LRoM°

DISSERTATION FOR THE DEGREE OF
MASTER OF SCIENCE IN COMPUTER SCIENCE

SUPER SENSOR NETWORK

BARD FJUKSTAD

ADVISORS

OTTO ANSHUS
JOHN MARKUS BJ®RNDALEN

FACULTY OF SCIENCE
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF TROMS®

MaAy, 2008

Preface

This dissertation is a product of many good discussions with my advisors, Otto
Anshus and John Markus Bjgrndalen. Also the good residents at the Display
Wall lab at the University of Tromsg has contributed significantly to the well
being and progress during this work. The creative collection of PhD students
that is part of this lab, and what they achieve, is truly amazing.

This dissertation would also never have been possible without the help and
support of my family.

Abstract

This dissertation studies composing a super sensor network from the combina-
tion of three functional sensor networks; A Sensor data producing network, a
sensor data computing network and a sensor controlling network. The target
devices are today labeled as large sensor nodes. The communication are based
on an IP network using HT'TP as the main protocol.

Bonjour is used for service discovery, with some adjustments for technical
reasons. This allows for naming and location of available services without cen-
tralized servers, and it is implementable in small devices.

A super sensor network for meteorological observations is emulated using
a computer cluster. The emulated measurements are accessed from stations
available from observation collection systems accessible on the Internet. Images
from web cameras are one kind of observation type used. The implemented
system uses Python for rapid prototyping and for support for multiple operating
systems.

This dissertation demonstrates that the selected technology and architecture
may handle some of the demands in a sensor network, and that the architecture
gives new opportunities on how to handle updates and sensor network control.

The implemented system also demonstrates that using standard Internet
protocols can make access to services in the sensor network easy. A web browser
may become the preferred user interface for controlling and accessing all parts of
the sensor network, as it has for controlling printers and simple network devices.

Keywords

nsor networ verlay networ in sensor networ rvi iscover n-
Sensor network, Overlay network, IP in sensor networks, Service discovery, Bo
jour, Zeroconf, Meteorological observations, A-synoptic observations.

Contents

1

2

Introduction

The basic thesis

Emulation

3.1 Hardwareo
3.2 Communication
3.3 Security
3.4 Failure models for the emulated system
3.5 Statereporting
3.6 Updatepolicy
3.7 Scale
3.8 Naming e
3.9 Synchronization oL
3.10 Data storageo

3.11 The emulated station compared with other sensor networks

Real world sensor nodes

4.1 Scale
4.2 Datastorage L
4.3 Karl XII'Island
4.4 Detail of the station,
4.4.1 Observing frequency
442 Storage
4.4.3 Communications
4.4.4 Data computing systemo
4.4.5 Physical constraintso L.
4.5 Failuremodels Lo
4.6 Road weather stations L.
Architecture
5.1 Thenetworks
5.1.1 Data producing networko
5.1.2 Data computing network00
5.1.3 Sensor control networko
5.2 Emulation controlo
5.3 Client - Servero
5.4 Communication and Protocols
5.4.1 Softwareupdate
042 Routing oo
5.5 Partitioning of the sensor network
5.5.1 Time e
5.6 Service discoveryo
5.6.1 Coordination of control
5.7 The components

11

13
13
13
14
14
15
15
15
15
15
16

19
19
20
21
22
22
22
22
23
23
23
24

7

5.8 The external interface L. 31
5.9 Scale 32
Design 35
6.1 Communications 35
6.1.1 Protocols 36
6.2 The data producing network o000 36
6.21 Nodestartup 36
6.2.2 Node Monitoring oo 37
6.2.3 Sensor Data protocol 37
6.24 Datadelivery Lo o 39
6.2.5 Data forwarding 0. 39
6.26 Datatypes 39
6.2.7 Software updates 39
6.2.8 Software update forwardingo 40
6.3 The sensor data computing network 40
6.3.1 Sensor Data Storage 40
6.3.2 Cooperatingnodes 41
6.3.3 Communicationo 41
6.4 The control network oL 42
6.4.1 Starting the emulated sensor network 43
6.4.2 Registering newly started nodes 43
6.4.3 Control functions that needs protocol support 43
6.4.4 Status monitoring oL Lo 44
Implementation 45
7.1 Programming environment 45
7.2 Threads vs Processes L. 45
7.3 Datatypeso 46
74 Local datastorage 47
74.1 Problemsand bugs oo 47
7.5 Naming L e 48
7.6 HTTP server 48
77 Time . ..o 48
7.8 Sensor Lookup Lo 49
7.9 Node monitoring and structure of a data producing node 02
7.9.1 Size of the software at eachnode 53
7.10 Design of Sensor Data Storagenode 53
7.10.1 Communication 54
7.11 Sensor controlling networko 0oL o6
7.11.1 Emulation start, stop and update 56
7.11.2 "External" Software updates 57
7.11.3 Sensor controlnode 57
7.12 Startup sequenceol o8
7.13 Data Viewer Lo 58
7.14 Ttems previously described but not fully implemented 60

8 Experiments

8.1 Super Sensor Network experiment

9 Related work
9.1 Operating systems
9.2 Virtual machines
9.3 Security
9.4 Middleware
95 REST
9.6 Software update.

9.7 Existing service discovery functionality in regular networks

9.71 JINT
972 JXTA
9.73 Bonjour
974 Avahi

9.8 Example of birds nests monitoring application

9.9 Video surveillance
9.10 Tapestry

10 Discussion
10.1 Failure Models
10.2 Communication
10.3 Routing
10.4 Communication overhead . . .
10.5 Coordination of control
10.6 Service discovery
10.7 The worm update
10.8 Nodestate

10.9 Bandwidth requirements vs. The number of Sensor Computation

nodes
10.10Conclusion

11 Future work
11.1 Air quality and road monitoring

Appendix A
Appendix B

Appendix C

61
62

65
65
65
65
66
67
68

69
69
70
71
71
71
72

73
73
73
73
73
74
75
75
75

76
77

79
79

85

85

87

List of Figures

1

w

S Ot

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

From ON World Inc. Study: Wireless Sensor Network Adoption
Inhibitors, 2005 as cited by [1]
Mlustration of 4DVAR. From ECMWF
Intelligence-added surveillance. from [2]
Proposed architecture of the Super Sensor Network and is Func-
tional Sensor Networks
Tllustration of the meteorological observing network. From WMO
Typical global station coverage at one specific date and hour,
from ECMWEF
Map of Karl XII'Island
Details from Karl XIT Island
The station visited by a polar bear. (©Omartin@gnejs.se
Hardware layout of the Norwegian Polar Automatic station
Example of Road weather station. ScanMatic
Example of image produced by one Road Weather station
Potential problem in node control
Architecture of a node. The functional networks are applications
running in user-space on top of operating system services and
hardware.
Sensor data producing node components
External interfaces and internal messages
The data computing network
Sensor node state chart o000
Example of sensor node configuration file.
Sensor Lookup and a Data server node available through Bonjour
Sensor Lookup HTTP server
Sensor Lookup communications 0.
Messages exchanged with the Sensor Lookup server
Data producing node with monitor
Sensor Data server, viewed from a browser
Sensor Data server with link to all stored items
Sensor controller, Tk version
Simple data viewer for image sensor data
The original image from the sensor node
The updated image from the sensor node

List of Tables

QU = W N =

Approximate number of observing stations in different networks .
Sensor lookup protocol
Experiment setup Lo L
Througput in stress-test of Sensor Computing node
Estimated load in kB/s

12
19

20
21
22
23
25
26
26
31

32
33
33
35
40
46
49
50
ol
ol
93
o4
95
26
59
63
63

1 Introduction

Wireless Sensor Networks is currently a very popular area that generates much
research. The popularity and maturity of the industry has also resulted in
actual deployments of large WSNs, i.e., in many hundreds of nodes. Many
sensor networks are deployed within industrial monitoring and in environmental
monitoring. The future may look bright as a book on the Roadmap of wireless
sensor networks state on page 1 [1]:

According to a market study performed by ON World Inc. on
Wireless Sensor Networks called "Wireless Sensor Networks - Grow-
ing Markets, Accelerating Demands" from July 2005, 127 million
wireless sensor network nodes are expected to be deployed in 2010
the growth of this market later on is expected to increase in certain
application domains.

Meteorological stations are a subset of the general class of sensor networks.
In traditional meteorological networks, the individual nodes are reporting di-
rectly to a central collecting system and not as part of a network. Traditionally,
most of the computations and all of the control have been done within the cen-
tral collection systems. In this dissertation meteorological stations will be used
as a framework for looking at architectures in sensor networks.

The need for software updates for deployed hardware/systems is often first
noticed when some error occurs in the node. A classic tale of remote updates
comes from NASA. The story found on the web [3] tells that the Mars Pathfinder
(1998) had serious priority inversion problems that caused the system to fre-
quently reset. This problem was fixed when a global parameter was set as part
of a software update from ground control on the Earth. The conditions leading
up to the fault was not anticipated before deployment. The meteorological pack-
age was thought to have a maximum rate, and software priorities and testing
was done using this rate. On site, this proved to be insufficient as the conditions
proved much more favorable and the package was able to operate at a very high
rate.

Marketing studies have also shown that size is not a major limiting factor
for deployment of sensor networks as shown in Figure 1 cited in [1]. The most
important aspect was reported to be reliability.

In meteorological networks today, is is most common to have a fixed ob-
servation frequency. This frequency is usually determined from the different
types of observing stations. World Meteorological Organization (WMO), oper-
ates a network for data exchange between countries and organizations. In the
Word Weather Watch [4] program, coordination of observation times are impor-
tant. A surface observation from a land station is called a SYNOP, from Greek
Sunoptokos meaning Together-seeing. It is important to make observations at
different places at the same time so that a common state of the atmosphere
could be analyzed.

In modern days, satellites and radars provide observations at all times, and
there exist a need for improving the control of the observing network to mach the

Node size ﬁ

Long Development |

Batteryi | J

Ease of Usei | | | | | J
Educationi | | | | | J
Standardsi | J

Reliability [| I

T T T T T T T T
0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00% 80,00%

Figure 1: From ON World Inc. Study: Wireless Sensor Network Adoption
Inhibitors, 2005 as cited by [1]

new systems. The system needs to be flexible to accommodate new types of in-
formation. On the observation-user side, new methods have emerged. ECMWF
[5] gives one example of new analysis schemas in use in the atmospheric models.
The new schemas are called "4DVAR" , where the 4th dimension reflects time
and the other three is the spatial coordinates. An illustration of this method is
given in Figure 1. This method can make use of observations outside the fixed
times. The question becomes how to manage the network nodes and how to use
the networks in an efficient manner dependent on the actual situation.

Including new forms of observations like images or video, increases the need
for local processing of data to reduce the need for bandwidth. In [2] a Camera
mote for intelligent surveillance is developed. Figure 3 show how bandwidth
requirements drop as the level of processing (Intelligence) is increased. Where
to place this processing is dependent on many parameters. Local sensor nodes
may have severe restrictions in available electrical power and may not support
all forms of processing. Limited bandwidth in the communication network may
also prohibit moving observations (images or video) between nodes. What level
of processing that are needed is not always predictable on deployment of the
sensor network, and may need to be adjusted as conditions change.

>

i
e
" analysis .
.
corrected
/ I s forecast
-~
-~

L)

3z 67 oz 12z 152 time

Y

assimilation windcw

Figure 2: Illustration of 4DVAR. From ECMWF

Assimilitation The process of creating an analysis from a first guess and ob-
servations.

Forecast Numerical forecast from the atmospheric model.
obs Observed values at specific times.

z The clock is always in UTC time. Previously GMT, also known as Zulu, z.

Level of Intelligence Bandwidth Requirement
| Object description |
medium | Object detection | medium
none high

Figure 3: Intelligence-added surveillance. from [2]

10

2 The basic thesis

This dissertation will examine the overall structure and architecture of a sen-
sor network and the separation of concerns into functional networks. A super
sensor network is defined as a cooperating collection of functional networks, as
illustrated in figure 4. The following functional networks are identified as part
of a Super Sensor Network:

e Sensor Data Producing Network. This is the network of nodes that
are producing raw observations, either on an individual basis or as a co-
operation between several nodes.

e Sensor Data Computing Network. This is a network of cooperating
processes on nodes that takes the raw observations and process these into
elements wanted by other parts of the network or external users.

o System Control Network. This network must organize the sensor net-
work such that resources are well managed and that nodes are kept up-
dated at all times.

The basic concept is that the physical placement of each functional com-
ponent may be adjusted during the lifetime of the sensor network. This also
includes the Sensor data producing nodes, as they are fixed in position on deploy-
ment, but not in capabilities. All nodes are not part of all functional networks.

11

i User control 5

User data 'eStS User conttrol
request requests

System Control Network

/ Requests Control

/ / Signals

Sensor Data Computing Network

Control
Signals

Sensor data are

Functional sent from sensor data
producers to
Networks\ processing network

N

~ Sensor Data Producing Network
—
— =

Processes mapped
onto a cluster of

computers Processes mapped Processes mapped

onto a cluster of onto a cluster of
computers computers

Physical Hardware

O I I I B

Implemented by a clusters of PCs

Figure 4: Proposed architecture of the Super Sensor Network and is Functional
Sensor Networks

12

3 Emulation

To study the proposed architecture for a Super Sensor Network, an emulation of
a collection of nodes connected by a network is created. This emulation is run
on the cluster available in the Display Wall lab at the University of Tromsg. An
assumed network of meteorological stations is used as a basis for this emulation
and comparison with todays meteorological network will be made. A station on
Karl XII Island in the Svalbard archipelago is used for comparison. The station
is described in chapter 4.3.

This section describes the various assumptions made for the emulated system
to be studied. This will to some degree differ from currently available sensor
networks, and is intended as an example of a platform that will be available in
a few years time.

3.1 Hardware

The computer cluster used for this emulation is a few years old, and can be
regarded as typical of the hardware that will be used in large sensor nodes in
a few years. The computer cluster consists of around 30 Dell Precision 370
Workstations with 160 Gb disk, 2 Gb memory and an Intel Pentium 4 processor
running at 3,2 GHz. A total of 28 computers are used to drive the projectors
and the actual display part, and additional computers for the infrastructure.
The computers are connected with gigabyte capacity network.

The various basic nodes in the sensor data producing network are assumed
to be capable of limited local data computing. As an example the wind sensor
is capable of reporting both instantaneous wind and 10 minutes average wind
speed.

Sufficient electric power is assumed to be present to allow the units be able
to :

e Sustain a standard observational frequency. Typically each 10 min in
meteorological networks.

e Sustain any computing needed at each node. This may vary between
nodes.

e Sustain any wanted mode of communication.

e Sustain the node for a reasonable time of operations, typical in the order
of 1 year.

A real-world sensor network may have limited electrical power available.
The Norwegian polar station has a power consumption of 60 - 100 Ah / year,
where 50% is used by the satellite radio transmitter [6]. The battery gives an
operational period of 1 to 1 1/2 year.

3.2 Communication

Sensor network nodes are emulated with communication capability for a two-
way communication and IP capable.

