processes. Furthermore, it is 

reasonable to believe that pelagic settling could have been one of the sedimentary processes 

that deposited sediments onto the core site. Additionally, the foraminifera bearing zones show 

a bimodal to trimodal signal. Pelagic settling is assumed high in biogenic material and it 

therefore support the interpretation that pelagic settling could have been one of the sedimentary 

processes that deposited sediments onto the core site.   

5.1.3 Turbidity currents at core site PS56/029-1 
Multiple studies on deep-water depositional systems on the glaciated continental margin 

surrounding Antarctica have concluded that turbidite systems are a common component on the 

Antarctic continental rise (e.g. Anderson et al. (1986), Kuvaas and Kristoffersen (1991), Kuvaas 

and Leitchenkov (1992), Rebesco et al. (1996) and Pudsey (2000)). Kuvaas et al. (2004) 

proposes intensified turbidity activity during glacial periods, which is attributed to the 

advancing ice sheet bringing oversteepend and unstable sediments to the shelf edge and upper 

slope. These sediments could move downslope as a turbidity current. Turbiditic activity is 

recognized in the RLS (e.g. Kuvaas et al. (2004), Solli et al. (2007) and Hass et al. (2016)).  

The Coriolis force in Antarctica deflect objects to the left, resulting in oceanic currents and 

winds bending in a westward direction if the moving direction is from south to north (Fig. 5.5). 

This effect is evident in well-developed levee systems that show asymmetry between the levee 
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bank heights. In the Northern Hemisphere the right-hand-side channel levee is higher, while 

the left-hand-side channel levee is higher in the Southern Hemisphere (Cossu et al., 2010). Core 

PS56/029-1 was retrieved on the west side of the channel and turbidity currents deflecting 

westward would deflect towards the core location (Fig. 5.4). Thus, higher sedimentation rates 

are expected on the west side of the channel compared to the east side.  

 

Fig. 5.5: Schematic figure illustrating the effect of the Coriolis force in the Southern and Northern Hemisphere 
(modified after Segers (2014)).  

Turbidity currents in the RLS are reported to be present both in glacial and interglacial periods 

(e.g. Kuvaas et al. (2004) and Hass et al. (2016)). Turbidity currents occur in glacials due to an 

advancing ice-sheet or in interglacials due to higher meltwater discharge from the ice-sheet 

and/or in association with coastal polynyas due to brine formation (e.g. Harris (2000), 

Shanmugam (2000) Kuvaas et al. (2004) and Shanmugam (2006)). Deposition by a turbidity 

current onto the levee occur only if the current is strong and big enough to flood onto the levee, 

as an overbank deposit (Fig. 5.6). Deposition by a turbidity current is called a turbidite. In core 

PS56/029-1 turbidites are recognized as better sorted fine-grained sediments, including a sharp 

lower boundary, occurring with or without lamination, as well as having a sparse or absent 

foraminifera and IRD signal (see Chapter 5.2). Turbidites include sediments of terrestrial origin 

brought to the shelf edge by the advancing ice-sheet. Terrigenous sediments often include 

quartz high in silicon (Si), feldspar high in aluminium (Al) and potassium (K) and mica high in 

potassium, aluminium and silicon. Gneiss, granite, migmatite and gabbro include in the bedrock 

geology in Queen Maud Land, rocks high in Si, K and Si (e.g. Ohta et al. (1990)). It is, therefore, 

reasonable to assume that the geochemical composition of a turbidite include high element 
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ratios of Si/Sum, Al/Sum and K/Sum. High element ratios of Si/Sum, Al/Sum and K/Sum occur 

in association with lithofacies LGL and GLT (Fig. 4.12). However, the high silicon content 

could also be a result of reworked biogenic material since diatom tests are made up of opal, i.e. 

they contain a lot of silicon. 

  

 

Fig. 5.6: Schematic representation of the interaction between alongslope and downslope driven processes 
operating in the RLS (modified after Shanmugam (2000)).  

The turbidites recognized in core PS56/029-1 most likely represent the uppermost part of the 

Bouma sequence Td and Te (see Chapter 2.4.1: Turbidites), indicated by the fine-grained clay 

and silt sediments involved.  

5.1.4 Ice-rafted debris (IRD) 
Ice-rafted debris (IRD) is a common phenomenon in seafloor sediments on continental margins 

surrounding Antarctica (e.g. Keany et al. (1976) Alley and MacAyeal (1994) and Passchier 

(2011)). Both icebergs and sea-ice can transport and release IRD to the seafloor and both are 

present in the RLS (Fig. 2.12) (Gilbert, 1990; Aoki, 2003). However, due to the ice-covered 

coastline in the RLS a scenario where grains could be incorporated into the sea-ice seems 

unlikely. It is therefore more likely that an iceberg deposit the IRD to core site PS56/029-1.  
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IRD is reported to be present in both glacial and interglacial periods (e.g. Keany et al. (1976), 

Lien et al. (1989) and Rebesco et al. (2002)). However, it is reasonable to assume that icebergs 

occur more frequent in warmer/interglacial periods. Higher calving rates can occur when the 

ice streams are established and “pump” out icebergs and during deglaciation, and the drift of 

the icebergs is heavily influenced by the sea-ice cover (Gilbert, 1990; Aoki, 2003). The 

presence of sea-ice could prevent the icebergs from drifting around in the study area. Cofaigh 

et al. (2001) investigated the IRD content in sediment cores from the continental rise west of 

the Antarctic Peninsula and in the northern Weddell and Scotia Seas. Sediment cores from the 

Antarctic Peninsula contain maximum IRD concentrations in interglacials, whereas IRD 

concentrations are low deposits from glacials. However, the high IRD concentration in 

interglacials were suggested to be due to low sedimentation rates and current winnowing, rather 

than increased iceberg rafting. In contrast, sediment cores from the Weddell and Scotia Seas 

include low IRD concentration throughout the cores, where the signal is suggested to be of 

limited regional significance (Cofaigh et al., 2001).  

Core PS56/029-1 include scattered IRD throughout the core. At some intervals the grain-size 

measurements reveal coarser sediments, while other intervals include a larger number of IRD. 

The coarser sediments are detected at depths 1216 cm, 1182 cm and 340 cm (Fig. 4.3), while a 

larger number of IRD is detected at depths 758 cm, 673 cm and 38 cm (Fig. 4.2). In the 

sedimentary record for PS56/029-1 IRD is recognized as unsorted, coarse-grained sediments. 

