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Abstract 

The use of quality-adjusted life years (QALYs) as a commensurable health outcome measure 

has been encouraged by health authorities in many countries in order to aid decisions on 

healthcare priorities. A key methodological challenge is to estimate the weights used for 

valuing health-related quality of life, i.e. the “Q” in QALY, based on people’s preferences. 

Such generic preference-based measures (GPBMs) comprise a descriptive system and a value 

set that assign a value to each health state description on a 0 to 1 scale.    

The objective of this thesis was to provide improved knowledge of the usefulness of GPBMs, 

with an emphasis on the most widely applied instrument, the EQ-5D. More specifically, the 

thesis aims to i) investigate into the degree of non-linear relationships across GPBMs and 

provide exchange rates that differ depending on disease severity (Paper 1); ii)  develop 

mapping algorithms from depression scales (DASS-21 and K10) onto the EQ-5D (Paper 2) 

and iii) explore the causal and effect nature of EQ-5D dimensions (Paper 3). The analysis are 

based on an international sample from the Multi Instrument Comparison (MIC) project. A 

total of 7933 participants aged 18 years and above were included and separated into a non-

diagnosed healthy group (n=1760) and seven disease groups (n=6173). 

In Paper 1, quantile regression was used to investigate the degree of non-linear relationships 

between GPBMs (EQ-5D, SF-6D, HUI, and 15D) at nine different quantiles. Furthermore, the 

health state utility scale was split into intervals with 0.2 successive utility decrements to 

compare the GPBMs across different disease severities. The ER was calculated as the mean 

utility difference between two utility intervals on one GPBM divided by the difference in 

mean utility on another GPBM. The result revealed significant non-linear relationships across 

all four GPBMs. The degrees of non-linearity differed, with a maximum degree of difference 

in the coefficients (measured by the ratio of the largest to the smallest coefficient). ERs also 
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differed by disease severity: at the lower end of the health state utility scale, the ER from SF-

6D to EQ-5D was 2.19, while at the upper end it was 0.35. These results illustrate the 

inaccuracy of using linear functions as cross-walks between GPBMs and suggest that level-

specific exchange rates should be used when converting a change in utility on one GPBM 

onto a corresponding utility change on another GPBM.  

Paper 2 aimed to develop mapping algorithms from two widely used depression scales: the 

Depression Anxiety Stress Scales (DASS-21) and the Kessler Psychological Distress Scale 

(K10) onto the EQ-5D-5L. Eight country-specific value sets (England, the Netherlands, 

Spain, Canada, China, Japan, Korea, and Uruguay) were applied. Data was based on the 

depression subgroup (n=917) of the MIC study. Six regression models were employed, 

including ordinary least squares regression, generalized linear models, beta binomial (BB) 

regression, fractional regression model, the MM-estimator, and censored least absolute 

deviation. Three model performance criteria were calculated to select the optimal mapping 

function for each country-specific value set: root mean square error, mean absolute error, and 

adjusted-r2. Generally, the results revealed that the fractional regression model was preferred 

in predicting EQ-5D-5L utility values from both the DASS-21 and K10. The only exception 

was the Japanese value set, for which BB regression model performed best. The mapping 

algorithms can adequately predict EQ-5D-5L utility values from scores on the DASS-21 and 

K10. This enables disease-specific data from clinical studies to be applied to estimate 

outcomes in terms of QALYs for use in economic evaluations.  

Paper 3 aimed to develop a conceptual framework for causal and effect relationships among 

the five dimensions of the EQ-5D (mobility, self-care, usual activities, pain/discomfort, and 

anxiety/depression) based on theoretical models of HRQoL, and test this framework using 

empirical data. The conceptual framework depicted the dimensions pain/discomfort and 
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anxiety/depression as causal indicators that drive a change in the effect indicators of 

activity/participation, mobility, self-care, and usual activities. Note that mobility has also an 

intermediate position between pain/discomfort and the other two effect dimensions (self-care 

and usual activities). Confirmatory tetrad analysis (CTA) and confirmatory factor analysis 

(CFA) were used to test this framework using the full sample from the MIC project 

(N=7933). CTA produced the best fit for a model specifying self-care and usual activities as 

effect indicators and pain/discomfort, anxiety/depression, and mobility as causal indicators. 

This was supported by CFA, which revealed a satisfactory fit to the data based on the 

comparative fit index=0.992, the Tucker-Lewis index =0.972, the root-mean square error of 

approximation =0.075 (90% CI 0.062-0.088), and the standardized root-mean square residual 

=0.012. The EQ-5D-5L appears to include both causal indicators (pain/discomfort and 

anxiety/depression) and effect indicators (self-care and usual activities). Although mobility 

played an intermediate role in our conceptual framework, the analysis suggested that it is 

mostly a causal indicator.  
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1 Introduction 

The demand for healthcare service is growing continuously, and the healthcare sector has 

insufficient resources to meet these demands. Resources like staff, facilities, and equipment 

are limited, and decisions about which treatments to provide, for whom, where, and when are 

based on these resources [1]. Any one course of action will lead to fewer available resources 

for pursuing alternative services, so limited resources should be allocated in the best possible 

manner to produce the best health outcome. Therefore, evaluating the impact on both costs 

and health outcomes is a necessary part of choosing between competing services and 

interventions, or prioritizing different patients (i.e. rationing) [2]. 

In order to aid decision-makers in making efficient (i.e. value for money) and fair resource 

allocations, economic evaluations are required by government agencies such as the National 

Institute for Health and Care Excellence in the United Kingdom [3], the Norwegian 

Medicines Agency in Norway [4], and other similar agencies around the world [5,6]. While 

the overall purpose of economic evaluations is the comparative assessment of the costs and 

benefits of alternative healthcare interventions [7], the health consequences of an intervention 

are often less evident than the resource consequences. Since a health effect may be multi-

dimensional, and in such a case is uncertain and may change, the measurement of the benefits 

of healthcare interventions is a critical part of an economic evaluation [1].  

Different techniques of economic evaluation use different units to measure health benefits [7]. 

Indeed, in order to compare health interventions, the outcome must be measured on a 

common metric to identify the one that is the least costly per unit of outcome [1]. In a cost-

utility analysis, this common metric is the quality-adjusted life year (QALY), which is a 

generic measure of health gain that combines the effects of an intervention on quality of life 

(QoL) and quantity of life. This is achieved by multiplying quality, i.e. the desirability of a 



 

2 

health state in terms of health-related QoL (HRQoL) by the duration of that health state (e.g. 

in years) [8]. The difficult task is measuring the quality weight (or the Q) in QALY.  

There are a vast number of measures that have been developed to capture treatment effects as 

expressed by patients’ own experiences, often referred to as patient-reported outcome 

measures (PROMs) [9]. PROMs may comprise one or multiple dimensions of health, 

assessing symptom(s), functional and health status, HRQoL, or QoL [10]. PROMs allow 

individuals to report their own experience on various health dimensions using a descriptive 

system; they provide a numeric value of health, which can be used to assess the efficacy and 

efficiency of interventions from a patient perspective [11-13]. However, most PROMs are 

disease-specific, making them less relevant for comparison across patient groups with 

different diseases. For this purpose, a generic measure is required. Furthermore, to be 

commensurable, trade-offs between health dimensions must be made to indicate the relative 

importance that people place on these dimensions. These measures are referred to as generic 

preference-based measures (GPBMs). 

GPBMs have been developed to obtain the quality weights (also referred to as utility values) 

needed to calculate the QALY [14]. Utility values are derived from two components: a 

generic descriptive system that allows patients to report their health state and a pre-

determined value set that provides values for each health state produced by the descriptive 

system. The values reflect an average of individuals’ preferences for the health states, which 

are elicited using health state valuation techniques like standard gamble (SG), time trade-off 

(TTO), visual analogue scale (VAS), or discrete choice experiment (DCE) [15]. There are six 

primary GPBMs in use, including the EuroQoL 5 dimensional questionnaire (EQ-5D), the 

Short Form 6 Dimensional Questionnaire (SF-6D), the Health Utility Index Mark 2 or Mark 3 

(HUI2/3), the 15 Dimensional Questionnaire (15D), the Assessment of Quality of Life 

(AQoL), and the Self-Assessed Quality of Well-Being Scale (QWB-SA) [14]. These 
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instruments can be applied across a range of patient groups and health conditions. All GPBMs 

purport to measure the same construct, which is utility. Here, utility is understood as a 

preference-based health state value that is anchored at 1 (full health) and 0 (being dead). 

However, studies indicate major discrepancies in the health state values produced by the 

different GPBMs for the same respondents. This is because GPBMs differ considerably in 

terms of the content and size of the descriptive system they use, as well as in the 

methodologies used for eliciting preference weights [16,17]. Thus, the intended comparability 

of studies is problematic when different GPBMs have been applied to measure the Q in the 

QALY.  

The problem of incommensurability of studies using different GPBMs has led some 

reimbursement agencies to choose a single GPBM for consistency in utility values. For 

instance, the EQ-5D is preferred by reimbursement agencies in the United Kingdom and 

Norway [3,4] and is the most widely used GPBM. A review by Richardson et al. [18]  found 

that the EQ-5D was applied in 63% of studies that applied a GPBM during the period 2005 to 

2010, followed by the HUI-3 (9.8%), SF-6D (8.8%), and 15D (6.9%). Furthermore, the EQ-

5D has dominated in most countries, except for the HUI in Canada and 15D in Finland. 

Another review by Wisloff and colleagues confirmed the dominant position of EQ-5D by 

revealing its application in 77% of cost-utility analysis published in 2010 [19].  

Another problem is that clinical trials more often include a disease-specific measure (DSM) 

than a GPBM [20]. Since a DSM is incommensurable, one solution is to develop 

transformations (or exchange rates) that enable the estimation of utility data based on 

responses given on a DSM. However, even with available utility data, transformations are 

necessary to either estimate health state utility values for the GPBM preferred by a health 

authority, or to enable comparisons of health effects [21]. This procedure is commonly 

referred to as mapping or cross-walking [20,22], which is the main focus of this thesis. 
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Moreover, due to the central role of the EQ-5D as the preferred GPBM among health 

authorities and its widespread use in applied studies, this thesis will concentrate particularly 

on this GPBM and will focus mainly on the new 5-level version (EQ-5D-5L), which includes 

the application of recently developed country-specific value sets, making this thesis timely 

and highly relevant. 

Mapping helps to reconcile the differences in health effects measured by different GPBMs. 

However, for mapping to be valid, there are some caveats that need particular attention. 

Studies have indicated non-linear associations between different GPBMs, and between 

GPBMs and DSMs [20,22-24]. However, previous studies on mapping have mostly applied 

linear transformations [20,22]. This implies that linear transformations would produce biased 

estimates at some part of the scale, usually at the top and/or bottom end. Hence, if mapping is 

to improve the comparison of health effects produced by different GPBMs, the critical fact 

that the strength of the association across GPBMs has been shown to vary at different disease 

severity levels should not be ignored. More knowledge about the presence of non-linear 

relationships across GPBMs is important, since it would advocate the use of non-linear 

transformations that could better harmonize the magnitude of units across GPBMs at different 

severity levels. Thus, Paper 1 of this thesis is the first study to specifically investigate non-

linearity across GPBMs (EQ-5D-5L, SF-6D, HUI-3 and 15D) using a novel approach, 

quantile regression models (QRMs). QRMs allow researchers to investigate the effect of one 

measure across the whole distribution of another measure. Furthermore, Paper 1 explored 

exchange rates between GPBMs at different severity levels, which has not been previously 

done. This has important policy implications, particularly when decision-makers are 

comparing alternative programs whose QALY calculations are based on different GPBMs. 

Paper 2 focused on developing mapping algorithms from two DSMs, the Depression Anxiety 

and Stress Scales 21-items (DASS-21) and Kessler Psychological Distress Scale 
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(K10), which are widely used measures of depression. This disease group was selected for 

several reasons. First, depression is a prevalent condition across all age groups, peaking in 

older adulthood. Globally, depressive disorders have been increasing in the last decade [25], 

and they are the single largest contributor to non-fatal health loss. The condition is different in 

the sense that it might last for longer periods, or may reoccur, significantly impairing an 

individual’s ability to function at work or school or to cope with daily life [26]. Depression 

can range from mild to severe; at its most severe, it can lead to suicide. Secondly, mental 

health is receiving increasing health policy attention, which will raise the demand for 

comparative assessments of healthcare interventions that target this patient group. Lastly, as a 

psychologist, this disease group has been of prime personal interest, as was the goal of 

contributing knowledge about DSMs applied in mental health, and my interest in 

investigating mapping from mental health measures onto GPBMs. Furthermore, based on the 

knowledge from Paper 1, in addition to other commonly applied models in mapping studies, 

two novel regression models were applied to seek out optimal transformations: a fractional 

regression model (FRM) and a beta binomial (BB) regression model that both account for the 

non-linearity in the data.  

