
S O F TW A R EN E W S

PCMSolver: anOpen-Source Library for Solvation

Modeling

Roberto Di Remigio1* | ArnfinnHykkerud Steindal1 |

KrzysztofMozgawa1 | VilleWeijo1 | Hui Cao2 |

Luca Frediani1

1Hylleraas Centre for QuantumMolecular

Sciences, Department of Chemistry,

University of Tromsø - The Arctic University

of Norway, N-9037 Tromsø, Norway

2Jiangsu Key Lab. of Atmosph. Environment

Monitoring and Pollution Control,

Collaborative Center of Atmosph.

Environment and Equipment Technology,

School of Env. Sci. and Eng., Nanjing Univ. of

Information Science and Technology,

Nanjing 210044, P.R. China

Correspondence

Roberto Di Remigio PhD, Hylleraas Centre

for QuantumMolecular Sciences,

Department of Chemistry, University of

Tromsø - The Arctic University of Norway,

N-9037 Tromsø, Norway

Email: roberto.d.remigio@uit.no

Present address
*Department of Chemistry, Virginia Tech,

Blacksburg, Virginia 24061, United States

Funding information

This work was partially supported by the

Research Council of Norway through its

Centres of Excellence scheme, project

number 262695, and through itsMobility

Grant scheme, project number 261873.

PCMSOLVER is an open-source library for continuum elec-

trostatic solvation. It can be combined with any quantum

chemistry code and requires a minimal interface with the

hostprogram, greatly reducingprogrammingeffort. As input,

PCMSOLVER needs only the molecular geometry to gener-

ate the cavity and the expectation value of the molecular

electrostatic potential on the cavity surface. It then returns

the solvent polarization back to the host program. The de-

sign is powerful and versatile: minimal loss of performance

is expected, and a standard single point self-consistent field

implementation requires nomore than 2 days of work. We

provide a brief theoretical overview, followed by two tutori-

als: one aimed at quantum chemistry program developers

wanting to interface their codewith PCMSOLVER, the other

aimed at contributors to the library. Wefinally illustrate past

Abbreviations: API, application programming interface; CI, continuous integration; PCM, polarizable continuum model; PR, pull re-

quest; DVCS, Distributed version control system

1

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io

2 ROBERTODI REMIGIO ET AL .

and ongoing work, showing the library’s features, combined

with several quantum chemistry programs.

K E YWORD S

open-source, continuum solvation, modular programming

1 | INTRODUCTION

The past ten years have seen theoretical and computational methods become an invaluable complement to experiment

in the practice of chemistry. Understanding experimental observations of chemical phenomena, ranging from reaction

barriers to spectroscopies, requires proper in silico simulations to achieve insight into the fundamental processes at

work. Quantum chemistry program packages have evolved to tackle this ever-increasing range of possible applications,

with a particular focus on computational performance and scalability. These latter concerns have driven a large body of

recent developments, but it has become apparent that similar efforts have to be devoted into the software development

infrastructure and practices. Code bases in quantum chemistry have grown over a number of years, in most cases without

an overarching vision on the architecture and design of the code. Asmore features continue to be added, the friction

with legacy code bases makes itself felt: either the code undergoes a time-consuming rewrite or it becomes the domain

of few experts. Both approaches arewasteful of resources and can seriously hinder the reproducibility of computational

results. It is essential to findmore effective ways of organizing scientific code and programming efforts in quantum

chemistry. To be able tomanage the growing complexity of quantum chemical programpackages, the keywords efficiency

and scalability have to be compoundedwithmaintainability and extensibility. The sustainability of software development

in the computational sciences has become a reason for growing concern, especially because reproducibility of results

could suffer [60, 59, 61, 71, 92, 110, 70, 144, 62, 136, 145, 11, 9, 10, 7, 14].

The paradigm ofmodular programming has been one of the emergingmotifs in modern scientific software develop-

ment. In computer science, the idea is not new. Dijkstra and Parnas advocated it as early as 1968 in the development

of operating systems [40, 99]. Dividing a complex system into smaller, more manageable portions is a very effective

strategy. It reduces theoverall complexity, cognitive load andultimately the likelihoodof introducing faults into software.

Sets of functionalities are isolated into libraries, with well-defined application programmers interfaces (APIs). The

implementation of clearly defined computational tasks into separate, independent pieces of software guarantees that

the development of conceptually different functionalities does not get inextricably and unnecessarily entangled. Each

library becomes a computational black box that is developed, tested, packaged and distributed independently from any of

the programs that might potentially use it. The BLAS and LAPACK sets of subroutines for linear algebra are certainly

success stories for themodular approach to software development. Well-crafted APIs are key to delimiting the problem

domain. Eventually, as happened for BLAS and LAPACK, they enforce a standardization of the functionality offered

[116], such that one implementation can be interchanged for another without the need to rewrite any code.

ROBERTODI REMIGIO ET AL . 3

The polarizable continuummodel (PCM) is a continuum solvationmodel introduced in quantum chemistry (QC) in

the 80s [94] and actively developed ever since [140, 91]. Its simple formulation and ease of implementation havemade

it the go-tomethodwhen a quick estimate of solvation effects is desired. The clear separation between the solvation

and the quantum chemical layers of a calculation, make it an ideal candidate for the design and implementation of an

API for classical polarizable solvationmodels. The input to and output from such a library are clear andwell-defined

affording a natural API design that can straightforwardly be comparedwith the working equations of themethod.

Wehere present the open-source PCMSOLVER library, whichwe have developed over the past few years conforming

to the principles just outlined. With PCMSOLVER, we aim at providing theQC development community with a reliable

and easy-to-use implementation of the PCM. The library is released under the terms of the version 3 of the GNU

Lesser General Public Licence (LGPL) [137], to guarantee a lower threshold to adoption and to encourage third-party

contributions. Our design choices allow for the fast development of interfaces with any existingQC codewith negligible

coding effort and run-time performance penalty. In order to describe the implementation of PCMSOLVER, we will recap

its theoretical foundations in section 2. We are not aiming at a detailed exposition, but wewill rather emphasize the

aspects which are important in connection with the development of an independent library for solvation. Wewill show

how thePCMprovides a unifiedblueprint for all classical polarizablemodels bymaking use of the variational formulation

introduced by Lipparini et al. [86]. Section 3will offer an high-level overview of the library and a step-by-step tutorial for

QC program developers on how to interface with PCMSOLVER. Section 4will dive deeper into the internal structure of

the library, discuss the various components and their interaction. This detailed tutorial is aimed at potential contributors

to the library and is complemented by section 5, discussing the licensing model and the contribution workflow. In

section 6, we will present a few applications of PCMSOLVER, drawing on past and ongoing work in our group using

different QC program packages. Section 7will present a summary and an overview of the work ahead.

2 | THEORY

The original idea of the PCM is to describe solute-solvent interactions only bymeans of electrostatics and polarization

between the solute molecule and the solvent. The solvent is modeled as a dielectric continuumwith a given permittivity

. A cavity i, with closed boundary ≡ ∂i, is built inside this medium and the solute is placed in it (see figure 1). Quantum

mechanics is used to describe the solute. Within the Born-Oppenheimer approximation, the nuclei are kept fixed,

whereas the electrons are described by either density-functional theory (DFT) or wave function theory (WFT). For

a given electronic density and fixed nuclear positions, the vacuummolecular electrostatic potential (MEP) (r) is fully
determined for all points r in space. The interaction between themolecule and the solute becomes a problem of classical

electrostatics: the source density (r) and the dielectric continuummutually polarize. The generalized Poisson equation

for amediumwith a position-dependent permittivity (r) is the governing equation for this transmission problem [123]

∇ ⋅ [(r)∇u(r)] = −4π(r) = −4π ⎛⎜⎜
⎝

Nnuclei

∑
A=1

ZA(r − RA) − e(r)
⎞⎟⎟
⎠

(1)

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io

4 ROBERTODI REMIGIO ET AL .

F IGURE 1 The physical setting of the PCM. Themolecular solute is represented by its charge density i assumed to

be fully enclosed in a cavity i with boundary ≡ ∂i. The permittivity inside the cavity is that of vacuum, = 1, and hence

has Green’s functionGi = 1
|r−r′| . The cavity is carved out of an infinite, structureless continuumwith Green’s functionGe

determined by its material properties. The exterior volume e is completely filled by the continuum.

where u(r) is now the electrostatic potential in space including the polarization of the continuum. The information about

themedium and the cavity is all encoded in the dielectric permittivity function (r), which is equal to 1 inside the cavity
and depends on themedium outside. The generalized Poisson equation admits a unique solution, once the boundary

conditions at the cavity and at infinity are fixed [32]. In the simplest case of a uniform, isotropic and homogeneous

dielectric outside the cavity with permittivity (scalar and position-independent), the problem simplifies to the solution

of the following set of equations:

∇2u(r) = −4π(r) ∀r ∈ C (2a)

∇2u(r) = 0 ∀r ∉ C (2b)

lim
|r|→+

u(r) = lim
|r|→−

u(r) (2c)

lim
|r|→+

∂u(r)
∂n = lim

|r|→−

∂u(r)
∂n (2d)

|u| ≤ C‖x‖−1 for ‖x‖ → ∞ (2e)

The first two equations are a simple rewrite of the original Poisson equation inside and outside the cavity, respectively.

Equations (2c) and (2d) are theboundary conditions for theelectrostatic potential and its normal derivative (electrostatic

field) at the cavity boundary. The last equation is the radiation condition at infinity. It is beyond the scope of this

contribution to discuss the general solution strategy of such a problem in depth andwe refer the reader to the abundant

literature on the subject [32, 69, 123]. In the integral equation formalism (IEF), we express themutual solute-solvent

polarization in terms of an apparent surface charge (ASC) (s) for all points s on the cavity surface ≡ ∂i, that is, the ASC

ROBERTODI REMIGIO ET AL . 5

is entirely supported on the cavity boundary achieving a reduction in the dimensionality of the electrostatic problem to

be solved. The set of equations (2) is then reformulated as an integral equation on the cavity boundary:

𝒯̂(s) = −ℛ̂(s). (3)

For a uniform, isotropic and homogeneous dielectric, the 𝒯̂ and ℛ̂ boundary integral (BI) operators are defined as:

𝒯̂ = (2π + 1

− 1
̂ℐ − 𝒟̂) ̂𝒮 (4a)

ℛ̂ = (2π ̂ℐ − 𝒟̂) (4b)

where ̂ℐ is the identity operator and ̂𝒮, 𝒟̂ are components of the Calderón projector. Such operators are completely

definedonce the cavity geometry and thedielectric properties of themediumare knownand form the cornerstoneof any

implementation of IEF-PCM. Three of the four components of the projector are needed for the IEF-PCM [25, 69, 123]:

(̂𝒮⋆u) (s) = ∫G⋆(s, s′)u(s′)ds′ (5a)

(𝒟̂⋆u) (s) = ∫⋆(s′) ∂G⋆(s, s′)
∂ns′

u(s′)ds′ (5b)

(𝒟̂†
⋆u) (s) = ∫⋆(s) ∂G⋆(s, s′)

∂ns
u(s′)ds′, (5c)

the derivatives are taken in the direction of the outgoing normal vector to the point. The ⋆ index exemplifies that the

internal or external Green’s function can be used. The form of such operators is only dependent on the geometry of

the molecular cavity and on the Green’s function of the problem. Thanks to the IEF, the approach is not limited to

uniform, isotropic and homogeneous dielectrics; any solvent for which it is possible to obtain a Green’s function for the

electrostatic problem is amenable to this treatment. Several media in addition to uniform dielectrics admit a Green’s

function in closed form: anisotropic dielectric (tensorial permittivity), ionic solutions (constant permittivity and ionic

strength) [25], sharp planar [49] and spherical interfaces [31] (two permittivities). The Green’s function for diffuse

interfaces, where a smooth position-dependent permittivity function is used, can be built numerically[48, 37]. Most of

these environments are provided by PCMSOLVER and themissing ones are under development. Table 1 gives a compact

overview. The Green’s function component of PCMSOLVER is designed to handle functions that can be expressed as the

sum of a singular and a nonsingular component:

G(r, r′) = ℱ(r, r′) + Gimg(r, r′). (6)

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io

6 ROBERTODI REMIGIO ET AL .

The first ℱ(r, r′) presents a Coulomb singularity, possibly modulated by an effective permittivity – (r, r′) – which
depends on the positions of the source r and the probe r′:

ℱ(r, r′) ≃ (r, r′) 1

|r − r′| (7)

The second, nonsingular component, when present, is generically referred to as the image. In some cases it can bewritten

in a closed form (e. g. sharp interfaces), whereas in others (e. g. diffuse interfaces) a numerical integration of an ordinary

differential equation (ODE) is required.

R
O
B
E
R
T
O
D
I
R
E
M
IG

IO
E
T
A
L
.

7

TABLE 1 Green’s functions for different dielectric media and their availability within PCMSOLVER.

Medium Parameters Differential equation Green’s function Notes

Uniform dielectric −∇2V(r) = 0 1
|r−r′|

Ionic solution , −(∇2 − 2)V(r) = 0 e−|r−r′|
|r−r′| Linearized Poisson-Boltzmann equation,

valid in the regime of small ionic strenghts.

Anisotropic dielec-

tric

()ij, i, j = 1,2,3 −∇ ⋅ (∇V(r)) = 0 1

√det (r⋅−1r)
A tensorial permittivity is a model applicable

to liquid crystals

Sharp planar inter-

face

1(z < 0) and

2(z > 0)
−i∇2V(r) = 0 1

1|r−r′| + 1−2

1+2

1
|r−r′| The reported expression is valid for source

and probe located in medium 1. See for in-

stance Ref.[72] for the other cases.

Sharp spherical

interface[93, 31]

1(r < r0) and

2(r > r0)
−i∇2V(r) = 0

1

2|r − r′|

+1

2

⎧{
⎨{⎩

∞
∑
ℓ=1

a2ℓ+1

bℓ+1 Cℓ
Pℓ(cos)

|r′ − rs|ℓ+1

⎫}
⎬}⎭

The reported expression is valid for source

and probe located in medium 2 (outside the

sphere). The other cases have not yet been

considered.

Diffuse planar inter-

face

(z) −∇ ⋅ (z)∇V = 0 1
C(z,z′)|r−r′| + Gim(r, r′) Effective dielectric constant C(z, z′) and im-

age potential obtained by numerical inte-

gration (cylindrical coordinates), followed by

convolution with Bessel function J0 [48].

Diffuse spherical in-

terface

(r) −∇ ⋅ (r)∇V = 0 1
C(r,r′)|r−r′| + Gim(r, r′) Effective dielectric constant C(r, r′) and im-

age potential obtained by numerical integra-

tion in spherical coordinates, followed by a

summation in spherical harmonics [37].

http://pcmsolver.readthedocs.io

8 ROBERTODI REMIGIO ET AL .

2.1 | The boundary elementmethod

The practical solution of Eq. (3) is achieved bymeans of the boundary elementmethod (BEM). The cavity boundary is

discretized intoNmesh finite elements – Ti – by ameshing algorithm that generates polygonal finite elements. Triangles

or quadrangles are themost usual choices and the finite elements can be either planar or curved. Themathematical

framework for the BEM is provided by Galerkin approximation theory [56, 43, 123]. The application of any integral

operator ̂𝒜with kernel kA(s, s′) on a function f(s) supported on the boundary:

(̂𝒜f)(s) = ∫ds′kA(s, s′)f(s′) (8)

can be discretized as:

Aijfj = ∫
Ti

ds∫
Tj

ds′kA(s, s′)f(s′). (9)

The choice of the basis functions on the mesh and of the integration procedure will determine the properties of the

BEM adopted, including its accuracy. Note that if singular kernels arise in the theory, proper care will have to be taken

in calculating matrix elements for close or identical pairs of finite elements Ti, Tj. Thus, discretization of the surface

induces a discretization of the operators involved in the IEF equation (3). The integral operators are represented as

matrices, whereas the functions supported on the cavity boundary become vectors: the problem is recast as a system of

linear equations.

The current version of PCMSOLVER implements a straightforward centroid collocation method: for each finite

element i, the charge density is condensed in a point charge qi. The off-diagonal matrix elements of the Calderón

projector components are then simply obtained as the value of the Green’s function and its derivatives at those points.

