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Multi-, extensively-, and pan-drug resistant bacteria are a threat to our health today,

because their wide resistance spectra make their infections difficult to cure. In this work,

we isolated an extensively drug resistant (XDR) Klebsiella pneumoniae 2-1 strain from

the stool sample of a patient diagnosed of colorectal cancer. K. pneumoniae 2-1 was

found to be resistant to all the antibiotics tested except for cefepime, tigecycline, and

ceftazidime-avibactam. By sequencing the complete genome of K. pneumoniae 2-1, we

found it contains a chromosome of 5.23Mb and two circular plasmids with the size of 246

and 90 kb. The larger plasmid, pKP21HI1 was found to be a new conjugation-defective

plasmid belonging to incompatibility group HI1B and a new sequence type. Further

comparative genomics analysis and antimicrobial resistance gene analysis showed that

although a great deal of changes took place on the chromosome of K. pneumoniae 2-1

in comparison with the reference genome, the extensively drug resistance phenotype of

K. pneumoniae 2-1 is primarily due to the two multidrug resistant plasmids it contains.

This work explains the genetic and mechanistic basis of the extensive drug resistance

of K. pneumoniae 2-1, and found that plasmids play key roles in the strong antibiotic

resistance of bacteria.

Keywords: Klebsiella pneumoniae, extensively drug resistance, antimicrobial resistance, multidrug resistant

plasmid, high throughput sequencing, antimicrobial resistance gene

INTRODUCTION

Klebsiella pneumoniae is the most significant clinical species of the Klebsiella genus, and also one
of the most frequently observed Gram negative opportunistic pathogens in humans (Podschun
and Ullmann, 1998; Navon-Venezia et al., 2017). K. pneumoniae can lead to a variety of diseases
including urinary tract infections, pneumonia, bacteremia, and liver abscess (Podschun and
Ullmann, 1998; Navon-Venezia et al., 2017).

A large catalog of antibiotics such as β-lactams and aminoglycosides are effective
in controlling and curing infections caused by K. pneumoniae (Bush and Jacoby, 2010;
Krause et al., 2016). However, antimicrobial resistance (AMR) caused by the overuse and
misuse of antibiotics severely reduces the effectiveness of these antibiotics, leading to
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increasing difficulties in the treatment of K. pneumoniae.
For instance, according to the report of a state-wide AMR
surveillance program in China, CHINET, the resistance rate
of imipenem and meropenem in K. pneumoniae increased
significantly (from 3.0 to 10.5% for imipenem and from 2.9 to
13.4% for meropenem) between 2005 and 2014 (Hu et al., 2016).
Therefore, antibiotic resistance has become a focus in combating
K. pneumoniae infections in the last decade.

To make the AMR scenario worse, in recent years, infections
caused by multidrug-resistant (MDR, non-susceptibility to three
or more antimicrobial agent categories), extensively drug-
resistant (XDR, susceptible to at most two antimicrobial agent
categories), and even pandrug-resistant (PDR, non-susceptibility
to all drugs) K. pneumoniae have been frequently reported
(Falagas et al., 2005, 2008; Leavitt et al., 2010; Karaiskos and
Giamarellou, 2014; Huang et al., 2018; Krapp et al., 2018). These
K. pneumoniae strains are resistant to most or even all the
antibiotics used (Magiorakos et al., 2012). The infection of these
“superbugs” often leads to immense difficulties in treatment, and
sometimes even the death of infected patients (Giske et al., 2008;
Hersh et al., 2012). Oftentimes, these strains emerge in ICUwards
or on patients treated with organ transplant procedures due to the
long-term and extensive use of various antibiotics (Maseda et al.,
2014).

Several mechanisms are exploited by bacteria for resistance
against antibiotics: mutations on targets of antibioticsmay reduce
the effectiveness of antibiotics, the alteration and inactivation
of antibiotics may be catalyzed by proteins encoded by
chromosomal or plasmid-borne genes, mutated porins and efflux
pumps may lead to lower levels of antibiotics in the cytoplasm
and subsequently reduces their effective dosages (Zhao et al.,
2009; Li et al., 2015; Sharma et al., 2016). Antimicrobial resistance
genes (ARGs) that take advantage of these resistancemechanisms
may be disseminated between bacteria via horizontal gene
transfer mechanisms and spread from environmental bacteria to
pathogens (Sharma et al., 2016). Therefore, they pose a greater
threat to overall human health. To date, a large consortium
of ARGs has been discovered that impacts essentially every
class of antibiotics. For instance, 51 ARGs have been registered
in the Comprehensive Antibiotic Resistance Database (CARD)
for carbapenems, one of the last-line antibiotics against Gram-
negative bacteria (Nordmann et al., 2011a,b). This list of ARGs
include frequently observed blaOXA−48, blaKPC−2, blaNDM−1,
blaIMP, and blaVIM in K. pneumoniae, and is constantly growing
(Kliebe et al., 1985; Bradford et al., 2004; Yu et al., 2012).