While Papers 1 and 2 in this thesis concentrate on mapping, Paper 3 is more conceptual and 

reflects on how different dimensions of health are interconnected. Based on recommended 

models for conceptualizing the relationships between dimensions of HRQoL, Paper 3 is the 

first study to develop and empirically test a conceptual framework for causal and effect 

indicators among the five dimensions of the EQ-5D-5L. More knowledge on the causal 

pattern provides a better conceptualization of the underlying structure of the EQ-5D-5L, and 

might provide a better understanding of the relative importance of the five health dimensions 

as reflected in the preference-based value sets, as well as give insights into how to extend the 

descriptive system. A relatively new approach, referred to as confirmatory tetrad analysis, 
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was applied to determine whether EQ-5D-5L dimensions should be treated as causal or effect 

indicators. 
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2 Background 

 Concepts and definition of terms 

While health and QoL are everyday concepts used by laypersons, HRQoL is a concept used 

more among researchers. Although these terms are conceptually different, they are often used 

interchangeably, which can create confusion about their meaning. There is no single 

definition for either of these terms and still a debate about how to define them [27,28]. To aid 

in the understanding of this thesis, a brief definition of each term is given below.   

2.1.1 Health  

The World Health Organization (WHO) broadly defined the term health in 1948 as “a state of 

complete physical, mental and social well-being and not merely the absence of disease or 

infirmity” [29]. This has remained a highly influential definition. Yet, others have left out the 

mention of social well-being, defining health as “an individual’s level of function”, where 

“optimum function” is judged in comparison to “society’s standard of physical and mental 

well-being” [30]. Other more recent definitions have emphasized social and personal 

resources, as well as physical capacity [31], putting more emphasis on the capacity to cope 

autonomously with life’s ever-changing physical, emotional, and social challenges [32].  

2.1.2 Quality of life  

QoL is a broad-ranging concept that covers all aspects of people’s lives [33]. Although there 

are several definitions [28], the WHO defined QoL as “individuals’ perception of their 

position in life in the context of the culture and value systems in which they live and in 

relation to their goals, expectations, standards and concerns. It is a broad ranging concept 

affected in a complex way by the persons’ physical health, psychological state, level of 
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independence, social relationships, personal beliefs and their relationship to salient futures of 

their environment” [34]. 

2.1.3 Health-related quality of life  

The term HRQoL first appeared in the literature on health status measures in which HRQoL 

was used in the discussion of QALY as a measure of the value of 1 year of full health [28]. 

Thereafter, the use of HRQoL spread and refers to QoL when considered in the context of 

health and disease [35]. Thus, the term distinguishes the effects of illness and treatment from 

aspects of life that are beyond health care, e.g. political, societal, or cultural circumstances 

[36]. HRQoL is a dynamic multi-dimensional concept [37] and can be defined as “how well a 

person functions in her life and her perceived well-being in physical, mental, and social 

domains of health” [38]. Functioning refers to observable behaviors such as an individual’s 

ability to perform pre-defined activities, including the ability to interact with family and 

friends, and to participate in one’s work or studies [38,39], while well-being refers to the 

individual's internal subjective perceptions and feelings [38]. Accordingly, HRQoL goes 

beyond direct measures of health and focuses on the consequences of health status on QoL 

[35,36]. Another definition focuses on the value of health. Here HRQOL can refer to “the 

value assigned to different health states”, and these values, or utilities, are on a 0-1 dead-

healthy scale needed for QALY estimation, where values less than 1 indicate the loss of QoL 

or living in ill health [28]. Thus, as stated by Karimi and Brazier [28], if respondents’ 

preferences for health states reflect the impact of health on QoL, and they are able to estimate 

that impact correctly, then the utility of health states could be referred to as HRQoL. 

Although defining HRQoL has proven challenging, and several definitions have been 

proposed in the literature [40-43], generally there is a consensus that HRQoL is a multi-

dimensional concept that at least includes physical, mental, and social dimensions [36].  
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 Health-related quality of life measures 

2.2.1 Types of health-related quality of life measures 

The field of HRQOL assessment has become more sophisticated and methodologically 

rigorous [44], and there is a wide range of measures available [45,46]. These measures can be 

broadly divided into disease-specific versus generic. The vast majority are disease-specific, 

which measure how patients perceive the impact of a certain disease or health condition. 

Thus, the content of a DSM should be relevant for patients suffering from that health 

problem. Since all or most of the content comprising such a measure is relevant for the 

patients under study, the measure is generally thought to have a greater degree of precision to 

detect differences in severity and important changes over time [47]. The disadvantage of 

DSMs is the fundamental problem of comparability of outcomes of different treatments 

across patients groups with different health problems and diagnoses. Furthermore, DSMs may 

miss the impact of unanticipated problems related to the disease or side effects of treatments, 

as well as the impact of possible comorbidities [47].   

Generic measures assess a broad range of different health aspects across all types of morbidity 

and are often applicable to the general population [46]. These measures allow for comparison 

of scores across patients with various diseases or against the general population. Generic 

HRQoL measures can further be divided into non-preference-based and preference-based 

measures [14], also referred to as psychometric profiles or utility measures [48]. The most 

widely used non-preference-based measure in clinical trials is the Medical Outcomes Study 

36-item Short Form (SF-36) [49,50]. SF-36 provides a profile or description for assessing a 

patient’s health across eight different dimensions, i.e. physical functioning, social functioning, 

role limitations-physical, role limitations-emotional, bodily pain, vitality, mental health, and 

general health. The profile scores for each dimension indicate performance relative to both the 
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maximal and minimal level and, if calibrated to a population standard, the degree of health 

impairment in comparison to a population of interest [48]. However, although it is not 

uncommon in the literature [51], combining the dimensions of the SF-36 into an overall score, 

or total score, to measure health changes is not advisable, as it could lead to misinterpretation 

of any change [51]. Additionally, non-preference-based measures are not commensurable 

with lifetime gains. As a result, for health economic evaluations, i.e. cost-utility analyses, a 

preference-based HRQoL measure is essential to produce a cardinal index of health on a 0-1 

dead-healthy scale, where changes on this quality scale are commensurable with changes on 

the quantity of life scale.  

 Generic preference-based measures 

In health economic evaluations, it is essential to make healthcare programs comparable in 

terms of their cost-effectiveness. Effectiveness in producing health outcomes is measured by 

the QALY, and quality adjustment in the QALY needs to be measured in a way that 

systematically indicates the significance of various health effects in terms of HRQoL [8]. In 

this context, HRQoL is measured using a GPBM, also referred to as a multi-attribute utility 

instrument [15] or health state utility instrument [52]. Hereafter the term GPBM is used when 

referring to generic preference-based HRQoL measures in this thesis [1,7]. A GPBM consists 

of a descriptive system and a value set that assigns preference weights, or utility values, to 

each health state produced by the descriptive system. 

2.3.1 Descriptive systems 

There are six GPBMs described in the literature, and most provide more than one version 

[14]. These include the EQ-5D (EQ-5D-3L and EQ-5D-5L) [53,54], the SF-6D, derived from 

either the SF-12 or SF-36 [55,56], the HUI-2/HUI-3 [57,58], the 15D [59], the QWB-SA [60] 

and AQoL (AQoL-4D/AQoL-6D/AQOL-7D/AQoL-8D) [61-64]. They differ in terms of 
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descriptive systems, with a differing number of items/dimensions. Some dimensions are 

unique to one measure, while similar dimensions include different items, and there may be a 

different number of severity levels for each item/dimension. Indeed, the number of items and 

dimensions vary considerably (Table 1): some measures include one item per dimension (e.g. 

EQ-5D and HUI-3), while others include several items (e.g. SF-6D and AQoL-8D). Since 

each GPBM includes a different number of dimensions, and the level of the dimensions are 

different across descriptive systems, each GPBM defines a different number of health states. 

Due to the dominant position of the EQ-5D, and since it is the primary focus in this thesis, it 

will be described in more detail to exemplify how an individual’s health state is defined. 

Other measures included in this thesis are described in the appendix.  

The EQ-5D is the shortest GPBM and includes five items/dimensions: mobility, self-care, 

usual activities, pain/discomfort, and anxiety/depression. In the original version (EQ-5D-3L), 

which was developed more than 25 years ago, each item had three levels, thus it defined 243 

health states (35) [53]. More recently, a five-level version, the EQ-5D-5L, was developed [54] 

to respond to concerns about the insensitivity of the EQ-5D-3L. In the EQ-5D-5L, two more 

response levels were added to each dimension to reduce potential ceiling effects and improve 

reliability and sensitivity [54,65]: the level ‘slight problems’ was added in between “no 

problems” and “moderate problems”, and the option “severe problems” was added in between 

“moderate problems” and “unable to/extreme problems” (Box 1). When responding to the 

EQ-5D-5L, the health state is determined by taking one level from each dimension. That is, 

the best possible health state (or full health) is defined as a response of no problem (level 1) 

on every dimension (i.e. 11111), while the worst possible health state is described by unable 

to/extreme problems (level 5) on every dimension (i.e. 55555). When including every other 

health state combination between best and worst health states, the EQ-5D-5L defines a total  

of 3125 (or 55) health states. Thus, the more dimensions and levels included in a GPBM   
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 Table 1. Descriptive systems of GPBMs  

 a The relative use of GPBMs was based on 1682 studies published between 2005 and 2010. Of these, 15% were 

primarily concerned with economic evaluations (for details, see Richardson et al. [18]). 
bThe relative use of GPBMs was based on 370 studies published in 2010 (for details, see  Wisloff et al. [19] 
cSF-6D derived from SF-36. 
dThe three multi-response items of the QWB-SA - mobility, social activity, and physical activity - define 47 health 

states, and the remaining symptom/problem groups define 898 health states.  
eAQoL-8D has 35 items comprising of eight dimensions. 

 

descriptive system, the more health states can be defined, e.g. 15D comprises 15 dimensions 

with 5 levels each, defining more than 30 (or 515) billion health states. After respondents 

describe their health state, the next step is to apply an algorithm that assigns a preference  

GPBM (N) Dimensions Items 
Response 

levels 

Health 

states 

defined 

Relative use (%) 

Study 1a Study 2b 

EQ-5D-

5L/3L 

(5) Mobility,  self-care, usual 

activities, pain/discomfort, and 

anxiety/depression  

5 5/3 3,125/243 63.2 

 

77.0 

SF-6Dc 

(6) Energy, mental health, pain, 

physical functioning, role 

limitation, and social 

functioning 

11 4 to 6 18,000 8.8 11.5 

HUI-2 

(7) Sensation, mobility, 

emotion, cognition, self-care, 

pain, and fertility  

7 3 to 5 24,000 4.6 

 

 

5.3 

HUI-3 

(8) Vision, hearing, speech, 

ambulation, dexterity, emotion, 

cognition, and pain 

8 5 to 6 972,000 9.8 

15D 

(15) Mobility, vision, hearing, 

breathing, sleeping, eating, 

speech, elimination, usual 

activities, mental function, 

discomfort/symptoms, 

depression, distress, vitality, 

and sexual activity 

15 5 31 billion 6.9 4.4 

QWB-SAd 

(4) Mobility, physical activity, 

social functioning; 68 

symptoms/problems 

71 2 to 3 945 2.4 1.8 

AQoLe 

(8) Coping, happiness, 

independent living, mental 

health, pain, relationship, self-

worth, and senses 

35 4 to 6 2.37*1023 4.3 0.0 
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weight, or an index value, to each health state. These algorithms are developed based on 

methods for measuring preferences on a 0-1 scale, where 0 equals being dead and 1 equals 

full health. However, negative values are also possible and indicate health states that are 

considered worse than being dead. There are four valuation techniques commonly referred to 

in the literature for valuing health states, namely the VAS, SG, TTO, and more recently, the 

DCE (Table 2). 

Box 1: EQ-5D-5L descriptive system 
Select the answer under each heading below that best describes your own health state today 

a) Mobility 

I have no problem in walking about   
I have slight problems in walking about   
I have moderate problems in walking about   
I have severe problems in walking about   
I am unable to walk about   

b) Self-care 

I have no problems washing or dressing myself 
  

I have slight problems  washing or dressing myself   

I have moderate problems  washing or dressing myself   

I have severe problems  washing or dressing myself   

I am unable to wash or dress myself. 
  

c) Usual activities (e.g. work, study, housework, family or leisure activities) 

I have no problems doing my usual activities   

I have slight problems doing my usual activities   

I have moderate problems doing my usual activities   

I have severe problems doing my usual activities   

I am unable to do my usual activities   

d) Pain/discomfort 

I have no pain or discomfort 
  

I have slight pain or discomfort 
  

I have moderate pain or discomfort 
  

I have severe pain or discomfort 
  

I have extreme pain or discomfort 
  

e) Anxiety/depression  

I am not anxious or depressed   
I am slightly anxious or depressed   
I am moderately anxious or depressed   
I am severely anxious or depressed   
I am extremely anxious or depressed   
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Table 2. Valuation techniques of GPBMs   

a The minimum score for the UK value set (for details, see Dolan [66]).  
b The minimum score for the English value set (for details, see Devlin et al. [67])  
c  The MAU theory reduces the valuation task by making simplifying assumptions about the relationship between 

dimensions (for details, see Brazier et al. [1]). 
dAQoL-8D employs both MAU theory and statistical modelling to estimate a function for valuing health states.  