13

The communication hardware is assumed to be able to communicate with
high reliability. The communication channel is assumed to have sufficient band-
width for data and control information. The communication may use land-lines
or wireless communication. Todays standard WIFI (IEEE 802.11 a/b/g/n)
setup may be an example of the communication capabilities we try to emulate.
With effective transfer speeds in the order of 1.4 - 31 MB/s |7].

The individual nodes or devices are configured such that they may be reached
by other nodes or devices on the same subnet. This is done using standard
DHCP and DNS. For technology like Bonjour/Zeroconf (see chapter 9.7.3 for
details) this is not strictly necessary, but as the available platform for emulation
did not support all of this technology, some prior configuration must be present.

3.3 Security

No security problems or challenges are assumed present in the sensor network.
Security of sensor networks is an area with much on-going research and a good
solution is assumed for all parts of the super sensor network.

3.4 Failure models for the emulated system

The three functional sensor networks may fail in several ways. This dissertation
does not describe all possible failure modes, only the effect on the functional
networks.

1. A failure in a node in the sensor controlling network or in the sensor data
computing network, is assumed to be fatal for the node. All associated
processes on the node are stopped. The failure is detected by other nodes
in the respective networks, and a new node may have to be started. This
implies that there is at least some redundancy in these networks.

2. A failure in one of the sensor data producing nodes is assumed to be so
serious that the node is only tried automatically started a limited number
of times. No new node is restarted and the node will simply drop out of
the sensor data producing network. This emulates the real life situation
where a remote node no longer is functional. The data collected by this
node cannot be replaced or collected by other nodes. No redundancy is
present.

3. Communication hardware is assumed to have very low failure rate and
no redundancy is emulated. We also assume very low packet loss in the
network and only implement a limited number of retransmissions when
using UDP. Standard mechanisms will handle most errors when using
TCP.

4. Failure in retrieving data to a user either from a sensor data computing
node or a sensor data producing node is always assumed to be non-fatal
and a simple error message is returned.

5. We do not emulate sensors that produce incorrect data.

14

3.5 State reporting

In a real-world situation local error conditions in a node will be transmitted as
part of the regular communication and status reporting. In this implementation
errors are not reported.

3.6 Update policy

The functionality of sensor nodes may be adjusted using different models:

e Functionality decided by parameters set locally at deployment in the field.

e Reconfiguration or updated software after deployment.

The first approach implies that the programmer has anticipated some prob-
lems and states the node may be in, and the functionality is changed with
altering some parameters in the node configuration. The software is normally
available for extensive testing on the actual hardware prior to deployment. Er-
rors found after deployment is not easily correctable and cannot be tested on
the actual hardware, only on replicas on accessible locations.

When updating the configuration or parts of the software on the node, more
communication resources is used and a two-way communication channel must
be present. For some systems like Maté [8] the actual number of bytes transfered
may be very small even for a substantial update. In this model unanticipated
states and failures may be handled using a new software update. It is also
possible to implement new functionality, like new video codecs, that became
available after deployment.

3.7 Scale

In this dissertation the assumption is a number of stations in the hundreds.
This would cover parts of a county (Norwegian "fylke"), if deployed similar to
the network operated by the Norwegian Meteorological Institute [9].

3.8 Naming

For addressing any node, it has to have a name/address which has to be unique
in the network. The nodes should also be addressable as a group using different
types of multicast. In this dissertation such a naming is assumed present.

3.9 Synchronization

One of the aspects of synchronization is to maintain global coordination in
sensor networks. This may be the problem of ensuring common data handling
during software updates, or maintaining a routing algorithm. Meteorological
observations are always tagged with a time stamp. This makes important that
the clock on the individual nodes is accurate to a selected level. In current
sensor network implementations, this problem has been solved with a resolution
of sub-milliseconds [10].

15

The clock used in the Norwegian Meteorological institute polar weather sta-
tion has a drift of around +10 min pr. year [6]. The large clock drift is offset
by setting the clock 15 min slow on deployment. The needed accuracy of the
time for meteorological stations, is within several minutes. This is a function
of location and the density of stations and the phenomena that are expected to
be resolved by the observations. Typical requirements of these meteorological
stations are clocks accurate within +1 min/month.

In this dissertation we use the clocks on the computers in the cluster. These
clocks are accurate to a higher degree than required for meteorological networks.

3.10 Data storage

In traditional wireless sensor networks the nodes themselves have limited storage
capacity. In the type of station that is emulated in this dissertation, the normal
storage has the capacity to store all sensor measurements for 3 years with an
observing frequency of one measurement for all parameters every hour [6].

This amount of storage available for the emulated stations is therefore con-
sidered so large that no restrictions are placed on the storage capacity of the
local nodes.

3.11 The emulated station compared with other sensor net-
works

Karl and Willig [11] lists a number of different general characteristics of Wireless
Sensor Networks. The type of system emulated in this dissertation differ from
other sensor networks in several aspects.

e Quality of Service. The observations from remote stations are considered
important but single observations may be missing without large difficul-
ties. Observations may also be delayed without problems. The transmis-
sion schedule also delays observations.

e Fault tolerance. In the network operated by the Norwegian Meteorological
Institute the individual node is communicating directly to a central data
store. Fault in one node is therefore not critical for other nodes.

e Lifetime. In some sensor networks the lifetime of a single node may be very
short. Nodes may be distributed to observe events with short durations.
In our system the lifetime is very long with continuous operations for up
to 1 1/2 years, depending only on the power supply.

e Scalability. One problem in meteorological networks is the scalability of
the communication system in use. Remote stations often use ARGOS [12].
The communication in the ARGOS system is one-way and the available
bandwidth is limited. In other systems a very large number of nodes may
be operating within a small area and the communication and data flow
have to handle a large accumulated volume of traffic.

16

e Node densities. In todays meteorological system the sensor nodes may be
several hundred kilometers apart. This makes communication overlap less
likely, but as the nodes may be communicating with the same satellite at
the same time, radio interference is probable. In other systems high node
density may lead to the need for protocols to avoid data duplicity since
several nodes may have almost identical observation values.

e The energy requirements. Meteorological observing stations has battery
capacity for operations of up to 1 1/2 year. The stations use most of their
energy in communication (approx. 50%) and in environmental measure-
ment, where the need to heat the pressure sensor is the largest drain of
electrical power. The station is sending data using its radio every 200
seconds. The limited battery power requires the station to be inspected
yearly. Due to bad weather the station on Karl XII Island was not reach-
able the summer of 2007, and was expected to close down in the spring of
2008. Other types of sensor nodes may have even more serious restrictions
in communication and operation.

e Network densities. The Norwegian Meteorological Institute has a limited
number of nodes in the Svalbard area. Other sensor networks may have a
large number of nodes used in a small area. This affects both communi-
cation and the ability to resolve the observed phenomena with sufficient
resolution.

e Mobility. The meteorological station compared with here is a stationary
station. There is also some stations on floating buoys drifting in the ocean
or on ice floes. These stations are not locally connected, and they are also
using the ARGOS system for communications. So even if these buoys
are mobile, the needs and systems closely resembles the above described
systems. Other sensor networks may involve truly mobile devices. One
example of this is INVANET [13], Intelligent Vehicular ad-hoc Network
where research is focusing on vehicles and mobile telephones.

Most sensor networks rely on some form of a communication network, and
severals issues has to be considered:

e Energy efficiency. Since most of the energy used in a wireless sensor node
is for communication, this has to be done in a very efficient manner. This
applies to sensor nodes running on limited electrical resources and not
systems like urban surveillance cameras, where electrical power may be
supplied from the local electrical grid.

e Auto-configuration. Most sensor networks do not know a priori where their
location is and what neighboring nodes that are present. The need to self-
discovery is therefore a driving force for implementing self-configuration
systems. In the nodes compared with, the actual location was not known
before the station was in place and since the station could not rely on
neighboring nodes and did not have inboard GPS, the location had to be

17

manually set on location. Other sensor networks may have local GPS and
also other forms of location-finding technics.

e Data- or address centricity. The station compared with is address centric
as data is transfered between the station and one data sink. Other sensor
networks may use a highly redundant deployment of many nodes where
a failure of an individual node may not cripple the entire network. This
also creates the need for high optimized routing protocols.

One way of handling failures is to mask the failure using redundancy. In
very high density sensor networks the failed node may simply be ignored and
removed from the network without loss of observing resolution. This is not an
option for most meteorological networks, as the cost of each node prevents the
deployment of more than the absolute minimum number of stations.

18

Figure 5: Illustration of the meteorological observing network. From WMO

4 Real world sensor nodes

Figure 5 describes the general system for collecting and measuring meteorolog-
ical data. World Meteorological Organization (WMO) coordinates the global
effort and defines standard for data exchange. On a typical day the distribution
of surface observations at one specific hour may be as illustrated in Figure 6.

4.1 Scale

In meteorological networks the number of stations are large. For individual
countries the total number may be much smaller. Some typical numbers are
illustrated in the Table 4.1.

Table 1: Approximate number of observing stations in different networks

Scope (source) Number of station Station type
Global (Surface network) 28400 Meteorological
Norway (met.no) 700 Meteorological
Sweden (Road authorities) 700 Road weather stations

The total number of national meteorological stations operated by the Nor-
wegian Meteorological Institute has slowly decreased. This is partly due to
difficulties with having people available to take observations as frequently as

19

Obs Type

@ 1essBSYHOP 2176 SHIP @ 9678 METAR

ECMWF Data Coverage (All obs DA) - SYNOP/SHIP
10/FEB/2008; 00 UTC
Total number of obs = 28442

2om

=
B
AN
o «
T

§
4

g = G e EXg o EL oE o @ 1m0

. =

05

CECMWF

Figure 6: Typical global station coverage at one specific date and hour, from
ECMWF

needed. As an example it can be noted that all lighthouses on the coast in Nor-
way, are now unmanned. This reduction in stations is mitigated by increasing
the number of automatic meteorological stations. The transition to automatic
stations is dependent on available funding and will take several years. The num-
ber of meteorological stations deployed by other authorities like the road and
railroad authorities, is rising and cooperation has been established. This also
makes the integration of different technologies a challenge. The number of such
stations will probably equal the meteorological stations within a few years. As
illustrated by table 4.1, the road authorities in Sweden are already operating
many stations today.

The global number of observation stations is not expected to rise by a huge
factor. The bulk of the new observations come from weather radars and satel-
lites. Both of these data types are traditionally collected by a limited number
of agencies and then distributed to the rest of the users.

4.2 Data storage

The data storage in meteorological stations are typically data-loggers containing
EPROM’s with a capacity of 10K — 640K words. A word is typically 8 bits
[14] [15]. These devices may operate in a very large range of environmental
conditions, like temperatures from -60 °C to +60 °C.

20

4.3 Karl XII Island

To create an emulated sensor in a sensor network, some of the typical restrictions
on real sensor should be used as a basic assumption. The following describes
some elements from the meteorological stations operated by the Norwegian Me-
teorological Institute on remote locations in the Spitsbergen archipelago. All
elements from a description of this Polar automatic weather station in this
dissertation, comes from an internal Technical report [6] from the Norwegian
Meteorological Institute.

One of the most remote stations is on Karl XII Island. This is a very small
island in the north eastern parts of the archipelago, bordering the polar basin
(see figure 7). The station is so remote that visits once a year cannot be
guaranteed. Access is by helicopter, usually as part of a yearly tour by the
Governor of Svalbard (Sysselmannen). In the later years the sea ice during
early autumn has been greatly reduced giving improved access to these remote
parts by ships. The station was deployed in 2003 and was last serviced in the
autumn of 2006. Due to weather related problems, the station could not be
serviced in the summer of 2007, and ceased to report in April of 2008, most
probably due to lack of electrical power.

In the following some of the basic restrictions and elements of this type
of station are described. An image of the hardware with size, placement and
organization is given in Figure 10.

) * "
Karlﬁl‘ fsland

Image © 200 ASS 3
Image © 2007'TerfaMet

Pointer| 75°56'58.94" N 12¢35'18.88" E—Streaming; (1 1111|[100% Eyealt 197323 km

Figure 7: Map of Karl XII Island

21

4.4 Detalil of the station
4.4.1 Observing frequency

The electronic equipment on a regular meteorological station is divided into
several different physical parts. One part handles the collection and reading of
sensor values. To reduce the power consumption, it is customary to reduce the
measuring frequency. On Svalbard the stations normally measure at 10 minutes
intervals. The wind sensors handle continuous data collection in the sensor, but
the collection produces 10 minute discrete measurements. The pressure sensor
is one of the most power consuming sensors, as the sensor has to be heated
before measurement. It is therefore used as sparsely as possible.

The physical sensor units are connected to a highly customized unit that
reads, stores and processes the data elements before transmission. The trans-
mission is also done at discrete intervals, typically every 200 seconds.

4.4.2 Storage

The scanning unit needs to store values over time and needs permanent storage
capacity. The stations described here have a storage capacity to store hourly
measurements from all sensors from a 3 year period.

Figure 8: Details from Karl XII Island

4.4.3 Communications

The observations from the meteorological stations are broadcasted via radio
every 200 seconds, using a standard unit for the global ARGOS satellite system

22

[12]. The radio system is a purely one-way system and the stations do not have
any means for receiving.

The transmission is highly optimized for low transmission costs in terms of
power usage. This also includes optimizing the data volume. One transmission
contains 25 word of 10 bits, in a 256 bit package. Of these 25 words, 24 is
actually used for sensor data in every transmission including a checksum word.
10 bit words are used as this is suitable for the resolution delivered by the
sensors.

4.4.4 Data computing system

The stations are of the type "Aandreaa 1997 " [6] and use a custom real-time
operating system and custom closed source programs. The internal details are
not known.

4.4.5 Physical constraints

The geographical location of this station implies some physical constraints. The
station has to be able to withstand strong winds, very low temperatures and
also visits from curious polar bears. An example may be the image in figure 9
taken from a visiting tourist ship in 2007. The station is therefore enclosed in a
very strong, safe-like steel box (See also Figure 8 and 10). All cables are housed
in steal pipes and not reachable by the polar bears. The bears have previously
shown a liking to the insulation material used.

Figure 9: The station visited by a polar bear. (©martin@gnejs.se

4.5 Failure models

The real wold stations like the station described above are difficult to access
for repairs. They must therefore have a failure model that provides the obser-

23

vations also in gradually deteriorating conditions. Some parts of the physical
sensor package can have failures that does not affect the other sensors. The com-
munication and computing parts of the node have to be able to handle these
types of failures. The system is also able to handle loss of radio communication
as observations are stored locally for later retrieval, when the station is main-
tained. The observation data collected during maintenance visits may be used
for climate studies later, and therefore has a significant value.

4.6 Road weather stations

The Norwegian Road authorities has invested much in new road weather sta-
tions. Some of these are delivered by ScanMatic AS [16] and an example can
be seen in Figure 11. Some of these stations have cameras and may produce
images like in Figure 12. At present around 40 road weather stations are in use
in Northern Norway, around 20 of these have cameras.

The Road weather stations are typically instrumented to monitor :

Air temperature

Road-surface temperature

Precipitation

Relative humidity

Wind speed and direction

Some stations has a camera

The observations are sent to the nearest Road Traffic central (VTS) and are
used for road maintenance planning and traffic monitoring. For remote stations
GSM/GPRS is used for transmitting observations, but the stations may also use
many other communications channels. Dependent on location, both landline
communication and power from the electrical grid may be available.

