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Abstract: With the focus on sustainable development, theevabicovery from End-of-Life
(EOL) and End-of-Use (EOU) products has been go@msiderable attention by the whole
society. Reverse logistics is the process for vedgevery and re-creation through a series of
activities, i.e., repair, remanufacturing, recygliand energy recovery. However, due to the
stochastic reverse product flow, unstable qualitysed products, and the price fluctuation of
recycled and remanufactured products, the planning reverse logistics system is more
complex compared with that of a forward supply nham this paper, we propose a two-stage
stochastic bi-objective mixed integer programmingded for the network design problem of
a multi-product multi-echelon sustainable reversgistics system under uncertainty, which
aims at providing a set of Pareto solutions betwgeofitability and environmental
performance. Furthermore, due to the heterogenemigre, the processing operations
performed at remanufacturing and recycling cenfergifferent products are by no means
identical. Different from the previous modellingfats derived from a genetic “capacitated
location problem”, this paper considers the imgemin the system flexibility on sustainable
reverse logistics network design. Thus, the mogdbrmulated in two parallel ways with
either efficiency-focused non-flexible capacityedfectiveness-focused flexible capacity. The
experimental analysis illustrates that increasingrenmental requirement will decrease the
profitability of the reverse logistics system, vahilincreasing flexibility may yield positive
impacts on both economic and environmental perfan@avhen the efficiency loss is kept at
a proper level.

Key words: reverse logistics; sustainable supply chain; figciications; flexibility;
sustainability

1. Introduction

In recent years, with the stringent environmengégjutations enacted and ever increasing
focus on sustainable development from the wholéesgahe value recovery from the End-
of-Life (EOL) and End-of-Use (EOU) products has tbagven considerable attention by
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decision-makers, companies as well as academiansgs®s around the world (John et al.,
2017). Not only from the perspective of landfillpdietion and environmental pollution, but
also from the economic perspective, the recoveriz©Ot and EOU products improves the
utilization of recourses and also yields profiteotigh some high value-added operations, i.e.
remanufacturing (Guide Jr, 2000). Reverse logisscthe system dealing with the whole
process and material flow for value recovery andreation from EOL and EOU products,
and typical operations in a reverse logistics syst@clude collection, transportation,
inspection and disassembly, and distribution farsee remanufacturing, recycling, energy
recovery and proper disposal of the EOL and EOWycts (Rogers and Tibbelnembke,
2001).

Reverse logistics is believed to be one of the nmapbrtant steps for circular economy
and sustainable development. As defined by the dlamd Commission of the United
Nations (UN, 1987), sustainable developmentdisvelopment that meets the present without
compromising the ability of future generations teemtheir own needs’introduced in 2005
World Summit, sustainable development is supporbydthree dimensions: economic,
environmental and social sustainability (Chopra &feindl, 2015). Through implementing
the reverse logistics activities in an effectived aefficient manner, companies can
significantly improve the use of materials and ceating (Kannan et al., 2012), while
simultaneously obtaining a higher customer loyadtyd potential profitability in future
(Kannan, 2009). Meanwhile, reverse logistics cao @&nhance the environmental and social
dimensions of sustainable development throughgkample, reduction on landfilled waste,
improved resource recovery and job creation indiliness (Govindan et al., 2016a).

However, on the other hand, the improper recovetivities and operations may reduce
the economic benefits while simultaneously impogagenvironmental risks on the workers
and local residents. For instance, the transcomiheshipment of waste electrical and
electronic equipment (WEEE) and packaging wast&datheast Asia results in increased
shipping costs, fuel consumptions and carbon eorissiMeanwhile, the low-tech treatment
for value recovery of WEEE and packaging waste usdtiose countries yields significant
pollution on the environment and imposes riskshanttealth and lifestyles of the workers and
nearby residents. Thus, in order to improve suahality, not only economic benefits, but
also the other dimensions of sustainable developrsieould be taken into account in the
decision-making of reverse logistics activities.rtharmore, due to the pressure from the
public and stakeholder interests (Fahimnia et 2015b), practice-based studies have also
revealed the top management of companies has paid attention for the green practices
and management of the supply chain (Vlachos e2@07).

The network planning of a reverse logistics sysiemne of the most important strategic
decisions (Melo et al., 2009). It involves detaration of the number and locations of new
facilities to be opened, identification of the mdde transportation, and establishment of the
distribution channels for the treatment of EOL aB@U products (Melo et al., 2014).
Compared with the network design problem of a tradal forward supply chain, the
planning of a reverse logistics system is more dermpue to three reasons. First, reverse
logistics involves more types of activities (e.gollection, sorting and disassembly,
transportation and distribution, reuse, remanufaufy recycling, energy recovery and
disposal) and the network structure is thereforeenommplicated. Second, reverse logistics
involves more uncertainties in the returned flownamms of both quantity and quality (Talaei
et al., 2016). Further, in the long period of tifieclycle of a reverse logistics system, the price
for the recovered products are heavily influencedhie market fluctuation and can hardly be
predicted accurately (Soleimani et al., 2016). Tihed reason is that, due to the
heterogeneous nature, the processing operatiofped at remanufacturing and recycling
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centers of different products are by no means idan{Guide Jr, 2000). This further
complicates the reverse logistics network desigiblem with the consideration of the trade-
off between efficiency and flexibility (Yu and Salng, 2017).