 

 

2.3.2 Valuation techniques 

Visual analogue scale  

VAS is a line (usually presented vertically) with well-defined endpoints, on which the value 

0, located at the lower end, indicates the worst imaginable health or being dead, and 100, 

located at the upper end, indicates the best imaginable or full health (Figure 1). Since 

respondents are asked to judge, value, or feel where their health state is located on the scale, 

the VAS is sometimes referred to as a feeling thermometer. The VAS is considered to have 

interval properties, where the distance between intervals reflects a respondent’s preference for 

the different health states being measured. Thus, the difference in health from 10 to 20 should 

be equal to the differences between 60 and 70.  

GPBM Valuation technique Forms of algorithm Scoring formula Minimum score 

EQ-5Da TTO, DCE,  Statistical  Additive 3L: -0.594a 

5L: -0.281b 

SF-6D SG Statistical  Additive 0.301 

HUI-3 SG, VAS MAUc  Multiplicative -0.36 

15D VAS MAU  Additive 0.00 

QWB-SA VAS MAU  Additive 0.00 

AQoL-8Dd TTO, VAS Statistical and 

MAU 

Multiplicative -0.04 



 

15 

 

Figure 1. Example of a VAS  

 

Standard gamble  

SG is the classic method for measuring preferences, based directly on the axioms of the von 

Neumann and Morgan utility theory (86). The utility for a health state is the amount of risk, in 

terms of probability, the respondent is willing to accept for not being in the valued health 

state. The preference for the health state is the point where the respondent becomes indifferent 

between two treatment outcomes: one which involves uncertainty with two possible outcomes 

and one that has an intermediate certain outcome.  
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Figure 2. Valuation of health states with the SG 

 

The basic format for the SG in the case of chronic health states that are preferred to being 

dead is illustrated in Figure 2a. Alternative 1 has two possible outcomes: either the patient 

returns to full health and lives for additional t years (with probability p) or the patient dies 

immediately (with probability 1-p). Alternative 2 is a certain outcome of chronic state hi for 

life (t years). The probability p of successful treatment (returning to full health) varies until 

the individual is indifferent between the risky option (alternative 1) and the certain outcome 

(alternative 2), at which the value of hi is equal to p. That is: 

hi=p* full health + (1-p) dead dead =>  hi=p, where full health=1 and dead=0 

In the case of chronic health states considered worse than being dead, the SG can be slightly 

modified by making the certain outcome (alternative 2) dead, and making the risky option 
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(alternative 1) a gamble between full health after treatment (probability p) or remaining in the 

chronic health state (hi) for life (probability 1-p) (86). As before, probability p varies until the 

respondent becomes indifferent between the certain outcome of death and the risky option, at 

which the utility for hi=-p/ (1-p) (Figure 2b). In the literature, the SG is often regarded as the 

preferred method due its theoretical basis and the fact that one of its features is decision-

making under uncertainty [1]. Indeed, since medical decisions usually involve uncertainty, the 

SG is often labeled the gold standard due to its uncertain nature [7]. However, it has been 

argued that the type of uncertainty in the SG is not comparable with the various uncertainties 

in medical decisions, making this feature less relevant [68]. Furthermore, individuals often 

have a hard time understanding probabilities.  

Time trade-off  

Torrance et al. [69] introduced the TTO method to provide a simpler method than the SG. 

Both methods derive preferences implicitly based on the respondent’s choices in given 

situations. However, while the SG is risk-sensitive due to uncertainty in the outcome, the 

TTO is riskless. The basic format for the TTO in the case of chronic health states that are 

preferred to being dead is illustrated in Figure 3a. The respondents are offered two 

alternatives: alternative 1 is health state i for time t (usually 10 years) followed by death; 

alternative 2 is healthy for time x (x < t) followed by death. If the respondent is willing to 

trade life expectancy, time x is varied until the respondent is indifferent between the two 

alternatives, at which point the preference value for chronic state i is:  hi=x/t.  

For chronic health states considered worse than being dead, the TTO can be altered so that 

respondents can choose between immediate death (alternative 1), or health state hi for a period 

of time (y), followed by x years in full health where x+y=t. By varying time (x) until the 

respondent is indifferent between the two alternatives, the value of hi can then be given as: hi 

=-x/(t-x). Thus, the score for state hi will be lower if more time in full health is needed to  
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(a) Chronic health state preferred to death (i.e. values > 0) 

 

 

 

 

 

 

 

 

 

 

(b) Lead time TTO considered worse than death (i.e. values < 0) 

 

Alt. 1 (t-years) 

 f years (t-f) 

Alt. 2 (g-years)  

  

                                           g years 

Figure 3. Valuation of health states with (a) conventional TTO and (b)  

lead-time TTO   

 

compensate for the time spent in hi. The formula translating TTO responses to health state 

values considered worse than being dead produces a scale that ranges from minus infinity to 

1, where a greater weight is given to negative values, which has implications for economic 

evaluations [52,70,71]. While this has been resolved by assigning a preference value of -1 to 

the worst possible health state among those health states considered worse than being dead 

[66], this value is arbitrary and has no theoretical support [72]. 

1 

0 
t x 

Time 

Full  

health    

State hi 

Dead 

Value 

Alternative 2 

Alternative 1 

Lead-time State hi 
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A solution has recently been proposed to handle values for states considered worse than 

being dead, referred to as lead–time TTO. This method was introduced as an alternative to the 

conventional TTO and is applicable for health states considered either better or worse than 

being dead [70]. This approach involves adding additional time spent in full health before the 

period spent in the impaired health state (alternative 1), as well as to the period spent in full 

health or death (alternative 2) [1]. That is, alternative 1 is full health for f years (lead-time), 

then state hi for t-f years; while alternative 2 is full health for g years (lead-time), where g is 

larger than f for health states considered to be better than being dead, and less than f for 

states considered to be worse than being dead. The latter is illustrated in Figure 2b. State hi is 

then calculated as hi=(g-f)/(t-f). Health states considered better than being dead receive a 

positive value and states considered worse than being dead receive a negative value [73].  

Since studies have shown the lead-time TTO exercise has severe framing effects, and it is 

clearly difficult for respondent to perform the task [70,71,74], a composite TTO was 

introduced as a compromise between the conventional TTO and lead-time TTO [75]. Thus, 

the composite TTO considers the conventional TTO for health states considered better than 

being dead and the lead-time TTO for states below zero. The EuroQol group adopted this 

approach for the valuation of the EQ-5D-5L, which improved the means of eliciting values 

worse than being dead and resolved the problem of assigning an arbitrary value to the worst 

possible health state for rescaling the conventional TTO [76]. While the TTO was developed 

to be a simpler alternative to SG, there is still a concern that it is cognitively demanding for 

some populations, leading to several inconsistencies and subsequent exclusions that limit the 

representativeness of the values produced [77,78].  

Discrete choice experiment 

Another method for eliciting preferences is the DCE, which has been promoted as a simpler 

method than the conventional iterative TTO task [79]. In the DCE method, respondents are  
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Which is better, state A or B? 

 moderate problems in walking about  slight problems in walking about 

 no problems washing and dressing myself  no problems washing and dressing myself 

 moderate problems doing my usual activities  moderate problems doing my usual activities 

 slight pain or discomfort  extreme pain or discomfort 

 not anxious or depressed  severely anxious or depressed 

A B 

 

Figure 4. Example of two profiles from the EQ-5D-5L descriptive system provided in a 

DCE task 

 

provided with two or more profiles, and they choose the most or least preferred, as 

exemplified in Figure 4. Different scenarios are constructed based on a descriptive system 

made up of levels of a limited number of important attributes [80].  

Respondents simply indicate that option A is preferred to option B, without the iterative 

process used in the TTO to find the point of indifference between the two options [81]. The 

relative preferences of one health state over another are commonly provided by the 

conditional logit model [79]. Since the utility scale for DCE data from this model is not 

anchored to the 0-1 dead-healthy scale, it cannot be directly incorporated for calculating 

QALY. The EuroQoL valuation protocol includes DCE in addition to a TTO task and 

combines data from both techniques into a single modelling framework, referred to as the 

hybrid model [67,82]. The coefficient from both models are connected via a link function to 

account for the differences between the scales [83]. The hybrid model maximizes the use of 



 

21 

the available data from a valuation study using the EuroQoL valuation protocol [82]. 

However, there are promising approaches referred to as DCETTO that link health states to 

normal health and death within a DCE by including ‘survival duration’ as an attribute 

[67,81,84,85].  

Comparison of valuation techniques 

Different valuation techniques normally produce different values for the same health states. 

The majority of studies suggest that the VAS generally generates lower values than SG and 

TTO [86]. However, it has been shown that milder health states generate lower SG values 

than the VAS, with a crossover point at around 0.8 on a 0-1 dead-healthy scale [87].  While 

the relationship is less consistent for studies reporting VAS and TTO results, VAS usually 

generates lower values [86,88]. Studies have also indicated inconsistent results for the 

relationship between the SG and TTO. As the SG involves uncertainty, it has been suggested 

that it produces higher values than the TTO due to risk aversion. This is a key difference 

between the choice-based techniques. Nevertheless, one study suggested that the TTO 

produces higher values for milder health states, with a crossover point around 0.4 when 

compared to the VAS [87]. Additional sources of bias that may lead to differences in SG and 

TTO values include: probability weighting (upward bias in SG values), utility curvature 

(downward bias in TTO values), loss aversion (upward bias in both TTO and SG values), and 

scale compatibility (upward bias in TTO values and ambiguous bias in SG values, 

respectively) [1,89]. Probability weighting does not affect TTO values since these are elicited 

under the condition of certainty, while the SG is not affected by utility curvature since no 

restrictions are imposed on the utility function for the duration of the health state. Considering 

the relationship between the DCE and TTO, one study showed that the DCE assigns relatively 

higher values to milder health states and lower values to poorer health states [90].  
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2.3.3 Generic preference-based measures compared 

The majority of studies comparing GPBMs suggest a low level of agreement [18]. It has 

generally been indicated that health state utility values are not equivalent across measures, 

and comparisons “warrant caution” [23,91]. While mean scores have been found to be similar, 

they often mask major differences across the distribution [14,23,92]. The differences across 

measures can be explained in part by differing descriptive systems, valuation techniques, and 

the model used to create the formula or algorithm used to extrapolate results. Studies have 

suggested that the dominant reason for these differences is the lack of overlap in the 

descriptive systems [16,93]. Similarly, the scale effect that arises from the use of different 

valuation techniques is also an important source of variation. One approach to increase 

comparability across GPBMs is to develop mapping algorithms that can predict health state 

utility values from one GPBM based on values from another GPBM.  

 Transformations 

2.4.1 The concept of mapping 

Mapping is conducted to link outcome data collected in clinical trials or observational studies 

to a GPBM to obtain utility values. Key clinical trials are often designed for purposes other 

than economic evaluations, hence a GPBM is not necessarily included as a PROM. In the 

scenario of missing utility data, mapping or “cross-walking” is one solution to enable cost-

effectiveness analyses [94]. This approach enables the transformation of scores from a source 

measure, usually a condition-specific measure, into health state utilities, by applying a pre-

existing mapping algorithm. Generally, mapping algorithms are developed by distributing 

both measures of interest to the same respondents, then applying statistical methods to predict 

health state utilities from scores on a source measure. Subsequently, the mapping algorithm 

can be applied to transform condition-specific data from clinical trials into health state utility 
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values [1,22]. Here I focus on mapping onto the EQ-5D for two reasons. First, it is the most 

widely applied GPBM in mapping studies, and in cost-utility analysis in general; second, the 

EQ-5D is of main interest in all three papers in this thesis.   