The multi-, extensively-, and even pan-drug resistance
phenotypes of bacteria is usually the result of horizontal gene
transfer that gathers ARGs into one cell (Juhas, 2013). Many
mobile genetic elements, including plasmids, integrons, and
transposons, are capable of expressing genetically linked and co-
expressed ARG arrays that, upon dissemination, bring several
ARGs all at once, leading to multidrug resistance (Salabi
et al., 2013). In recent years, XDR K. pneumoniae turned
into an emerging and dangerous pathogen, particularly with
the emergence of carbapenem-resistant XDR K. pneumoniae
(Santino, 2013; Karaiskos and Giamarellou, 2014; Pontikis et al.,
2014; Lim et al., 2015). Several therapeutic options are available

for XDR K. pneumoniae. Fosfomycin has been attempted to treat
urinary tract infections and gastrointestinal infections caused by
XDR and PDR Enterobacteriaceae (Falagas et al., 2010; Leavitt
et al., 2010; Braun et al., 2018). Colistin and tigecycline are
the last resort treatments for serious carbapenem-resistant K.
pneumoniae infections (Olaitan et al., 2014; Piedra-Carrasco
et al., 2018). However, AMR against these antibiotics arose, such
as fosA3 for fosfomycin,mcr-1 for polymyxin, and tetAmutation
for tigecycline (Jiang et al., 2015; Liu et al., 2015; Du et al., 2018).
Further successful attempts for the treatment of XDR and PDR
K. pneumoniae were made, including antibiotic combination
therapies such as using double carbapenems (Piedra-Carrasco
et al., 2018), tigecycline plus meropenem (Lim et al., 2015), and
β-lactam/β-lactamase inhibitor combos such as ceftazidime plus
avibatam (Schimmenti et al., 2018).

Plasmids are the most important carriers for ARGs inMDR K.
pneumoniae, and are found in almost all antimicrobial resistant
K. pneumoniae isolates (Dolejska et al., 2013; Freire Martín et al.,
2014; Pitout et al., 2015; Navon-Venezia et al., 2017). A total of
306 complete K. pneumoniae plasmid sequences are currently
available at Genbank (Navon-Venezia et al., 2017). In particular,
pKpQIL and pKPN3 that belong to incompatibility group FIIK
are commonly found inK. pneumoniae belonging to the epidemic
clonal group CG258 (Chen et al., 2014; Navon-Venezia et al.,
2017). These two plasmids contain important ARGs such as
blaKPC−2 and blaKPC−3, and are frequently reported globally
(Leavitt et al., 2010; García-Fernández et al., 2012; Chen et al.,
2013, 2014).

In this study, K. pneumoniae 2-1, an XDR K. pneumoniae,
was isolated from the stool sample of a patient with colorectal
cancer. Two large plasmids were found in this strain. The full
genomic sequence of this strain, including both chromosomal
DNA sequence and the DNA sequence of two plasmids it
harbors, were obtained. Comparative genomic sequence analysis
showed one of the plasmids, pKP21HI1, is a new plasmid
belonging to IncHI1B and forms a new sequence type. Further
analysis of both chromosomal and plasmid-borne ARGs showed
the XDR phenotype in this strain is primarily contributed by
the ARGs harbored by the two multidrug resistance plasmids.
Findings of this work suggest that attention should be focused on
multidrug resistance plasmids, as they could determine the XDR
phenotype of K. pneumoniae, are highly mobile, and are difficult
to contain.

MATERIALS AND METHODS

Bacterial Strain
K. pneumoniae 2-1 used in this work was isolated from the stool
sample of a colorectal cancer patient in Qilu Hospital, Jinan. The
patient was treated for lasting abdominal pain and constipation,
and was initially prescribed with levofloxacin because he was
misdiagnosed of enteritis. Strain identification was performed by
analyzing the 16S rDNA sequence of this strain. K. pneumoniae
HS11286 strain is a previously identifiedmodel clinical strain that
was generously gifted from Prof. Hongyu Ou from Shanghai Jiao
Tong University (Bi et al., 2015).
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Antibiotic Susceptibility Testing
All antibiotic susceptibility assays were performed following
CLSI standard (Wayne, 2018b). Disk diffusion assays were
performed as previously documented (Vading et al., 2011).
Minimum Inhibition Concentrations (MICs) was determined
with the agar dilution method as previously reported (Wiegand
et al., 2008). Escherichia coli ATCC 25922 was used as a reference
strain as recommended by CLSI standard (Wayne, 2018a).