In order to solve those challenges, a great nurabenathematical models and methods
have been developed for helping with a better dmtisaking of reverse logistics network
design. The earlier modelling efforts have beenedwith single objective function focusing
only on the economic performance of the reversesfizg system under a deterministic
environment (Govindan et al., 2015), the objectsseither to maximize profits or minimize
costs (Govindan et al.,, 2015, John et al., 2018)wé¥er, with more emphasis on the
environmental and social dimensions of sustainaldeelopment, the trade-off between
economic performance and sustainability-relatedsmes of reverse logistics network design
under an uncertain environment has been incregsiaglsed by recent research works (See
Table 1). However, from the literature review, ai¢he most important decisions regarding
the strategic network configuration has not beewraighly investigated with the
mathematical modelling approach, that is the fldixybof a reverse logistics system. Even if
the flexibility issues have been formulated andufsd in some activities related to
sustainable supply chain management, e.g., sumaiection (Kaur et al., 2016), there is still
a lack of decision-support models considering fiéxy issues in the network design problem
of a sustainable supply chain in existing literatyGunasekaran et al.,, 2016). Due to the
uncertainty related to the quantity and qualitytlod input materials, improving the system
flexibility of a reverse logistics system may yiedgynificant impacts on both economic and
environmental performance. Furthermore, the netwdekisions at strategic level will
influence the decisions on the plant planning, éagout design, internal route planning, etc.
At this point, a mathematical modelling approach carovide decision-makers and
practitioners with quantitative analysis of thexflslity issues in the strategic planning of a
multi-product sustainable reverse logistics system.

The modelling idea behind a product-specified nerible configuration is the traditional
mass production system that maximizes the effigieanod takes advantage of economy of
scale. While, on the other hand, implementing axilfle configuration or flexible
manufacturing system aims at improving the effestess and taking advantage of economy
of scope. However, the improvement on system figtjitusually leads to a compromise on
the productivity. Therefore, in the context of aaese logistics system, this paper aims to
answer the following research questions.

1. What is the influence of flexibility on sustainalkverse logistics network design?

2. Does the increase on flexibility can always lead a@o improvement on the
performance of a multi-product reverse logisticstem?

3. In which conditions a flexible configuration penfios better than a non-flexible
configuration in reverse logistics?

In order to answer the aforementioned questionsprgpose a new two-stage stochastic
bi-objective mixed integer programming model fore ttplanning of a multi-product
sustainable reverse logistics system, and the maided at balancing the profitability and
environmental performance. The goal of this rese&cby using an optimization model, to
understand the influence of the flexibility on b&tonomic and environmental performances
of a multi-product reverse logistics system undecentainty. To our knowledge, this is the
first research work focusing on the flexibility igs in sustainable reverse logistics network
design under uncertainty.

The main contributions of this research are sumradras follows:



1. We developed a mathematical modelling approachrjparating the flexibility in
sustainable reverse logistics network design undeertainty.

2. Through the numerical experiments, we investigakedimpact of flexibility on the
performance of a multi-product reverse logisticstesn under both deterministic and
stochastic environments.

3. Some generic managerial implications related toilfisty and efficiency in
sustainable reverse logistics network design undérent conditions are discussed
based upon scenario analysis.

4. In addition, we also compared the effectiveness @rdputational efficiency of two
solution methods in resolving a multi-objectiveioptation problem.

The remainder of the paper is organized as follo8ection 2 presents an extensive
literature review on reverse logistics network desiith a focus on recent publications, and
the literature gap regarding the flexibility issui@s sustainable reverse logistics network
design is discussed. Section 3 gives the problerathod, notations as well as the
mathematical model. Section 4 presents a briebdhiction of the solution methods. In
section 5, experimental analysis is given to iHatg the application of the model. Section 6
summarizes some generic managerial implicatiomsally, section 7 concludes the paper and
suggests directions for future study.

2. Literature Review

Quantitative modelling efforts for a logistics sst aim at providing decision-makers with
strategic analysis for an effective and efficiertidion-making of logistics network design
(Fahimnia et al., 2015a). Due to the complex natdiree reverse logistics system, the network
design problem has been focused by both acadeseanmehers and practitioners (Govindan et
al., 2015), and numerous mathematical models haea loeveloped for a large variety of
industries and businesses (Alshamsi and Diabat5)2@omprehensive literature reviews
related to reverse logistics problems have beeangwith different focuses, i.e., conceptual
development and perspectives (Wang et al., 20hdysiry focused studies (Campos et al.,
2017), quantitative models and techniques (Govingtaal., 2015, Govindan and Soleimani,
2017), and modelling methods incorporating witht@umsbility (Eskandarpour et al., 2015).

Due to the quantitative nature of the current stukg section presents an overview of the
recent development on the optimization models éwerse logistics network design. Based
upon the characteristics of the models and methbddjterature can be categorized into four
groups with their primary research focuses: (1)necaic performance; (2) multi-criteria
sustainable performance; (3) control of uncertaintg) development of efficient
computational algorithms.

