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Abstract— In recent years, spaceborne synthetic aperture
radar (SAR) polarimetry has become a valuable tool for sea
ice analysis. Here, we employ an automatic sea ice classification
algorithm on two sets of spatially and temporally near coincident
fully polarimetric acquisitions from the ALOS-2, Radarsat-2, and
TerraSAR-X/TanDEM-X satellites. Overlapping coincident sea
ice freeboard measurements from airborne laser scanner data
are used to validate the classification results. The automated
sea ice classification algorithm consists of two steps. In the
first step, we perform a polarimetric feature extraction pro-
cedure. Next, the resulting feature vectors are ingested into
a trained neural network classifier to arrive at a pixelwise
supervised classification. Coherency matrix-based features that
require an eigendecomposition are found to be either of low rel-
evance or redundant to other covariance matrix-based features,
which makes coherency matrix-based features dispensable for the
purpose of sea ice classification. Among the most useful features
for classification are matrix invariant-based features (geometric
intensity, scattering diversity, and surface scattering fraction).
Classification results show that 100% of the open water is
separated from the surrounding sea ice and that the sea ice classes
have at least 96.9% accuracy. This analysis reveals analogous
results for both X-band and C-band frequencies and slightly
different for the L-band. The subsequent classification produces
similarly promising results for all four acquisitions. In particular,
the overlapping image portions exhibit a reasonable congruence
of detected sea ice when compared with high-resolution airborne
measurements.

Manuscript received July 12, 2017; revised November 7, 2017 and
January 16, 2018; accepted February 21, 2018. This work was supported in
part by the Maritime Sicherheit–Echtzeitdienste funding programme, Federal
Ministry for Economic Affairs and Energy, Germany, in part by the Norwegian
Research Council Project, in part by the Centre for Integrated Remote Sensing
and Forecasting for Arctic Operations through the Norwegian Research
Council (NFR) under Grant 237906, in part by the ICE-ARC Program from
the European Union 7th Framework Program under Grant 603887 and
contribution number ICE-ARC-064, and in part by the Centre of Ice, Climate
and Ecosystems, Norwegian Polar Institute. The work of M. Johansson was
supported by the NFR through the NORRUSS Program under Grant 233896.
(Corresponding author: Suman Singha.)

S. Singha is with the Maritime Safety and Security Lab, Remote Sensing
Technology Institute, German Aerospace Center, 28199 Bremen, Germany
(e-mail: suman.singha@dlr.de).

M. Johansson is with the Department of Physics and Technology, The Arctic
University of Norway, 9037 Tromsø, Norway.

N. Hughes is with the Norwegian Ice Service, Norwegian Meteorological
Institute, 9293 Tromsø, Norway.

S. M. Hvidegaard and H. Skourup are with the National Space Institute,
Technical University of Denmark, 2800 Kongens Lyngby, Denmark.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2018.2809504

Index Terms— Airborne laser scanner (ALS), artificial neural
network (ANN), multifrequency synthetic aperture radar (SAR),
near real time (NRT) processing, polarimetry, sea ice.

I. INTRODUCTION

OVER more than three decades, synthetic aperture
radar (SAR) has become an invaluable asset for the mon-

itoring of Arctic and Antarctic regions. In contrast to optical
imaging, SAR is not impeded by cloud coverage, fog, or the
lack of daylight. Given that sea ice coverage is often in remote
regions that are otherwise hard to reach, polar-orbiting satel-
lites with global coverage are ideal for any type of monitoring
purpose. Spaceborne SAR sensors can cover almost any region
on the globe with short revisit times. Additionally, the polar
regions above 75°N and below 75°S are covered multiple times
each day enabling high temporal resolution studies of, e.g., sea
ice drift and sea ice concentration. Furthermore, different SAR
missions utilize different frequencies and these can provide
complementary information due to their different sea ice
penetration depths. Satellites, such as RADARSAT-1 and 2,
ERS-1 and 2, ENVISAT in the C-band, and TerraSAR-X
(TS-X) in the X-band, have proven the suitability of SAR
sensors for investigating sea ice in Arctic and Antarctic
regions. Moreover, L-band SAR is less sensitive to the onset of
melting, therefore, provide complementary information in the
early melt season [1], [2]. Due to this unique complementary
information and the increased penetration depth compared to
C- and X-band, L-band SAR provide a better separability
between first year ice (FYI) and multiyear ice (MYI) during
the melt season [3]. In this paper, we investigate the accuracy
of an automatic sea ice classification algorithm for different
SAR frequencies (L-, C-, and X-bands) and validate it with
high-resolution laser scanner data.

Medium spatial resolution SAR images extend up to a few
hundred kilometers in width and length and are ideal for the
long-term-monitoring conducted by meteorological services
around the world. Typically, single- and dual-polarization
data are used. Dual-polarization data were actively taken up
for operational monitoring [4] and its use has demonstrated
an improved discrimination between the open water and
sea ice areas compared with single-polarization mode [5].
Within sea ice research, SAR images are used to estimate,
e.g., ice drift [6], wave propagation into sea ice, ice con-
centration [7], and iceberg detection [8], [9]. The long data
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record of single-polarization SAR missions means that most
studies of SAR-based sea ice classification concentrate on
such single polarized data [10]–[15]. These studies natu-
rally concentrate on classical image analysis tools. The com-
mon tools are texture analysis via gray level co-occurrence
matrices [10], [12], [16], autocorrelation methods [17], and
Markov random fields [11]. Although useful and successful
these techniques might be, there still remain major obstacles
in sea ice classification for all mentioned approaches. Most
prominent is the high variability of different ice types due to
the influence of incidence angle, weather conditions, location,
and season.

Polarimetric data (i.e., at least two channels available)
promise to cope better with these obstacles, since each
acquisition contains more information than only one SAR
channel [18], [19]. The different backscatter behaviors in the
channels allows for a better characterization of the ice types.
Since the scenes are made up of multiple channels, information
about the scattering mechanisms, which can be extracted from
each scene, is used to complement the intensity values for a
more accurate sea ice classification. When polarimetric data
are available, parameters based on the eigendecomposition
of the scattering matrix like the eigenvalues and compo-
nents of the eigenvectors [20] or derived quantities like the
canonical H/A/α parameters [20] are typically investigated.
Reference [20] uses this approach on airborne L-band data
to investigate the characteristics of sea ice types. In other
approaches, the distributions of the coherency matrix are
computed to be used as input arguments of an unsupervised
Wishart classifier [21]. Recent publications [22]–[24] proposed
a polarimetric approach based on the C-band data in which
an automatic segmentation precedes a manual labeling of
the segments. This automated method is then compared with
manual segmentations and found to improve the consistency.
Another study [25] compared spatially and temporally coin-
cident fully polarimetric spaceborne C- and X-band data for
sea ice characterization. For the most part, the aforementioned
publications were concerned with directly relating the physical
properties of certain ice types to particular polarimetric para-
meters and possibly giving physical explanations for observed
behavior, and discussed how the generalizability of classifiers
is impacted by location, season, and incidence angle. Here,
we perform a comprehensive quantification of the polari-
metric parameters derived from spaceborne fully polarimetric
simultaneous SAR acquisitions in the L-, C-, and X-bands.
The motivation is to establish a reliable automated sea ice
classification algorithm for operational monitoring purposes
from different frequency SAR sensors; therefore, we assess the
information quality of the parameters prior to classification and
validation. Instead of directly linking clusters in the parameter
space to certain ice types, or physical properties of ice types,
we instead train a neural network classifier. The neural network
then implicitly encodes such relationships that exist between
parameters and ice types with the help of expert knowledge
and in situ/ancillary information.