2.4.2 The literature on mapping studies: the case of the EQ-5D  

The practice of mapping onto the EQ-5D from other measures of health outcome is increasing 

in number, especially after the UK National Institute for Health and Care Excellence endorsed 

this practice when EQ-5D utilities are unavailable [22]. A literature search performed on 26 

October 2017 in the EMBRACE and HERC databases identified a total of 150 studies that 

mapped onto the EQ-5D. For detailed information on the inclusion/exclusion criteria for the 

literature search, see Dakin [22]. Although the two databases searched identified mostly the 

same studies, 18 studies found in EMBRACE were not found in HERC. This is because these 

studies were published after the HERC database was last updated in May of 2016. Of the 150 

studies identified, 141 studies mapped onto the EQ-5D-3L, while nine studies mapped onto 

the EQ-5D-5L [24,95-102]. Of the nine 5L mapping studies, eight mapped from DSMs, while 

one mapped from other GPBMs [24]. Five of the EQ-5D-5L mapping studies applied the 

interim cross-walk value set [103], and three applied directly-elicited value sets. Of the latter 

three studies, two applied the English and Dutch value sets [98,99], while one applied the 

Japanese value set [96]. The source measures in these studies included DSMs related to 

cancer and epilepsy. A recent review by Dakin et al. [104] supports the findings of the 

literature search in the current thesis. While the studies that mapped onto EQ-5D-3L did 

include mental health measures, none of those that mapped onto EQ-5D-5L used directly-

elicited value sets. 
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 Causal and effect indicators among health-related quality of life 

dimensions 

HRQoL measures comprise items that relate to various aspects of symptoms and functioning. 

Previous research has attempted to classify the items included in these measures as causal or 

effect indicators of HRQoL [105]. Effect indicators (also referred to as reflective indicators) 

can be seen as manifestations of an underlying construct, in which indicators are assumed to 

be drawn from an infinite pool of homogeneous indicators representing that construct, making 

them largely interchangeable. Thus, the causal flow is from the construct to the indicators, 

implying that any change in the construct will have an effect on the indicators. Conversely, 

causal indicators (also referred to as formative indicators) drive a change in the construct. As 

exemplified by Bollen and Lennox [106], life stress can be indicated by observed variables 

like job loss, divorce, recent bodily injury, or death in the family. These indicators are clearly 

causal indicators since the causal flow is from the indicators to the construct i.e. a change in 

life stress does not necessarily imply that a simultaneous change will occur across all causal 

indicators.  

There is evidence to suggest that symptoms have a strong causal component that drives a 

change in other items [107,108]. The research into the causal nature of various HRQoL items 

has been limited to the cancer-specific measure, the European Organization for Research and 

Treatment of Cancer Quality‐of‐Life questionnaire (EORTC QLQ-C30), which has been 

investigated in three studies. Fayers and colleagues found strong evidence that physiological 

symptom items (e.g. nausea, memory problems, shortness of breath) were causal indicators, 

while items such as poor concentration, irritability, and feeling tense were likely to be effect 

indicators [107]. Boehmer and Luszczynska [108] identified both causal indicators 

(symptoms like fatigue and pain) and effect indicators (e.g. physical, role, cognitive, social, 

and emotional functioning). They suggested that physical functioning and pain might be 
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intermediate indicators. Using eight EORTC QLQ-C30 items, Bollen et al. [109] concluded 

that symptom items (e.g. shortness of breath, problems sleeping, lack of appetite) should be 

treated as causal indicators, while global health status and QoL should be treated as effect 

indicators. So far, no studies have investigated the classification of causal and effect 

indicators among GPBMs. 
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 Objectives 

The general objective of this thesis was to provide a better understanding and knowledge of 

GPBMs commonly applied in economic evaluations. The research questions addressed in the 

three papers included in this thesis are:      

Paper 1: To investigate the degree of non-linear relationships across the four most widely 

used GPBMs (EQ-5D-5L, SF-6D, HUI-3, and 15D). We also provided exchange rates 

(coefficients) between GPBMs that differ depending on which intervals of the scales are 

considered. 

Paper 2 had several aims: First, to replace existing mapping algorithms between the 

depression-specific measures DASS-21 and K10, and the EQ-5D-5L, which were developed 

using an interim EQ-5D-5L cross-walk value set based on the EQ-5D-3L value set for the 

UK. Second, to investigate if the mapping algorithms differed across different, directly 

elicited, country-specific health state preferences, including four Western countries (England, 

the Netherlands, Spain, Canada), three Asian countries (China, Japan, Korea) and one South 

American country (Uruguay). Third, to investigate the relative merit of six regression models.  

Paper 3: To develop a conceptual framework for causal and effect relationships among the 

five dimensions of the EQ-5D-5L based on theoretical models of HRQoL, and to test this 

framework using empirical data. 
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3 Materials and methods 

 Data 

This thesis is based on a unique international dataset from the Multi Instrument Comparison 

(MIC) project, which is the world’s largest survey comparing GPBMs. The project was 

established in response to the growing evidence showing that different GPBMs produced 

different values for the same respondents and measured different constructs, although all 

GPBMs purport to measure the same construct: health state utility. While Richardson et al. 

[18] identified 392 pair-wise comparisons of GPBMs, only four studies included five 

GPBMs. Thus, the lack of thorough comparisons and comparative data was the principal 

motivation for the MIC project. The main aim was to document differences and the extent of 

the problem using a large database. The MIC project is the first study identified in the 

literature to include all six GPBMs, as well as eight DSMs and three subjective well-being 

measures. The MIC project is also unique in that it includes respondents from six countries 

(i.e. Australia, Canada, Germany, Norway, the UK, and the US), comprising a total of seven 

disease groups (i.e. asthma, arthritis, cancer, depression, diabetes, hearing loss, and heart 

disease) and an undiagnosed healthy group. All respondents reported their health on all 

GPBMs and subjective well-being measures, while only respondents in each disease group 

reported their health on the DSM for that particular group. This allowed comparisons with the 

most widely used DSMs in the different chronic disease areas, as well as with well-being 

measures. The selection of DSMs was based on reviews of the literature and advice from 

researchers from the different areas [110].  

A global survey company, CINT Pty Ltd, invited individuals registered in their database to 

participate in an online survey [110]. Respondents were initially asked to rate their overall 

health on a VAS of 0-100, where 0 represented the least desirable health you could imagine  
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Table 3. Respondents by disease group and country 

 

and 100 represented the best possible health (physical, mental, and social), and to indicate if 

they had any chronic diseases. Respondents were placed in the non-diagnosed healthy group 

if they reported no chronic disease and an overall health rating of at least 70 on the VAS. In 

each country, quotas were used to provide a demographically representative sample according 

to age, sex, and education. For each of the seven disease groups, a quota of 150 respondents 

was sought. To ensure the quality of the data, a series of editing criteria were used to eliminate 

unreliable respondents, e.g. those who completed the survey in less than 20 minutes (median 

was 40) and inconsistency in response to duplicated questions. Based on the eight edit criteria 

provided to eliminate unreliable answers, a total of 17% of respondents were excluded. 

Eventually, a total of 7933 respondents were included in the dataset. For further details on 

respondent recruitment, see Richardson et al. [110]. 

Diseases Australia UK USA Canada Norway Germany Total 

Asthma 141 150 150 138 129 147 855 

Cancer 154 137 148 138 80 115 772 

Depression 146 158 168 145 140 160 917 

Diabetes 168 161 168 144 143 140 924 

Hearing loss 155 126 156 144 113 136 830 

Arthritis 163 159 179 139 130 159 929 

Heart diseases 149 167 170 154 151 152 943 

Healthy group 265 298 321 328 288 260 1760 

Total 1341 1356 1460 1330 1174 1269 7933 
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In Papers 1 and 3, the full sample (N=7933) was employed, while in Paper 2 only the 

individuals diagnosed with depression (N=917) were included. A summary of the study 

sample by disease group and country is shown in Table 3. 

 Health outcome measures  

In all papers in this thesis, the most widely used GPBM, the EQ-5D-5L, has a central role. In 

Papers 1 and 2, the EQ-5D-5L utility index was applied, while in Paper 3 the focus is on the 5 

dimensions of the EQ-5D-5L descriptive system.  

GPBMs   

In Paper 1, the EQ-5D-5L, SF-6D (derived from SF-36), HUI-3, and 15D were applied (see 

Table 1). The EQ-5D-5L utility index was calculated using the new English value set based on 

a representative sample of the English public (N=996) [67]. For the SF-6D utility index, a UK 

value set based on a representative sample of members of the UK general population was 

used (N=836) [55]. The HUI-3 utility index was calculated using a representative sample of 

adult Canadians (N=504) [57], and the 15D utility index used a value set based on five 

random samples of the Finnish general population (N=2500) [111]. An overview of valuation 

techniques is presented in Table 2. In Paper 2, in addition to the new English value set, other, 

directly-elicited, country-specific EQ-5D-5L value sets were applied, including the 

Netherlands, Spain, Canada, China, Japan, Korea, and Uruguay [67,83,112-117].  

Disease-specific measures 

The DASS-21 comprises 21 items, each with a 4-point severity scale (did not apply to me; 

applied to some degree; applied to a considerable degree; applied very much or most of the 

time) [118]. It comprises three 7-items subscales that measure core symptoms of depression, 

anxiety, and stress. Subscale scores range from 0 to 42, where lower values indicate fewer 

problems.  
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The K10 measures psychological distress and comprises 10 items on anxiety and depressive 

symptoms experienced in the last 4 weeks [119]. Each item has five response levels (all the 

time; a little of the time; some of the time; most of the time; all of the time), resulting in a 

total score range of 10 to 50, where lower values indicate fewer problems.  

 Analysis  

3.3.1 Comparing GPBMs 

Paper 1 examined non-linearity among four GPBMs (EQ-5D-5L, SF-6D, HUI-3, and 15D) 

across different severity levels using QRM. It also investigated the exchange rates for these 

GPBMs. 

Testing non-linearity 

QRMs were used to study the relationship between pairs of GPBMs. The strength of  this 

approach is that it permits us to explore the entire conditional distribution by analyzing the 

effects of one GPBM (the source) at different levels of another GPBM (the target) [120]. 

Thus, unlike ordinary least squares (OLS) regression, which focuses on the conditional mean 

of the dependent variable, the QRM tests if the relationship between two GPBMs varies at 

different quantiles of the dependent variable. (For a theoretical background on QRM, see 

Koenker and Hallock [121]). Furthermore, in comparison to ordinary linear regression, the 

QRM is more robust to outliers and is semi-parametric, avoiding the assumptions about the 

parametric distribution of the error terms [122]. Thus, following Koenker and Bassett [123], 

the QRM can be expressed as: 
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where Yi is an outcome variable (target instrument), Xi is the independent variable (source 

instrument), β(q) is the vector of parameters to be estimated for each quantile (q) under 

consideration, i  is error term, and  0<q<1 indicates the proportion of the population with 

scores below the quantile specified. Formulation of QRM requires that the 
thq  quantile of the 

error term be zero; and hence )( )()(

i

q

ii

q XXYQuant  . Thus, the quantile regression 

estimator for the 
thq quantile, 0<q<1, minimizes the objective function: 
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where variables and parameters were defined  as in Equation (1). The residuals are measured 

using a weighted sum of vertical distances (without squaring), where the weight is 1 – q for 

points below the fitted line and q for points above the line. The ability to estimate parameters 

appropriate for the chosen quantiles other than the median is a unique feature of QRMs. In 

this thesis, a simultaneous QRM was applied to estimate the effect of the independent/source 

variable at nine different quantiles of the outcome/target variable; that is, the 10th, 20th, 30th, 

40th, 50th (median), 60th, 70th, 80th, and 90th percentile. This allows us to test if the association 

between two instruments differs across severity levels.   

Wald F-statistics were used to test for equality of coefficients across the quantile regression 

results. The degree of non-linearity between GPBMs was calculated by dividing the highest 

coefficient in each estimation by the lowest coefficient, referred to as the maximum degree of 

differences in coefficients (MDDC). To inquire into variations in the degree of non-linearity 

across disease groups, F-tests and MDDC were presented for each of the seven disease 

groups.  
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Exchange rates 

The exchange rates (ERs) presented in this paper differ from those used in traditional 

mapping algorithms, which are usually derived from regression techniques (e.g. OLS). 

Instead, our ERs were based on individual-level data and a simple calculation relying on 

aggregate data where the utility scale of each GPBM was split into six utility intervals with 

0.2 successive decrements in utility starting from perfect health at 1.00. That is, <0.2, [0.2, 

0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1), 1. Scale-dependent ERs were developed, and defined as the 

change in utilities measured using GPBM i (∆Ui) divided by the change in utilities measured 

using GPBM j (∆Uj): 

 

                                              𝐸𝑅𝑖𝑗 = ∆𝑈𝑖 ∆𝑈𝑗⁄                                     (1.3)          

 

This enabled comparisons at different intervals across the health state utility scale, which may 

give a truer picture of the real change in utility when transforming utility gains across 

instruments, especially changes at the more extreme parts of the utility scale. 

A bootstrap method was chosen to calculate the 95% confidence intervals for each ER. The 

method randomly draws a 60% sample from the full sample to calculate the ER and replicates 

the procedure 1000 times. 

3.3.2 Predicting EQ-5D-5L utilities  

In Paper 2, the mapping of depression scales (measured by DASS-21 and K10) onto eight 

country-specific EQ-5D-5L value sets was examined using six different regression models. 