2.1 Economic performance focused reverse logistiebvork design

Value recovery from the EOL and EOU products aeegtimary concern of the planning
of a reverse logistics system. Alshamsi and Digl2itl5) developed a mixed integer
programming for maximizing the profits of a reverkmyistics system, and the model
formulates both in-house and outsourcing optiongasfsportation. In order to maximize the
profits generated from the recycling of used refragors, John et al. (2018) proposed an
optimization model for the planning of a reversgistics network over multiple periods.
Budak and Ustundag (2017) proposed a multi-periodlehfor minimizing the costs of the
reverse logistics network of healthcare institusion



Taking into account of disassembly line balanciKgnnan et al. (2017) developed a
mixed integer nonlinear optimization model for plalg a multi-product reverse logistics
system from the third-part provider’'s perspectiVee model aims at maximizing the profits
from product recovery, and the market fluctuatienrésolved with inventory balancing
strategy. Kheirkhah and Rezaei (2016) proposecdhg@lesibbjective cost-minimization model
for reverse logistics network design consideringssrdocking operations. Alshamsi and
Diabat (2017) investigate a mixed integer prograngrfor profit-maximization of recovery
activities, and a genetic algorithm was developecfficiently resolve large problems. In
order to provide optimal decisions on the bidingcgrand facility operations, Capraz et al.
(2015) proposed a mixed integer linear programnfmgthe recycling system of waste
electrical and electronic equipment (WEEE). Deietal. (2016) investigated a multi-
period mixed integer programming for reverse lagsshetwork design of EOL vehicles.

2.2 Multi-criteria sustainable reverse logistics tweork design

Due to the pressure from different stakeholdersustainable development, environmental
and social aspects of sustainability have beenrprazated in supply chain design (Govindan
et al., 2014), and the focus of the optimizatiomhbem becomes therefore the balance
between economic incentives and ecological inflegzhu and Sarkis, 2004). With the help
of advanced mathematical models, a variety of gali@chanisms combined with economic
incentives for the design of a sustainable revirgsstics network are tested, among which
implementing different carbon policies for emissi@auction has been extensively focused.
At this point, the impact of carbon tax on the plag of a reverse logistics network is
investigated by Diabat et al. (2013), Haddadsisakhtt Ryan (2018), John et al.
(2017),Kannan et al. (2012), and Yu and Solvandl§2), while the implementation of a
carbon cap under market fluctuation is tested HgiB@ani et al. (2017) and Yu and Solvang
(2017).

The most frequently used method for modelling snatality-related concerns in reverse
logistics network design is multi-objective programg. Yu and Solvang (2016b) developed
a bi-objective model for balancing the costs antb@a emissions of a reverse logistics
system. Considering the economic, environmentalsaethl sustainability in reverse logistics,
Govindan et al. (2016b) investigated a fuzzy moitijective optimization model. In this study,
the environmental performance is evaluated by Bdazator 99 and the social indicator is
evaluated by the created job opportunities and ingrkonditions. Feitd-Cespon et al. (2017)
proposed a multi-objective stochastic model forabeling the trade-off among costs,
environmental performance and level of serviceh@ tedesign of a multi-product reverse
logistics system. Considering the decision-makihgerational level, Ramos et al. (2014)
developed a multi-objective optimization model floe routing problem in a reverse logistics
system. The model simultaneously balances the ,ccatbon emissions as well as working
time.

With the implementation of extended producer respmiity (EPR) and other regulations,
manufacturers are required to take responsibilfbeshe returned flow of their products. In
this regard, the supply chain structure becomesmomplex with the inclusion of reverse
logistics activities. Significant efforts have begrent in order to develop advanced decision-
making models for planning an integrated forwantree logistics system. Taking into
account of both economic and environmental perfoaeaof an integrated forward/reverse
supply chain, Ghayebloo et al. (2015) developeda@bfective model for balancing the costs
and greenness. Babaveisi et al. (2017) proposed uli-gbjective programming for
simultaneously minimizing the costs, risks as veall shortage of products in designing a
closed-loop supply chain. Considering the econoeniwjronmental and social sustainability,
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Govindan et al. (2016a) investigated a multi-obyecimodel for planning a multi-product
forward/reverse supply chain with hybrid productiptants for both manufacturing and
remanufacturing operations.

2.3 Reverse logistics network design under uncertgi

The network planning is a strategic decision that la long-term impact on the
performance of a reverse logistics system. Withm ltffespan of a reverse logistics system,
some parameters may exist significant uncertainesvever, some important decisions, i.e.,
facility location, have to be made with inexactorrhation (King and Wallace, 2012). Thus,
uncertainty control is another focus in reversediocs network design (Talaei et al., 2016). In
order to redesign a reverse logistics network feating wood waste, Trochu et al. (2018)
developed a mixed integer model with scenario-bas&tension for controlling the
uncertainty. Govindan et al. (2016b) proposed ayumulti-objective mathematical model for
planning a sustainable reverse logistics systere. Mhdel aims at balancing the economic,
environmental and social sustainability for revdoggstics network design under uncertainty.
Yu and Solvang (2017) investigated a two-stage hststic programming with carbon
constraint for reverse logistics network designd @m augmented multi-criteria scenario-
based risk-averse solution method was developednBotimizing the profits from reverse
logistics activities while minimizing the risks frouncertainty.