The above discussions guide the structure of this paper.
We will first introduce our spaceborne and airborne data sets
and the polarimetric features. This is followed by an theoretic

Fig. 1. Study area in the Arctic Ocean, north of Svalbard. (a) R/V Lance’s
GPS track and the black box show the extent of zoomed-in view of map
in (b). The color coding in the background is based on the WMO’s ice type
standard [30] and in addition the marginal ice zone is marked in white hashed
with blue. The sea ice types were outlined and labeled by a sea ice analyze
expert at the Norwegian Ice Service. (b) Zoomed-in view of map shows the
satellite scene footprints. Black and gray patches: location of ALS acquisition
from April 19 and April 24, 2015, respectively. Arrows: direction of R/V
Lance’s drift.

information analysis of the polarimetric features on all samples
of training data sets, with the key statistical technique relying
on the concept of mutual information [26]. By this analysis,
we can quantify the redundancy and relevance of polarimetric
features for the purpose of identifying different ice types.
In Section III, we present the output of our subsequent pixel-
based neural network classification and cross-compare the
results with high-resolution airborne measurements. For the
classification, we exploit an open source neural network library
implemented in C (fast artificial neural network, see [27]),
wherefore the reader is referred to standard literature on the
theory and application of neural networks or to consult [28]
and [29] for a successful use of neural network sea ice
classification on SAR images.

II. DATA SET

A. N-ICE2015 Study Area and Meteorological Conditions
The study area is located in the Arctic Ocean north of

Svalbard, between 82°N to 84°N and 6°E to 22°E (see Fig. 1).
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Fig. 2. Air temperature and wind vector during the N-ICE2015 campaign (April 18, 2015 to April 30, 2015). Black lines: air temperatures measured on the
sea ice. Magenta lines: temperatures measured on-board R/V Lance. Black dotted lines: 0 °C. The wind data were measured on the sea ice at 10-m height.

This region covers the subsea features of the Yermak Plateau
north of Svalbard to the Nansen Basin further north. The Nor-
wegian young sea ICE (N-ICE2015) drift field campaign lasted
from January 12 to June 24, 2015 with the R/V Lance being
anchored to, and drifted with, four different sea ice floes
(referred to as “Floes” 1–4). When an ice floe, with which the
ship was anchored, broke up, the ship was repositioned and
moored to a new ice floe further north-east [31]. The satellite
scenes used here were acquired over Floe 3. R/V Lance was
anchored to Floe 3 from April 18 until June 5, 2015.

The total snow and ice thickness as well as the snow
thickness was measured within 1–5 km of the position of
R/V Lance at Floe 3. The mean snow and ice thickness
was 1.79 m with a maximum thickness of 10.71 m and a
minimum thickness of 0.11 m [32]. The modal snow and sea
ice thickness was 1.56 m. The mean snow thickness for Floe
3 was 0.45 m with a maximum thickness of 1.58 m and a
minimum thickness of 0 m [33]. The sea ice within the area
surrounding R/V Lance during N-ICE2015 was primarily a
mixture of FYI and second-year ice [34]. Even though there
were also areas of nilas, young gray ice, young white ice,
pancake ice, and frost flowers were often observed on the top
of the young ice (YI) during the entire drift study. Sea ice type
charts were provided by the Norwegian Ice Service for flight
planning of the airborne laser scanner (ALS) flight and the
map from April 22 is provided as background in Fig. 1. These
charts were based on Sentinel-1A and Moderate Resolution
Imaging Spectroradiometer images.

Air temperature was measured at 2 m a.s.l. with instru-
ments mounted on a meteorological tower situated on
the sea ice 300 to 400 m away from R/V Lance [35].
The air temperatures were measured with a Vaisala HMP155
(RM Young Model 43502) with the data being recorded
every second and averaged over 1 min (for details see [35]
and [36]). Air temperature was also measured every second
on-board R/V Lance with an Aanderaa air temperature sensor

(model number 3455). The wind data were measured with a
2-D ultrasonic sensor (Lufft Ventus V200A-UMB) mounted at
the meteorological tower at 10-m height. On-board R/V Lance
at approximately 24-m height another wind sensor of the make
Thies Clima 2-D ultrasonic was mounted. The primary weather
measurements are the ones measured on the sea ice, and
gaps in the data were replaced with weather data from the
ship-based sensors (for details see [35] and [36]). The mean
difference between the ice- and ship-based temperature sensors
was small (0.18 °C with a standard deviation of 0.85 °C)
(see Fig. 2 and [35]).

B. Fully Polarimetric SAR

The satellite data sets were acquired with high temporal
and spatial correlation, at L-band (ALOS-2), C-band (RS-2),
and X-band (TS-X). In the case of the ALOS-2, the acquisi-
tion mode is high-sensitive quad polarimetry (HBQ), and for
RS-2 acquisitions, fine quad-pol (FQ). For TS-X, the images
are StripMap (quad-pol) images. These X-band quad-pol data
sets were acquired using the dual receive antenna (DRA) con-
figuration mode, which is not yet commercially available [25].
In this paper, we want to explore sea ice classification on
spaceborne multifrequency quad-polarimetric data, with sec-
ondary priority given to resolution, which naturally comes
at the price of a smaller footprint. A list of the data taken
with the respective technical details can be found in Table I
and also in [24] and [25] (and figures therein). We remark
that each acquisition from all the SAR sensors consists of
two or three frames as presented in Fig. 1 (frame corre-
sponds to nominal acquisition length in the azimuth direction).
The images were acquired in the north of Svalbard between
the latitudes 82.2°N and 83.8°N and longitudes 7°E and 23°E,
which coincides with the previously described N-ICE2015
study region. Due to sea ice drift and different acquisition
times for the different sensors, drift corrections have been
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TABLE I

ALSO-2, RADARSAT-2 (RS-2), AND TERRASAR-X/TANDEM-X (TS-X) IMAGING MODES USED IN THIS PAPER. * DRA—DUAL RECEIVE ANTENNA
(EXPERIMENTAL MODE). SM—STRIPMAP. FQ—FINE QUAD. HBQ—HIGH-SENSITIVE QUAD. Q—QUAD-POL

applied to ALOS-2 and RS-2 acquisitions to a reference time
defined by TS-X acquisitions, i.e., 13:17 UTC on April 19 and
13:43 UTC on April 23. The drift corrections were made with
the assumption that R/V Lance drifted with the same speed
and drift pattern as the mean sea ice drift for the area. The drift
record from R/V Lance, sampled every second, was, therefore,
used for the drift correction. In Fig. 2, we observe that the
wind direction changes slightly between the satellite data and
the ALS acquisitions, and rotational patterns within the sea
ice pack were observed in [24] and [37]. The air temperature
stays relatively stable during the data set acquisition time
span (around −20 ± 5 °C, Fig. 2), and hence we can rule
out any temperature related changes to the backscattering
mechanism.

