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Abstract  

The Storegga tsunami (8175-8120 cal. BP, Bondevik et al., 2012) has often been described as 

a catastrophe spelling major disaster and demographic decline for the people in the danger 

zone. More nuance is needed if we are to understand the effects. Most studies have had a 

supra-regional or regional character; less effort seems to have put into studies at the sub-

regional level.  The Norwegian coast, for example, is a topographic, bathymetric and 

environmental mosaic and the sub-regional and local effects must surely have been different. 

This paper discusses the possible effects of the Storegga tsunami on the human settlement of  

inner Varangerfjord in northern Norway some 2000 km from the point of origin. Central to 

the discussion are the questions of: a) actual presence of people at the time of the event, b) 

safe altitudes above sea-level for settlement, c) the geological record and the compounding 

effects of the Tapes transgression, d) the archaeological record, and e) the combined effects of 

the Storegga tsunami and the 8200 cal. BP cold event and hunter-fisher-gatherer resilience. It 

is concluded that 1) the vertical run-up of the Storegga tsunami in inner Varangerfjord 

probably was 2 m or less, 2) the impact of the 8200 cal. BP cold event on the ecology of 

Finnmark was relatively weak, and 3) the combined effect of both on human life probably 

was minor given a high degree of resilience among the population. 
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1. Introduction 

Following Fitzhugh (2016:19), there has recently been an increased interest for  “... 

retrospective studies of historical pattern and periodicity in earthquakes, tsunamis, volcanic 

eruptions, flood, drought, climate change and other natural hazards.”  in order “...better to 

understand human responses to hazardous events and environmental change...” (e.g., Blaikie 

et al., 1994; Oliver-Smith and Hoffman, 1999; Torrence and Grattan, 2002; Sidle et al., 2004: 

Estévez, 2005). The Storegga tsunami (8175-8120 cal. BP) was one such event. The Storegga 

landslide originated under the sea c. 100 km offshore of Møre and Romsdal county in western 

Norway. It released roughly 290 km of coastal shelf and approximately 3500 km
3
 of deposits 

and is thus among the largest landslides ever recorded (Bondevik et al., 1997, 1998). 

Estimates of the run-up above contemporary sea-level varies among the northwestern coast of 

Norway (9-13 m), the southwestern coast of Norway (3-5 m), the eastern coast of Scotland (3-

6 m), the Shetland Isles (> 20 m), and the Faroe Islands (> 14 m) (Fig.1 and Bondevik et al., 

2005). 

Much research has taken place over the past couple of decades at supra-regional, regional and 

local scales in order to unravel the aftermath of the tsunami, notably around the eastern shores 

of the North Atlantic and in areas where the tsunami has been supposed to have hit the hardest 

– western Norway, Scotland and the Northern Isles, the Faroe Islands, and the North Sea with 

its former “Doggerland” (e.g., Bondevik, 2003; Bondevik et al., 1997, 2003, 2005, 2006, 

2012; Dawson and Smith, 2000;  Dawson et al., 1988, 1990, 1993; Fruergaard et al., 2015; 

Gaffney et al., 2007; Grauert et al., 2001; Harbitz, 1992; Haflidason et al., 2005; Hill et al., 

2014; Long and Dawson, 1989; Long et al., 1989; Riede et al., 2009; Rydgren and Bondevik, 

2015; Shennan et al., 2000; Smith et al., 2004, 2013; Waddington, 2015; Waddington and 



Wicks, 2017; Wagner et al., 2007; Weniger et al., 2008).  However, the effects of the 

Storegga tsunami on prehistoric communities in regions more distant from its point of origin 

are not well known.  In the following, the questions raised above are discussed regarding 

inner Varangerfjord, northern Norway, some 2000 km from the point of origin as the sea 

flows. The study area is shown in Fig. 2A. 

2. Were people present at the coast? 

Even in parts of the Norwegian coast where the Storegga tsunami must have briefly inundated 

contemporary archaeological sites, the people who used them may not have been present at 

the particular time of the year when it struck. According to Rydgren and Bondevik (2015), the 

Storegga tsunami happened in late autumn, most likely sometime between October and 

December. They also claim (ibid.) that this was the time when people returned to their winter 

quarters along the coast after having hunted reindeer in the mountains during the summer and 

that the tsunami thus must have affected a large amount of the people then living along the 

shores of western Norway. Those who did survive the tsunami would have faced the loss of 

dwellings, boats and other equipment, making life in the aftermath very difficult.  