Considering the network design of an integratedvéod/reverse supply chain under
uncertainty, El-Sayed et al. (2010) and Pishvaeé. ¢2009) formulated mathematical models
with stochastic parameters for cost minimizatioriler a robust optimization model was
given by Pishvaee et al. (2011). In order to siemdously maximize the profits, fill rate of
customer demands and satisfaction level of stakiens| Ozkir and B#gil (2013) developed
a fuzzy multi-objective model for planning a clodedp supply chain with inexact
parameters. Soleimani et al. (2017) formulated zzyumulti-objective programming for
designing a sustainable closed-loop supply chath warbon emission requirement, and the
model aims to seek the optimal balance among prafitvel of customer service and the
missing working days due to occupational accid@alaei et al. (2016) proposed a fuzzy
robust optimization model for effectively managitige trade-off between total costs and
carbon emissions in the design of an integrateddai/reverse logistics system.

2.4 Development of highly efficient computationdigarithms

Reverse logistics network design is a complex dmtismaking problem, which involves a
large amount of parameters, decision variablescandtraints. With the increase on the size
of the problem, computational time required forcadéting the optimal solution will increase
dramatically. Thus, the improvement on the companal efficiency is focused in previous
research works. Several approximation methods,idtesr and meta-heuristics have been
developed, i.e., genetic algorithm (Alshamsi andlat, 2017), particle swarm optimization
(Guo et al., 2017a, Guo et al., 2017b), Lagrangelaxation (Jabbarzadeh et al., 2018),
Benders cuts (Haddadsisakht and Ryan, 2018), sietuknnealing (Fattahi and Govindan,
2017), and non-dominated sorting genetic algorifBabaveisi et al., 2017, Ghezavati and
Beigi, 2016).

In addition, some research works have been doné \lie development and
implementation of new artificial intelligent methodor resolving large-sized planning
problems. Li et al. (2017) developed a hybrid miaf bee colony algorithm for a cost-
minimization model for reverse logistics networksigm. Zandieh and Chensebli (2016)
proposed a water-flow-like algorithm for planning single-period two-echelon reverse
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logistics system. Fard and Hajaghaei-Keshteli (2Gd8nulated a statiStackelberggame
and a tri-level metaheuristic to manage the intevas among different players in a reverse
logistics system.

2.5 Summary and literature gap

Table 1 presents a vis-a-vis comparison of thevasl literature in reverse logistics
network design with respect to several criteria.mpared with the result from a
comprehensive review by Govindan et al. (2015 bbserved the earlier modelling efforts
focus primarily on economic benefits of reverseidtgs system under a predictable
environment. While, an increasing number of reqastlications investigated models with
inexact parameters and multiple objectives in otdeincorporate environmental and social
sustainability in decision-making under uncertairBgsides, the value recovery of multiple
types of products has attracted more attentionsadent mathematical models.

Considering the heterogeneous nature of differemdiyrts, most of the modelling efforts
for a multi-product reverse logistics system foratel a product-specified non-flexible
capacity constraint, while the other models negtbet difference between the processing
procedures for recycling different products. Howeuwbe impact of system flexibility on
sustainable reverse logistics network design hasbeen thoroughly investigated in the
existing literature. Modelling a sustainable reeelsgistics network design problem under
uncertainty based upon a generic “capacitated itmtgiroblem” may neither be able to find
out the optimal solution in strategic decision-nmaknor provide valuable suggestions for the
plant planning decisions, i.e., layout planningernal route planning.

The most significant problem of those models is Weay they deal with the demand
fluctuation. With a non-flexible capacitated modaber uncertainty, an increased demand for
managing used products and a more stringent régulah emission reduction may lead to
either a decision on facility expansion or a compused service level on waste management.
However, both decisions may not be the optimaltsmiuin some cases. Facility expansion
requires an additional investment, while at the esamme; this decision may also cause a
reduction on facility utilization and higher opengt costs when the generation of used
products is low. From the mathematical programnpegspective, a reduction on service
level is another option, for example, a more ecadoalty attractive solution may be found by
incorporating a chance constraint in a stochagpiinozation model in order to allow a
certain probability of demands are not met. Howgwepractice, “leaving the garbage on the
street” will result in a dramatically reduced sfcdion of the local residents. In addition, the
plant planning of a flexible and a non-flexible @garation is of great difference, but the
generic capacitated location models cannot prowndglications for supporting the plant
planning decisions.

A reverse logistics system is featured with sigmaifit uncertainty related to the quantity
and quality of different returned products and getg of processing procedures are required
to recover them. Practical-based survey (Guide@@0) and computational-based analysis
(Seebacher and Winkler, 2014, Feng and Shen, 2(vé) both confirmed the profitability of
a reverse logistics system can be improved thrangbrporating with flexible capacity.
Furthermore, a recent quantitative modelling eftuais revealed, by improving the system
flexibility under an uncertain environment, bottoeomic and environmental performance of
a multi-product reverse logistics system may berawpd without a large investment on
facility expansion or a compromise on service léYel and Solvang, 2017).

Based on the discussion above, tason d'étre of this paper is to fill the litenaigap by
incorporating flexibility in sustainable reversegistics network design. The problem is
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modelled in two parallel ways with both efficienfyeused non-flexible capacity and
effectiveness-focused flexible capacity. Managenmplications regarding the sustainable
reverse logistics network design under uncertaimith both capacity configurations are
discussed through experimental analysis. Besideshawn in Table 1, only 17% of the
recent mathematical models considers the controurafertainty in sustainable reverse
logistics network design. Thus, we formulates a mea-stage stochastic bi-objective mixed
integer programming model aiming at providing decismakers and practitioners with
robust optimal decisions on sustainable reversistiog network design under an uncertain
environment.