C. Airborne Laser Scanner

In this paper, we use, for the first time, ALS observa-
tions to validate the sea ice classification results obtained
from polarimetric SAR imagery. The airborne survey was
a part of the EU FP7 ICE-ARC project 2015 field cam-
paign carried out with a British Antarctic Survey’s (BAS)
DHC-6 Twin Otter aircraft in cooperation with the Technical
University of Denmark. The campaign was coordinated with
the N-ICE2015 drift study and included two detailed surveys
over the R/V Lance station at Floe 3 on April 19 and 24,
2015 [24], [31], [38]. Observations were also coordinated with
helicopter-borne thickness sounding and supplemented with
various satellite measurements, providing colocated data sets
for extensive intercomparison and validation studies [24], [39].

The aircraft was equipped with an NIR (near infrared,
904 nm) laser and Ku-band radar altimeters, supplemented
with kinematic geodetic global positioning system (GPS)
and inertial navigation system (INS) attitude determination,
along with atmosphere sounding and photography. For this
paper, we use laser scanner measurements from the Riegl
LMS-Q240i-80 laser scanner system transformed to surface
elevations (referenced to the WGS 84 ellipsoid) using the GPS
and INS information. This provides 3-D point cloud swaths of
the surface, typically 400 m wide at the nominal flight altitude
of 300 m. The full spatial resolution of the raw point cloud
data is approximately 1 m × 1 m with a vertical accuracy

in the order of 0.1 m primarily depending on uncertainties
in the kinematic GPS positioning. More details on the airborne
campaign and data products are available in [38]—technical
report about ALS data collection and processing.

For the validation of the SAR sea ice characterization,
we use a derived product from the raw ALS point cloud
measurements: the sea ice freeboards, which are defined as
surface elevations (ice and snow) relative to the local sea
level. These are obtained from a thinned (along track) and
averaged (across track) data set with an approximate resolution
of 5 m × 5 m. As a first step to identify the local sea level,
a geoid model is subtracted from the ALS elevations giving
orthometric heights, and here we use the recent update of
the Arctic Gravity Project geoid model. A second step is
needed to account for sea surface height variability caused
by time varying ocean tides and currents, errors in the
ocean mean dynamic topography, and measurement errors.
This second step estimates an instantaneous sea surface ele-
vation by identifying leads in the sea ice cover. Leads are
found automatically by selecting the minimum values of the
orthometric heights within equidistant subsections. The typical
subsection length is 5 km, which is chosen based on local ice
properties and geoid model variations and resolution. Finally,
the instantaneous sea surface is estimated by a linear fit of
minimum values with outlier rejection, smoothed by least-
square collocation, and then subtracted from the thinned and
averaged data providing sea ice freeboards (see also [40] for
more details). This method relies on the existence of leads
in sea ice pack otherwise it will underestimate the freeboard
heights. Manual examination of the data set supports the
presence of leads at 5-km-length scale but also revealed an
offset of 0.2 m, which was removed.

Figs. 3 and 4 show the dense areal coverage of the ALS
freeboard data set. The data have been corrected for local
drift during the survey by assuming that the sea ice drifts
with the same speed and direction as the R/V Lance and also
with negligible rotation and deformation in the time period.
The drift correction is done using the recorded ship position
every minute estimating a linear drift between each positon
and using this to transfer (drift) the data set to the reference
time of 13:17 UTC on April 19 and 13:43 UTC on April 23.
The ALS freeboard measurement and SAR acquisitions show
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Fig. 3. Overview of ALS data acquisition during the N-ICE2015 Campaign
on April 19, 2015 at 10:32 UTC. Location of R/V Lance indicated with a red
point at the center.

Fig. 4. Overview of ALS data acquisition during the N-ICE2015 Campaign
on April 24, 2015 at 09:55 UTC. Location of R/V Lance indicated with a red
point at the center.

good colocation agreement after the drift correction verifying
the assumptions.

D. High-Resolution Photograph Mosaic

The aerial photographs were acquired by an Intergraph
Z/I Imaging Digital Mapping Camera that is mounted on
the BAS DHC-6 Twin Otter. Image acquisitions were carried
out simultaneously with the ALS acquisition. The individual
images were corrected for drift and stitched into daily mosaic
images. Georeferencing, and colocation, to the satellite images
was performed using the Georeferencer function of QGIS by
manually matching clearly identifiable features between the
different image data sets. Figs. 5 and 6 show the areal coverage
of the mosaicked photograph along with the location of the
R/V Lance. As mentioned previously, the drift correction is
performed using the recorded ship position, to the reference
time of 13:17 UTC on April 19 and 13:43 UTC on April 23.
All satellite and airborne data sets presented in this paper are
projected into NSIDC polar stereographic projection.

Fig. 5. Overview of drift corrected optical image acquisition from the BAS
aircraft during the N-ICE2015 Campaign on April 19. Corresponding ALS
acquisition as background.

Fig. 6. Overview of drift corrected optical image acquisition from the BAS
aircraft during the N-ICE2015 Campaign on April 24, 2015. Corresponding
ALS acquisition as background.

III. METHODOLOGY

Our proposed methodology consists of two steps. First,
we extract for each pixel a vector of 18 polarimetric features,
with these 18 values for each pixel referred to as the “vector.”
This is followed by the selection of training/validation patches
for the artificial neural network (ANN) classifier. A detailed
description of the 18 polarimetric features used in this paper,
along with their mathematical definitions, can be found
in (3)–(23).

