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Abstract: The main aim of this paper is to contribute to the recently initiated research concerning
geometric constructions of means, where the variables are appearing as line segments. The present
study shows that all Lehmer means of two variables for integer power k and for k = m

2 , where m
is an integer, can be geometrically constructed, that Lehmer means for power k = 0, 1 and 2 can be
geometrically constructed for any number of variables and that Lehmer means for power k = 1/2
and −1 can be geometrically constructed, where the number of variables is n = 2m and m is a
positive integer.
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1. Introduction

Means and averages have been used at least since human beings began to make easy calculations.
Babylonian wedge-shaped scriptures in clay, between 3000 and 4000 years old, show how their
mathematicians devised procedures to determine square roots by recursive use of means; see [1–3].

The classic Greek scientists (around 500 B.C.) studied the Babylonian texts and further developed
the understanding of the Pythagorean means, i.e., the arithmetic, the geometric and the harmonic
means of two variables, and used them in their study of mathematics and music. They did not have
the arsenal of symbols that are available to modern mathematicians for expressing the different means,
but had to resort to the Greek language to describe the functional relation between the variables
and the mean. They named the variables “the first number” (the small variable) and “the third
number” (the large variable) and called the mean “the second number” and defined the mean through
proportions between the two variables and the sought after mean. The Lehmer mean of two variables
with power two, the contra-harmonic mean, could then be described as: the difference between “the
second number” and the “the first number” is to the difference between “the third number” and
“the second number” as “the third number” is to “the first number”. By varying these relations, the
Pythagoreans defined a number of different means, 10 in all, that all have the property that the size of
the mean is between the two variables; see [2].

After these early discoveries, means and their inequalities attracted great attention in mathematical
research; see, e.g., the book [4] by P.S. Bullen, D. S. Mitrinovic and P. M. Vasic from 1988 and also the
book [5] by C. Niculescu and L.E. Persson from 2018, where also the close connection to convexity was
investigated. See also [6–9]. We will now continue by putting the most elementary situation presented
before into this more general frame.

Today, we would require the following of a mean, m, as a function of two positive variables a ≤ b,
m = M(a, b), (a, b) ∈ R :
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M1 Internality: a ≤ m ≤ b
M2 Symmetry: M(a, b) = M(b, a)
M3 Homogeneity: M(ka, kb) = kM(a, b)
M4 Isotonicity: if a1 > a2 and b1 > b2, then M(a1, b1) > M(a2, b2)

M5 Equality: if a = b, then M(a, b) = a

Note that M5 is a special case of M1, so in principle, only the four requirements M1–M4 are
necessary. There are 10 means listed that were defined by the Pythagoreans. We also consider the
quadratic mean and one permutation that was missed by the Greeks; see [2]. In Table 1, we have
listed these twelve means and related them to the modern conditions M1–M5 of means (Y for yes and
N for no).

Table 1. The basic classic (Babylonian/Hellenistic) means defined by proportions between the variables
and the mean.

Mean Proportions Modern Definition M1 M2 M3 M4 M5

1. Arithmetic m−a
b−m = 1 m = a+b

2 Y Y Y Y Y
2. Geometric m−a

b−m = a
m = m

b m =
√

ab Y Y Y Y Y
3. Harmonic m−a

b−m = a
b m = 2ab

a+b Y Y Y Y Y
4. Contraharmonic m−a

b−m = b
a m = a2+b2

a+b Y Y Y Y Y

5. Quadratic m−a
b−m = b+m

m+a m =
√

a2+b2

2 Y Y Y Y Y

6. m−a
b−m = m

a m = b−a
2 +

√
( b−a

2 )2 + a2 Y N Y N Y

7. m−a
b−m = b

m m = − b−a
2 +

√
( b−a

2 )2 + a2 Y N Y N Y

8. b−a
m−a = b

a m = b− (b−a)2

b Y N Y Y Y

9. b−a
b−m = b

a m = a + (b−a)2

b Y N Y N Y
10. b−a

m−a = m
a m = a

2 + 1
2

√
4ab− 3a2 Y N Y Y Y

11. b−a
b−m = m

a m = max {b− a, a} Y N Y N Y
12. b−a

b−m = b
m m = b2

2b−a Y N Y Y Y

The approach of the classic Greeks to mathematics often started in geometry. For example,
Euclid proved his famous theorem of the greatest common divisor geometrically. This was also
the case for their study of means. They defined the variables expressed as lengths of line segments
and devised methods for geometric construction of the different means. An example is shown in
Figure 1, where a and b, b ≤ a, are the variables, A = a+b

2 is the arithmetic mean, G =
√

ab is

the geometric mean, H = 2ab
a+b is the harmonic mean, Q =

√
1
2 (a2 + b2) is the quadratic mean and

C = a2+b2

a+b is the contraharmonic mean. It is easy to verify the correctness of the constructions.
The geometry verifies the basic inequalities: b ≤ H ≤ G ≤ A ≤ Q ≤ C ≤ a.