Some of the stations provided by ScanMatic uses the QQNX Real time oper-
ating system (RTOS) [17].

24

y.
™/ converter
Q’,

Gust adapter

Figure 10: Hardware layout of the Norwegian Polar Automatic station
DSU, Data storage unit
DSU contr. Data storage unit controller.
Trykksensor, Pressure sensor.
SU enhet. Sensor unit (wind)
Logger 3010. Data logger and main computing unit.

mV converter and Gust adapter. Part of the wind measuring sensors.

25

Figure 11: Example of Road weather station. ScanMatic

Eg hpi1

Aprin ar

1900111 HEIA KLIMASTASJON

LLLift:

Asfalt:
Asfalt_2:
Fuktighet:
Duggpumnkt:
Medber:
Nedbartype:
Varighet:
Ilkasteme
Vindstyrke:
Vindretning:

11/4-2008 22:00
7.3°C

?

4.7 °C Synker
64/ YarH
-11.3°C

0,0 mmit

lkke nedbgr

0 min. siste 10 min.
stille (0.0m/s)
stille: (0.0mis)
fra @st

Figure 12: Example of image produced by one Road Weather station

26

5 Architecture

The goal of a system architecture is to do a decomposition and partition the
system into manageable "chunks" of components. Ideally there should be a
loose coupling between components, and clean interfaces should be identified.

The architecture of the system in this dissertation must support the deploy-
ment, running, updating and data delivery in a sensor network. The architecture
must support a complete "Sensor network" consisting of controlling, comput-
ing and producing logical networks overlayed the physical network of nodes
(see also Figure 4). The architecture must allow several different networks to
operate on any node without conflicts and with a efficient use of resources.

The external interface of the "Sensor network" is basically two interfaces:
The Control and the Data computing interface. Physically these interfaces
would be implemented on Gateways into the "Sensor network".

5.1 The networks
5.1.1 Data producing network

The producing network handles the main goal of most sensor networks. This
network will produce the observations used by the other parts. This network
consists of a network of cooperating nodes that :

e (Collect sensor observations at a given frequency.

Transmits the wanted part of the sensor observations to a network gateway.

Participate in the communication of other nodes observations to the gate-
way.

Report capabilities available at the node.

Can be updated with new software or configuration.

Be queried by other parts of the sensor network.

As an "observation" any data type or set of data types are possible. Both
reading from individual sensors to video streams is in principle possible. In this
dissertation these data types will be restricted to non-streaming types.

5.1.2 Data computing network

The data computing network consists of nodes that participate in handing of
observations coming from the data producing networks. This can be as storage
nodes or as nodes aggregating observations from several nodes. The data com-
puting nodes can therefore also be part of the data producing networks if new
data types are produced.

The computing network consists of cooperating nodes that :

e Receive observations from the producing network.

27

e Processes observations.
e Receives and handles queries from other parts of the sensor network

e Transmits the wanted part of the processed observations to a network
gateway and/or functions as a network gateway.

The computing network may also be queried by external users directly.
Data computing in a sensor network may be several different types. Some
of the possible tasks are listed below.

e Data storage.
e Sensor data aggregation.

e Feature extraction from multiple sensor nodes.

In this dissertation only one task for the data computing network was re-
quired: Data storage.

The sensor data computing network has to report at least one node as a
data sink for the sensor data producing network. This data sink may be several
cooperating nodes, and where the data is delivered should not influence its use.
The data sink must store and make available all reported observations.

5.1.3 Sensor control network

The sensor control network must assure that all types of nodes are started,
running and stopped on request. New nodes may be added as they become
available. Nodes must be updated with new software or new configurations.

The controlling network may be distributed on several cooperating general
nodes and may also have special nodes functioning as gateways to the sensor
network. These gateways has to be visible and available externally to the sensor
network.

The sensor network control has basically two tasks. It has to handle exter-
nally initiated actions, like software updates or changes in observation frequency.
The network also has to handle internal housekeeping. One of the major tasks is
to provide a service discovery functionality for the other parts of the sensor net-
work. The control has to maintain an updated list of which nodes that provide
which services.

The control network also has to decide on the wanted topology of its own
network. The control network has to assume that the data computing network
maintain it own topology and is capable of reporting at least one data sink to
the data producing network. The sensor control network must maintain the
status of such common resources for all parts of the networks.

5.2 FEmulation control

In this dissertation a system was emulated using a computer cluster. There is
therefore a need for a component that can deploy, start and stop the emulation.
This may be a single program on a single computer outside of the cluster.

28

5.3 Client - Server

As previously stated any node may be both a data producing and data com-
puting node. The individual nodes may also be part of the controlling network.
This possible distribution of responsibilities on each node indicates that each
node may both function as a client in other nodes/networks and as a server. A
request may also cascade in a multi-tier fashion. In some respects the nodes also
function as routers for data from other nodes on their way to the designated
data sink. The whole sensor network may therefore be defined as composed of
several Client-Server relationships and the Client-Server paradigm is the best
description of the architecture.

5.4 Communication and Protocols

Since the nodes must communicate both with other nodes and with external
users, the HT'TP protocol was chosen as the main transport between nodes.
Since the nodes also has to implement RPC like functionality, the Representa-
tional State Transfer (REST) [18] and [19] architecture for resource location and
identification, were chosen as a basis for the architecture. The use of TCP/IP
makes it easy to have nodes that are reachable from the internet if wanted. Also
the use of HI'TP makes this access much more in line with the current trends
in technology where more of the functionality is placed in the web browser.

5.4.1 Software update

In this dissertation only a very simple software distribution algorithm is ex-
pected. The goal is to have a reliable distribution from node to node, where all
nodes are reached in finite time. The software update is expected to consist of
one single packet. This packet may be an archive file and may therefore contain
multiple files.

5.4.2 Routing

There exists several good algorithms for routing traffic in wireless sensor net-
works. Both three-based as one option in TinyOS [20], and fully meshed as
in the systems produced by Dust Networks [10]. In this dissertation routing
is considered an issue, and this dissertation therefore assumes that such algo-
rithms exist and may be applied. Only a simple controlled routing is expected.
The goal is to have a mechanism where observations may be routed through
other nodes to a data sink or directly to the data sink. Also a simple routing of
broadcasts and software updates is expected.

Today we can buy a complete wireless network for sensor networks, where
the user has to provide a microprocessor to put next to the network node that
communicates by sending and receiving packets over a serial port. (One ex-
ample is Dust Networks systems [21]). The network component will handle
all communication and routing issues and it does provide very high reliability
of the end-to-end network connectivity. Any node can communicate with any

29

other node. In practice the user has to think about power consumption and the
efficiency of the application protocols.

5.5 Partitioning of the sensor network

For data collection and software updates the sensor network may be partitioned
into smaller parts,and therefore more manageable parts. A typical plan for
partitioning the sensor networks rely in the minimization of a cost function.
Often the cost is closely related to the energy requirements for data transmission
and updates. Some kind of clustering is often used, either based on location as
the needed transmission powers is reduced by distance, or some other metric.

In this dissertation the need for partitioning and routing efficiency will not
be addressed. An efficient protocol is assumed to exist and would have been
utilized in a real world deployment. Several studies have been conducted in
this field. See as an example Akkaya and Younis [22] for a survey of routing
protocols.

5.5.1 Time

There exist at least one good example of a solution for keeping a common
clock in a wireless sensor network. This is implemented in Dust Networks Time
Synchronized Mesh Protocol, TSMP [10]. In this dissertation the presence of a
common clock with sufficient accuracy is expected. An accuracy in the order
the resolution of the time-stamp of the filesystem is sufficient in this emulation.

5.6 Service discovery

Both for internal and external use the existence of a service discovery function
was assumed. In the external world this may be a simple web site giving the
correct URL to access the gateways for the sensor network. One can also envision
systems where a new user at a site is automatically aware of the available sensor
networks at the same site.

For internal use in the sensor network there has to be a function where a
new node is registered and made available to other components. This function
has to be an integral part of the network environment for the nodes.

There exists several solutions for such functionality and some of these are
described and discussed below.

In this dissertation Bonjour [23] (also known as Zeroconf [24] or Avahi [25])
was selected for Service Discovery. One of the reasons is that it is possible to im-
plement in very small devices. In the SitePlayer |26], a working Bonjour service
has been implemented in around 800 bytes of code. See [27] for a motivating
talk by Steven Cheshire on Bonjour. Bonjour does not depend on any servers
available in the network. The local nodes communicate and cooperate to es-
tablish network names and make available services known. The choice of using
the HTTP protocol as the main transport, also is a good match as Bonjour is
supported in several web browsers, and servers announcing HTTP support will
show up automatically. Bonjour is also implemented in various languages, and
on several operating systems.

30

Recieves update Distributes

update
Control Control Control
node node node
Control node

. will see
Distributes data producing node
update Data groducing with "other" software
and/or configuration

Figure 13: Potential problem in node control

In existing sensor networks service discovery is typical an integral part of
the networking middleware. Kuorilehto, Hannilkédinen and Haméldinen |28] have
surveyed several WSN systems, and have noted that service discovery is often
an functionality added in the middleware. No definite industry standard have
emerged yet.

5.6.1 Coordination of control

One aspect of a controlling network is to coordinate between the cooperating
nodes. One example of a problem may be illustrated in Figure 13

If multiple sensor control nodes see the same data producing or data com-
puting node, there is a risk that during software or configuration updates, one
or more control nodes have a different view on what is the current "correct”
configuration of a node. It is therefore possible to have a situation where an
updated node is "downgraded" to older configuration by nodes that do not have
the most updated software or configuration.

In this dissertation the architecture was defined so that any controlling node,
controls all data computing and data producing nodes.

5.7 The components

On each node different parts may be running. As illustrated in Figure 14 we are
building on a platform that provides most basic OS services, at least networking,
local storage and optional access to sensor hardware or readings.

The local architecture for a node in the Sensor Data producing network may
be illustrated in Figure 15

5.8 The external interface

Access to sensor networks need to be simple both for computer systems access-
ing the observations but also for external human users. Both of theses concerns
can be satisfied using H'TTP servers as gateways to the networks. Since we only
envision two main interfaces for external access, this can be implemented on one

31

Sensor

Sensor Sensor
data

controling computing
network network

Producing
network

Applications

Networking, Storage and access to sensor HW

Hardware Local Storage SENSOR

Figure 14: Architecture of a node. The functional networks are applications
running in user-space on top of operating system services and hardware.

physical node, but it has to be part of both the controlling and computing net-
work. External access directly to individual sensor nodes may be possible, but
the gateways should provide the access to these nodes. This may be illustrated
in Figure 16

5.9 Scale

One aspect of sensor networks is the ability to scale when going from a small
number of nodes to thousands. The traditional meteorological networks mostly
depends on a central control and data storage model, where all data is collected
on one single location. Observations go straight from the observing node to
the collecting central node. This model is difficult to scale when the number of
nodes increases.

In this dissertation functional networks was used that may scale well as
the number of nodes increases. The main reason for this is the possibility
to dynamically add nodes running the sensor control and sensor computation
networks.

32

Node
monitor

Communication

L Local data Physical
storage sensor
manager reader

|
Networking,‘:Storage and access to sensor HW
|

\
1
\ Hardware Local Storage SENSOR
1
|

v
External users and networks

Figure 15: Sensor data producing node components

User control ; i\
\

requests \
User requests
]

¥ v
»I
User requests

User requests

System Control Network

Requests g??\t;(l)sl Control /
9 Signals /)
\ ¥
Sensor data —@
Sensor Data Sensor Data
Processing Producing

Network Network

Figure 16: External interfaces and internal messages

33

34

6 Design

External users

Sensor Control
Network

Computing Node

—

Computing Node

5

Data
exchange
between nodes

Data producing network

Data producing
)

Data
exchange
between nodes

Data producing
Node é

Data producing
Node é

Data producing
Node é

Figure 17: The data computing network

6.1 Communications

The architecture calls for a total network consisting of three networks of coop-
erating nodes where some are sensor nodes and a few are gateways for external
access to the sensor network. This gives a natural division in the needed com-
munications protocols.

The external interface will provide a subset of the internal interface, to ensure
efficient code and practice reuse.

35

6.1.1 Protocols

The two main interfaces are against the controlling and data computing net-
works. The interface of choice is HTTP servers using the REST style architec-
ture. This design define the structure of the interface, and the data types to be
exchanged.

6.2 The data producing network

The data producing network consists of several cooperating sensor nodes. Fach
node is assumed to be observing some phenomena at some distance from other
nodes.

The emulated sensor node is emulated by having each node retrieve some
data from an external URL. Typically this is image data from web cameras. The
primary source of such images in this dissertation is the web cameras operated
by the Norwegian Road authorities around various parts of Northern Norway.
An example is shown in Figure 12. The images may contain measurements from
other sensors at the site, like temperature and precipitation. These images rep-
resent real sensors in practical use, and are a good example of actual data from
such stations. The system has non the less to assume any form of data. The sta-
tions data are publicly available at http://www.smallsoft.com/klima/Klimadat.htm.

6.2.1 Node start up

The emulated sensor nodes need to read the local configuration and initiate
the local computing with communication, physical sensor handling and data
computing. See also Figure 15 with a schematic view of the components in each
node. The node has four basic components.

e Node monitor. To ensure restart after updates or crashes.
e Communication. With other nodes in the network and a data sink.

e Local data store manager. The emulated node is assumed to have some
data storage available. This has to be managed for shared use between
components.

e Sensor readings. Physical or as in our case, emulated sensor data must be
collected at a wanted frequency and the data stored locally on the node.

The emulated sensor node has to register with the local network if such a
network is in place. As part of the registration information on local capabilities
on the node must also be sent. The sensor needs to establish the next node in
the path to the data delivery node (data sink). This is assumed to be done
in the registration phase. The registration uses the service discovery function,
which should return the complete network address of a data storage node, or a
list of such addresses.

On start up, the sensor node needs to establish its own environment. In
the emulated sensor nodes this is done using a local configuration file. This file

36

contains a descriptions of what type of sensor it is to emulate. A small sample
of such an configuration file is given in Figure 19.
The format of the configuration file is in the form of:

[SECTION]
name=value

The file has multiple sections and multiple name/value pairs in each section.
This format is used in many systems. One example is in Windows ini-files.
There exists several libraries to read such files for multiple computer languages.

The content of the configuration file has to include at least the following
elements:

mime Any known types of data may be observed and the type is given using
the MIME type defined in numerous internet standards (RFCs : 2045,
2046, 2047, 4288, 4289 and 2077)

name A short string defining each node. In this dissertation a name describ-
ing the location where the image is taken. A human-readable name is
wanted.

url The URL used to fetch the emulated observation. Any valid URL can be
used.

frequency The wanted observing frequency at this node. In seconds.

6.2.2 Node Monitoring

Since the node software may fail due to errors or bugs, a simple process monitor-
ing utility is used. The utility must differentiate between failures and a planed
shutdown.

The process monitoring will also have to restart the node program. In the
case of repeated software crashes, the node has to start from a known good
software base, and not from the last running state. Normally, simply restarting
will use updated configuration or software.

In the emulated system, the process monitoring has to run as a process of it
selves, so that it does not stop if the other software crashes.