For instance ̂𝒮⋆,ij = G⋆(si, sj). Because of the divergence in the kernels, it is clear that such a discretization will break
down if naïvely applied in the calculation of the diagonal elements. These singularities are however integrable and thus

methods have been formulated to overcome this difficulty. In the traditional PCM implementation, the analytic form

available for a polar cap is fitted and parametrized to a polygonal patch [94, 140]. For the 𝒟̂ operator, sum rules, relating

thediagonal elements to their respective rowor column, havebeenderivedbyPurisima andNilar [112, 111]. ForGreen’s

functions not available in closed-form, such as the diffuse interfaces, particular care needs to be taken to isolate the

singularity. The partition in equation (6) proves particularly convenient. The singularity, known in closed-form, is then

taken care of by one of themethods above, whereas the nonsingular remainder is integrated by standard quadrature

methods. Gaussian quadrature for the centroid collocation of the diagonal elements has also been discussed in the

literature [25]. The more sophisticated wavelet Galerkin method uses numerical quadrature for the calculation of

all matrix elements [143, 23]. The singularities are treated using the Duffy trick [123, 117] instead of parametrized

approximate formulas.

http://pcmsolver.readthedocs.io

ROBERTODI REMIGIO ET AL . 9

2.2 | Variational formulation of the PCM

The introductionof thevariational formulation is alsoan important recentdevelopment for thePCMformalism. Lipparini

et al. have shown that it is possible to express the polarization problem of the IEF as theminimization of the appropriate

functional [86]. This reformulation is possible for any elliptic partial differential equation [43]. For example, theminimum

of the functional:

ℱ() = 1

2
⟨∇ ∣ (r) ∣ ∇⟩ − 4π ⟨ | ⟩ (10)

corresponds to the unique solution of the generalized Poisson equation (1). For a general, position-dependent permittiv-

ity function the solution can be obtained as described by Fosso-Tande and Harrison [47]. It is also possible to recast the

corresponding boundary integral equation into a variational problem, given the appropriate functional and functional

spaces. Lipparini et al. [86] proposed the functional:

𝒢() = 1

2
(, ℛ̂−1𝒯̂) + (,) , (11)

and proved that its minimum corresponds to the solution of the IEF-PCMequation (3). Here (⋅, ⋅) is the inner product in
the suitable Sobolev space with support on the cavity boundary [69]. A variational formulation has several formal and

practical advantages [20, 75, 132, 74, 85]:

1. It removes the non-linear couplingwith the quantummechanics (QM)problem, since the polarization charge density

is optimized on the same footing as theQMparameters, e. g. orbitals in self-consistent field (SCF) theories.

2. It provides a unified framework to include continuum solvation regardless of themethod used (molecularmechanics

(MM), QMor both) simplifying the description of the coupling.

3. It simplifies the framework for the calculation of molecular properties.

4. It is convenient to include solvation in an extendedLagrangian formulation formolecular dynamics (MD) simulations.

5. It can be employed for other kinds of solvationmethods (e. g. polarizableMM)withminimal modifications.

Both response theory for molecular properties and coupled cluster (CC) for correlated calculations, can be formulated

using a Lagrangian formalism [129, 65]. In response theory, the quasienergy formalism [98, 27, 64] is employed to obtain

linear and nonlinear molecular properties as high-order derivatives of a quasienergy Lagrangian. Such a Lagrangian can

be formulated in themolecular orbital (MO) or atomic orbital (AO) basis, the latter allowing for an open-ended, recursive

formulation and implementation of SCF-level molecular properties [139, 120]. In the variational formulation, the PCM

ASC are just an additional variational parameter, on the same footing as the AO density matrix and the derivation of the

response equations and properties expression to any order becomes a straightforward extension of the vacuum case

10 ROBERTODI REMIGIO ET AL .

[35]. As an example, the quadratic response function can bewritten as:

⟨⟨A;B,C⟩⟩
b,c = d{ ̃La(D̃, ̃, t)}T

dbdc
= Labc

{Tr}T= 𝒢00,abc + 𝒢10,acDb + 𝒢10,abDc

+ 𝒢20,aDb
D
c + 𝒢10,aDbc + 𝒢11,aDbc

+ 𝒢01,acb + 𝒢01,abc + 𝒢02,abc + 𝒢01,abc + 𝒢11,abDc

− S
abc

W − S
ab
W

c − S
ac
W

b − S
a
W

bc

(12)

where𝒢 is the solvation free energy functional,D is the densitymatrix, S is the overlapmatrix,W is the energy-weighted

density matrix, is the ASC. In our notation, the indices a, b, c represent derivatives with respect to the external pertur-
bations, whereas the numerical indices 0,1,2 are derivatives with respect to the density matrix (first index) and the
ASC (second index). For details about the derivation of the expression abovewe refer to the original manuscript [35].

We highlight here the symmetry inD and in the expression for the property, which greatly simplifies the derivation of

the response equations and their subsequent implementation.

In combinationwith aCCwave function, the variational formalism is a powerful tool to derive theworking equations

of themethod and identify more efficient approximations. More in detail, the formulation of a consistent many-body

perturbation theory (MBPT) including solvent effects from a classical polarizable medium is simplified. Since the

polarization does no longer depend nonlinearly on the CC density, it is much easier to identify at which perturbative

order in the fluctuation potential the different PCMcontributions play a role [33, 36]. The effective PCM-CCLagrangian

is the sum of the regular CC Lagrangian and the polarization energy functional [24, 26]:

ℒeff(t, ̄t,)ℳ = ⟨HF|e−TH0e
T |HF⟩ +

ℳ
∑
u=1

⟨ ̄tu|e−TH0e
T |HF⟩

+ 1

2
(, ℛ̂−1𝒯̂) + (N(t, ̄t)ℳ,) + (N(t, ̄t)ℳ,HF) + Uref

pol
,

(13)

whereℳ is the CC truncation level, T the cluster operator and ̄t the Lagrangian multipliers. Normal ordering [129],
induces a natural separation between reference and correlation components of theMEP and ASC. The CC equations

can then be obtained by differentiating the Lagrangianwith respect to the variational parameters: t, ̄t and . Note that the
amplitudes andmultipliers are now coupled through theMEP N(t, ̄t)ℳ . Equation (13) is also the starting point for the

formulation of CC perturbation theory (PT). Indeedwe have shown that perturbative corrections for triple excitations

for the PCM-CCSD can be easily derived in this framework [33, 36].

Several classical polarizable models besides the PCM introducemutual solute-solvent polarization bymeans of a

linear reaction field, leading to an energy functional of the form of Eq. (10). In particular, polarizableMMmodels are

amenable to such a treatment [89]. The easiest alternative is constituted by the fluctuating charge (FQ)model which

employs the same ingredients as PCM: theMEP and a set of fluctuating charges [119]. The expression for the energy

ROBERTODI REMIGIO ET AL . 11

functional is [82, 83]:

ℰFQ = 1

2
q ⋅ J ⋅ q + q ⋅ + q ⋅ + q ⋅ (14)

where the pairwise Coulomb repulsionmatrix J and the electronegativity vector were introduced. Minimization ofℰFQ

yields the fluctuating charges q. Compared to the PCM functional in Eq. (11),ℰFQ also contains the electronegativity

parameters , describing the interaction of the charges with the otherMM fragments and the Lagrangemultipliers to

ensure the electroneutrality of each separate fragment. The dependence on the external QMpotential is otherwise

identical, opening the way for an easy implementation of themodel in PCMSOLVERwith nomodifications foreseen for

the host program. As pointed out by Lipparini et al. [84], in a variational formalism layering different models becomes

also straightforward: it will suffice to add the respective functionals and the interaction terms between each of them.

For an FQ/PCMmodel this term is the electrostatic energy between the charges q and the surface polarization . The

other widespread polarizableMMmodel makes use of fixed point multipoles and fluctuating dipoles at atomic sites

[128]. The induced dipoles responding to the surrounding electrostatic field are the variational parameters.Mutatis

mutandis it is possible to obtain a corresponding energy functional, although its implementation in PCMSOLVER and

coupling with continuum solvation would require additional effort, in particular regarding the handling of the force field

parameters and the polarization, since both arematrix, rather than vector, quantities.

2.3 | Coupling the classical and quantum problems

The coupling of the PCMwith a SCF procedure can be achievedwith the following step-by-step control flow for the final

program:

1. TheMEP at the cavity points is computed by the host code:

(si) =
Nnuclei

∑
A=1

ZA
|RA − si|

+ ∑D ∫ dr
−(r)

|r − si|
, ∀i = 1,Nmesh (15)

whereD and (r) = ∗(r)(r) are, respectively, the AO density and overlap distributionmatrices. TheMEP is passed

to the PCM library.

2. The PCM library computes the ASC representing the solvent polarization. This is passed back to the host QC

program.

3. The polarization energyUpol = 1
2 (,) is obtained. This term is the correction to the total energy due to themutual

polarization.

4. The PCMFockmatrix contribution is assembled by contraction of the potential integrals with the solvent polariza-

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io

12 ROBERTODI REMIGIO ET AL .

tion:

fPCM =
Nmesh

∑
i=1

(si) ∫ dr
−(r)

|r − si|
(16)

5. A new SCF step is performed, a newMEP is obtained and the cycle continues until convergence.

Figure 2 summarizes the algorithm outlined above, highlighting which portions of the program flow are separable

between theQC host code and the PCM library.

Molecular electrostatic potential

(s)

Apparent surface charge

𝒯̂(s) = −ℛ̂(s)

Polarization energy

Upol = 1
2 ((s), (s))

Fock matrix

f = fvac + ((s), (s))

SCF

converged?

Finalize SCF

yes

no

F IGURE 2 Outline of the SCF algorithm including solvent contributions from the PCM. Blue, dotted outline boxes

highlight the operations that are to be implemented in a PCMAPI. The host QC codewill implement the operations and

data structures highlighted in the dashed outline green boxes.

In the design we have chosen, all operations happening on the PCMSOLVER side only involve functions defined

at the cavity boundary, which include, but are not limited to, expectation values of QM quantities, such as the MEP.

Even for large systems, such operations are relatively lightweight compared to the integral evaluation and Fockmatrix

http://pcmsolver.readthedocs.io

ROBERTODI REMIGIO ET AL . 13

construction. Although not yet implemented in PCMSOLVER, standard techniques in high-performance computing, such

as the fast multipolemethod (FMM) or parallelization, can be employed for very large systems, to reduce the scaling

andminimize the computational overhead [124]. Themost time-consuming steps for medium to large systems are the

calculation of theMEP and assembling the Fockmatrix contribution. Their implementation has been left on the host

side. There are two clear advantages in using this strategy: on the one hand PCMSOLVER is completely independent of

the technology employed on theQM side, keeping the cost of developing the interfaceminimal; on the other hand it

allows the host program to optimize the time-consuming steps without any interference from PCMSOLVER, resulting in

optimal performance andminimal computational overhead compared to vacuum calculations.

3 | USING THE PCMSOLVER LIBRARY

Avoiding code duplication and encouraging code reuse for common tasks are themain driving forces motivating library

writers. Inevitably, libraries evolve over time through trial-and-error. It is expensive and inconvenient towrite a software

library from a set of written specifications. This is especially true in the computational sciences community, where a

consensus on the proper way to acknowledge software output has not yet been reached [6]. Hence one starts from a

problem domain and gradually, through refactoring and rewrites, achieves a presumably better API.

PCMSOLVER is written in C++. The object-oriented paradigm provides the necessary flexibility to neatly organize

the conceptually different tasks the library has to perform. C++ benefits from a tooling (static and dynamic analysis,

linting and style checks) and library ecosystem (chiefly, the standard template library (STL) [76]) that languages such as

Fortran have yet to accrue, despite their relatively longer existence. The library also contains Fortran, C and Python

components, whichwewill discuss shortly. CMake is the build system of choice.1 Weadhere to the C++03 ISO standard,

which is fully implemented in almost all existing compilers. The GNU, Clang and Intel families of compilers are routinely

usedwith the library for testing and production calculations and are known towork properly. Note that it is still possible

to build PCMSOLVERwith one of the abovementioned compilers and link it against an executable built with a compiler

from another vendor. Dependencies are kept to a minimum and are shipped with the library itself, to minimize the

inconvenience for the final users. The C++11 ISO standard introduced new data structures (such as tuples, tomodel

multiple return values from a function), algorithms and tools for functional programming (such as lambdas and argument

binding for currying and partial function application) in the core language [88].2 Our build system is designed to take

advantage of these whenever possible and fallback to an alternative implementation in the Boost libraries when an old

compiler is used [13]. The library also needs tomanipulate vectors andmatrices. In the same philosophy of code reuse,

we rely on theEigenC++ template library for linear algebra [55]. Eigen implements containers for vectors andmatrices of

arbitrary size, both sparse and dense. Operations on these Eigen::Vector and Eigen::Matrix types are also provided,

including a wide array of decompositions and iterative linear solvers. All standard numerical types – integers, single and

1https://cmake.org/
2http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://www.boost.org/
http://eigen.tuxfamily.org/index.php?title=Main_Page
https://cmake.org/
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

14 ROBERTODI REMIGIO ET AL .

double precision floating point and their complex counterparts – are supported, with the possibility of extending to

custom numerical types. Traditionally, the C and C++ languages have been looked down by the computational science

community as offering suboptimal performance in linear algebra operations when compared to Fortran. This can be

true with a naïve implementation. Eigen uses expression templates and vectorization to overcome this difficulty [142].

Writing an interface to PCMSOLVER for your favorite QM code is straightforward. First of all, you will have to

download the library. All released versions are available on GitHub, wewill refer to the 1.2.1 release (v1.2.1) which is

the latest version as of this writing. Dependencies and prerequisites are listed on the documentation website andwe

will assume that all are properly satisfied. Downloading, compiling, testing and installing an optimized version of the

library requires few commands:

$ curl -L https://github.com/PCMSolver/pcmsolver/archive/v1.2.1.tar.gz | tar -xz

$ cd pcmsolver-1.2.1

PCMSolver will be built using the Clang C/C++ and GNU Fortran compilers

with code optimization enabled and installation prefix $HOME/Software

$./setup.py --type=release --prefix=$HOME/Software/pcmsolver --cc=clang --cxx=clang++ --fc=gfortran

Now build with verbose output from compilers and using 2 processes

$ cmake --build build -- VERBOSE=1 -j 2

Run the full test suite using 2 processes

$ cmake --build build --target test -- -j 2

We can now install

$ cmake --build build --target install

The following installation directory tree will have been generated:

$HOME/Software/pcmsolver/

bin/

go_pcm.py

plot_cavity.py

run_pcm*

include/

PCMSolver/

bi_operators/

cavity/

Citation.hpp

Config.hpp

Cxx11Workarounds.hpp

ErrorHandling.hpp

external/

green/

interface/

LoggerInterface.hpp

PCMInput.h

PCMSolverExport.h

pcmsolver.f90

pcmsolver.h

PhysicalConstants.hpp

solver/

http://pcmsolver.readthedocs.io

ROBERTODI REMIGIO ET AL . 15

STLUtils.hpp

TimerInterface.hpp

utils/

VersionInfo.hpp

lib64/

libpcm.a

libpcm.so -> libpcm.so.1*

libpcm.so.1*

python/

pcmsolver/

share/

cmake/

PCMSolver/

The library offers the possibility of saving certain quantities to zipped (.npz) and unzipped (.npy) NumPy binary files

for postprocessing and visualization.3 This requires linking against zlib,4 which is commonly available on Unix systems.

PCMSOLVER includes Fortran components and linking against the Fortran runtime is thus necessary. To summarize,

linking your progam to the PCMSOLVER library will require a slight variation on the following commands:

C/C++QMhost The programwill need to include the header file pcmsolver.h, link against the pcm library (dynamic or

static), link against Zlib and the Fortran runtime:

Dynamic linking

$ gcc C_host.c -I. -I$HOME/Software/pcmsolver/include/PCMSolver -o C_host \

-Wl,-rpath,$HOME/Software/pcmsolver/lib64 $HOME/Software/pcmsolver/lib64/libpcm.so.1

Static linking

$ gcc C_host.c -I. -I$HOME/Software/pcmsolver/include/PCMSolver -o C_host \

$HOME/Software/pcmsolver/lib64/libpcm.a -lz -lgfortran -lquadmath -lstdc++ -lm

FortranQMhost The programwill need to compile the pcmsolver.f90 Fortran 90module source file, link against the

pcm library (dynamic or static), link against Zlib and the C++ runtime:

Dynamic linking

$ gfortran $HOME/Software/pcmsolver/include/PCMSolver/pcmsolver.f90 \

Fortran_host.f90 -o Fortran_host -Wl,-rpath,$HOME/Software/pcmsolver/build/lib64 \

$HOME/Software/pcmsolver/lib64/libpcm.so.1

Static linking

$ gfortran $HOME/Software/pcmsolver/include/PCMSolver/pcmsolver.f90 \

Fortran_host.f90 -o Fortran_host $HOME/Software/pcmsolver/lib64/libpcm.a -lstdc++ -lz

These build requirements for theQMhost program can bemanagedwithin a Makefile. For host programs using CMake,

a configuration file is also provided such that a find_package(PCMSolver) directive will search for the library and

3https://github.com/rogersce/cnpy, https://docs.scipy.org/doc/numpy/neps/npy-format.html
4https://zlib.net/

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
https://github.com/rogersce/cnpy
https://docs.scipy.org/doc/numpy/neps/npy-format.html
https://zlib.net/

16 ROBERTODI REMIGIO ET AL .

import all that is necessary to link.

Once the linking issues are sorted out, theQM codewill need a function5 to compute theMEP on a grid of points.

The signature for such a functionmight look as follows:

! Calculate electrostatic potential

! i ≡ (si) = ∑Nnuclei

A=1
ZA

|RA−si|
+ ∑ D ∫ dr

−(r)
|r−si|

, ∀i = 1,Nmesh

pure subroutine get_mep(nr_nuclei, nuclear_charges, nuclear_coordinates, density_matrix, nr_mesh, grid,

mep)↪

implicit none

use iso_fortran_env, only: int32, real64

integer(int32), intent(in) :: nr_nuclei

real(real64), intent(in) :: nuclear_charges(nr_nuclei)

real(real64), intent(in) :: nuclear_coordinates(3, nr_nuclei)

real(real64), intent(in) :: density_matrix(*)

integer(int32), intent(in) :: nr_mesh

real(real64), intent(in) :: grid(3, nr_mesh)

real(real64), intent(inout) :: mep(nr_mesh)

end subroutine

A function to compute the PCM contribution to the Fockmatrix (or to the -vector in response theory) is also needed.

