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Abstract

Noisy labeled data represent a rich source of information that often are easily accessible and cheap to obtain, but label noise might

also have many negative consequences if not accounted for. How to fully utilize noisy labels has been studied extensively within

the framework of standard supervised machine learning over a period of several decades. However, very little research has been

conducted on solving the challenge posed by noisy labels in non-standard settings. This includes situations where only a fraction

of the samples are labeled (semi-supervised) and each high-dimensional sample is associated with multiple labels. In this work,

we present a novel semi-supervised and multi-label dimensionality reduction method that effectively utilizes information from both

noisy multi-labels and unlabeled data. With the proposed Noisy multi-label semi-supervised dimensionality reduction (NMLSDR)
method, the noisy multi-labels are denoised and unlabeled data are labeled simultaneously via a specially designed label propagation

algorithm. NMLSDR then learns a projection matrix for reducing the dimensionality by maximizing the dependence between the

enlarged and denoised multi-label space and the features in the projected space. Extensive experiments on synthetic data, as well

as benchmark datasets, demonstrate the effectiveness of the proposed algorithm and show that it outperforms state-of-the-art multi-

label feature extraction algorithms. Finally, we illustrate the benefits of the proposed method in a realistic healthcare case study,

achieving statistically significant gains compared to the previous state-of-the-art on the problem of identifying patients suffering

from multiple chronic diseases.
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1. Introduction

Supervised machine learning crucially relies on the accu-

racy of the observed labels associated with the training sam-

ples [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Observed labels may be cor-

rupted and, therefore, they do not necessarily coincide with the

true class of the samples. Such inaccurate labels are also re-

ferred to as noisy [2, 11, 4]. Label noise can occur because

of imperfect evidence or fatigue on the part of the labeler, e.g.

in healthcare where a medical doctor may be annotating or la-

beling thousands of patients manually, potentially making mis-

takes in the process [12, 5]. In other cases, noisy labels may re-

sult from the use of frameworks such as anchor learning [13, 14]

or silver standard learning [15], which have received interest for

instance in healthcare analytics [16, 17]. A review of various

sources of label noise can be found in [2].

In standard supervised machine learning settings, the chal-

lenge posed by noisy labels has been studied extensively.

For example, many noise-tolerant versions of well-known

classifiers have been proposed, including discriminant analy-

sis [8, 18], logistic regression [9], the k-nearest neighbor clas-

sifier [19], boosting algorithms [20, 21], perceptrons [22, 23],
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support vector machines [24], deep neural networks [7, 25, 26].

Others have proposed more general classification frameworks

that are not restricted to particular classifiers [4, 11].

However, very little research has been conducted on solving

the challenge posed by noisy labels in non-standard settings,

where the magnitude of the noisy label problem is increased

considerably. One good example (among many) of such a non-

standard setting occurs for instance within the healthcare do-

main, used here as an illustrative case-study. Non-standard set-

tings include (i) Semi-supervised learning [27], referring to a

situation where only a few (noisy) labeled data points are avail-

able, making the impact of noise in those few labels more preva-

lent, and where information must also jointly be inferred from

unlabeled data points. In healthcare, it may be realistic to ob-

tain some labels through a (imperfect) manual labeling process,

but the vast amount of data remains unlabeled; (ii) Multi-label
learning, wherein objects may not belong exclusively to one

category. This situation occurs frequently in a number of do-

mains, including healthcare, where for instance a patient could

suffer from multiple chronic diseases; (iii) High-dimensional

data, where the abundance of features and the limited (noisy)

labeled data, lead to a curse of dimensionality problem. In such

situations, dimensionality reduction (DR) [28] is useful, either

as a pre-processing step, or as an integral part of the learning

procedure. This is a well-known challenge in health, where the
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number of patients in the populations under study frequently

is small, but heterogeneous potential sources of data features

from electronic health records for each patient may be enor-

mous [29, 30, 31, 32].

In this paper, and to the best of our knowledge, we pro-

pose the first noisy label, semi-supervised and multi-label DR

machine learning method, which we call the Noisy multi-label
semi-supervised dimensionality reduction (NMLSDR) method.

Towards that end, we propose a label propagation method

that can deal with noisy multi-label data. Label propaga-

tion [33, 34, 35, 36, 37, 38, 39], wherein one propagates the

labels to the unlabeled data in order to obtain a fully labeled

dataset, is one of the most successful and fundamental frame-

works within semi-supervised learning. However, in contrast to

many of these methods that clamp the labeled data, in our multi-

label propagation method we allow the labeled part of the data

to change labels during the propagation to account for noisy la-

bels. In the second part of our algorithm we aim at learning a

lower dimensional representation of the data by maximizing the

feature-label dependence. Towards that end, similarly to other

DR methods [40, 41], we employ the Hilbert-Schmidt indepen-

dence criterion (HSIC) [42], which is a non-parametric measure

of dependence.

The NMLSDR method is a DR method, which is general and

can be used in many different settings, e.g. for visualization or

as a pre-processing step before doing classification. However,

in order to test the quality of the NMLSDR embeddings, we

(preferably) have to use some quantitative measures. For this

purpose, a common baseline classifier such as the multi-label k-

nearest neighbor (ML-kNN) classifier [43] has been applied to

the low-dimensional representations of the data [44, 45]. Even

though this is a valid way to measure the quality of the em-

beddings, to apply a supervised classifier in a semi-supervised

learning setting is not a realistic setup since one suddenly as-

sumes that all labels are known (and correct). Therefore, as

an additional contribution, we introduce a novel framework for

semi-supervised classification of noisy multi-label data.

In our experiments, we compare NMLSDR to baseline meth-

ods on synthetic data, benchmark datasets, as well as a real-

world case study, where we use it to identify the health status

of patients suffering from potentially multiple chronic diseases.

The experiments demonstrate that for partially and noisy la-

beled multi-label data, NMLSDR is superior to existing DR

methods according to seven different multi-label evaluation

metrics and the Wilcoxon statistical test.

In summary, the contributions of the paper are as follows.

• A new semi-supervised multi-label dimensionality reduc-

tion method based on dependence maximization that is ro-

bust to noisy labels.

• A novel framework for semi-supervised classification of

noisy multi-label data.

• A comprehensive experimental section that illustrate the

effectiveness of the NMLSDR, and in particular, a real-

world case study where the proposed framework is used to

identify the health status of patients with multiple chronic

diseases.

The remainder of the paper is organized as follows. Re-

lated work is reviewed in Sec. 2. In Sec. 3, we describe

our proposed NMLSDR method and the novel framework for

semi-supervised classification of noisy multi-label data. Sec. 4

describes experiments on synthetic and benchmark datasets,

whereas Sec. 5 is devoted to the case study where we study

chronically ill patients. We conclude the paper in Sec. 6.

2. Related work

In this section we review related unsupervised, semi-

supervised and supervised DR methods.1

Unsupervised DR methods do not exploit label information

and can therefore straightforwardly be applied to multi-label

data by simply ignoring the labels. For example, principal com-

ponent analysis (PCA) aims to find the projection such that

the variance of the input space is maximally preserved [47].

Other methods aim to find a lower dimensional embedding that

preserves the manifold structure of the data, and examples of

these include Locally linear embedding [48], Laplacian eigen-

maps [49] and ISOMAP [50].