Mapping is feasible only when there is a conceptual overlap between the source and target 

instruments.  
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Conceptual overlap 

Initially, the dimensional structure of the EQ-5D-5L, DASS-21, and K10 were investigated 

using Spearman’s rank correlation and exploratory factor analysis to provide insights into the 

conceptual overlap of the target and source measures. This could also inform the choice of the 

method applied for mapping, i.e. between a direct or an indirect (response) mapping approach 

[124]. Results of exploratory factor analysis revealed that all items on the depression scales 

were loaded onto the ‘depression’, ‘anxiety’, or ‘stress’ factors. However, the only EQ-5D-5L 

dimension that overlaps in any substantial way with these factors was the anxiety/depression 

dimension that loaded on the depression factor. Thus, the probability of accurately predicting 

five response levels for all the dimensions of the EQ-5D was low. In general, response 

mapping depends on the correct predictions for each dimension of the EQ-5D to make an 

exact prediction of a health state. Consequently, response mapping can be severely penalized 

when an incorrect prediction is made [125]. Thus, a direct mapping technique was applied to 

predict the EQ-5D-5L utility index (the dependent variable) using the source instrument, 

either the DASS-21 subscale score or the K10 total score (the independent variable). In 

addition to the source instrument, age and sex were considered as covariates. 

Regression models  

Six alternative models were compared, including OLS, the generalized linear model, the MM-

estimator, the censored least absolute deviations model, the FRM, and the BB regression 

model. For each model, a forward stepwise selection method was used for variable selection 

(p<0.05). Interaction and squared terms were considered only if the original variable was 

significant. FRM and BB regression provided optimal mapping functions for predicting EQ-

5D-5L utility values from both the DASS-21 and K10. Therefore, a detailed description of 

these models is presented in the next section. 
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FRM involves a semi-parametric approach that was developed to address the modeling of 

empirically-bound dependent variables, such as proportions and percentages, that exhibit 

piling-up at one of the two corners [126]. The advantages of FRM are several: (a) it does not 

require any special correction of the values observed at the bounds, (b) it accounts for the 

non-linearity in the data, and (c) it allows for direct recovery of the regression function for the 

dependent variable given the set of predictors1. Following Papke and Wooldridge [126], the 

basic assumption underlying the FRM can be summarized as: 

 

         )()|( XGXYE        (2.1) 

 

where G(·) is a known non-linear function satisfying 0 ≤ G(·) ≤ 1, X is a vector of 

independent variables, and β is a vector of parameters to be estimated. This is well defined if 

Yi takes any value in the specified range including 0 and 1 with positive probability. Unlike 

other parametric methods, the important advantage of this semi-parametric FRM is that it 

does not make any distributional assumption about an underlying structure used to obtain Yi. 

Several examples of non-linear functional forms are used for G (·). The logistic link function 

is the most widely applied functional form and is a natural choice for modelling bounded 

data, since it ensures that 0 < E(Y|X) < 1. It must be directly estimated using a non-linear 

function instead of being first linearized [127]. It is defined as follows: 
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1 In the FRM model, EQ-5D-5L utility values are linearly transformed onto a 0-1 scale by subtracting the 

minimum value from observed utilities of EQ-5D-5L and then dividing by the range.  
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The non-linear parameters of the model defined by Equation (2.1) may be estimated using a 

quasi-maximum likelihood method via the maximization of the Bernoulli log-likelihood 

function: 

 

   )(1log)1()(log)(  iiiii XGYXGYLL        (2.3) 

 

which is well defined for 0<G(.)<1. The quasi-maximum likelihood estimator of β is 

consistent and asymptotically normal, regardless of the true distribution of the dependent 

variable, conditional on the predictors, provided that Equation 2.1 is correctly specified, 

which can actually be tested using the RESET test [127].  

BB regression is a similar method for modelling bounded data. It involves a fully parametric 

approach that allows the dependent variable to be skewed and is capable of modeling bounded 

dependent variables restricted between 0 and 1. As this parametric model is not defined at the 

boundary values, the outcome values should be restricted to a 0-1 range, excluding 0 and 1. 

This can be achieved by linear transformation [Y(N-1)+0.5]/N following earlier literature 

[128,129], where N refers to sample size, and Y is the dependent variable. BB regression is 

flexible and allows a great variety of asymmetric forms. The most popular choice to estimate 

Equation 2.1 is the parametric beta distribution, see Khan and Morris [130] for applications of 

the beta binomial regression model. However, Khan and Morris used an inflated BB when 

mapping onto the EQ-5D, due to piling of responses at 1. This was not an issue in the MIC 

project depression sample (less than 2% reported the utility of 1). Following re-

parameterization of Ferrari and Cribari-Neto [131], beta regression is a fully parametric 

approach, assuming that the dependent variable follows a beta distribution with density 

function: 
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where ᴦ(.) denotes the gamma function 0<Y<1, and the parameter μ denotes the expected 

value of Y; that is, E(Y)=μ; and φ dispersion parameter. The parameter φ can be interpreted as 

a precision parameter, because for fixed μ, the greater the value of φ, the smaller the variance 

of the dependent variable (for detail see Ferrari and Cribari-Neto [131]). That is, 
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Again, using logit as a link function (Equation 2.2), the BB regression for Yi (EQ-5D-5L) 

with X (DASS-21 subscales or K10 total scale) as independent predictor(s), and β as a vector 

of parameters is given as: 
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It is also possible to model the dispersion in terms of the independent predictors instead of 

assuming it is a nuisance parameter. However, since modeling the precision parameter 

separately barely adds to the prediction performance of the model, we considered Equation 

2.1 and 2.6 alone, assuming φ is a nuisance parameter for the sake of parsimony.  

Model performance  

To assess the predictive performance of each model in Paper 2, common criteria in mapping 

studies were applied: mean absolute error (MAE) and root mean square error (RMSE) 
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[20,21]. Due to a different number of independent variables across models, the degree of 

freedom was adjusted for both MAE and RMSE. Since a wider scale length of the dependent 

variable produces larger error [132], adjustment for scale differences was performed to allow 

reasonable comparisons between datasets or models with different scales. Both MAE and 

RMSE were normalized to the range (defined as the difference between the maximum and the 

minimum values) of the measured data. For instance, when applying the English value set, the 

MAE and RMSE were divided by the range of the data (1.17) as estimated by OLS, but they 

were divided by 0.998 when estimated by BB regression (since BB requires the 

transformation of values to be restricted between 0 and 1). In comparison, when estimated by 

OLS and applying the Dutch and Japanese value sets, MAE and RMSE were divided by 1.41 

and 0.88, respectively. Lastly, the performance of each model was also assessed by the square 

of the correlation coefficient between the observed and predicted values adjusted for the 

number of predictors in the model (adj. r2) [133].  

To investigate the generalizability of the preferred mapping algorithms, cross-validation was 

performed by splitting the existing data in two: estimation and validation samples via random 

selection procedures. In this study, the total sample was randomly divided into two equally-

sized groups to evaluate the model fit in out-of-sample data. The model was fitted on the 

estimation sample, and the resulting parameters from the fitted model were then used to 

predict the EQ-5D-5L in the validation sample. This procedure was then repeated by 

reversing the validation and estimation sample. The average MAE, RMSE, and r2 for both 

iterations were calculated to compare of the models’ predictive performance. Lastly, the best-

fitting model was estimated using the full sample (N=917).  
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3.3.3 Testing the relationship between EQ-5D-5L dimensions 

In Paper 3, the causal relationship between EQ-5D-5L dimensions was explored by specifying 

a number of testable models that specified EQ-5D-5L items as causal indicators or effect 

indicators of HRQoL. Model 1 specified all five EQ-5D-5L items as effect indicators of the 

construct HRQoL, whereas Models 2, 3, and 4 are multiple-cause multiple-indicator models. 

Model 2 tested whether the symptom items pain/discomfort and anxiety/depression should be 

treated as causal indicators and whether the activity/participation items mobility, self-care, 

and usual activities should be treated as effect indicators. On the other hand, Model 3 treated 

the symptom items pain/discomfort, anxiety/depression, and mobility as causal indicators, and 

self-care and usual activities as effect indicators. Model 4 was a variant of Model 3, where 

mobility had an intermediate position between pain/discomfort and the construct. See Paper 3 

in appendix for illustrations of the models. In addition, due to the uncertain nature of 

anxiety/depression and the investigation of reverse causality, alternative models were 

specified (see Paper 3 in appendix for description of these models). 

Two model-testing approaches were selected to test the specified models: confirmatory tetrad 

analysis (CTA) and confirmatory factor analysis (CFA). However, due to the specification of 

mobility in Model 4, CTA is not appropriate; thus, Model 4 was tested by CFA only. CTA 

seeks to determine whether items of a latent variable should be treated as causal or effect 

indicators [134,135]. Unlike the general SEM, the CTA does not estimate parameters; it only 

tests model fit using Chi-square (2). Furthermore, differently from traditionally nested 

models, a nested CTA can determine if two models are nested in terms of model-implied 

vanishing tetrads, not parameters. A bootstrap tetrad test was used to minimize the problem of 

non-normality [136]. For a more detailed description of CTA, see Paper 3 in appendix. 

Considering CFA, maximum likelihood estimation is considered robust when using non-
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continuous data [137-139] or data that violate multivariate normality assumptions [140-142]. 

However, since maximum likelihood can be affected by deviation from normality [143], 

bootstrap standard errors (with 1000 bootstrap draws) were used [144].  

Several fit indices were used to examine the model fit to data, including the comparative fit 

index, the Tucker-Lewis index, root-mean square error of approximation, the standardized 

root-mean square residual, the Akaike information criterion, and the sample-size adjusted 

Bayesian information criterion. A comparative fit index and Tucker-Lewis index value greater 

than 0.95, and a standardized root-mean square residual value less than 0.08, represent a well-

fitting model [145]. Root-mean square error of approximation values less than 0.05 reflect a 

good fit [146], and values as high as 0.08 reflect an adequate fit [147]. Akaike information 

criterion and sample-size adjusted Bayesian information criterion are only meaningful when 

different models are compared, and models with the lowest values represent those with the 

best fit. 

4 Results 

 Paper 1: Non-linearity across generic preference-based measures 

The results of Paper 1 revealed differences across the EQ-5D-5L, SF-6D, HUI-3, and 15D. 

Ceiling effects (utility=1) ranged from 1.4% (SF-6D) to 19.3% (EQ-5D-5L). The EQ-5D-5L 

and HUI-3 scales allow for utilities below zero, and have larger proportions at the bottom end 

of the scales. Because of the different scale lengths, the differences between health state 

utilities varied depending on the range compared, with the largest differences observed at the 

10th percentile, which implies that the potential utility gain involved from a cure would differ 

a lot depending on the GPBM used. Mean utilities varied from 0.71 (SF-6D and HUI-3) to 

0.85 (15D), while median utilities ranged between 0.70 (SF-6D) and 0.88 (15D). Mean and 

median utility for EQ-5D is 0.83 and 0.87, respectively 
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The key findings from Paper 1 were that non-linear relationships were evident across all four 

GPBMs. QRMs revealed that coefficients varied across all quantiles, implying that the 

strength of the relationship across GPBMs varies across the distribution of the target measure. 

For instance, when regressing any of the other GPBMs onto EQ-5D-5L, the effect is largest at 

the 0.1 quantile, then decreases, with the lowest effect at 0.9 quantile. Considering 15D as the 

source measure, the coefficient at the lower quantile of EQ-5D-5L was more than double (1.8, 

p<0.001) that of the upper quantile (0.7, p<0.001). The different effect of all GPBMs across 

the EQ-5D-5L distribution was supported by Wald F-tests, indicating a significant difference 

(p<0.01) between coefficients, which rejected the null hypothesis of the equality of 

coefficients across quantiles. This was also shown when regressing onto the other three 

GPBMs. For HUI-3 and 15D, a similar pattern of the coefficients across quantiles was 

observed, while for SF-6D the strongest effect was on the 0.6 quantile (15D) and 0.7 quantile 

(HUI-3 and EQ-5D-5L) and lowest at the 0.1 quantile. Except when regressing HUI-3 and 

15D onto SF-6D in the depression group, all tests indicated that there was a significant 

difference (p<0.01) between coefficients. 

The degree of non-linearity across the full study sample and in all seven disease groups was 

investigated by calculating the ratio between the highest and the lowest coefficients, referred 

to as the MDDC at each estimation. For instance, when regressing SF-6D onto EQ-5D, the 

highest coefficient was at the 0.1 quantile and the lowest at the 0.9 quantile (MDDC: 

1.37/0.41=3.34). The degree of non-linearity was largest for EQ-5D-5L (MDDC: 2.49-3.34) 

and HUI-3 (MDDC: 2.05-3.48) and smallest for SF-6D (MDDC: 1.26-1.32). Similar results 

were found when looking into the seven disease groups. 