This is a modified one-electron nuclear attraction potential and a possible signature is as follows:

! Calculate contraction of apparent surface charge with charge-attraction integrals

! fPCM = ((s), (s)) ≡ ∑Nmesh

i=1 (si) ∫ dr
−(r)
|r−si|

pure subroutine get_pcm_fock(nr_mesh, asc, fock_matrix)

implicit none

use iso_fortran_env, only: int32, real64

integer(int32), intent(in) :: nr_mesh

real(real64), intent(in) :: asc(nr_mesh)

real(real64), intent(inout) :: fock_matrix(*)

end subroutine

These functions are not provided by PCMSOLVER. Indeed, the library has been designed based on the realization that the

PCM layer is completely independent of the AO orMO spaces defined in the quantum chemical layer. As discussed in

section 2.3 and schematically shown in figure 3, there is no need for the PCM library to handle integrals, density and

Fockmatrices. This architecture avoids handling large data structures, such as the density and Fockmatrices, and code

duplication at the integral computation level. In addition, it makes PCMSOLVER fully agnostic of theQMhost program: no

assumptions aremade on the storage format for matrices or the way AO basis integrals are computed. This is themain

strength of PCMSOLVER and has led to its inclusion intomany differentQMhost programswith negligible computational

overhead.

5We will use the term “function” throughout, even though Fortran has a distinction between a subroutine (in C parlance, a function that does not return, i. e.

void a_subroutine) and a function (in C parlance, a function that does return, i. e. double a_function).

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io

ROBERTODI REMIGIO ET AL . 17

PCM code

𝒯̂(s) = −ℛ̂(s)
input.pcm

Module-side

interface

Input parsing

QM code

H = E

input.qm
Program-side

interface

Input parsing

(s)

(s)

F IGURE 3 High-level view of the relationship between a host quantum chemistry program and the PCMSOLVER

library. The initialization phase, represented by the input parsing portions, will generate themolecular cavity and the

PCMmatrix for the chosen environment. During the iterative solution of the Schrödinger equation, by any method, the

MEP, (s), and ASC, (s), are the only data to be passed back and forth between library and host code. This affords a
significant streamlining of the interfaces to bewritten.

Initialization of the library happenswith a call to the pcmsolver_new function. This function returns a context, which

will be the handle to any PCM-related operations in the rest of the calculation.

interface pcmsolver_new

function pcmsolver_new(input_reading, nr_nuclei, charges, coordinates, symmetry_info, host_input,

writer) result(context) bind(C)↪

import

integer(c_int), intent(in), value :: input_reading

integer(c_int), intent(in), value :: nr_nuclei

real(c_double), intent(in) :: charges(*)

real(c_double), intent(in) :: coordinates(*)

integer(c_int), intent(in) :: symmetry_info(*)

type(PCMInput), intent(in) :: host_input

type(c_funptr), intent(in), value :: writer

type(c_ptr) :: context

end function

end interface

http://pcmsolver.readthedocs.io

18 ROBERTODI REMIGIO ET AL .

Thepcmsolver_new functionrequires thenumberofatomiccentersnr_nuclei, their chargesandcoordinatescoordinates,

the symmetry generators symmetry_info (Abelian groups only are supported) and a function pointer writer to output

facilities within the host program. The additional parameters to the function are needed to handle PCM-specific input.

Currently, themodule can either read its own input file from disk or from the host_input data structure as filled by the

host program. This design choice wasmade to allow for a fast initial implementation of PCMwithin a host program, one

that would not require extensive reorganization of the host program’s own input parsing functions. The trade-off is that

the user now has tomake sure that the PCMSOLVER input is parsed and the resulting intermediate, machine-readable

file is available at run-time in the appropriate directory. We provide the go_pcm.pyPython script for this purpose, which

parses and validates the input file bymeans of theGetKw library [77]. A PCMSOLVER input file is organized into keywords

and sections, which are collections of keywords. Each section roughly maps to a computational task in the library: how

to build the cavity, what Green’s function to use and how to set up the solver. The following sample input asks for a

conductor-like polarizable continuummodel (CPCM) calculation withmethanol as a solvent:

units = angstrom

cavity

{

type = gepol

area = 0.6

mode = atoms

atoms = [1, 4]

radii = [1.2, 1.8]

}

medium

{

solvent = methanol

solvertype = cpcm

correction = 0.5

diagonalscaling = 1.0694

}

The average area of the generated finite elements will be 𝟢.𝟨 Å𝟤 (or less), spheres will be put on all atoms, with the

radii for the first and fourth in the list passed from the host programwill have a custom-set radius. The CPCM solver

will be set upwith a dielectric scaling of f() = −1
+0.5 , the diagonal elements of the boundary integral operators

̂𝒮 and

𝒟̂will be scaled by the given factor of 𝟣.𝟢𝟨𝟫𝟦. At initialization, the library will generate the cavity, set up the Green’s
functions, compute the boundary integrals operators and assemble the solver. All further interactions between the host

program and PCMSOLVER happen through the context pointer returned by the pcmsovler_new function, that is, the

first argument in all API function is the PCM context. This allows formore than one PCMobject existing at once during a

calculation, each with its separate set up, an idea akin to the execution plans in the FFTW3 library [51].

The next step is the calculation of theMEP at the cavity grid points. TheQMhost fetches the size of the grid with

the pcmsolver_get_cavity_size function:

http://pcmsolver.readthedocs.io
https://github.com/coderefinery/libgetkw
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io

ROBERTODI REMIGIO ET AL . 19

interface pcmsolver_get_cavity_size

function pcmsolver_get_cavity_size(context) result(nr_points) bind(C)

import

type(c_ptr), value :: context

integer(c_int) :: nr_points

end function

end interface

allocates memory accordingly and fetches the grid by calling pcmsolver_get_centers:

interface pcmsolver_get_centers

subroutine pcmsolver_get_centers(context, centers) bind(C)

import

type(c_ptr), value :: context

real(c_double), intent(inout) :: centers(*)

end subroutine

end interface

TheQMhost code can decide whether to save the PCM grid in memory (globally or in a data structure localized to the

SCFportion of the code), on disk or repeatedly calling the pcmsolver_get_centers functionwhen needed. After calling

the relevant integral evaluation functions, theMEPwill be available as a vector of size equal to that of the cavity mesh.

When uniquely labeled, say TotMEP for theMEP, we refer to such quantities as surface functions. The PCM context holds

a collection of (label, data) pairs of such functions, what is called an associative array, dictionary ormap. The host

program can set and get surface functions with the appropriate functions. The functionality has been programmed to

avoid unnecessary copies of the data and to allow for arbitrary labels for the functions. During an SCF iteration we add,

or modify the contents of, theMEP surface function by calling pcmsolver_set_surface_functionwith our label of

choice:

interface pcmsolver_set_surface_function

subroutine pcmsolver_set_surface_function(context, f_size, values, name) bind(C)

import

type(c_ptr), value :: context

integer(c_int), value, intent(in) :: f_size

real(c_double), intent(in) :: values(*)

character(kind=c_char, len=1), intent(in) :: name(*)

end subroutine

end interface

Everything is now in place to compute theASC. Much as theMEP, theASC is also a surface function. For its computation

the pcmsolver_compute_asc function is provided:

interface pcmsolver_compute_asc

subroutine pcmsolver_compute_asc(context, mep_name, asc_name, irrep) bind(C)

20 ROBERTODI REMIGIO ET AL .

import

type(c_ptr), value :: context

character(kind=c_char, len=1), intent(in) :: mep_name(*), asc_name(*)

integer(c_int), value, intent(in) :: irrep

end subroutine

end interface

accepting two surface function labels. PCMSOLVERwill compute the ASC using the requested solver and create, or

update, the corresponding entry in the surface function dictionary. The host program can then retrieve theASC invoking

pcmsolver_get_surface_function:

interface pcmsolver_get_surface_function

subroutine pcmsolver_get_surface_function(context, f_size, values, name) bind(C)

import

type(c_ptr), value :: context

integer(c_int), value, intent(in) :: f_size

real(c_double), intent(inout) :: values(*)

character(kind=c_char, len=1), intent(in) :: name(*)

end subroutine

end interface

in a fashion that is symmetric to the pcmsolver_set_surface_function. We remark once again that data transfer

between PCMSOLVER and the QM host program is limited to the communication of {(si)}Nmesh
i=1 and {(si)}Nmesh

i=1 and is

implementedwithout storing any quantity to disk, avoiding any overhead I/Ooperationsmight incur. The correction,Upol

, to the total energy due to the polarization of the continuum can be calculated as the dot product of theMEP and ASC

arrays. PCMSOLVER also provides a function, pcmsolver_compute_polarization_energy, with a signature similar to

that of pcmsolver_compute_asc

! Compute Upol = 1
2

(,) ≡ 1
2

∑Nmesh

i=1 (si)(si)
interface pcmsolver_compute_polarization_energy

function pcmsolver_compute_polarization_energy(context, mep_name, asc_name) result(energy) bind(C)

import

type(c_ptr), value :: context

character(kind=c_char, len=1), intent(in) :: mep_name(*), asc_name(*)

real(c_double) :: energy

end function

end interface

The PCM contribution to the Fock matrix can now be computed by calling the appropriate function in the QM host

program. Listing 1 summarizes the steps necessary to get SCF up and running including the PCM solvent contributions.

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io

ROBERTODI REMIGIO ET AL . 21

4 | DEVELOPING THE PCMSOLVER LIBRARY

Grasping the innerworkings of an unfamiliar piece of software is always difficult and the aimof this section is tominimize

this effort for potential new contributors to the PCMSOLVER library. It will not be possible to give an explanation in full

detail of all of our design choices andmotivations, but this will constitute a good primer. Whereas section 3 provided a

top-down description of the library, this section will offer the complementary bottom-up view. PCMSOLVER is written in

a combination of well-established compiled languages C++, C and Fortran with additional tooling provided by Python

scripts andmodules. Cloning the PCMSOLVERGit repository will generate the following directory layout:

pcmsolver/

api/ # API functions

cmake/ # CMake modules

doc/ # reStructuredText documentation sources

examples/ # Sample inputs

external/ # Prepackaged external dependencies

include/ # Library internal header files

src/ # Library internal source files

bin/ # Standalone executable for testing

bi_operators/ # Computation of boundary integral operators

cavity/ # Cavity definition and meshing

green/ # Green's functions definitions

interface/ # API-internals

pedra/ # GEPOL cavity generator

solver/ # Integral equation set up and solution

utils/ # General purpose utilities

tests/ # Unit tests and API tests

tools/ # Python tools

Figure 4 shows basic statistics about the source code repository.

Solving the boundary integral equation (BIE) (3) bymeans of the BEM requires a number of ingredients: a boundary

mesh generator, computational kernels for the Green’s functions, backends for the computation of the discretized

boundary integral operators and finally a linear system solver.6 The geography of these ingredients in PCMSOLVER is as

follows:

Mesh generator: folders cavity and pedra DifferentBEMmethodsmight posedifferent constraints for the generator.

For example, triangular vs. quadrilateral or planar vs. spherical patches. All these points have been discussed

at length in the BEM and PCM literatures [43, 104] and we will briefly review the available mesh generator in

PCMSOLVER.

Green’s functions: folder green Depending on the nature of the BIE, up to second order derivatives of the Green’s

functionmight be needed to set up the boundary integral operators. The IEF-PCMequation (3) only requires the

conormal derivatives, however the breadth of Green’s functions currently implemented in PCMSOLVER (see Table 1)

6Many of the same ingredients are sharedwith Finite ElementMethod (FEM) codes.

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io

22 ROBERTODI REMIGIO ET AL .

F IGURE 4 Number of source files and lines of code (LOC) statistics for PCMSOLVER. The LOC count is broken down

by language. The comments include Doxygenmarkup for the autogenerated class and function documentation.

poses a challenge for the implementation of this component. We shall show that automatic differentiation (AD)

[21] in combinationwith static (template-based) and dynamic (class-based) polymorphism [116, 142] provides a

robust, clean and extensible framework for implementing Green’s functions and their derivatives.

Computation of the BI operators on themesh: folder bi_operators As discussed in section 2.1, the integrals needed

aremultidimensional and on possibly arbitrary domain shapes. On top of these difficulties, the operators are also

singular. Techniques and algorithms have been developed and the interested reader can refer to themonograph by

Sauter and Schwab [123]. The library implements a straightforward collocation schemewhich wewill not discuss in

further detail.

PCMequation solver: folder solver The solver can be direct or iterative, the latter even in amatrix-free flavor. PCM-

SOLVER uses the stock implementation in Eigen of standard algorithms [55, 54]. For CPCM the ̂𝒮matrix is stored

and a Cholesky decomposition is used:

Eigen::VectorXd ASC = -S_.llt().solve(MEP);

For IEF-PCM the 𝒯̂ and ℛ̂matrices are stored and a partially pivoted LU decomposition is used. By default, we

compute polarization weights, requiring the solution of two linear systems of equations per call [30]:

// ASC: = −𝒯̂−1ℛ̂
Eigen::VectorXd ASC = - T_.partialPivLu().solve(R_ * MEP);

// Adjoint ASC: ∗ = −ℛ̂†(𝒯̂†)−1

// First compute = (𝒯̂†)−1, then compute ∗ = −ℛ̂†

Eigen::VectorXd adj_ASC = T_.adjoint().partialPivLu().solve(MEP);

adj_ASC = -R_.adjoint() * adj_ASC.eval();

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io/en/latest/code-reference/classes-and-functions.html
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io

ROBERTODI REMIGIO ET AL . 23

// Get polarization weights: = 1
2

(+ ∗)
ASC = 0.5 * (adj_ASC + ASC.eval());

The user can turn off the computation of the polarization weights by setting hermitivitize=false in the input,

though this is not recommended.7

Finally, the interface folder contains the Meddle class which orchestrates the initialization/finalization of the library

and the computation of the ASC. This is the backend for the API functions defined in the pcmsolver.h header file and

exported to Fortran in the pcmsolver.f90module source file. These latter files are contained in the api folder.

The internal structure of the library is shown in figure 5 in relationwith the API functions discussed in section 3.

The green layer at the bottom of the figure shows the dependencies of PCMSOLVER:

• Eigen: a C++ template library for linear algebra [55].

• libtaylor: a C++ template library [42] for AD [21].

• libgetkw: a library for input parsing [77].

• Boost: a general purpose C++ library [13]. In PCMSOLVER it provides the ODE integrator [15] and the C++11

compatibility layer for older compilers.

These dependencies are includedwith the source code repository, but are only used in the building process if proper

versions are not foundpreinstalled on the system. Users neednotworry about satisfying dependencies beforehand. This

makes PCMSOLVER a self-contained, but somewhat heavy library. The yellow layer contains the heavy-lifting portions of

the library, whichmaps to the contents of the src folder.

Cavity generation

Building themolecular cavity is the starting point, a task accomplished by sources in the cavity and pedra folders. In

continuum solvationmodels (CSMs) it is almost always the union of a set of spheres centered on the atoms.8 The atomic

radii used vary wildly among different implementations. Possible choices implemented in PCMSOLVER are: van der

Waals radii as tabulated byBondi [22] (and later extendedbyMantina et al. [90]), theUFF radii [115] or the set of Allinger

et al. [18]. Once sphere centers and radii are settled upon, one has the van derWaals surface, SvdW. Thismight be too tight,

what is usually done is a rescaling of the radii by a factor = 1.2. We also want the definition of molecular surface to

capture the fact that solvent molecules cannot penetrate within themolecule of interest. The solvent-accessible surface –

SSAS – is defined as the locus of points describedby the center of a spherical probe,modeling a solventmolecule, rolling on

SvdW. The solvent-excluded surface – SSES – instead is the locus of points described by the contact point of a spherical probe

rolling on the SvdW. Whereas SvdW and SSAS only consist of convex spherical patches, SSES consists of convex and concave

7Inourexperience theuseofpolarizationweightshelpsSCFconvergenceand isessential fora stable iterativesolutionof the linearequationsarising in response

theory.

8Notable exceptions are the DefPol [105, 109] and the isodensity PCM algorithms [46, 44, 126, 19, 47, 45].