6.2.3 Sensor Data protocol

The data producing sensor nodes needs several communication parts. The sensor
node needs to respond to external request for data/observations. This is done
using a simple HTTP server. The use of the REST [18] style imposes a clear
structure on the way URLs are built up, but requires an established protocol.
See also Appendix C for examples.

The following describes the protocol for retrieving data from a sensor data
producing node, and also the protocol for another sensor data producing node
to deliver data for forwarding to a data storage.

37

Descriptor | Description

GET Request for sensor data, configuration information or
a default page
POST Inserts new software or configuration and also data

for forwarding to the master node.

The default page is a simple web page that the sensor node will use to
deliver a human readable description of the node and available protocol. The
same protocol is used for human users and data retrieval from other computer
systems.

Descriptor | Description
GET HTTP://<address:port>
<no option>or INDEX.HTML
CONFIG <Section><Parameter><Value>
<sensor type>
keys
textkeys
data <key >
RESTART
KILL
POST HTTP://<address:port>/
/DATA
/SOFTWARE

INDEX.HTML or no options gives a default page from each sensor that de-
scribes the current configuration and the available options.

CONFIG allows for setting configuration parameters by specifying the Section,
Parameter and wanted Value.

<SENSOR TYPE> Paths like "IMAGE" gives the default data value from
the sensor if the sensor is of "IMAGE" type. This way the server supports
any data types.

keys Returns a HTML page with a list of all data elements available at the
node. The list is for human use and the keys should be clickable for easy
retrieval of one data element.

textkeys Returns a plain text list of all data elements available at the node.
The list is to make it easy for other computer systems to retrieve and
decode.

data If this path is followed by a valid key, the corresponding data element
from the local data storage will be returned.

RESTART and KILL Used for controlling the node. See chapter 6.4

38

POST /DATA post sensor data from another node for forwarding to the mas-
ter node.

POST /SOFTWARE post a new data element containing the update to the
node. Both configuration and software may be updated using this func-
tion. The smallest element to be updated is a file. The data element
posted may also include routing information for the update. Updates
containing multiple files may be sent as one single gziped tar archive.

6.2.4 Data delivery

New items observed is delivered towards the defined data storage node. This
may be an intermediate node in the network. The data is delivered using the
same simple HI'TP POST protocol as described for data delivery between sensor
data producing nodes.

6.2.5 Data forwarding

Any data sent to the sensor node using HT'TP POST is forwarded to the nodes
master node. The sensor data is posted to the "DATA" path. In effect this
gives a very simple routing algorithm by simply transferring the incoming data,
using one step further to the data storage. In this dissertation the routing is
not an issue.

6.2.6 Data types

The actual data types used for exchanging sensor data between nodes is not
defined in this design and is being referred to the implementation.

The definition of the data types used in the complete system would more
naturally be defined in the system design phase if heterogenous implementations
were expected, as multiple implementations would be possible afterwards. This
decision is delayed to make the implementation simpler, but with the clear
realization that this may introduce unwanted dependencies.

6.2.7 Software updates

The software or configuration files on the node may be updated. This is simply
done by posting a single file to the node using HTTP POST and identified
using the "SOFTWARE" path. This file may be an archive containing several
files. This introduces the possibility of the sensor node to be in several states as
described in Figure 18. This figure also describes some of the duties of the node
monitor that has tasks on behalf of the sensor data node and on behalf of the
controlling network. Included in the figure are also states that can be reached
because of commands from the controlling network.

The update is assumed to arrive in one complete posting. This is consistent
with the stateless architecture style of REST.

39

NodeCrashed

Result = 1

Fault

NodeRunning

ProcessMonitor
entry/Read Config
do/Start SensorNode

StartNode
Default or

exit/Stop new
event/Node Stopped(result) software
/ Updgte
Result=255 ?;f““ = }eved
/
@

Result = KillRecieved

255
NodeKilled

Figure 18: Sensor node state chart

6.2.8 Software update forwarding

Whenever a software update is received it may be forwarded to any known sub
nodes using the same HTTP POST protocol. The further routing is controlled
with the content of the posted data element and is therefore left to the control-
ling network to decide. The network may provide a broadcast option, but this
is not, used in this dissertation.

Since a software update will spread in the networks in single hops there will
be a time where old and new software are active in the network at the same time.
This implies that any software update have to ensure backward compatibility at
all times. A simple scheme of versioning where any data or configuration also
contains a version, must be implemented.

A small variation on this method is spreading the software update as a
"Worm". The classical "Worm" is described by Shoch and Hupp [29]. A worm
is capable of altering its state and strategy dependent on information collected
from its segments. It may also migrate to new nodes and as an example, remove
it selves from nodes with too high work load. This has the implication that
decisions can be postponed and made when local information is available.

6.3 The sensor data computing network

As defined in the architecture the computing network in this dissertation must
provide at least one data sink for the sensor data producing network.

6.3.1 Sensor Data Storage

The sensor network data storage makes the following assumptions :

40

e The data storage system will store all data elements posted to it.
e The system will use a simple database for this storage.

e The system will use a single key for locating the stored element. The key
will be based on the sensor name and the current time.

The most frequent users of the service is :

e The sensor data producing network
e Other parts of the sensor data computing network.

e Individual users and processes.
The most frequent use cases are :

e The sensor producing network will send its observation for permanent
storage. Also agregated values from the sensor data computing network
may be stored.

e Both the sensor data computing network and individual users will read
individual sensor observations.

6.3.2 Cooperating nodes

All nodes in the sensor data computing network have to cooperate to solve the
given task. In our case this implies that a protocol for exchanging data between
nodes must also be established.

Before such a protocol is designed, the overall goal of the system has to be
known. In many cases a distributed system is used to ensure sufficient computing
power, reliability and availability. In such cases a monitoring system has to be
implemented to restart stopped nodes, and to notify cooperating nodes of the
status.

In this dissertation the goal of the data computing network and the data
storage task is to provide at least one data sink to the sensor data producing
network. The solution is to have the nodes in the data computing network
exchange all incoming data. Figure 17 illustrates the flow of observational and
processed data.

6.3.3 Communication

A subset of the sensor node protocol is used for sending data to storage or
retrieving data. The protocol is shown in chapter 6.2.3. Only the following
items are needed at a data storage node:

o POST /DATA
e GET /data <key>
e GET /keys

41

o GET /textkeys

e GET /haskey

The protocol allows for different implementations of data handling. The
only limitation is that the system must be able to handle the data elements
that are chosen. See also chapter 6.2.6. This also has the effect that querying
a sensor data producing node and a sensor computing node can be done using
the same protocol.

To facilitate data exchange between nodes a simple expansion to the network
protocol is used. The nodes do not need to send data to other nodes that the
remote node already have received. So a test to explore if a node has a data item
is needed in the form of the "GET /haskey" operator. The necessary protocol
for the nodes in the data computing network, supporting only data storage is
given below.

Descriptor | Description
GET keys
textkeys
data <key >
haskey <key >
RESTART
KILL
POST HTTP://<address:port>/
/DATA
/SOFTWARE

The "GET /haskey" operator must return "YES" in plain text if the node
already has the data element with the given key and "NO" if not.

The data computing network relies on the service discovery to provide an
overview of the available nodes in the network at all times, and to provide an
overview of the capabilities of the nodes.

6.4 The control network

The sensor control network assumes the following requirements:

e The controller network must deploy and start the all software on the com-
puter nodes.

e The controller network must be able to stop the whole sensor network.
e The controller network distributes software updates.

e The controller network monitors the state of the networks.
The ability to stop and start the whole sensor network is important in an

emulated situation. During testing and development several errors can lead to
runaway nodes and efficient means to stop these are needed.

42

6.4.1 Starting the emulated sensor network

Starting the emulated sensor network in the available computer cluster should
be done using a simple distribution of all needed files to all nodes. The files are
assumed to contain software and node configuration may be similar on many
nodes. The controlling network has to do a remote start of all nodes.

The distribution of files containing software and configuration involves sev-
eral tasks

e Reading a short configuration file containing the following information :

— The files in the software and configuration package.
— The machine names in the computer cluster to run software on.
— The name of the individual sensor node configuration file.

— The external URLs to use as emulated sensor data. Each sensor node
monitors one external source.

e For each computer node to distribute to :

Create local directory for temporary storage of files.

Copy wanted files to this local directory

Adapt the sensor configuration file to the wanted node.

Using “scp” copy the files to the remote node

Start the node software using the Process Monitoring application.”ssh”
is used for this.

This will make it possible to run the emulation on a computer cluster with
a shared filesystem and with local filesystems on each computer.

The designed process above does use both "scp" and "ssh" or file transfer
and process starting as this is well supported on the available computer cluster.

6.4.2 Registering newly started nodes

As each node is started it will use the service discovery service, chosen to be
Bonjour, to register its name and capabilities. It will also query the service for
an address of a data storage to use as a sink for its observational data.

The service discovery system has to contain all needed information for fur-
ther handling.

6.4.3 Control functions that needs protocol support
e Restarting a node.

— Each node may be sent a "STOP" command using HTTP GET
/STOP. This will stop the node software, and the node will be
restarted when the monitoring sensor program find that the node
has stopped. The software has to stop with an error code that the
monitoring process can detect. The value of "1" is selected for this
purpose.

43

e Stopping a node permanently

— Each node is sent a “KILL” command using HTTP GET /KILL. The
node software must stop with an "255" error code, so that the process
monitoring will not restart the sensor. The process monitor will also
stop at this point.

e Updating software

— Using a simple HTTP POST the software may be transfered to the
node. All content needed for a complete update must be sent in
one package, so that a node simply does a restart to activate new
configuration or software. The package may be an archive and will
be unpacked. This allows update of several files at once.

The software update is expected to be generated externally to the whole
sensor network and in our emulation this is done using the controller in chapter
6.4.1.

6.4.4 Status monitoring

Each sensor data producer will deliver its data to the controller. This may
registered as a simple heartbeat. Actions to restart a node may be taken if
some time limit is exceeded. Alternatively this may be done using the service
discovery system that also has to keep track of active nodes in the network.

44

7 Implementation

7.1 Programming environment

In this dissertation the following hardware and software developing platform
was chosen

e Linux and OS X operating systems.

e Python language with standard modules.
e TCP/IP local network between nodes.

e A cluster of computers running Linux.

e Linux and OS X workstations.

Python has many modules for most communication protocols, so there is no
need to implement such protocols from scratch, and newer protocols could be
based on existing standards. Python is also available on all relevant operating
systems with almost all of the same modules.

7.2 Threads vs Processes

Several prototypes of the sensor producing nodes were built. One of the identi-
fied problems, was the choice between using a single large application on each
node with several threads for the different tasks, or using multiple processes and
splitting the tasks between them.

Using multiple threads inside a single process was found to lead to complex
coordination problems, and the use of a large number of queues for delivering
data to, and exchange between threads. The synchronization between different
parts of the application was difficult. It was also difficult to keep a good overview
during coding, due to the size.

In the meteorological weather station we are emulating, the different func-
tions are divided between several hardware units. See Figure 10 for an image
of the physical layout and partitioning. The emulated system would also more
closely resemble the actual systems, if software are partitioned more or less in
several processes with few dependencies between them.

The sensor producing nodes were therefore partitioned into several cooper-
ating processes with the following parts.

e Sensor reader process. Single threaded.

— Reads a local configuration file containing the URL and frequency of
observations. An example is given in Figure 19.

— Reads the values from the sensor. In our case, download an item
from the URL. The item may be an image.

— Stores the values in a local file on the node.

e Sensor data server process. Multi threaded.

45

— Registers the node with the service discovery function and get the
address of the data sink.

— Reads the stored resource and send to the data sink at the wanted
frequency.

— Provides an HT'TP server for other nodes to POST data elements to
and to query for stored data.

— Provides an HTTP server for other nodes to POST software updates
to.

e Sensor monitor process. Single threaded.

— Reads a configuration file and start all wanted processes.
— Monitors all started processes.

— Restarts stopped processes or stop all processes dependent of the
status received from the stopped services. If all processes are stopped,
it will also stop it selves.

— The process monitor can not be updated and must therefore be very
simple and efficient.

[Sensor]

mime=image/jpeg

name=Andenes-Ramnan
url=http://alomar.rocketrange.no/images/IAPweb. jpg
frequency=60.0

Figure 19: Example of sensor node configuration file

Threads will still be used in the Sensor data server process as it has to do at
least two different tasks in parallel. It has to send observations (items) to the
data sink, and also maintain a local HT'TP server. With the limited number
of task, it is easy to keep a good overview of handling and synchronization of
multiple threads. A simple queue is used to send items between the threads.
The only use is when another node does a POST with data to this node. The
data element is put in a queue so that the thread that does the sending of data,
can pick it up and send it towards the data sink.

7.3 Data types

With the use of Python as the programming language, the data types to be
exchanged between nodes and for local storage, were selected for programming
ease. The simplest was to use a python dictionary. The use of a dictionary
allows us to add new fields or keys as the use is expanded.

For simple storage and transfer between nodes, the dictionary containing the
observation or other data is converted into a string representation using Pythons
Pickle module. The main benefit is that the structure of the dictionary does

46

not need to be known on the receivers side, as pickle will return the dictionary
when used upon the received string. This also applies for stored items on a local
file or database.

A pickled dictionary is not easily readable by other languages or systems.
The most useful approach would be to embed the python interpreter in a C
program. This also has the effect that all HT'TP servers serving external requests
for data, must return the requested data item in its original form. For exchange
between cooperating nodes or processes within the whole sensor networks, a
pickled dictionary was used.

A pickled item transfered between two nodes is not to be considered a secure
transfer. It is possible and quite easy to insert or change items in the data
stream. This is underlined in the Python documentation that states:

Warning: The pickle module is not intended to be secure against erroneous
or maliciously constructed data. Never unpickle data received from an untrusted
or unauthenticated source.

7.4 Local data storage

For local data storage a simple database is needed. The design specifies that
any data item that is to be stored is identified with only a simple key. The key
is a concatenation of the node name and the time stamp for the observation in
a simple text form without blanks.

Python has several options for persistent storage. The choice in this dis-
sertation was to use the anydbm module. After opening a database file, the
content can be handled in the same way as any python dictionary with access
to the has key and keys methods. The key to the database is any simple string,
and any string can be stored in the database. Therefore the combination of the
anydbm module and python pickled objects fits the task well.

7.4.1 Problems and bugs

During the work with this dissertation, Apple released the 10.5 version of OS
X and Python was upgraded from version 2.4 to version 2.5. For most parts
this did not have any impact on the code already produced. The cluster were
running version 2.4 of Python.

On OS X version 10.5 an error in the anydbm module was found. When
opening an existing database with many stored elements, the database would
not report the correct number of keys available. The items not reported could
nevertheless be accessed. This bug was reported to Apple with problem id
"5606751" and it is still an open report.

To work around this problem a simple module was developed that mimicked
the functionality of the "anydbm" module. This module was called mydbm.
This module simply stores any data element as a file in a specially named di-
rectory using the given key as the filename. This module therefore have the
same limitations as the filesystems the program is running on, but this was not
considered a problem for this emulation. An added benefit was that the stored

47

items could be accessed outside of the program and therefore make debugging
easier.