Transfer of Plasmids to E. coli DH5α

To transfer plasmids of K. pneumoniae 2-1 to E. coli DH5α,
plasmids were extracted fromK. pneumoniae 2-1, and transferred
to the recipient E. coli DH5α strain by either chemical
transformation or electrotransformation. Successful transfer was
determined by trimethoprim resistance (for pKP21HI1) or
tetracycline resistance (for pKP21AC2). Further validation was
performed by extracting plasmids from plasmid-containing E.
coli DH5α and subsequent PCR amplification of aadA2, sul1,
dfrA12 for pKP21HI1 or sul2, floR for pKP21AC2.

Conjugation Assays
Conjugations assays were performed in order to test
whether plasmids in K. pneumoniae 2-1 can be transmitted
via conjugal transfer, following previously published
procedures (Borgia et al., 2012). E. coli J53 was used as
the recipient strain. Successful conjugal transfer of plasmid
was determined by the dual resistance of sodium azide and
trimethoprim/streptomycin/tetracycline/chloramphenicol.

Whole Genome Sequencing
The total DNA of K. pneumoniae 2-1 was extracted using the
SDS method as previously reported (Natarajan et al., 2016). Total
DNA samples were shredded into 10 kb fragments using g-TUBE
(Covaris Inc., Woburn, MA, US) to construct a 10 kb SMRT Bell
library for PacBio sequencing. Total DNA samples were shredded
with ultrasonication to construct a 350 bp library for Illumina
sequencing. Libraries were, respectively, sequenced with a PacBio
Sequel system (Pacific Biosciences of California, Inc., Menlo
Park, CA, US) and an Illumina HiSeq X 10 system (Illumina
Inc., San Diego, CA, US) at PE150 mode. DNA sequences were
assembled with SMRT Link v5.1.0 software (Ardui et al., 2018).
Gaps were manually closed by PCR amplifying gap-containing
DNA using primers targeting each end of the gap and subsequent
sequencing. Sequence data were deposited in Genbank, with
accession numbers of CP031562, CP031563, and CP031564.

Bioinformatics
Gene model prediction was performed using GeneMarkS
Version 4.1.7 (Besemer et al., 2001). The predicted gene models
were subsequently annotated with Gene Ontology (GO) (Blake
et al., 2015), Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa and Goto, 2000), Cluster of Orthologous Groups of
proteins (COG) (Natale et al., 2000), Non-Redundant Protein
Database (NR) (Li et al., 2002), Pfam (Punta et al., 2011), and
Swiss-Prot (Boeckmann et al., 2003) databases.

For ARG analysis, the Resistance Gene Identifier (RGI) v4.1.0
tool of The CARD was used (Jia et al., 2017).

For classification of K. pneumoniae 2-1, the multilocus
sequencing typing method was used as previously reported
(Diancourt et al., 2005).

For classification of plasmids, the PlasmidFinder and pMLST
webtools were used (Carattoli et al., 2014).

Phylogenetic analysis was performed using the maximum
likelihood (ML) method with the MEGA 7.0.21 software (Hall,
2013).

Comparative genomics analysis was performed using the
MUMmer v3.2.3 software (Kurtz et al., 2004). InDels were
identified using the LASTZ v1.03.54 software.

Ethics
This study was carried out in accordance with the
recommendations of Scientific Ethics Committee of Qilu
Hospital of Shandong University. The protocol was approved by
the Scientific Ethics Committee of Qilu Hospital of Shandong
University. All subjects gave written informed consent in
accordance with the Declaration of Helsinki.

RESULTS

Isolation of an XDR K. pneumoniae
A K. pneumoniae 2-1 strain was isolated from the stool
sample of a 36-year-old male patient with colorectal cancer.
Antimicrobial susceptibility testing of 23 antibiotics was
performed using both K-B disk diffusion assay and agar
dilution method, showing it is an XDR strain that is resistant
to nearly all antibiotics tested (Table 1). A more conservative
approach was undertaken to determine the susceptibility of
K. pneumoniae 2-1: if the strain is sensitive to an antibiotic
using either K-B disk diffusion assay or agar dilution
method, the strain is considered sensitive to this antibiotic.
The antibiotics that K. pneumoniae 2-1 is non-susceptible
to include β-lactams (ampicillin, amoxicillin, ceftazidime,
cefotaxime, cefoxitin, cefoperazone), carbapenem (imipenem),
aminoglycosides (spectinomycin, kanamycin, streptomycin),
quinolones (gatifloxacin, ciprofloxacin, nalidixic acid),
diaminopyrimidine (trimethoprim), sulfonamide (sulfisoxazole),
rifampicin (rifampicin), macrolide (erythromycin), phenicol
(chloramphenicol), tetracycline (tetracycline), and polymyxins
(polymyxin B and polymyxin E). K. pneumoniae 2-1 was
found to be susceptible to only two antibiotics tested: a fourth
generation cephalosporin cefepime and a last-line antibiotic
tigecycline. Out of the three β-lactam/β-lactamase inhibitor
combos, K. pneumoniae 2-1 was found to be sensitive to only
one combo: ceftazidime-avibactam. The antibiotic susceptibility
of the reference clinical K. pneumoniae HS11286 strain was also
performed as a reference (Table 1).