IRD can occur as a result of the icebergs dumping material over the core site, which can be 

detected through the grain-size measurements. Additionally, IRD can occur as individual 

features detected through X-ray photos, sometimes mixing with the pelagic sediments. 

Deposition of material from icebergs could explain the sudden rise in coarser grains to core site 

detected at depths 1216 cm, 1182 cm and 340 cm, containing 36.3, 5.4 and 27.5 volume 

percentages of sand respectively (Fig. 4.3). The sudden rise in coarser grain-sizes at depth 1216 

cm include an unimodal signal of 65.7 µm. Depth 1182 cm include a trimodal signal, where 

mode 1 is 65.7 µm, mode 2 is 3.1 µm and mode 3 is 7.6 µm. Depth 340 cm include a bimodal 

signal, where mode 1 is 70.4 µm and mode 2 is 4.1 µm. The IRD signal is interpreted to occur 

in mode 1 for all these three individual depths, due to the high grain-sizes in mode 1. The IRD 

is also accompanied by a change in the geochemical composition, due to the new input of 

sediments. IRD at depth 1216 cm shows an increase of Si, Ca and Cr, while S, K, Fe and Cu 

decreases. IRD at depth 1182 cm shows an increase of Si and Ca, while K, Fe, Cu, Zn and Br 

decreases. IRD at depth 340 cm shows an increase of Al, Si, Ca and Cr, while K, Fe, Cu, Zn 
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and Br decreases. The change in geochemistry between 1216 cm, 1182 cm and 340 cm could 

imply different source area, i.e. that the icebergs came from different areas. Intervals containing 

a larger number of IRD at 758 cm, 673 cm and 38 cm could imply increased calving rates from 

the ice streams pumping out icebergs or represent a deglaciation.  

In an overall perspective, the sediments brought to core site PS56/029-1 are deposited by: (1) 

sediment transport from the Princess Ragnhild Glacier System (PRGS) through the channel and 

onto the levee as an overbank deposit, either by turbidity currents or density currents. Occurring 

in glacials due to the advancing ice-sheet or in interglacial due to higher meltwater discharge 

from the ice-sheet and/or in association with polynyas. (2) Bottom currents responsible for 

winnowing the sediments, deposition of contourites or related to deep-water formation, i.e. that 

they are downslope currents. (3) Pelagic settling directly through the water column. (4) 

Deposition by icebergs drifting over the RLS (Fig. 5.5). The sedimentary record reveals often 

a combination of multiple processes. Due to the polymodal signal in core PS56/029-1, it is 

reasonable to believe that these processes have operated simultaneously through 

glacial/interglacial cycles.   

 

Fig. 5.7: Schematic representation showing the sedimentary processes responsible for the sedimentary record at 

core site PS56/029-1. Including the downslope sediment transport from the RAG (1), alongslope processes (2), 

pelagic settling through the water column (3) and the presence of icebergs and sea-ice (4) (modified after Grobe 

and Mackensen (1992) and Klages (2010)).  
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5.2 Interpretation of lithofacies 
In the following sub-chapters are the lithofacies Laminated Grey Layer (LGL), Grey Layer 

Thin (GLT), Massive Lighter Layers (MLL) and Red Brown Layer (RBL) interpreted and 

discussed, and put into context in the glacial/interglacial cycle (Table 4.1).  

5.2.1 Interpretation of LGL 
Main characteristics of LGL are the greyish colour, presence of lamination, a sharp lower 

boundary, reduced foraminifer and absent IRD signal. Interval thicknesses varies between 15 

and 66 cm. Physical properties include average MS values, average grain-sizes around 3 µm 

and sorting values between 2 and 3 µm. Geochemical properties include high element ratios of 

Al/Sum, Si/Sum, K/Sum and Rb/Sum, as well as low element ratios of Ca/Sum, Cu/Sum and 

Ca/Fe. Lithofacies LGL shows a bimodal trend (Table 4.1).  

MS measurements are good indicators of glacial/interglacial cycles and are widely used in 

paleoenvironmental reconstructions (e.g. Verosub et al. (1993), Vanderaveroet et al. (1999) and 

Grutzner et al. (2003)). The basic principle is that high values reflect deposition during glacials 

and low values reflect deposition during interglacials. The enhanced terrigenous delivery from 

the continent to the ocean in glacial periods include terrestrial sediments that are magnetic, 

leading to higher MS. Enhanced terrigenous delivery occurs as a combination of lowered sea 

levels (increases proportion of exposed continent) and the presence of ice (eroding and 

transporting terrigenous sediments towards and into the oceans). Biogenic material (e.g. 

foraminifera and diatoms) has a low magnetic response, leading to reduced MS values. High 

productivity waters with increased biogenic material are associated with warmer/interglacial 

periods, which could raise the biogenic signal in the seafloor sediments, thus, resulting in lower 

MS (e.g. Lucchi et al. (2002)). Colder periods or glacials include reduced solar radiation and a 

more extensive sea-ice cover, conditions that reduce the productivity in the ocean and the 

biogenic input to the sediments. Lithofacies LGL include constant average MS values varying 

from 800 to 1000 *10-8 SI (Table 4.1). These values could represent a time interval when the 

climate was relatively cold, with enhanced terrigenous delivery to the core site due to an 

advancing ice-sheet. It is also reasonable to assume that the input of biogenic material to the 

seafloor sediments was reduced, which could be explained by an extensive sea-ice cover, 

weaker coastal polynyas and lower productivity oceans in colder periods or glacials. The 

relatively constant MS values together with bed thicknesses up to 66 cm can imply a longer 

lasting and stable period in time. Unfortunately, this is an undated sediment core and this signal 

could just reflect high sedimentation rates during this time interval. Constant physical 
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properties (e.g. p-wave velocity, wet-bulk density and acoustic impedance) lead to the 

impression that the sediment delivery to core site PS56/029-1 was relatively stable. Lithofacies 

LGL consists of unsorted fine-grained sediments with average sorting values between 2 and 3 

µm and grain-sizes between 3 and 5 µm (very fine silt to fine silt), respectively. These unsorted 

fine-grained sediments where therefore not deposited in a high-energy environment. X-ray 

photos, supplemented by the grain-size distribution for LGL reveal lamination (Fig. 4.14 and 

Fig. 4.15), while line-scan images reveal a sharp lower boundary (Fig. 4.18). Based on the 

mentioned properties of LGL above is it likely that these sediments were deposited by a 

turbidity current as a turbidite (Fig. 5.5). Due to the fine-grained sediments involved the 

turbidite sequence most likely represent Td or Te in the Bouma sequence (see Chapter 2.4). 