7.5 Naming

In this dissertation the sensor nodes are assumed to be named by the network
used. This gives the nodes on the computer cluster and desktops a name of
the type "tile-0-0.local". The general form of the name i "machine"."local"
where machine is the name given to the node during installation of the oper-
ating system. The computer cluster in use is Display Wall [30] cluster at the
Institute of Computer Science. The 28 computers controlling the 28 projectors
are named after the model "tile-<column> - <row> ", like : "tile-0-0", "tile-
0-1" and "tile-7-3". The ".local" domain is the default domain given using the
Bonjour/Avahi systems. (See also chapter 9.7.3). The desktop and laptops used
have names in the same way.
To get the name of the local nodes the following python code was used:

node_name = os.uname() [1]

This uses the standard OS module and the "uname" function. This func-
tion is only available on recent UNIX-like operating systems. Under OSX 10.5
element "[1]" of this tuple is "Epsilon.local", the name of the Macbook laptop.

7.6 HTTP server

For all different nodes the "BaseHTTPServer" python module is used for the
HTTP server. This module provides a very simple programming interface, with
the web server running in its own thread, and provides an easy interface to
implement the REST style URL handling. To start and run the HT'TP server,
only a simple code is used :

httpd = BaseHTTPServer.HTTPServer (("", PORT), Handler)
httpd.serve_forever()

"Handler" is one instance of the BaseHTTPServer.BaseHTTPRequest Handler
class.
The handler class only has to implement the functions "do GET" and "do_POST"
to handle these HT'TP events. The REST style is followed as a resource is named
in the URL and the program is responsible for returning the correct represen-
tation of this resource. In these HTTP servers, accessing and resource through
an URL is also similar to using an RPC call to the node.

7.7 Time

The meteorological demands for clock accuracy, removes the need for higher
level of synchronization than provided by the standard clock on the computers
in the cluster. The computers all use a common timeserver and the standard
"ntp" protocol for keeping a common time.

48

7.8 Sensor Lookup

The Bonjour/Zeroconf/Avahi technology was due to some technical restrictions,
not available on the computer cluster in use for this emulation. So to observe
the benefits of easy access and self configuration, an extra module was needed.
The goal was to have each sensor node discover the communication path to the
data server. This would have been possible using Bonjour on the nodes, but
the sensor lookup server provides some of the functionality, and acts as a small
gateway. If a sensor data computing node can not use Bonjour, because it is
running on the computer cluster, it will use the sensor lookup server to register.

The sensor lookup server runs outside the computer cluster and registers
with the local network using Bonjour. In most cases the server was running
on the author’s MacBook. This makes the sensor lookup server available as a
HTTP server to all Bonjour capable devices on the local network as shown in
Figure 20. This gives any process or user access to a gateway to the whole sensor
network emulation, without the need for further configurations of any device.
No access control has been implemented.

Safari File Edit View History Bookmarks Window H

3 About Bonjour

e SensorDataStorage Show the bockmarks in this folder.

*?5’ SensorLookupServer

Figure 20: Sensor Lookup and a Data server node available through Bonjour

Selecting the "Sensor lookup' will access a small http server. This provides
the user with further links to the individual sensor nodes as show in Figure 21.

On the sensor lookup server web page, simple commands can also be given
to the server. The most frequently used is the "KILL" command for stopping
the server.

The individual links to the nodes provides access directly to all nodes presently
known to the lookup server. The "QUERY DATASTORAGE" link gives a sim-
ple text line with the known location of a Sensor Data Storage node. This func-
tionality is mostly used by the data producing nodes to locate a data storage

49

Sensor "Lookup™ main page

Welcome to this Sensor Lookup server.

T understand the following commands:
Command Effext

KILL Stop this server.
QUERY DATASTORAGE |Remun registred datastorage servers.
CONTROLS Return a list of Sensor control nodes

Sensor Lookup server

tile-6-2 local:9090 of type SensorDataNode Info : Forwards=True,Computations=True ,Controller=True,Storage=True OsType="Linux"
Epsilon.Jocal:9196 of type SensorControlNode Info : Forwards=True Computations=True Controller=True Storage=True,OsType="Darwin"
tile-6-1 Jocal:9090 of type SensorDataNode Info : Forwards=True,Computations=True,Controller=True,Storage=True OsType="Linux"

tile-6-0 local:9090 of type SensorDataNode Info : Forwards=True,Computations=True ,Controller=True,Storage=True OsType="Linux"
Datastorage :

Epsilon.local.:8080 of type SensorDataStorage

Figure 21: Sensor Lookup HTTP server

server, the data sink. The "CONTROLS" link returns a simple list of registered
sensor control nodes.

The Sensor Lookup server has two separate modes of operation. Any node
will broadcast a request for the address of the Sensor Lookup server using a
"well known" port and UDP. This port was selected to be port 54666. All
communication with the Sensor Lookup server uses the same common routines
placed in a small python module, and this keeps this port and the protocol only
defined one place. The broadcast from the nodes just contains the word "HEI"
and is not used for further reference. The Sensor Lookup server replies with
the location and port number to use for further communication. The nodes
will after this, use the simple http server on the lookup server for registering,
de-registering and query of location of a data storage server node. The nodes
may also register capabilities in form of a text string with name=value pairs
describing the node.

The Sensor Lookup Server must run at all times and be available at all
times. This makes this server a single point of failure. This is a weakness of
the actual implementation. Using Bonjour for this service would distribute the
functionality to all participating nodes, as information would be registered with
all nodes and also cached. See also chapter 9.7.3 for some details and references.

The protocol used for registering a node on the Sensor Lookup server is
illustrated in Figure 22 and a description of the details are shown in Table 2.

A more complete overview of the communication between various types of
nodes is illustrated in Figure 23.

The nodes will query for the location of the Sensor Lookup server before
information is retrieved from the server. This will handle a situation where
the server has been restarted on a new node after crash or other stops. The

50

Lookup
server Sensc:)rr node
] Data server
]
|
Initial broadcast using UDP and "well known" port. ™
<
Reply to UDP broadcast containing address and port of http server
>
HTTP requests and reply's for registering, de-registering
- and querys.
< >

Figure 22: Sensor Lookup communications

Sensor Controller

Lookup Dala Sk Sensor
server Data Storage Controller node
node

. M
Broadcast and register Distribute and start SensorNodes

Data producing
nodes

Broadcast and register Node
.

! Request name of DataStorage(s), etc

1 Sensors

and data

storage ID ‘ ‘

- Name of DataStorage

Observational data Software Update
j> Software Update -
D S
i
Automatic
restart
Data Request » Observational data
>
Data Request
| .
Ll
Observational data
Data Request STOP /KILL
[> 1
L
-] g > i ‘

I
|
i

Figure 23: Messages exchanged with the Sensor Lookup server

ol

Table 2: Sensor lookup protocol

Descriptor Explanation
KILL Stops the sensor lookup server
STOP Stops the sensor lookup server
Both these will halt the server.
REGISTER Register a node with the server
REMOVE Remove a registration with the server

Both these will POST a python pickled dictionary.

QUERY DATASTORAGE | The address of the registered storage servers
This will return lines with each node on one line.

CONTROLS Query the address of registered sensor control nodes

This will return lines with each node on one line

nodes have a limited number of retries before they give up and has to stop the
computing on the node. In our emulation, 10 retries.

7.9 Node monitoring and structure of a data producing node

Fach node consists of three running processes and a shared filesystem as illus-
trated in Figure 24

e Process monitor. Will start the other processes initially and after a crash
or software update.

e SensorReader. Retrieves one observed item from the simulated sensor and
stores this on the shared filesystem. The observing frequency is set using
a configuration file.

e SensorDataServer. The Data server has the communication responsibility
for the node. This server will at some frequency dispatch the latest ob-
served value to a data storage and will respond to any users accessing the
node directly. This node also handles software updates.

The shared filesystem in this dissertation is a simple file on the local disk on
the node.

The process monitor differs between stopped and crashed software on the
resulting error code the operating system returns. The process monitor is im-
plemented as a separate program that starts and monitors that the sensor is
running. When the sensor stops, two different options exist. The first is simply
to restart the sensor program, the second is to terminate all computing at the
data producing node if this is wanted. Since the process monitor has started
all cooperating processes it also knows the process ID, and can stop them. All
processes run as regular user processes.

The node does not report stopped or crashed software in our implementation.
This could be implemented by having the Process monitor create a report file
that the SensorDataServer reports as part of the registration. This report would
also contain version numbers if this is available.

52

A A
I
I

1
To ’

Sensor Controlling Network LookupSZerver
and Service registering
Sensor Data Computing Network J/

| /
’
’
2
7
’

, .
Sensor Data Producing Node
// Monitor for g
/ processes
/ Monitor ’ Monitor

|

T
|
I
|
|
I

4 and and
restart restart

SensorDataServer
and
Software Updater

Last sensor readi

Sensor Schedule

Shared configuration on local storage

Figure 24: Data producing node with monitor

7.9.1 Size of the software at each node

The sensor data producing node is programmed in python, and the size of the
different files to be transfered on deployment of the node adds up to a total size

of around 40 Kb.

7.10 Design of Sensor Data Storage node

A sensor data storage node is part of the sensor data computing network. A
simple use case analysis shows that the most common use is to store and retrieve
single elements from the data storage. The data storage uses the following

technical solutions:

e The "mydbm" python module is used for database-like storage. See chap-
ter 7.4.1

e The stored data is a python pickled dictionary containing at least the
following keys:

— name, identity of the data producing node sending the data

— timestamp, of the datavalues sent

93

— data, is the actual data element

— mime, is the mime "Content type" of the data element. "image/jpeg"
is used for webcamera images.

The pickled dictionary is stored in the database under the key generated
by concatenation the name and the timestamp. Any type of data value can
be stored as long as it can be pickled. The storage does not know the type,
it simply stores a long string. The dictionary is also human readable, to ease
debugging. A binary representation would have made the storage requirements
smaller, but this was not an issue in this emulation.

7.10.1 Communication

The data storage node provides an HTTP server for posting incoming data
from data producing nodes and also from other cooperating data storage nodes.
Data can also be retrieved from the data storage using the HT'TP server. The
protocol has been described in chapter 6.3.3.

® Safari File FEdit View History Bookmarks Window Help

eno
@ hitp:/ /epsilon.local.:8080/
M jjourv Ars Techni | DangerR i09 Thomas Hawk's Digg

Welcome to the Sensor Data Storage

T understand the following commands:

Command Effext
KILL Doing a KILL will stop this server.
No data is lost.
POST Doing a POST will store your data.
It has to be a Python Pickel«d
dictionary.
keys Rerwrieves all the available keys from
the database.
textkeys Retrieves all the available keys from
the database as text file.
DATA/key Retrieves data from sensor

Figure 25: Sensor Data server, viewed from a browser

The HTTP Server is available from a standard web browser as illustrated
in Figure 25. The HTTP server has a simple page-design and may also either
show all available keys in the local data storage as a web page (Figure 26)
or in a pure textual form that is more suitable for further computing by other
applications. See chapter 7.13 for an example that uses this functionality.

For communications between nodes in the data computing network, a node
needs to keep a list of all peers. Using the basic assumption that all data
elements should be available from all nodes in the data computing network,
a simple routing of data between nodes is needed. In an real-world sensor
network this protocol would be much dependent on the characteristics of the

o4

® Safari File Edit View History Bookmarks Window Help

800 Sens

Sensor Data Storage

I understand the following commands:

Command Effext
KILL Doing a KILL will stop this server.
No data is lost.
POST Doing a POST will store your data.
It has to be a Python Pickel«d
dictionary.
keys Retrieves all the available keys from
the database.
textkeys Retrieves all the available keys from
the database as text file.
DATA/key Retrieves data from sensor
DB existed.
KEYS

tile-0-0 20080103:00:19:30
tile-0-0 20080103:09:22:57
tile-0-0 20080103:09:23.57
tile-0-0 20080103:00:24:57
tile-0-0 20080103:09:25:57
tile-0-0 20080103:09:26:57
tile-0-0 20080103:09:27:57
tile-0-0 20080103:09:28:57
tile-0-0 20080103:09:32:26
tile-0-0 20080103:09:33:26
tile-0-0 20080103:09:37:18
tile-0-0 20080103:09:38:18
tile-0-0 20080103:09:39:18
tile-0-0 20080103:09:40:18

Figure 26: Sensor Data server with link to all stored items

95

actual network in use, and would have to be as efficient as possible. In our case
we can implement a simple worm-like distribution, with the same functionality
as the software distribution.

The data element is extended with a simple list of nodes to receive the data.
This list is generated by querying the service discovery for nodes of the correct
type using the protocol in chapter 7.8

7.11 Sensor controlling network
7.11.1 Emulation start, stop and update

A simple controlling GUI for starting and stopping the emulation on the com-
puter cluster is created to run on a Macbook laptop. The program is created
using python and TK for GUI. This makes the software portable to all plat-
forms. This software is called the "controller". An running example is show in
figure 27.

Sensor Controller

ile-2-0 | Add Node RUNNING NODES:
tile-0-0 tile-0-0.local
tile-0-1 tile-0-1.local
tile-0-2 tile-0-2.local
tile-0-3 Remove Node tile-0-3.local
tile-1-3 tile-1-0.local
tile-1-2 tile-1-1.local
tile-1-1 tile-1-2.local
tile-1-0 tile-1-3.local
tile-2-0 tile-2-0.local

Start all nodes

Stop all nodes

Update all nodes Update running nodes

Figure 27: Sensor controller, Tk version
This controller has a limited number of responsibilities :

e Start sensor nodes
e Stop sensor nodes

e Update software on sensor nodes

To start a sensor node the controller distributes the software to a node in the
computer cluster, and starts it as a local daemon. This is done using "scp" and

56

"ssh" commands. The sensor nodes are started in a demonized way to ensure
continuous operation after the "ssh" commands ends.

The controller does not receive a heartbeat from the newly started nodes,
instead the controller has to ask the Sensor Lookup for a list of running nodes.
As can be seen in Figure 27 the reported node name in the column to the right,
and the given name before startup in the column to the left, is not identical.
This is because the node is collecting its own name from the cluster node that
it is running on and therefore adds the ".local" domain suffix.

The sensor nodes is stopped by requesting a list of running nodes from the
Sensor Lookup and issuing a "KILL" command to the HT'TP server on each
node.

The controller only starts the nodes in the sensor data producing network.
The data computing network and sensor controlling network are started manu-
ally. Using the software update functionality nodes for these networks may also
be started on other nodes.

7.11.2 "External" Software updates

Software updates are initiated externally viewed from the complete sensor net-
work. Our controller is therefore a possible origin for such updates. Distributing
a software update is achieved by sending one single file. This file may be a TAR
archive containing Python scripts or configuration files. The controller will first
request a list of running control nodes from the sensor lookup server, and there-
after send the update to the first sensor control network node on the list. The
software update is packaged as a Python dictionary with the following content:

Key Content
filename | The name of the file to be replaced
data The content of the file to be replaced
nodelist | A simple list of all nodes to be updated
nodedict | A dictionary over nodes and ports to be updated.

Both the "nodelist" and the "nodedict" elements comes from the Sensor
Lookup. The file may be a TAR archive, and if the filename end in ".tgz" the
file will be unpacked. The files in the archive may replace existing files or add
more files.