The Genetic Features of K. pneumoniae 2-1
Total DNAwas extracted fromK. pneumoniae 2-1 and sequenced
on a PacBio system. A circular genomic DNA with the
size of 5,230,042 basepairs was assembled. In addition, two
circular plasmids, respectively, with the size of 245,534 and
89,508 basepairs were found. The plasmids were subsequently
denominated pKP21HI1 and pKP21AC2. The GC content for
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TABLE 1 | The antibiotic susceptibility of K. pneumoniae 2-1 and K. pneumoniae HS11286.

Antibiotic class Antibiotics K. pneumoniae 2–1 K. pneumoniae HS11286

Inhibition zone (mm) MIC (µg/ml) Inhibition zone (mm) MIC (µg/ml)

β-lactam Ampicillin (AMP) R(0) R(>512) R(0) R(>512)

Amoxicillin-Clavulanate (AMO) R(0) R(64/32) R(0) R(256/128)

Ceftazidime-Avibactam R(19) S(0.5/4) S(22) S(2/4)

Piperacillin-Tazobactam R(15) R(256/4) R(0) R(>256/4)

Cefepime (FEP) SDD(24) S(0.5) R(12) R(32)

Ceftazidime (CAZ) R(9) R(32) R(0) R(256)

Cefotaxime (CTX) R(20) R(32) R(0) R(256)

Cefoxitin (CFX) R(0) R(512) R(0) R(512)

Cefoperazone (CFP) I(18) I(32) R(0) R(>512)

Carbapenem Imipenem (IPM) R(9) I(2) R(0) R(16)

Aminoglycoside Spectinomycin (SPE) I(16) – R(14) –

Kanamycin (KAN) R(0) R(>512) R(0) R(>512)

Streptomycin (STR) R(8) – R(0) –

Quinolone Gatifloxacin (GAT) R(0) R(32) I(15) R(>512)

Ciprofloxacin (CIP) R(9) R(128) I(16) S(1)

Nalidixic acid (NAL) R(0) R(>512) R(0) R(>512)

Diaminopyrimidine Trimethoprim (TMP) R(0) R(>512) R(0) R(>512)

Sulfonamide Sulfisoxazole (SFI) R(0) R(>512) R(0) R(>512)

Rifampicin Rifampicin (RFP) R(0) – R(11) –

Macrolide Erythromycin (EM) R(0) – R(0) –

Phenicol Chloramphenicol (CHL) R(0) R(256) R(12) R(128)

Tetracycline Tetracycline (TET) R(0) R(64) R(10) R(512)

Glycylcycline Tigecycline (TIG) S(20) S(1) I(17) S(1)

Polymyxin Polymyxin B (PMB) N R(4) N S(2)

Polymyxin E (PME) N R(4) N S(2)

–, MIC breakpoint unavailable in CLSI standard.

N, Disk diffusion test not recommended in CLSI standard.

the genomic DNA, pKP21HI1, and pKP21AC2 are, respectively,
57.57, 51.43 and, 52.92%. The numbers of genes encoded by
the genomic DNA, pKP21HI1 and pKP21AC2 are respectively
4972, 268, and 114. Functional annotation was performed with a
variety of databases including GO, KEGG, COG, NR, Pfam and
Swiss-Prot (Figure 1, Table S1).

Classification of K. pneumoniae 2-1 and its
Plasmids
MLST classification of K. pneumoniae 2-1 was performed using
the PubMLST database based on genetic variation in seven
housekeeping genes (rpoB, gapA, mdh, pgi, phoE, infB, and
tonB) (Diancourt et al., 2005), confirming a 2-9-2-1-13-1-4
configuration and supporting the subsequent classification of K.
pneumoniae 2-1 as ST726.

The classification of pKP21HI1 and pKP21AC2 was
performed based on the typing of its replicon sequences,
using the PlasmidFinder database (https://cge.cbs.dtu.dk/
services/PlasmidFinder/). These two plasmids were, respectively,
classified as IncHI1B and IncA/C2 plasmids, suggested by the
presence of repH1B and repA. This classification is further
confirmed by phylogenetic analysis of replicon sequences of

pKP21HI1 and pKP21AC2, together with replicon sequences
of known plasmids of different incompatible groups (Figure 2).