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io

24 ROBERTODI REMIGIO ET AL .

F IGURE 5 Internal structure of the PCMSOLVER library in relation to the API and the host program. The green boxes

at the bottom show the external dependencies. The internal implementation of the API is contained in the src folder
and is shown in the yellow layer. The blue arrows exemplify the composition relations between the data structures

defined in each folder. The upper, blue layer is the exposed API of the PCMSOLVER library. The initialization

(pcmsolver_new), finalization (pcmsolver_delete) and surface functionmanipulation functions
(pcmsolver_get_surface_function, pcmsolver_set_surface_function, pcmsolver_compute_asc) and their
relationwith the host program and the API internals, defined in the interface folder, are shown. Orange lines show the

flow of data between these components, whereas the purple lines show the control flow.

spherical and toroidal patches [28, 57, 113, 114]. To ensure continuity of energy gradients, this union of spheres can

be smoothed [146, 107, 134, 125, 80, 81, 138]. The implementation of efficient meshing algorithms for the boundary

surfaces defined above is still a very active area of research. PCMSOLVER offers the venerated GEPOL (GEnerating

POLyhedra) algorithm, first devised in the 80s [101] and gradually improved [130, 103, 131, 102, 106, 108]. GEPOL

approximates SSES by adding spheres not centered on atoms to fill up the portions of spacewhere the solvent cannot

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io

ROBERTODI REMIGIO ET AL . 25

penetrate, themesh generation starts from a set of equilateral triangles defined by the vertices of a regular polyhedron

inscribed in the spheres. The spherical triangles are then cut at the spheres intersection. An iterative refinement,

by successively cutting into smaller triangles, is performed until the average area of the finite elements reaches a

predefined user threshold. The Fortran implementation of GEPOL (folder pedra) is wrapped into a C++ container class

GePolCavity. The container class holds all the data produced by themeshing algorithm: collocation points (centroids

of the finite elements), weights (areas of the finite elements), outward pointing normal vectors, curvature, arcs and

vertices. These data are saved to a compressed NumPy array (.npz format) for postprocessing in Python, see figure

6. The GEPOL algorithm has somewell-known shortcomings [104] and an implementation of the TsLess algorithm of

Pomelli [107] is currently underway.9

(a)Color mapping with the nuclearMEP at the finite

element centroids.

(b)Color mapping with the nuclear ASC at the finite

element centroids.

F IGURE 6 The GEPOL cavity for the ethenemolecule in C1 symmetry. The finite element centroids are represented

by dots. The figure was obtained from the cavity.npz andMEP and ASCNumPy array file produced by PCMSOLVER

and the plot_cavity.py script. Color bars in atomic units. Water (= 78.39) was selected as solvent.

Green's functions

Green’s functions are the next basic building block in our hierarchy. Given Eq. (6) for the general form aGreen’s function,

we have implemented the following type:

9Work-In-Progress pull request on GitHub: https://github.com/PCMSolver/pcmsolver/pull/140

http://pcmsolver.readthedocs.io
https://github.com/PCMSolver/pcmsolver/pull/140

26 ROBERTODI REMIGIO ET AL .

class IGreensFunction {

public:

/*! Returns value of the kernel of the ̂𝒮 integral operator for the pair

* of points p
1
, p

2
: G(p

1
, p

2
)

*/

virtual double kernelS(const Eigen::Vector3d & p1,

const Eigen::Vector3d & p2) const = 0;

/*! Returns value of the kernel of the 𝒟̂ integral operator for the

* pair of points p
1
, p

2
: [∇p

2
G(p

1
, p

2
)] ⋅ np

2

*/

virtual double kernelD(const Eigen::Vector3d & direction,

const Eigen::Vector3d & p1,

const Eigen::Vector3d & p2) const = 0;

/*! Calculates an element on the diagonal of the matrix representation of the

* ̂𝒮 operator using an approximate collocation formula.

*/

virtual double singleLayer(const Element & e, double factor) const = 0;

/*! Calculates an element of the diagonal of the matrix representation of the 𝒟̂
* operator using an approximate collocation formula.

*/

virtual double doubleLayer(const Element & e, double factor) const =0;

};

The pure virtual methods (virtual ... = 0;) mean that this type is abstract, providing the definition of an interface. It

carries no information whatsoever regarding how to compute the value of a Green’s function, it only prescribes what

kind of operations a concreteGreen’s function type has to explicitly implement to be valid [52, 88]. These are:

• The kernelS function for the calculation of its value, given a pair of points in space.

• The kernelD function for the calculation of its directional derivative, given a pair of points in space and a direction.

• The singleLayer function, for the calculation of the diagonal elements of the ̂𝒮 operator given a finite element.

• The doubleLayer function, for the calculation of the diagonal elements of the 𝒟̂ operator given a finite element.

Concrete types for Green’s functions, for example a type for the uniform dielectric or the spherical sharp, will have to

conform to this interface so that we will be able to produce a valid boundary integral operator with the same set of

commands. For example, the 𝒯̂ operator for the anisotropic IEF-PCM equation is assembled from the cavity boundary,

Gi,Ge and a boundary integral operator engine as follows:

Eigen::MatrixXd anisotropicTEpsilon(const ICavity & cav,

const IGreensFunction & gf_i,

const IGreensFunction & gf_o,

ROBERTODI REMIGIO ET AL . 27

const IBoundaryIntegralOperator & op) {

Eigen::MatrixXd SI = op.computeS(cav, gf_i);

Eigen::MatrixXd DI = op.computeD(cav, gf_i);

Eigen::MatrixXd SE = op.computeS(cav, gf_o);

Eigen::MatrixXd DE = op.computeD(cav, gf_o);

Eigen::MatrixXd a = cav.elementArea().asDiagonal();

Eigen::MatrixXd Id = Eigen::MatrixXd::Identity(cav.size(), cav.size());

Eigen::MatrixXd T = ((2 * M_PI * Id - DE * a) * SI +

SE * (2 * M_PI * Id + a * DI.adjoint().eval()));

return T;

}

PCMSOLVER uses forward-modeAD implemented through operator overloading to obtain the necessary derivatives [21].

In forward-mode AD, basic data types are augmented by incorporating an infinitesimal component : x ∶= x + x′ where

the coefficient x′ is the value of the derivative at the given point. Arithmetic operators and elementary functions are

then redefined to accept these augmented types. Composition of elementary functionsmaps to the application of the

chain rule for derivatives. Evaluating an arbitrarily complex function composed from these primitives yields the value

of the function itself and of its derivatives to any orderwith the same numerical accuracy. AD sidesteps the problems

inherent to numerical differentiation. The additional programming effort is also reducedwith respect to an analytic

implementation of the derivatives. PCMSOLVER uses libtaylor [42] which implements forward-mode AD for arbitrary

multivariate functions and derivative orders. This is achieved bymeans of a type, taylor<T, V, D>, storing the Taylor

expansion coefficients of aV-variate function as aV-variate polynomial of numeric typeT anddegreeD. All the elementary

functions, arithmetic and ordering operators available in C++ are redefined for this type by libtaylor. The use of template

programming guarantees the open-endedness in terms of the underlying type, degree and number of variables.10 To

combine the benefits of forward-mode ADwith our code, the concrete Green’s functions types have to be parametrized

over the taylor<T, V, D> type of choice, for directional derivatives of Green’s function the type taylor<double,

1, 1> is sufficient. Listing 2 shows a skeleton implementation of the Green’s function for the uniform dielectric.11

The concrete class UniformDielectric is parametrized over a taylor type (template-based static polymorphism) and

inherits from the abstract base class (class-based dynamic polymorpshim) to implement the operations outlined by

the base class using AD [52, 17, 135]. The function call operator, operator(), is where the Green’s function is defined,

thanks toADthe return valuewill also contain its directional derivative. Wecan thusoutline an implementation checklist

for Green’s functions, valid also for more complicated environments:

1. Define the input parameters for the Green’s function (e. g. permittivity) and write a constructor function to initialize

the data from a passed value. The construction phase can be arbitrarily complex. For example, the diffuse interface

10For further details consult the source code available on GitHub: https://github.com/uekstrom/libtaylor
11The actual implementation in PCMSOLVER is slightly more involved. The permittivity of the environment is modeled as a profile function (sharp, diffuse,

anisotropic and so forth) which becomes a template parameter of the concrete class implementing the Green’s function of choice.

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
https://github.com/uekstrom/libtaylor
http://pcmsolver.readthedocs.io

28 ROBERTODI REMIGIO ET AL .

in spherical symmetry requires the solution of sets of radial ODEs.

2. Provide an implementation for the function call operator operator(), returning the value of the Green’s function.

operator() can be arbitrarily complex: the sharp interface in spherical symmetry has to implement the separation

of the Coulomb and image components and calculate the latter as a truncated sum over Legendre polynomials.

3. Implement the kernelS and kernelDmethods, in terms of operator().12

4. Implement the singleLayer and doubleLayermethods.

The interface

TheAPI of PCMSOLVER is implemented in ISOC99. The functionswe described in section 3 call a correspondingmethod

in the Meddle class, defined in the interface folder. The API is context-aware [121]. Initialization of the library via the

pcmsolver_new function creates all objects relevant to the calculation and return a handle to the library in the form of a

context object.13 The context object is an opaque C struct: a pointer to some other object, in our case an instance of

the Meddle class owning the current calculation set up.

When using dynamic polymorphism, instances of concrete classes are used through pointers to their corresponding

abstract base classes (Liskov substitution principle [52]). For example, the following declares a vacuum and a uniform

dielectric (water) Green’s functions, with derivatives calculated using AD.

IGreensFunction * gf_i = new Vacuum<>();

IGreensFunction * gf_o = new UniformDielectric<>(78.39);

PCMSOLVER offers quite a number of knobs to tune the set up of a calculation. Naïve approaches to the initialization

might lead to poor design choices, like a nested, factorial branching logic or the use of type casting.14 Wehave adopted

the Factorymethod pattern, a standard solution that avoids both pitfalls [52, 17]:15

IGreensFunction * gf_i = green::bootstrapFactory().create(

input_.insideGreenParams().greensFunctionType, input_.insideGreenParams());

IGreensFunction * gf_o = green::bootstrapFactory().create(

input_.outsideStaticGreenParams().greensFunctionType,

input_.outsideStaticGreenParams());

12We note that deferring the implementation of the kernelS and kernelD methods to the concrete classes leads to a lot of boilerplate, error-prone code.
In our current implementation, this is avoided by providing these methods in an intermediate template class template <typename DerivativeTraits,
ProfilePolicy> class GreensFunction. This approach is admittedlymore involved, but reducescodeduplicationandallowsus toneatly include thecorner
case where numerical differentiation of the Green’s function is desired or necessary.

13https://github.com/bast/context-api-example
14Theuseofdynamic_castallowscastingupanddownan inheritancehierarchy, thusdeferring the creationof the concrete typeuntil it’s properly localized. C++
however does not have introspection and using the dynamic_cast construct introduces a run-time performance penalty. Apart from this, it also completely

bypasses the type system, thus nullifying the benefits of inheritance hierarchies and strong typing.

15We have a template implementation that follows the one presented by Alexandrescu [17]. The factory stores an associative container (std::map) of object
tags and callback creation functions. When calling thecreatemethod, the container is traversed tofind the tag and the corresponding callback is invoked. The
arguments and return type of the callback are deduced by the compiler. Traversal of a std::map to obtain the correct callback function can bemore efficient

than branching, evenwhen only few conditional branches would be needed [17, 76].

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
https://github.com/bast/context-api-example

ROBERTODI REMIGIO ET AL . 29

The usage of a context-aware API hides many implementation details of the PCM from the host QM code. For

example, this is the body of the pcmsolver_compute_asc function and its counterpart in the Meddle object:

void pcmsolver_compute_asc(pcmsolver_context_t * context,

const char * mep_name,

const char * asc_name,

int irrep) {

reinterpret_cast<pcm::Meddle *>(context)->computeASC(std::string(mep_name), std::string(asc_name),

irrep);↪

}

void pcm::Meddle::computeASC(const std::string & mep_name,

const std::string & asc_name,

int irrep) const {

// Get the proper iterators

SurfaceFunctionMapConstIter iter_pot = functions_.find(mep_name);

Eigen::VectorXd asc = K_0_->computeCharge(iter_pot->second, irrep);

// Renormalize for the number of irreps in the group

asc /= double(cavity_->pointGroup().nrIrrep());

// Insert it into the map

if (functions_.count(asc_name) == 1) { // Key in map already

functions_[asc_name] = asc;

} else { // Create key-value pair

functions_.insert(std::make_pair(asc_name, asc));

}

}

5 | CONTRIBUTING TOPCMSOLVER

PCMSOLVER is released under the terms of the GNU Lesser General Public Licence, version 3, a standard open-source

license.16 The LGPL is a weak-copyleft license [122, 133]. It is well-suited for the open-source distribution of libraries,

since it strikes a balance between openness and protection of the ideas implemented in the distributed code. The

LGPLv3 allows commercial use, distribution and modification of the sources. The license protects the copyright of

the original authors by mandating that any derivative work, be it a modification or a different distribution, still be

licensed under the terms of the LGPLv3. This point is very important for PCMSOLVER: anyone can use the librarywithout

alerting or asking permission from the original authors. However, if modifications, trivial or not, aremade, they have

to be licensed under the same terms. This makes more likely that such modifications will be submitted back to the

main development line for general improvement of the library [66]. Open-source and open data practices are a heated

16Full legal text of the license available from the Free Software Foundation: https://www.gnu.org/licenses/lgpl.html. A condensed version can be found

here: https://choosealicense.com/licenses/lgpl-3.0/.

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
https://www.gnu.org/licenses/lgpl.html
https://choosealicense.com/licenses/lgpl-3.0/

30 ROBERTODI REMIGIO ET AL .

topic of debate in the computational sciences community [70, 62] and quantum chemistry has had its fair share of

lively discussions [53, 79, 73]. There is no private PCMSOLVER development repository. We decided to have the library

fully in the open early on in its development. We believe that an open code review process is essential to guarantee

scientific reproducibility and this offsets concerns of being scooped by competitors. Krylov et al. [79] noted that open-

source at all costs can comewith the steep cost of lowered code quality and sloppymaintenance, possibly exacerbating

reproducibility issues. However, industry-strength softwarehas and continues tobebuilt by theopen-source community.

We argue thatmore openness in the computational sciences can have the same transformative effect that it has had in

building successful compilers (the GNU compiler collection), operating system kernels (BSD and Linux) and visualization

software (ParaView), to just name a few examples. It is our conviction that the gatekeepingmodel is more detrimental

than helpful [73], especially for the modular programming paradigm we advocate. Open-source development has

accrued a host of cloud-based services that make advanced maintenance operations trivial to set up and leverage.

These include, but are not limited to, continuous integration,17 static18 and dynamic19 code analyses, code coverage

evaluation20 and continuous delivery. The use of Git as distributed version control system (DVCS), together with one of

its online front-ends21 has revolutionized theway open-source software is developed [66]. Public issue tracking and

code review have become ubiquitous tools. Both help build better software and are an interactive teaching resource for

inexperienced developers joining a new project. All these services and code development techniques can and are used

in closed-source development. However, reproducibility, sustainability and extensibility of the software ecosytem in

quantum chemistry in particular, and the computational sciences in general, can bemore effectively established within

an open-source framework. The opportunities for collaboration and the scientific impact will be greater for projects

adopting open-sourcemodular development. External contributions, such as improving documentation, reporting bugs,

adding new features, are encouraged for the greater benefit of the community at large.

We useGit as DVCS22 for PCMSOLVER andwe decided to host the code publicly onGitHub: https://github.com/

pcmsolver/pcmsolver. Through Github:

• Users and developers can open issues to report bugs, request new features, propose improvements.23

• Developers can contribute to the code through pull requests (PRs).24

17Travis CI: https://travis-ci.org/, AppVeyor CI: https://www.appveyor.com/
18Coverity Scan: https://scan.coverity.com/
19Valgrind: http://valgrind.org/, AddressSanitizer: https://clang.llvm.org/docs/AddressSanitizer.html, ThreadSanitizer: https://clang.llvm.
org/docs/ThreadSanitizer.html

20Codecov: https://codecov.io/
21https://github.com/, https://gitlab.com/
22Official documentation for Git can be found here https://git-scm.com/. Git is the de facto standard for DVCS, but it can be a daunting task to learn to use
it properly. Fortunately, many tutorials are available online. See for example https://coderefinery.github.io/git-intro/ and http://gitimmersion.
com/

23
PCMSOLVER issue tracker: https://github.com/PCMSolver/pcmsolver/issues

24
PCMSOLVER past and current PRs: https://github.com/PCMSolver/pcmsolver/pulls

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
https://github.com/pcmsolver/pcmsolver
https://github.com/pcmsolver/pcmsolver
https://travis-ci.org/
https://www.appveyor.com/
https://scan.coverity.com/
http://valgrind.org/
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://codecov.io/
https://github.com/
https://gitlab.com/
https://git-scm.com/
https://coderefinery.github.io/git-intro/
http://gitimmersion.com/
http://gitimmersion.com/
http://pcmsolver.readthedocs.io
https://github.com/PCMSolver/pcmsolver/issues
http://pcmsolver.readthedocs.io
https://github.com/PCMSolver/pcmsolver/pulls

ROBERTODI REMIGIO ET AL . 31

• All code changes are automatically tested using the continuous integration (CI) service Travis.25 CI guarantees that

code changes do not break existing functionality.

GitHub lets developers comment on both issues andPRs so that their relevance can be triaged. The best course of action

emerges as a consensus decision. The discussions are complementary to the documentation as a learning resource for

experienced and novice developers alike. Figure 7 shows the GitHub user interface for issues and PRs.

We have adopted a fully public fork-and-pull-request (F&PR) workflow, where every proposed changeset has to go

through a code review and approval process. A fork is a full copy of the canonical repository (https://github.com/

PCMSolver/pcmsolver) under a different namespace (https://github.com/Acellera/pcmsolver, for example). The

fork is completely independent from the canonical repository and can even diverge from it. The code changes are

developed on a branch of the fork. When completed, the developer submits the changes for review through the web

interface: a PR is opened, requesting that the changes from the source branchon the fork bemerged into a target branch in

the canonical repository. The PRwill include a full diff and a brief description andmotivation of the proposed changes.