There are two basic problems with this argument. First, there is little in the way of 

archaeological evidence for seasonality during the period in question; models of settlement 

patterns are still very much based primarily on circumstantial evidence and the dates for the 

high mountain sites in southwestern Norway predate the tsunami by approximately 1500 

calendar  years (Bang-Andersen, 2017). Secondly, even if the model may fit and apply to 

western Norway, the situation in northern Norway may have been quite different. For this 

region, it is generally assumed that the reindeer, just like in recent times, spend the winter in 

the high plains beyond the Caledonian mountain chain and the summer at the coast, with 

migration to the coast taking place in the spring (May) and the return to the inland occurring 

in late September through October; that is, a migration pattern opposite to the one suggested 



for western Norway (Bang-Andersen, 2017).  Reindeer are at their prime as a human resource 

at the time of the fall return migration to the plains. It may thus have been the case that many 

hunters and their kin were on the track of the reindeer away from the coastal area when the 

tsunami struck. 

3. Living at the edge of the water? 

Obviously, and for various reasons, people did not settle in the tidal zone or right at the high 

tide line save for short stops, but equipment of various sorts may have been placed near and 

above the high tide or spring tide level. The main reason for not living at the edge of the high 

or spring tide zone is storm surge and surf; the effects of both are dependent on geography, 

topography, bathymetry, wind-speed, the duration of powerful winds and the length of the 

stretch of open water they cross (e.g., Fletcher et al., 1993). Storm surge is a common 

phenomenon in northern Norway and may raise the sea-level by several meters. Surf also 

relates to the degree of direct exposure, the geological composition of the ground and gradient 

of the shore. The impact may often be vastly different from one end of a beach to the other, 

even within a few hundred meters (Sanjaume and Tolgensbakk, 2009). Wave heights of 4 m+ 

are common on the outer coast of the Varanger peninsula (a maximum 9.80 m was recorded at 

Berlevåg), while they seldom reach heights of more than 2-3 m in inner Varangerfjord. Safe 

altitudes for prehistoric settlement above sea-level have been estimated by a number of 

authors. K. Helskog (1978) found a consistent altitude of 2.5-3.0 m above the contemporary 

sea-levels in Finnmark and Møller (1987) estimated an average of 4.8 m for the same region. 

In an attempt to correct for sea-surf, Barlindhaug (1997) used a range of 2-6 m for sites on the 

outer coast of Troms county, while Sandmo (1986) used 6 m. A safe altitude of 4-6 m above 

the contemporary sea-level (high tide) would seem reasonable for most of the more exposed 

parts of the Varanger area. If this were the case, and presuming that people were actually 

present at the coast, they would have been able to avoid casualties and most of the detrimental 



effects of the Storegga tsunami (see below). However, it is highly dubious that there were 

conventions in place that people had to live a specified altitude above sea-level. Rather, a safe 

altitude above the sea could be anything from 2 m and above according to local conditions 

and preferences based on experience. 

4. The geological record and the compounding effects of the mid-Holocene (Tapes) 

transgression. 

As indicated above, most studies pertaining to the Storegga tsunami have centred on regions 

relatively close to the point of origin. Only two studies (Corner et al., 1999; Romundset and 

Bondevik, 2011) have focused on northeastern most Norway and explicitly commented upon 

or dealt with the tsunami. In the absence of diagnostic evidence, Corner et al. (1999:164), 

working along a transect between Nikel in Russia and Kirkenes in Norway, tentatively 

concluded  “... that the Storegga tsunami had little or no effect in this relatively remote 

northeastern area”. Romundset and Bondevik (2011), on the other hand, reconstructed a 

vertical run-up of 3-5 m on the islands of Sørøya and Rolvsøya, west and north of 

Hammerfest, and on the western shores of the Nordkinn peninsula. As to this discrepancy, 

Corner et al. (1999) indicate that it may be because the then existing skerry seascape off 

Kirkenes distributed the energy to such an extent that no geological effect can be detected.  It 

may also be the case that it is difficult to find indisputable tsunami deposits; lake basins need 

to be both well-located and well-suited with regard to detecting tsunami traces (Anders 

Romundset, Norwegian Geological Survey, pers. com. 2017). Moreover, it may be argued 

that the tsunami lost considerable power over the c. 200 km stretch from the Nordkinn 

peninsula to the mouth of the Varangerfjord and/or was not deflected the approximately 90-

180 degrees  backwards towards the west with sufficient energy to create large waves or 

significant disruptions. Yet, a run-up of 3 m or less would seem plausible (Stein Bondevik, 

pers. com. 2017). 