Table 1 Review of the recent research works on reversatioginetwork design

"Articles Product flow Capacity Network Objectives Parameter Modelling Solution Solver Validation
approach
Single | Multiple | Non- Flexible | Unspecified] Forward Reverge Economic FEowinental| Social Other: Exagt  Approximatipn
flexible

“Pishvaee et al. \ v % v Non- Stochastic MIP \ LINGO Experiment
(2009) deterministic

El-Sayed et al. \ v % v Non- Stochastic MIP \ XpressSP Experiment
(2010) deterministic

Pishvaee et al. \ v % \ Non- Robust MIP \ CPLEX Experiment
(2011) deterministic

Kannan et al. \ v v \ \ Deterministic | MIP \ LINGO Experiment
(2012)

Demirel et al. v v v v Deterministic | MIP v GAMS Case
(2016) CPLEX

Alshamsi and \ v % v Deterministic | MIP \ GAMS Case
Diabat (2015) CPLEX

Ghezavati and Beig| Vv % % v \ Deterministic | MOMIP MATLAB | Experiment
(2016) GAMS

Yu and Solvang \ v v \ \ Deterministic | MOMIP \ LINGO Experiment
(2016b)

Govindan et al. \ v v \ \ \ Non- Fuzzy MOMIP \ MATLAB | Experiment
(2016b) deterministic MINITAB

Zandieh and \ v v \ Deterministic | MIP MATLAB | Experiment
Chensebli (2016)

Li et al. (2017) \ % % \ Deterministic | MIP C++ Experiment
Silva et al. (2017) | v % % v v Deterministic | MOMIP \ CPLEX Case

Guo et al. (2017a) | Vv v v v Deterministic | MIP Case

Guo et al. (2017b) | Vv v % \ \ Deterministic | Two-stage MIP Case
Budak and v % % \ Deterministic | MIP \ Xpress Case
Ustundag (2017) IVE

Fard and Hajaghaeit v % % \ Deterministic | Game theoretic tr]- Experiment
Keshteli (2018) level MIP

Rahimi and \ v % \ \ \ Non- Stochastic \ GAMS Experiment
Ghezavati (2018) deterministic | MOMIP

Demirel and \ \ \% \ Deterministic | MIP \ GAMS Experiment
Gokeen (2008) CPLEX

Amin and Zhang v v v v Deterministic | MIP \ GAMS Experiment
(2012)

Diabat et al. (2013) \ % % v v Deterministic | MIP \ GAMS Experiment

CPLEX
Ozkir and Baligil \ v % v Non- Fuzzy MOMIP \ GAMS Experiment




(2013) deterministic

Ramos et al. (2014) Deterministic | MOMIP CPLEX Case

Garg et al. (2015) Deterministic | MOMIP LINGO Experiment

Ghayebloo et al. Deterministic | MOMIP GLPK Experiment

(2015)

Capraz et al. (2015), Deterministic | MIP CPLEX Case

Govindan et al. Deterministic | MOMIP LINGO Experiment

(2016a)

Yu and Solvang Non- Stochastic MIP LINGO Experiment

(2016a) deterministic

Kheirkhah and Deterministic | MIP GAMS Experiment

Rezaei (2016)

Talaei et al. (2016) Non- Robust fuzzy MIP Experiment
deterministic

Entezaminia et al. Non- Robust MIP CPLEX Case

(2017) deterministic

Keshavarz Non- Fuzzy MOMIP Experiment

Ghorabaee et al. deterministic

(2017)

Jindal and Sangwary Non- Fuzzy MOMIP LINGO Experiment

(2017) deterministic

John et al. (2017) Deterministic | MIP LINGO Experiment

Yilmaz et al. (2017) Deterministic | MOMIP OPL Case

Kannan et al. Deterministic | MIP LINGO Experiment

(2017)

Temur and Bolat Deterministic | MOMIP GAMS Case

(2017) CPLEX

Fattahi and Non- Stochastic MIP GAMS Experiment

Govindan (2017) deterministic CPLEX

Feit6-Cespon et al. Non- Stochastic MATLAB | Experiment

(2017) deterministic | MOMIP

Babaveisi et al. Deterministic | MOMIP Experiment

(2017)

Soleimani et al. Non- Fuzzy constrained LINGO Experiment

(2017) deterministic | MOMIP

Alshamsi and Deterministic | MIP CPLEX Case

Diabat (2017)

Yu and Solvang Non- Stochastic LINGO Experiment

(2017) deterministic | constrained MIP

Coelho and Mateus Deterministic | MIP CPLEX Experiment

(2017)

John et al. (2018) Deterministic | MIP LINGO Case
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Trochu et al. (2018) Non- Stochastic MIP Case
deterministic

Jabbarzadeh et al. Non- Robust MIP GAMS Case

(2018) deterministic

Haddadsisakht and Non- Stochastic robust CPLEX Experiment

Ryan (2018) deterministic | MIP

This research Non- Stochastic LINGO Experiment
deterministic | MOMIP

Note: MIP=Mixed integer programming; MOMIP=Multi-objectvmixed integer programming
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3. Model development

3.1 Problem description

As illustrated in Figure 1, the main operatiomsa generic reverse logistics system
include customer return and local collection, cantollection for quality inspection, sorting
and disassembly, value recovery operations inciudemanufacturing, recycling and energy
recovery, and disposal for non-recyclable produthe material flow of the reverse logistics
starts from the customer return to the retailertooal collection centers for EOL and EOU
products, and then those products will be colleaedhe central collection centers where
guality inspection, sorting and disassembly willdeeducted. In accordance with the type of
product and quality level, different value recoveperations will be performed and then the
recovered products will be sold in the market.