It is relatively easy to construct the rest of the basic classical means of two variables, Mean Nos.
6–12 in Table 1.

The introduction of mathematical symbols in the 16th Century led to remarkable progress in
the use and manipulation of such symbols. An example is the search for integer variables resulting
in integer power means; see [10–14]. In particular, the importance of the use of power means for
calculating effective conductivities in laminates was pointed out in [12,13]. This avenue is still pursued
by many mathematicians today, almost to the point where the possibilities and elegance of geometric
construction are being neglected or have been relegated to recreational mathematics. However, recently,
the classic Greek idea of the geometric construction of means has attracted renewed interest; see [15–23],
but now based on the modern expressions for means; see [4,7]. Moreover, in [24] (see also [25,26]), we
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raised the question of doing such Greek-type geometric constructions also for more general means and
variables. In particular, the novelty of [24,25] was to demonstrate the geometric construction of:

P2k

2 (a, b) = (
a2k

+ b2k

2
)

1
2k

for all integer values of the power k and of:

P2k

n (a1, ..., an) = (
1
n
(a2k

1 + ... + a2k

n ))
1

2k ,

where the number of variables is n = 2m. Here, m is a positive integer. The purpose of the present
paper is to contribute to this process by showing that the tools developed in [24,25] can be further
refined and can be used also in the geometric construction of a number of Lehmer means.

a b

A
H

G

Q

H C

Figure 1: Classic Greek construction of Pythagorean means.

It is relatively easy to construct the rest of the basic classical means of two variables, mean nr. 6 - 12 in
Table 1.

The introduction of mathematical symbols in the 16th century lead to remarkable progress in the use and
manipulation of such symbols. An example is the search for integer variables resulting in integer power means,
see [10], [11], [14], [17] and [19]. In particular, the importance of the use of power means for calculating
effective conductivities in laminates was pointed out in [14] and [17]. This avenue is still pursued by many
mathematicians today, almost to the point where the possibilities and elegance of geometric construction
is being neglected or has been relegated to recreational mathematics. However, recently the classic Greek
idea of geometric construction of means has attracted renewed interest, see [2], [3], [16], [20], [23], [24], [25],
[26] and [27], but now based on the modern expressions for means, see [1] and [5]. Moreover, in [15] (see
also [9] and [12]) we raised the question to do such Greek type geometric constructions also for more general
means and variables. In particular, the novelty of [9] and [15] was to demonstrate the geometric construction
of

P 2
k

2 (a, b) = (
a2

k

+ b2
k

2
)
1

2k

for all integer values of the power k and of

P 2
k

n (a1, ..., an) = (
1

n
(a2

k

1 + ...+ a2
k

n ))
1

2k ,

where the number of variables is n = 2m. Here, m is a positive integer. The purpose of this paper the
present paper is to contribute to this process by showing that the tools developed in [9] and [15] can be
further refined and can be used also in the geometric construction of a number of Lehmer means.

A general two-parameter scale of means is the Gini means of n variables a1, ..., an with equal weights,
defined by

3

Figure 1. Classic Greek construction of Pythagorean means.

A general two-parameter scale of means is the Gini means of n variables a1, ..., an with equal
weights, defined by:

Gr,s
n (a1, ..., an) =

(
ar

1 + ... + ar
n

as
1 + ... + as

n

) 1
r−s

for (r, s) ∈ R and r 6= s,

Gr,s
n (a1, ..., an) = (a1a2...an)

1
n for r = s.

Two subsets of Gini means are the power means and the Lehmer means given by setting
(r, s) = (k, 0) and (r, s) = (k, k± 1), respectively, with the power k ∈ R.
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The scale of power means is then defined by:

Pk
n(a1, ..., an) =

(
ak

1 + ... + ak
n

n

) 1
k

, for k 6= 0,

P0
n(a1, ..., an) = (a1a2...an)

1
n for k = 0,

and the Lehmer means by:

Lk
n(a1, ..., an) =

ak
1 + ... + ak

n

ak−1
1 + ... + ak−1

n
.

Power means and Lehmer means are consistent with the five requirements for means listed above.
In addition, they both adhere to two further conditions:

M6 Power size: Pk
n(a1, ..., an) > Pl

n(a1, ..., an) when k > l.
M7 Infinite power: lim

k→+∞
Pk

n(a1, ..., an) = max {a1, ..., an} and lim
l→−∞

Pl
n(a1, ..., an) = min {a1, ..., an} .