One of the most well-known supervised DR methods is lin-

ear discriminative analysis (LDA) [51], which aims at finding

the linear projection that maximizes the within-class similar-

ity and at the same time minimizes the between-class similar-

ity. LDA has been extended to multi-label LDA (MLDA) in

several different ways [52, 53, 54, 55, 56]. The difference be-

tween these methods basically consists in the way the labels

are weighted in the algorithm. Following the notation in [56],

wMLDAb [52] uses binary weights, wMLDAe [53] uses

entropy-based weights, wMLDAc [54] uses correlation-based

weights, wMLDAf [55] uses fuzzy-based weights, whereas

wMLDAd [56] uses dependence-based weights.

Canonical correlation analysis (CCA) [57] is a method that

maximizes the linear correlation between two sets of variables,

which in the case of DR are the set of labels and the set of fea-

tures derived from the projected space. CCA can be directly

applied also for multi-labels without any modifications. Multi-

label informed latent semantic indexing (MLSI) [58] is a DR

method that aims at both preserving the information of inputs

and capturing the correlations between the labels. In the Multi-

label least square (ML-LS) method one extracts a common sub-

space that is assumed to be shared among multiple labels by

solving a generalized eigenvalue decomposition problem [59].

In [40], a supervised method for doing DR based on de-

pendence maximization [42] called Multi-label dimensionality

reduction via dependence maximization (MDDM) was intro-

duced. MDDM attempts to maximize the feature-label depen-

dence using the Hilbert-Schmidt independence criterion and

was originally formulated in two different ways. MDDMp is

1DR may be obtained both by feature extraction, i.e. by a data transforma-

tion, and by feature selection [46]. Here, we refer to DR in the sense of feature

extraction.
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based on orthonormal projection directions, whereas MDDMf

makes the projected features orthonormal. Yu et al. showed

that MDDMp can be formulated using least squares and added

a PCA term to the cost function in a new method called Multi-

label feature extraction via maximizing feature variance and

feature-label dependence simultaneously (MVMD) [41].

The most closely related existing DR methods to NMLSDR

are the semi-supervised multi-label methods. The Semi-

supervised dimension reduction for multi-label classification

method (SSDR-MC) [60], Coupled dimensionality reduction

and classification for supervised and semi-supervised multil-

abel learning [61], and Semisupervised multilabel learning with

joint dimensionality reduction [62] are semi-supervised multi-

label methods that simultaneously learn a classifier and a low

dimensional embedding.

Other semi-supervised multi-label DR methods are semi-

supervised formulations of the corresponding supervised multi-

label DR method. Blascho et al. introduced semi-supervised

CCA based on Laplacian regularization [63]. Several different

semi-supervised formulations of MLDA have also been pro-

posed. Multi-label dimensionality reduction based on semi-

supervised discriminant analysis (MSDA) adds two regulariza-

tion terms computed from an adjacency matrix and a similarity

correlation matrix, respectively, to the MLDA objective func-

tion [64]. In the Semi-supervised multi-label dimensionality

reduction (SSMLDR) [44] method one does label propagation

to obtain soft labels for the unlabeled data. Thereafter the soft

labels of all data are used to compute the MLDA scatter ma-

trices. An other extension of MLDA is Semi-supervised multi-

label linear discriminant analysis (SMLDA) [65], which later

was modified and renamed Semi-supervised multi-label dimen-

sionality reduction based on dependence maximization (SM-

DRdm) [45]. In SMDRdm the scatter matrices are computed

based on only labeled data. However, a HSIC term is also added

to the familiar Rayleigh quotient containing the two scatter ma-

trices, which is computed based on soft labels for both labeled

and unlabeled data obtained in a similar way as in SSMLDR.

Common to all these methods is that none of them explictly

assume that the labels can be noisy. In SSMLDR and SM-

DRdm, the labeled data are clamped during the label propa-

gation and hence cannot change. Moreover, these two methods

are both based on LDA, which is known heavily affected by out-

liers, and consequently also wrongly labeled data [66, 67, 68].

3. The NMLSDR method

We start this section by introducing notation and the setting

for noisy multi-label semi-supervised linear feature extraction,

and thereafter elaborate on our proposed NMLSDR method.

3.1. Problem statement
Let {xi}ni=1

be a set of n D-dimensional data points, xi ∈ RD.

Assume that the data are ordered such that the l first of the data

points are labeled and u are unlabeled, l + u = n. Let X be a

n × d matrix with the data points as row vectors.

Assume that the number of classes is C and let YL
i ∈ {0, 1}

C

be the label-vector of data point xi, i = 1, . . . , l. The elements

are given by YL
ic = 1, c = 1, . . . ,C if data point xi belongs to

the c−th class and YL
ic = 0 otherwise. Define the label matrix

YL ∈ {0, 1}l×C as the matrix with the known label-vectors YL
i ,

i = 1, . . . , l as row vectors and let YU ∈ {0, 1}u×C be the corre-

sponding label matrix of the unknown labels.

The objective of linear feature extraction is to learn a pro-

jection matrix P ∈ RD×d that maps a data point in the original

feature space x ∈ RD to a lower dimensional representation

z ∈ Rd,

z = PT x, (1)

where d < D and PT denotes the transpose of the matrix P.

In our setting, we assume that the label matrix YL is poten-

tially noisy and that YU is unknown. The first part of our pro-

posed NMLSDR method consists of doing label propagation in

order to learn the labels YU and update the estimate of YL. We

do this by introducing soft labels F ∈ Rn×C for the label matrix

Y =
(
YL

YU

)
, where Fic represents the probability that data point

xi belong to the c− th class. We obtain F with label propagation

and thereafter use F to learn the projection matrix P. However,

we start by explaining our label propagation method.

3.2. Label propagation using a neighborhood graph
The underlying idea of label propagation is that similar data

points should have similar labels. Typically, the labels are prop-

agated using a neighborhood graph [33]. Here, inspired by [69],

we formulate a label propagation method for multi-labels that

is robust to noise. The method is as follows.

Step 1. First, a neighbourhood graph is constructed. The

graph is described by its adjacency matrix W, which can be

designed e.g. by setting the entries to

Wi j = exp(−σ−2‖xi − x j‖2), (2)

where ‖xi− x j‖ is the Euclidean distance between the datapoints

xi and x j, and σ is a hyperparameter. Alternatively, one can use

the Euclidian distance to compute a k-nearest neighbors (kNN)

graph where the entries of W are given by

Wi j =

⎧⎪⎪⎨⎪⎪⎩
1, if xi among x j’s kNN or x j among xi’s kNN

0, otherwise.
(3)

Step 2. Symmetrically normalize the adjacency matrix W by

letting

W̃ = D−1/2WD−1/2, (4)

where D is a diagonal matrix with entries given by dii =∑n
k=1 Wik.

Step 3. Calculate the stochastic matrix

T = D̃−1W̃, (5)

where d̃ii =
∑n

k=1 W̃ik. The entry Ti j can now be considered as

the probability of a transition from node i to node j along the

edge between them.

Step 4. Compute soft labels F ∈ Rn×C by iteratively using the

following update rule

F(t + 1) = IαT F(t) + (I − Iα)Y, (6)
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where Iα is a n×n diagonal matrix with the hyperparameters αi,

0 ≤ αi < 1, on the diagonal. To initialize F, we let F(0) = Y ,

where the unlabeled data are set to YU
ic = 0, c = 1, . . . ,C.