In this paper, we present a quantitative evaluation of sea
ice classification results obtained from spaceborne L-, C-,
and X-band quad-polarimetric acquisitions and validate them
incorporating high-resolution (with large spatial extent) air-
borne measurements. As an established standard [24], [25],
we will train the ANN to classify each image in four dif-
ferent classes, i.e., open water and nilas (OW), YI, smooth
FYI(SFYI), and rough first year/multiyear ice (RFYMYI).
As mentioned before, during the selection of training/
validation patches, we mainly relied on ground truth



6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

from airborne data sets (ALS and high-resolution optical
photographs), as well as ice charts, ice concentration map,
expert visual judgment of the Pauli RGB compositions, and
polarimetric feature images. Aforementioned information was
analyzed manually to generate training and validation patches.
It is also important to note here that the training/validation
patches were selected in such a way that they adequately
represent the incidence angle variation from near to far range.
Each vector is then fed into a neural network classifier for the
purpose of training and validation [25]. In order to minimize
noise effects, we employed a 5 × 5-pixel median filter on all
the polarimetric features. And before ingesting in a neural net-
work, all features must be rescaled into the range [−1.0, 1.0].
A common nonlinear rescaling method involves the tanh
function

x̃ = tanh

(
x − X

νX

)
(1)

where X denotes the mean of all values of feature X in the
training data and νX denotes the standard deviation of all
values of feature X in the training data. After a neural
network has been trained on data rescaled with these particular
training data statistical parameters P = {X , νX }, any feature
vector that is fed into this network for classification must be
rescaled in the same fashion with these parameters P before
classification. The entire statistical analysis (in Section IV-A)
will be conducted on the rescaled feature values, since they
determine the behavior of the classifier.

In all frequency bands, the copol power ratio (γ ) has been
proven to be an excellent measure to distinguish open water
and all other ice types, in particular older and thicker ice
types [41]–[44], provided that the incidence angle is not too
low (according to [42] above 27° for the C-band), and wind
speeds are low to moderate (less than 14 m/s in the C-band
according to [42]). In the case of younger ice types, the copol
power ratio is not as powerful in discriminating thin ice from
open water. The C-band copolarized phase difference �φ
was found to be useful for discriminating certain thinner ice
types [22], [41], [45]. For the L-band, the quad-polarimetric
entropy, H (q), is known to discriminate open water from ice
types generally well and also thin ice from thick ice types due
to the underlying different scattering mechanisms [20]. Quad-
polarimetric L-band anisotropy, A(q), is known to be sensitive
to surface roughness [20].

IV. FEATURE ANALYSIS AND CLASSIFICATION RESULTS

Since we want to study the suitability of polarimetric
features for sea ice classification, we will first briefly discuss
the visual interpretation of the information content of some
features. Thereafter, we analyze the information content of
each feature and their redundancy with respect to sea ice
classification.

A. Mutual Information Analysis, Relevance, and Redundancy

In order to obtain a first impression about the pre-
dictive quality of the different features, i.e., their ability
to separate different ice classes, we display all of them

in Fig. 7. For consistency, we will, throughout this paper,
display the results from the ALOS-2 scenes from April 23.
The feature images are depicted in slant range. Since the
features are extracted in this format, the classification is
also performed in the slant range and later projected to
ground range. Therefore, the reader is cautioned to notice
that the images in Section IV-B are displayed in ground
range and thus appear slightly distorted (due to the ground
range projection). When inspecting visually, some features
[e.g., γ , μ, δ, τ , and span(d/q)] can already be observed
to contain adequate information about the sea ice situation.
For all the frequency bands, the copol power ratio allows
us to clearly discriminate open water/nilas (OW) portions.
In the case of ALOS-2, the structure rich features of δ,
τ , H (d), H (q), λ

(d)
i , span(q), span(d), and μ allow us to

directly discriminate different ice floes and ice types, espe-
cially for discriminating open water (OW) and YI. For
the C- and X-band acquisitions, it was observed that λ

(d)
i ,

span(q), span(d), and μ provided good separation between the
different ice types. For the ALOS-2 scenes, span(q) and μ
are observed to be useful for discriminating SFYI and first
year/multiyear ice (RFYMYI), i.e., it contains information
about the degree of deformation. Nonetheless, the same polari-
metric features have subjectively the richest visual information
content for all the investigated frequencies. Therefore, in
this section, we evaluate each feature’s statistical information
content.

In order to quantify the information content of polarimet-
ric features, we apply the concept of mutual information
from information theory, which has become an important
measure in the analysis of informational content and dis-
criminative power [26], [46]. The statistical information was
extracted based on the training rectangles which were previ-
ously selected for the ANN training. In our case, the major
challenge lies in the image size at full resolution; in the case
of ALOS-2 and TS-X, one full-resolution purely complex
image layer occupies about 1400 MB of RAM per complex
image channel, i.e., 6.3 GB for the full scattering matrix.
For an RS-2 scene, the corresponding size is 500 MB. Given
that this memory consumption multiplies with the number of
(real-valued) polarimetric features, the advantage of analyzing
the relevance and redundancy of features and accordingly
decimating the feature set before classification is clear for
developing operational services.

Given two random variables X and Y , the mutual informa-
tion I of these variables is defined as

I(X |Y ) = H(X) − H(X |Y ) (2)

where H(X ) denotes the entropy of X and H(X |Y ) denotes
the conditional entropy of X given Y . Details can be found
in [26] and [46]. The intuitive concept behind this definition
of I describes the fraction of information that is shared
mutually by both X and Y , i.e., their “information overlap.”
In other words, a higher value of I(X |Y ) allows us to
infer more information about X from prior knowledge of Y .
Thus, one can quantify, in an information theoretical sense,
the (nonlinear) information correlation of X and Y . As one
would expect for the intuitive concept of “shared information,”
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Fig. 7. Visual representation of different polarimetric features for ALOS-2 on April 23, 2015. (a) α(d). (b) α(q). (c) A(d) . (d) A(q). (e) ε. (f) �φ. (g) λ
(d)
1 .

(h) λ
(d)
2 . (i) H (q). (j) H (q). (k) μ. (l) γ . (m) ρ. (n) δ. (o) V ar�φ. (p) span(d). (q) span(q). (r) τ .

the mutual information I(X |Y) is symmetric in X and Y
also in a strictly mathematical sense, i.e., I(X |Y ) = I(Y |X).
Since I is dimensionless, we employ it only to juxtapose

and rank different features. We will, therefore, not investigate
the absolute value of I in this paper. Henceforth, we will
employ the following parlance for particular choices of X
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and Y . In this case, X is the class information and Y is
a feature (X attains, e.g., OW, YI, SFYI, and RFYMYI),
with a (relatively) high mutual information I implying a
strong predictive value of feature Y for telling the class X .
Utilizing the symmetry of I, class X can reliably foretell
the predictive value of feature Y . When X is set to only
attain a pair of classes [i.e., only data from two classes are
used for computing I(X |Y )], the resulting I measures the
suitability of Y to discriminate those two particular classes.
We then use such a configuration (Y feature and X all
classes or two classes a and b) to rank the features accord-
ing to relevance (all-class-relevance and two-class-relevance).
The notation shall be I(Y |Class(all)) or I(Y |Class(a, b))
for named configurations.