When using a "Worm" (see chapter 6.2.8) strategy we can view the described
protocols as a mean to propagate in the network. In this implementation we will
not use the newly updated code to decide on how the update is to be distributed,
but will simply follow the provided list. To implement a better worm-like update
strategy, the received software should be stored on disk, the node restarted, and
the new software or configuration used to decide the following strategy.

7.11.3 Sensor control node

The sensor control node has basically two tasks in our implementation:

e Keep the sensor network running by monitoring the nodes.

o7

e Distribute software and configuration updates

Monitoring the nodes could have been achieved by having the sensor control
node either receiving a heartbeat from the other nodes, or having the sensor
control node contacting the other nodes at regular intervals. But since the
nodes are already contacting the sensor lookup server at regular intervals, we
choose to simply have the sensor control node retrieve the list of active sensors
from the sensor lookup service.

The distribution of software and configuration is externally initiated. In our
emulation this is done by the sensor control described in chapter 7.11.1. The
sensor control node simply creates a list of nodes that will receive the update,
and it also generates a complete dictionary as described in the previous section,
and sends it to the first node on the list. The update will be forwarded to the
other nodes by the nodes themselves in a worm-loke fashion.

Upon reception of this data package the node will write the content of the
file to the wanted file, pop its own name from the "nodelist" and "nodedict",
and transmit the new package to the next node on the list. After successful file
replacement and forwarding of the update, the sensor node will stop with an
error code indicating that the Process Monitor should restart the node.

7.12 Startup sequence

In our emulated system, elements have to be started up in a sequence. This is
simply to assure that all necessary services are running prior to its use by other
parts.

1. Sensor Lookup server
2. Sensor data storage nodes.
3. Sensor control nodes

4. Data producing sensor nodes

The lookup server is used by all types of nodes and has to be running prior
to anything else. This services is therefore best regarded as part of the general
network infrastructure. The sensor data storage nodes has to be started before
the data producing sensor nodes, as the producing nodes will start the delivery
of data immediately.

7.13 Data Viewer

A simple application for looking at the sensor data was implemented. Since the
emulated sensors delivers images, a simple image viewer is programmed using
Python and TK to ensure portability and the ability to run on all available
nodes. The viewer will retrieve the latest images from all the available sensors
from the sensor data storage network and display these in one large window. If
the window is resized and click on, all images will be resized. Whenever a click
is registered in the window, the program will reload the images.

o8

LIMAEFASIaN

Figure 28: Simple data viewer for image sensor data

The data viewer will also store the last composite image to a file for other
use.

The data viewer collects all available keys from a sensor data storage node
using the pure "textkeys" method, and sorts this after node source. The last
available image from each node is retrieved from the data storage, and a large
composite image is created.

In Figure 28 an example is shown. Images from 9 different sensor data
producing nodes have been collected for the sensor data storage node and are
put together. The actual programming needed for doing this is very simple, and
can be illustrated with some parts from the python program. Some actions and
contents have been removed and are explained in the comments.

URL contains address of sensor data storage node
#

url = URL + "textkeys"

f = urllib.urlopen(url)

lines = f.read()

f.close()

allkeys = lines.split("\n")

Some selection of keys from the "allkeys" tuple is performed and the remaining
keys is put into a '"nodes" dictionary. The last key for each node may be selected.

url = URL + "DATA/"

99

for k in sorted(nodes.keys()):

kk = nodes[k]

try:
f = urllib.urlopen(url + kk)
i = f.read()
f.close
res.append(i)

except:
pass

"res" contains all images from the selected list.

Other languages have similar libraries to retrieve data over the Internet from
URLs and this can also easily be done using web 2.0 type applications. This
demonstrates that using HTTP servers for the data storage creates easy access
in terms of programming requirements.

7.14 Items previously described but not fully implemented

The following items are described previously in this dissertation but is only
partially implemented:

e Redundancy in the sensor data computing network or in the sensor con-
trolling network. Both networks may have several nodes that registers
with the sensor lookup server, but no detection of failure is done.

e Data forwarding between nodes in the sensor data computing network.
All data is processed locally.

60

8 Experiments

The whole system was set up and run on the Display Wall lab at the Institute
of Computer Science, with the different tasks distributed as shown in Table 3.

Table 3: Experiment setup

Where running Task Instances

On the Computer cluster | Sensor data producing nodes up to 28
Sensor Computing nodes (data storage)
Sensor Controller nodes

On a Macbook laptop Controller for the emulation
Sensor Lookup server

== =] = =

On a Linux workstation Data Viewer

Both the Sensor data computing nodes and the Sensor controller nodes may
be started on more nodes, up to 28 on the cluster and also one each on the
Macbook laptop. The limit is due to the use of TCP/IP ports on each computer.
Only one process can use a specific port at a time.

The experiment was set up so that the nodes on the cluster delivered one
observation item, typically an image, every 60 seconds. This gives a volume of
observations in the order of 50 - 100 Kb/s coming to the data storage nodes so
this represents a low volume network.

To test the experimental setup a simple stress-test of the Sensor computing
node was performed. Two computers in the cluster has 20 threads each doing
1000 iterations of sending observations. The data provided was an image with
a total size to be transmitted of 86 kB. Some results from the stress run on one
of the computers follows in table 4. Several threads could not connect to the
Sensor computing node in at least one iteration.

We can see that the throughput from one thread is in the order of 580 - 720
kB/s. In total with 20 threads on each of two computers, gives a throughput in
the order of 20 MB/s. It must be noted that the Sensor Computing node has
to store the observation in the local files system. This filesystem is a NFS share
between all computers in the cluster. The network load is therefore significant
from this part of the test.

Table 4: Througput in stress-test of Sensor Computing node
Speed in B/s

718088
714152
690691

. (removed some rows) ..
584814
583821
579298

61

8.1 Super Sensor Network experiment

The experiment consisted of the following phases :

e Deploy the software to all nodes and start all processes
e Collect data from all sensor data producing nodes
e Issue a software update from the controller with one single-file update

e [ssue a software update that adds a new process and updates the config-
uration. Multi-file update.

e Read data from the storage nodes and from the individual data producing
nodes

e Accessing the data from a Sensor computing node from as program on an
computer outside the cluster but on the same subnet.

e Stop all processes in the emulation.

All phases were successfully completed. The first software update consisted
of a small change in the handling of images at the data producing nodes, where
the newer version simply annotated the image with some informations. This is
demonstrated in Figure 29 (before) and Figure 30 (after). The small difference
is the small text at the bottom left corner. This update also added the func-
tionality of each node to display the current image on the nodes own tile on the
Display wall. The software update transmitted contains the updated file and
some additional items and the size was 7103 B.

Updating all nodes in a 28-node emulation takes close to 8 seconds, where
most of this time used for stopping and starting of processes. The local pro-
cessing on the Sensor Data Producing nodes when receiving a software update
is minimal before the node forward the update to the next node in the queue.
This makes the distribution of the software between nodes efficient, even if it is
done sequentially from node to node.

Using the data viewer, the update could be seen rapidly spreading in the
data producing networks.

The second software update added a sensor control node to each sensor data
producing node. This demonstrated adding functionality to any node. The
software update consisted of two files packed in one packed TAR archive. This
was also successfully done. Updating all nodes to add this new functionality
takes the same time as a regular software update. This is as expected as most
of the time for an update is in stopping and restarting the processes on the node.
Adding one new process does not significantly increase the load time. This is
most likely a function of the underlying operating system and file-system.

62

Morth Fri Jan

Figure 29: The original image from the sensor node

tile-0-0 20080118:08:14:-27

Figure 30: The updated image from the sensor node

63

64

9 Related work

9.1 Operating systems

A popular operating system used in current research is TinyOS [20]. This OS
focuses on providing the platform for three goals in developing sensor networks
and sensor nodes.

e Provide an extensible and developing platform.
e Allow diverse implementations in varying mixes of hardware and software.

e Be suitable for limited resources, concurrency intensive operations and
robust application-specific development.

TinyOS provides a framework for defining different services and does not de-
fine a particular system /user boundary. TinyOS has been implemented on var-
ious hardware platforms on various sensor node systems. TinyOS provides also
a complete over-the-air reprogramming mechanism using Deluge [31]. Deluge
is a reliable data dissemination protocol for wireless sensor networks. TinyOS
provides different tools for single-hop and multi-hop communications using ac-
tive messages [32]. Active Messages are an event centric communication APIL
TinyOS provides also several network services like multi-hop broadcasting, rout-
ing, power management and time synchronization.

TinyOS has not traditionally used IP for networking. This means that only
the edge of the sensor network was externally accessible and could use the large
base of technology IP provides. This is changing and some implementations exist
today. TinyOS is also optimized for small nodes. In this dissertation the focus
was on large nodes and IP capable networking. But with newer implementation
TinyOS could also be a viable platform for the architecture proposed here.

9.2 Virtual machines

Maté 8] is a small virtual machine designed for sensor networks. Maté has a
very high level interface and is a byte-code interpreter that runs on TinyOS.
Programs can therefore bee very small, typically less than 100 bytes. Maté has
been extended to a framework for building application-specific virtual machines.
When updating a sensor node a complete TinyOS image with a modified virtual
machine is transmitted.

Using virtual machines to run multiple applications in parallel and with
high degree of isolation from each other is very desirable. Maté could also have
provided a basis for the architecture proposed here, and would have been a good
candidate for running processes belonging to separate functional networks on
the same node. Maté is based on TinyOS and the initial lack of IP capability
did make it unsuited for this dissertation.

9.3 Security

For many sensor networks security is a major problem. One example can be
networks used for surveillance and monitoring purposes. Unauthorized access to

65

the observations or the possibility of corrupt or incorrect data due to intruders
is a serous problem.

In the survey by Walters et. al. [33|, the challenges is divided into these
aspects :

e The obstacles to sensor network security
e The requirements of a secure wireless sensor network
o Attacks

e Defensive measures.

The survey also contains a walk-through of the different problems and avail-
able solutions. They expect that as wireless sensor networks become more com-
mon, the use of public-key cryptography will meet the expectation of strong
security.

One example of a communication systems that implements strong security in
wireless sensor networks is the Dust Networks SmartMesh-XT [21]. This system
implements 128-bit symmetric key encryption for end-to-end confidentiality in
a totally meshed network [10]. The motes are interfaced with other types of
equipment and may acts like NICs.

In this dissertation we do not study security concerns and assumes that some
of the technologies referred above is present.

9.4 Middleware

Cascades [34] is a complete middleware for use in sensor networks with empha-
sis on video sources. It is developed based on the experiences with Panoptes
[35] where low powers video sensors were used in a testbed for further research.
Omne of the main features was the possibility of intermittent network discon-
nects where the node had to store data for later retrieval, and with memory
constraints, had to do thinning on the video stream to allow new data.

Cascades uses Python scripts to provide high level access to powerful func-
tions leading to small but efficient routines. The system composes a data flow
using cascading "filters" where the individual filter are highly optimized for its
task. Filters are connected using python interconnects that are both means
of exchanging data on a computer, but also between computers on a network.
Different types of filters handles different types of data, both traditionally on-
parameter sensors and video streams are used. A separate filter is used for
metadata and control data handling, so that missing video data can be de-
tected. Filters can be updated during operations and will be reloaded when the
update is detected. The means of updating is not described.

Cascades has a fixed structure of control and relies to some extent on a cen-
tralized model. This is different from what this dissertation have assumed, and
Cascades was therefore not a good starting point for the architecture presented
here. Cascades has a very efficient programming style and very high level ab-
stractions are available for use. Also the possibility to dynamically update an

66

active application is impressive. In this dissertation the focus was on meteoro-
logical observations and not video. Cascades is still a good candidate for some
types of meteorological networks, like monitoring for the occurrence of fog or
other visibility-reducing phenomena at airports.

DAVIM [36] is a new service middleware for sensor networks implemented
as a dynamic management of services on virtual machines. DAVIM uses a
combination of native code and virtual-machine byte-code for applications and
argue that this has been shown to be energy efficient. DAVIM is designed to
meet some requirements.

Services should be separate from the application using them.

e Managing available services should be dynamic and easy.

Multiple applications running on the same sensor network should be iso-
lated.

The complexity of implementing recurring functionality should be lowered
by the middleware.

The services and applications are separated at runtime as the applications
are a byte-code script that runs in a virtual machine of their own, on top of
the DAVIM core. This removes the static linking between VM instructions and
operational libraries.

DAVIM was not available at the start of this dissertation, and the first
publication was noticed around January 2008. DAVIM implements some of
the same architecture features studied in this dissertation. Both control and
computing functional networks may be implemented in DAVIM and run on the
same node as the sensor data producing code. Using virtual machines these
would have been separated from each other but at the same time monitored by
the underlying VM. DAVIM would be a very interesting technology to built the
studied architecture on.

9.5 REST

The REST [18] [19] style of organizing HT'TP access and how to build up URLs,
provides architectural constraints that may ease implementation of communica-
tion in heterogenous systems. The use of REST does not imply a need for any
specific language or system used in the implementation.

One of the important aspects of REST is that it is stateless. This means
that the participating entities does not have to keep state between sessions.
This is helpful for smaller implementations. This also means that most results
are cacheable. See also Appendix C for an example of use of REST.

The use of HT'TP will not place restrictions on the type of data exchanged
but will induce an overhead in the communication. HTTP is most often im-
plemented on top of TCP/IP, but can be implemented on top of any protocol
delivering reliable transport. HTTP can be used in a compressed mode that is
supported by most clients if the size of the data stream is regarded as a problem.

67

Also simple HTTP servers are implemented in a number of languages with a
very small memory and processor footprint.

REST is therefore a good mach for the systems used in this dissertation and
was easily implemented.

9.6 Software update

Several good algorithms for distributing software updates in wireless sensor
networks exist. A few examples are Deluge [31], MNP [37] and Freshet[38].
In this dissertation a highly efficient algorithms is assumed to exist, and as an
example some parts of Freshet algorithm is described here.

The Freshet algorithm is designed to provide an energy efficient on-demand
distribution on new code in large scale sensor networks. In Freshet some nodes
act as originators of new code. These are typically gateways to the network.
These originators will first start a "blitzkrieg" phase where a "warning" message
with information on the availability of new code is pushed to all nodes in the
network. As these "warning" messages traverses the network each node will
rebroadcast it to the adjacent nodes after having incremented a hop-counter.
For all nodes with a hop counter of less than 3 will start to listen after broadcast
of the availability of new code. A node which hears an availability broadcast
will request the code from the source, which will send the code to the requesting
node. This availablity-request-code phase is called a three-way handshake. Any
nodes also hearing the transmissions will receive the new code. Nodes with a
hop count of 3 or larger will enter a waiting state with their radio receivers
turned off to preserve energy. How long this waiting is, is dependent on how
long distance from the originating node the node is. A node will act as a source
of the new code as soon as the first parts is received. Several optimizations for
receiving larger parts without the three-way handshake are also included. Also
optimizations for new nodes needing large updates are part extensions of the
basic algorithm.

The Freshet algorithm would be very interesting to implement in the software
update part of the architecture studied in this dissertation. It is a minor problem
that the state of a node is dependent of wether a software update has been
announced or received.