However, the study of the impact of the Storegga tsunami is compounded by the effects of the 

mid-Holocene sea-level rise culminating c. 6600 cal. BP (Bondevik et al., 1998); in northern 

Scandinavian archaeology this rise is generally referred to as the Tapes transgression. The 

latter term is used in the following. Palaeo-shoreline formation in Varanger and neighbouring 

regions, including those of the Tapes transgression, has been studied for about a century (e.g., 

Corner et al., 1999; Donner et al., 1977; Fletcher et al., 1993; Helskog,  1978; Marthinussen, 

1960; Møller, 1987, 1989; Rose and Synge, 1979; Rosendahl, 1931; Sanjaume and 

Tolgensbakk, 2009; Snyder et al., 1996;  Sollid et al., 1973; Tanner, 1930). 

Because of continuous Holocene isostatic uplift, the Varanger area with its multitude of 

palaeo-shore ridges offers an excellent opportunity to study beach formation and relative sea-

level change. However, those beach-ridge series (see Fig. 3) cannot be understood like a 

sequence of tree-rings (e.g., Fletcher et al. 1993; Sanjaume and Tolgensbakk 2009). A 

quotation from Fletcher et al. (1993:118) on beach-ridge series underscores the point: 

It is apparent that each successive storm in this series would partially (or wholly) 

destroy and recycle the cobbles of preceding ridges and terraces in the same set. On 

the seaward end, a prominent ridge caps the set and records a much larger storm, 

culminating the episode of storminess producing the set and probably consuming 

several preceding beach ridges in its formation. 

Add to this that the Varanger area was subjected to varying degrees of isostatic uplift (e.g., 

Marthinussen, 1945; Møller et al., 1987, 1989; Snyder et al., 1996; Sørensen et al., 1996) and 

that even within smaller bays, the ridges correlating with a particular sea-level may not occur 

at level height (Sanjaume and Tolgensbakk, 2009).  

Despite all this, many attempts have been made to generate shoreline isobases and shoreline 

displacement curves (e.g. Corner et al., 1999; Fletcher et al., 1993; Marthinussen, 1945; 



Møller et al., 1987, 1989; Snyder et al., 1996; Sørensen et al., 1996). These efforts, however, 

often differ considerably geographically and with respect to inferred altitudes above sea-level. 

The southern shore of inner Varangerfjord is a good example. This is a relatively sheltered 

area compared to the outer Varanger coast, but also an area that would have been prone to the 

effects of a tsunami funneling through the fjord. On the southern side of inner Varangerfjord,  

Møller and Holmeslett’s (2003) shoreline simulation program SEALEV places the sea-level at 

the time of the tsunami (8100 cal. BP) at c. 45 m above the present sea-level, while Fletcher et 

al. (1993), based on local and more reliable data, place it c. 23 ± 3m above sea-level (1993: 

Fig. 3). According to Møller and Holmeslet’s program, the Tapes transgression is merely 

marked by an inflection point in the sea-level graph, separating an earlier and significant 

period of isostatic uplift from a later period of less (but net) uplift. In contrast, the graphs 

provided by Corner et al.’s (1999) lake isolation studies, and Fletcher et al.’s equally incisive 

studies at Brannsletta (1993) in particular, show different patterns. Corner et al. (1999: Fig. 

16) show a c. 2000-year long period of less (net) isostatic uplift and no transgression followed 

by an increase in shoreline displacement rate. Fletcher et al. (1993: Fig 3) show an equally 

long “plateau-like"  interval, marked as a “record gap” in another figure (Fletcher et al. 1993: 

Fig. 6A),  going from iso/eustatic (near) equilibrium to a relatively small transgression of c. 2 

m at c. 6600 cal. BP (see also Manninen and Knutson, 2011; Manninen, 2014). This not only 

means that shoreline displacement curves must be taken with reservation, but also that they 

may at best be valid for short stretches of coast. 