This phylogenetic analysis suggested that pKP21HI1 forms a

clade with other IncHI1B plasmids, while pKP21AC2 forms

a clade with other IncA/C2 plasmids. The sequence types
of these two plasmids were further determined with the

plasmid multilocus sequence typing (pMLST) analysis with
the pMLST webtool (Carattoli et al., 2014). The pKP21AC2
plasmid was confirmed to be a ST-3 plasmid belonging to the
IncA/C incompatibility group based on a repA-parA-parB-A053
configuration of 2-2-2-1. However, only one (hcm1043) of
the six (hcm1043, hcm1099, hcm1064, hcm1116, hcm1178ac,
hcm1259) genes used for sequence typing of IncHI1 plasmids

was found in pKP21HI1, suggesting it belongs to a new
sequence type of IncHI1 plasmids. Indeed, pMLST analysis was
unable to assign pKP21HI1 to any sequence type, and BLAST

search of pKP21HI1 in Genbank showed the most similar
plasmid (Klebsiella aerogenes strain AR_0161 plasmid unnamed,
Genbank accession number CP028952.1) is 206 kbp larger than
pKP21HI1.

Comparative Genomic Analysis of K.
pneumoniae 2-1 and the Reference K.

pneumoniae Strain HS11286
A comparison between K. pneumoniae 2-1 and the reference
clinical K. pneumoniae HS11286 chromosomal DNA found
significant differences between the two genomes. A total of
22,360 SNPs were found between the two genomes, including
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FIGURE 1 | Genome map of K. pneumoniae 2-1 chromosome and plasmids. For chromosome, from outside to inside, each ring represents encoding genes, COG,

KEGG, GO, ncRNA, GC content, and genomic GC skew value. For plasmids, from outside to inside, each ring represents COG, GC content, and genomic GC skew

value. Different color represents different annotation.

19,659 SNPs that fall into the CDS region, of which 3,789
are non-synonymous. In particular, 25 SNPs lead to premature
termination of the gene products (Table S2). A total of 116
InDels were found in K. pneumoniae 2-1 in comparison with
K. pneumoniae HS11286, leading to the frameshift of 102 gene
products and the premature termination of 1 CDS (Table S2).
One hundred and sixteen structural variations were found in
K. pneumoniae 2-1, including 34 complex InDels, 34 deletions,
36 insertions, and 1 inversion (Table S2). These changes do not
appear to affect the antimicrobial resistance of K. pneumoniae
2-1.

pKP21HI1 as a new Conjugation-Defective
Multidrug Resistant Plasmid
The analysis of the presence of ARGs in both pKP21HI1 and
its most similar plasmid CP028952.1 showed the presence of,
respectively, 18 and 13 ARGs (Table 2), suggesting both plasmids
are multidrug resistant plasmids. Comparison between these
two plasmids showed significant differences. In comparison
with CP028952.1, a large fragment (206 kbp) is missing in
pKP21HI1. pKP21HI1 codes for 50 genes that are absent in

CP028952.1, while CP028952.1 codes for 278 genes that are
absent in pKP21HI1 (Table S3). Of particular interest, the genes
absent in pKP21HI1 include 29 transposase/intergrase-coding
genes and 13 conjugation/ plasmid transfer protein-coding genes
(traN, traX, traG, traF, traI, traD, traE, traB, traV). This is a
strong suggestion that CP028952.1 is a more mobile plasmid
than pKP21HI1. Indeed, no conjugal protein-coding genes could
be found in pKP21HI1, and conjugation assays in attempt to
transfer pKP21HI1 to E. coli J53 were unsuccessful. These results
suggest that pKP21HI1 is a conjugation-defective multidrug
resistant plasmid that limits its mobility between bacteria.

ARGs Harbored by K. pneumoniae 2-1 and
Its Plasmids
K. pneumoniae 2-1 and its plasmids are annotated for ARGs with
the CARD database (Table 3). A total of 33 ARGs were found,
of which 23 are plasmid-borne while the rest are chromosomal.
By comparing the ARG catalog of K. pneumoniae 2-1 and K.
pneumoniae HS11286, we found little difference except that K.
pneumoniae 2-1 encodes two additional quinolone resistance
genes oqxA and oqxB. The mutations of several genes that
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FIGURE 2 | Phylogenetic analysis of pKP21AC2 and pKP21HI1. Phylogenetic