High element geochemical ratios of Al/Sum, Si/Sum and K/Sum support the interpretation that 

the sediments within these layers are of terrigenous origin. Rothwell and Rack (2006) suggest 

that turbidites are richer in Fe and poorer in Ca compared to pelagic interbeds. Hence, the low 

geochemical ratio of Ca/Fe detected in LGL could further support the interpretation that the 

sediments are deposited by a turbidity current.  

Polymodality is indicative of different depositional processes that occur simultaneously (Hass 

et al., 2010). Used to reconstruct conditions and energy of depositional environment (e.g. 

Beierle et al. (2002) and Sun et al. (2002)). The polymodal signature of lithofacies LGL is 

bimodal (Fig. 4.21), indicating two sedimentary processes responsible for depositing the 

sediments. The mode (s) signal presented in figure 4.21 indicate two pronounced pointed higher 

peaks and two lower peaks. The pointed higher peaks including grain-sizes up to 5.5 µm, while 

the lower peaks include grain-sizes up to 3 µm. The higher peaks are most likely the signal of 

a turbidite, while the lower peaks could be the signal of suspension settling through the water 

column. Lithofacies LGL include sortable silt (Fig. 4.16), which indicate sediments deposited 

by bottom currents. However, it might seem more likely that the polymodal signature is the 

product of a turbidity current and suspension settling.  

Lithofacies LGL is suggested to represent a period in time that turned progressively colder, 

with turbidity currents present both in glacial summer, autumn, winter and spring, whereas the 

reduced foraminifera signal was deposited in glacial summer (Fig. 5.8). Reduced solar radiation 

would lead to lower productivity oceans, reducing the biogenic signal in the seafloor sediments. 

The advancing ice-sheet would erode and deliver unconsolidated sediment prone to failure to 

the shelf edge, which could move downslope as a turbidity current in the channel next to core 

site PS56/029-1. The material in suspension from the turbidity current could result in overbank 
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deposits on the levee if the current was strong and big enough (Fig. 5.6). The bimodal 

composition is most likely the result of deposition from suspension settling, but the bottom 

currents cannot be excluded due to the presence of sortable silt. Sparse IRD and foraminifera 

signal through lithofacies LGL could be due to a more extensive sea-ice cover in the RLS.  

 

Fig. 5.8: Schematic figure showing the glacial summer and autumn, including sparse IRD and biogenic material 

(modified after Hass et al. (2016)).  

5.2.2 Interpretation of GLT  
Main characteristics of lithofacies GLT are the olive grey to dark grey colour and the presence 

of a sharp lower boundary. Physical properties include high MS values, p-wave velocities and 

wet-bulk densities, with average grain-sizes between 2 and 5 µm and sorting values between 

2.5 and 5µm. Interval thicknesses varies between 3 and 15 cm. Geochemical properties include 

high element ratios of Al/Sum and Si/Sum, while low element ratios of Cu/Sum, Fe/Sum, 

Zn/Sum and Rb/Sum. Lithofacies GLT shows a bimodal to trimodal signal (Table 4.1).   

Lithofacies GLT shows a clear abrupt increase of the measured physical properties (e.g. p-wave 

velocity, density and MS). The MS varies between 865 and 1916 *10-8 SI, which are the highest 

measured values throughout the core. Values that can indicate material of terrestrial origin, 

where the occurrences of terrestrial sediments reflects enhanced glacial activity (compared with 

Robinson et al. (1995) Jessen et al. (2010)). The abrupt increase in p-wave velocity and wet-

bulk density correlate with coarser grain sizes, including grain-sizes up to 5 µm. Gunn and Best 

(1998) described a characteristic p-wave pattern observed in turbidites, with high velocities at 

the base and decreasingly lower velocities towards the end of a turbidite sequence. Turbidity 
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currents are rapid short-lived events that influence the area with more energy, interrupting the 

“normal” sedimentation, including higher grain-sizes at the base due to higher velocities in the 

beginning of the current, as the velocity decreases the sediments becomes finer. Physical 

properties can therefore reveal turbidites in the sedimentary record. The abrupt increase of p-

wave velocity and wet-bulk density, together with coarser grain-sizes  could reflect one strong 

turbidite current event. The sorting signal include values between 2.5 and 5 µm, which indicate 

poorly to very poorly sorted sediments. However, GLT include the highest measured sorting 

value throughout the core. Relatively thin bed thicknesses and the presence of a sharp lower 

boundary could indicate a rapid, short-lived turbidity current interrupting the “normal” 

sedimentation. The ice-sheet advancing towards the shelf-edge in RLS could be responsible for 

increased turbidity activity, depositing sediments onto the levee as overbank deposits. The 

geochemical composition could reflect sediments of terrigenous origin, high in Al and Si. The 

geochemical composition of GLT differ from the geochemical composition of LGL, which 

could imply a shift in the sediment source between these two lithofacies. This change might 

partly be explained by the changing ice-sheet position, eroding into different bedrock towards 

the shelf edge.  

The bimodal signal resembles the bimodal signal for lithofacies LGL. The bimodal signal 

include two sharp higher peaks with grain-sizes up 5.3 µm (Fig. 4.22) interpreted to be the work 

of a turbidity current depositing sediment onto the levee as an overbank deposit. The bimodal 

signal is the same through all intervals of GLT. The sortable silt (10-63 µm) fraction increases 

within these intervals (Fig. 4.6), implying that these sediments could have been deposited by 

bottom currents.  

Lithofacies GLT in core PS56/029-1 is interpreted to include sediments deposited in glacial 

periods. Glacials represents cold periods in time where the ice-sheet was responsible for 

bringing unconsolidated sediments towards the shelf edge prone to failure downslope under the 

influence of gravity (Fig. 5.8). The head and main body of the turbidity current was located in 

the channel and the sediments in suspension would be deposited on the levee as overbank 

deposit. The deposited sediments include most likely the Td and Te of the Bouma sequence due 

to the fine-grained sediments involved. The sortable silt signal implies the presence of bottom 

currents at these intervals. 
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5.2.3 Interpretation of MLL 
Lithofacies MLL consists of massive bioturbated olive grey coloured sediments with IRD and 

foraminifera. The lower boundary of MLL is highly bioturbated, occasionally including a sharp 

lower boundary. Interval thicknesses varies between 10 and 30 cm. Physical properties include 

low p-wave velocity, wet-bulk density and MS values, grain-sizes between 2 and 5 µm and 

sorting values between 2 and 4.2 µm. Geochemical properties include high element ratios of 

Sr/Sum, Ca/Sum and Ca/Fe, while low element ratios of Al/Sum, Si/Sum, K/Sum, Fe/Sum and 

Rb/Sum. Lithofacies MLL shows a unimodal to trimodal signal (Table 4.1).   