__________________

Collection, Remanufacturing
Inspection,
Sorting and

Disassembly

| Landfill |

Recycling

Energy Recovery

(Y P U R S —————

Figure 1. Structure of a generic reverse logistics system.

3.2 Modelling methods

For decision-support of sustainable reverse laggstetwork design under uncertainty, the
model developed in this paper combines three maodelinethods: (1) mixed integer
programming; (2) multi-objective programming; aij §tochastic programming.

* Mixed integer programming:As shown in Table 1, mixed integer programminthis
basic modelling method for supply chain networkigiegproblems. It involves two
types of decision variables: Binary integer vamadéhd continuous variable. The binary
integer variables determine whether a candidatatimt is selected to open a new
facility, while the continuous variable provide dagons on facility operations and
transportation strategy.

e Multi-objective programming: Sometimes, decision-making involves several
objectives that are usually in conflict with oneotirer. In sustainable reverse logistics
network design, multi-objective programming is usedalance the trade-off between
economic benefits and sustainability-related messs(e.g. environmental impacts).

* Two-stage stochastic programmindn this paper, the quantity and quality of used
products as well as the price for the recoverediymts and energy are formulated as
stochastic parameters. As many argues (King andladél 2012), a two-stage
stochastic programming provides decisions at tweltewith different characteristics:
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robust or flexible. The first stage decisions ammbefore the realization of uncertain
parameters and should be robust to withstand rarelants, while the second stage
decisions can be made after the realization ofat@n with more certain information
and should be flexible to cope with the change démal environment in order to
maximize benefits.

Table 2 Modelling methods in sustainable reverse logigtiesvork design.

Modelling methods Functions in sustainable reviagistics network design
Mixed integer programming Fundamental techniqueftwrcation-allocation problems
Multi-objective programming Trade-off analysis withultiple objectives

Two-stage stochastic programming Control of ungetta

Table 2 shows the functions of those modelling m@shin sustainable reverse logistics
network design under uncertainty. With the congitien of sustainability and control of
uncertainty, the proposed model supports decisiakimg of at both levels:

1) First stage decisions:
* Number and locations of central collection centers
* Number and locations of remanufacturing plants
* Number and locations of recycling plants
* Number and locations of energy recovery plants

2) Second stage decisions:
» Amount of used products processed at each facility
» Transportation strategy among different facilities

It is obvious the first stage decisions have logmgrt impacts on the performance of a
reverse logistics system and should be featureld mobustness, while even if the model can
also determine the optimal values for the secoadestiecisions, they can be easily altered
after the realization of uncertain parameters duéeir flexible nature.

3.3 Notations

Sets and indices:
w Set of customers, indexed ty

Set of candidate locations for central collectienters, indexed by
Set of candidate locations for remanufacturing e@entindexed byn
Set of recycling centers, indexed by

Set of energy recovery centers, indexed by

Set of landfills, indexed bg

Set of products, indexed loy

Set of scenarios, indexed by

< OO0 0O xXWOZ

Set of candidate locations for remanufacturing @entecycling
centers and energy recovery centérs {M, C, R}, indexed by

X Set of all candidate locations= {I,V}, indexed by

U(yz) Set of all routes between different facilities
Uy,z) ={w,i),(im),@Gc)Gr),Gd) |vweW, iel,me
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Parameters:

Pty,
Suyg

F
Ocyq
Gqu

Tquz

Caryg
Cargq

CarTyy,

Fs
Pd;,,

Flex
X

Cap

Flex
Uxq

M,c € C,r € R,d € D}, indexed byz

Price of the products or energy generated fromve@ag one unit of
productq at facility v in scenaries

Government subsidy for recovering one unit of paidyat facility v
in scenarics

Fixed operating costs for opening a facility atdidate locatiorx
Processing costs for treating one unit of prodpet facility x
Gate fee for sending one unit of prodgdb landfilld

Transportation cost for shipping one unit of prddgcbetween
different facilities within the reverse logisticgssem

CO, emissions for treating one unit of prodgat facility x
CO, emissions for landfilling one unit of produgat facility d

CO, emissions of the transportation of one unit ofdoict q between
different facilities within the reverse logisticgssem

Probability of the realization of scenaso

Amount of product collected at customev in scenaris
Capacity for dealing with produgtat facility x

Required rate of utilization for treating prodgicat facility x
Fraction of product] suitable for remanufacturing
Fraction of product] suitable for recycling

Fraction of product] suitable for energy recovery
Quiality level of product] in scenaris

Environmental policy requirement presenting the imium
recovered percentage from the recoverable fractigmoductp

Percentage of the recoverable fraction if prodpistat good quality,
A, = Percentage of set {yqrm U )/qry V) yqrc} < 100%

It is noted thaty (y5™, v, ¥4) , Vg € Q may be more than 100%

due to the overlap fraction suitable for multipleatments.