For a different purpose, we let X and Y be two different
features. In the case I(X |Class(all)) and I(Y |Class(all)) are
roughly the same (i.e., have equal relevance) with high mutual
information, we define I(X |Y ) to imply high redundancy. This
redundancy can then be used to prudently decimate the set of
features that is used in classification for operational purposes.
In this particular publication, we will, however, not present
any neural network that ingests only a pruned feature set, but
set up the neural network topology with all available features.
Pruned feature sets will be exploited further in the future
work (see also elaboration in Section IV-B).We normalize
I(X |Y ) by dividing by

√H(X), in order to achieve increased
comparability.

The all-class-relevance I(X |class(all)) for the ALOS-2
(April 23) acquisition can be found in Table II. We observe
in this table that the features λ

(d)
1 , ε, span(d)/span(q), ρ,

and A(d) are in the upper third of the all-class-relevance
ranking. τ and δ also appears to be in the upper half of
the table. The features δ and H (q), which always appear
as direct successors in mentioned tables, range in the mid-
field (similar to the C- and X-band results in [25]). We find
α(q), α(d),�φ, V ar�φ, and mostly of rather low all-class-
relevance. The feature γ ranked in the low midrange for
the incidence angle of 33.90◦ was previously found to be
strongly dependent on the incidence angle, with high all-
class-relevance for far range acquisitions and lower relevance
with decreasing incidence angle [25], [42]. It might also be
due to the fact that, although γ provides satisfactory infor-
mation while discriminating OW and other types of sea ice,
it provides very little information on discrimination between
different ice classes (e.g., between SFYI and RFYMYI, see
Table III).

For the evaluation of the feature redundancy for ALOS-2,
Fig. 8 shows some strong information theoretic correlations,
particularly between H (q) and δ and between H (d)and A(d)

among others. These two particular redundancies were also
observed for the C- and X-band data sets. Other feature
pairs which have strong information theoretic correlations
are ρ and span(d/q), ρ and λ

(d)
1 , ε and H (d), ε and A(d),

span(d) and λ
(d)
1 , and expectedly between span(q) and span(d).

The observation that γ is important for the discrimination of
open water from thick ice types has been made before for
different bands [43]. For the purpose of navigation through ice-
infested waters, this discrimination is of crucial importance.

TABLE II

ALOS-2, APRIL 23, 2014: RELEVANCE FOR DISTINGUISHING

ALL DIFFERENT CLASSES (ALL-CLASS-RELEVANCE).

I0: I(X |Class(all)). I1: I(X |Class(all))/
√H(X)

Hence, γ and δ can be considered indispensable for the
proposed L-band data set classification scheme.

We now summarize our findings and state the essence of our
relevance and redundancy analysis. For both RS-2 and TS-X
acquisitions, we found similarly high relevance for a number
of lexicographic features and likewise rather low relevance for
Pauli-based features [25]. On the other hand for the L-band
data set, some Pauli-based features, such as H (d) and A(d),
were found to perform well. In contrast to observations at
the C- and X-bands, ε and τ performed exceptionally well for
the L-band specifically in the case of discriminating YI from
other types of ice (see Table III).

In Section IV-C about classification results, we have con-
ducted the classification with all features, i.e., we have
included all features despite the possible redundancies we
found. For future applications, we will more rigorously inves-
tigate the performance of different subsets of features. As
hinted at during the discussion of the visual impression of
the feature images, we emphasize again that our findings
about relevance and redundancy and possible recommenda-
tions for feature choice could not have been easily and
reliably obtained without the mutual analysis-based treat-
ment. By the spatial coincidence of both TS-X and RS-2
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TABLE III

ALOS-2, APRIL 23, 2014: TWO-CLASS-RELEVANCE IN DESCENDING

ORDER FOR DIFFERENT PAIRS OF CLASSES. CLASS INDICES ARE AS

FOLLOWS. 1: OW. 2: YI. 3: SFYI. 4: RFYMYI

acquisitions, any randomness in the findings due to different
locations and hence dominant ice types can be precluded. This
underscores the general validity of the observed similarity
for TS-X and RS-2 images concerning the redundancy and
relevance for ice classification (despite different incidence
angles).

B. Classification Results

The results of the proposed classifier can be seen
in Figs. 9–11, respectively, for L-, C- and X-band acquisition
on April 23. Next to these images, we also display for compar-
ison the Pauli RGB composites of the acquisitions. In order to
validate the stability of the training process, we randomly split
the initial training data patches into two mutually exclusive
subsets, i.e., training data set and validation data set. Although
it is typical to perform an N-fold test, where multiple random
divisions of training data set and validation data set are
performed to achieve an optimal trained network, we restrict
ourselves to simple random split as it was outside the scope
of this paper. The classification results compared to validation
data samples as presented in Table IV exhibit a very promising
accuracy, which underscores the stability of our algorithm.
The percentages in the matrix indicate the proportion of

Fig. 8. Normalized mutual information for ALOS-2 image on April 23,
2015, I(Y1, Y2)/

√H(Y1)H(Y2). Features are as follows. 1: γ . 2: �φ. 3: ρ.
4: ε. 5: μ. 6: τ . 7: span(q). 8: δ. 9: H (q). 10: A(q). 11: α(q). 12: span(d).
13: H (d). 14: A(d). 15: α(d). 16: λ

(d)
1 . 17: λ

(d)
2 . 18: V ar�φ.

samples of one reference class that were assigned to the
respective ice type by the classifier. Therefore, columns add up
to 100%. The results for the ALOS-2 April 23 acquisition are
presented in Fig. 9, with maximum inaccuracy of 3.1% (SFYI)
in the following accuracy matrix. In [25], confusion matri-
ces for the C- and X-bands were reported with approxi-
mately similar overall accuracy compared with the results
in Table IV.

A strong match between the visual structures in these
Pauli RGB images and the pertaining classified images can
be observed for all frequency bands. Open water/nilas areas
are clearly detected throughout for all frequency bands.
In addition, the YI portions are classified correctly except
for a slight over representation in the far range for TS-X
acquisitions. This is most likely due to a noticeable noise
pattern (especially on the vertical margins) of some TS-X
acquisitions. Such noise pattern-related biases certainly need
to be addressed when establishing the classifier (minimum σ0
measurable by TS-X DRA quad-pol imaging mode is around
−16 to −19 dB). Fig. 12 shows a prominent portion of YI area
in the L- and C-bands, where ALOS-2 produced significantly
a better characterization compared to RS-2 acquisition on
April 23. In this example, we can also observe a small portion
of open water (in blue) within the YI part (in purple) that
is characterized correctly. SFYI portions, which appear as
darker ice floes in the Pauli RGB composite images, are
also correctly detected, as well as the bright structures of
more strongly deformed FYI. Furthermore, a fairly reasonable
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Fig. 9. (Top) Geocoded Pauli RGB composite (red: HH-VV, green: HV + VH, and blue: HH + VV) of the ALOS-2 acquisition on April 23, 2015.
(Bottom) Ice classification on ALOS-2 acquisition. Blue: open water/nilas (OW). Purple: YI. Yellow: SFYI. Red: RFYMYI.

degree of correspondence has been achieved between in situ
airborne measurement and classified ALOS-2, RS-2, and TS-X
imagery, which are discussed in more detail in Sections IV-C
and V.