Measured physical properties of MLL differ greatly from the physical properties detected for 

lithofacies LGL and GLT. Low MS values (700-1000 *10-8 SI) detected in MLL occur after 

lithofacies LGL and GLT interpreted to be deposited during glacial periods. It is therefore 

reasonable to assume that MLL represent another time interval in the glacial/interglacial cycle. 

As discussed above low MS values indicate sediments with increased biogenic material and are 

attributed to interglacial sediments. Interglacial periods include a retreating ice-sheet, a less 

extensive sea-ice cover and stronger coastal polynyas. Increased solar radiation in 

warmer/interglacial periods would additionally contribute to oceans of increased productivity. 

MLL consists of poorly sorted fine-grained sediments. The presence of foraminifera (Fig. 4.12) 

and bioturbation (Fig. 4.19) within lithofacies MLL indicate oceans of higher productivity. 

Foraminiferal tests consisting of calcium carbonate contribute to the increased calcium content 

in seafloor sediments. The higher element geochemical ratio of Ca/Sum detected in some of the 

MLL can lead to the interpretation that these time intervals contained a higher portion of 

foraminifera compared to the rest of the core. The presence of IRD within some of these layers 

can be evidence for the retreating ice-sheet, which releases icebergs that drift of the core 

location. The strongly bioturbated lower boundaries of this lithofacies provide evidence that 

organisms have been active, while the sharp lower boundaries indicate the sudden deposition 

from a faster moving current. During interglacials, turbidity activity is contributed to higher 

melt-water discharge from the ice-sheet and/or in association with coastal polynyas. This will 

be explained in more detail in Chapter 5.3 (p. 114).  

The unimodal to trimodal signal reflects the different sedimentary processes. From figure 4.22 

the mode signal between 655 cm and 645 cm indicate two higher pointed peaks and two lower 

flatter peaks. The polymodal signature resemble the polymodal signature in LGL (Fig. 4.21) 

interpreted as the signal of a turbidite. The higher peaks include grain-sizes up to 6 µm for the 

MLL, which are slightly coarser than the higher peaks detected at LGL. Based on the mode 
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signal for MLL it is hard to distinguish the sedimentary processes responsible for depositing 

the sediments. Since the polymodal signature of LGL is interpreted to be the result of a turbidity 

current and the polymodal signatures of LGL and RBL resembles each other, it could imply 

that RBL is also deposited by a turbidity current.  This leads to the interpretation that turbidites 

are present during interglacial cycles, in addition to glacial cycles (Fig. 5.8 and Fig. 5.9). The 

second signal consists of finer grain-sizes up to 3 µm and could be the attributed to suspension 

settling or bottom. However, some of MLL intervals include sortable silt, while in other interval 

the signal is almost absent. Sortable silt indicate bottom currents and the changing presence of 

sortable silt within MLL could imply that some of these intervals are deposited by bottom 

currents. When the sortable silt signal is reduced it could imply weaker bottom currents. Based 

on the polymodal signature resembles the layers suggested to deposited by a turbidity current 

it seems more likely that the second signal could the sign of suspension settling. The latest 

interpretation seem more likely for the MML layers that include a sharp lower boundary. 

Deposition of turbidites might interrupt the normal sedimentation of the area during 

warmer/interglacial periods due to enhanced brine formation. It is fair to assume that enhanced 

brine formation occur in interglacial autumns attributed to stronger coastal polynyas and a more 

extensive sea-ice cover compared to interglacial summers with less or absent sea-ice cover. 

Interglacial summers would likely include settling of biogenic material through the water 

column.          

Lithofacies MML in core PS56/029-1 is interpreted to include sediments deposited in 

interglacial periods. Interglacial periods are characterized by a retreating ice-sheet with less 

extensive sea-ice cover and stronger coastal polynyas with increased brine formation (Fig. 5.8). 

The strength of the bottom currents were most likely stronger compared to LGL and GLT 

interpreted to be deposited during glacial periods. Enhanced turbidity currents in interglacial 

autumn were most likely due to stronger costal polynyas, because stronger coastal polynyas 

include increased brine formation. The biogenic settling trough the water column was most 

likely more present in interglacial summers with little or absent sea-ice. The high foraminifera 

signal is most likely due to high productivity oceans.   
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Fig. 5.8: Schematic figure showing the interglacial summer and autumn, including IRD, biogenic material, turbidity 
currents and brine formation (modified after Hass et al. (2016)).  

5.2.4 Interpretation of RBL 
The main characteristics of lithofacies RBL are dark greyish brown colour, occurrences of 

bioturbation, IRD and the presence of foraminifera. Interval thicknesses varies between 10 and 

40 cm. RBL has grain-sizes between 2 and 7 µm, and sorting values between 2 and 4.2 µm. 

Geochemical properties include high element ratios of S/Sum, Cu/Sum, Ca/Sum and Ca/Fe, 

while low element ratios of Rb/Sum, Al/Sum, K/sum and Fe/Sum. Lithofacies RBL includes a 

bimodal to trimodal signal.     

Measured physical properties of RBL reveal low p-wave velocity, wet-bulk density and MS. 

Physical properties are similar to MLL. Low MS values (500-900 *10-8 SI) detected in RBL 

indicate sediments of interglacial periods, as discussed above (see Chapter 5.3.1). RBL occurs 

in the core top, thus, reflecting present environmental conditions. Increased marine biologic 

productivity waters, a reduced sea-ice cover, a stable or retreating ice-sheet and stronger coastal 

polynyas are conditions associated with warmer periods. The lowest MS values throughout the 

core occur at depths around 400 cm. It could be due to higher productivity in the ocean. The 

presence of foraminifera (Fig. 4.2) and bioturbation (Fig. 4.20) contribute to the interpretation 

of increased marine productivity during these time intervals. Enhanced marine productivity is 

also, supported by high Ca/Sum ratios (except at depth around 420 cm) (Fig. 4.14). Warmer 

conditions might also be indicated by the occurrence of IRD in the sediment, suggesting 
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icebergs were calving from a retreating ice sheet. The grain-size distribution of RBL is slightly 

coarser in comparison to the grains-size distribution of LGL, GLT and MLL. The increased 5 

point running silt fraction supports that RBL consists of slightly coarser sediment grain-sizes 

(Fig. 4.8). Coarser grain-sizes in warmer periods could be due to intensification of the Weddell 

Gyre, stronger bottom currents and/or increased meltwater in the RLS (Chapter 5.3). The grain-

sizes involved in these intervals include low geochemical ratios of Al/Sum and K/Sum (Fig. 