The scale-dependent exchange rates further revealed the non-linear relationships. The ERs 

were calculated based on a change in mean utilities of the target measure at different utility 

intervals of that measure. For instance, the ERs between each utility interval on the 15D scale 
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indicate the value by which a 15D increment has to be multiplied to get the corresponding 

change in utility had the EQ-5D been applied. As an example, take the ERs between 15D and 

EQ-5D-5L. If 15D had been applied in a study where the patient group at baseline was in the 

0.4-0.6 interval with a mean utility of 0.53, and after treatment they were in the 0.6-0.8 

interval with a mean utility of 0.72, it would represent an increase of ∆U15D=0.19 on the 15D 

utility scale. The corresponding increment on the EQ-5D-5L scale would be from 0.38 to 0.67 

(∆UEQ-5D =0.29). Hence, the 15D increment has to be multiplied by an exchange rate of 1.51 

(∆UEQ-5D / ∆U15D) to make the utility increment comparable to the increment had the EQ-5D-

5L been applied.    

 Paper 2: Mapping from disease-specific to generic measures 

The results of Paper 2 showed that both mean EQ-5D-5L utility values and the range of these 

values varied depending on the choice of country-specific value sets. The mean EQ-5D-5L 

utility ranged from 0.59 in the Dutch value set to 0.83 in the Uruguayan value set, while the 

minimum utility value ranged from -0.41 in the Dutch value set to 0.12 in the Korean and 

Uruguayan value set. Such differences across value sets suggest that a separate mapping 

algorithm needs to be estimated. 

Spearman’s rank correlation indicated that the EQ-5D-5L anxiety/depression dimension 

produced the highest correlation with the source measures (r ≥0.50), while the mobility 

dimension produced the lowest (r ≤0.25). In addition, the EQ-5D-5L usual activities 

dimension correlated moderately (r=0.35 to 0.37) with DASS-anxiety, DASS-depression, and 

the K10 scale. Exploratory factor analysis revealed that only the EQ-5D-5L anxiety/depression 

dimension overlapped with the depression dimensions extracted for both the DASS-21 and 

the K10. The remaining four EQ-5D-5L items were mainly loaded on the fourth factor (i.e. 

physical functioning), with no high cross-loadings (>0.30).  
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In the evaluation of model performance, FRM performed best in the majority of goodness-of-

fit measures, i.e. adjusted-r2, normalized MAE and normalized RMSE, for both DASS-21 and 

K10. The only exception was for the Japanese value set, for which BB regression was the 

preferred model. Although median estimators (censored least absolute deviations and MM-

estimator) generally performed best in terms of normalized MAE, they performed poorly on 

the other two measures.  

When DASS-21 was the source measure, the best fitting regression results included 

depression subscale scores, anxiety subscale scores, and age as significant (p<0.05) predictors 

in all models. When K10 was the source measure, K10 total score and age were significant 

(p<0.05) predictors.  

 Paper 3: Causal links across health-related quality of life dimensions 

Paper 3 explored the causal pattern among the five dimensions of EQ-5D-5L. Frequency 

distribution of EQ-5D-5L health states revealed that the three most prevalent health states (i.e. 

11121, 11112, 11122) accounted for more than one third of the sample that was in a non-

11111 health state. When including other health states with decrements in symptom 

dimensions only, almost half of the sample (i.e. 47%) was accounted for. In contrast, our 

findings revealed that decrements in activity/participation dimensions are rarely reported 

without any decrements in symptoms (i.e. 1.5% of the sample). Additionally, the relationship 

between summary scores of symptom dimensions and summary scores of 

activity/participation dimensions (see Figure 3 in the appendix of Paper 3 for illustration of 

the result), indicated that increasing symptoms are associated with more problems in 

activity/participation dimensions. However, it appears that problems with 

activity/participation lag behind problems in symptom dimensions.  
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The result of the two SEM approaches applied (CTA and CFA) indicated support for Model 

3, which specifies mobility, pain/discomfort, and anxiety/depression as causal indicators, and 

self-care and usual activities as effect indicators (see Figure 4 in the appendix of Paper 3).  

The results of the CTA for Model 1 (2=1500.00, degree of freedom, df=15), Model 2 

(2=893.79, df=6), and Model 3 (2=105.84, df=3) revealed highly significant 2 estimates 

(P<0.0001). Model 3 clearly produced the lowest 2 estimates, suggesting it was the best 

model. Although the significant 2 estimate indicated that the model was a poor fit to the data, 

it is common for 2 estimates to be significant in large samples [148].  A nested CTA test that 

compared Model 2 and Model 3 revealed a highly significant 2 difference (2 diff=787.62, 

df=6, p<0.0001), favoring for the model with fewest vanishing tetrads (Model 3). 

When looking at the results of CFA, the fit indices suggested a similar satisfactory fit to the 

data. For Model 3 and Model 4, the comparative fit index and Tucker-Lewis index were 

greater than 0.95, the root-mean square error of approximation was lower than 0.08, and the 

standardized root-mean square residual was 0.12 and 0.16, respectively. However, the Akaike 

information criterion and sample-size adjusted Bayesian information criterion for Model 3 

(Akaike information criterion=20400.537; Bayesian information criterion=20434.746) was 

preferred when compared to Model 4 (Akaike information criterion=36580.861; Bayesian 

information criterion=36626.472).  

An alternative model specifying the anxiety/depression dimension as an effect indicator along 

with self-care and usual activities did not produce a good fit, either with CTA (2=927.93, 

df=6, p<0.0001) or CFA (comparative fit index=0.965; Tucker-Lewis index=0.922; root-

mean square error of approximation=0.122; standardized root-mean square residual=0.026). 

Further models investigated other specifications of the interrelationships among the three 
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causal indicators (mobility, pain/discomfort, and anxiety/depression) in Model 4. All these 

models had a poor fit compared to the chosen model.  

5 Discussion 

 Methodological issues 

5.1.1 Study design 

The MIC project is the largest international project designed to make comparisons and 

transformations across GPBMs, as well as commonly used DSMs [110]. There was a growing 

amount of literature on the dissimilarities and lack of agreement across the existing methods 

for measuring and valuing HRQoL. Thus, the motivation for the MIC project was to assess 

this discrepancy, and the project generally aims to contribute to the methodological 

development of the field of measuring HRQoL.  

The MIC project has a cross-sectional design and includes respondents from six countries 

with a diverse range of health states that are associated with major chronic diseases, as well as 

a non-diagnosed healthy group. The aim of this thesis overlaps with that of the MIC project, 

i.e. to compare and transform measures (making the MIC data appropriate for the research 

questions posed in this thesis).                                                                                                                                                                                                                               

All the three papers in this thesis are exclusively based on data from the MIC project. While 

Papers 1 and 3 included the full study sample, which included seven disease groups and a 

non-diagnosed healthy group, Paper 2 included the depression subsample only. Mean age in 

the full sample was 51.5, and sex was more equally distributed (female=52.2%). Moreover, 

respondents in the depression subsample were younger (mean age is 42) and this group 

consisted of more women (65.9%). Previous studies have also shown that the prevalence of 

depression is commonly higher among women and younger individuals [25,149].   
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The MIC project survey was administered by an online survey company, CINT, that invited 

individuals registered in their database to participate. Initially, respondents were asked about 

diagnoses they had received regarding any of the seven diseases, and based on their reply they 

were placed in either the healthy group or the disease group. A target number of respondents 

were sought for each of the seven disease groups. Respondents would then proceed to answer 

the core questionnaire containing GPBMs and DSM(s) until the quota was reached for the 

group to which they were assigned. Due to this recruitment procedure, the issue of “response 

rate” becomes less relevant. However, 83% of responses were retained after the stringent 

criteria used in the editing process were applied to remove unreliable answers, which can be 

considered quite high.  

Self-selection may be an issue, since participants choose to register in the CINT online survey 

database and subsequently the MIC project survey. Nevertheless, the high retention of 

responses after the stringent editing procedure, as well as the large sample size, lends support 

to the high quality of the data. Furthermore, there is no missing information on any of the 

variables used in this thesis. This is due, in part, to the fact that all participants were required 

to respond to each item when responding to any of the HRQoL measures.     

5.1.2 Reliability and validity of HRQoL measures 

The four GPBMs (EQ-5D, SF-6D, 15D, HUI-3) and the two DSMs (DASS-21 and K10) 

employed in this thesis have broad and extensive applications. The four GPBMs were 

selected because they were used in more than 98% of studies that measured and valued 

QALY gains [19], while the DASS-21 and K10 are among the most widely used mental 

health scales applied to identify emotional disturbance by assessing core symptoms of 

depression, anxiety, and stress. All measures have previously been validated in different 

studies, in different countries, and in different settings.  
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Reliability 

The generic and disease-specific measures applied in this study have shown satisfactory 

reliability in previous studies, as well as in this thesis. Reliability refers to the overall 

consistency of a measure [1]. Three types of consistency should be considered: test-retest 

reliability, i.e. if the measure produces similar results under the same conditions over time; 

inter-rater reliability, i.e. if the measure produces similar results across different observers 

assessing the same person; and finally internal consistency, i.e. if the measure produces 

similar results across items of the measure. While previous studies have shown evidence of 

test-retest and inter-rater reliability of GPBMs [150,151], the data from the MIC project did 

not include measurement at different time points nor from different observers’ perspectives. 

However, internal consistency, commonly measured by Cronbach’s alpha, indicated the 

consistency of individuals’ responses across the items of a measure. In Table 4, except for 

HUI-3, all measures had a Cronbach’s alpha coefficient above 0.80, which is indicative of 

good internal consistency [152]. The lower alpha coefficient produced by HUI-3 may be due 

to the definition of health that is used in its development. Indeed, the HUI-3 does not focus on 

“beyond the skin aspects of health” and mainly assesses impairments of body functions and 

disability. This may lead to lower inter-item correlations, and consequently a lower Cronbach 

alpha [57].  

Validity 

A valid measurement scale measures what it is intended to measure, which cannot be 

established by high reliability alone [152]. Important aspects of validity are content and 

construct validity. Content validity is the extent to which a measure covers the health 

dimensions of interest and is sufficiently sensitive to change [152]. Convergent and 

discriminant validity are the two subtypes of validity that make up construct validity.  
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 Table 4. Reliability and validity of HRQoL measures  

Note. Full sample applied above midline (N=7933); Depression subsample applied below midline (N=917). 

MH=mental health; RE=role emotional; SF=social function; VT=vitality; BP=bodily pain; RP=role physical; 

PF=physical functioning; GH=general health.  
aKruskal-Wallis H test statistics to test  known-group validity across education levels (1=High school; 

2=Diploma;3=University).  
bAmong the four GPBMs, the highest correlation coefficients for SF-6D should be expected, given it is a “short-

form” of the full SF-36. 

*All Pearson correlation coefficients are significant at p<0.001. 

 

Convergent validity refers to the degree to which a measure correlates positively with a 

theoretically similar measure, while discriminant validity is the extent to which a measure 

does not correlate with scores on measures that are conceptually distinct [152]. 

In this thesis, content and convergent validity were assessed by investigating how the GPBMs 

and DSMs correlated with the eight health dimensions of the SF-36. The GPBMs produced 

moderate to large correlations across SF-36 subscales, while for DSMs, large correlations 

were produced with the SF-36 mental health dimension, and weaker correlations with other 

SF-36 dimensions e.g. physical functioning and bodily pain. The weaker correlations for the 

DSMs with the physical health dimensions of the SF-36 are indicative of discriminant 

validity. As seen in the last column of Table 4, discriminant validity was also indicated by the 

ability of the measures to discriminate between known groups (education levels).  

 SF-36 subscales*   

Measures MH RE SF VT BP RP PF GH 

Cronbach's 

α 

Kruskal-Wallisa 

2        p-level 

EQ-5D-5L 0.57 0.48 0.65 0.62 0.71 0.55 0.70 0.63 0.81 68.209 0.0001 

SF-6Db 0.71 0.70 0.80 0.76 0.73 0.71 0.67 0.69 0.84 47.696 0.0001 

HUI-3 0.60 0.48 0.64 0.63 0.66 0.54 0.67 0.63 0.69 119.515 0.0001 

15D 0.62 0.53 0.68 0.72 0.69 0.61 0.71 0.73 0.88 87.256 0.0001 

DASS-D 0.73 0.40 0.55 0.55 0.24 0.27 0.27 0.41 0.92 14.767 0.0006 

DASS-A 0.58 0.33 0.46 0.37 0.33 0.33 0.35 0.41 0.84 22.863 0.0001 

DASS-S 0.60 0.33 0.42 0.40 0.24 0.25 0.23 0.35 0.86 12.979 0.0015 

K10 0.81 0.45 0.61 0.59 0.33 0.36 0.35 0.47 0.92 18.366 0.0001 
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Some studies have also revealed the validity of the GPBMs (for instance see Finch et al. [153] 

and Richardson et al. [17]). Although there is no gold standard that HRQoL measures can be 

compared with, the validity of measures applied in this thesis was acceptable, which was 

supported by evidence in the literature.  