Returning to inner Varangerfjord, Fletcher et al.’s (1993) estimate of the sea-level at the time 

of the tsunami of 23 ± 3 m (Fig.4) is probably the best estimate as it is based on detailed 

research on the huge Brannsletta beach-ridge series. The time of the Storegga tsunami, 

however, is also at the incipient phase of the Tapes transgression, which culminated at 25 ± 2 

m, roughly 1500 calibrated 
14

C years later at around 6600 cal. BP. This corresponds 



reasonably well with Rose and Synge’s (1979) estimate for the Tapes transgression maximum 

for the same area at 27-29 m. This opens the possibility that up to 4 vertical meters of 

diagnostic evidence of the tsunami may have been disrupted or transgressed with the further 

implication that this may also have been the case with archaeological sites (see below) used or 

occupied at the time of the event (see also Manninen, 2014).  

5. The archaeological record  

Several surveys with different research aims, chronological periods, and focus areas in mind 

have taken place in the Varanger area since the 1920s (e.g., Nummedal, 1927, 1929; Bøe and 

Nummedal, 1936; Simonsen, 1961; Odner, 1966; Schanche, 1988; Grydeland, 2002, 2006; 

Kleppe, 2010, 2017; Blankholm, 2017). Among those, Grydelands (2006) investigation of the 

the Mesolithic of the southern side of inner Varangerfjord is probably the one that best covers 

the time period around the Storegga tsunami (Fig. 2B). Conveniently, this area is also 

geographically situated next to Fletcher et al.’s (1993) detailed studies at Brannsletta.  

Grydeland’s survey extended over a stretch of c. 25 km and generally covered the area 

between the Postglacial marine limit and 26 m above sea-level, the latter roughly 

corresponding to the Tapes maximum line. His survey technique consisted of field-walking 

beach-ridges and other potential loci for archaeological sites, but did not involve statistical 

sampling or site-specific survey grids. All finds and contextual information were carefully 

recorded on a standard form. Some parts of the area, apparently, were surveyed more 

intensively and systematically than others, and very few 
14

C dates were obtained. Most sites 

were dated by shoreline displacement, with all the problems this entails, and altitudes above 

present day sea-level were mostly obtained by interpolation from 5 m curves on 1:10.000 

maps, which have a margin of error of several meters.   

A Tapes transgressed site was excavated in the late 1920s near Vadsø on the other side of the 

fjord, some 25 km distant as the crow flies. At this site, the Tapes maximum sea-level was 



measured in a geological trench to 25 m above sea-level and with a beach-ridge deposit 

reaching c. 28 m (Rosendahl 1929). According to Grydeland (2006), there are no signs of 

transgressed sites within his surveyed area, but since his survey focused on surface finds, this 

does not preclude that some sites may be buried. Tapes abrasion (see also Rosendahl, 1929; 

Fletcher et al., 1993) – where the sea cuts into morainic and uplifted marine deposits – may 

also have destroyed sites (Fig. 5). The same pertains to a massive landslide at Karlebotn 

(Harald Sveian, Norwegian Geological Survey, pers. com., 2007), possibly caused by seismic 

activity (see also Nikilaeva, 2005), which at some time unknown slid out into the sea from 

around the 50 m contour, corresponding to c. 8500 cal. BP. It took about one fourth of the 

potential area for settlements in Karlebotn bay with it (Fig. 6). It is presently impossible to 

evaluate to any exact degree how all these sources of error have affected the numerical and 

altitude above sea-level representativity of the sites, and in consequence one need to use 

Grydeland's data with reservation. 

The 138 sites recorded along the southern shore of inner Varangerfjord may loosely be 

grouped into three clusters: one around Karlebotn, another around Gressbakken, and a third 

between Čåkka and Gandvik. This may, of course, have behavioural connotations. However, 

the number of sites per altitude meter within each of those three areas is generally very low. 

This may, of course, also have behavioural connotations, but for the purpose of investigating 

whether sites may have been affected by the Storegga tsunami, those at relevant altitudes 

above sea-level may be lumped together. The result is shown in Tab. 1.  