This corresponds to these scales of means having the interesting property that they are
nondecreasing in k from the smallest possible mean (min {a1, a2, ..., an}) to the greatest possible mean
(max {a1, a2, ..., an}) in the modern definitions. The Lehmer mean was introduced by D. H. Lehmer
in 1971; see [27]. He discovered three fundamental connections between power means and Lehmer
means that will be used later in this paper:

1. P1
2 (Lk

2(a, b), L2−k
2 (a, b)) = P1

2 (a, b) or A(Lk
2(a, b), L2−k

2 (a, b)) = A(a, b).

2. P0
2 (Lk

2(a, b), L1−k
2 (a, b)) = P0

2 (a, b) or G(Lk
2(a, b), L1−k

2 (a, b)) = G(a, b).

3. P−1
2 (Lk

2(a, b), L−k
2 (a, b)) = P−1

2 (a, b) or H(Lk
2(a, b), L−k

2 (a, b)) = H(a, b).

In addition, we have that:

A = P1
n(a1, ..., an) = L1

n(a1, ..., an),

H = P−1
n (a1, ..., an) = L0

n(a1, ..., an),

G = P0
2 (a, b) = L

1
2
2 (a, b),

and:
C = L2

2(a, b) = 2P1
2 − P−1

2 (a, b).

The crossed ladders diagram shows a number of properties, which assist in the construction
of means. The Pythagorean and a number of other power means of two variables a and b can be
constructed in this diagram; see [16] (cf. also [24–26]).

This paper is organized as follows: In Section 2, a number of Lehmer means of two variables are
constructed using the properties of the crossed ladders diagram. Section 3 is reserved for presenting
some further results and remarks that we judge are of particular interest for further research in this
direction. Especially, we show that it is possible to construct Lehmer means with power k = 0, 1 and 2
for any number of variables. Moreover, it is shown that all Lehmer means of two variables for integer
power k and for k = m

2 , where m is an integer, can be constructed by the use of the formulas discovered
by Lehmer mentioned above and by using the symmetric crossed ladders diagram. Finally, we show
that the Lehmer means for k = 1/2 and k = −1, where the number of the variables are n = 2m (m is a
positive integer), can be geometrically constructed.
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2. Geometric Constructions of Some Lehmer Mean of Two Variables

The following Lehmer means will be constructed by the use of the crossed ladders properties:

L3
2 =

a3 + b3

a2 + b2 =
(a + b)(a2 − ab + b2)

a2 + b2 ,

L2
2 =

a2 + b2

a1 + b1 =
a2 + b2

a + b
,

L
3
2
2 =

a
3
2 + b

3
2

a
1
2 + b

1
2
= a−

√
ab + b,

L1
2 =

a1 + b1

a0 + b0 =
a + b

2
,

L
1
2
2 =

a
1
2 + b

1
2

a−
1
2 + b−

1
2
=
√

ab,

L0
2 =

a0 + b0

a−1 + b−1 =
2ab

a + b
,

L−
1
2

2 =
a−

1
2 + b−

1
2

a−
3
2 + b−

3
2
=

ab
a−
√

ab + b
,

L−1
2 =

a−1 + b−1

a−2 + b−2 =
ab(a + b)
a2 + b2 ,

L−
3
2

2 =
a−

3
2 + b−

3
2

a−
5
2 + b−

5
2
=

ab
(

a−
√

ab + b
)

a2 + ab + b2 − (a + b)
√

ab
,

L−2
2 =

a−2 + b−2

a−3 + b−3 =
ab(a2 + b2)

(a + b)(a2 − ab + b2)

and:

L−3
2 =

a−3 + b−3

a−4 + b−4 =
ab(a3 + b3)

a4 + b4 .

2.1. Geometric Construction of L−
1
2

2 , L0
2, L

1
2
2 , L1

2, L
3
2
2 and L2

2

Since L1
2 = a+b

2 , L
1
2
2 =
√

ab and L0
2 = 2ab

a+b are identical to A, G and H for power means, they may be
constructed using the methods shown in [25]; see Figures 2 and 3. The arithmetic mean A(a, b) = a+b

2
corresponds to the vertical distance between the “floor” and the “roof” at the midpoint between
the walls in the basic crossed ladders structure. By use of similar triangles in Figure 2, it has been
shown that the harmonic mean is equal to the vertical line between the floor and the roof through the
intersection of the diagonals:

H(a, b) = I J = 2c =
2ab

a + b
.
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a b

a

b

b a

a

b
c

c

A B

CD

E

F

T U

I

J

r

s

Figure 2: The symmetric crossed ladders diagram.

structure is the trapezoid ABFE. The variables are the "walls", a = AE and b = BF, and the ladders are
the diagonals AF and BE. The "floor" of the diagram is AB = a+ b, and the "roof" is EF. The lines TU
and IJ are drawn through the crossing of the diagonals and are parallel to AB and BF, respectively.

