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Abstract—Video analysis including classification, segmentation
or tagging is one of the most challenging but also interesting
topics multimedia research currently try to tackle. This is often
related to videos from surveillance cameras or social media. In
the last years, also medical institutions produce more and more
video and image content. Some areas of medical image analysis,
like radiology or brain scans, are well covered, but there is a
much broader potential of medical multimedia content analysis.
For example, in colonoscopy, 20% of polyps are missed or
incompletely removed on average [1]. Thus, automatic detection
to support medical experts can be useful. In this paper, we
present and evaluate several machine learning-based approaches
for real-time polyp detection for live colonoscopy. We propose
pixel-wise localization and frame-wise detection methods which
include both handcrafted and deep learning based approaches.
The experimental results demonstrate the capability of analyzing
multimedia content in real clinical settings, the possible improve-
ments in the work flow and the potential improved detection rates
for medical experts.

Index Terms—medical video analysis, machine learning, deep
learning, image features, performance

I. INTRODUCTION

Hospitals record and collect a huge amount of multimedia
data which needs to be stored and analyzed, both on-the-
fly and offline. One example is gastrointestinal (GI) tract
examinations where large numbers of videos are collected,
i.e., by an endoscope controlled by a medical expert. Making
the future GI examinations more efficient and cost-effective
is also a huge societal challenge as about 2.8 millions of new
esophagus, stomach and colorectal cancers are detected yearly
in the world with a mortality of about 65% [2]. All have a
significant impact on the patients’ health-related quality of life.
Consequently, gastroenterology is one of the most significant
medical branches. Colorectal cancer is the third most common
cause of cancer mortality for both women and men, and it is a
condition where early detection is important for survival. For
example, a patient is going from a low 10-30% 5-year survival
probability if detected in later stages of the disease to a high
90% survival probability in early stages [3].

Colonoscopy is considered to be the gold standard for the
examination of the colon for early detection of cancer and
precancerous pathology. However, it is not an ideal screening
test. Polyps, which are abnormal growth of tissue projecting

(a) Input frame (b) Ground truth mask (c) Segmentation mask

Fig. 1. Example of a polyp marked with a green circle (a), a corresponding
polyp localization ground truth mask (b) and our output segmentation mask
using GAN (c). Images taken from the CVC-968 [6].

from a mucous membrane (see Figure 1(a)), are often prede-
cessors of colorectal cancers, and are therefore important to
detect early. However, on average, 20% of polyps are missed
or incompletely removed, i.e., the risk of getting cancer largely
depend on the endoscopists ability to detect polyps [1]. It
is also a demanding procedure requiring a significant time
investment from the medical professional, and the procedure is
unpleasant and can cause great discomfort for the patient [4].
Furthermore, there are high costs related to the procedure.
Norway has an average cost of about $450 per examination. In
the US, colonoscopy is the most expensive cancer screening
process with an average of $1,100 per examination, i.e., an
annual cost of $10 billion dollars [5].

In the area of image analysis and object detection, machine
learning, and especially deep learning, has been very popular,
also in the field of medicine, in the recent years. Deep learning
algorithms are based on neural networks that use recently
developed training techniques to train their models. They
are basically an abstracted representation of data points. The
representation is made on a high-level, and multiple layers for
processing the networks are used to reach higher complexity.
The different layers can learn different abstraction levels of
the data using input of previous layers until they reach a
final layer, which makes the final decision for the class. The
new training techniques for deep learning were mainly made
possible because of the emergence of GPU computing, which
enables training of the networks in a reasonable amount of
time. On the other side, the disadvantages include a very long
training time, classification boundaries are hard to explain



(why one data point is put in this class), and they are very
data driven [7], [8].

Automatic detection of polyps is in general well researched,
and there are many publications on the topic. Related work
indicates with a sensitivity and specificity close to one that
the problem is solved. Nevertheless, there are still several
open challenges, e.g., the evaluation of existing approaches is
often performed on small and non-publicly available datasets.
Medical datasets also have the challenge that they usually
contain many true negative examples, but not so many true
positives. Furthermore, a very important open question is how
generalizable the proposed methods are. Generalization is a
vital ability of a model trained on a dataset from one hospital
to be applied in another hospital, e.g., using a different type
of equipment (endoscope). Therefore, in this paper, we are
addressing the challenges arising due to limited datasets and
generalizability of models which both are common problems
in medical multimedia scenarios [9].