Following Fletcher et al. (1993), and setting the sea-level at c. 8100 cal. BP to 23 m above 

sea-level, observing the Tapes maximum limit at 25 m above sea-level, and correcting for the 

3 m amplitude of the tide, a 2 m tsunami would have reached 1.5 m above and 1.5 m below 

the Tapes limit at high and low tide, respectively. A 3 m tsunami would have reached 2.5 m 

above the Tapes limit at high tide and 0.5 m below at low tide. The corresponding figures for 



a 4 m tsunami are 3.5 and 0.5 m above the tapes limit, and for a 6 m tsunami 5.5 and 2.5 m. If 

the sites were situated around 2 m above high tide, at 26.5 m above sea-level, a 2 m tsunami 

would only just have reached them at high tide and a 3 m tsunami would have overrun them 

by a meter. A 4 m tsunami would have overrun the sites at high tide with 2 m (up to the 28.5 

m level) , and a 6 m tsunami would have done the same with 4 m (up to the 30.5 m level). The 

corresponding figures for a low tide situation would have been 2.5 m (25.5  m above sea-

level) and 4.5 m (27.5 m above sea-level), respectively.  However, following Grydeland 

(2006), there are no signs of transgressed or disrupted sites from the 26 m contour and above. 

This could indicate that they were never run over by the sea. It is the 23-25 m interval, 

covered by the transgression, which seems more muted in the archaeological record. Yet, 

even if there were some now buried sites within this range, they would not have been run over 

by a 2 m tsunami at low tide. 

It has been argued that the Storegga tsunami led to demographic decline in regions closer to 

its point of origin, reflected in a drop in site frequencies (e.g., Waddington and Wicks, 2017).  

Taken at face value, it could be tempting to see the drop in Varangerfjord site frequencies 

(from 8 to 2) between 28 and 27 m above sea-level in Tab.1 as an effect of a 4 m tsunami. 

However, and as noted above, the numbers are small and prone to error and do not favour, or 

invite, meter by meter comparisons. And, as also indicated above, it is highly dubious that 

there were conventions in place that people had to live at a specified altitude above sea-level. 

Also, we should consider that site frequencies may change according to exploitation pattern 

and resource-use schedules and not necessarily imply changes in demography. Again, looking 

at Tab. 1 there is an apparent general rise in site frequencies between 26 and 29 m above sea-

level, with no records further below. The latter is an artifact of Grydeland’s survey; it did not 

extent further down towards the sea and the apparent lack of sites cannot be taken at face 

value for a possible decline in population. Rather, the higher frequencies perhaps reflect a 



phenomenon also observed along other parts of the Norwegian coast. In areas with extended 

periods of isostatic and eustatic (near) equilibrium or only minor changes in sea-level that did 

not result in much extended distances to the contemporary beach, sites tended to accumulate 

for a very long time at around the same altitude above sea-level (Bjerck, 2008). Changing the 

sea-level at 8100 cal. BP to Fletcher et al.’s (1999) maximum (25 m above sea-level) or 

minimum (21 m above sea-level) level of uncertainty would only marginally change the 

picture. 

If the Storegga tsunami hit inner Varangerfjord, but did not leave a geological signature 

(Corner et al., 1999), the presented data may be interpreted to suggest that it was probably low 

(less than 2 m) and probably would have had little effect other than perhaps disrupting gear 

stored on the beach (see also Rydgren and Bondevik, 2015). 

6. The Storegga tsunami and the 8200 cal. BP cold event. 

The 8200 cal. BP cold event was the most sudden and conspicuous cold snap during the Early 

Holocene with a relative decrease in temperature of 2-3º C and lasting for approximately 160 

years. It was likely caused by the collapse of the Laurentian Ice Sheet in North America; the 

effects are most notable in the northern hemisphere, particularly in the North Atlantic region 

(Bond et al., 1997; Alley and Ágústsdóttir, 1997; Kabushi et al., 2007; Matero et al., 2017). 

In a recent study of Scotland and northeast England, Waddington and Wicks (2017) have 

argued that the 8200 cal. BP event had already impacted the economy, demography and 

organization of the Mesolithic communities when they were hit again by the Storegga 

tsunami. In other words, the Storegga tsunami would have greatly augmented or reinforced 

the detrimental effects of the 8200 cal. BP. cold event on human life. This raises issues about 

“weakened” communities being hit by further external stressors at vulnerable moments and in 

turn questions regarding hunter-fisher-gatherer resilience. 



How the situation was in northern Norway, and in the Varanger area in particular, is a 

challenging question given the above considerations. Looking at the botanical record, Seppä 

et al. (2007) found that the cold event had no, or very little, effect in the mountainous tree-line 

section of the tri-state (Norway, Sweden, Finland) border region. In contrast, Huntley et al. 