4.12). The elements Al and K are suggested to be of terrestrial origin (see Chapter 5.1.1), and 

the low ratios of Al/Sum and K/Sum could possibly indicate a further inland position of the ice-

sheet, or alternatively, that there was higher biological productivity “diluting” the terrestrial 

signal. In general the geochemical ratio of Si/Sum is low, except at 420 cm, where relatively 

high Si/Sum values are observed (Fig. 4.8). This signal could be explained by an increased 

abundance of diatoms (siliceous algae). The same interval include sediments with reduced 

calcium content (Fig. 4.14). As calcium content in core PS56/029-1 is attributed to arrive 

mainly from foraminifera, this time interval could represent an increase of diatoms relative to 

foraminifera.      

Based on the results of the sortable silt fraction, which increases in intervals of RBL (Fig. 4.6), 

it is likely to believe that stronger bottom currents were present at depths between 1040-1030 

cm, 953-937 cm, 421-380 cm, 201-190 cm, 95-72 cm, 32-21 cm and 5-0 cm. Bottom currents 

are responsible for depositing contourites or to winnowing of the sediments. 

Warmer/interglacial periods include stronger bottom currents compared to colder/glacial 

periods (see Chapter: 5.1.2), it is therefore reasonable to assume that warmer/interglacial 

periods include sediments deposited by bottom currents. Lithofacies RBL is suggested to 

include interglacial sediments, hence it is likely to assume that grain-sizes deposited by bottom 

currents are coarser compared to sediments deposited by bottom currents in glacials due to 

stronger bottom currents in interglacial periods. The detected increase in sortable silt in 

lithofacies RBL could therefore be due to enhanced bottom currents in warmer/interglacial 

periods. The increase in sortable silt in RBL is reflected by the coarser grain-size distribution 

for intervals interpreted as RBL.  

The bimodal and trimodal signal detected in RBL indicate two or three sedimentary processes 

at the time of deposition (Fig. 4.24). The bimodal signal occur more frequently compared to the 

trimodal signal in RBL. The mode(s) signal observed at depths between 1040-1030 cm shows 

a more chaotic signature including finer grain-sizes compared to the mode(s) signal at depths 

between 95-72 cm. Coarser grain-sizes indicate higher velocity within the sedimentary process 
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depositing the sediments, hence the interval between 95-72 cm include sedimentary processes 

with higher velocities compared to the interval between 1040-1030 cm. The mode(s) signal at 

depths between 95-72 cm shows two higher peaks including coarser grain-sizes up to 6 µm, 

while the mode(s) signal at depths between 1040-1050 cm is more chaotic with grain-sizes up 

to 4.3 µm. The detectable change in the polymodal signature of these two depths could imply 

sediments deposited by different sedimentary processes. The polymodal signature at depths 

between 1040-1030 cm could be explained by different processes. It could be the signal of 

bottom currents picking up grains from a current located in the channel next to core site 

PS56/029-1 (Fig. 5.6), or, alternatively be the signal of winnowing removing the fine-grained 

material or keep it longer in suspension leading to the fine-grained material to be transported 

away. The latest interpretation is more likely due to the absent of a sharp lower boundary. The 

flatter lower peaks could be attributed to pelagic settling. Due to the detectable increase in 

sortable silt at 1040-1030 cm this interpretation seems likely. The polymodal signature detected 

at depths between 95-72 cm include two pointed higher peaks that resembles the signature 

interpreted to be the work of turbidity currents in lithofacies LGL and GLT. However, no sharp 

lower boundary is detected at 95 cm, which is expected since a turbidity current is a fast moving 

current. The coarser grain-sizes between 95-72 cm is therefore suggested to be due to 

winnowing, which removes the finer material or keep the fine-grained material longer in 

suspension, either way leaving behind coarser grain-sizes.  

5.3 Coarser sediments in warmer/interglacial periods 
The coarsening trend seen in lithofacies MLL and RBL associated with warmer/interglacial 

periods can be partly explained based on three mechanisms operating in the RLS. These 

mechanisms are 1) the intensity variations of the Weddell Gyre, 2) stronger coastal polynyas as 

a site for intensified bottom-water production and 3) turbidity currents triggered by debris-rich 

meltwater. 

5.3.1 Intensity variations of the Weddell Gyre 
The Weddell Gyre originate in the Weddell Sea sector and is a major site for dense and cold 

bottom water production in the Southern Ocean. Deep water formation in the Southern Ocean 

is an important contributor to the global thermohaline circulation system (e.g. Orsi et al. 

(1995)). The RLS is affected by the easternmost part of the Weddell Gyre (Fig. 5.3) (Schröder 

and Fahrbach, 1999).  
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The intensity of the Weddell Gyre is reported to increase in interglacial periods compared to 

glacial periods (Pudsey, 2000; Kuhn and Diekmann, 2002). An intensification of the rotation 

in the Weddell Gyre will affect the water masses near the seafloor resulting in an intensification 

of the bottom currents operating at these depths. Stronger bottom currents will lead to 

winnowing of the fine-grained sediments and their re-deposition as contourites. The sediments 

involved originate either from turbiditic activity on the continental shelf or upper continental 

slope, or include biogenic components settling through the water column (Maldonado et al., 

2005). The presence of a presumable clockwise sub-gyre in the RLS between Astrid and 

Gunnerus Ridge could further lead to enhanced bottom current activity on the lower continental 

slope and rise in interglacial periods (Kuvaas et al., 2004). An amplified Weddell Gyre could 

therefore explain the increase in sortable silt and the slightly coarser grain-sizes detected for 

lithofacies RBL and MLL.  

In the sedimentary record it is challenging to distinguish between alongslope winnowed 

contouritic material and those sediments deposited by downslope turbiditic activity. 