9.7 Existing service discovery functionality in regular networks

Frank, Handziski and Karl [39] have a thorough review of different forms of
service discovery in use today in wireless sensor networks. A simple list may
include :

e Jini, Java’s protocol-independent framework for heterogeneous networks
and software components.

e Bonjour/Zeroconf/Avahi, User by Apple and in Linux systems for network
configuration and service discovery.

e UPnP with SSDP. Used by Microsoft for communication between devices
on a network.

68

e SLP, Service Location protocol has reached IETF Proposed Standard level.
SLP is described in RFC 2608 and RFC 3224

e JXTA, A general purpose communication system that also includes peer
discovery.

JINT and Bonjour technologies are the most relevant in this dissertation. In
this dissertation the choice to use Bonjour was mostly based on the selection of
programming language and os and hardware platform. Bonjour provides also a
programming language independence.

9.7.1 JINI

JINI presents a comprehensive systems with integrated service discovery and
code transparency and remote execution. The JINI systems is not protocol
dependent as the systems allows for interchanging modules loaded on the fly
using any wanted communication protocol. JINI supports service discovery via
brokers available on the network.

To access a given JINI service the program locates the object that supports
the wanted service. The object is used to download the code needed to access
the service. This is done using a standard interface in Java. To facilitate this
several services must exist on the local network.

e RMI Registry

e A JINI Lookup Service

The JINT services uses the Java security functions to access and control
access to remote and local code. A simple use of JINI can be illustrated with
the code in Appendix Appendix A

9.7.2 JXTA

JXTA [40] is a set of protocols for general-purpose computer-to-computer com-
munication. JXTA is an open-source, community-based project originally initi-
ated by Bill Joy and Mike Clary at Sun Microsystems. JXTA has defined a set
of XML-based protocol and a Java reference API to provide a generic framework
for P2P.

The JXTA Protocols Specification describes several protocols and functions
(not exhaustive list):

e Discovery of the services peer and peer groups provide to the network

e Services including location, specifications and executable code for the ser-
vice.

e Data transfer. JXTA provides the concept of a "pipe" for transferring
data in an abstract fashion. Including one-to-one, one-to-may regardless
of protocols.

69

e Message routing including rendezvous peers that may cache information.

JXTA is at present implemented in Java SE, Java ME and C/C++/C#.
There is some work on Ruby and Python bindings but these are not complete
at the time of writing.

9.7.3 Bonjour

Bonjour [23] is Apple’s implementation of zero-configuration [24]| over IP net-
works. Bonjour solves three problems :

e Addressing and assigning of addresses.
e Naming.

e Service discovery.

Bonjour uses a multicast DNS [41] [42] (mDNS) in the local IP network.
Since all devices participating on the local network runs either a daemon mDNS
responder for its services or a local mDNS responder on each computer, no
common DNS server is needed. Also this implies that no DNS server has to
know all available services.

The local application has only to register with the local mDNS responder
for other applications to be able to locate the services provided. This relieves
the application from handling all types of mDNS messages.

Registering with the local mDNS responder can be illustrated with the test
code in Appendix Appendix B. This code registers a service at a given port on
the local computer. More specific it registers a HI'TP server to be visible as a
service in a Bonjour capable browser.

The browsing is done in an asynchronous way. First a request is issued on
the local network and then each reply is handled by the call-back routine. For
each reply a simple DNS service resolve is done to retrieve the full host name
of the service provider. The ".local" is used to indicate a name that should
be looked up using a IP multicast query on the local IP network. The test
code will locate any HTTP servers that are bonjour capable and have a bonjour
responder daemon on the local network. In this example the programs looks
for the service type (or application protocol) of " http. tcp", that is HTTP
over TCP. The responder can be either a thread in the local application or the
mDNS responder on the computer. All responses from these responders look
like standard DNS responses.

Bonjour uses an extension to the standard DNS system with the local multi-
cast. This reuse of existing standards makes implementing such services simpler.
Bonjour uses ".local" as an indicator for computers on the local network and
will use a broadcast to find the wanted machine. This implies that Bonjour has
a special semantic for the ".local" domain that departs from the DNS standard.
The use of the ".local" domain is not routable over network partitions but are
sufficient for accessing nodes within the same segment.

70

9.7.4 Avahi

Due to licensing concerns Bonjour was not originally implemented on Linux sys-
tems and a version that could be released under the LGPL license was created.
This is named "Avahi". This is an implementation of the Bonjour protocols
(mDNS) and also of the DNS-SD standard. It is commonly available on all
newer linux distributions and is heavily used in the Gnome and KDE desktops.

As Bonjour, Avahi is also an implementation of Zeroconf. Zeroconf is the
need for simple configuration of address, name and service discovery. This is
in some respects an IPv4 problem, as IPv6 has local-link addressing. Service
discovery is done using the standard DNS SRV records. This gives the user both
the IP-address, the host name and also the port where the service is running.
Additional information may also be available.

Avahi is available as a complete and comprehensive implementation.

9.8 Example of birds nests monitoring application

In cyclops [43] a complete system for deploying image sensors in a biological
study have been developed. The small sensor nodes has a relatively low resolu-
tion (320x280) image sensor and has the Mico2 mote for radio communications.
Images are collected each 15 minutes and are sent to a local data server that
runs Linux and is connected to the Internet. The classification of the images
may be done in the node and only a classification value sent. The study has also
examined the balance between using powers at the node for image compression
compared to the gains in energy consumption when transmitting the images
over radio.

The nodes has limited powers supply (running around 15 days on batteries)
and the software in the nodes are not on-site update-able. One of the interesting
aspects is the detection of eggs in birds nests. This is done using a highly
optimized algorithm on the node. One could speculate that the possibility
for updating this algorithm without physical contact with the node may be of
interest.

The example shows that location local computation on sensor nodes is in
some cases highly desirable, but also demonstrates that even for small nodes,
on-site wireless software updates may help. In this example the sensor nodes is
fairly accessible, but physical presence may cause disturbances in the observed
data.

9.9 Video surveillance

Palau et. al [44] has implemented an urban traffic monitoring system in use in
Valencia, Spain. The system uses a high number of video cameras (more than
600) where MPEG4 video is streamed using MPEG-TS [45] over IP. All nodes
are connected via high speed fiber optic network. To isolate different parts of
the network different virtual networks, VLAN (IEEE 802.1Q) are defined and
the video streams uses one VLAN while information from other sensors are sent
through a separate VLAN.

71

Video streaming to end applications are handled by video servers that are
deployed on selected points in the city. The role of the video servers is to capture
the raw video signal, compress it using MGPEG4 and transmit the video stream
using MPEG-TS. The whole of the system is designed and implemented in the
COTS (Commercial off-the-shelf) philosophy. The playback system handles
multiple simultaneous clients using IP multicast as this is available on the L 3
switches in the TMC (Traffic management centre) part of the core network.

One of the lessons learned was that possibility to easily change the operating
software on the nodes in the network was a great benefit. Video encoding could
be changed without physically handling devices and new and improved codecs
could be installed. This was also one of the reasons for studying software updates
in this dissertation.

9.10 Tapestry

Tapestry [46] is an overlay infrastructure designed for scalable and fault-tolerant
applications in a wide-area IP network. Tapestry studies the access to objects
that may exist in several copies on different locations in the network. Tapestry
provides integrated location and routing using a strong focus on the locality of
communications, where routing is decided on local available information only
and not on a total network overview. This also provides fault tolerant routing
and location. Tapestry uses both the soft-state, announce/listen approach that
relies on TCP timeouts and periodic UDP heartbeats, and also explicit repub-
lishing of location information. The priority between these solution is based on
the substantial network overhead using soft-state, so that explicit republishing
is the preferred method and soft-state as the fall-back method.

Relative to this dissertation Tapestry provides an example that the under-
lying routing and distribution of information and services in a IP network can
be handled as overlay networks with a small overhead.

Also Pottie and Kaiser [47] show that computation close to the source of the
raw data can drastically reduce the communication and total computation cost
for a complete system. This may also lead to better scaling networks.

72

10 Discussion

10.1 Failure Models

The most difficult failure model is when the device or node delivers wrong data.
Due to the large natural variations in the meteorological conditions, these kinds
of failures may be very hard to notice. The most common way to handle these
types of failure is to black-list the node which removes any value of the node.
Another solution is to try to correct the incoming data, if some common or
systematic error can be detected. In this case some value is retained although
the node still has errors. In this dissertation the nodes are assumed to deliver
correct data at all times.

10.2 Communication

The use of IP in a sensor network gives access to a very large base of technology
and methods. Very good and proven technology exist for a number of issues,
like routing, security, applications support and service discovery. Many of these
issues has to be revisited to handle constraints in a sensor network, but the
basic framework exist. For further details see http://en.wikipedia.org/wiki/
61oWPAN

Using HTTP based protocols was relatively simple to implement as there
exist a large base of modules for HI'TP communication. This also makes the
small servers at the node and at the data storage program, simple and extend-
able. The data producing nodes and the data storage nodes can also be accessed
from a standard web browser, which makes debugging much simpler.

The use of HTTP for communication and device setup has become an in-
dustry standard. All different kinds of devices have now a small and effecive
HTTP server built in.

10.3 Routing

In this emulation the nodes must ask a known entity about other nodes. This
represents a possible single point of failure and a possible congestion point. If
no contact with the known controller is established, no contact with neighboring
nodes is possible. In a environment with complete support for Bonjour/Zeroconf
the structure is such that any nodes may listen in on the service discovery traffic
and will cache names and services for its own use if it sees something new in
the traffic.

10.4 Communication overhead

A single observation is delivered as a single POST to a HI'TP server. The posted
data is an pickled Python dictionary. The total network overhead can be divided
into three parts. An TCP/IP part, an HT'TP part, and a data packaging part.

To estimate the data packaging part we can compare one actual JPEG image
(from figure 29) with the stored Python dictionary containing the same image
in addition to the other small elements (see chapter 7.10) :

73

Mode Content | Size in bytes
Uncompressed Original image size 67093
Pickled Python dictionary 193778

Compressed gzip’ed original image 66752
gzip’ed Pickled Python dictionary 89718

If the web server supports HT'TP Compression (see RFC2616) some of the
pickle expansion would be mitigated. One of the possible compression algo-
rithms is gzip. As shown above the dictionary is closer to the original size even
though it contains additional information compared to the original JPEG im-
age. Still the method used in this dissertation generate an overhead of around
50 % compared to a gzip’ed version.

It should be noted that Pythons pickle.dumps function with the default
protocol was used. This results in an ASCII string that is human readable.
Using a higher protocol would result in smaller sizes with very little overheads.
The choice of using the default protocol in stead of a more compact higher
protocol was mostly to keep the network traffic human readable and network
bandwidth was not a limiting factor in the emulation.

TCP/IP overhead and HTTP protocols has been studied and Frystyk Nielsen
et. al. at W3C [48] has demonstrated that the TCP/IP overhead is between 5
-10 % and using HTTP compression the HTTP protocol does not increase the
overhead much. This is mostly due to the compression algorithms. This over-
head has to be weighted against power requirements by the network requirement
to implement HTTP compression.

10.5 Coordination of control

On possible solution to the problem of having many sensor control nodes try-
ing to update nodes with different generations of software (see Figure 13)is to
have every item carry a "version" number. This version number has to be
monotonously renumbered so that every new update has a higher number than
any previous versions. If any control node sees a data producing node or data
computing node with any item with a newer version, it will simply wait for the
upgrade to diffuse to it. In the case of a mistaken update or an update with
faults, "downgrading" to the older version is done by issuing a new update with
a higher version number but containing the older software.

It is also possible to divide the data producing and data computing nodes
into groups, and have each group controlled by one sensor control node. This
simplifies the control issues, but has no redundancy in case of communication
or other failures.

Also algorithms like Freshet (see chapter 9.6) may remove the described
problems.

74

10.6 Service discovery

Using UDP for the initial broadcast to find the Sensor Lookup server had sev-
eral problems connected to the possible loss of data packets in the network.
Therefore a mechanism for retransmissions had to be implemented. In this dis-
sertation this is done only on the data producing nodes as the Sensor Lookup
Server does not demand an response on its reply. The data producing node will
retry until it has a valid response.

In practice this may not be a large problems as at least some of the avail-
able commercial solutions delivers a network with a optimized and guaranteed
delivery of network packages. One example is Dust Networks SmartMesh-XT
[21].

Using Bonjour in this emulation was difficult because of the missing support
in the computing cluster. This problem was solved using a combination of UDP
broadcasts and HTTP. It is therefore satisfying to find other solutions using the
same basic idea with UDP broadcasts and HTTP for detailed communications.
In mRDP [49] some of the same ideas are used for a lightweight semantic service
discovery protocol.

Bonjour has nevertheless a very attractive feature with the lack of centralized
servers and local control. It also makes it simple to both browse and announce
services.

10.7 The worm update

Using a worm-like update does a sequential update of all nodes and could be
replaced with a more efficient algorithm. In the implementation in this disserta-
tion any node receiving an update, simply forwards this according to the given
list on nodes. In reality this could have been replaced with a process where
the node is first updated and then does some processing to decide how, what
and who to update. This creates the opportunity for selective updates based on
information available on the local node.

A worm would logically be part of the Sensor Controlling functional network
and this network can, in principle, be implemented as a worm with extended
functionality for controlling other parts of the Super Sensor network.

10.8 Node state

In the implementation in this dissertation only a small part of node state infor-
mation stored on the Sensor Lookup server. Only token information on operat-
ing system from each node is provided. Additional information should be easy
to implement and would make it possible for the sensor controlling network to
check that software updates are implemented and that any node is functioning
correctly. This would also make it easy to take simple decisions on where to
locate processing, data storage or other functionality.

Using Bonjour, node state and other information can be stored in the DNS
records for each node. This mechanism is as an example used for storing infor-
mation on printing capabilities for Bonjour capable printers.

75

Table 5: Estimated load in kB/s

Frequency | o0 | 30| 20| 10 5 1
nodes

20 4 S| 13| 25| 50| 250
40 8| 17| 25| 50| 100| 500
80 17| 33| 50| 100] 200 1000
160 33| 67| 100| 200 | 400 | 2000
320 67 | 133 | 200 | 400 | 800 | 4000
640 133 | 267 | 400 | 800 | 1600 | 8000
1280 267 | 533 | 800 | 1600 | 3200 | 16000
2560 533 | 1067 | 1600 | 3200 | 6400 | 32000

10.9 Bandwidth requirements vs. The number of Sensor Com-

putation nodes

In table 5 we give a rough estimate of data traffic generated by the emulated

nodes.

From Dust networks [10] we have the following calculations of available band-

width :

960 transmissions/second x 80 B/transmission

..... a TSMP implementation on 802.15.4 radios with 60
timeslots per second provides:

16 channels x 60 slots/second = 960 transmissions/second
Assuming an 80 B payload the effective total bandwidth is:

76.8 KB/second

Using this effective bandwidth in a wireless environment we can se from the
table that with an image size around 100kB, we have to reduce the number
of nodes or observing frequency or introduce a number of Sensor computation

nodes for intermediate storage.

76

10.10 Conclusion

This dissertation has studied composing a super sensor network from the com-
bination of three functional sensor networks. The communication was based
on an IP network using HI'TP for the main parts. The intention was to use
Bonjour for service discovery, but a minor adjustment were needed for technical
reasons.