The crossed ladders diagram shows a number of properties, which assist the construction of means. The
Pythagorean and a number of other power means of two variables a and b can be constructed in this diagram,
see [3] (cf. also [9], [12] and [15]).

This paper is organized as follows: In Section 2 a number of Lehmer means of two variables are constructed
using the properties of the crossed ladders diagram. Section 3 is reserved to present some further results and
remarks we judge are of particular interest for further research in this direction. Especially we show that it
is possible to construct Lehmer means with power k = 0, 1 and 2 for any number of variables. Moreover, it
is shown that all Lehmer means of two variables for integer power k and for k = m

2 , where m is an integer,
can be constructed by the use of the formulas discovered by Lehmer mentioned above, and by using the
symmetric crossed ladders diagram. Finally, we show that the Lehmer means for k = 1/2 and k = −1, where
the number of the variables are n = 2m (m is a positive integer), can be geometrically constructed. In order
to be able to easily compare all illustrations of our new geometric constructions of various Lehmer means
we have collected all these Figures in Section 4.

2 Geometric constructions of some Lehmer mean of two variables

The following Lehmer means will be constructed by the use of the crossed ladders properties:

L32 =
a3 + b3

a2 + b2
=
(a+ b)(a2 − ab+ b2)

a2 + b2
,

L22 =
a2 + b2

a1 + b1
=
a2 + b2

a+ b
,

5

Figure 2. The symmetric crossed ladders diagram.

a b

a

b a

a

b

r

s
L3/2=a(ab)1/2+b

L1/2=(ab)1/2

L1/2 L3/2
2 2L1/2

L2L1L0

L1/2 L3/2
2

2

2

2 2

2

L1/2
2

2

2

Figure 3: Geometric constructions of L
− 1
2

2 , L02, L
1
2
2 , L

1
2, L

3
2
2 and L

2
2.

b

a

(a²+b²)1/2

(ab)1/2

(a²ab+b²)1/2
a(ab)1/2+b

(ab)1/2

(a²+b²)1/2

(ab)1/2

(a²+ab+b²)1/2

a

b

(ab)1/2a+b

((a+b) (ab)1/2)1/2

(a²+ab+b²)1/2

((a+b) (ab)1/2)1/2

(a²+ab+b² (a+b)(ab)1/2)1/2

b

a

Figure 4: Geometric constructions of
√
a2 + b2,

√
a2 ± ab+ b2,

√
(a+ b)

√
ab and√

a2 + ab+ b2 − (a+ b)
√
ab.

14

Figure 3. Geometric constructions of L−
1
2

2 , L0
2, L

1
2
2 , L1

2, L
3
2
2 and L2

2.

From similar triangles, it also follows that the geometric mean of r = GE = a − c and
s = HF = b− c is equal to c, i.e.,

G(r, s) = c =
√

rs.

From the latter formula, the geometric mean of a and b can be constructed by lowering the “floor”
in the crossed ladders diagram in Figure 2 downwards until the diagonals of the enlarged crossed
ladders intersect at the existing “floor”, AB. Then, r and s in the enlarged crossed ladders diagram will
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be equal to a and b. The vertical distance from the intersection of the new diagonals in the existing
“floor” and the “roof” is then the geometric mean of a and b. The above formulas and constructions
were demonstrated by Høibakk et al. [24,26].

In Figure 3, we have chosen to determine L
1
2
2 =

√
ab as the height in a right-angle triangle.

The hypotenuse is h = a + b, and the height is the vertical distance from the point where a and b meet
in the periphery of a circle with radius r = a+b

2 over the hypotenuse.

L
3
2
2 can, as shown in Figure 3, directly be constructed from:

L
3
2
2 = a−

√
ab + b.

L−
1
2

2 can be constructed from:

L−
1
2

2

L
1
2
2

=

ab
a−
√

ab+b√
ab

=

√
ab

a−
√

ab + b
=

L
1
2
2

L
3
2
2

using similar triangles.
From Figure 2, it follows that:

r = a− c = a− ab
a + b

=
a2

a + b
(1)

and:

s = b− c = b− ab
a + b

=
b2

a + b
, (2)

resulting in the construction of:

L2
2 = r + s =

a2 + b2

a + b
.

Hence, the geometric constructions of L−
1
2

2 , L0
2, L

1
2
2 , L1

2, L
3
2
2 and L2

2 can be illustrated as in Figure 3.