The main contributions of this paper are proposing and
testing different approaches to overcome the problems con-
cerning generalization of models and limited datasets in terms
of size and sample equality, and to propose a best approach
for detection and localization of findings for medical image
analysis. Our best working approach outperforms by far all
our own and other tested approaches, and does at the same
time not need a large amount of training data. Furthermore, it
achieves good performance across datasets and does not need
negative examples for training. With respect to dataset size and
generalizability, we conclude that one proposed detection and
localization model can be used across different datasets and
different equipment and it is able to perform efficiently using
very low amount of training samples. With our best working
approach based on a generative adversarial network (GAN),
we reach a detection specificity of 94% and an accuracy of
90.9% with only 356 training [6] and 6000 test [10] samples
captured by different equipment.

The rest of the paper is organized as follows: first, we give
an overview of the related work in the field. This is followed
by a description of our methods, which we next experimentally
evaluate. Finally, we conclude the paper and give directions
for future work.

II. RELATED WORK

Recently, frame-wise detection and in-frame localization of
colon polyps have been picked up as a research topic by
many scientists in the medical imaging area, but lately also
in the multimedia community. Approaches in context with
automatic detection or localization of polyps in videos taken
from colonoscopies can be divided into hand-crafted feature
based, re-training or fine-tuning of existing and trained from
scratch deep learning architectures.

In hand-crafted feature based approaches for detection,
researchers extract features such as global or local image
features (texture, edge or color based) from the frames and
use them within different machine learning algorithms such as
random forest (RF) or support vector machines (SVM) [11],

[12]. The best working hand-crafted detection approaches
are [13] and [9] with both precision and recall above 90%. The
first approach [13] relies on edge and texture features whereas
the latter [9] uses several different global image features.
For localization, the best working approaches from Yuan et.
al. [14], who use a bottom-up and top-down saliency approach,
and from Wang et. al. [13], where they use edge and texture
features. Usually, localization approaches can also be used for
frame-wise detection.

Reusing already existing deep learning architectures and
pre-trained models leads to very good results in for example
the Imagenet classification tasks. Retraining architectures from
scratch in the context of colonoscopies leads to reasonable
good results, but the limited size of medical datasets is a
problem for these approaches. For pre-trained models, even
if their categories are quite different compared to the medical
use case, it has been shown that they can be used in the context
of polyp detection and localization tasks [15], [16], and that
they often outperform hand-crafted approaches [17], [18].

In [19], a 3D convolutional neural network (CNN) architec-
ture approach is presented for polyp detection. The method is
also compared to hand-crafted and 2D CNN approaches, and
it is shown that different approaches perform well for different
sub-tasks. For example, the hand-crafted feature approach is
working well for true negative detection. The best perfor-
mance is reached with a fusion of all investigated approaches.
Moreover, Pogorelov et. al. [20] and Riegler et. al. [21]
compare different localization approaches (hand-crafted and
deep learning). The conclusion is that pre-trained and fine-
tuned deep learning models outperform other approaches, but
that they are far away from being ready for clinical use (usually
a sensitivity and specificity above 85% is considered as the
borderline [22]).

In general, recent related work reports very promising re-
sults in terms of evaluation metrics, i.e., both recall (also called
sensitivity) and specificity close to one. Nevertheless, most of
the approaches are tested on small and non-publicly available
datasets. Furthermore, the problem of medical datasets is that
they usually contain many negative examples, but not so many
positives is not well researched. Another open question is how
generalizable the proposed methods are, meaning can a model
trained on a dataset from one hospital be applied in another
hospital. These are questions that we are addressing in this
paper.

III. METHODOLOGY

A. Pixel-wise segmentation/localization approach

The first presented segmentation approach is able to pixel
accurate mark the polyp in the given frame. We use generative
adversarial networks (GANs) to perform the segmentation.
GANs [23] are machine learning algorithms that are usually
used in unsupervised learning and are implemented by using
two neural networks competing with each other in a zero-sum
game. We used a GAN model architecture initially developed
for the retinal vessel segmentation in fundoscopic images,
called V-GAN, as basis for our polyp segmentation approach.



The V-GAN architecture [24] is designed for RGB images
and provides a per-pixel image segmentation as output. To be
able to use the V-GAN architecture in our polyp segmentation
approach, we added an additional output layer to the generator
network that implements an activation layer with a step
function which is required to generate the binary segmentation
output. Furthermore, we added support for gray-scale and
RGB color space data shapes for the input layers of the
generator and discriminator networks including an additional
color space conversion step. Gray-scale support was added to
be able to use a single value per pixel input in order to reduce
the network architecture complexity and to speed up the model
training and data processing parts.