 Discussion of results 

The major aim of this thesis was to provide a better understanding of GPBMs used in 

economic evaluations to assign health state utilities, with particular emphasis on the most 

widely used measure, the EQ-5D. Paper 1 focused on the comparability across four GPBMs: 

the EQ-5D-5L, SF-6D, HUI-3, and 15D. Quantile regressions revealed that the EQ-5D-5L has 

strong non-linear relationships with all the other GPBMs, and this finding was consistent 

across the seven disease groups. For instance, the MDDC (i.e. the ratio between the highest 

and the lowest coefficients across quantiles) ranged from 2.05 to 3.39. This indicates that 

across the full sample and subsamples, the coefficient estimated at the 0.1 quantile was at 

least twice the size of the coefficient estimated at the 0.9 quantile. These findings support 

other studies that have indicated non-linear relationships across GPBMs [23,24,92]. The 

scaling effect could be a key factor in explaining the observed non-linear relationship [16]. 

For instance, a recent study by Whitehurst et al. [93] compared EQ-5D and SF-6D responses 

from seven patient datasets using published DCE-derived scoring algorithms against previous 

conventional EQ-5D-3L and SF-6D index scores, and found that SF-6D produced 

consistently lower values for severe health states, which is contrary to previous findings. This 

suggests that the ‘floor effect’, or the worst health states, in SF-6D compared to EQ-5D-3L 

can be explained by the technique used for valuation, while the remaining 

incommensurability is due to differences in the descriptive system [1]. Furthermore, we 
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confirmed earlier findings from Seymour et al. [92] that the effect of the EQ-5D differs at 

different parts of the SF-6D distribution. While the degree of non-linearity in the current 

paper was less for the SF-6D than for the EQ-5D-5L, the non-linearity was still replicated 

across all disease groups, with only one exception in the depression subsample, where linear 

relationships were indicated between the SF-6D and both the 15D and HUI-3. This implies 

that there may be a constant exchange rate between the SF-6D and 15D as well as the HUI-3, 

irrespective of severity levels.   

Compared to the OLS coefficient, quantile regression revealed that the consequences of 

applying OLS regression when estimating mapping algorithms across all GPBMs would over-

predict utility for respondents with poor health and under-predict utility for respondents with 

moderate to good health, except for the SF-6D where this tendency is reversed. This may be 

because SF-6D is more sensitive among respondents with better health (only 1.4% have 

utility=1), as well as the lesser preference weights attached to the more severe health states as 

compared to others. In general, the problem of overestimating utilities in respondents with 

poor health when mapping across GPBMs persists [24]. Our results further strengthen the 

claim that non-linear associations are important to take into account when comparing 

healthcare programs whose effectiveness have been measured by different GPBMs. 

In Paper 2, the primary aim was to develop mapping algorithms to estimate EQ-5D-5L health 

state utility values from two widely used depression-specific measures. The findings showed 

that the mapping algorithms differed across country-specific value sets, which indicated that 

the strength of preferences for the different health dimensions in EQ-5D-5L is culture-

dependent. Thus, country-specific mapping algorithms should be applied to estimate utilities 

for a particular country.   
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An earlier study mapped the DASS-21 and K10 onto EQ-5D-5L using the interim UK cross-

walk value set [102]. Although both studies applied the same data, the results were not 

directly comparable due to the difference in value sets, regression models, and choice of 

covariates. In order to better compare the studies, the MAE and RMSE used therein were 

normalized, as they were in the current study. This produced a normalized MAE and 

normalized RMSE of 0.119 and 0.159, respectively, for the DASS-21, and 0.115 and 0.154, 

respectively, for the K10. In the previous study, the OLS model was preferred over the 

generalized linear model. In the current study, the FRM produced lower estimates for both the 

DASS-21 and the K10, indicating better predictive performance when the English value set 

was applied. Furthermore, among the eight country-specific value sets in the current study, 

prediction accuracy was best when using the Uruguayan value set for both the DASS-21 

(normalized MAE=0.099; normalized RMSE=0.138) and the K10 (normalized MAE=0.097; 

normalized RMSE=0.138) and worst for Canada for both the DASS-21 (normalized 

MAE=0.132; normalized RMSE=0.175) and the K10 (normalized MAE=0.128; normalized 

RMSE=0.175).  

The FRM showed the best fit in all cases except Japanese values, for which BB regression 

model was preferred. It is not surprising that different models may fit different country-

specific value sets. Mapping is data-dependent, which is one of the key reasons why different 

econometric methods need to be tested and then based on goodness-of-fit estimates to identify 

the optimal one. The possible explanation for the choice of different model for the Japanese 

value set could be dissimilarities in the distribution of the preference pattern compared to 

other country-specific value sets. A previous study compared value sets from seven countries 

(four Western, two Asian, and one South American) and found that the Western value sets 

had more or less a similar pattern [154]. This resemblance in preference pattern could explain 

why the Western value sets fit the same model. On the other hand, this observation may 
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suggest that to derive an optimal mapping algorithm, different econometric techniques should 

be considered. 

Paper 3 focused on the causal and effect nature of EQ-5D dimensions. The aim was to 

develop a conceptual framework based on theoretical models suggested by the International 

Classification of Functioning, Disability and Health and Wilson and Clearly [155,156]. 

Specifically, symptom/impairments dimensions are causal indicators, while 

functioning/activities or participation dimensions are effect indicators.   

Investigation of commonly reported EQ-5D-5L health states in the current study revealed that 

decrements in symptom dimensions without decrements in activity/participation dimensions 

are common, while the opposite is rare. This finding suggest that problems with 

activity/participation are prevalence dependent on symptoms. Similar patterns of commonly 

reported EQ-5D-5L health states has been shown by others [157]. The suggestion that 

symptoms precedes problems in activity/participation dimensions was also supported by our 

result showing that increasing summary scores of symptom dimensions are associated with 

increasing summary scores of activity/participation dimensions, but that problems in the latter 

seem to lag behind.   

The result of CTA and CFA suggested that self-care and usual activities acted as effect 

indicators of HRQoL; and mobility, pain/discomfort, and anxiety/depression appeared to be 

causal in nature, driving changes in self-care and usual activities. Previous research has 

suggested that mobility may have an intermediate role [108], and while our results indicated 

that this is plausible, the model specifying mobility as causal produced a better fit.  

Studies have indicated that anxiety/depression and emotional functioning are effect indicators 

[108,158]. However, our results suggested that the anxiety/depression dimension is a causal 

indicator. There are reasons to believe that the role of anxiety/depression might vary 
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depending on the severity of these conditions. If the depression or anxiety is moderate or 

severe (levels 3-5), it could reflect more of a clinical symptom that may cause dysfunctions in 

self-care and usual activities that typically require treatment. If the condition is mild (level 2), 

it could be more subjective well-being, which may vary according to personality traits (e.g. 

optimist versus pessimist; level of neuroticism). Further investigation into the various disease 

groups might have indicated that the causal nature of anxiety/depression is disease-specific.  

6 Policy implications and future research 

 Policy implications 
 

The findings of this thesis have important implications for researchers and decision-makers 

involved in the economic evaluation of healthcare interventions and in setting priorities for 

the allocation of healthcare resources. Paper 1 showed that the result of a health intervention 

depends on the GPBMs used, implying that decision-makers would have a problem 

comparing QALY gains calculated with different GPBMs. We observed clear non-linear 

relationships, implying that the same exchange rate should not be applied across all levels of 

the utility scale.  

Paper 2 indicated that mapping the DASS-21 or the K10 onto the EQ-5D-5L is feasible when 

applying any of the country-specific value sets. The best-performing regression models imply 

that researchers should account for non-linearity of the data when performing mapping, as 

well as consider the model's appropriateness for bounded data. Thus, in the absence of EQ-

5D-5L utility, the preferred mapping model can adequately convert depression-specific scores 

into utility values. Due to the high prevalence and early onset of depression, enabling 

economic evaluation of clinical studies is very policy-relevant [159].  
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The findings of Paper 3 indicated that the EQ-5D-5L comprises both causal and effect 

indicators of HRQoL. Knowledge about the causal relationship among dimensions is 

important for researchers involved in developing new, and extending existing GPBMs (e.g. 

bolt-ons for EQ-5D). While adding effect indicators (i.e. social relationships) may make the 

EQ-5D more applicable across sectors (e.g. social care), adding a symptom indicator may 

make it more applicable to health care. However, focusing on effect indicators and the 

participation part of the health spectrum may be more in line with the aim of a generic 

measure, since it is not specific to particular health conditions. Nevertheless, sensitive 

GPBMs should probably comprise both types of dimensions. Whether causal or effect 

indicators should be emphasized is a question that is open for further research.  

 Future research 

In the absence of external data, existing datasets are commonly split into an estimation dataset 

and a validation dataset. However, mapping algorithms should ideally be validated using an 

external dataset that has not been used for estimation. Future studies should investigate the 

merit of the mapping results produced in this thesis by applying external data.  

Based on the WHO’s definition of health, it has been suggested that health economic 

evaluations should put more emphasis on the mental and social dimensions of health. An 

interesting question for future studies is whether a GPBM like the EQ-5D should broaden its 

operationalization of the HRQoL concept in the direction of effect dimensions (e.g. social 

connections/network or general well-being) or in the direction of causal dimensions (e.g. 

tiredness). Furthermore, since anxiety and depression are highly prevalent disorders and the 

most commonly reported comorbidities that more often occur together than alone [160,161], 

another solution that may improve the sensitivity of the EQ-5D-5L in mental health would be 

to split anxiety and depression into two distinct dimensions in the descriptive system.  
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7 Conclusion 

In conclusion, this thesis examined the degree of non-linear relationships across four GPBMs 

(EQ-5D-5L, SF-6D, HUI-3, and 15D) and then focused on the most widely used utility 

measure, the EQ-5D-5L, by i) mapping from depression-specific measures (DASS-21 and 

K10) onto EQ-5D-5L utilities; and ii) exploring the internal structure of the EQ-5D-5L 

descriptive system.  

The clear non-linear relationships observed across GPBMs make it difficult to compare 

QALY gains from studies that have applied different measures. Exchange rates that are scale-

dependent can convert a change in utility on a given measure into a corresponding utility 

change on another measure, which may enable a better comparison of the cost-effectiveness 

of competing health interventions that have been assessed by different GPBMs. Thus, 

accounting for non-linear relationships will increase the validity of such comparisons. 

The preferred mapping algorithm between depression-specific measures and EQ-5D-5L 

utility values adequately predict mean health state utility values, which facilitates economic 

evaluations of mental health interventions. Since different EQ-5D-5L value sets produce 

different utility values, especially at the lower end, the country-specific mapping algorithm is 

a better option to reflect the preference in a particular country. Thus, in the absence of utility 

data, the mapping algorithms enable the conversion of DASS-21 or K10 scores to a generic 

outcome metric like QALYs.   

A conceptual framework was developed based on theoretical models of HRQoL, which 

depicted the five dimensions in the EQ-5D-5L descriptive system as causal or effect 

indicators of HRQoL. Empirical testing of this framework supported that the EQ-5D-5L 

comprises causal indicators (mobility, pain/discomfort, anxiety/depression) and effect 

indicators (self-care and usual activities) of HRQoL.   
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10 Appendices 

Appendix 1: Generic preference-based measures applied  

SF-6D classification system (derived from SF-36) 

Physical Functioning     
 My health does not limit me in vigorous activities     
 My health limits me a little in vigorous activities     
 My health limits me a little in moderate activities     
 My health limits me a lot in moderate activities     
 My health limits me a little in bathing and dressing     
 My health limits me a lot in bathing and dressing     

Role limitations    
 I have no problems with my work or other regular daily activities as a result of my 

physical health or any    emotional problems    
 I am limited in the kind of work or other activities as a result of my physical health    
 I accomplish less than I would like as a result of emotional problems     
 I am limited in the kind of work or other activities as a result of my physical health and 

accomplish less than I would like as a result of emotional problems    
Social functioning    

 My health limits my social activities none of the time     
 My health limits my social activities a little of the time     
 My health limits my social activities some of the time    
 My health limits my social activities most of the time    
 My health limits my social activities all of the time    

Pain     
 I have no pain 

 I have pain but it does not interfere with my normal work (both outside the home and housework) 

 I have pain that interferes with my normal work (both outside the home and housework) a little bit 

 I have pain that interferes with my normal work (both outside the home and housework) moderately 

 I have pain that interferes with my normal work (both outside the home and housework) quite a bit 

 I have pain that interferes with my normal work (both outside the home and housework) extremely 

Mental health     
 I feel tense or downhearted and low none of the time     
 I feel tense or downhearted and low a little of the time     
 I feel tense or downhearted and low some of the time     
 I feel tense or downhearted and low most of the time    
 I feel tense or downhearted and low all of the time    

Vitality     
 I have a lot of energy all of the time    
 I have a lot of energy most of the time    
 I have a lot of energy some of the time    
 I have a lot of energy a little of the time    
 I have a lot of energy none of the time    

HUI-3 classification system (Please select the answer for each attribute that is correct for you) 

Vision                       

 Able to see well enough to read ordinary newsprint and recognize a friend on the other side of the street, 

without glasses or contact lenses. 