2.2. Construction of L−3
2 , L−2

2 , L−
3
2

2 , L−1
2 and L3

2

From (1) and (2), one can deduce that:

r
s
=

a2

a+b
b2

a+b

=
a2

b2 . (3)

This relation can be used to construct the remaining five means P−3
L , P−2

L , P−
3
2

L , P−1
L and P3

L.
From the list of the Lehmer means above, one can easily derive that:

L−1
2

2L1
2
=

ab(a+b)
a2+b2

2 a+b
2

=
ab

a2 + b2 , (4)

L−2
2

L2
2

=

ab(a2+b2)
(a+b)(a2−ab+b2)

a2+b2

a+b

=
ab

a2 − ab + b2 , (5)

L−
3
2

2

L
3
2
2

=

ab(a−
√

ab+b)
a2+ab+b2−(a+b)

√
ab

a−
√

ab + b
=

ab
a2 + ab + b2 − (a + b)

√
ab

, (6)
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and:
L3

2

L−1
2

=

(a+b)(a2−ab+b2)
a2+b2

ab(a+b)
a2+b2

=
a2 − ab + b2

ab
. (7)

These relations can be used to construct L−2
2 , L−

3
2

2 , L−1
2 and L3

2 by application of (3). If one
constructs crossed ladders diagrams where the new variables are a1 =

√
ab, b1 =

√
a2 + b2, a2 =

√
ab,

b2 =
√

a2 − ab + b2, a3 =
√

ab, b3 =
√

a2 + ab + b2 − (a + b)
√

ab, a4 =
√

a2 − ab + b2 and b4 =
√

ab,
respectively, the line segments ri and si in those crossed ladders diagrams can be determined by:

(ri, si) = (
a2

i
ai + bi

,
b2

i
ai + bi

).

Then, the relations ri
si

will be:

From (4):
r1

s1
=

a2
1

b2
1
=

ab
a2 + b2 =

L−1
2

2L1
2

,

From (5):
r2

s2
=

a2
2

b2
2
=

ab
a2 − ab + b2 =

L−2
2

L2
2

,

From (6):
r3

s3
=

a2
3

b2
3
=

ab
a2 + ab + b2 − (a + b)

√
ab

=
L−

3
2

2

L
3
2
2

,

and:

From (7):
r4

s4
=

a2
4

b2
4
=

a2 − ab + b2

ab
=

L3
2

L−1
2

.

The geometric construction of L−2
2 , L−

3
2

2 , L−1
2 and L3

2 can then be performed in a new crossed
ladders diagram using similar triangles.

Figure 3 shows the construction of
√

ab and of a−
√

ab + b. The geometric constructions of:√
a2 + b2,

√
a2 ± ab + b2,√

(a + b)
√

ab

and: √
a2 + ab + b2 − (a + b)

√
ab

are shown in Figure 4.
Moreover, the constructions of:

r1 =
ab√

ab +
√

a2 + b2
, and s1 =

a2 + b2
√

ab +
√

a2 + b2

are illustrated in Figure 5, while the geometric constructions of:

r2 =
ab√

ab +
√

a2 − ab + b2
,

s2 =
a2 − ab + b2

√
ab +

√
a2 − ab + b2

,
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r3 =
ab

√
ab +

√
a2 + ab + b2 − (a + b)

√
ab

,

s3 =
a2 + ab + b2 − (a + b)

√
ab

√
ab +

√
a2 + ab + b2 − (a + b)

√
ab

,

r4 =
a2 − ab + b2

√
ab +

√
a2 − ab + b2

and:
s4 =

ab√
ab +

√
a2 − ab + b2

are illustrated in Figures 6 and 7.
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2
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Figure 4: Geometric constructions of
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√
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√
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√
ab.
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Figure 4. Geometric constructions of
√

a2 + b2,
√

a2 ± ab + b2,
√
(a + b)

√
ab and√

a2 + ab + b2 − (a + b)
√

ab.

(ab)1/2 (a2+b2)1/2

r1

s1

(ab)1/2
(a2+b2)1/2

Figure 5: Geometric constructions of r1 = ab√
ab+
√
a2+b2

and s1 = a2+b2√
ab+
√
a2+b2

.

(ab)1/2
(a²ab+b²)1/2

s2, r4r2, s4

(ab)1/2 (a²ab+b²)1/2

Figure 6: Geometric constructions of r2 = s4 = ab√
ab+
√
a2−ab+b2 and s2 = r4 =

a2−ab+b2√
ab+
√
a2−ab+b2 .

(ab)1/2

(ab)1/2 (a²+ab+b² (a+b)(ab)1/2)1/2

(a²+ab+b² (a+b)(ab)1/2)1/2
r3

s3

Figure 7: Geometric constructions of r3 = ab√
ab+
√
a2+ab+b2−(a+b)

√
ab
and s3 =

a2+ab+b2−(a+b)
√
ab

√
ab+
√
a2+ab+b2−(a+b)

√
ab
.

15

Figure 5. Geometric constructions of r1 = ab√
ab+
√

a2+b2 and s1 = a2+b2√
ab+
√

a2+b2 .
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√
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ab+
√
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.