Once the PR is open, the new code is automatically tested on Travis. A bot will pre-review the changes based on a set

of simple rules. Core developers of PCMSOLVERwill then review the contribution and discuss additional changes to

bemade. Eventually, if all the tests are passing and a developer approves the suggested contribution, the changes are

merged into the target branch. The target branch is usually the master branch, that is, themain development branch.

A sane versioning scheme is of paramount importance for successful API development [116]. PCMSOLVER uses

semantic versioning.26 Every new release gets a version number of the form vX.Y.Z-d:

• X is themajor version. It is only incremented (bumped) when backwards-incompatible changes are introduced. For

example, developers decided to rename one ormore API functions or the parameter packs were changed. These

types of changes are rare and are announced timely with deprecation notices.

• Y is theminor version. It is bumpedwhen new functionalities or non-breaking API changes are introduced.

• Z is the patch version. Bumping happens whenever a bug is fixed, without adding functionality, nor breaking the API.

• d is the descriptor. This is an optional component in the version number. It is used tomark unstable (alpha or beta)

or stable but not yet final (release candidates: rc) releases.

Whenenoughnon-API breaking new functionality accumulates, weprepare anewminor release. This is doneby creating

a release branch from the master branch for a new release, with the format release/vX.Y. Such a branch will never be

merged back to the master branch. It will never receive new features, only bug fixes cherry-picked from the master

branch. New versions are assigned as Git tags and can be browsed through the GitHub web interface.27 We keep

a detailed change log that serves as a digest of noteworthy changes between versions. We use the GitHub-Zenodo

25
PCMSOLVER Travis CI page: https://travis-ci.org/PCMSolver/pcmsolver

26https://semver.org/
27https://github.com/PCMSolver/pcmsolver/releases

https://github.com/PCMSolver/pcmsolver
https://github.com/PCMSolver/pcmsolver
https://github.com/Acellera/pcmsolver
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
https://travis-ci.org/PCMSolver/pcmsolver
https://semver.org/
https://github.com/PCMSolver/pcmsolver/releases

32 ROBERTODI REMIGIO ET AL .

(a)AGitHub issue reporting failing documentation builds. (b)AGitHub PRwith changes to fix the posted issue.

F IGURE 7 The GitHub user interface for issues and PRs. Both can be extensively discussed and updated until a

consensus decision is reached on the best solution for the given problem.

integration tomake the project citable and keep track of the citations.28 Each new release automatically gets a digital

object identifier (DOI) from Zenodo. The project can be cited by its global DOI (10.5281/zenodo.1156166) that always

resolves to the latest released version.

Finally, documentation is written in reStructuredText (.rst) format29 and a webpage can be generated using

the Sphinx tool [12]. All code changes applied to the master and release branches trigger an automatic build of the

documentation, which is deployed viaReadTheDocs to thewebsite https://pcmsolver.readthedocs.ioWewrite

code comments in the Doxygen [8] markup language. We use the Doxygen tool to parse the sources and produce

documentation for almost all functions and classes in PCMSOLVER. The Breathe [5] plugin to Sphinx integrates the code

and end-user documentation.

6 | SHOWCASE: PCMSOLVER INACTION

The PCMSOLVER library is currently interfacedwith the followingQC codes, written in a variety of languages:

DIRAC (Fortran 77) A relativistic quantum chemistry program package, implementing, among others, linear and nonlin-

ear response theory and Kramers-restricted correlatedmethods [1].

DALTON (Fortran 77) A general-purpose program packagewith emphasis on high-ordermolecular response properties

28https://zenodo.org/
29http://docutils.sourceforge.net/rst.html

10.5281/zenodo.1156166
https://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://www.diracprogram.org
http://www.daltonprogram.org
https://zenodo.org/
http://docutils.sourceforge.net/rst.html

ROBERTODI REMIGIO ET AL . 33

[2, 16].

LSDALTON (Fortran 90) Alinear-scalingprogrampackage for thecalculationof linearandnonlinear responseproperties

[3, 16].

PSI4 (C++11, Python) An open-source program implementingmethods ranging from SCF to CC andmulticonfigura-

tional SCF, with a strong emphasis on extensibility and fast method development [141, 100].

RESPECT (Fortran 90) A relativistic DFT quantum chemistry program package, featuring efficient, parallel implementa-

tions of, among other methods, real-time time-dependent (TD)-DFT for closed- and open-shell systems [4].

KOALA (Fortran 90) Aprogrampackage implementingWFT-in-DFTandDFT-in-DFTembeddingmethods formolecular

properties [67, 127].

MADNESS (C++11) Amassively parallel implementation of multiresolution analysis (MRA) for chemistry and physics

applications [58].

Many of these codes did not have PCM capabilities before the interface was put in place and, in the case of KOALA

andMADNESS, the program developers required little to no assistance from the PCMSOLVER developers to implement

the coupling with the library. Our license plays well with closed-source software: not all of the codes listed are open-

source, while some of them (DALTON and LSDALTON) only recently switched to the LGPLv2.1 and an open collaboration

workflow.30 In all but one of the abovementioned cases, the implementation of the interface resulted in a collaboration

between the authors and the host code developers. This further proves our point that the availability of openmodules

with well-defined interfaces is one of the keys to enhancing collaboration and dissemination of ideas in quantum

chemistry.

We described the theory for and the implementation of the interface with the DIRAC program in 2015 [34]. This

work proved the principle that a well-defined API for the PCM could be formulated abstractly from the details of the

quantum chemical method of choice. Our implementation in DIRAC also showed the importance of optimizing the

calculation of theMEP one-electron integrals for large grids of points. Being agnostic of its use for PCM calculations,

our efficient implementation of such integrals for 4-component wave functions in DIRAC is currently also used to export

the MEP on the grid used in frozen-density embedding (FDE) calculations [68, 97]. Our work paved the way for the

recent implementation of a relativistic SCFmethod including polarizable embedding (PE) terms, published by Hedegård

et al. [63].

Building on our experience with DIRAC, we introduced the PCMSOLVER library into the structurally similar DALTON

and LSDALTON codes. In contrast to DALTON, which already had a PCM implementation available, the interface in

LSDALTON provided new functionality to the users. The LSDALTON interface was then used to assess the accuracy

attainable in quantum chemical calculations with PCM in conjunction with a wavelet Galerkin solver. This work was a

collaboration withmathematicians and LSDALTON developers andwas described by Bugeanu et al. [23]. Figures 8a and

8b summarize our findings: the wavelet Galerkin solver can attain much higher accuracy, at the expense of introducing a

much larger grid of points on the cavity surface. Approximations in the integral evaluation subroutines will have to be

30TheDALTON and LSDALTON public Git repositories are hosted on GitLab: https://gitlab.com/dalton

http://www.daltonprogram.org
http://www.psicode.org
http://respect.readthedocs.io/
http://www.ipc.kit.edu/theochem/456_534.php
https://github.com/m-a-d-n-e-s-s/madness
http://www.ipc.kit.edu/theochem/456_534.php
https://github.com/m-a-d-n-e-s-s/madness
http://pcmsolver.readthedocs.io
http://www.daltonprogram.org
http://www.daltonprogram.org
http://www.diracprogram.org
http://www.diracprogram.org
http://www.diracprogram.org
http://www.diracprogram.org
http://pcmsolver.readthedocs.io
http://www.daltonprogram.org
http://www.daltonprogram.org
http://www.daltonprogram.org
http://www.daltonprogram.org
http://www.daltonprogram.org
http://www.daltonprogram.org
https://gitlab.com/dalton

34 ROBERTODI REMIGIO ET AL .

introduced, an area that we are currently investigating.

2 3 4 5
Patch level

-5.26

-5.24

-5.22

-5.20

-5.18

-5.16

U
p
ol

/
kc

al
·m

ol
−
1

10240

40960
163840 655360

23040
92160 368640 1474560

Constants

Linears

Collocation

Limit

0.3 0.2 0.1 0.05 0.025
Average area / Å2

644

848

1644

3052

5289

(a)Convergence ofUpol with the number ofMEP

evaluation points on the cavity surface. Lower axis: patch

level in the wavelet Galerkin discretization. Upper axis:

average area for the collocation tesselation.

0.3 0.2 0.1 0.05 0.025

Average area / Å2

76.50

76.55

76.60

76.65

76.70

76.75

76.80

Is
ot
ro
p
ic

p
ol
ar
iz
ab

il
it
y
/
a
3 0

644

848

1644

3052

5289

Constants

Linears

Collocation

Limit

2 3 4 5
Patch level

10240

40960 163840 655360

23040 92160 368640 1474560

(b)Convergence of iso with the number ofMEP evaluation

points on the cavity surface. Lower axis: average area for

the collocation tesselation. Upper axis: patch level in the

wavelet Galerkin discretization.

F IGURE 8 Convergence ofUpol and iso for benzenewith respect to the number ofMEP evaluation points on the

cavity surface, when using collocation, piecewise constant and piecewise linear wavelet Galerkin solvers. The number

of such points is reported as an annotation of the data points. All Hartree–Fock (HF)/6-31G calculations performed

with LSDALTON. Figures reproduced fromBugeanu et al. [23] - Published by the PCCPOwner Societies.

Our work in DALTON concentrated on the calculation of high-order molecular properties, motivated by the open-

ended implementation of response theory that has been ongoing in our group [139, 120, 50]. As briefly discussed in

section 2.2, the variational formalism greatly simplifies formal derivations, a fact that we found especially true for

response theory. The extended quantum/classical polarizable quasienergy Lagrangian formalism, allows us to leverage

the recursive implementation of Ringholm et al. [120]. The formalism and its implementation were applied to the

calculation of one- to five-photon absorption strengths of small chromophores in different solvents [35]. Figure 9 shows

our result for para-dinitrobenzene, a centrosymmetric molecule. Using a nonequilibrium response formulation for the

solvent results in discontinuities in the enhancement as a function of solvent polarity.

Two new extensions to the PCMSOLVER library will be released to the public soon. One such extension is a real-time

propagation scheme for the solvent effect both with the equilibrium abd the delayed schemes described by Corni

et al. [29] and Ding et al. [41]. In the former, the polarization immediately responds to changes in the solute density;

in the latter, a retardation effect is introduced due to the solvent permittivity being nonlocal in time. To illustrate this

development, Figure 10 shows preliminary results for the one-photon absorption spectra of the uranyl ionUO
2+
2 with

a 4-component relativistic Hamiltonian.. This is part of an ongoing collaboration with the RESPECT developers. We

coupled the efficient and parallelized real-time propagation algorithm with the PCM [38]. Our implementation can

http://www.daltonprogram.org
http://www.daltonprogram.org
http://pcmsolver.readthedocs.io
http://respect.readthedocs.io/

ROBERTODI REMIGIO ET AL . 35

F IGURE 9 One- to five-photon absorption strengths (⟨MPA⟩) in atomic units for the centrosymmetric molecule
para-dinitrobenzene. The data is plotted for two selected electronic excitations and as a function of increasing solvent

polarity s−1
s
, where s is the static permittivity. All CAM-B3LYP/aug-cc-pVDZ response calculations were performed

using DALTON and the nonequilibrium formulation for the solvent terms. Figures reproduced fromDi Remigio et al. [35]

- Published by the PCCPOwner Societies.

tackle the rather large systems arising when heavy-element containing systems are of interest. Coupling with the

PCM introduces a negligible overhead in the real-time propagation and this methodwill surely help shed light into the

interplay of relativistic and solvent effects. This new functionality has not yet been released, but a version of RESPECT

including the interface with PCMSOLVER is already available for the calculation of SCF energies and first-order electric

andmagnetic properties of closed- and open-shell systems [39].

The other extension is the implementation of the FQ classical polarizable model within PCMSOLVER. Section 2

showed the striking similaritiesof continuumandexplicit classical polarizablemodels for theenvironment. TheFQmodel

is straightforward to implement on top of the PCM infrastructure we have put together, since its input and output with

theQC host program are identical to those for the PCM. Hence, any code currently interfacedwith PCMSOLVER can have

access to our FQ implementation by simply upgrading their version of the library and preparing appropriate input files.

There is no additional coding involved. Figure 11 shows our preliminary results for the one-photon absorption spectrum

of the rhodamine 6G chromophore, a promising dye for nonlinear photonic applications [96, 95]. The calculations were

performed using a development version of LSDALTON. When released it will further enrich the set of methods available

http://www.daltonprogram.org
http://respect.readthedocs.io/
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://www.daltonprogram.org

36 ROBERTODI REMIGIO ET AL .

F IGURE 10 4-component one-photon absorption spectra of the uranyl ionUO
2+
2 in vacuum and in water. The

spectra were obtained from a real-time TD-DFT simulation using the PBE functional and a triple-zeta quality basis set, (

[33s29p20d13f4g2h] forU, [11s6p3d2f] forO), was employed, together with the resolution-of-the-identity (RI)-J
algorithm (fitting bases: [41s37p37d24f24g15h] forU, [14s8p8d4f4g3h] forO). Calculations were ran using a
development version of RESPECT [118, 78, 4, 38].

to users of this code.

7 | THEFUTURE:LESSONSLEARNT,THEROADAHEADANDSOMEQUESTIONS

From day one, the informal motto of PCMSOLVER has been Plug the solvent in your favorite QM code. We have built the

library striving for:

• QMhost program agnosticism.

• Intuitive API for QMhost program developers.

• Open and inclusive code development workflow.

• Extensible internal code structure.

We have achieved the former two points. The reader does not have to take our word for it, though. PCMSOLVER

is interfaced with many QM host programs, enlarging the breadth of applications these programs can tackle. The

http://respect.readthedocs.io/
http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io

ROBERTODI REMIGIO ET AL . 37

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 200 300 400 500 600 700

M
o

la
r

A
b

s
o

rp
ti
v
it
y
 (

ε
 (

M
-1

c
m

-1
)

Wavelength (nm)

vacuum
QM/PCM

QM/FQ

(a)One-photon absorption spectra of rhodamine 6G in

water (PCM and FQ) and vacuum. The FQ spectrum is an

average over 100 snapshots.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 200 300 400 500 600 700

M
o

la
r

A
b

s
o

rp
ti
v
it
y
 (

ε
 (

M
-1

c
m

-1
)

Wavelength (nm)

QM/FQ

(b)One-photon absorption spectrum of rhodamine 6G in

water using FQ. The stick and average (over 100

snapshots) spectra are also shown.

F IGURE 11 CAM-B3LYP/6-31+G* one-photon absorption spectra of rhodamine 6G in vacuum andwater (PCM and

FQ). Calculations were ran using density fitting (fitting basis: df-def2) with a development version of LSDALTON [16, 3].

A solvation shell of 𝟤𝟢 Åwas used in the FQ calculations. The spectra are convoluted with Gaussian lineshapes. Figures

reproduced courtesy of Tommaso Giovannini (Scuola Normale Superiore, Pisa).

development of the library is not, however, just a success story. Achieving the latter two points has provedmuchmore

challenging.

Tomove forward on the road aheadwewill have to attract contributions frommore developers, improve our API,

introduce new features and interface withmoreQC codes. Some new features, such as an implementation of the FQ

polarizable force field and of the real-time evolution proposed by Corni et al. [29] are almost ready for release.

The variational formulation of the PCM [86] is a convenient tool for deriving the quantum/classical coupling terms

in theories as diverse as SCF [87], CC [36, 33] and arbitrary-order response theory [35]. From a theoretical perspective,

it provides a much cleaner route to the derivation of the working equations. Recasting the coupled problem as a

variational minimization also gives insight into alternative algorithmic realizations. But the advantages of the approach

are greater still. As shown by Lipparini, explicit classical polarizable models admit a variational formulation [82, 83, 89,

85]. Three-layer coupling, as realized, for example, in QM/MM/Continuum protocols, are then trivial to derive. The

fundamental similarity between classical polarizable models has been recognized long before the advent of the, clearly

superior, variational formulation. However, a similarly unified implementation of thesemodels has yet to appear. As the

formulation of such diversemodels can be put on an equal footing, the samemust also be true for their computational

implementation. The question is how can such a task be accomplished. PCMSOLVER offers a starting point. There is a

discussion issue open onGitHub: we hopemany in the community will join us in this effort.31

31https://github.com/PCMSolver/pcmsolver/issues/139

http://www.daltonprogram.org
http://pcmsolver.readthedocs.io
https://github.com/PCMSolver/pcmsolver/issues/139

38 ROBERTODI REMIGIO ET AL .

ACKNOWLEDGEMENTS

The authors would like to acknowledge the users and programmers that have helped in the development of the PCM-

SOLVER library through their bug reporting, enhancement suggestions and code patches.

RDR is particularly indebted with Lori A. Burns (Georgia Tech), for suggestions on CMake and code infrastructure,

RadovanBast (University of Tromsø - TheArctic University of Norway), for discussions on open-source software, Filippo

Lipparini (Università di Pisa) for many clarifications on the variational formulation of QM/classical polarizable models,

and AndrewM. James (Virginia Tech) for providing comments on an early version of themanuscript.

The authors acknowledge partial support by the Research Council of Norway through its Centres of Excellence

scheme, project number 262695. RDR also acknowledges support by the Research Council of Norway through its

Mobility Grant scheme, project number 261873.