Data preparation. The frames used in this research is
obtained from the standard endoscopic equipment and can
contain some additional information fields related to the endo-
scopic procedure. Some types of the fields (see Figure 2), inte-
grated into resulting frames showed to the doctor and captured
by the recording system, can confuse detection and localization
approaches, and it leads to frame miss-classification (green
navigation box) or false positive detection (captured frame
with polyp). We have implemented a simple frame preparation
procedure that consists of three independent steps: a black
border removal (including patient-related text fields), a green
navigation localizer map masking and a captured still frame
masking. All the removed and masked regions are excluded
from further frame analysis.

Data augmentation. Due to a limited number of frames
with the detailed ground truth masks, we implemented a data
augmentation scheme used in the training process of the GAN.
For the experiments presented here, we used only rotation and
flipping of frames. Rotation was performed independently with
20° steps for the original. Together with the in-horizontal-
direction-flipped frames, we added 35 new frames comple-
mentary to the original ones.

(a) Navigation (b) Captured frame (c) Patient information

Fig. 2. Examples of the different auxiliary information fields integrated into
recorded frame: a colonoscope navigation localizer (a), a captured still frame
(b) and a patient-related information (c). Images taken from CVC-968 [6] and
Kvasir [10].

B. Frame-wise detection approaches

Frame-wise detection approaches are designed to detect the
target object on a per-frame level, i.e., in our GI scenario,
detect if there is a polyp in the frame or not. For frame-
wise detection, we propose different methods. We conducted
experiments using various configurations of our main methods.
The main methods are hand-crafted global features (GF-D), re-
training and fine-tuning on existing deep learning architectures

TABLE I
ARCHITECTURES AND CONFIGURATIONS USED FOR RT-D. WE HAVE USED
THE rmsprop AND SGD OPTIMIZERS IN STEPS 1 AND 2, RESPECTIVELY, 50

EPOCHS AND A BATCH SIZE OF 32.

Method Architecture Step 2: frozen from layer Image size

RT-D-Xcept Xception [29] 26 299x299

RT-D-VGG19 VGG19 [30] 5 224x224

RT-D-ResNe ResNet50 [31] 50 224x224

(RT-D) and a variation of the GAN approach (GAN-D) that
was also used for the pixel-wise segmentation.

GF-D. For the GF method, we extracted handcrafted global
features (describing the image on a global level, e.g., texture,
color distribution, etc.) using the LIRE framework [25]. The
features that we used are Joint Composite Descriptor, Tamura,
Color Layout, Edge Histogram, Auto Color Correlogram and
Pyramid Histogram of Oriented Gradients. We performed early
fusion by combining all extracted features resulting in a feature
vector with the size of 1186. For the classification, we used a
Logistic Model Tree (LMT) classifier from the Weka machine
learning library [26].

RT-D. For the RT method, we implemented a re-training
and fine-tuning approach and used it with three well known
and working architectures. For all architectures, we used
models trained on the Imagenet dataset for starting weights.
The approach for RT-D works in two steps. First, we freeze all
layers of the architecture and train only the base layers. After
that, we unfreeze certain layers and fine-tune the network.
Which blocks are un-freezed for the second step is decided
via a Bayesian optimization algorithm [27] which runs for
20 iterations. To find good working optimizers, number of
epochs and batch sizes for the different architectures, we
also used Bayesian optimization for 20 iterations including
all architectures. This lead to values that gave good overall
results and could be used for all architectures to achieve
better comparability. Details about the exact configurations and
architectures used can be found in Table I. The dataset used
for the optimization step is public available and details can be
found in [28].

GAN. The GAN detection approach utilizes a simple
threshold activation function, which takes the number of
positively marked pixels in the frame as input. In the validation
experiments performed using different datasets, we evaluated
the activation thresholds from one pixel to a quarter of the
frame. The best detection results were achieved with a thresh-
old value of 50 pixels, which has been used for the detection
experiments for the development and test set and confirms high
performance of the GAN-based localization approach.

C. Block-wise segmentation/localization approach

The second localization approach is our attempt to utilize
frame-wise detection algorithm for localization purposes. We
have applied the RT-D method to the set of sub-frames
generated from the training and test sets. Sub-frames (blocks)
are generated using sliding square window with 66% overlap
with the neighbor sub-frames. We have tested different window



TABLE II
OVERVIEW OF THE DATASETS USED IN THE EXPERIMENTS.