 Able to see well enough to read ordinary newsprint and recognize a friend on the other side of the street, 

but with glasses. 

 Able to read ordinary newsprint with or without glasses but unable to recognize a friend on the other side 

of the street, even with glasses. 

 Able to recognize a friend on the other side of the street with or without glasses but unable to read 

ordinary newsprint, even with glasses. 

 Unable to read ordinary newsprint and unable to recognize a friend on the other side of the street, even 

with glasses. 



 Unable to see at all. 

Hearing 

 Able to hear what is said in a group conversation with at least three other people, without a hearing aid. 

 Able to hear what is said in a conversation with one other person in a quiet room without a hearing aid, 

but requires a hearing aid to hear what is said in a group conversation with at least three other people. 

 Able to hear what is said in a conversation with one other person in a quiet room with a hearing aid, and 

able to hear what is said in a group conversation with at least three other people, with a hearing aid. 

 Able to hear what is said in a conversation with one other person in a quiet room, without a hearing aid, 

but unable to hear what is said in a group conversation with at least three other people even with a hearing 

aid. 

 Able to hear what is said in a conversation with one other person in a quiet room with a hearing aid, but 

unable to hear what is said in a group conversation with at least three other people even with a hearing aid. 

 Unable to hear at all. 

Speech 
 Able to be understood completely when speaking with strangers or people who know me well. 

 Able to be understood partially when speaking with strangers but able to be understood completely when 

speaking with people who know me well. 

 Able to be understood partially when speaking with strangers or people who know me well. 

 Unable to be understood when speaking with strangers but able to be understood partially by people who 

know me well. 

 Unable to be understood when speaking to other people (or unable to speak at all). 

Ambulation 

 Able to walk around the neighbourhood without difficulty, and without walking equipment. 

 Able to walk around the neighbourhood with difficulty, but does not require walking equipment or the 

help of another person. 

 Able to walk around the neighbourhood with walking equipment, but without the help of another person. 

 Able to walk only short distances with walking equipment, and requires a wheelchair to get around the 

neighbourhood. 

 Unable to walk alone, even with walking equipment. Able to walk short distances with the help of another 

person, and requires a wheelchair to get around the neighbourhood. 

 Cannot walk at all. 

Dexterity 

 Full use of two hands and ten fingers. 

 Limitations in the use of hands or fingers, but does not require special tools or help of another person. 

 Limitations in the use of hands or fingers, is independent with use of special tools (does not require the 

help of another person). 

 Limitations in the use of hands or fingers, requires the help of another person for some tasks (not 

independent even with the use of special tools). 

 Limitations in the use of hands or fingers, requires the help of another person for most tasks (not 

independent even with the use of special tools). 

 Limitations in the use of hands or finders, requires the help of another person for all tasks (not 

independent even with the use of special tools). 

Emotion            

 Happy and interested in life.                       

 Somewhat happy.                       

 Somewhat unhappy.                       

 Very unhappy.                       

 So unhappy that life is not worthwhile.                       

Cognition            

 Able to remember most things, think clearly and solve day to day problems. 

 Able to remember most things, but have a little difficulty when trying to think and solve day to day 

problems. 

 Somewhat forgetful, but able to think clearly and solve day to day problems.            

 Somewhat forgetful, and have a little difficulty when trying to think or solve day to day problems. 

 Very forgetful, and have great difficulty when trying to think or solve day to day problems. 

 Unable to remember anything at all, and unable to think or solve day to day problems.  

Pain            

 Free of pain and discomfort.                       

 Mild to moderate pain that prevents no activities.                       

 Moderate pain that prevents a few activities.                       



 Moderate to severe pain that prevents some activities.                       

 Severe pain that prevents most activities.                       

15D (Select the answer which best describes your present health status) 

Mobility                        

 I am able to walk normally (without difficulty) indoors, outdoors and on stairs.  

 I am able to walk without difficulty indoors, but outdoors and/or on stairs I have slight difficulties. 

 I am able to walk without help indoors (with or without an appliance), but outdoors and/or on stairs only 

with considerable difficulty or with help from others.  

 I am able to walk indoors only with help from others.       
      

 I am completely bed-ridden and unable to move about.            
 

Vision      
     

 

 I see normally, i.e. I can read newspapers and TV text without difficulty (with or without glasses).  

 I can read papers and/or TV text with slight difficulty (with or without glasses).  

 I can read papers and/or TV text with considerable difficulty (with or without glasses).  

 I cannot read papers or TV text either with glasses or without, but I can see enough to walk about without 

guidance.  

 I cannot see enough to walk about without a guide, i.e. I am almost or completely blind.  
            

Hearing      
      

 I can hear normally, i.e. normal speech (with or without a hearing aid).  

 I hear normal speech with a little difficulty.  

 I hear normal speech with considerable difficulty; in conversation I need voices to be louder than normal. 

 I hear even loud voices poorly; I am almost deaf.   
 I am completely deaf.    

Breathing                 
 I am able to breathe normally, i.e. with no shortness of breath or other breathing difficulty.   

 I have shortness of breath during heavy work or sports, or when walking briskly on flat ground or slightly 

uphill.   

 I have shortness of breath when walking on flat ground at the same speed as others my age.   

 I get shortness of breath even after light activity, e.g. washing or dressing myself.   

 I have breathing difficulties almost all the time, even when resting.  

Sleeping                 
 I am able to sleep normally, i.e. I have no problems with sleeping 

 I have slight problems with sleeping, e.g. difficulty in falling asleep, or sometimes waking at night.  

 I have moderate problems with sleeping, e.g. disturbed sleep, or feeling I have not slept enough.  

 I have great problems with sleeping, e.g. having to use sleeping pills often or routinely, or 

usually waking at night and/or too early in the morning.   
 I suffer severe sleeplessness, e.g. sleep is almost impossible even with full use of sleeping pills, 

or staying awake most of the night.   
Eating      

      
 I am able to eat normally, i.e. with no help from others.  

 I am able to eat by myself with minor difficulty (e.g. slowly, clumsily, shakily, or with special 

appliances).  

 I need some help from another person in eating.  

 I am unable to eat by myself at all, so I must be fed by another person.  

 I am unable to eat at all, so I am fed either by tube or intravenously 

Speach            

 I am able to speak normally, i.e. clearly, audibly and fluently.  

 I have slight speech difficulties, e.g. occasional fumbling for words, mumbling, or changes of pitch.  

 I can make myself understood, but my speech is e.g. disjointed, faltering, stuttering or stammering.  

 Most people have great difficulty understanding my speech.  

 I can only make myself understood by gestures.  

Elimination      
      

 My bladder and bowel work normally and without problems.  

 I have slight problems with my bladder and/or bowel function, e.g. difficulties with urination, or loose or 

hard bowels.  

 I have marked problems with my bladder and/or bowel function, e.g. occasional 'accidents', or severe 

constipation or diarrhea.  



 I have serious problems with my bladder and/or bowel function, e.g. routine 'accidents', or need of 

catheterization or enemas.  

 I have no control over my bladder and/or bowel function.       

Usual Activities                  

 I am able to perform my usual activities (e.g. employment, studying, housework, free-time activities) 

without difficulty.  

 I am able to perform my usual activities slightly less effectively or with minor difficulty.   

 I am able to perform my usual activities much less effectively, with considerable difficulty, or not 

completely.  

 I can only manage a small proportion of my previously usual activities.   

 I am unable to manage any of my previously usual activities.   

Mental Function                  

 I am able to think clearly and logically, and my memory functions well  

 I have slight difficulties in thinking clearly and logically, or my memory sometimes fails me.  

 I have marked difficulties in thinking clearly and logically, or my memory is somewhat impaired.  

 I have great difficulties in thinking clearly and logically, or my memory is seriously impaired.  

 I am permanently confused and disoriented in place and time.  

Discomfort and Symtoms                  

 I have no physical discomfort or symptoms, e.g. pain, ache, nausea, itching etc.  

 I have mild physical discomfort or symptoms, e.g. pain, ache, nausea, itching etc 

 I have marked physical discomfort or symptoms, e.g. pain, ache, nausea, itching etc.  

 I have severe physical discomfort or symptoms, e.g. pain, ache, nausea, itching etc 

 I have unbearable physical discomfort or symptoms, e.g. pain, ache, nausea, itching etc.  

Depression            

 I do not feel at all sad, melancholic or depressed.            

 I feel slightly sad, melancholic or depressed.             

 I feel moderately sad, melancholic or depressed.             

 I feel very sad, melancholic or depressed.               

 I feel extremely sad, melancholic or depressed.             

Distress            

 I do not feel at all anxious, stressed or nervous.            

 I feel slightly anxious, stressed or nervous.             

 I feel moderately anxious, stressed or nervous.             

 I feel very anxious, stressed or nervous.             

 I feel extremely anxious, stressed or nervous.             

Vitality            

 I feel healthy and energetic.                      

 I feel slightly weary, tired or feeble.                       

 I feel moderately weary, tired or feeble.  
 I feel very weary, tired or feeble, almost exhausted.                       

 I feel extremely weary, tired or feeble, totally exhausted.  
Sexual Activity            

 My state of health has no adverse effect on my sexual activity. 

 My state of health has a slight effect on my sexual 

activity.  
           

 My state of health has a considerable effect on my sexual activity.  

 My state of health makes sexual activity almost 

impossible. 
           

 My state of health makes sexual activity impossible.            

 

  



Appendix 2: Disease-specific instruments applied 

DASS-21  

Please read each statement and circle a number 0, 1, 2 or 3 which indicates how much the statement 

applied to you over the past week. 
 

The rating scale is as follows:  

0 Did not apply to me at all  

1 Applied to me to some degree, or some of the time  

2 Applied to me to a considerable degree or a good part of time  

3 Applied to me very much or most of the time 

1. I found it hard to wind down 
0 

  
1 

  
2 

  
3 

2. I was aware of dryness of my mouth 
0 

  
1 

  
2 

  
3 

3. couldn't seem to experience any positive feeling at all 
0 

  
1 

  
2 

  
3 

4. I experienced breathing difficulty (eg, excessively rapid breathing, 

breathlessness in the absence of physical exertion) 

0 
  

1 
  

2 
  

3 

5. I found it difficult to work up the initiative to do things 
0 

  
1 

  
2 

  
3 

6. I tended to over-react to situations 
0 

  
1 

  
2 

  
3 

7. I experienced trembling (eg, in the hands) 
0 

  
1 

  
2 

  
3 

8. I felt that I was using a lot of nervous energy 
0 

  
1 

  
2 

  
3 

9. I was worried about situations in which I might panic and make a fool of 

myself 

0 
  

1 
  

2 
  

3 

10. I felt that I had nothing to look forward to 
0 

  
1 

  
2 

  
3 

11. I found myself getting agitated 
0 

  
1 

  
2 

  
3 

12. I found it difficult to relax 
0 

  
1 

  
2 

  
3 

13. I felt down-hearted and blue 
0 

  
1 

  
2 

  
3 

14. I was intolerant of anything that kept me from getting on with what I was 

doing  

0 
  

1 
  

2 
  

3 

15. I felt I was close to panic 
0 

  
1 

  
2 

  
3 

16. I was unable to become enthusiastic about anything 
0 

  
1 

  
2 

  
3 

17. I felt I wasn't worth much as a person 
0 

  
1 

  
2 

  
3 

18. I felt that I was rather touchy 
0 

  
1 

  
2 

  
3 

19. I was aware of the action of my heart in the absence of physical exertion (eg, 

sense of heart rate increase, heart missing a beat) 

0 

  

1 

  

2 

  

3 

20. I felt scared without any good reason 
0 

  
1 

  
2 

  
3 

21. I felt that life was meaningless 
0 

  
1 

  
2 

  
3 
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These questions deal with the past 4 weeks.     
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1. In the past 4 weeks, about how often did you feel tired 

for no good reason? 
                  

2. In the past 4 weeks, about how often did you feel 

nervous? 
                  

3. In the past 4 weeks, about how often did you feel so 

nervous that nothing could calm you down?                   

4. In the past 4 weeks, about how often did you feel 

hopeless?                   

5. In the past 4 weeks, about how often did you feel 

restless or fidgety?                   

6. In the past 4 weeks, about how often did you feel so 

restless that you could not sit still?                   

7. In the past 4 weeks, about how often did you feel 

depressed?                   

8. In the past 4 weeks, about how often did you feel that 

everything was an effort?                   

9. In the past 4 weeks, about how often did you feel so sad 

that nothing could cheer you up?                   

10. In the past 4 weeks, about how often did you feel 

worthless?                   
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