The authors received support by the Norwegian Supercomputer Program through a grant for computer time (Grant

No. NN4654K). RDR acknowledges the Advanced Research Computing Center at Virginia Tech for providing the

necessary computational resources and technical support for some of the calculations reported here.

ENDNOTES

REFERENCES

[1] ;. DIRAC, a relativistic ab initio electronic structure program, Release DIRAC17 (2017), written by L. Visscher,

H. J. Aa. Jensen, R. Bast, and T. Saue, with contributions from V. Bakken, K. G. Dyall, S. Dubillard, U. Ekström, E. Eliav,

T. Enevoldsen, E. Faßhauer, T. Fleig, O. Fossgaard, A. S. P. Gomes, E. D. Hedegård, T. Helgaker, J. Henriksson, M. Iliaš,

Ch. R. Jacob, S. Knecht, S. Komorovský, O. Kullie, J. K. Lærdahl, C. V. Larsen, Y. S. Lee, H. S. Nataraj, M. K. Nayak, P. Nor-

man, G. Olejniczak, J. Olsen, J. M. H. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, R. di Remigio, K. Ruud, P. Sałek,

B. Schimmelpfennig, A. Shee, J. Sikkema, A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, T. Winther,

and S. Yamamoto (see http://www.diracprogram.org).

[2] ;. Dalton, a molecular electronic structure program, Release Dalton2016 (2015), see http://daltonprogram.org.

[3] ;. LSDalton, a linear scaling molecular electronic structure program, Release Dalton2016 (2015), see http://
daltonprogram.org.

[4] ;. ReSpect 5.0.1 (2018), relativistic spectroscopy DFT program of authors M. Repisky, S. Komorovsky, V. G. Malkin,

O. L. Malkina, M. Kaupp, K. Ruud, with contributions from R. Bast, R. Di Remigio, U. Ekstrom, M. Kadek, S. Knecht,

L. Konecny, E. Malkin, I. Malkin Ondik (see http://www.respectprogram.org).

[5] Breathe;. https://breathe.readthedocs.io/en/latest/, accessed: 2018-4-14. https://breathe.readthedocs.
io/en/latest/.

[6] Code is Science Manifesto;. https://codeisscience.github.io/manifesto/manifesto.html, accessed: 2018-
4-16. https://codeisscience.github.io/manifesto/manifesto.html.

[7] coderefinery: A Nordic E-Infrastructure Collaboration Project;. http://coderefinery.org/.

http://pcmsolver.readthedocs.io
http://pcmsolver.readthedocs.io
http://www.diracprogram.org
http://daltonprogram.org
http://daltonprogram.org
http://daltonprogram.org
https://breathe.readthedocs.io/en/latest/
https://breathe.readthedocs.io/en/latest/
https://breathe.readthedocs.io/en/latest/
https://codeisscience.github.io/manifesto/manifesto.html
https://codeisscience.github.io/manifesto/manifesto.html
http://coderefinery.org/

ROBERTODI REMIGIO ET AL . 39

[8] Doxygen;. http://www.stack.nl/~dimitri/doxygen/, accessed: 2018-4-14. http://www.stack.nl/~dimitri/
doxygen/.

[9] Implementation of NSF CIF21 Software Vision (SW-Vision);. http://www.nsf.gov/funding/pgm_summ.jsp?pims_
id=504817.

[10] netherlands EScience Center;. https://www.esciencecenter.nl/.

[11] Software Sustainability Institute;. https://www.software.ac.uk/.

[12] Sphinx;. http://www.sphinx-doc.org/en/master/, accessed: 2018-4-14. http://www.sphinx-doc.org/en/
master/.

[13] The Boost C++ Libraries;. http://www.boost.org/.

[14] TheMolecular Sciences Software Institute;. http://molssi.org/.

[15] Ahnert K,MulanskyM. Odeint – Solving Ordinary Differential Equations in C++. AIP Conf Proc 2011;1389(1).

[16] Aidas K, Angeli C, Bak KL, Bakken V, Bast R, Boman L, et al. The Dalton Quantum Chemistry Program System. Wiley

Interdiscip Rev ComputMol Sci 2013 23 Sep;00.

[17] Alexandrescu A. Modern C++Design: Generic Programming andDesign Patterns Applied. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc.; 2001.

[18] Allinger NL, Zhou X, Bergsma J. Molecular mechanics parameters. Journal of Molecular Structure: THEOCHEM1994

Jan;312(1):69–83. http://www.sciencedirect.com/science/article/pii/S0166128009800080.

[19] Andreussi O, Dabo I, Marzari N. Revised self-consistent continuum solvation in electronic-structure calculations. J

ChemPhys 2012 Feb;136(6):064102. http://dx.doi.org/10.1063/1.3676407.

[20] Attard P. Variational formulation for the electrostatic potential in dielectric continua. J Chem Phys 2003

Jul;119(3):1365–1372. http://scitation.aip.org/content/aip/journal/jcp/119/3/10.1063/1.1580805.

[21] Bartholomew-BiggsM,BrownS,ChristiansonB,DixonL. AutomaticDifferentiationofAlgorithms. JComputApplMath

2000 1Dec;124(1–2):171–190.

[22] Bondi A. van derWaals Volumes and Radii. J Phys Chem 1964 1Mar;68(3):441–451.

[23] BugeanuM,DiRemigioR,MozgawaK,Reine SS,HarbrechtH, Frediani L. Wavelet formulationof thepolarizable contin-

uum model. II. Use of piecewise bilinear boundary elements. Phys Chem Chem Phys 2015 Dec;17(47):31566–31581.

http://dx.doi.org/10.1039/c5cp03410h.

[24] Cammi R. Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and

second derivatives. J ChemPhys 2009Oct;131(16):164104. http://dx.doi.org/10.1063/1.3245400.

[25] Cancès E, Mennucci B. New applications of integral equations methods for solvation continuum models: ionic solu-

tions and liquid crystals. J Math Chem 1998;23(3-4):309–326. http://link.springer.com/article/10.1023/A%
3A1019133611148.

http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504817
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504817
https://www.esciencecenter.nl/
https://www.software.ac.uk/
http://www.sphinx-doc.org/en/master/
http://www.sphinx-doc.org/en/master/
http://www.sphinx-doc.org/en/master/
http://www.boost.org/
http://molssi.org/
http://www.sciencedirect.com/science/article/pii/S0166128009800080
http://dx.doi.org/10.1063/1.3676407
http://scitation.aip.org/content/aip/journal/jcp/119/3/10.1063/1.1580805
http://dx.doi.org/10.1039/c5cp03410h
http://dx.doi.org/10.1063/1.3245400
http://link.springer.com/article/10.1023/A%3A1019133611148
http://link.springer.com/article/10.1023/A%3A1019133611148

40 ROBERTODI REMIGIO ET AL .

[26] Caricato M. CCSD-PCM: improving upon the reference reaction field approximation at no cost. J Chem Phys 2011

Aug;135(7):074113. http://dx.doi.org/10.1063/1.3624373.

[27] Christiansen O, Jørgensen P, Hättig C. Response functions from Fourier component variational perturbation theory

applied to a time-averaged quasienergy. Int J Quantum Chem 1998 Jan;68(1):1–52. http://dx.doi.org/10.1002/
(SICI)1097-461X(1998)68:1<1::AID-QUA1>3.0.CO;2-Z.

[28] Connolly ML. Computation of molecular volume. J Am Chem Soc 1985;107(5):1118–1124. http://dx.doi.org/10.
1021/ja00291a006.

[29] Corni S, Pipolo S, Cammi R. Equation of Motion for the Solvent Polarization Apparent Charges in the Polarizable Con-

tinuumModel: Application to Real-Time TDDFT. J Phys ChemA 2015 28May;119(21):5405–5416.

[30] CossiM, ScalmaniG,RegaN,BaroneV. Newdevelopments in thepolarizable continuummodel for quantummechanical

and classical calculations onmolecules in solution. J ChemPhys 2002 Jul;117(1):43–54. http://link.aip.org/link/
JCPSA6/v117/i1/p43/s1&Agg=doi.

[31] DelgadoA,Corni S,GoldoniG. ModelingOpto-ElectronicProperties of aDyeMolecule inProximity of a Semiconductor

Nanoparticle. J ChemPhys 2013 14 Jul;139(2):024105.

[32] Dennery P, Krzywicki A, Physics. Mathematics for Physicists. unknown edition ed. Dover Publications; 1996. https:
//www.amazon.com/Mathematics-Physicists-Dover-Books-Physics/dp/0486691934.

[33] Di Remigio R. The Polarizable Continuum Model Goes Viral! Extensible, Modular and Sustainable Development of

QuantumMechanical Continuum SolvationModels. PhD thesis; 2017.

[34] Di RemigioR, Bast R, Frediani L, SaueT. Four-component relativistic calculations in solutionwith the polarizable contin-

uummodel of solvation: theory, implementation, and application to the group 16 dihydridesH2X (X =O, S, Se, Te, Po). J

Phys ChemA 2015May;119(21):5061–5077. http://dx.doi.org/10.1021/jp507279y.

[35] Di Remigio R, Beerepoot MTP, Cornaton Y, Ringholm M, Steindal AH, Ruud K, et al. Open-ended formulation of self-

consistent field response theory with the polarizable continuum model for solvation. Phys Chem Chem Phys 2016

Dec;19(1):366–379. http://dx.doi.org/10.1039/c6cp06814f.

[36] DiRemigioR,CrawfordTD,Frediani L. TriplesCorrection forPolarizableContinuumModelCoupledCluster in Iterative

andNoniterative Formulations;, In preparation.

[37] Di Remigio R,MozgawaK, CaoH,Weijo V, Frediani L. A polarizable continuummodel formolecules at spherical diffuse

interfaces. J ChemPhys 2016Mar;144(12):124103. http://dx.doi.org/10.1063/1.4943782.

[38] Di Remigio R, Repisky M, Frediani L. A Polarizable Continuum Model for 4-component Relativistic Real-Time Time-

Dependent Density Functional Theory;, In preparation.

[39] Di Remigio R, RepiskyM, Komorovsky S, Hrobarik P, Frediani L, RuudK. Four-component relativistic density functional

theory with the polarisable continuummodel: application to EPR parameters and paramagnetic NMR shifts. Mol Phys

2017 Jan;115(1-2):214–227. https://doi.org/10.1080/00268976.2016.1239846.

http://dx.doi.org/10.1063/1.3624373
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)68:1<1::AID-QUA1>3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)68:1<1::AID-QUA1>3.0.CO;2-Z
http://dx.doi.org/10.1021/ja00291a006
http://dx.doi.org/10.1021/ja00291a006
http://link.aip.org/link/JCPSA6/v117/i1/p43/s1&Agg=doi
http://link.aip.org/link/JCPSA6/v117/i1/p43/s1&Agg=doi
https://www.amazon.com/Mathematics-Physicists-Dover-Books-Physics/dp/0486691934
https://www.amazon.com/Mathematics-Physicists-Dover-Books-Physics/dp/0486691934
http://dx.doi.org/10.1021/jp507279y
http://dx.doi.org/10.1039/c6cp06814f
http://dx.doi.org/10.1063/1.4943782
https://doi.org/10.1080/00268976.2016.1239846

ROBERTODI REMIGIO ET AL . 41

[40] Dijkstra EW. The Structure of the “THE”-Multiprogramming System. Commun ACM1968 1May;11(5):341–346.

[41] Ding F, Lingerfelt DB, Mennucci B, Li X. Time-dependent non-equilibrium dielectric response in QM/continuum ap-

proaches. J Chem Phys 2015 Jan;142(3):034120. http://scitation.aip.org/content/aip/journal/jcp/142/3/
10.1063/1.4906083.

[42] EkströmU, libtaylor: Automatic Differentiation in C++;. https://github.com/uekstrom/libtaylor.

[43] ErnA,GuermondJL. TheoryandPracticeofFiniteElements:. AppliedMathematical Sciences, SpringerNewYork; 2004.

http://link.springer.com/book/10.1007%2F978-1-4757-4355-5.

[44] Fattebert JL,Gygi F. First-principlesmolecular dynamics simulations in a continuumsolvent. Int JQuantumChem2003

Jan;93(2):139–147. http://dx.doi.org/10.1002/qua.10548.

[45] FisicaroG, Genovese L, Andreussi O,Marzari N, Goedecker S. A generalized Poisson and Poisson-Boltzmann solver for

electrostatic environments. J ChemPhys 2016 Jan;144(1):014103. http://dx.doi.org/10.1063/1.4939125.

[46] Foresman JB, Keith TA, Wiberg KB, Snoonian J, Frisch MJ. Solvent Effects. 5. Influence of Cavity Shape,

Truncation of Electrostatics, and Electron Correlation on ab Initio Reaction Field Calculations. J Phys Chem

1996;100(40):16098–16104. http://dx.doi.org/10.1021/jp960488j.

[47] Fosso-Tande J, Harrison RJ. Implicit solvation models in a multiresolution multiwavelet basis. Chem Phys Lett 2013

Mar;561-562:179–184. http://www.sciencedirect.com/science/article/pii/S000926141300170X.

[48] Frediani L, Cammi R, Corni S, Tomasi J. A polarizable continuummodel formolecules at diffuse interfaces. J ChemPhys

2004 Feb;120(8):3893–3907. http://dx.doi.org/10.1063/1.1643727.

[49] Frediani L, Pomelli CS, Tomasi J. n-Alkyl alcohols at the water/vapour and water/benzene interfaces: a study on phase

transfer energies. Phys ChemChemPhys 2000;2(21):4876–4883. http://xlink.rsc.org/?DOI=b004330n.

[50] Friese DH, BeerepootMTP, RingholmM, Ruud K. Open-Ended Recursive Approach for the Calculation ofMultiphoton

Absorption Matrix Elements. J Chem Theory Comput 2015 Mar;11(3):1129–1144. http://dx.doi.org/10.1021/
ct501113y.

[51] Frigo M, Johnson SG. The Design and Implementation of FFTW3. Proc IEEE 2005 Feb;93(2):216–231. http://
ieeexplore.ieee.org/document/1386650/.

[52] Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable Object-Oriented Software. Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc.; 1995.

[53] Gezelter JD. OpenSource andOpenData ShouldBeStandardPractices. J PhysChemLett 20152Apr;6(7):1168–1169.

[54] Golub GH, Van Loan CF. Matrix Computations. fourth edition ed. Johns Hopkins University Press; 2012.

[55] Guennebaud G, Jacob B, et al., Eigen V3;. http://eigen.tuxfamily.org.

[56] HackbuschW. Integral Equations: Theory and Numerical Treatment. ISNM International Series of Numerical Mathe-

matics, Birkhäuser Basel; 1995. http://link.springer.com/book/10.1007%2F978-3-0348-9215-5.

http://scitation.aip.org/content/aip/journal/jcp/142/3/10.1063/1.4906083
http://scitation.aip.org/content/aip/journal/jcp/142/3/10.1063/1.4906083
https://github.com/uekstrom/libtaylor
http://link.springer.com/book/10.1007%2F978-1-4757-4355-5
http://dx.doi.org/10.1002/qua.10548
http://dx.doi.org/10.1063/1.4939125
http://dx.doi.org/10.1021/jp960488j
http://www.sciencedirect.com/science/article/pii/S000926141300170X
http://dx.doi.org/10.1063/1.1643727
http://xlink.rsc.org/?DOI=b004330n
http://dx.doi.org/10.1021/ct501113y
http://dx.doi.org/10.1021/ct501113y
http://ieeexplore.ieee.org/document/1386650/
http://ieeexplore.ieee.org/document/1386650/
http://eigen.tuxfamily.org
http://link.springer.com/book/10.1007%2F978-3-0348-9215-5

42 ROBERTODI REMIGIO ET AL .

[57] Harbrecht H, Randrianarivony M. Wavelet BEM on molecular surfaces: solvent excluded surfaces. Computing 2011

Aug;92(4):335–364. https://doi.org/10.1007/s00607-011-0147-y.

[58] Harrison R, Beylkin G, Bischoff F, Calvin J, Fann G, Fosso-Tande J, et al. MADNESS: A Multiresolution, Adaptive Nu-

merical Environment for Scientific Simulation. SIAM J Sci Comput 2016 Jan;38(5):S123–S142. https://doi.org/10.
1137/15M1026171.

[59] Hatton L. The T-Experiments: Errors in Scientific Software. In: Quality of Numerical Software IFIP Advances in Infor-

mation and Communication Technology, Springer US; 1997.p. 12–31.

[60] Hatton L, Roberts A. HowAccurate Is Scientific Software? IEEE Trans Software Eng 1994Oct;20(10):785–797.

[61] Hatton L. Reexamining the Fault Density-Component Size Connection. IEEE Softw 1997 1Mar;14(2):89–97.

[62] Hatton L, Warr G. Full Computational Reproducibility in Biological Science: Methods, Software and a Case Study in

Protein Biology. ArXiv e-prints 2016 Aug;http://arxiv.org/abs/1608.06897.