Interpretations of physical properties, grain-size distribution, and sortable silt (10-63 µm) 

fraction suggests contouritic material is deposited from alongslope processes at core site 

PS56/029-1. However, the sediments consist of the same grain-sizes as those sediments 

originating from a turbidite, containing grain-sizes also between 1.5 and 31.5 µm. Throughout 

the core, sortable silt is present and it indicates that grains larger than 10 µm carried in 

suspension is picked up from the turbidity current and winnowed away with bottom currents 

before being deposited as a contourite (Fig. 5.6). An amplified Weddell Gyre could therefore 

partly explain the coarsening trend seen in lithofacies MML and RBL due to the raised ability 

to pick up coarser particles from the turbidity current and re-deposit them on the levee.  

5.3.2 Coastal polynyas: a site for intensified bottom-water production 
Coastal polynyas located around the coast of Antarctica, especially in the RLS, is a source for 

bottom-water production (National Snow & Ice Data Center, 2018b). Enhanced katabatic winds 

in interglacial periods results in stronger coastal polynyas compared to glacial periods 

(Ishikawa et al., 1996). Stronger coastal polynyas would intensify formation of cold and dense-

water through brine formation. Increased sea-ice formation in interglacial autumns compared 

to interglacial summers, would likely increase brine formation, and the formation of cold and 

dense-water (Fig. 5.8 and Fig. 5.9) (e.g. Gordon and Comiso (1988)). Hence, the continental 

margin in front of the coastal polynya could work as an active pathway for the bottom waters 

on their way to the Enderby Abbysal Plain. Moreover, the cold and dense-water could influence 
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the sediments at the continental slope making them unstable, which could result in downward 

moving turbidity currents  (Harris, 2000; Caburlotto et al., 2010).  

 

Fig. 5.9: Schematic figure of coastal polynyas, including katabatic winds displayed with a dark blue arrow, denser 

water masses displayed by lighter blue arrows and core location is displayed by a black circle (modified after Hass 

et al unpublished) 

The sea-ice cover in interglacial periods in Antarctica includes sea-ice free conditions in austral 

summer, while a more extensive sea-ice cover exists during austral autumns (National Snow & 

Ice Data Center, 2018a). Sea-ice during interglacial periods is both more brittle and thinner 

compared to glacial sea-ice. The extensive sea-ice cover in glacial periods, in addition to 

reduced katabatic winds would prevent coastal polynyas to form. In interglacial periods would 

enhanced katabatic winds result in coastal polynyas. The interglacial summer include sea-ice 

free conditions, without sea-ice formation, there would not be coastal polynyas or brine 

formation. The interglacial autumn would include increased sea-ice formation, and coastal 

polynyas would therefore be a site for dense water masses. These ice-free areas stay in constant 

contact with the cold overlying atmosphere, where exchange of heat result in high evaporation 

rates, sea-ice production and brine formation. The raised salt content in the water results in the 

downward movement of colder and denser waters resulting in High Saline Shelf Waters 

(HSSW) (Foldvik et al., 2004). Due to the close proximity of the coast and coastal polynyas in 

the RLS these denser water masses could reach the continental slope, possibly, triggering 
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turbidity currents and/or erode channels on their way to the Enderby Abyssal Plain (e.g. 

Forwick et al. (2015) and references therein). The resulting sediment deposited on the levees 

could contain coarser particles, from suspension of the fine-grained component of the turbidity 

currents.  

Open water conditions favour increased biologic marine productivity rates, which results in 

increased biogenic content of seafloor sediments. Coastal polynyas are ice-free regions 

associated with high biogenic production (National Snow & Ice Data Center, 2018b). 

Lithofacies RBL and MLL are characterized by high element geochemical ratios of Ca/Sum 

and Ca/Fe, which could derive from increased biogenic production rates associated with coastal 

polynyas.  

5.3.3 Turbidity currents triggered by debris-rich meltwater  
The third process that could be responsible for slightly coarser sediments observed in lithofacies 

MLL and RBL is the discharge of debris-rich meltwater plumes originating from subglacial 

meltwater tunnels below the Princess Ragnhild Glacier System draining into the RLS (Fig. 

5.10). These debris-rich meltwaters could be responsible for eroding the channels and/or 

triggered turbidity currents, increasing the grain-sizes deposited on the levee at the core site. 

The Princess Ragnhild Glacier System  is constantly bringing new sediments to the continental 

shelf and slope, and thus, coarse-grained glacial detritus is deposited close to the outlets of these 

subglacial tunnels (Hesse et al., 1999). These sediments can become unstable and move 

downslope as a slump and/or a slide, and are prominent triggers for turbidity currents 

(Shanmugam, 2006). During interglacial periods were the meltwater discharge is enhanced, 

turbidity currents triggered by debris-rich meltwater could be intensified. Therefore, the 

increased grain-size observed in interglacial periods could partly be a result of increased debris-

rich meltwater through the Princess Ragnhild Glacier System.  
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Fig. 5.10: Schematic representation of debris-rich meltwater plumes originating from the Princess Ragnhild Glacier 

System in the RLS as a trigger for channel erosion and levee accumulation (modified after Hesse et al. (1999)).  

5.4 Sediments in colder/glacial periods  
Sediments originating from colder/glacial periods are different from sediments originating from 

warmer/interglacial periods. For core PS56/029-1 lithofacies LGL and GLT are interpreted to 

include sediments deposited during glacial periods. Sediments in colder/glacial periods 

generally contain less biogenic material, bioturbation and IRD, as well as lower Ca/Sum and 

Ca/Fe ratios, in comparison to sediments deposited during warmer/interglacial periods. In 

contrast, sediment deposited during glacial periods includes increased Si/Sum, Al/Sum and 

K/Sum ratios, sharp lower boundaries and lamination.  

The processes responsible for depositing sediments of glacial origin differ from the processes 

responsible for depositing sediments of interglacial origin (e.g. Kuvaas and Leitchenkov 

(1992), Rebesco et al. (2002) and Kuvaas et al. (2004)). Multiple ice streams drain into the RLS 

between the Astrid Ridge and Gunnerus Ridge (Rignot et al., 2011). These ice-streams reaches 

the coast and enters into the RLS. The Princess Ragnhild Glacier System constantly drain 

meltwater into the RLS. Because of these constantly flowing ice-streams in the RLS the 

continental shelf break is constantly overrun (Fig. 5.2). The seafloor morphology of the RLS 

include a very short or absent continental shelf, where the shelf-ice edge is located over water 

depths of 1000 m (Thiede and Oerter, 2002). The continental slope is steep, reaches down to c. 