Dataset Training Test # Frames # Polyp frames # Normal frames
CVC-356 X X 1,706 356 1,350
CVC-612 X X 1.962 612 1,350
CVC-968 X X 2.318 968 1,350
CVC-12k - X 11,954 10,025 1,929
Kvasir - X 6,000 1,000 5,000
Nerthus X - 1,350 - 1,350

sizes from 64x64 to 128x128 pixels. The best results were
obtained using 128x128 windows size. The generated sub-
frames are fed into the RT-D detection algorithm, and then, the
processed sub-frames are grouped back into the frame. This
results in a coarse localization map which is then used for the
frame-wise detection. The detection is achieved by applying
a simple threshold activation function, and we evaluated the
activation thresholds ranging from 1 block to 50% of the
frame blocks. The best detection results were achieved with a
threshold value of 2 blocks.

IV. EXPERIMENTS

For the experiments, we use combinations of six differ-
ent, publicly available datasets, namely CVC-356 [6], CVC-
612 [32], CVC-968, CVC-12k [6], Kvasir [10] and parts
of Nerthus [28] (see Table II for an overview). The CVC-
356 and CVC-612 consist of 356 and 612 video frames,
respectively. CVC-968 is a combination of CVC-356 and
CVC-612. Each frame that contains a polyp comes with pixel-
wise annotations in the CVC-356 and CVC-612 datasets.
They are used for both training and testing in the localization
performance evaluation experiments, and for the training only
in the detection experiments. For the frame-wise detection
approaches, except for the GAN-based approach, we also
added the 1,350 class three frames with normal mucosa from
the Nerthus dataset since normal mucosa examples for the
negative class are required for our detection algorithms. The
CVC-12k dataset contains 11,954 video frames. From these
11,954 frames, 10,025 contain a polyp and 1,929 show only
normal mucosa. The polyps are not annotated pixel-wise, but
with an oval shape covering the whole polyp (approximated
annotation). For the Kvasir dataset, we included all classes
except for the dyed classes (in a real world scenario something
dyed is already detected by the doctor) leading to a dataset
containing 1,000 frames with polyps, 5,000 without and only
frame-wise annotations. The CVC-12k dataset is used as test
set for block- and frame-wise detection and the Kvasir dataset
for frame-wise detection.

A. Evaluation Metrics

For the evaluation of the experiments, we used the met-
rics precision (PREC), recall/sensitivity (SENS), specificity
(SPEC), accuracy (ACC), F1 score (F1) and Matthew correla-
tion coefficient (MCC). A detailed description and reasoning
for the used metrics can be found in [10]. The localization

TABLE III
VALIDATION RESULTS OF THE IN-FRAME PIXEL-WISE POLYP AREAS

SEGMENTATION (LOCALIZATION) APPROACH EVALUATED USING
DIFFERENT COMBINATIONS OF THE CVC-356 AND CVC-612 SETS FOR

TRAINING AND TESTING.

Test set Run Train set PREC SENS SPEC ACC F1 MCC

CVC-612 LOC-356 CVC-356 0.819 0.619 0.984 0.946 0.706 0.684

CVC-356 LOC-612 CVC-612 0.723 0.735 0.981 0.965 0.729 0.710

metrics are calculated pixel- and block-wise using the provided
binary masks of the ground truth.

B. Results

Table III depicts the performance evaluation results for
the GAN-based pixel-wise segmentation approach. The best
performance is achieved using the CVC-612 dataset for the
training, which means, more training data improves the final
results. An interesting observation is that the precision is
higher with CVC-356 as training data. This might be an
indicator that more training data makes the model more
general, but less accurate. All in all, the validation using
different datasets indicates that the approach works well, and
the proposed localization algorithm can perform efficiently
even with a low number of training samples available. This
is important for our medical use-case scenario with a high
diversity of objects and a limited amount of annotated data
available. The initial localization experiments demonstrated
more than 50% increase in performance of the localization
using augmented training data, thus we have used augmented
training data in all the pixel-wise localization experiments.
A possible positive effect of test data augmentation with the
following aggregation of the localization results will be subject
of future research.