tree of replicon sequence of pKP21HI1, pKP21AC2, and plasmids belonging

to different incompatible group was shown. The phylogenetic tree was

calculated from 500 individual trees. Bootstrap values were shown on each

node. Bar: evolutionary distance of 0.5. Circled are the two plasmids found in

K. pneumoniae 2-1 and the most similar plasmid to pKP21HI1.

lead to antibiotic resistance were found in the chromosome
of K. pneumoniae 2-1, including mutation on elongation
factor Tu that leads to resistance to pulvomycin, mutation in
uhpT that confers resistance to fosfomycin, parC and gyrA
mutation that leads to resistance to quinolones, marR mutation
that leads to multidrug resistance, and mutation in ftsI that
confers resistance to β-lactams. Therefore, K. pneumoniae 2-1
chromosome encodes genes responsible for quinolone and
β-lactam resistance phenotypes found in this work (Table 1).

TABLE 2 | Comparison of ARGs in pKP21HI1 and CP028952.1.

Resistant antibiotics pKP21HI1 CP028952.1

Aminoglycosides aph-(6′)-Ia aac-(6′)-IId

armA aph-(6′)-Id

aadA2 aph-(3′)-Ib

aac-(3′)-IIa aac-(3′)-IIa

Quinolones qnrB4 aac-(6′)-Ib-cr

aac-(6′)-Ib-cr

β-lactam blaOXA-1 blaOXA-1

blaTEM-1 blaTEM-1

blaDHA-1 blaIMP-4

Sulfonamides sul1 sul1

Phenicols catB3 catB3

Macrolides mphD

msrE

Rifamycin arr-3 arr-3

Diaminopyrimidines dfrA12

Efflux pump vgaC vgaC

pKP21AC2 hosts 5 ARGs while pKP21HI1 hosts 18 ARGs,
including genes for aminoglycoside resistance, quinolone
resistance, β-lactam resistance, sulfonamide resistance,
chloramphenicol resistance, tetracycline resistance, macrolide
resistance, rifamycin resistance, and trimethoprim resistance.
The genes encoded by these two plasmids were found responsible
for aminoglycoside, sulfonamide, chloramphenicol, tetracycline,
macrolide, rifamycin, and trimethoprim resistance that were
found in phenotypic analysis but were not encoded by the
chromosome. Two class I integrons were found in pKP21HI1,
each containing an ARG-rich gene cassette array in the
organization of dfrA12-aadA2 and aac-(6’)-Ib-cr-blaOXA−1-
catB3-arr-3 (Figure S1). These findings suggest that the XDR
phenotype is a result of the presence of the two multidrug
resistance plasmids harbored by K. pneumoniae 2-1.

To further confirm the roles of the plasmids in antimicrobial

resistance, we extracted the plasmids and transferred them to E.
coli DH5α. The antibiotic susceptibility tests were performed,

showing that E. coli DH5α containing pKP21HI1 is resistant to

β-lactams, aminoglycosides, rifamycin, macrolides, quinolones,
trimethoprim, and sulfonamides, while E. coli DH5α containing
pKP21AC2 is resistant to aminoglycosides, quinolones,
rifamycin, macrolides, sulfonamides and tetracycline.

DISCUSSION

XDR K. pneumoniae is an eminent threat to human health

in an era when the discovery of new antibiotics lags behind

the emergence and dissemination of antimicrobial resistance.
Therefore, understanding the genetic and mechanistic basis
for XDR becomes crucial, which may provide a hint on

finding solutions to prevent its spread. In this work, with high
throughput sequencing, we obtained the complete sequence of

an XDR K. pneumoniae 2-1 strain isolated from a patient with
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TABLE 3 | ARGs in K. pneumoniae 2-1 and K. pneumoniae HS11286.

Resistant antibiotics K. pneumoniae HS11286 chromosome K. pneumoniae 2-1 chromosome pKP21HI1 pKP21AC2

Aminoglycosides aph-(6′)-Ia aph-(3′)-Ib

armA aph-(6′)-Id

aadA2

aac-(3′)-IIa

Quinolones patA oqxA qnrB4

oqxB aac-(6′)-Ib-cr

patA

β-lactam blaSHV−11 blaSHV−11 blaTEM−1

blaDHA−1

blaOXA−1

Sulfonamides sul1 sul2

Phenicols catB3 floR

Tetracycline tetC

Macrolides mphD

msrE

Rifamycin arr-3

Diaminopyrimidines dfrA12

Fosfomycin fosA6 fosA6

Nitromidazole msbA msbA

Efflux pump adeF adeF vgaC

emrB emrB

acrA acrA

colorectal cancer, and identified the genetic basis for its XDR
phenotype.