[63] Hedegård ED, Bast R, Kongsted J, Olsen JMH, JensenHJA. Relativistic Polarizable Embedding. J ChemTheoryComput

2017 Jun;13(6):2870–2880. http://dx.doi.org/10.1021/acs.jctc.7b00162.

[64] Helgaker T, Coriani S, Jørgensen P, Kristensen K, Olsen J, Ruud K. Recent advances in wave function-basedmethods of

molecular-property calculations. ChemRev 2012 Jan;112(1):543–631. http://dx.doi.org/10.1021/cr2002239.

[65] Helgaker T, Jorgensen P, Olsen J. Molecular Electronic-Structure Theory. 1 edition ed. Wiley; 2013. https://www.
amazon.com/Molecular-Electronic-Structure-Theory-Trygve-Helgaker/dp/1118531477.

[66] Hintjens P. Social Architecture: Building On-line Communities. CreateSpace Independent Publishing Platform; 2016.

https://www.amazon.com/Social-Architecture-Building-line-Communities/dp/1533112452.

[67] Höfener S. Coupled-Cluster Frozen-Density Embedding Using Resolution of the Identity Methods. J Comput Chem

2014 5 Sep;35(23):1716–1724.

[68] Höfener S, Gomes ASP, Visscher L. Molecular properties via a subsystem density functional theory formulation: a com-

mon framework for electronic embedding. J Chem Phys 2012 Jan;136(4):044104. http://www.ncbi.nlm.nih.gov/
pubmed/22299858.

[69] Hsiao GC, WendlandWL. Boundary Integral Equations:. Applied Mathematical Sciences, Springer Berlin Heidelberg;

2008. http://link.springer.com/book/10.1007%2F978-3-540-68545-6.

[70] Ince DC, Hatton L, Graham-Cumming J. The case for open computer programs. Nature 2012 Feb;482(7386):485–488.

http://dx.doi.org/10.1038/nature10836.

[71] Ioannidis JPA. WhyMost Published Research Findings Are False. PLoSMed 2005 Aug;2(8):e124.

[72] Jackson JD. Classical Electrodynamics. 3 edition ed.Wiley; 1998.

[73] Jacob CR. HowOpen Is Commercial Scientific Software? J Phys Chem Lett 2016 21 Jan;7(2):351–353.

https://doi.org/10.1007/s00607-011-0147-y
https://doi.org/10.1137/15M1026171
https://doi.org/10.1137/15M1026171
http://arxiv.org/abs/1608.06897
http://dx.doi.org/10.1021/acs.jctc.7b00162
http://dx.doi.org/10.1021/cr2002239
https://www.amazon.com/Molecular-Electronic-Structure-Theory-Trygve-Helgaker/dp/1118531477
https://www.amazon.com/Molecular-Electronic-Structure-Theory-Trygve-Helgaker/dp/1118531477
https://www.amazon.com/Social-Architecture-Building-line-Communities/dp/1533112452
http://www.ncbi.nlm.nih.gov/pubmed/22299858
http://www.ncbi.nlm.nih.gov/pubmed/22299858
http://link.springer.com/book/10.1007%2F978-3-540-68545-6
http://dx.doi.org/10.1038/nature10836

ROBERTODI REMIGIO ET AL . 43

[74] Jadhao V, Solis FJ, Olvera de la Cruz M. A variational formulation of electrostatics in a medium with spatially varying

dielectric permittivity. J ChemPhys 2013 Feb;138(5):054119. http://dx.doi.org/10.1063/1.4789955.

[75] Jadhao V, Solis FJ, de la Cruz MO. Free-energy functionals of the electrostatic potential for Poisson-Boltzmann the-

ory. Phys Rev E Stat Nonlin Soft Matter Phys 2013 Aug;88(2):022305. http://dx.doi.org/10.1103/PhysRevE.88.
022305.

[76] Josuttis NM. The C++ Standard Library: A Tutorial and Reference. 2 edition ed. Addison-Wesley Professional; 2012.

[77] Juselius J, libgetkw: A Python Library for User Input Parsing and Validation with C, C++ and Fortran Bindings;. https:
//github.com/coderefinery/libgetkw.

[78] KadekM, Konecny L, Gao B, RepiskyM, Ruud K. X-ray absorption resonances near L2,3-edges from real-time propaga-

tion of the Dirac-Kohn-Sham densitymatrix. Phys ChemChemPhys 2015 Sep;17(35):22566–22570. http://dx.doi.
org/10.1039/c5cp03712c.

[79] KrylovAI,Herbert JM,FurcheF,Head-GordonM,KnowlesPJ, LindhR,etal.What Is thePriceofOpen-SourceSoftware?

J Phys Chem Lett 2015 16 Jul;6(14):2751–2754.

[80] LangeAW,Herbert JM. Asmooth, nonsingular, and faithfuldiscretizationschemeforpolarizablecontinuummodels: the

switching/Gaussian approach. J ChemPhys 2010Dec;133(24):244111. http://dx.doi.org/10.1063/1.3511297.

[81] Lange AW, Herbert JM. Polarizable Continuum Reaction-Field Solvation Models Affording Smooth Potential Energy

Surfaces. J Phys Chem Lett 2010;1(2):556–561. http://dx.doi.org/10.1021/jz900282c.

[82] Lipparini F, Barone V. Polarizable Force Fields and Polarizable Continuum Model: A Fluctuating Charges/PCM Ap-

proach. 1. Theory and Implementation. J Chem Theory Comput 2011Nov;7(11):3711–3724. http://pubs.acs.org/
doi/abs/10.1021/ct200376z.

[83] Lipparini F, Cappelli C, Barone V. Linear Response Theory and Electronic Transition Energies for a Fully Polarizable

QM/Classical Hamiltonian. J Chem Theory Comput 2012 Nov;8(11):4153–4165. http://dx.doi.org/10.1021/
ct3005062.

[84] Lipparini F,Cappelli C, BaroneV. Agauge invariantmultiscale approach tomagnetic spectroscopies in condensedphase:

General three-layer model, computational implementation and pilot applications. J Chem Phys 2013;138(23):234108.

http://link.aip.org/link/JCPSA6/v138/i23/p234108/s1&Agg=doi.

[85] Lipparini F, Mennucci B. Perspective: Polarizable continuum models for quantum-mechanical descriptions. J

ChemPhys 2016Apr;144(16):160901. http://scitation.aip.org/content/aip/journal/jcp/144/16/10.1063/
1.4947236?TRACK=RSS.

[86] Lipparini F, Scalmani G, Mennucci B, Cancès E, CaricatoM, FrischMJ. A variational formulation of the polarizable con-

tinuummodel. J ChemPhys 2010 Jul;133(1):014106. http://dx.doi.org/10.1063/1.3454683.

[87] Lipparini F, ScalmaniG,MennucciB, FrischMJ. Self-ConsistentField andPolarizableContinuumModel: ANewStrategy

of Solution for the Coupled Equations. J Chem Theory Comput 2011 Mar;7(3):610–617. http://dx.doi.org/10.
1021/ct1005906.

http://dx.doi.org/10.1063/1.4789955
http://dx.doi.org/10.1103/PhysRevE.88.022305
http://dx.doi.org/10.1103/PhysRevE.88.022305
https://github.com/coderefinery/libgetkw
https://github.com/coderefinery/libgetkw
http://dx.doi.org/10.1039/c5cp03712c
http://dx.doi.org/10.1039/c5cp03712c
http://dx.doi.org/10.1063/1.3511297
http://dx.doi.org/10.1021/jz900282c
http://pubs.acs.org/doi/abs/10.1021/ct200376z
http://pubs.acs.org/doi/abs/10.1021/ct200376z
http://dx.doi.org/10.1021/ct3005062
http://dx.doi.org/10.1021/ct3005062
http://link.aip.org/link/JCPSA6/v138/i23/p234108/s1&Agg=doi
http://scitation.aip.org/content/aip/journal/jcp/144/16/10.1063/1.4947236?TRACK=RSS
http://scitation.aip.org/content/aip/journal/jcp/144/16/10.1063/1.4947236?TRACK=RSS
http://dx.doi.org/10.1063/1.3454683
http://dx.doi.org/10.1021/ct1005906
http://dx.doi.org/10.1021/ct1005906

44 ROBERTODI REMIGIO ET AL .

[88] Lippman SB, Lajoie J, Moo BE. C++ Primer. 5 edition ed. Addison-Wesley Professional; 2012. https://www.
amazon.com/Primer-5th-Stanley-B-Lippman/dp/0321714113/ref=sr_1_1?ie=UTF8&qid=1522430097&sr=8-
1&keywords=lippman+c%2B%2B+primer.

[89] Loco D, Polack É, Caprasecca S, Lagardère L, Lipparini F, Piquemal JP, et al. A QM/MM Approach Using the AMOEBA

Polarizable Embedding: From Ground State Energies to Electronic Excitations. J Chem Theory Comput 2016

Aug;12(8):3654–3661. http://dx.doi.org/10.1021/acs.jctc.6b00385.

[90] MantinaM,ChamberlinAC,ValeroR,CramerCJ, TruhlarDG. Consistent vanderWaalsRadii for theWholeMainGroup.

J Phys ChemA 2009 14May;113(19):5806–5812.

[91] Mennucci B, Cammi R. Continuum Solvation Models in Chemical Physics: From Theory to Applications. Wiley; 2008.

https://books.google.no/books?id=6Om2gDR41rwC.

[92] Merali Z. Computational Science: ...Error. Nature 2010 14Oct;467(7317):775–777.

[93] Messina R. Image charges in spherical geometry: Application to colloidal systems. J Chem Phys 2002

Dec;117(24):11062–11074. https://doi.org/10.1063/1.1521935.

[94] Miertuš S, Scrocco E, Tomasi J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio

molecular potentials for the prevision of solvent effects. Chem Phys 1981 Feb;55(1):117–129. http://linkinghub.
elsevier.com/retrieve/pii/0301010481850902.

[95] Milojevich CB, Silverstein DW, Jensen L, Camden JP. Surface-Enhanced Hyper-Raman Scattering Elucidates the Two-

Photon Absorption Spectrum of Rhodamine 6G. J Phys Chem C 2013 Feb;117(6):3046–3054. http://dx.doi.org/
10.1021/jp3094098.

[96] NagA, GoswamiD. Solvent effect on two-photon absorption and fluorescence of rhodamine dyes. J PhotochemPhoto-

biol A Chem 2009 Aug;206(2-3):188–197. http://dx.doi.org/10.1016/j.jphotochem.2009.06.007.

[97] OlejniczakM,Bast R,GomesASP. On the calculation of second-ordermagnetic properties using subsystemapproaches

in a relativistic framework. Phys Chem Chem Phys 2017 Feb;http://pubs.rsc.org/en/Content/ArticleLanding/
2017/CP/C6CP08561J?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FCP+%28RSC+-
+Phys.+Chem.+Chem.+Phys.+latest+articles%29.

[98] Olsen J, Jørgensen P. Linear and nonlinear response functions for an exact state and for anMCSCF state. J Chem Phys

1985 Apr;82(7):3235–3264. http://link.aip.org/link/JCPSA6/v82/i7/p3235/s1&Agg=doi.

[99] Parnas DL. On the Criteria to Be Used in Decomposing Systems into Modules. Commun ACM 1972

1Dec;15(12):1053–1058.

[100] Parrish RM, Burns LA, Smith DGA, Simmonett AC, DePrince AE 3rd, Hohenstein EG, et al. Psi4 1.1: An Open-Source

Electronic Structure ProgramEmphasizingAutomation, Advanced Libraries, and Interoperability. J ChemTheoryCom-

put 2017 Jul;13(7):3185–3197. http://dx.doi.org/10.1021/acs.jctc.7b00174.

[101] Pascual-Ahuir JL, Silla E, Tomasi J, Bonaccorsi R. Electrostatic interaction of a solute with a continuum. Improved de-

scription of the cavity and of the surface cavity bound charge distribution. J Comput Chem 1987 Sep;8(6):778–787.

http://dx.doi.org/10.1002/jcc.540080605.

https://www.amazon.com/Primer-5th-Stanley-B-Lippman/dp/0321714113/ref=sr_1_1?ie=UTF8&qid=1522430097&sr=8-1&keywords=lippman+c%2B%2B+primer
https://www.amazon.com/Primer-5th-Stanley-B-Lippman/dp/0321714113/ref=sr_1_1?ie=UTF8&qid=1522430097&sr=8-1&keywords=lippman+c%2B%2B+primer
https://www.amazon.com/Primer-5th-Stanley-B-Lippman/dp/0321714113/ref=sr_1_1?ie=UTF8&qid=1522430097&sr=8-1&keywords=lippman+c%2B%2B+primer
http://dx.doi.org/10.1021/acs.jctc.6b00385
https://books.google.no/books?id=6Om2gDR41rwC
https://doi.org/10.1063/1.1521935
http://linkinghub.elsevier.com/retrieve/pii/0301010481850902
http://linkinghub.elsevier.com/retrieve/pii/0301010481850902
http://dx.doi.org/10.1021/jp3094098
http://dx.doi.org/10.1021/jp3094098
http://dx.doi.org/10.1016/j.jphotochem.2009.06.007
http://pubs.rsc.org/en/Content/ArticleLanding/2017/CP/C6CP08561J?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FCP+%28RSC+-+Phys.+Chem.+Chem.+Phys.+latest+articles%29
http://pubs.rsc.org/en/Content/ArticleLanding/2017/CP/C6CP08561J?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FCP+%28RSC+-+Phys.+Chem.+Chem.+Phys.+latest+articles%29
http://pubs.rsc.org/en/Content/ArticleLanding/2017/CP/C6CP08561J?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+rss%2FCP+%28RSC+-+Phys.+Chem.+Chem.+Phys.+latest+articles%29
http://link.aip.org/link/JCPSA6/v82/i7/p3235/s1&Agg=doi
http://dx.doi.org/10.1021/acs.jctc.7b00174
http://dx.doi.org/10.1002/jcc.540080605

ROBERTODI REMIGIO ET AL . 45

[102] Pascual-Ahuir JL, Silla E, Tuñon I. GEPOL: An improved description of molecular surfaces. III. A new algorithm for the

computation of a solvent-excluding surface: GEPOL. J Comput Chem 1994 Oct;15(10):1127–1138. http://doi.
wiley.com/10.1002/jcc.540151009.

[103] Pascual-Ahuir JL, Silla E. GEPOL: An improved description of molecular surfaces. I. Building the spherical surface set. J

Comput Chem 1990Oct;11(9):1047–1060. http://doi.wiley.com/10.1002/jcc.540110907.

[104] Pomelli CS. Cavity Surfaces and their Discretization. In: Mennucci B, Cammi R, editors. Continuum Solvation Models

in Chemical Physics JohnWiley & Sons, Ltd; 2007.p. 49–63.

[105] Pomelli CS, Tomasi J. DefPol: NewProcedure toBuildMolecular Surfaces and ItsUse inContinuumSolvationMethods.

J Comput Chem 1998 30Nov;19(15):1758–1776.

[106] Pomelli CS, Tomasi J. Variation of surface partition in GEPOL: effects on solvation free energy and free-energy profiles.

Theor ChemAcc 1998 Feb;99(1):34–43. https://doi.org/10.1007/s002140050300.

[107] Pomelli CS. A tessellationless integration grid for the polarizable continuummodel reaction field. J ComputChem2004

Sep;25(12):1532–1541. http://dx.doi.org/10.1002/jcc.20076.

[108] Pomelli CS, Tomasi J, CammiR. A Symmetry adapted tessellation of theGEPOL surface: applications tomolecular prop-

erties in solution. J Comput Chem 2001 Sep;22(12):1262–1272. http://doi.wiley.com/10.1002/jcc.1083.

[109] Pomelli CS, Tomasi J, CossiM, BaroneV. EffectiveGeneration ofMolecular Cavities in PolarizableContinuumModel by

DefPol Procedure. J Comput Chem 1999 1Dec;20(16):1693–1701.

[110] PrinzF, SchlangeT,AsadullahK. Believe It orNot: HowMuchCanWeRelyonPublishedDataonPotentialDrugTargets?

Nat Rev Drug Discov 2011 31 Aug;10(9):712–712.

[111] Purisima EO. Fast summation boundary element method for calculating solvation free energies of macro-

molecules. JComputChem1998Oct;19(13):1494–1504. http://dx.doi.org/10.1002/(SICI)1096-987X(199810)
19:13<1494::AID-JCC6>3.0.CO;2-L.

[112] PurisimaEO,Nilar SH. A simple yet accurateboundary elementmethod for continuumdielectric calculations. JComput

Chem 1995 Jun;16(6):681–689. http://dx.doi.org/10.1002/jcc.540160604.

[113] QuanC, StammB. Mathematical analysis and calculationofmolecular surfaces. JComputPhys2016Oct;322:760–782.

http://www.sciencedirect.com/science/article/pii/S0021999116302868.

[114] Quan C, Stamm B. Meshing molecular surfaces based on analytical implicit representation. J Mol Graph Model 2017

Jan;71:200–210. http://dx.doi.org/10.1016/j.jmgm.2016.11.008.

[115] RappeAK,CasewitCJ, Colwell KS,GoddardWA, SkiffWM. UFF, a full periodic table force field formolecularmechanics

and molecular dynamics simulations. J Am Chem Soc 1992 Dec;114(25):10024–10035. http://pubs.acs.org/doi/
abs/10.1021/ja00051a040.