3.2.1. Discussion
Setting αi = 0 for the labeled part of the data corresponds to

clamping of the labels. However, this is not what we aim for

in the presence of noisy labels. Therefore, a crucial property of

the proposed framework is to set αi > 0 such that the labeled

data can change labels during the propagation.

Moreover, we note that our extension of label propagation

to multi-labels is very similar to the single-label variant intro-

duced in [69], with the exception that we do not add the outlier

class, which is not needed in our case. In other extensions to

the multi-label label propagation [44, 45], the label matrix Y is

normalized such that the rows sum to 1, which ensures that the

output of the algorithm F also has rows that sum to 1. In the

single-label case this makes sense in order to maintain the in-

terpretability of probabilities. However, in the multi-label case

the data points do not necessarily exclusively belong to a single

class. Hence, the requirement
∑

c Fic = 1 does not make sense

since then xi can maximally belong to one class if one think of

F as a probability and require the probability to be 0.5 or higher

in order to belong to a class.

On the other hand, in our case, a simple calculation shows

that 0 ≤ Fic(t + 1) ≤ 1:

Fic(t + 1) = αi

n∑
m=1

TimFmc(t) + (1 − αi)Yic

≤ αi

n∑
m=1

Tim + (1 − αi) = αi + (1 − αi) = 1, (7)

since Fic(t) ≤ 1 and Yic ≤ 1. However, we do not necessarily

have that
∑

c Fic = 1.

From matrix theory it is known that, given that I − IαT is

nonsingular, the solution of the linear iterative process (6) con-

verges to the solution of

(I − IαT )F = (I − Iα)Y, (8)

for any initialization F(0) if and only if IαT is a convergent
matrix [70] (spectral radius ρ(IαT ) < 1). IαT is obviously con-

vergent if 0 ≤ αi < 1 ∀i. Hence, we can find the soft labels F
by solving the linear system given by Eq. (8).

Moreover, Fic can be interpreted as the probability that data-

point xi belongs to class c, and therefore, if one is interested in

hard label assignments, Ỹ , these can be found by letting Ỹic = 1

if Fic > 0.5 and Ỹic = 0 otherwise.

3.3. Dimensionality reduction via dependence maximization

In this section we explain how we use the labels obtained

using label propagation to learn the projection matrix P.

The motivation behind dependence maximization is that

there should be a relation between the features and the label of

an object. This should be the case also in the projected space.

Hence, one should try to maximize the dependence between the

feature similarity in the projected space and the label similarity.

A common measure of such dependence is the Hilbert-Schmidt

independence criterion (HSIC) [42], defined by

HS IC(X,Y) =
1

(n − 1)2
tr(KHLH), (9)

where tr denotes the trace of a matrix. H ∈ Rn×n is given by

Hi j = δi j − n−1, where δi j = 1 if i = j, and δi j = 0 otherwise. K
is a kernel matrix over the feature space, whereas L is a kernel

computed over the label space.

Let the projection of x be given by the projection matrix P ∈
R

D×d and function Φ : RD → Rd, Φ(x) = PT x. We select

a linear kernel over the feature space, and therefore the kernel

function is given by

K(xi, x j) = 〈Φ(xi),Φ(x j)〉 = 〈PT xi, PT x j〉 = PT xixT
j P (10)

Hence, given data {xi}ni=1
, the kernel matrix can be approxi-

mated by K = XPT PXT .

The kernel over the label space, L, is given via the labels

yi ∈ {0, 1}C . One possible such kernel is the linear kernel

L(yi, y j) = 〈yi, y j〉. (11)

However, in our semi-supervised setting, some of the labels are

unknown and some are noisy. Hence, the kernel L cannot be

computed. In order to enable DR in our non-standard problem,

we propose to estimate the kernel using the labels obtained via

our label propagation method. For the part of the data that was

labeled from the beginning we use the hard labels, ỸL, obtained

from the label propagation, whereas for the unlabeled part we

use the soft labels, FU . Hence, the kernel is approximated via

L = F̃F̃T , where F̃ =
(
ỸL

FU

)
. The reason for using the hard la-

bels obtained from label propagation for the labeled part is that

we want some degree of certainty for those labels that change

during the propagation (if the soft label FL
ic changes with less

than 0.5 from its initial value 0 or 1 during the propagation, the

hard label YL
ic does not change).

The constant term, (n− 1)−2, in Eq. (9) is irrelevant in an op-

timization setting. Hence, by inserting the estimates of the ker-

nels into Eq. (9), the following objective function is obtained,

Ψ(P) = tr(HXPT PXT HF̃F̃T ) = tr(PT XT HF̃F̃T HXP). (12)

Note that the matrix XT HF̃F̃T HX is symmetric. Hence, by re-

quiring that the projection directions are orthogonal and that the

new dimensionality is d, the following optimization problem is

obtained

arg max
P
Ψ(P) = arg max

P
tr(PT (XT HF̃F̃T HX)P), (13)

s.t. P ∈ RD×d, PPT = I.

As a consequence of the Courant-Fisher characterization [71], it

follows that the maximum is achieved when P is an orthonormal

basis corresponding to the d largest eigenvalues. Hence, P can

be found by solving the eigenvalue problem

XT HF̃F̃T HXP = ΛP. (14)
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The dimensionality of the projected space, d, is upper

bounded by the rank of F̃F̃T , which in turn is upper bounded

by the number of classes C. Hence, d cannot be set larger than

C.

3.4. Semi-supervised classification for noisy multi-label data
The multi-label k-nearest neighbor (ML-kNN) classifier [43]

is a widely adopted classifier for multi-label classification.

However, similarly to many other classifiers, its performance

can be hampered if the dimensionality of the data is too high.

Moreover, the ML-kNN classifier only works in a completely

supervised setting. To resolve these problems, as an additional

contribution of this work, we introduce a novel framework for

semi-supervised classification of noisy multi-label data, con-

sisting of two steps. In the first step, we compute a low dimen-

sional embedding using NMLSDR. The second step consists of

applying a semi-supervised ML-kNN classifier. For this clas-

sifier we use our label propagation method on the learned em-

bedding to obtain a fully labeled dataset, and thereafter apply

the ML-kNN classifier.

4. Experiments

In this paper, we have proposed a method for computing a

low-dimensional embedding of noisy, partially labeled multi-

label data. However, it is not a straightforward task to measure

how well the method works. Even though the method is def-

initely relevant to real-world problems (illustrated in the case

study in Sec. 5), the framework cannot be directly applied to

most multi-label benchmark datasets since most of them are

completely labeled, and the labels are assumed to be clean.

Moreover, the NMLSDR provides a low dimensional embed-

ding of the data, and we need a way to measure how good

the embedding is. If the dimensionality is 2 or 3, this can

to some degree be done visually by plotting the embedding.

However, in order to quantitatively measure the quality and si-

multaneously maintain a realistic setup, we will apply our pro-

posed end-to-end framework for semi-supervised classification

and dimensionality reduction. In our experiments, this realistic

semi-supervised setup will be applied in an illustrative example

on synthetic data and in the case study.

A potential disadvantage of using a semi-supervised clas-

sifier, is that it does not necessarily isolate effect of the DR

method that is used to compute the embedding. For this rea-

son, we will also test our method on some benchmark datasets,

but in order to keep everything coherent, except for the method

used to compute the embedding, we compute the embedding

using NMLSDR and baseline DR methods based on only the

noisy and partially labeled multi-label training data. Thereafter,

we assume that the true multi-labels are available when we train

the ML-kNN classifier on the embeddings.