K. pneumoniae 2-1 was found resistant to nearly all antibiotics
tested except for cefepime, tigecycline, and ceftazidime-
avibactam. A total of 33 ARGs and 6 gene mutations responsible
for AMR were found on the chromosome and plasmids of K.
pneumoniae 2-1. ARGs for all the resistant antibiotics were
found except for carbapenems and polymyxins. The presence
of blaOXA−1 would have been responsible for carbapenem
resistance, as blaOXA−1-containing strains that are resistant
to carbapenems have been previously reported (Sugumar
et al., 2014). However, the blaOXA−1-harboring pKP21HI1
didn’t increase the resistance of E. coli DH5α to imipenem
(Table 4), making this hypothesis unlikely true. Considering
neither plasmid was able to increase the resistance of E. coli
DH5α (Table 4), it is likely that a yet unknown chromosomal
mechanism is responsible for the carbapenem resistance of K.
pneumoniae 2-1. K. pneumoniae 2-1 also encodes a series of
pmr phosphoethanolamine transferases (basR, arnA, eptA, ugd,
pmrF) that involve in polymyxin resistance, when we set the
search parameter for CARD database as “Loose”. Therefore,
all the resistance phenotypes found in this work are accounted
for except for carbapenems, all of which involve one or several
ARGs.

One particularly interesting finding in this work is that
the majority of ARGs are encoded by the two plasmids
of K. pneumoniae 2-1. The resistance to aminoglycosides,
sulfonamides, chloramphenicol, tetracycline, macrolides,
rifamycin, and trimethoprim are not encoded by the

chromosome, and completely depend on the presence of
the two plasmids. Therefore, the two multidrug plasmids play
a key role in the XDR phenotype of K. pneumoniae 2-1, which
is worrisome as plasmids can easily transfer between bacteria,
disseminating ARGs.

The analysis of E. coli DH5α strains, respectively, containing
pKP21HI1 and pKP21AC2 further confirmed the role of
the two plasmids in antimicrobial resistance. pKP21HI1
but not pKP21AC2 contains ARGs for β-lactams and
diaminopyrimidines, while the pKP21HI1-containing E.
coli DH5α but not the pKP21AC2-containing E. coli DH5α
is resistant to β-lactams and trimethoprim. pKP21AC2 but
not pKP21HI1 contains ARGs for tetracycline, while the
pKP21AC2-containing E. coli DH5α but not the pKP21HI1-
containing E. coli DH5α is resistant to tetracycline. Both
plasmids contain ARGs for aminoglycosides and sulfonamides,
while both the pKP21HI1-containing E. coli DH5α and the
pKP21AC2-containing E. coli DH5α are resistant to these
classes of antibiotics. Neither plasmids contain ARGs for
carbapenems, while neither plasmid-containing E. coli DH5α
strain is resistant to carbapenems, further agreeing with the
hypothesis that a chromosomal mechanism could be responsible
for carbapenem resistance. Although both plasmids carry
ARGs for chloramphenicol, neither plasmid-containing E. coli
DH5α strain was shown to be resistant to chloramphenicol.
Therefore, the resistance to chloramphenicol requires the
presence of both plasmids in the cell. The disagreement between
the presence of ARGs in the plasmids and the antimicrobial
resistance phenotype is that although pKP21AC2 lacks ARGs
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TABLE 4 | The antibiotic susceptibility of E. coli DH5α (DH5α), E. coli DH5α containing pKP21HI1 (DH5α-pHI1) and E. coli DH5α containing pKP21AC2 (DH5α-pAC2).

Antibiotic class Antibiotics Inhibition zone (mm) MIC (µg/ml)

DH5α DH5α-pHI1 DH5α-pAC2 DH5α DH5α-pHI1 DH5α-pAC2

β-lactam Ampicillin S(27) R(0) S(25) S(1) R(256) S(1)

Amoxicillin-Clavulanate S(29) R(7) S(20) S(8/4) R(64/32) S(4/2)

Ceftazidime-Avibactam S(34) S(36) S(35) S(0) S(0) S(0)

Piperacillin-Tazobactam S(26) S(24) I(19) S(8/4) S(8/4) S(4/4)

Cefepime S(36) S(32) S(32) S(0) S(0) S(0)

Ceftazidime S(34) S(26) S(23) S(0) S(0.25) S(0)

Cefotaxime S(37) S(29) S(29) S(0) S(0.125) S(0)

Cefoxitin S(22) R(7) S(20) I(16) R(64) I(16)

Cefoperazone S(35) S(30) S(28) S(0) S(0.5) S(0)

Carbapenem Imipenem S(25) S(26) S(35) S(0) S(0.25) S(0.25)

Aminoglycoside Spectinomycin S(29) S(22) S(30) – – –

Kanamycin S(30) R(0) S(26) S(0.25) R(128) S(32)