5000 m water depth where the RLS connects to the Enderby Abyssal Plain.  Sediments brought 

to the shelf-ice edge would therefore quickly demobilize and move downslope, which could 
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lead to enhanced turbidity activity. This would further lead to enhanced turbidity activity in the 

channel next to core site PS56/029-1. Consequently, resulting in overbank deposits on the levee 

if the current was strong and big enough to flood the levee.  

Turbidity currents are believed to be more frequent and active during glacials and enhanced 

towards glacial maxima (Kuvaas et al., 2004). More frequent and active turbidity currents in 

colder/glacial periods could however be smaller than turbidity currents in warmer/interglacial 

periods. Smaller turbidity currents would result in finer particles deposited onto the levee, due 

to finer particles in the turbidity current. The result would be finer particles deposited onto the 

levee during colder/glacial periods compared to warmer/interglacial periods. During 

colder/glacial periods the activity regarding turbidity flows could have been higher compared 

to warmer/interglacial periods. Turbidity currents in colder/glacial periods could occur so often 

that it was not possible to accumulate large volumes of sediment that could fail. Therefore, the 

turbidity currents were relatively small and they could not deposit coarser grains on the levee. 

It can be believed that this occurred at core site PS56/029-1 due to the slightly coarser 

interglacial sediments.     

Lithofacies LGL and GLT interpreted as sediments deposited during glacial periods that 

consists mostly of turbidites interpreted to be the Td and Te units of the Bouma sequence are 

likely from weaker or smaller turbidity currents. The reason for this are explained and discussed 

below: 

5.4.1 A weakened Weddell Gyre 
The Weddell Gyre has been less active during glacial times and more active during interglacial 

periods (Schröder and Fahrbach, 1999; Pudsey, 2000; Kuhn and Diekmann, 2002). The 

Weddell Gyre is powered by vertical fluxes of heat and moisture in association with a changing 

sea-ice cover in the Weddell Sea Sector (Schröder and Fahrbach, 1999). With a more extensive 

sea-ice cover during cold periods, the exchange between ocean water and the cold atmosphere 

will be lowered, possibly reducing the intensity of the Weddell Gyre, and consequently maybe 

slowing the formation of AABW in the Weddell Sea Sector. A less active Weddell Gyre in the 

RLS during colder periods with extensive sea-ice cover would have been imprinted on the 

sediments at the core site. A less active Weddell Gyre will likely be observed as finer particles 

at the core site.  
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5.4.2 Weaker coastal polynyas 
Coastal polynyas located in the RLS as mentioned above are reported to be more extensive 

during interglacials. If the coastal polynyas were smaller it could prevent brine formation, 

preventing high salinity waters to flow down the continental slope and rise. If the brine 

formation was prevented it would not trigger turbidity currents to move down the channel next 

to core site PS56/029-1. Deposition onto the levee as a result of denser water masses created in 

association with coastal polynyas would be absent.   

5.5 Summary of lithostratigraphy 
It is suggested that core PS56/029-1 includes sediments deposited during glacial and 

interglacial periods. The polymodal signature is interpreted to reflect mixed contouritic, pelagic 

and turbiditic influence, as well as occasionally IRD. The alternating repetitive intervals of 

lithofacies distinguished throughout the core are believed to reflect changing depositional 

environments in the RLS, accumulated in lighter brownish and greyish coloured intervals.  

The lighter brownish intervals make up lithofacies MML and RBL, suggested to be deposited 

during interglacial periods. Sediments deposited during interglacial periode include increased 

IRD content, occurrences of foraminifera and bioturbation, occasionally a sharp lower 

boundary, low MS and slightly coarser grain-sizes. The geochemical composition include in 

general high ratios of Ca/Sum and Ca/Fe, and low ratios of Al/Sum and K/Sum. The slightly 

coarser sediments are suggested to be the result of enhanced contouritic and turbiditic activity. 

The stable or retreating ice-sheet, larger coastal polynyas and a less extensive sea-ice cover are 

suggested as the controlling factors. Turbidity currents in interglacial periods are likely 

triggered by denser water masses created in coastal polynyas or a result of increased debris-rich 

meltwater from the Princess Ragnhild Glacier System. Stronger contour currents and an 

increased strength of the Weddell Gyre in interglacial periods result in winnowing or deposition 

of slightly coarser contourites compared to contourites deposited during glacials. It is suggested 

that the finer fraction in suspension is carried away with bottom-currents, thus leaving behind 

coarser sediments at the core site.  

The greyish intervals make up lithofacies LGL and GLT, suggested to be deposited during 

glacial periods. Sediments deposited during glacial periods include sparse IRD, reduced 

foraminifera content, a sharp lower boundary, lamination, average to high MS and slightly finer 

grain-sizes. The geochemical composition include high ratios of Al/Sum, Si/Sum, K/Sum and 

Rb/Sum, and low ratios of Ca/Sum and Cu/Sum. The slightly finer sediments are suggested to 
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be the result mainly of turbiditic activity, with reduced contouritic activity. The advancing ice-

sheet would bring huge amounts of sediments towards the shelf edge, where it would 

demobilize and move downslope, resulting in turbidity currents. More frequent turbidity 

currents in glacial periods are suggested, but the turbidity currents were likely smaller and 

weaker resulting in finer particles deposited onto the levee. Weaker bottom currents in glacial 

periods would reduce the currents ability to carry the finer fraction in suspension and, thus, 

result in finer sediments at the core site. 

The repetitive alternating layers observed reveal that the depositional environment in RLS 

changed through glacial/interglacial cycles and sediment deposition occurred mainly from 

turbiditic and contouritic activity. The strong turbiditic signal in core PS56/029-1 suggests that 

turbidity currents occurred repeatedly. However, grain-size measurements suggest stronger and 

bigger turbidity currents in interglacials and weaker and smaller turbidity currents in glacials. 

Where turbidity currents in glacials occurred more repeatedly compared to turbidity currents in 

interglacials. More repeatedly occurring turbidity currents in glacials could have prevented 

large volumes of sediments to build-up on the shelf edge, resulting in weaker and smaller 

turbidity currents that would have deposited finer sediments onto the levee compared to 

stronger and bigger turbidity currents. The turbidity currents in interglacials were likely 

stronger and bigger, but occurred less frequently, resulting in coarser grain-sizes deposited onto 

the levee. Due to the strong turbidity signal throughout the core it is reasonable to believe that 

this was the dominant contributor to deposit sediments at core site PS56/029-1. The contouritic 

signal varies throughout the core and reflect bottom currents of varying strength. Bottom 

currents in interglacials are believed to be stronger compared to bottom currents in glacials. 