C. Validation of Classification Results With
Airborne Measurements

The classified sea ice types are here compared to the over-
lapping high-resolution airborne measurements, e.g., the ALS
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Fig. 10. (Top) Geocoded Pauli RGB composite (red: HH-VV, green: HV + VH, and blue: HH + VV) of the RS-2 acquisition on April 23, 2015. (Bottom) Ice
classification on RS-2 acquisition. Blue: open water/nilas (OW). Purple: YI. Yellow: SFYI. Red: RFYMYI.

freeboard measurements and the photograph mosaics. This
kind of comparisons of SAR-based sea ice classification
results, with comparable resolution to SAR acquisitions, is rare
due to the challenging nature of the Arctic environment and

high associated costs for airborne measurements. In order to
validate our results, all satellite and airborne measurements are
linearly drift corrected to the reference times of 13:17 UTC on
April 19 and 13:43 UTC on April 23 using the GPS track of



12 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 11. (Top) Geocoded Pauli RGB composite (red: HH-VV, green: HV + VH, and blue: HH + VV) of the TS-X acquisition on April 23, 2015. (Bottom) Ice
classification on TS-X acquisition. Blue: open water/nilas (OW). Purple: YI. Yellow: SFYI. Red: RFYMYI.

R/V Lance together with cross-reference to the high-resolution
aerial photographs. Due to the high sea ice concentration over
the study region as well as the tightly packed ice, we expected
that there was no substantial large-scale rotation of floes

in relation to each other within the time span of the respective
data sets acquisition. However, it is worth mentioning here that
the colocation of SAR scenes and airborne measurements has
minor inconsistencies due to the nonlinear movement of the
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Fig. 12. (Left) Geocoded Pauli RGB composite (red: HH-VV, green: HV + VH, and blue: HH + VV) of the ALOS-2 and RS-2 acquisition on April 23, 2015.
(Right) YI representation on ALOS-2 and RS-2 acquisition on April 23, 2015. Blue: open water/nilas (OW). Purple: YI. Yellow: SFYI. Red: RFYMYI.

TABLE IV

CLASSIFICATION RESULTS COMPARED TO REFERENCE DATA SAMPLES

FROM EACH CLASS, AVERAGED OVER DIFFERENT NEURAL NETWORK
TOPOLOGIES, ALOS-2 ACQUISITION ON APRIL 23, 2015

floes especially near the OW and YI portions, although this
will have only insignificant effect on our analysis.

To relate the ALS freeboard measurements to the sea ice
thickness (T ), [47] and [48] found that the ALS freeboard
values (h f ) should be multiplied with a factor k, where k
depends on the sea ice, snow, and water density and the sea
ice and snow height

T = k × h f . (3)

A more detailed study in [49] found that for YI the k-value
is 1–2, for level ice the k-value is equal to 4.4, and for

deformed ice the k-value is equal to 5.2. Manually selected
ROIs were used to extract σH H and ALS freeboard values
from the different sea ice types (classified) and the open
water within the L-band scenes. The link between the sea ice
types and theoretical sea ice freeboards in given in Table V,
together with observed sea ice freeboards from the laser
scanner. The latter was extracted for the different sea ice
types using ROIs. It is observed that the selected sections
of classified images (i.e., classified ice types) show good
agreement with observed ALS freeboards, and in accordance
with the WMO standard for sea ice types [50]. As can be
observed in Fig. 13, the standard deviation for the σH H values
within these ROIs are lower for the SFYI (1.67 dB) and
RFYMYI (2.31 dB) than for the OW (3.19 dB) and the YI
(3.34 dB).

We also report here that similar kind of observations are
made for the ALS and SAR acquisitions on April 19, 2015.
Figs. 14 and 15 show the drift corrected ALS data set overlaid
on ALOS-2 and RS-2 scenes acquired on April 23 along
with classification results. Unfortunately, there was no ALS
overlap with the TS-X acquisition on that day. We choose
these particular sections of the scenes as those sections rep-
resent all sea ice classes, i.e., OW, YI, SFYI, and RFYMYI,
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TABLE V

ESTIMATED SEA ICE FREEBOARDS FOR THE DIFFERENT SEA ICE TYPES
AS WELL AS OBSERVED ALS SEA ICE FREEBOARD. THE SEA ICE

THICKNESS IS GIVEN ACCORDING TO [50]

Fig. 13. Comparison of L-band radar backscatter (σH H ) and ALS freeboard
measurement over open water (blue circles), YI (purple diamonds), SFYI
(yellow squares), and RFYMYI (red triangles) on April 23, 2015.

which have overlapping ALS acquisition. Transects of OW,
YI, SFYI, and RFYMYI ice regions are indicated with blue,
purple, yellow, and red lines, respectively, in Figs. 14 and 15.
These transects are used in Fig. 16, where the ALS-derived
freeboard is presented with the overlapping L- and C-band
σX X (X X = H H, H V , V H , and V V ) over four different ice
classes. Similar to the observations from the ROIs we observe
that for the OW transect, the ALS-derived freeboard has the
value of � 0.0 m, and this is to be expected as open water areas
were used as a baseline for freeboard calculations. Note that
in this case, the OW part was very narrow and only represented
in the middle of Fig. 16(a) indicated by white background.
The purple lines in Figs. 14 and 15 represent a prominent
portion of YI, which was correctly characterized by the
proposed classifier and matches with the ALS measurement
[� 0.05–0.1 m, see Fig. 16(b) and Table V]. In the case of
SFYI (indicated by yellow lines) and RFYMYI (indicated by
red lines), an agreement is observed between L- and C-band
σX X , ALS freeboard, and the classified images. Over the SFYI,
the ALS freeboard was estimated to be between 0.2 to 0.8 m
and 0.4 to 1.5 m in the case of RFYMYI which is in line
with expected freeboard values for these kinds of sea ice types
(see Table V). Note that the sigma nought values alone cannot
distinguish between the four ice classes.

V. DISCUSSION

In this paper, we presented a sea ice classification method-
ology developed for X-, C-, and L-band quad-polarimetric
SAR imagery, which is capable of generating results within
the near real-time requirement of maritime safety and security
applications. Colocated observations at the three frequencies
were acquired within 7.5 and 7 h for the two different
days, respectively. This allows us to directly compare our
classification results, as changes in geophysical characteristics
of the sea ice can be ignored. In addition, with the help
of near-coincident extensive airborne observations, i.e., ALS
together with high-resolution photography, we validate our
results in the larger spatial extent.