Streptomycin S(26) S(26) R(10) – – –

Quinolone Gatifloxacin S(30) S(29) S(35) S(0) S(0.125) S(0.125)

Ciprofloxacin S(31) S(30) S(25) S(0) S(0.125) S(0.125)

Nalidixic acid I(14) R(0) R(13) R(128) R(256) R(256)

Diaminopyrimidine Trimethoprim S(35) R(0) S(35) S(4) R(256) R(128)

Sulfonamide Sulfisoxazole S(23) S(40) R(0) R(512) R(512) R(512)

Rifampicin Rifampicin S(23) R(12) I(18) – – –

Macrolide Erythromycin S(18) R(9) R(0) – – –

Phenicol Chloramphenicol S(32) S(28) R(11) S(2) S(2) S(8)

Tetracycline Tetracycline S(27) S(26) I(12) S(2) S(2) R(64)

Glycylcycline Tigecycline S(20) S(30) S(24) S(0) S(0.25) S(0.25)

Polymyxin Polymyxin E N N N S(1) S(1) S(1)

–, MIC breakpoint unavailable in CLSI standard.

N, Disk diffusion test not recommended in CLSI standard.

for quinolones, macrolides and rifamycin, pKP21AC2-harboring
E. coli DH5α is resistant to nalidixic acid, erythromycin, and
rifamycin. The resistance of pKP21AC2-harboring E. coli DH5α
to nalidixic acid is due to the innate resistance of E. coli DH5α to
this antibiotic (Table 4). By further investigations of pKP21AC2
sequences, we found that pKP21AC2 contains a gene that
may encode a SoxR mutant conferring resistance to rifamycin
(sequence identity 39.71%) and a gene that may encode a
mutated repressor (NalD) that could lead to the overexpression
of the MexAB-OprM efflux pump for resistance to macrolides
(sequence identity 36.17%). Therefore, we hypothesize that
these distant homologs to existing antimicrobial resistance
determinants may be responsible for rifamycin and macrolide
resistance in pKP21AC2. It needs to be addressed that in
general, plasmid-harboring E. coli DH5α showed lower levels
of antimicrobial resistance in comparison with K. pneumoniae
2-1. This phenomenon suggests that the combination of MDR
plasmids and chromosomal mutations can significant increase
the overall antibiotic resistance level.

The findings in this work showed the importance of plasmids
in XDR. Out of the two multidrug resistance plasmids identified

in K. pneumoniae 2-1, pKP21HI1 is a new plasmid that differs
significantly to all previously known plasmids. Indeed, the
most similar plasmid CP028952.1 from Klebsiella aerogenes
is 206 kb larger than pKP21HI1, and analysis of its genetic
content revealed that it belongs to a new sequence type of
incompatibility group HI1B. This plasmid encodes 18 ARGs that
leads to resistance of 9 major classes of antibiotics, as well as
two intact Class 1 integrons, suggesting its significant role in
AMR and its dissemination. Fortunately, this plasmid appears
to be conjugation-defective, therefore limiting its mobility.
Nevertheless, it can still disseminate between bacteria via other
processes such as natural transformation.

The identification of the genetic andmechanistic basis of XDR
in K. pneumoniae 2-1 stresses the role of multidrug resistance
plasmids in XDR. Comparison of K. pneumoniae 2-1 and the
reference genome ofK. pneumoniaeHS11286 showed onlyminor
differences in antimicrobial resistance on the chromosomal
level. Therefore, although the possibility of chromosomal MDR
K. pneumoniae is present and reported (Huang et al., 2017;
Mathers et al., 2017), proposal can be made that the external
antibiotic pressure favors concentrating ARGs to existing strains
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in the form of multidrug plasmids, rather than leading to the
evolvement of strains with chromosome-encoded XDR. With
this proposal, further suggestion can be made that cutting off
transmission of plasmids may be a good approach in delaying the
appearance of XDR and PDR strains.

CONCLUSIONS

In this work, with the analysis of the genetic features of an XDR
K. pneumoniae 2-1 strain isolated from the stool sample of a
patient diagnosed of colorectal cancer, we found and identified
a new conjugation-defective multidrug resistant pKP21HI1
plasmid that belongs to incompatibility group HI1B and a
new sequence type. With further analysis of the antimicrobial
resistance phenotype of K. pneumoniae 2-1 and the distribution
of ARGs on its chromosome and two plasmids, conclusions
can be made that the XDR phenotype should be contributed to
primarily its plasmids rather than chromosome. Research from
this work stressed the importance of multidrug resistant plasmids
in leading to extensively- and pan-drug resistance, and lead to
the proposal that efforts should be made to control plasmid
dissemination in order to delay the appearance of the XDR or
PDR pathogens.
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