The remainder of this section is organized as follows. First

we describe the performance measures we employed, baseline

DR methods, and how we select hyper-parameters. Thereafter

we provide an illustrative example on synthetic data, and sec-

ondly experiments on the benchmark data. The case study is

described in the next section.

4.1. Evaluation metrics
Evaluation of performance is more complicated in a multi-

label setting than for traditional single-labels. In this work, we

decide use the seven different evaluation criteria that were em-

ployed in [40], namely Hamming loss (HL), Macro F1-score

(MaF1), Micro F1 (MiF1), Ranking loss (RL), Average preci-

sion (AP), One-error (OE) and Coverage (Cov).

HL simply evaluates the number of times there is a mismatch

between the predicted label and the true label, i.e.

HL =
n∑

i=1

‖ŷi ⊕ yi‖1
nC

, (15)

where ŷi denotes the predicted label vector of data point xi and

⊕ is the XOR-operator. MaF1 is obtained by first computing

the F1-score for each label, and then averaging over all labels.

MaF1 =
1

C

C∑
c=1

2
∑n

i=1 ŷicyic∑n
i=1 ŷic +

∑n
i=1 yic

, (16)

MiF1 calculates the F1 score on the predictions of different la-

bels as a whole,

MiF1 =
2
∑n

i=1

∑C
c=1 ŷicyic∑n

i=1

∑C
c=1 ŷic +

∑n
i=1

∑C
c=1 yic

, (17)

We note that HL, MiF1 and MaF1 are computed based on hard

labels assignments, whereas the four other measures are com-

puted based on soft labels. In all of our experiments, we obtain

the hard labels by putting a threshold at 0.5.

RL computes the average ratio of reversely ordered label

pairs of each data point. AP evaluates the average fraction of

relevant labels ranked higher than a particular relevant label.

OE gives the ratio of data points where the most confident pre-

dicted label is wrong. Cov gives an average of how far one

needs to go down on the list of ranked labels to cover all the

relevant labels of the data point. For a more detailed descrip-

tion of these measures, we point the interested reader to [72].

In this work, we modify four of the evaluation metrics such

that all of them take values in the interval [0, 1] and “higher

always is better”. Hence, we define

HL′ = 1 − HL, (18)

RL′ = 1 − RL, (19)

OE′ = 1 − OE, (20)

and normalized coverage (Cov’) by

Cov′ = 1 −Cov/(C − 1). (21)

4.2. Baseline dimensionality reduction methods
In this work, we consider the following other DR methods:

CCA, MVMD, MDDMp, MDDMf and four variants of MLDA,

namely wMLDAb, wMLDAe, wMLDAc and wMLDAd. These

methods are supervised and require labeled data, and are there-

fore trained only on the labeled part of the training data. In

addition, we compare to a semi-supervised method, SSMLDR,

which we adapt to noisy multi-labels by using the label propa-

gation algorithm we propose in this paper instead of the label

propagation method that was originally proposed in SSMLDR.
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Figure 1: 3 dimensional embedding of the synthetic dataset obtained using (a) SSMLDR; (b) NMLSDR; (c) NMLSDR with multi-classes included; and (d) PCA.

4.3. Hyper-parameter selection

For the ML-kNN classifier we set k = 10. The effect of

varying the number of neighbors will be left for further work.

In order to learn the NMLSDR embedding we use a kNN-graph

with k = 10 and binary weights. Moreover, we set αi = 0.6 for

labeled data and αi = 0.999 for unlabeled data. By doing so,

one ensures that an unlabeled datapoint is not affected by its

initial value, but gets all contribution from the neighbors during

the propagation.

4.4. Illustrative example on synthetic toy data

Dataset description. To test the framework in a controlled ex-

periment, a synthetic dataset is created as follows.

A dataset of size 8000 samples is created, where each of the

data points has dimensionality 320. The number of classes is

set to 4, and we generate 2000 samples from each class. 30%

from class 1 also belong to class 2, and vice versa. 20% from

class 2 also belong to class 3 and vice versa, whereas 25% from

class 3 also belong to class 4 and vice versa.

A sample from class i is generated by randomly letting 10%

of the features in the interval {20(i − 1) + 1, . . . , 20i} take a ran-

dom integer value between 1 and 10. Since there are 4 classes,

this means that the first 80 features are directly dependent on

the class-membership.

For the remaining 240 features we consider 20 of them at

the time. We randomly select 50% of the 8000 samples and

randomly let 20% of the 20 features take a random integer value

between 1 and 10. We repeat this procedure for the 12 different

sets of 20 features {20(i − 1) + 1, . . . , 20i}, i = 5, 6, . . . , 16.

All features that are not given a value using the procedure

described above are set to 0. Noise is injected into the labels

by randomly flipping a fraction p = 0.1 of the labels and we

make the data partially labeled by removing 50 % of the labels.

2000 of the samples are kept aside as an independent test set.

We note that noisy labels are often easier and cheaper to ob-

tain than true labels and it is therefore not unreasonable that the

fraction of labeled examples is larger than what it commonly is

in traditional semi-supervised learning settings.

Results. We apply the NMLSDR method in combination with

the semi-supervised ML-kNN classifier as explained above and

compare to SSMLDR. We create two baselines by, for both of

these methods, using a different value for the hyperparameter

αi for the labeled part of the data, namely 0, which corresponds

to clamping. We denote these two baselines by SSMLDR* and

NMLSDR*. In addition, we compare to baselines that only

utilize the labeled part of the data, namely the supervised DR

methods explained above in combination with a ML-kNN clas-

sifier. The data is standardized to 0 mean and 1 in standard
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Method HL’ RL’ AP OE’ Cov’ MaF1 MiF1

CCA 0.863 0.884 0.898 0.852 0.816 0.787 0.785

MVMD 0.906 0.912 0.924 0.897 0.836 0.850 0.849

MDDMp 0.906 0.911 0.924 0.897 0.836 0.851 0.850

MDDMf 0.859 0.888 0.900 0.855 0.819 0.785 0.783

wMLDAb 0.844 0.871 0.885 0.831 0.807 0.754 0.750

wMLDAe 0.864 0.885 0.899 0.855 0.818 0.790 0.788

wMLDAc 0.865 0.887 0.900 0.857 0.818 0.787 0.785

wMLDAd 0.869 0.891 0.907 0.869 0.822 0.788 0.786

SSMLDR* 0.863 0.883 0.899 0.859 0.814 0.796 0.793

SSMLDR 0.879 0.898 0.910 0.871 0.827 0.817 0.814

NMLSDR* 0.907 0.919 0.929 0.903 0.842 0.861 0.859

NMLSDR 0.913 0.925 0.935 0.912 0.846 0.868 0.866

Table 1: Performance of different embeddings on the synthetic dataset.

deviation and we let the dimensionality of the embedding be 3.