Stronger bottom currents at core site PS56/029-1 are believed to result in coarser sediments due 

to the currents ability to carry the fine fraction in suspension away from the core site. Pelagic 

sediments are interpreted to occur more frequent in interglacials compared to glacials. The 

absent foraminifera signal between 740 cm to 420 cm could reflect deteriorated environmental 

conditions where the living conditions were not that good, or alternatively reflect dissolution 

of the calcium composing the foraminifera. The scattered IRD signal implies that icebergs drift 

over the RLS, and increased IRD concentration in interglacial sediments implies that icebergs 

were more present in interglacials compared to glacials. Higher calving rates in interglacials 

are most likely due to a retreating ice-sheet.  
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5.6 Marine isotope stages (MIS) 
Marine isotope stages (MIS) are alternating warmer and colder periods through Earths 

paleoclimate, widely used to create a global stratigraphic framework for marine sediment 

(Shackleton et al., 2003). By using the δ18O record, which reflect the oxygen isotopic 

composition of the global ocean, it is possible to distinguish sediments deposited in either 

glacial or interglacial periods (Shackleton, 1967). Sediments deposited in glacial periods have 

a high content of 18O and include even MIS numbers (e.g. 2, 4, 6…). Sediments deposited in 

interglacial periods have a low content of 18O and include odd MIS number (e.g. 1, 3, 5…) 

(Bradley, 2014).  

By using the MS for core PS56/029-1 number of MIS can be interpreted. High MS values 

reflect sediments deposited in glacials, while low MS values reflect sediments deposited in 

interglacial periods (see Chapter 5.2). It is suggested that core PS56/029-1 consists of 39 MIS 

(Fig. 5.11). 20 glacial periods and 19 interglacial periods.   
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Fig. 5.11: MIS stages for core PS56/029-1.  
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6 Conclusion   

The main objectives of this thesis were to describe sedimentary processes and dynamics under 

pelagic, turbiditic and contouritic influences, and to possibly reconstruct climate-controlled 

environmental change in the RLS through the past glacial/interglacial cycles. To address these 

objectives, multi-proxy analysis of a 12.67 m long gravity core retrieved on a levee within a 

large channel system in the RLS, Antarctica, were performed. The analysed proxies include 

physical and geochemical properties, as well as sedimentological parameters. 

The main conclusions of this study are: 

 Core PS56/029-1 reveals alternating repetitive intervals of poorly sorted and fine-

grained sediment accumulated in lighter brownish and greyish coloured intervals. The 

lighter brownish intervals are characterized by increased IRD content, bioturbation and 

foraminifera. They are suggested to be deposited during interglacial periods. Sparse 

IRD, reduced foraminifer content, a sharp lower boundary and lamination characterize 

the greyish coloured intervals. These intervals are interpreted to be deposited during 

glacial periods. Physical and geochemical properties observed in the lighter brownish 

and greyish coloured layers correspond as well to the observed colour changes. Low 

MS and slightly coarser grain-sizes, as well as high ratios of Ca/Sum and Ca/Fe, and 

low ratios of Al/Sum and K/Sum correspond to the lighter brownish coloured intervals. 

Increased MS and finer grain-sizes, as well as high ratios of Al/Sum and Si/Sum, and 

low ratio of Cu/Sum correspond to the greyish coloured intervals.  

 The deposits have a polymodal signature which is interpreted to be the result of pelagic, 

turbiditic, and contouritic activity, with occasional influence of icebergs. 

 Four lithofacies are defined in core PS56/029-1 based on colour, physical properties, 

geochemical composition and grain-sizes. Facies LGL is characterized by the greyish 

colour, presence of lamination, a sharp lower boundary, reduced foraminifer and absent 

IRD signal, average MS and grain-sizes of 3 µm, as well as high ratios of Al/Sum, 

Si/Sum and K/Sum, and low ratios of Ca/Sum, Cu/Sum and Ca/Fe. It is interpreted to 

reflect deposition mainly from turbidity currents. Facies GLT is characterized by 

greyish colour, sharp lower boundary, high MS, p-wave velocity and wet-bulk density, 

and grain-sizes between 2 and 5 µm, as well as high ratios of Al/Sum and Si/Sum, and 

low ratios of Cu/Sum, Fe/Sum, Zn/Sum and Rb/Sum. It is interpreted to reflect 

deposition of turbidity currents and contour currents. Facies MML is characterized by 



 

Page 125 

the olive greyish colour, bioturbation, IRD and foraminifera, occasionally including a 

sharp lower boundary, low MS, p-wave velocity and wet-bulk density, and grain-sizes 

between  2 and 5 µm, as well as high ratios of Sr/Sum, Ca/Sum and Ca/Fe, and low 

ratios of Al/Sum, Si/Sum, K/Sum, Fe/Sum and Rb/Sum. Interpreted to reflect the 

deposition from turbidity currents, contour currents and pelagic settling. Facies RBL is 

characterized by brownish colour, bioturbation, IRD, foraminifera, low MS, grain-sizes 

between 2 and 7 µm, as well as high ratios of S/Sum, Cu/Sum, Ca/Sum and Ca/Fe, and 

low ratios of Rb/Sum, Al/Sum, K/sum and Fe/Sum. Interpreted to reflect the deposition 

from turbidity currents, contour currents and pelagic settling.  

 Results from grain-size analysis reveal occurrences of slightly coarser grain-size 

distribution, which are interpreted as interglacial sediments, clearly distinguishable 

from finer glacial sediments. Coarser sediments are expected to be deposited during 

interglacials from a stable or retreating ice sheet, along with less extensive sea-ice cover, 

and stronger coastal polynyas. Three main mechanisms likely affects the coarsening of 

seafloor sediments during interglacials, namely higher intensity of the Wedell Gyre, 

intensified bottom-water production, and debris-rich meltwater which can cause raised 

turbidity activity. 

 Intervals of finer sediments are interpreted as sediments deposited during glacials. 

During glacials the advancing ice-sheet, along with a more extensive sea-ice, and 

smaller coastal polynyas are expected to result in a lower energy depositional 

environment compared to during interglacials. During glacials, sediments at the core 

site were most likely deposited by turbidity currents.  

 It is suggested that core PS56/029-1 include 39 MIS. 

The huge channel/levee structures in the RLS seems like a potential archive for thorough 

paleoenvironmental reconstructions including important changes linked to climate-relevant 

processes in the East Antarctica.  
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