(ab)1/2
(a²ab+b²)1/2

s2, r4r2, s4

(ab)1/2 (a²ab+b²)1/2

Figure 6: Geometric constructions of r2 = s4 = ab√
ab+
√
a2−ab+b2 and s2 = r4 =

a2−ab+b2√
ab+
√
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√
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√
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√
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.
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√
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ab+
√
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√
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√
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(ab)1/2

(ab)1/2 (a²+ab+b² (a+b)(ab)1/2)1/2
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√
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√
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√
ab

√
ab+
√
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√
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.

15

Figure 7. Geometric constructions of r3 = ab√
ab+
√

a2+ab+b2−(a+b)
√

ab
and s3 = a2+ab+b2−(a+b)

√
ab√

ab+
√

a2+ab+b2−(a+b)
√

ab
.

The last mean, L−3
2 , can be constructed by using the equality:

L3
2

L−3
2

=

(a+b)(a2−ab+b2)
a2+b2

ab(a3+b3)
a4+b4

=
a4 + b4

ab(a2 + b2)
. (8)

In fact, by using a5 = r = a2

a+b and b5 = s = b2

a+b from (1) and (2) as the variables in a new crossed
ladders diagram, we can construct:

r5 =
( a2

a+b )
2

a2

a+b +
b2

a+b

=
a4

(a + b)(a2 + b2)

and:

s5 =
( b2

a+b )
2

a2

a+b +
b2

a+b

=
b4

(a + b)(a2 + b2)
.

Adding these values, we get that:

r5 + s5 =
a4 + b4

(a + b)(a2 + b2)
.

Inserting this value in (8), we find that:

L3
2

L−3
2

=
(r5 + s5)(a + b)

ab
. (9)
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The construction of G(a, b) =
√

ab has been shown above, and one can use the same method
to construct G1 ((r5 + s5), (a + b)) =

√
(r5 + s5)(a + b). From these values, one can, by using a new

crossed ladders diagram where the variables are a6 =
√
(r5 + s5)(a + b) and b6 =

√
ab, construct:

r6 =
a2

6
a6 + b6

=
(r5 + s5)(a + b)√

(r5 + s5)(a + b) +
√

ab

and:

s6 =
b2

6
a6 + b6

=
ab√

(r5 + s5)(a + b) +
√

ab
.

Inserting these relations in (9), we can deduce that:

L3
2

L−3
2

=
r6

s6
, (10)

and L−3
2 can be constructed using similar triangles.

The constructions of r5, s5, G1 =
√
(r5 + s5)(a + b), r6 and s6 are illustrated in Figures 8–10.

r
r

s

s

s5
r5

r5+s5

Figure 8: Geometric constructions of r5 = a4

(a+b)(a2+b2) , s5 =
b4

(a+b)(a2+b2) and (r5 + s5) from r = a2

a+b and

s = b2

a+b .

r5+s5
a b

((r5+s5)(a+b))1/2

Figure 9: Geometric construction of
√
(r5 + r6)(a+ b).

16

Figure 8. Geometric constructions of r5 = a4

(a+b)(a2+b2)
, s5 = b4

(a+b)(a2+b2)
and (r5 + s5) from r = a2

a+b

and s = b2

a+b .

r
r

s

s

s5
r5

r5+s5

Figure 8: Geometric constructions of r5 = a4

(a+b)(a2+b2) , s5 =
b4

(a+b)(a2+b2) and (r5 + s5) from r = a2

a+b and

s = b2

a+b .

r5+s5
a b

((r5+s5)(a+b))1/2

Figure 9: Geometric construction of
√
(r5 + r6)(a+ b).

16

Figure 9. Geometric construction of
√
(r5 + r6)(a + b).
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(ab)1/2

((r5+s5)(a+b))1/2

((r5+s5)(a+b))1/2

(ab) 1/2

r6 s6

Figure 10: Geometric constructions of r6 =
(r5+s5)(a+b)√

(r5+s5)(a+b)+
√
ab
and s6 = ab√

(r5+s5)(a+b)+
√
ab
.

a

b a

a

r2

L2

L2 L3s2
r3 s3

L3/2

L3/2

b

2r1s1

L2

L1

r4 s4

s6r6

L3
22

2

2

2

2

2

1

Figure 11: Geometric constructions of L−32 , L−22 , L
− 3
2

2 , L−12 and L32.

17

Figure 10. Geometric constructions of r6 = (r5+s5)(a+b)√
(r5+s5)(a+b)+

√
ab

and s6 = ab√
(r5+s5)(a+b)+

√
ab

.

Finally, the wanted geometric constructions of L−3
2 , L−2

2 , L−
3
2

2 , L−1
2 and L3

2 are illustrated in
Figure 11.