During the feature redundancy and relevancy analysis,
we observed that γ (copolarization power ratio) and δ
(scattering diversity) play a major role in discriminating OW
from thicker ice types, i.e., SFYI and RFYMYI for the
L-band and that γ is important at the C-band. The impor-
tance of the γ values can also be observed in Fig. 16(b),
where for the L-band σH H and σV V have a mean difference
of 1.57 ± 0.41 dB. From the ROIs, we find that the areas
classified as YI have a difference of 1.38 ± 0.78 dB between
the σH H and σV V channels. The γ parameter was observed to
be useful in separating the YI from the surrounding thicker
sea ice within the neural network and this has also been
observed in many earlier studies, to mention a few [19], [20],
[42], [51]–[55]. The surface scattering fraction [τ , see (23)]
seems to be very useful for discriminating YI from SFYI.
Therefore, we consider that γ and τ are indispensable for
the proposed classifier along with δ when one wants to avoid
computationally expensive Pauli features.

The importance of the γ parameter for the discrimination of
the YI class can also be observed in the transect in Fig. 16(b),
where the separation between the σV V and σH H values is
clearly visible in the L-band data, and it is also present for
the C-band data. Within our validation step, we compare the
ALS freeboard data for each sea ice class to the polarimetric
parameters; though for simplicity in Fig. 16, we only use the
σX X values to illustrate the relationship between the ALS
freeboard measurements and the polarimetric SAR-images.
We note that the estimated and observed freeboard heights for
the respective sea ice classes, as seen in Table V, show good
agreement. Furthermore, the YI class has a standard deviation
(std) from the mean values for the HH-channel of 2.21 dB.
This is higher than the values observed for OW 0.93 dB, SFYI
1.08 dB, and RFYMYI 1.80 dB.

A wide range of backscatter values for YI has also been
observed in [52]. Since YI can be made up of newly formed
sea ice with varying types of structures such as small-scale
ridging and rafting that occur if the ice is subject to wave
interaction after being formed during calm stable conditions,
this range of values is not surprising. Using photographs com-
bined with sea ice (plus snow) thickness measurements, [24]
observed small-scale ridging and rafting within all the open
lead areas within the same ALOS-2 and RS-2 scenes that
have been used here. Moreover, the RFYMYI has the second
highest std value of the four classes. The large variations
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Fig. 14. (Left) ALS freeboard measurement overlaid on geocoded Pauli RGB composite (red: HH-VV, green: HV + VH, and blue: HH + VV) of the
ALOS-2 acquisition on April 23, 2015. (Right) Ice classification on ALOS-2 acquisition. Blue: open water/nilas (OW). Purple: YI. Yellow: SFYI. Red:
RFYMYI. ALS freeboard color scale according to Fig. 4.

Fig. 15. (Left) ALS freeboard measurement overlaid on geocoded Pauli RGB composite (red: HH-VV, green: HV + VH, and blue: HH + VV) of the
RS-2 acquisition on April 23, 2015. (Right) Ice classification on RS-2 acquisition. Blue: open water/nilas (OW). Purple: YI. Yellow: SFYI. Red: RFYMYI.
ALS freeboard color scale according to Fig. 4.

in the σX X values for the YI and RFYMYI classes can be
clearly seen in Fig. 16. These significant variations in the
σX X values within certain sea ice type classes are also one of
the reasons why backscatter intensity values alone cannot be
employed to accurately separate YI from surrounding thicker
sea ice. From the ALS freeboard measurements, we observe
that the largest variation is found in the RFYMYI class with
an std value of 0.34 m. For OW, the standard deviation
value was 0.08 m, for YI 0.06 m, and for SFMYI 0.15 m.
The widespread for the RFYMYI is likely a consequence of
the rougher surface topography observed within the deformed
sea ice areas. In Fig. 13, the RFYMYI can also be seen to
represent all the ALS freeboard data greater than 1 m and
largely contain the σH H values above −16 dB in Fig. 13,
indicative of increased surface backscatter often corresponding
to deformed sea ice. The ALS freeboard data combined with
the backscatter intensity values, therefore, seem to validate
the automatically classified sea ice classes. The combination
of the γ values importance for the YI class, clearly observed

in Figs. 7 and 16, with the importance of other computationally
inexpensive polarimetric parameters, such as τ and δ, indicates
that polarimetric information can improve automatic sea ice
classifications.

When it comes to automatic classification and near-real-time
product delivery, the overall processing time is crucial. There-
fore, the identification of redundant polarimetric features is of
the utmost importance. For the C- and X-bands, we found that
the Pauli-based features are rather mediocre in terms of feature
ranking and can be replaced by other lexicographic features,
such as δ and τ . However, for the L-band, we observed that
some Pauli-based features, in particular, H (q/d) and A(q/d),
play an important role in sea ice type discrimination. The alpha
angle [α(q) or α(d)] performed inadequately in all frequency
bands. Another striking difference between the L-band and
the C-/X-band is the performance of geometric intensity
[μ, see (24)]; in the case of C/X-band, μ was observed to
be one of the best performing polarimetric features. However,
in the case of L-band, its performance was rather low. On the



16 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 16. Comparison of C- and L-band radar backscatter (σH H , σH V , σV H , and σV V ) and ALS freeboard measurement over (a) open water, (b) YI,
(c) SFYI, and (d) RFYMYI on April 23, 2015. Open water (blue), YI (magenta), SFYI (yellow), and RFYMYI (red) transects are indicated in Figs. 14 and 15.

other hand, contrary to the C- and X-bands, the correlation
coefficient [ε, see (19)] is extremely useful for the L-band
in discriminating YI from SFYI. Polarimetric feature span
[span(q) or span(d)] seems to provide useful information in all
frequency bands. Based on these observations, we observe that
the behavior of some polarimetric features in the L-band is
different to those obtained from the C- and X-bands. For an
near real time automatic classifier, it is, therefore, important
to specify which parameters should be used for the different
frequencies to achieve the best outcome. Another point, which
is important to mention here, is that quad-polarimetry does not
necessarily improve the sea ice characterization significantly,
and a comparable level of accuracy can be achieved using only
the copolarized (HH-VV) channels [18], [29]. Moreover, some
of the polarimetric parameters used here, e.g., γ , have directly
related compact-polarimetric parameters [56]–[58] and such
findings from this paper can be directly transferable to the
higher spatial coverage of the compact-polarimetric images.
Ongoing and upcoming compact-polarimetric missions include
C-band missions, such as RISAT-1 and the Radarsat Constel-
lation Mission, and L-band missions, such as ALOS-2 and
ALOS-4.