This dissertation have demonstrated that the selected technology and ar-
chitecture may handle some of the demands in a sensor network, and that the
architecture gives new opportunities on how to handle updates and control.

The implemented system also demonstrates that using standard Internet
protocols can make access to services in the sensor network easy. A web browser
may become the preferred user interface for controlling and accessing all parts of
the sensor network, as it has for controlling printers and simple network devices.

77

78

11 Future work

The proposed architecture is not fully studied or tested in this dissertation.
Both control and processing have large untested parts and issues to be further
studied. Also the concept of using a worm for software updates. A new approach
could also be to use a worm for data processing, doing queries.

Further testing could be done using small portable computers. One possible
setup where many different sides could be tested is suggested below :

11.1 Air quality and road monitoring

The aim of the sensor network is to monitor the air pollution and road status
in the Tromsg area.
Two types of sensor nodes :

e Stationary, at strategic geographical positions

e Mobile. On the local Busses in Tromsg.

The stationary nodes monitors local conditions and some are connected to
the Internet. The mobile nodes monitors the conditions at regular intervals as
the busses moves around on the roads in Tromsg. Both kinds of nodes would
be large nodes with significant computing and power capabilities available.

Parameters to be monitored :

e Air temperature

Wind. On busses this is almost impossible.

Air pollution by measuring PM10, PM2.5 and NO2 (very small particles
and nitrogen for diesel engines)

Road status by taking an image

Position and speed

Todays situation is best described on http://www.luftkvalitet.info/.
Tromsp have two measuring stations that takes point measurements with high
frequency and good quality.

The described setup would have many interesting sides both for local air
quality monitoring, local meteorology and computer science. Some of the com-
puter science questions that could be answered may be:

e Is this dissertations architecture viable in networks with highly changing
topography?

e Do IP work in a sensor network?

e What network technology is best to use for exchanging information with
mobile nodes?

79

e Is P2P a viable technology for sensor networks 7
e How to keep a running query on the nodes to support alarm services?

e Can road status be inferred from images?

80

References

[1] P. Marron and D. Minder, “Embedded wisents research roadmap,’
informatik.uni-stuttgart.de, 2006.

[2] S. Hengstler, D. Prashanth, S. Fong, and H. Aghajan, “... : a hybrid-
resolution smart camera mote for applications in distributed intelligent
surveillance,” Proceedings of the 6th international conference on ..., Jan

2007.

[3] A. commitee on Computers and P. Policy, “The risks digest,” The risks
digest, vol. 19, p. 13, Feb 1998.

[4] W. World Meteorological Organization, “Global observing system, world
weather watch.” http://www.wmo.int /pages/prog/www/OSY /GOS.html.

[5] ECMWF, “The Advar analysis procedure.”
http://www.ecmwf.int /products/forecasts/guide/The 4DVAR_ analy-
sis_ procedure.html.

[6] R. Brackkan, “Polar avs aa96,” tech. rep., Norwegian Meteorological Insti-
tute, Feb 2008.

[7] Wikipedia, “Wikipedia, device bandwidth.”
http://en.wikipedia.org/wiki/List _ of device bandwidthsWireless
networking.

[8] P. Levis and D. Culler, “Maté: a tiny virtual machine for sensor networks,”
ACM SIGOPS Operating Systems Review, Jan 2002.

[9] met.no, “Stasjonskart2007.” http://met.no/Meteorologi/A male
varet /Observasjoner _ fra_ land/filestore/stasjonskart2007.pdf.

[10] D. N. inc, “Technical overview of time synchronized mesh protocol,” White
Paper, 2006.

[11] H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor
Networks. John Wiley & Sons, Ltd, 2005.

[12] NOAA, “The argos system.” http://noaasis.noaa.gov/ARGOS/.

[13] Wikipedia, “Intelligent vehicular ad-hoc network.”
http://en.wikipedia.org/wiki/Intelligent Vehicular AdHoc_ Network.

[14] A. D. Instruments, “Autiomatic weather station aws,” Product Description,
2006.

[15] A. Instruments, “Recording current meter,” White Paper, 2000.

[16] ScanMatic, “Scanmatic transport technology.”
http://www.scanmatic.no/Default.aspx?page=products13.

[17] QNX, “Qnx real time operating system.” http://www.qnx.com/.

81

[18] R. T. Fielding, “Architectural styles and the design of network-based soft-
ware architectures,” DISSERTATION, 2000.

[19] R. Fielding and R. Taylor, “Principled design of the modern web architec-
ture,” ACM Transactions on Internet Technology (TOIT), Jan 2002.

[20] P. Levis, S. Madden, D. Gay, J. Polastre, and R. Szewczyk, “The emergence
of networking abstractions and techniques in tinyos,” useniz.org, 2004.

[21] DUST, “Dust networks smartmesh-xt.” http: //www.dustnetworks.com /products/smartmesh-
xt.shtml.

[22] K. Akkaya and M. Younis, “A survey on routing protocols for wireless sensor
networks,” Ad Hoc Networks, Jan 2005.

[23] Apple, “Bonjour overview,” Apple technical documents, May 2006.
[24] Wikipedia. http://en.wikipedia.org/wiki/Zeroconf.

[25] Avahi.org. http://avahi.org/.

[26] SitePlayer, “Siteplayer serial to ethernet.”
http://www.siteplayer.com /telnet /index.html.

[27] S. Cheshire, “Bomnjour techtalks at google.”
http://video.google.com /videoplay?docid—-7398680103951126462q—Google
+techtalks.

[28] M. Kuorilehto, M. Hénnilkdinen, and T. D. Hamél&inen, “A survey of ap-
plication distribution in wireless sensor networks,” FURASIP Journal on
Wireless Communications and Networking, Jan 2005.

[29] J. F. Shoch and J. A. Hupp, “The worm programs, early experience with
a distributed computation,” Commun. ACM, vol. 25, no. 3, pp. 172-180,
1982.

[30] O. J. Anshus, J. M. Bjgrndalen, and T. Larsen, “A scalable display wall
using commodity components,” Presentation at the University of Tromsg,
2004.

[31] J. Hui and D. Culler, “The dynamic behavior of a data dissemination proto-
col for network programming at scale,” Proceedings of the 2nd international
conference on Embedded ..., Jan 2004.

[32] P. Buonadonna, J. Hill, and D. Culler, “Active message communication
for tiny networked sensors,” ... the IEEE Computer and Communications
Societies (INFOCOM’01 ..., Jan 2001.

[33] J. Walters, Z. Liang, W. Shi, and V. Chaudhary, “Wireless sensor network
security: A survey,” Security in distributed, Jan 2006.

82

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

J. Huang, W. Feng, N. Bulusu, and W. Feng, “Cascades: scalable, flex-

ible and composable middleware for multi-modal sensor networking ...

Proceedings of SPIE, Jan 2006.

W. Feng, B. Code, E. Kaiser, M. Shea, W. Feng, and L. Bavoil, “Panoptes:
A scalable architecture for video sensor networking applications,” Proc. of
ACM Multimedia, Jan 2003.

W. J. Wouter Horré, Sam Michiels and P. Verbaeten, “Davim: Adaptable
middleware for sensor networks,” IEEE Distributed Systems Online, vol. 9,
no. 1, 2008.

S. Kulkarni and L. Wang, “Mnp: Multihop network reprogramming ser-
vice for sensor networks,” at the 25th IEEE International Conference on
Distributed . .., Jan 2005.

M. D. KRASNIEWSKI, R. K. PANTA, S. BAGCHI, C.-L.. YANG, and
W. J. CHAPPELL, “Energy-efficient on-demand reprogramming of large-
scale sensor networks,” ACM Transactions on Sensor Networks,, vol. 4,
p- 38, Mar 2008.

C. Frank, V. Handziski, and H. Karl, “Service discovery in wireless sen-
sor networks,” Tech. Rep. TKN Technical Report TKN-04-006, Technical
University Berlin, 2004.

S. L. Daniel Brookshier and B. Wilson, “Jxta: P2p grows up.”
http://java.sun.com/developer/technical Articles/networking/jxta, .

S. Cheshire and M. Krochmal, “Dns-based service discovery,” Mar 2006.

K. Sekar, S. Cheshire, and M. Krochmal, “Dns long-lived queries,” Mar
2006.

S. Ahmadian, T. Ko, S. Coe, M. Hamilton, and M. Rahimi, “Heartbeat of
a nest: Using imagers as biological sensors,” Center for Embedded Network
Sensing, Jan 2007.

C. Palau, M. Esteve, J. Martinez-Nohales, and B. Molina, “Controlling
urban traffic with flexible video streaming,” Potentials, Jan 2006.

ISO and I. 2000, “Information technology — generic coding of moving pic-
tures and associated audio information: Systems,” ISO 13818, 2000.

B. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An infrastructure for
fault-tolerant wide-area location and routing,” Computer, Jan 2001.

G. Pottie and W. Kaiser, “Wireless integrated network sensors,” Commu-
nications of the ACM, Jan 2000.

H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prudhommeaux, H. W. Lie,
and C. Lilley, “Network performance effects of http/1.1, cssl, and png,”
W8C note, 1997.

83

[49] J. Vazquez and D. L. de Ipina, “mrdp: An http-based lightweight seman-
tic discovery protocol,” Computer Networks: The International Journal of
Computer and ..., Jan 2007.

84

Appendix A

import net.jini.core.entry.Entry;

import net.jini.core.discovery.LookupLocator;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceTemplate;
import net.jini.lookup.entry.Name;

import java.rmi.RMISecurityManager;

public class MyClient {
public static void main (Stringl[] args) {
Entry[] aeAttributes;
LookupLocator lookup;
ServiceRegistrar registrar;
ServiceTemplate template;
MyServerInterface myServerInterface;

try {
System.setSecurityManager (new RMISecurityManager ());
lookup = new LookupLocator ("jini://localhost");
registrar = lookup.getRegistrar();
aeAttributes = new Entry[1];
aeAttributes[0] = new Name ("HelloWorldServer");
template = new ServiceTemplate (null, null, aeAttributes);
myServerInterface = (MyServerInterface) registrar.lookup (template);
System.out.println ("Calling sayHello()->" + myServerInterface.sayHello () + "<-");
} catch (Exception e) {
System.out.println ("client: MyClient.main() exception: " + e);

}

This program basically does:

e Set up security manager to access RMI/remote code.

Find the JINT locator.

Find the local registrar using the JINI locator

e Find the remote interface using the local registrar

Call the remote function using local downloaded interface

Appendix B

import threading
import pybonjour

class RegisterBonjour(threading.Thread):
""" Thread for registering and servicing bonjour/zeroconf requests.'""
def __init__(self, name, regtype, port):
threading.Thread.__init__(self)
self.name = name
self.regtype = regtype
self.port = port

def register_callback(self, sdRef, flags, errorCode, name, regtype, domain):
if errorCode == pybonjour.kDNSServiceErr_ NoError:
print ’Registered service:’
print ’ name =’, name
print ’ regtype =’, regtype
print ’ domain =’, domain

def run(self):
"""Runs the bonjour/zeroconf threads."""
sdRef = pybonjour.DNSServiceRegister(name = self.name,
regtype = self.regtype,
port = self.port,
callBack = self.register_callback)
try:
while True:
ready = select.select([sdRef], [1, [1)
if sdRef in ready[0]:
pybonjour.DNSServiceProcessResult (sdRef)

85

print "..... got request"
finally:
sdRef.close()
if __name__ == "__main__" :

rb = RegisterBonjour("TESTREGISTER","_http._tcp",8080)
rb.start ()

Please note that this code will run in its own thread but that it has no other
contact with its applications. This thread will keep the bonjour register alive
as long as the application is running.

To browse for other services this code can be used :

import select
import sys
import threading
import pybonjour

timeout =5
resolved = []
class BrowseBonjour(threading.Thread):
""" Thread for watching bonjour/zeroconf requests."""

def __init__(self, regtype, dsQueue):
threading.Thread.__init__(self)

self.regtype = regtype
self.dsQueue = dsQueue

def resolve_callback(self, sdRef, flags, interfaceIndex, errorCode,fullname,
hosttarget, port, txtRecord):

global resolved

if errorCode == pybonjour.kDNSServiceErr_ NoError:
print ’Resolved service:’
print ? fullname =?, fullname
print ’> hosttarget =’, hosttarget
print ’ port =?, port
resolved.append(True)

def browse_callback(self, sdRef, flags, interfaceIndex, errorCode, serviceName,
regtype, replyDomain):
if errorCode != pybonjour.kDNSServiceErr_NoError:
return

if not (flags & pybonjour.kDNSServiceFlagsAdd):
print ’Service removed’
return

print ’Service added; resolving’

resolve_sdRef = pybonjour.DNSServiceResolve (0,
interfaceIndex,
servicelName,
self.regtype,
replyDomain,
self.resolve_callback)

try:
while not resolved:
ready = select.select([resolve_sdRef], [1, [1, timeout)
if resolve_sdRef not in ready[0]:
print ’Resolve timed out’
break
pybonjour.DNSServiceProcessResult(resolve_stef)
else:
resolved.pop()
finally:

resolve_sdRef.close()

def run(self):
browse_sdRef = pybonjour.DNSServiceBrowse(regtype = self.regtype,
callBack = self.browse_callback)

try:
while True:
ready = select.select([browse_sdRef], [1, [1)
if browse_sdRef in ready[0]:
pybonjour.DNSServiceProcessResult (browse_sdRef)
finally:

browse_sdRef.close()

if name == " "

rb = BrowseBonjour("_http._tcp")
rb.start ()

_main__

86

Appendix C

In http://wuw.xfront.com/REST-Web-Services.html several examples on the
REST style is given. Here follows some examples.

Since REST is more an architectural style, no "standard" exist. As an ex-
ample we can look at another system using this style. The web site "yr.no"
operated by the Norwegian Meteorological Institute and the Norwegian Broad-
casting Corporation.

Lets se how we can access the weatherforecast for Bossekop area in the city
of Alta. What we know :

e Bossekop is a place in the country of Norway.
e Bossekop is a place in the county of Finnmark.

e Bossekop is a place in the commune of Alta

Using this geographical drill-down we can construct several URLSs to return
different types of forecast. In REST terminology we will get different represen-
tational states transfered from the web site.

e First to get a nice graphical timeline with the forecast:

— http://www.yr.no/place/Norway/Finnmark/Alta/Bossekop/meteogram.png
e To get a one-page PDF file with many elements :

— http://www.yr.no/place/Norway/Finnmark/Alta/Bossekop/forecast.pdf
e To get the text forcast in XML format :

— http://www.yr.no/place/Norway/Finnmark/Alta/Bossekop/forecast.xml

As we can se we are getting different representations using only minor dif-
ferences in the URLs. All URLs are also easily human readable.

The "yr.no" web site has also published an API for retrieving weather related
elements using a REST-like style. As an example one can retrieve an image from
a weather radar using the following URL:

e http://api.yr.no/weatherapi/radar/1.1/?radarsite=rissa;time=2008-04-12T10:15:00Z;width=460

We can see that we are retrieving data using the weatherapi data, from a
radar, using version 1.1 of the API. The remainder of the URL is not a typical
REST style use, but is still fairly readable and easy to use.

87