(ab)1/2

((r5+s5)(a+b))1/2

((r5+s5)(a+b))1/2

(ab) 1/2

r6 s6

Figure 10: Geometric constructions of r6 =
(r5+s5)(a+b)√

(r5+s5)(a+b)+
√
ab
and s6 = ab√

(r5+s5)(a+b)+
√
ab
.

a

b a

a

r2

L2

L2 L3s2
r3 s3

L3/2

L3/2

b

2r1s1

L2

L1

r4 s4

s6r6

L3
22

2

2

2

2

2

1

Figure 11: Geometric constructions of L−32 , L−22 , L
− 3
2

2 , L−12 and L32.

17

Figure 11. Geometric constructions of L−3
2 , L−2

2 , L−
3
2

2 , L−1
2 and L3

2.

3. Further Results and Remarks

3.1. On the Geometric Construction of Lehmer Means for Any Number of Variables

3.1.1. Power k = 1 and k = 0

L1
n(a1, ..., an) and L0

n(a1, ..., an) are identical to P1
n(a1, ..., an) and P−1

n (a1, ..., an), respectively,
for power means for all numbers of variables. In [24], the construction of P1

n(a1, ..., an) and
P−1

n (a1, ..., an) has been demonstrated for all numbers of variables.
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3.1.2. Power k = 2

The Lehmer mean of power two for n variables is:

L2
n =

a2
1 + ... + a2

n
a1 + ... + an

By using (1), we can construct L2
n for any number of variables. To do this, we construct a crossed

ladders diagram with:

a =
√

a2
1 + ... + a2

n

and b = (a1 + ... + an)−
√

a2
1 + ... + a2

n, or

b = (a1 + ... + an)− a.

We then have:

r =
a2

a + b
=

(
√

a2
1 + ... + a2

n)
2√

a2
1 + ... + a2

n + (a1 + ... + an)−
√

a2
1 + ... + a2

n

=
a2

1 + ... + a2
n

a1 + ... + a
= L2

n.

In Figure 12, we have demonstrated this for three variables, a1, a2 and a3.

a b

a

r

b

s

a1

a2

a3

Figure 12: Geometric construction of r = L23(a1,a2, a3).

L1/2
L2L1L0

L1/2

a b

a

b a
a

b

L3/2=a(ab)1/2+b

L1/2=(ab)1/2

L3/2

r
s

L1/2 L3/2

L1/2

L0L1/2L3/2
L1L2L5/2

2

2
2

2
2

2
2

2 2 2

22
2 2

2

2

2

Figure 13: Lehmer means constructed in the bisymmetric crossed ladders diagram.

18

Figure 12. Geometric construction of r = L2
3(a1,a2, a3).

3.2. Geometric Construction of All Lehmer Means of Two Variables with Integer Power k and k = m
2 , Where m

Is an Integer

In the Introduction, three identities discovered by D. H. Lehmer were presented:

1. A(Lk
2(a, b), L2−k

2 (a, b)) = A(a, b).

2. G(Lk
2(a, b), L1−k

2 (a, b)) = G(a, b).
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3. H(Lk
2(a, b), L−k

2 (a, b)) = H(a, b).

If these identities are rewritten to concern only the Lehmer mean, they will read:

Lk
2 + L2−k

2 = a + b, (11)

Lk
2L1−k

2 = ab, (12)

and:
2Lk

2L−k
2

Lk
2 + L−k

2

=
2ab

a + b
,

respectively. The latter formula can be rewritten as:

L−k
2

Lk
2

=
ab

(a + b)Lk
2 − ab

. (13)

Assuming that Lk
2 is known, one can, by using the methods shown in this paper, determine L−k

2 ,
L1−k

2 and L2−k
2 .

From the identities (11), (12) and (13), the following infinite sequences can be established:

L1
2 + L1

2 = a + b, L1
2L0

2 = ab and
L−1

2
L1

2
=

ab
(a + b)L1

2 − ab
;

L2
2 + L0

2 = a + b , L2
2L−1

2 = ab and
L−2

2
L2

2
=

ab
(a + b)L2

2 − ab
;

L3
2 + L−1

2 = a + b, L3
2L−2

2 = ab and
L−3

2
L3

2
=

ab
(a + b)L3

2 − ab
;

L4
2 + L−2

2 = a + b, L4
2L−3

2 = ab and
L−4

2
L4

2
=

ab
(a + b)L4

2 − ab
.

...

and, correspondingly,

L
1
2
2 + L

3
2
2 = a + b, L

1
2
2 L

1
2
2 = ab and

L−
1
2

2

L
1
2
2

=
ab

(a + b)L
1
2
2 − ab

;

L
3
2
2 + L

1
2
2 = a + b, L

3
2
2 L−

1
2

2 = ab and
L−

3
2

2

L
3
2
2

=
ab

(a + b)L
3
2
2 − ab

;

L
5
2
2 + L−

1
2

2 = a + b, L
5
2
2 L−

3
2

2 = ab and
L−

5
2

2

L
5
2
2

=
ab

(a + b)L
5
2
2 − ab

;

L
7
2
2 + L−

3
2

2 = a + b, L
7
2
2 L−

5
2

2 = ab and
L−

7
2

2

L
7
2
2

=
ab

(a + b)L
7
2
2 − ab

.