Fig. 1a and 1b show the embeddings obtained obtained using

SSMLDR and NMLSDR, respectively. For ivisualization pur-

poses, we have only plotted those datapoints that exclusively

belong to one class. In Fig. 1c, we have added two of the multi-

classes for the NMLSDR embedding. For comparison, we also

added the embedding obtained using PCA in Fig. 1d. As we can

see, in the PCA embedding the classes are not separated from

each other, whereas in the NMLSDR and SSMLDR embed-

dings the classes are aligned along different axes. It can be seen

that the classes are better separated and more compact in the

NMLSDR embedding than the SSMLDR embedding. Fig. 1c

shows that the data points that belong to multiple classes are

placed where they naturally belong, namely between the axes

corresponding to both of the classes they are member of.

Tab. 1 shows the results obtained using the different meth-

ods on the synthetic dataset. As we can see, our proposed

method gives the best performance for all metrics. Moreover,

NMLSDR with αL
i = 0, which corresponds to clamping of the

labeled data during label propagation gives the second best re-

sults but cannot compete with our proposed method, in which

the labels are allowed to change during the propagation to ac-

count for noisy labels. We also note that, even though the

SSMLDR improves the MLDA approaches that are based on

only the labeled part of the data, it gives results that are consid-

erably worse than NMLSDR.

4.5. Benchmark datasets

Experimental setup. We consider the following benchmark

datasets 2: Birds, Corel, Emotions, Enron, Genbase, Medi-

cal, Scene, Tmc2007 and Yeast. We also add our synthetic

toy dataset as a one of our benchmark datasets (described in

Sec. 4.4). These datasets are shown in Tab. 2, along with some

useful characteristics. In order to be able to apply our frame-

work to the benchmark datasets, we randomly flip 10 % of the

labels to generate noisy labels and let 30 % of the data points

training sets be labeled. All datasets are standardized to zero

mean and standard deviation one.

We apply the DR methods to the partially and noisy labeled

multi-label training sets in order to learn the projection matrix

2Downloaded from mulan.sourceforge.net/datasets-mlc.html
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Figure 2: Mean of the Wilcoxon score obtained over the 7 different metrics.

P, which in turn is used to map the D-dimensional training and

test sets to a d−dimensional representation. d is set as large

as possible, i.e. to C − 1 for the MLDA-based methods and

C for the other methods. Then we train a ML-kNN classi-

fier using the low-dimensional training sets, assuming that the

true multi-labels are known and validate the performance on the

low-dimensional test sets.

In total we are evaluating the performance over 10 different

datasets and across 7 different performance measures for all the

feature extraction methods we use. Hence, to investigate which

method performs better according to the different metrics, we

also report the number of times each method gets the highest

value of each metric. In addition, we compare all pairs of meth-

ods by using a Wilcoxon signed rank test with 5% significance

level [73]. Similarly to [56], if method A performs better than B

according to the test, A is assigned the score 1 and B the score

0. If the null hypothesis (method A and B perform equally) is

not rejected, both A and B are assigned an equal score of 0.5.

Results. Tab. 3 shows results in terms of HL’. NMLSDR gets

best HL’-score for eight of the datasets and achieves a maximal

Wilcoxon score, i.e performs statistically better than all nine

other methods according to the test at a 5 % significance level.

The second best method MDDMp gets the highest HL’ score for

three datasets and Wilcoxon score of 7.5. From Tab. 4 we see

that NMLSDR achieves the highest RL’-score seven times and

a Wilcoxon score of 8.5. The second best method is MVMD,

which obtains three of the highest RL’ values and a Wilcoxon

score of 8.0.

Tab. 5 shows performance in terms of AP. The highest AP

score is achieved for NMLSDR for eight datasets and it gets a

maximal Wilcoxon score of 9.0. According to the Wilcoxon

score second place is tied between MVMD and MDDMp.

However, MVMD gets the highest AP score for two datasets,

whereas MDDMp does not get the highest score for any of

them. OE’ is presented in Tab. 6. We can see that NMLSDR

gets a maximal Wilcoxon score and the highest OE’ score for

seven datasets. MVMD is number two with a Wilcoxon score
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Dataset Domain Train instances Test instances Attributes Labels Cardinality

Birds audio 322 323 260 19 1.06

Corel scene 5188 1744 500 153 2.87

Emotions music 391 202 72 6 1.81

Enron text 1123 579 1001 52 3.38

Genbase biology 463 199 99 25 1.26

Medical text 645 333 1161 39 1.24

Scene scene 1211 1196 294 6 1.06

Tmc2007 text 3000 7077 493 22 2.25

Toy synthetic 6000 2000 320 4 1.38

Yeast biology 1500 917 103 14 4.23

Table 2: Description of benchmark datasets considered in our experiments.

CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR

Birds 0.947 0.950 0.950 0.947 0.948 0.949 0.949 0.949 0.949 0.951

Corel 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980 0.980

Emotions 0.715 0.771 0.778 0.711 0.696 0.714 0.709 0.717 0.786 0.787

Enron 0.941 0.950 0.950 0.942 0.941 0.941 0.941 0.940 0.938 0.950

Genbase 0.989 0.996 0.996 0.988 0.990 0.991 0.988 0.989 0.994 0.997

Medical 0.976 0.974 0.974 0.976 0.974 0.975 0.975 0.976 0.966 0.975

Scene 0.810 0.899 0.900 0.809 0.810 0.814 0.817 0.810 0.873 0.897

Tmc2007 0.914 0.928 0.928 0.912 0.911 0.911 0.911 0.916 0.922 0.929

Toy 0.836 0.894 0.894 0.839 0.821 0.831 0.831 0.854 0.861 0.903

Yeast 0.780 0.791 0.790 0.782 0.785 0.783 0.781 0.781 0.793 0.793

Best values 2 2 3 2 1 1 1 2 2 8
Wilcoxon 2.0 7.0 7.5 2.5 2.0 3.0 2.5 3.5 6.0 9.0

Table 3: Performance in terms of 1 - Hamming loss (HL’) across 10 different benchmark datasets.

CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR

Birds 0.715 0.766 0.767 0.734 0.709 0.718 0.719 0.725 0.681 0.771

Corel 0.800 0.808 0.808 0.800 0.799 0.799 0.800 0.800 0.801 0.814

Emotions 0.695 0.824 0.824 0.709 0.693 0.700 0.676 0.714 0.829 0.845

Enron 0.894 0.911 0.911 0.893 0.893 0.892 0.891 0.893 0.883 0.914

Genbase 0.993 0.995 0.995 0.993 0.994 0.992 0.992 0.991 0.995 1.000

Medical 0.925 0.952 0.949 0.925 0.916 0.921 0.919 0.945 0.856 0.946

Scene 0.585 0.900 0.898 0.629 0.574 0.583 0.572 0.616 0.853 0.898

Tmc2007 0.831 0.906 0.906 0.830 0.830 0.830 0.831 0.847 0.872 0.910

Toy 0.871 0.909 0.909 0.870 0.849 0.865 0.861 0.888 0.887 0.926

Yeast 0.806 0.820 0.819 0.811 0.810 0.809 0.806 0.803 0.818 0.816

Best values 0 3 0 0 0 0 0 0 0 7
Wilcoxon 3.0 8.0 7.5 4.5 1.5 2.0 2.0 5.0 3.0 8.5

Table 4: Performance in terms of 1 - Ranking loss (RL’) across 10 different benchmark datasets.

CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR

Birds 0.389 0.499 0.500 0.426 0.374 0.392 0.379 0.424 0.357 0.502

Corel 0.260 0.277 0.277 0.261 0.265 0.263 0.263 0.268 0.266 0.288

Emotions 0.669 0.781 0.773 0.686 0.672 0.687 0.666 0.704 0.799 0.808

Enron 0.592 0.669 0.670 0.583 0.584 0.582 0.580 0.578 0.526 0.675

Genbase 0.963 0.990 0.993 0.964 0.960 0.968 0.963 0.969 0.984 0.997

Medical 0.673 0.722 0.716 0.666 0.644 0.674 0.669 0.723 0.446 0.725

Scene 0.491 0.836 0.835 0.534 0.481 0.488 0.475 0.521 0.781 0.834

Tmc2007 0.584 0.714 0.713 0.587 0.579 0.576 0.577 0.623 0.662 0.721

Toy 0.882 0.921 0.921 0.880 0.862 0.880 0.875 0.900 0.897 0.933

Yeast 0.732 0.748 0.747 0.731 0.733 0.733 0.729 0.725 0.745 0.741

Best values 0 2 0 0 0 0 0 0 0 8
Wilcoxon 3.5 7.5 7.5 4.0 1.0 3.5 1.0 5.0 3.0 9.0

Table 5: Performance in terms of Average precision (AP) across 10 different benchmark datasets.

of 8.0 and two best values.

Tab. 7 shows Cov’. NMLSDR gets a maximal Wilcoxon

score and the highest Cov’ value for seven datasets. Despite

that MVMD gets the highest Cov’ for three datasets and MD-

DMp for none of the datasets, the second best Wilcoxon score

is 7.5 and tied between MVMD and MDDMp. MaF1 is shown

in Tab. 8. The best method, which is our proposed method

gets a maximal Wilcoxon score and the highest MaF1 value
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CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR

Birds 0.273 0.419 0.407 0.314 0.250 0.273 0.250 0.297 0.203 0.419

Corel 0.250 0.261 0.262 0.252 0.255 0.254 0.253 0.267 0.260 0.283

Emotions 0.535 0.673 0.644 0.564 0.535 0.589 0.550 0.589 0.718 0.728

Enron 0.620 0.762 0.762 0.610 0.587 0.604 0.606 0.579 0.544 0.765

Genbase 0.950 0.990 0.995 0.955 0.935 0.960 0.950 0.965 0.980 0.995

Medical 0.583 0.607 0.592 0.589 0.538 0.583 0.577 0.628 0.323 0.619

Scene 0.265 0.732 0.729 0.319 0.258 0.264 0.247 0.303 0.656 0.727

Tmc2007 0.527 0.650 0.648 0.531 0.523 0.519 0.516 0.578 0.604 0.656

Toy 0.821 0.888 0.887 0.819 0.785 0.821 0.811 0.850 0.849 0.903

Yeast 0.760 0.755 0.749 0.740 0.747 0.751 0.748 0.744 0.751 0.739

Best values 1 2 1 0 0 0 0 1 0 7
Wilcoxon 3.5 8.0 7.0 4.0 1.0 3.5 1.0 5.0 3.0 9.0

Table 6: Performance in terms of 1 - One error (OE’) across 10 different benchmark datasets.

CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR

Birds 0.821 0.851 0.852 0.830 0.818 0.824 0.824 0.831 0.808 0.860

Corel 0.601 0.617 0.617 0.603 0.600 0.599 0.601 0.603 0.603 0.628

Emotions 0.563 0.684 0.679 0.579 0.567 0.565 0.554 0.587 0.679 0.696

Enron 0.738 0.762 0.763 0.736 0.737 0.736 0.734 0.736 0.724 0.768

Genbase 0.983 0.984 0.984 0.983 0.985 0.981 0.981 0.980 0.985 0.991

Medical 0.918 0.941 0.939 0.917 0.909 0.913 0.911 0.936 0.859 0.939

Scene 0.637 0.899 0.898 0.672 0.625 0.633 0.624 0.663 0.860 0.898

Tmc2007 0.740 0.835 0.835 0.741 0.740 0.739 0.741 0.762 0.790 0.840

Toy 0.809 0.837 0.837 0.807 0.794 0.805 0.802 0.822 0.820 0.849

Yeast 0.513 0.533 0.532 0.526 0.526 0.523 0.519 0.518 0.530 0.528

Best values 0 3 0 0 0 0 0 0 0 7
Wilcoxon 2.5 7.5 7.5 4.5 2.0 2.5 1.5 5.0 3.0 9.0

Table 7: Performance in terms of 1 - Normalized coverage (Cov’) across 10 different benchmark datasets.

CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR

Birds 0.011 0.079 0.076 0.027 0.002 0.000 0.000 0.039 0.006 0.104

Corel 0.012 0.023 0.022 0.014 0.010 0.010 0.010 0.019 0.010 0.021

Emotions 0.381 0.599 0.604 0.419 0.366 0.385 0.371 0.415 0.623 0.649

Enron 0.044 0.102 0.105 0.048 0.043 0.049 0.044 0.065 0.063 0.101

Genbase 0.520 0.561 0.603 0.514 0.497 0.515 0.497 0.442 0.558 0.630

Medical 0.153 0.168 0.164 0.159 0.135 0.126 0.133 0.197 0.038 0.175

Scene 0.059 0.705 0.707 0.132 0.084 0.055 0.041 0.098 0.569 0.700

Tmc2007 0.183 0.419 0.418 0.189 0.171 0.177 0.175 0.212 0.349 0.434

Toy 0.732 0.830 0.828 0.741 0.709 0.722 0.724 0.758 0.776 0.845

Yeast 0.266 0.318 0.323 0.276 0.281 0.279 0.248 0.233 0.321 0.342

Best values 0 1 2 0 0 0 0 1 0 6
Wilcoxon 2.5 7.5 7.5 5.0 2.0 2.0 1.0 3.5 5.0 9.0

Table 8: Performance in terms of Macro F1-score (MaF1) across 10 different benchmark datasets.

CCA MVMD MDDMp MDDMf wMLDAb wMLDAe wMLDAc wMLDAd SSMLDR NMLSDR

Birds 0.036 0.178 0.172 0.063 0.006 0.000 0.000 0.065 0.019 0.197

Corel 0.017 0.033 0.031 0.019 0.013 0.013 0.013 0.031 0.015 0.033

Emotions 0.459 0.630 0.639 0.450 0.404 0.448 0.430 0.460 0.652 0.666

Enron 0.351 0.523 0.530 0.413 0.340 0.378 0.369 0.310 0.346 0.518

Genbase 0.882 0.953 0.959 0.872 0.885 0.902 0.873 0.881 0.932 0.968

Medical 0.459 0.501 0.495 0.505 0.400 0.440 0.455 0.498 0.212 0.496

Scene 0.066 0.700 0.702 0.142 0.086 0.058 0.041 0.102 0.584 0.698

Tmc2007 0.421 0.589 0.586 0.443 0.440 0.438 0.438 0.485 0.540 0.590

Toy 0.729 0.828 0.826 0.739 0.706 0.719 0.721 0.756 0.774 0.843

Yeast 0.573 0.605 0.607 0.577 0.582 0.584 0.555 0.548 0.609 0.626

Best values 0 1 2 1 0 0 0 0 0 7
Wilcoxon 2.5 8.0 7.5 5.0 1.5 2.5 2.0 4.0 3.5 8.5

Table 9: Performance in terms of Micro F1-score (MiF1) across 10 different benchmark datasets.

for six datasets. Tab. 9 shows MiF1. NMLSDR achieves 8.5

in Wilcoxon score and has the highest MiF1 score for seven

datasets.