[116] ReddyM. API Design for C++. San Francisco, CA, USA:Morgan Kaufmann Publishers Inc.; 2011.

http://doi.wiley.com/10.1002/jcc.540151009
http://doi.wiley.com/10.1002/jcc.540151009
http://doi.wiley.com/10.1002/jcc.540110907
https://doi.org/10.1007/s002140050300
http://dx.doi.org/10.1002/jcc.20076
http://doi.wiley.com/10.1002/jcc.1083
http://dx.doi.org/10.1002/(SICI)1096-987X(199810)19:13<1494::AID-JCC6>3.0.CO;2-L
http://dx.doi.org/10.1002/(SICI)1096-987X(199810)19:13<1494::AID-JCC6>3.0.CO;2-L
http://dx.doi.org/10.1002/jcc.540160604
http://www.sciencedirect.com/science/article/pii/S0021999116302868
http://dx.doi.org/10.1016/j.jmgm.2016.11.008
http://pubs.acs.org/doi/abs/10.1021/ja00051a040
http://pubs.acs.org/doi/abs/10.1021/ja00051a040

46 ROBERTODI REMIGIO ET AL .

[117] Reid MTH, White JK, Johnson SG. Generalized Taylor–Duffy Method for Efficient Evaluation of Galerkin Integrals in

Boundary-Element Method Computations. IEEE Trans Antennas Propag 2015 Jan;63(1):195–209. http://dx.doi.
org/10.1109/TAP.2014.2367492.

[118] Repisky M, Konecny L, Kadek M, Komorovsky S, Malkin OL, Malkin VG, et al. Excitation Energies from Real-Time

Propagation of the Four-Component Dirac–Kohn–Sham Equation. J Chem Theory Comput 2015Mar;11(3):980–991.

http://pubs.acs.org/doi/abs/10.1021/ct501078d.

[119] Rick SW, Stuart SJ, Berne BJ. Dynamical fluctuating charge force fields: Application to liquid water. J Chem Phys 1994

Oct;101(7):6141–6156. http://scitation.aip.org/content/aip/journal/jcp/101/7/10.1063/1.468398.

[120] Ringholm M, Jonsson D, Ruud K. A general, recursive, and open-ended response code. J Comput Chem

2014;35(8):622–633. http://dx.doi.org/10.1002/jcc.23533.

[121] Ronacher A, Beautiful Native Libraries;. http://lucumr.pocoo.org/2013/8/18/beautiful-native-libraries/.

[122] Rosen L. Open Source Licensing: Software Freedom and Intellectual Property Law. Upper Saddle River, NJ, USA: Pren-

tice Hall PTR; 2004. https://dl.acm.org/citation.cfm?id=1014911.

[123] Sauter SA, Schwab C. Boundary Element Methods:. Springer Series in Computational Mathematics, Springer Berlin

Heidelberg; 2011.

[124] Scalmani G, Barone V, Kudin KN, Pomelli CS, Scuseria GE, Frisch MJ. Achieving linear-scaling computational cost for

the polarizable continuum model of solvation. Theoretical Chemistry Accounts: Theory, Computation, and Model-

ing (Theoretica Chimica Acta) 2004Mar;111(2-6):90–100. http://link.springer.com/article/10.1007/s00214-
003-0527-2.

[125] Scalmani G, Frisch MJ. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J

ChemPhys 2010Mar;132(11):114110. http://dx.doi.org/10.1063/1.3359469.

[126] Scherlis DA, Fattebert JL, Gygi F, Cococcioni M, Marzari N. A unified electrostatic and cavitation model for first-

principles molecular dynamics in solution. J Chem Phys 2006 Feb;124(7):74103. http://dx.doi.org/10.1063/1.
2168456.

[127] Schieschke N, Di Remigio R, Frediani L, Heuser J, Höfener S. Combining frozen-density embedding with the

conductor-like screening model using Lagrangian techniques for response properties. J Comput Chem 2017

Jul;38(19):1693–1703. http://dx.doi.org/10.1002/jcc.24813.

[128] Senn HM, ThielW. QM/MMmethods for biomolecular systems. Angew Chem Int Ed Engl 2009 Jan;48(7):1198–1229.

http://www.ncbi.nlm.nih.gov/pubmed/19173328.

[129] Shavitt I, Bartlett RJ. Many-BodyMethods in Chemistry and Physics: MBPT and Coupled-Cluster Theory. Cambridge

Molecular Science, Cambridge University Press; 2009. https://books.google.no/books?id=SWw6ac1NHZYC.

[130] Silla E, Villar F, NilssonO, Pascual-Ahuir JL, TapiaO. Molecular volumes and surfaces of biomacromolecules via GEPOL:

a fast and efficient algorithm. J Mol Graph 1990 Sep;8(3):168–72, 151. https://www.ncbi.nlm.nih.gov/pubmed/
2279013.

http://dx.doi.org/10.1109/TAP.2014.2367492
http://dx.doi.org/10.1109/TAP.2014.2367492
http://pubs.acs.org/doi/abs/10.1021/ct501078d
http://scitation.aip.org/content/aip/journal/jcp/101/7/10.1063/1.468398
http://dx.doi.org/10.1002/jcc.23533
http://lucumr.pocoo.org/2013/8/18/beautiful-native-libraries/
https://dl.acm.org/citation.cfm?id=1014911
http://link.springer.com/article/10.1007/s00214-003-0527-2
http://link.springer.com/article/10.1007/s00214-003-0527-2
http://dx.doi.org/10.1063/1.3359469
http://dx.doi.org/10.1063/1.2168456
http://dx.doi.org/10.1063/1.2168456
http://dx.doi.org/10.1002/jcc.24813
http://www.ncbi.nlm.nih.gov/pubmed/19173328
https://books.google.no/books?id=SWw6ac1NHZYC
https://www.ncbi.nlm.nih.gov/pubmed/2279013
https://www.ncbi.nlm.nih.gov/pubmed/2279013

ROBERTODI REMIGIO ET AL . 47

[131] Silla E, Tuñón I, Pascual-Ahuir JL. GEPOL: An improved description of molecular surfaces II. Computing the molecular

area and volume. J Comput Chem 1991Nov;12(9):1077–1088. http://doi.wiley.com/10.1002/jcc.540120905.

[132] Solis FJ, Jadhao V, Olvera de la Cruz M. Generating true minima in constrained variational formulations via modified

Lagrangemultipliers. PhysRevEStatNonlinSoftMatterPhys2013Nov;88(5):053306. http://dx.doi.org/10.1103/
PhysRevE.88.053306.

[133] St Laurent AM. UnderstandingOpen Source and Free Software Licensing. O’ReillyMedia; 2004.

[134] Su P, Li H. Continuous and smooth potential energy surface for conductorlike screening solvation model using fixed

points with variable areas. J Chem Phys 2009 Feb;130(7):074109. http://scitation.aip.org/content/aip/
journal/jcp/130/7/10.1063/1.3077917.

[135] Sutter H, Alexandrescu A. C++ Coding Standards: 101 Rules, Guidelines, and Best Practices (C++ in Depth Series).

Addison-Wesley Professional; 2004.

[136] Taschuk M, Wilson G. Ten simple rules for making research software more robust. PLoS Comput Biol 2017

Apr;13(4):e1005412. http://dx.doi.org/10.1371/journal.pcbi.1005412.

[137] The Free Software Foundation, GNU Lesser General Public License;. https://www.gnu.org/licenses/lgpl.html.

[138] Thellamurege NM, Li H. Note: FixSol solvation model and FIXPVA2 tessellation scheme. J Chem Phys 2012

Dec;137(24):246101. http://dx.doi.org/10.1063/1.4773280.

[139] Thorvaldsen AJ, Ruud K, Kristensen K, Jørgensen P, Coriani S. A density matrix-based quasienergy formulation of the

Kohn-Sham density functional response theory using perturbation- and time-dependent basis sets. J Chem Phys 2008

Dec;129(21):214108. http://www.ncbi.nlm.nih.gov/pubmed/19063545.

[140] Tomasi J, Mennucci B, Cammi R. Quantum Mechanical Continuum Solvation Models. Chem Rev 2005

Aug;105(8):2999–3093.

[141] Turney JM, Simmonett AC, Parrish RM, Hohenstein EG, Evangelista Fa, Fermann JT, et al. Psi4: An Open-Source Ab

Initio Electronic Structure Program. Wiley Interdiscip Rev ComputMol Sci 2012 31 Jul;2(4):556–565.

[142] Vandevoorde D, Josuttis NM, Gregor D. C++ Templates: The Complete Guide. 2 edition ed. Addison-Wesley Profes-

sional; 2017.

[143] Weijo V, Randrianarivony M, Harbrecht H, Frediani L. Wavelet Formulation of the Polarizable Continuum Model. J

Comput Chem 2010May;31(7):1469–1477.

[144] Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. Best practices for scientific computing. PLoS

Biol 2014 Jan;12(1):e1001745. http://dx.doi.org/10.1371/journal.pbio.1001745.

[145] Wilson G, Bryan J, Cranston K, Kitzes J, Nederbragt L, Teal TK. Good enough practices in scientific computing. PLoS

Comput Biol 2017 Jun;13(6):e1005510. http://dx.doi.org/10.1371/journal.pcbi.1005510.

[146] YorkDM,KarplusM. ASmoothSolvationPotential Basedon theConductor-LikeScreeningModel. J PhysChemA1999

Dec;103(50):11060–11079. http://pubs.acs.org/doi/abs/10.1021/jp992097l.

http://doi.wiley.com/10.1002/jcc.540120905
http://dx.doi.org/10.1103/PhysRevE.88.053306
http://dx.doi.org/10.1103/PhysRevE.88.053306
http://scitation.aip.org/content/aip/journal/jcp/130/7/10.1063/1.3077917
http://scitation.aip.org/content/aip/journal/jcp/130/7/10.1063/1.3077917
http://dx.doi.org/10.1371/journal.pcbi.1005412
https://www.gnu.org/licenses/lgpl.html
http://dx.doi.org/10.1063/1.4773280
http://www.ncbi.nlm.nih.gov/pubmed/19063545
http://dx.doi.org/10.1371/journal.pbio.1001745
http://dx.doi.org/10.1371/journal.pcbi.1005510
http://pubs.acs.org/doi/abs/10.1021/jp992097l

48 ROBERTODI REMIGIO ET AL .

L I ST ING 1 Pseudocode summary of the calls to achieve SCF iterations including PCM contributions in a Fortran

code. Full working examples are available in the PCMSOLVER online repository for a C host and a Fortran host.

1 program pcm_fortran_host

2 use, intrinsic :: iso_c_binding

3 use, intrinsic :: iso_fortran_env, only: output_unit, error_unit

4 use pcmsolver

5 implicit none

6 integer(c_int) :: nr_nuclei ! Number of atomic centers

7 real(c_double), allocatable :: charges(:) ! Atomic charges

8 real(c_double), allocatable :: coordinates(:) ! Coordinates of the atomic centers, a (3, nr_nuclei) array in column-major order

9 type(c_ptr) :: pcm_context ! Handle to the PCMSolver library

10 integer(c_int) :: symmetry_info(4) ! Point group symmetry generators

11 type(PCMInput) :: host_input ! Input reading data structure

12 character(kind=c_char, len=*), parameter :: mep_lbl = 'TotMEP' ! Molecular electrostatic (MEP) potential surface function label

13 character(kind=c_char, len=*), parameter :: asc_lbl = 'TotASC' ! Apparent surface charge (ASC) surface function label

14 integer(c_int) :: grid_size ! The PCM cavity mesh grid size

15 real(c_double), allocatable :: grid(:) ! The PCM cavity mesh coordinates, a (3, grid_size) array in column-major order

16 real(c_double), allocatable :: mep(:), asc(:) ! The MEP and ASC arrays

17 real(c_double) :: Upol ! The polarization energy

18 ! Input parsing for QM code and initialize QM code internals

19 nr_nuclei = get_nr_nuclei()

20 allocate(charges(nr_nuclei))

21 allocate(coordinates(3*nr_nuclei))

22 call get_molecule(nr_nuclei, charges, coordinates)

23 ! Initialize PCMSolver. It is assumed that parsing of the PCM input has already happened

24 if (.not. pcmsolver_is_compatible_library()) then

25 write(error_unit, *) 'PCMSolver library not compatible!'

26 stop

27 end if

28 ! symmetry_info, host_input and host_writer are here assumed to have been initialized

29 pcm_context = pcmsolver_new(PCMSOLVER_READER_HOST, nr_nuclei, charges, coordinates, symmetry_info, host_input, c_funloc(host_writer))

30 call pcmsolver_print(pcm_context) ! Print PCMSolver set up information

31 grid_size = pcmsolver_get_cavity_size(pcm_context) ! Get size of the PCM cavity mesh

32 allocate(grid(3*grid_size)) ! Allocate space for the PCM cavity mesh coordinates

33 grid = 0.0_c_double

34 call pcmsolver_get_centers(pcm_context, grid) ! Get the PCM cavity mesh

35 !!! SCF iterations !!!

36 ! Calculate and set TotMEP surface function

37 allocate(mep(grid_size))

38 mep = 0.0_c_double

39 call get_mep(nr_nuclei, charges, coordinates, density_matrix, grid_size, grid, mep)

40 call pcmsolver_set_surface_function(pcm_context, grid_size, mep, pcmsolver_fstring_to_carray(mep_lbl))

41 ! Compute the ASC surface function for the totally symmetric irrep

42 call pcmsolver_compute_asc(pcm_context, pcmsolver_fstring_to_carray(mep_lbl), pcmsolver_fstring_to_carray(asc_lbl), irrep = 0_c_int)

43 ! Grab the ASC surface function into the appropriate array

44 allocate(asc(grid_size))

45 asc = 0.0_c_double

46 call pcmsolver_get_surface_function(pcm_context, grid_size, asc, pcmsolver_fstring_to_carray(asc_lbl))

47 energy = pcmsolver_compute_polarization_energy(pcm_context, mep_lbl, asc_lbl)

48 write(output_unit, '(A, F20.12)') 'Polarization energy = ', energy

49 ! Calculate contraction of apparent surface charge with charge-attraction integrals

50 call get_pcm_fock(grid_size, asc, fock_matrix)

51 !!! End of SCF iterations !!!

52 call pcmsolver_save_surface_functions(pcm_context) ! Save converged surface functions to NumPy arrays

53 ! Clean up MEP and ASC arrays

54 deallocate(mep)

55 deallocate(asc)

56 ! Finalize PCMSolver library

57 call pcmsolver_delete(pcm_context)

58 ! Clean up PCM cavity mesh coordinates array

59 deallocate(grid)

60 deallocate(charges)

61 deallocate(coordinates)

62 close(output_unit)

63 end program

http://pcmsolver.readthedocs.io
https://github.com/PCMSolver/pcmsolver/blob/release/1.2.Z/tests/C_host/C_host.c
https://github.com/PCMSolver/pcmsolver/blob/release/1.2.Z/tests/Fortran_host/Fortran_host.f90

ROBERTODI REMIGIO ET AL . 49

L I ST ING 2 Skeleton of the implementation of the uniform dielectric Green’s function.

template <typename DerivativeTraits = taylor<double, 1, 1> >

class UniformDielectric : public IGreensFunction {

public:

// Constructor: initializes a uniform dielectric Green's function given a permittivity

UniformDielectric(double eps) : epsilon_(eps) {}

// Implements the pure virtual kernelS function

virtual double kernelS(const Eigen::Vector3d & p1, const Eigen::Vector3d & p2)

const {

DerivativeTraits sp[3], pp[3];

sp[0] = p1(0);

sp[1] = p1(1);

sp[2] = p1(2);

pp[0] = p2(0);

pp[1] = p2(1);

pp[2] = p2(2);

return this->operator()(sp, pp)[0];

}

// Implements the pure virtual kernelD function

virtual double kernelD(const Eigen::Vector3d & direction,

const Eigen::Vector3d & p1,

const Eigen::Vector3d & p2) const {

DerivativeTraits t1[3], t2[3];

t1[0] = p1(0);

t1[1] = p1(1);

t1[2] = p1(2);

t2[0] = p2(0);

t2[1] = p2(1);

t2[2] = p2(2);

t2[0][1] = normal_p2(0);

t2[1][1] = normal_p2(1);

t2[2][1] = normal_p2(2);

return this->operator()(t1, t2)[1];

}

// Implements the pure virtual singleLayer function

virtual double singleLayer(const Element & e, double factor) const {

return (factor * std::sqrt(4 * M_PI / area));

}

// Implements the pure virtual doubleLayer function

virtual double doubleLayer(const Element & e, double factor) const {

return (-factor * std::sqrt(M_PI / area) * 1.0 / radius);

}

private:

// Permittivity of the uniform dielectric

double epsilon_;

// Function call operator computing the value of the function and its

// derivatives, as prescribed by the DerivativeTraits type.

// The DerivativeTraits type defaults to the directional derivative, that is

// of type taylor<double, 1, 1>

DerivativeTraits operator()(DerivativeTraits * sp,

DerivativeTraits * pp) const {

return 1 / (this->epsilon_ * distance(sp, pp));

}

};

	Introduction
	Theory
	The boundary element method
	Variational formulation of the PCM
	Coupling the classical and quantum problems

	Using the PCMSolver library
	Developing the PCMSolver Library
	Contributing to PCMSolver
	Showcase: PCMSolver in action
	The Future: Lessons learnt, the road ahead and some questions