(2013, see also Allen et al., 2007) found cyclical, spatial variations in the Betula-Pinus 

ecotone and evidence for the cold event at all three of their sites along the northern coast of 

Finnmark. However, generally the effect diminished with longitude towards the east and no 

map was provided to indicate the position of the ecotone according to time. From this it may 

be inferred that the impact of the cold event in eastern Finnmark was relatively weak and that 

the birch-pine (Betula-Pinus) ecotone probably was somewhere near its present location. In 

other words no sudden (after all, we are considering processes occurring over centuries or 

several decades) or extensive changes in the ecology.  

The observed changes would hardly seem challenging to an experienced hunter-fisher-

gatherer population that had already been mapping on to the resources for about 1500 years 

and had faced previous warm and chilly periods (see below) and which would seem to have 

lived way below carrying capacity in an non-optimal foraging way in this generally extremely 

rich environment (Blankholm, 2017; Kleppe, 2017). Some resources, terrestrial or marine, 

may have oscillated in frequency, density, spatial distribution or shifted their migratory 

patterns, but it would be difficult to tell the difference between inherent natural fluctuations 

among species and those that may have been generated by the cold event. Taking the present 

archaeological evidence at face value and looking at the long durée from c. 8500 to 7500 cal. 

BP, the situation may be tentatively interpreted to suggest that the inhabitants of the Varanger 

area did not seem to change their subsistence patterns, material culture or demography in any 

significant way (for a contrasting view see Manninen, 2014). In accordance with Fitzhugh 

(2016), dealing with the Kuril islands in the Pacific, one might argue that as hunter-fisher-



gatherers, they displayed a high degree of resilience with a seemingly robust technological, 

economic and social organization (Hald and Blankholm, 2009; Blankholm, 2017). However, 

it is difficult to corroborate this further, because it is exactly within this time bracket that our 

data are most confounded by the effects of the Tapes transgression.  

7. Results and discussion. 

This is how the situation stands today.  According to the present evidence it is suggested: 1) 

that the vertical run-up of the Storegga tsunami in inner Varangerfjord probably was 2 m or 

less, 2) that the impact of the 8200 cal. BP cold event on the ecology of Finnmark was 

relatively weak, and 3) that the combined effect of both on human life probably had only 

minor consequences given a high degree of resilience among the population. 

Another lesson learned is that making generalizations about the effect of a tsunami over long 

stretches of coast may very well end up as a futile enterprise as long as the details for its 

constituent segments are not properly understood within an acceptable margin of error. To 

disentangle the complex relationships among the Storegga tsunami, sea-level changes, the 

local or regional geology and human response, as well as whether or not it reinforced the 

possible effects of the 8200 cal. BP cold event, will, as also Waddington and Wicks (2017) 

have called for, require focused studies taking all the relevant questions and variables into 

consideration and a carefully crafted research design. A considerable number of studies on the 

effect of the Storegga tsunami and 8200 cal. BP cold event on human settlement and 

demography have drawn on disparate studies from various disciplines that did not address 

those questions in the first place and were not conducted at compatible or congruent 

geographical scales and chronological resolution. Any interdisciplinary study of the matter 

should minimally address and adequately resolve the following for an extended period on 

both sides of the events: 



 Is the number and quality of the sites and pertinent data (archaeological or natural 

scientific) a representative sample? Are scales and resolution compatible and of 

sufficient detail? 

 The economy and settlement, including seasonality, of the period in question. Do 

variations in site frequencies reflect variation in resource-use schedules and/or 

demographic fluctuations? 

 The effects of eustatics and isostatics, including the stratigraphical and morphological 

effects of the Tapes transgression (overlay and abrasions). 

It seems both right and timely to ask how human beings related to abrupt natural events, be 

they climatic or in the form of tsunamis, earthquakes or volcanic eruptions. From this we may 

become more enlightened about our past, but may also gain knowledge that may become 

useful in the future. However, as archeologists we should not lose sight of the forest for the 

trees; scale is important. One may ask the pertinent question:  how much did those presumed 

and real set-backs matter for human endeavours on the broader continental or global canvas in 

the long durée?  
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Storegga slide and estimates of the tsunami run-up (after Bondevik et al. 2015, Fig.1). Map by 
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Fig 4. Local relative sea-level at Bransletta, Varangerfjord, Norway. Re-drawn (simplified) 
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Fig.5. A telling tale from Ytre Syltevik, Varanger. The Tapes abrasion has eroded away all 
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