The results for the block-wise location approaches are
presented in Table IV. The performance results obtained are
especially interesting since all the approaches presented are
trained with small amounts of training data without any nega-
tive examples (no normal mucosa frames at all). Furthermore,
the CVC-12K dataset is heavily imbalanced which also makes
it harder to achieve good results. For block-wise location
via detection, the LOC-Xcept approach performs best for
all the different training set sizes. It also indicates that a
larger training dataset can lead to better results. The results
for the LOC-ResNe approach confirm this with significant
improvements when the training dataset size is increased.
This is something that should be investigated in the future.
Furthermore, the algorithm used to combine the results on the
different sub-frames into one can be improved by, for example,
using another machine learning algorithm to learn the best
combinations.

The frame-wise detection results can be found in Table V.
All approaches are trained on CVC-356, CVC-612 and CVC-
968 training datasets and tested on the CVC-12k and Kvasir
datasets. All in all, the GAN approach performs best on
both datasets and within all variations of training datasets.
The performance on the Kvasir dataset is better than on the



TABLE IV
PERFORMANCE OF THE BLOCK-WISE LOCALIZATION VIA DETECTION

APPROACHES REPORTED PER METHOD AND USED TRAINING DATA.

Test

set
Run

Training

set
PREC SENS SPEC ACC F1 MCC

C
V

C
-1

2k

LOC-Xcept-356 CVC-356 0.475 0.203 0.966 0.868 0.285 0.250

LOC-Xcept-612 CVC-612 0.528 0.289 0.961 0.874 0.374 0.328

LOC-Xcept-968 CVC-968 0.584 0.257 0.972 0.880 0.357 0.333

LOC-VGG19-356 CVC-356 0.257 0.292 0.874 0.799 0.273 0.158

LOC-VGG19-612 CVC-612 0.266 0.489 0.799 0.759 0.344 0.228

LOC-VGG19-968 CVC-968 0.232 0.406 0.800 0.750 0.295 0.166

LOC-ResNe-356 CVC-356 0.723 0.003 0.999 0.871 0.006 0.044

LOC-ResNe-612 CVC-612 0.469 0.054 0.990 0.869 0.098 0.125

LOC-ResNe-968 CVC-968 0.536 0.248 0.968 0.875 0.340 0.306

CVC-12k dataset which is surprising since the Kvasir data is
completely different from the CVC training data. Moreover,
frames in the Kvasir dataset are captured using different and
various hardware. This is a strong indicator that the approach
is able to create a general model that is not just working
well on the given data and that the CVC-12k dataset is very
challenging. Some of the difficulties we could observe are for
example screens in screens that show different parts of the
colon, out of focus, frame blur, contamination, etc. (see for
example Figures 2 and 3).

(a) Blurry frame (b) Colors shift (c) Lens contamination

Fig. 3. Example of difficult images in the test dataset: a significant frame
blur caused by camera motion (a), a color components shift caused by
the temporary signal failure (b) and an out-of-focus frame contains also
contamination on the camera lens (c). Images taken from the CVC-12k [6].

From the RT-D approaches, the Xcept has the best overall
performance, and it performs best on the CVC-12k dataset.
The ResNe method reaches best performance for the Kvasir
dataset, but is still far away from the GAN approach (MCC
0.262 versus 0.689).

The GF-D approach did not perform well on the CVC-
12k dataset and could not make sense of the data. This is
indicated by only negative MCC values which basically means
no agreement. On the Kvasir dataset, it performed much better
and could even outperform RT-D-VGG19. Overall, the RT-
D approaches with VGG19 performed worse than all other
approaches. The reason could be that the general hyper-
parameters that we collected using optimization did not work
well for the VGG19 architecture.

In order to compare our detection approaches to the state-
of-the-art, we also evaluated one of the recent and promising
object detection CNN called YOLOv2 [33]. The YOLOv2
model is able to detect objects within a frame and to provide an

TABLE V
RESULTS FOR THE FRAME-WISE POLYP DETECTION APPROACHES. WE

USED THE CVC-12K AND KVASIR DATASET AS INDEPENDENT TEST SETS.