Percentage of the non-recoverable fraction if pcbdus at good
quality, A = Percentage of the complement set of {y;™ U y,” U

va¢}, andAS + A, = 100%
Flexible capacity of facilityk

Conversion rate of the usage of flexible capa@typrocessing
productq at facility x
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Efl-LOSS

Replf‘lex

Decision variables

Loc,

Qnyq

Qtngy,

Rate of the efficiency loss for implementing fleeilcapacity at
facility x

Required rate of utilization of facility with flexible capacity

Binary decision variables determining if a new liiciis open at
candidate locatiow

Quantity of product treated at facilityk in scenarics

Quantity of product transported via routgzin scenaris

3.4 Mathematical model for sustainable reverse ktgis network design with non-

flexible capacity

The model is formulated as follows:

Max Obj1 = Z P, Z Z (Pt5q + Stimg) QMg

SES

qEQ meM

+ Z Z(Ptgq + Sucq)Qniy + Z Z(Ptﬁq + Suyq) Qnig

qeQ ceC

qEQ TER

- (Z F;Loc; + Z F,Loc,, + z F.Loc. + Z FrLocr)

+ Z Py Z Z OciqQniq + z Z 06mq QMg

SES

iel meM ceC TrER

(1)

qeqQ i€l qeEQ meM

+ z Z OccqQniq + Z z OcrqQnyq + Z Z GfaqQnaq

qeQ cec

gqEQ TER qeQ debD

+ Z Z Z TquiQtncsywi + Z Z Z TqumQtncsyim

qEQ WEW i€l

qEeQ i€l meM

+ Z Z Z chic Qtncsyic + Z Z Z Tquernzszir

qeQ i€l cec

qEQ i€l reR

+ Z Z Z chithnZl-d

q€Q i€l deD
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Min Obj2= z P, z Z CaryqQni, + Z Z CarmqQnyg + z z Care,Qng,

SES qeqQ i€l qeEQ meM qeQ ceC

+ z Z CaryqQniq + z Z CargqQng,
gqEQ TER qeQ deb

+ z z Z CarTqy;Qtng,,; + z Z z CarTqmQtngm
qeEQ wew el qeQ i€l meM

+ Z Z Z CarTy;Qtng;. + Z Z Z CarTy Qtng,,
qeQ i€l ceC qEQ i€l reR

+ Z Z Z CarTqithnZl-d
geQ i€l deD

Subject to:

(1) Demand satisfaction

Pd;,, = Z Qtnflwi,‘v’s € S,welW,q € Q
i€l
(2) Flow balance

Z Qtnflwi = anq,‘v’s € S,iel,q €Q

weEW
Z Qtnfﬁm = Qnyq, Vs € S,meM,q € Q
i€l
Z Qtnfll-c = QnZ, Vs € S,ceC,q €Q
i€l
Z Qtnflir = Qnjq, Vs € S,TeR,q € Q
i€l
Z Qtnfﬁd = Qng,, Vs € S,deD,q € Q

i€l

Qnj, = Z Qtngiy, + Z Qtng;. + Z Qtng;, + Z Qtng;q,Vs € S,iel,q € Q

meM ceC TER debD
(3) Capacity constraints

Qnj, < Cap;qLoc;, Vs € S,iel,q € Q
Qnpg < Capmglocy,, Vs € S,meM,q € Q
Qngq < Capgqloc,,Vs € S,ceC,q € Q

(2)

3)

(4)

(5)

(6)

(7)

(8)

9)

(10)
(11)
(12)
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Qn;7q < CapyqLloc,,Vs € S,7€R,q € Q (13)

(4) Utilization requirements

Qnj, = Repy Cap;qLoc;, Vs € S, iel,q € Q (14)
Qngq = ReppgCapymglocy,, Vs € S,meM, q € Q (15)
Qngq = RepcqCapgqloc,, Vs € S,ceC,q € Q (16)
Qni, = Rep,qCapyqLoc,,Vs € S,7€R,q € Q (17)

(5) Conversion constraints

Mo Yqm@niy = Z Qtngim,,Vs € S,iel,q € Q (18)
meM
T3VqcQnig = Z Qtng;., Vs € S,iel,q € Q (19)
cec
nZquanq > Z Qtnfm,‘v’s € S,iel,q € Q (20)
TER
Z Qtngy = (Ag +(1- ng,Aq)) Qni, Vs € S,iel,q € Q (21)

deb
(6) Environmental policy

Z Qtngim + Z Qtng;. + Z Qtng; = mgAgEn,Qni,, Vs € S,iel,q € Q (22)

meM cec TER

(7) Requirements for decision variables

Loc;, Loc,y,, Loc,, Loc, € {0,1},Vie,m € M,c € C,r €R (23)

Qnig, QMimg, QNiq, Qniq, Qngg, Qtngy, Qtngim, Qtngc, Qtng;y, Qtngq = 0,Vs

24
€S,qeQ,weW,ielmeM,ceC,reR,dED (24)

The objective function (1) maximizes the total [is0bf reverse logistics system, which is
the surplus between income and costs. The incootedes both sales revenue and subsidies
from government for waste management. The costsidacfixed costs (e.g. salary, bank
interests, return of investment, etc.), processiogts and transportation costs. The second
objective function (2) minimizes the environmentadpact of reverse logistics activities,
which is evaluated by carbon emissions. The cadrarssions related to facility operation
and processing of used products can be estimabead fnaterial and energy consumption
(Fahimnia et al., 2015b), while the carbon emissiisom transportation is determined by the
travelled distance, speed, load and fuel efficigfBskta and Laporte, 2011, Tongwane et al.,
2015).