In total, NMLSDR consistently gives the best performance

for all seven evaluation metrics. Moreover, in order to summa-

rize our findings, we compute the mean Wilcoxon score across

all seven performance metrics and plot the result in Fig. 2. If

we sort these results, we get NMLSDR (8.86), MVMD (7.64),
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MDDMp (7.43), wMLDAd (4.43), MDDMf (4.21), SSMLDR

(3.79), CCA (2.79), wMLDAe (2.71) and wMLDAb/wMLDAc

(1.57). The best method, which is our proposed method, gets

a mean value that is 1.22 higher than number two. The second

best method is MVMD, slightly better than MDDMp. The best

MLDA-based method is wMLDAd, which is ranked 4th, how-

ever, with a much lower mean value than the three best meth-

ods. The semi-supervised extension of MLDA (SSMLDR) is

ranked 6th and is actually performing worse that wMLDAd,

which is a bit surprising. However, SSMLDR also uses a bi-

nary weighting scheme, and should therefore be considered as

a semi-supervised variant of wMLDAb, which it performs con-

siderably better than. wMLDAb and wMLDAc give the worst

performance of all the 10 methods.

The main reason why the MLDA-based approaches in gen-

eral perform worse than the other DR methods is probably re-

lated to what we discussed in Sec. 2, namely that LDA-based

approaches are heavily affected by outliers and wrongly labeled

data. More concretely, the fact that the number of labeled data

points are relatively few and that the labels are noisy, leads

to errors in the scatter matrices that even might amplify since

one has to invert a matrix to solve the generalized eigenvalue

problem. The semi-supervised extension of MLDA, SSMLDR,

improves quite much compared to wMLDAb, but the starting

point is so bad that even though it improves, it cannot compete

with the best methods. On the other hand, the MDDM-based

methods (MVMD and MDDMp) are not so sensitive to label

noise and the fact that there are few labels, and therefore these

methods can perform quite well even though they are trained

only on the labeled subset. Hence, the reasons to the good per-

formance of NMLSDR are probably that MDDMp is the ba-

sis of NMLSDR, and that NMLSDR in addition uses our label

propagation method to improve.

5. Case study

In this section, we describe a case study where we study pa-

tients potentially suffering from multiple chronic diseases. This

healthcare case study reflects the need for label noise-tolerant

methods in a non-standard situation (semi-supervised learning,

multiple labels, high dimensionality). The objective is to iden-

tify patients with certain chronic diseases, more specifically hy-

pertension and/or diabetes mellitus. In order to do so, we take

an approach where we use clinical expertise to create a par-

tially and noisy labeled dataset, and thereafter apply our pro-

posed end-to-end framework, namely NMLSDR for dimension-

ality reduction in combination with semi-supervised ML-kNN

to classify these patients. An overview of the framework em-

ployed in the case study is shown in Fig. 3.

Chronic diseases. According to The World Health Organisa-

tion, a disease is defined as chronic if one or several of the fol-

lowing criteria are satisfied: the disease is permanent, requires

special training of the patient for rehabilitation, is caused by

non-reversible pathological alterations, or requires a long pe-

riod of supervision, observation, or care. The two most preva-

lent chronic diseases for people over 64 years are those that

we study in this paper, namely hypertension and diabetes melli-

tus [74]. These types of diseases represent an increasing prob-

lem in modern societies all over the world, which to a large de-

gree is due to a general increase in life expectancy, along with

an increased prevalence of chronic diseases in an aging popu-

lation [75]. Moreover, the economical burden associated with

these chronic conditions is high. For example, in 2017, treat-

ment of diabetic patients accounted for 1 out of 4 healthcare

dollars in the United States [76]. Hence, in the future, a signifi-

cant amount of resources must be devoted to the care of chronic

patients and it will be important not only to improve the patient

care, but also more efficiently allocate the resources spent on

treatment of these diseases.

5.1. Data
In this case study, we study a dataset consisting of patients

that potentially have one or more chronic diseases. All of these

patients got some type of treatment at University Hospital of

Fuenlabrada, Madrid (Spain) in the year 2012. The patients

are described by diagnosis codes following the International

Classification of Diseases 9th revision, Clinical Modification

(ICD9-CM) [77], and pharmacological dispensing codes ac-

cording to Anatomical Therapeutic Chemical (ATC) classifica-

tion systems [78]. Some preprocessing steps are considered.

Similarly to [79, 80], the ICD9-CM and ATC codes are repre-

sented using frequencies, i.e, for each patient, we consider all

encounters with the health system in 2012 and we count how

many times each ICD9-CM and ATC code appear in the elec-

tronic health record. In total there are 1517 ICD9-CM codes

and 746 ATC codes. However, all codes that appear for less

than 10 patients across the training set are removed. After this

feature selection, the dimensionality of the data is 455, of which

267 represent ICD9-CM codes and 188 represent ATC codes.

We do have access to ground truth labels that indicate what

type of chronic disease(s) the patients have. These are provided

by a patient classification system developed by the company

3M [81]. This classification system stratify patients into so-

called Clinical Risk Groups (CRG) that indicate what type(s)

of chronic disease the patient has and the severity based on the

patient encounters with the health system during a period of

time, typically one year. A five-digit classification code is used

to assign each patient to a severity risk group. The first digit of

the CRG is the core health status group, ranging from healthy

(1) to catastrophic (9); the second to fourth digits represents the

base 3M CRG; and the fifth digit is used for characterizing the

severity-of-illness levels.

For the purpose of this work, the ground truth labels are only

used for cohort selection and final evaluation of our models.

For the remaining parts they are considered unknown. To select

a cohort, we consider the first four digits of the CRGs to ana-

lyze the the following chronic conditions: CRG-1000 (healthy),

which contains 46835 individuals; CRG-5192 (hypertension)

with 12447 patients; CRG-5424 (diabetes), which has 2166 pa-

tients; and CRG-6144 (hypertension and diabetes), with a total

of 3179 patients. We employ an undersampling strategy and

randomly select 2166 patients from each of the four categories,

and thereby obtain balanced classes. An independent test set is
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Figure 3: Illustration of proposed framework applied to identify patients with chronic diseases.

created by randomly selecting 20 % of these patients. Hence,

the training set contains 6932 patients and the test set 1732 pa-

tients.

5.2. Rule-based creation of noisy labeled training data using
clinical knowledge

There are some important ICD9-CM codes and ATC-drugs

that are strongly correlated with hypertension and diabetes, re-

spectively. These are verified by our clinical experts and de-

scribed in Tab. 10. In particular, the ICD9-CM code 250 is

important for diabetes because it is the code for diabetes melli-
tus. Similarly, the ICD9-CM codes 401-405 are important for

hypertension because they describe different types of hyperten-

sion.

In this case study we are interested in four groups, namely

those that have hypertension, those that have diabetes, those

that have both, and those that do not have any these two chronic

diseases. Thanks to the clinical expertise and the information

that they provided us with, which is summarized in Tab. 10,

we can create a partially and noisy labeled dataset using the

following set of rules.

1. Those that have the ICD codes 250 and any of the codes

401-405 are assigned to both the hypertension and diabetes

class.

2. Those that have the ICD code 250, but none of the 7 ICD9-

CM codes and 64 ATC drugs listed by the clinicians as

indicators for hypertension, are labeled with diabetes.