VI. CONCLUSION

In this paper, we conducted a quantitative comparison of
spatially and temporarily near coincident quad-polarimetric
images in the L-, C-, and X-bands in terms of polarimetric
feature evaluation for sea ice classification and validation using
airborne data sets. Given the spatial and time correlation of
spaceborne and airborne measurements, we can preclude in our
findings any impact of sea ice variability. In order to judge
in a rigorous and quantitative way the suitability of different
polarimetric features, we performed a mutual information-
based analysis of the data from all four acquisitions. Based
on this, we arrived at the conclusion that, for our purposes,
features involving eigendecomposition of the scatter coherency
matrix T3 do not provide informational benefit in the case
of C- and X-band data sets. In the case of L-band data set,
features derived from coherency matrix T3 are observed to be
useful. In general, the X- and L-bands provide a better discrim-
ination between YI and SFYI/RFYMYI compared with the
C-band. The findings about the relevance and redundancy of
particular features turned out to be similar for C- and X-bands
and slightly different in the case of the L-band. Comparisons
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between the ALS-derived sea ice freeboard height and the
backscatter intensity values for the derived sea ice classes show
that our results are promising in terms of providing inputs for
the creation of operational ice charts in the future. However,
there are still some limitations related to the use of pro-
posed automatic classification algorithms for ice charting and
operational purposes, which are mainly related to incidence
angle and seasonal variability along with the limited swaths
for fully polarimetric acquisitions. Nevertheless, polarimetric
SAR-based automated sea ice classification methodology has
the potential to be exploited in operational services with the
advent of future, next generation SAR sensors with wide swath
compact (hybrid) polarimetric modes.

APPENDIX

POLARIMETRIC FEATURES

The complex backscatter return is denoted by SXY , i.e.,

SXY = σXY exp(iφXY ) (4)

where σXY denotes the absolute of SXY and φXY denotes the
phase angle of SXY , with X, Y ∈ {H, V }.

The brackets 〈·〉 symbolize the local averaging process
during polarimetric feature extraction. (The spatial averaging
window size was chosen to be 11 pixels for our sample
data set throughout this publication.) The scattering vector is
commonly analyzed with respect to the lexicographic basis and
the Pauli basis. The resulting scattering matrices (averaged
covariances) are the well-known covariance matrix S3 and
coherency matrix T3 (5) and (6), as shown at the bottom of
this page,

The dual-polarimetric versions were then defined as

S2 =
(

S3(1, 1) S3(1, 2)
S3(2, 1) S3(2, 2)

)
(7)

and

T2 =
(

T3(1, 1) T3(1, 2)
T3(2, 1) T3(2, 2)

)
. (8)

The particular features were inspired by the ones outlined
in [59]–[61].

The (quad-polarimetric) eigenvalues λ
(q)
1 , λ

(q)
2 , and λ

(q)
3

of T3 and the (dual-polarimetric) eigenvalues λ
(d)
1 and λ

(d)
2

of T2 were used to compute p(q)
j = λ

(q)
j /(λ

(q)
1 + λ

(q)
2 + λ

(q)
3 )

and p(d)
j = λ

(d)
j /(λ

(d)
1 +λ

(d)
2 ). This was the input for deriving

entropy

H (q)=−(p(q)
1 log3

(
p(q)

1

)+ p(q)
2 log3

(
p(q)

2

)+ p(q)
3 log3

(
p(q)

3

))
(9)

and

H (d) = −(p(d)
1 log2

(
p(d)

1

)+ p(d)
2 log2

(
p(d)

2

))
(10)

and anisotropy

A(q) =
(

p(q)
2 − p(q)

3

)
(

p(q)
2 + p(q)

3

) (11)

and

A(d) =
(

p(d)
1 − p(d)

2

)
(

p(d)
1 + p(d)

2

) . (12)

From the eigenvectors v
(q)
1 , v

(q)
2 , and v

(q)
3 of T3, one obtains

α
(q)
i = arccos(v(q)

j (1)), j = 1, 2. (13)

For comparison, we also computed from the T2 matrix the
α(d) angles [defined analogously with eigenvectors v

(d)
j of T2

instead of v
(q)
j ], simply for the sake of comparison of quad-

polarimetric and dual-polarimetric data. The average α angle
we defined by

α(q) = α
(q)
1 p(q)

1 + α
(q)
2 p(q)

2 + α
(q)
3 p(q)

3 (14)

and analogously for the dual-polarimetric case

α(d) = α(d) p(d)
1 + α

(d)
2 p(d)

2 (15)

where the classical H (q)/A(q)/α(q) features [59] in the fully
polarimetric case have a well-established physical interpre-
tation (e.g., about predominant scattering mechanisms), and
such interpretation cannot be expected to hold for our dual-
polarimetric adaptions H (d)/A(d)/α(d). Nonetheless, the dual-
polarimetric Pauli-based features bear statistical information
(possibly without physical meaning) that can characterize
different types of sea ice surfaces.

From S2 and S3, we derived a number of features, inspired
in [60] and [61], as follows.

1) Copolarization Power Ratio:

γ = 〈|SH H |2〉
〈|SV V |2〉 . (16)

2) Copol Phase Difference:

�φ = φH H − φV V . (17)

3) Real Part of the Copolarization Cross Product:

ρ = |�〈SH H S∗
V V 〉|. (18)

4) Correlation:

ε = 〈SH H S∗
V V 〉√〈|SH H |2〉〈|SV V |2〉 . (19)

S3 =
⎛
⎝ 〈|SH H |2〉 〈(SH H )(SV V )∗〉 〈(SH H )(SHV )∗〉

〈(SH H )∗(SV V )〉 〈|SV V |2〉 〈(SV V )(SHV )∗〉
〈(SH H )∗(SHV )〉 〈(SV V )∗(SHV )〉 〈|SHV |2〉

⎞
⎠ (5)

T3 = 1√
2

⎛
⎝ 〈|SH H + SV V |2〉 〈(SH H + SV V )(SH H − SV V )∗〉 〈(SH H + SV V )(2 SHV )∗〉

〈(SH H + SV V )∗(SH H − SV V )〉 〈|SH H − SV V |2〉 〈(SH H − SV V )(2 SHV )∗〉
〈(SH H + SV V )∗(2 SHV )〉 〈(SH H − SV V )∗(2 SHV )〉 〈|2(SHV )|2〉

⎞
⎠ . (6)
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5) Span of T2 and T3:

span(d) = trace(T2) (20)

and

span(q) = trace(T3). (21)

6) Scattering Diversity (Where ‖·‖F Denotes the Matrix
Frobenius Norm):

δ = 3

2

(
1 −

( ‖T3‖F

span(q)

)2
)

. (22)

7) Surface Scattering Fraction:

τ = 〈|SH H + SV V |2〉
span

. (23)

8) Geometric Intensity μ:

μ = (det(T3))
(1/3). (24)
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