Test

set
Run

Training

set
PREC SENS SPEC ACC F1 MCC

K
va

si
r

GAN-356 CVC-356 0.715 0.751 0.940 0.909 0.732 0.677

GAN-612 CVC-612 0.595 0.803 0.891 0.876 0.684 0.619

GAN-968 CVC-968 0.736 0.746 0.946 0.913 0.741 0.689

GF-D-356 CVC-356 0.171 0.109 0.894 0.763 0.133 0.004

GF-D-612 CVC-612 0.270 0.318 0.828 0.743 0.292 0.137

GF-D-968 CVC-968 0.225 0.859 0.409 0.484 0.357 0.208

RT-D-Xcept-356 CVC-356 0.358 0.259 0.907 0.799 0.300 0.190

RT-D-Xcept-612 CVC-612 0.383 0.326 0.895 0.800 0.352 0.236

RT-D-Xcept-968 CVC-968 0.459 0.256 0.939 0.825 0.328 0.251

RT-D-VGG19-356 CVC-356 0.181 0.333 0.777 0.720 0.235 0.087

RT-D-VGG19-612 CVC-612 0.213 0.583 0.682 0.669 0.313 0.186

RT-D-VGG19-968 CVC-968 0.231 0.320 0.842 0.774 0.268 0.142

RT-D-ResNe-356 CVC-356 0.236 0.178 0.885 0.767 0.203 0.070

RT-D-ResNe-612 CVC-612 0.321 0.507 0.785 0.739 0.393 0.247

RT-D-ResNe-968 CVC-968 0.248 0.877 0.469 0.537 0.387 0.262

YOLO-968 CVC-968 0.530 0.559 0.901 0.844 0.544 0.450

C
V

C
-1

2k

GAN-356 CVC-356 0.967 0.624 0.888 0.667 0.758 0.378

GAN-612 CVC-612 0.934 0.609 0.778 0.636 0.737 0.286

GAN-968 CVC-968 0.906 0.912 0.510 0.847 0.909 0.428

GF-D-356 CVC-356 0.829 0.909 0.030 0.767 0.867 -0.081

GF-D-612 CVC-612 0.809 0.383 0.530 0.407 0.520 -0.064

GF-D-968 CVC-968 0.835 0.854 0.125 0.737 0.845 -0.020

RT-D-Xcept-356 CVC-356 0.913 0.624 0.693 0.636 0.742 0.236

RT-D-Xcept-612 CVC-612 0.876 0.740 0.457 0.694 0.802 0.160

RT-D-Xcept-968 CVC-968 0.899 0.690 0.600 0.676 0.781 0.224

RT-D-VGG19-356 CVC-356 0.257 0.292 0.874 0.799 0.273 0.158

RT-D-VGG19-612 CVC-612 0.266 0.489 0.799 0.759 0.344 0.228

RT-D-VGG19-968 CVC-968 0.232 0.406 0.800 0.750 0.295 0.166

RT-D-ResNe-356 CVC-356 0.723 0.003 0.999 0.871 0.006 0.044

RT-D-ResNe-612 CVC-612 0.232 0.406 0.800 0.750 0.295 0.166

RT-D-ResNe-968 CVC-968 0.870 0.303 0.766 0.378 0.450 0.057

YOLO-968 CVC-968 0.932 0.641 0.757 0.660 0.759 0.296

object’s localization box and a probability value for the object
detection. We trained YOLOv2 with the CVC-968 dataset
using an appropriate conversion from ground truth masks
to surrounding object boxes, as required by YOLOv2. The
training was performed from scratch with the default model
parameters. The trained YOLOv2 model showed relatively
high performance with an MCC value of 0.450 and 0.296 for
the Kvasir and CVC-12k sets, respectively, and was able to
outperform all tested approaches except for the GAN-based
solution. Nevertheless, the performance of the well-developed
and already fine-tuned YOLOv2 model is significantly lower
than our new GAN-based detection-via-localization approach.

V. CONCLUSIONS

In this paper, we have presented hand crafted and deep
learning-based methods for automatic, pixel-, block- and
frame-wise detection of polyps in videos from colonoscopies.



We evaluated the performance of our methods on different
datasets. To achieve real-world comparability, we chose diffi-
cult datasets captured using different hardware equipment that
were imbalanced in terms of positive, and negative examples
and we also performed performance validation using different
datasets for training and testing. Additionally, we tried to
use as little amount of training data as possible. We showed
that our newly proposed GAN based method outperforms
handcrafted features and approaches based on well-known and
working deep learning architectures. With our best working
GAN-based approach, we reached detection specificity of 94%
and accuracy of 90.9% with only 356 training and 6,000
test samples for the data captured by different equipment in
different hospitals. The localization specificity and accuracy
for the same training set are 98.4% and 94.6% respectively.
Thus we can conclude that our approach works with a little
amount of training data and, moreover, does not require
negative examples for training, which is important to be able
to use lesion imagery, already collected in hospitals. For future
work, we plan to improve all methods presented in this paper
with the main focus on the GAN-based approach, extend the
experiments to other datasets and compare it to a broader range
of approaches including a time-series-based analysis using for
example long short-term memory.
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