3. Those that have any of the ICD9-CM codes 401-405, but

none of the 4 ICD9-CM codes for diabetes or 12 ATC

drugs for diabetes, are labeled with hypertension.

4. Those that do not have any of the ICD9-CM codes or ATC

drugs listed up in Tab. 10 are labeled as healthy.

5. The remaining patients do not get a label.

In total, this leads to 1734 in the healthy class, 2547 in the

hypertension class, 1971 in the diabetes class. 1302 of the

patients in the hypertension class also belongs to the diabetes

class. 1982 of the patients do not get a label using the the

routine described above. To be able to examine for statistical

significance, we randomly select 1000 of the noisy labeled pa-

tients and 1000 of the unlabeled patients. By doing so, we can

repeat the experiments several times and test for significance

using a pairwise t-test. We do the repetition 10 times and let the

significance level be 95%.

5.2.1. Performing feature extraction and classification
After having obtained the partially and noisy labeled multi-

label dataset, we do feature extraction using NMLSDR, fol-

lowed by semi-supervised multi-label classification, exactly in

the same manner as we did it for the synthetic toy data in Sec-

tion 4.4. In this case study, we use the same evaluation met-

rics, hyper-parameters and baseline feature extraction methods

as explained in Sec. 4.1. The dimensionality of the embedding

is set to 2 for all embedding methods.

5.3. Results

Tab. 11 shows the performance of the different DR methods

on the task of classifying patients with chronic diseases in terms

of seven different evaluation metrics. According to the pairwise

t-test, our method achieves the best performance for all met-

rics. Second place is tied between MDDMp and MVMD. The

semi-supervised variant of MLDA, namely SSMLDR, performs

better than the supervised counterparts (wMLDAb, wMLDAc,

wMLDAd, wMLDAe) and is consistently ranked 4th accord-

ing to all metrics. Interestingly, the more advanced weighting

schemes in wMLDAc and wMLDAd actually lead to worse re-

sults than what the simple weights in wMLDAb and wMLdAe

give. CCA gives the worst performance according to 4 of the

evaluation measures, for the 3 other measures the difference be-

tween CCA and wMLDAd is not significant.

Fig. 4 shows plots of the two-dimensional embeddings of

the chronic patients obtained using four different DR meth-

ods, namely MDDMp, wMLDAb, NMLSDR and SSMLDR.

The different colors and markers represent the true CRG-labels

of the patients. As we can see, visually the MDDMp and

NMLSDR embeddings look quite similar. The healthy patients

are squeezed together in a small area (purple dots), and the yel-

low dots that represent patients that have both diabetes and hy-

pertension are placed between the blue dots, which are those

that have only hypertension, and the red dots, which represent

the patient that only have diabetes. Intuitively, this placement

makes sense. On the other hand, the embedding obtained us-

ing SSMLDR does not look similar to its counterpart obtained

using wMLDAb, and it is easy to see why the performance of

wMLDAb is worse.

6. Conclusions

In this paper we have introduced the NMLSDR method, a di-

mensionality reduction method for partially and noisy labeled

multi-label data. To our knowledge, NMLSDR is the only
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Chronicity ATC codes ICD9-CM codes

Hypertension C01AA, C01BA, C01BA, C01BC, C01BD, C01CA, C01CB, C01CX, 362,

C01DA, C01DX, C01EB, C02AB, C02AC, C02CA, C02DB, C02DC, 401,

C02DD, C02K, C02LC, C03AA, C03AX, C03BA, C03CA, C03DA 402,

C03EA, C03EB, C04AD, C04AE, C04AX, C05AA, C05AD, C05AE, 403,

C05AX, C05BA, C05BB, C05BX, C05CA, C05CX, C07AA, C07AB, 404,

C07AG, C07B, C07G, C07D, C07E, C07X, C08CA, C08DA, C08DB, 405,

C08GA, C09AA, C09BA, C09BB, C09CA, C09DA, C09DB, C09XA, 760

C10AA, C10AB, C10AC, C10AD, C10AX, C10BA, C10BX

Diabetes A10AB, A10AC, A10AD, A10AE, A10AF, A10BA, A10BB, 250, 588,

A10BD, A10BFM, A10BGM, A10BH, A10BX, 648, 775

Table 10: ICD9-CM codes and ATC codes associated with hypertension and diabetes.

Method HL’ RL’ AP OE’ Cov’ MaF1 MiF1

CCA 0.782 ± 0.009 0.823 ± 0.008 0.866 ± 0.006 0.755 ± 0.011 0.798 ± 0.004 0.712 ± 0.012 0.741 ± 0.011

MVMD 0.875 ± 0.006 0.930 ± 0.006 0.942 ± 0.004 0.894 ± 0.006 0.861 ± 0.005 0.853 ± 0.008 0.858 ± 0.006

MDDMp 0.875 ± 0.006 0.930 ± 0.005 0.942 ± 0.003 0.895 ± 0.006 0.861 ± 0.005 0.853 ± 0.008 0.858 ± 0.006

MDDMf 0.811 ± 0.010 0.853 ± 0.012 0.888 ± 0.009 0.798 ± 0.017 0.815 ± 0.006 0.750 ± 0.015 0.774 ± 0.013

wMLDAb 0.794 ± 0.007 0.844 ± 0.012 0.883 ± 0.008 0.788 ± 0.017 0.810 ± 0.008 0.731 ± 0.012 0.744 ± 0.011

wMLDAe 0.805 ± 0.008 0.856 ± 0.009 0.891 ± 0.006 0.801 ± 0.014 0.818 ± 0.005 0.749 ± 0.013 0.763 ± 0.012

wMLDAc 0.790 ± 0.007 0.842 ± 0.008 0.882 ± 0.004 0.783 ± 0.009 0.810 ± 0.005 0.729 ± 0.012 0.745 ± 0.011

wMLDAd 0.779 ± 0.013 0.838 ± 0.012 0.874 ± 0.008 0.770 ± 0.016 0.805 ± 0.008 0.720 ± 0.017 0.729 ± 0.018

SSMLDR 0.839 ± 0.005 0.889 ± 0.009 0.911 ± 0.006 0.839 ± 0.012 0.835 ± 0.008 0.799 ± 0.007 0.811 ± 0.005

NMLSDR 0.882 ± 0.005 0.939 ± 0.004 0.950 ± 0.003 0.909 ± 0.006 0.867 ± 0.005 0.864 ± 0.007 0.865 ± 0.005

Table 11: Results in terms of 7 evaluation measures (average±std) obtained by doing feature extraction using different methods, followed by semi-supervised

ML-kNN classification, on partially and noisy labeled chronicity data. The best performing methods according to each of the 7 metrics are marked in bold, where

the statistical significance is examined using a pairwise t-test at 95% significance level.

method the can explicitly deal with this type of data. Key com-

ponents in the method are a label propagation algorithm that can

deal with noisy data and maximization of feature-label depen-

dence using the Hilbert-Schmidt independence criterion. Our

extensive experimental sections show that NMLSDR is a good

dimensionality reduction method in settings where one has ac-

cess to partially and noisy labeled multi-label data.

In the future, we will investigate more thoroughly the effect

of using different weighting schemes in NMLSDR, similarly to

how it is done in MLDA with wMLDAb, wMLDAc, wMLDAd

and wMDLAd.
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