...
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Starting with the construction of L1
2 and L

1
2
2 of two variables and by sequential use of the methods

demonstrated earlier in this paper, it is easy to see that all Lehmer means of two variables with integer
power k and with k = m

2 , where m is an integer, can geometrically be constructed.

3.3. Final Remarks

Remark 1. The symmetric crossed ladders diagram represents a practical tool for the geometric construction of
these means. Figures 3 and 11 are reprinted in Figures 13 and 14, respectively, where the corresponding Lehmer
mean that follows from (11) is constructed in the upper part of the symmetric crossed ladders diagram, using the
fact that Lk

2 + L2−k
2 = a + b.

a b

a

r

b

s

a1

a2

a3

Figure 12: Geometric construction of r = L23(a1,a2, a3).
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L3/2

r
s

L1/2 L3/2

L1/2

L0L1/2L3/2
L1L2L5/2

2

2
2

2
2

2
2

2 2 2

22
2 2

2

2

2

Figure 13: Lehmer means constructed in the bisymmetric crossed ladders diagram.
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Figure 13. Lehmer means constructed in the bisymmetric crossed ladders diagram.
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b a
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L2 L3s2
r3 s3

L3/2

L3/2

b

2r1s1

L1
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r4 s4

s6r6

L3

L1
L5/2

L7/2

L4
L5

22
2

22 2
22

222

2 2

Figure 14: Lehmer means constructed in the bisymmetric crossed ladders diagram.
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Remark 2. The Lehmer means for k = 1
2 and k = −1 can be constructed, where the number of variables

n = 2m (m is a positive integer). To show this, we first need to prove a lemma.

Lemma 3. Let n = 2, 3, 4, ... It holds that:

Lk
n(a1, ..., an)(Pk

n(a1, ..., an))
−k = (Pk−1

n (a1, ..., an))
1−k, (14)

or:

Lk
n(a1, ..., an) =

(Pk−1
n (a1, ..., an))1−k

(Pk
n(a1, ..., an))−k .

Proof. We have that:

Lk
n(a1, ..., an) =

ak
1 + ... + ak

n

ak−1
1 + ... + ak−1

n
,

Pk
n(a1, ..., an) = (

1
n
(ak

1, ..., ak
n))

1
k ,

and:
Pk−1

n (a1, ..., an) = (
1
n
(ak−1

1 , ..., ak−1
n ))

1
k−1 .

Therefore,

(Pk−1
n (a1, ..., an))1−k

(Pk
n(a1, ..., an))−k =

(( 1
n (ak−1

1 , ..., ak−1
n ))

1
k−1 )1−k

(( 1
n (ak

1, ..., ak
n))

1
k )−k

=

=
1
n (ak

1, ..., ak
n)

1
n (ak−1

1 , ..., ak−1
n )

=
ak

1, ..., ak
n

ak−1
1 , ..., ak−1

n
= Lk

n(a1, ..., an).

The proof is complete.

k = −1
Using (14), we find that:

L−1
n (a1, ..., an)P−1

n (a1, ..., an) = (P−2
n (a1, ..., an))

2,

or
L−1

n (a1, ..., an)

P−2
n (a1, ..., an)

=
P−2

n (a1, ..., an)

P−1
n (a1, ..., an)

. (15)

In [24], the authors showed that P−1
n (a1, ..., an) can be constructed for any number of variables

and that P−2
n (a1, ..., an) can be constructed where the number of variables n = 2m. For constructing

P−1
n (a1, ..., an) and P−2

n (a1, ..., an), we can then use (15) to construct L−1
n (a1, ..., an), where the number

of variables n = 2m.

k = 1
2

From (14), it follows that:

L
1
2
n (a1, ..., an)(P

1
2

n (a1, ..., an))
− 1

2 = (P−
1
2

n (a1, ..., an))
1
2 ,

giving:

L
1
2
n (a1, ..., an) = (P

1
2

n (a1, ..., an))
1
2 (P−

1
2

n (a1, ..., an))
1
2 ,

or:
(L

1
2
n (a1, ..., an))

2 = P
1
2

n (a1, ..., an)P−
1
2

n (a1, ..., an). (16)
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In [24], the authors also showed that P
1
2

n (a1, ..., an) and P−
1
2

n (a1, ..., an) can be constructed,

where the number of variables n = 2m. This means that constructing P
1
2

n (a1, ..., an) and P−
1
2

n (a1, ..., an),

we can then, using (16), construct L
1
2
n (a1, ..., an), where the number of variables n = 2m.
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