The model also includes seven sets of constraiuastraint (3) guarantees the customer
demands for the treatment of used products are @mtstraints (4)-(9) specify the flow
balance at each facility and each route. Inegealifl0)-(13) restrict the non-flexible capacity
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for each facility with respect to each type of prod Inequalities (14)-(17) restrict a minimum
level of utilization for the facilities, which aimio avoid inefficient use of facilities.

Constraints (18)-(21) require the percentage ofdugeducts sent for remanufacturing,
recycling, energy recovery and disposal should dgmyth the quality and proportion

requirements. Constraint (22) is the environmepialicy requirement that specifies the
maximum amount of the recoverable fraction canapelfilled. Constraints (23) and (24) are
requirements for decision variables.

3.5 Model extension incorporating flexible capacity

Compared with designing a forward supply chainnpiag a reverse logistics system is
more difficult due to the uncertainties from thestable flow of used products, stochastic
condition and quality, and market fluctuation. Fraime modelling perspective, those
uncertainties can be managed with either to peainsiértain probability of infeasibility (King
and Wallace, 2012) or relax the capacity condtriamraccommodate increased demands (Yu
and Solvang, 2017). While from the practical pectipe, the interpretation of those
techniques is to either reduce the service levelwabkte management or increase the
investment for facility expansion, both of whicheamot easy ones for decision-makers to
undertake. A reduction on service level will desethe satisfaction of local residents, while
facility expansion may lead to a low facility utidition when the generation of EOL and EOU
products are low.

However, research works have revealed uncertainies be tackled with an increase on
the flexibility of reverse logistics system foe&ting multiple types of used products (Guide
Jr, 2000, Yu and Solvang, 2017). The process fiiyilhas been considered as an effective
solution for the mismatch between demand and cgpééeng and Shen, 2017), and it has
been investigated by practitioners for several desan some reverse logistics activities, i.e.,
remanufacturing (Goodall et al., 2014, Nasr et 2098). Flexibility is defined as the
capability to rapidly response to the change wittlel penalty on costs, efforts and
performance (Upton, 1994). Compared with the trawi#l mass production system that
emphasizes predominantly on productivity, the iaseeon process flexibility will, with a
compromise on efficiency, lead to an improvementttoa effectiveness under an uncertain
environment. Therefore, the incorporation with f@kty in planning a multi-product
sustainable reverse logistics system is importartt may yield a great impact on both
economic and environmental performance.

(8) Conversion to flexible capacity

Capflex — (1 _ EfiLOSS) Z ﬁgexcapiq ,Viel (25)
qeqQ

Caprl;‘llex =(1- EfnLlOss) Z ﬁ,fllgxcapmq ,YmeM (26)

qeqQ

Capglex =(1- EfCLOSS) Z ﬁféexCach ,VceC (27)
qeq

Capflex — (1 _ EﬂLOSS) Z ﬁféexcaprq ,Vr € R (28)
qeqQ
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For incorporating flexibility in decision-makingghdations (25)-(28) are first formulated in
order to convert the non-flexible capacity intoxflelity capacity at different facilities in the
reverse logistics system. It is noteworthy thag tluthe reconfiguration required and change
of in-plant operations, there will be a loss of guotivity when converting an efficiency-
focused process to a flexibility-focused proceshgi@awat and Ricart Costa, 1993), so

Efl°ss is introduced for compensating the capacity loss.

(9) Capacity constraints under flexible capacity

Z Qn§, < Cap{***Loc;, Vs € S,i € (29)
qeQ
Z Qng, < Capfie*Locy, Vs € S,m e M (30)
qeqQ
Z Qngq < Capf*®*Loc.,Vs € S,c € C (31)
qeqQ
Z Qni, < Capf'**Loc,,Vs € S, €R (32)
€Q
(20) UtiIizatiCcI)n constraints under flexible capacity
Z Qni, = Rep{***Cap{'**Loc;, Vs € S,i € ] (33)
qeqQ
Z Qns,, = Repf*“*Capfl®*Loc,, Vs € S, m e M (34)
qeQ
Z Qns, = Rep{'**Capl'®*Loc,, Vs € S,c € C (35)
qeqQ
Z Qni, = Rep{'**Capf'®*Loc,,Vs € S,r € R (36)
qeQ

After the flexible capacity have been defined byu&ipns (25)-(28), the mathematical
model is expanded through replacing the constrdit@®3¥-(17) in the original model by the
flexible capacity constraints (29)-(32) and utitina constraints (33)-(36).

4. Solution Method
The objective of the model is to provide decisioakers with a set of non-dominant
Pareto optimal solutions. In this paper, the stettbaparameters are formulated with a

scenario-based approach. For representing thetamtegs, different scenarios with respect to
stochastic parameters are first generated. Eachasoerepresents a prediction of the
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uncertain parameters in the planning horizon, wimctudes the quantity of used products at
different customer zonesP{y,,), quality level r7) and market price Rt;,). With the
combinations of different stochastic parametersetaof scenarioss| with the probability of
occurrence ;) is then generated for representing the futureditimms of the optimization
problem. Therefore, the optimal solution of thiscstastic optimization problem is not to seek
the best solution for an individual scenario (syiroal solution), but it is to determine the
most robust and optimal one throughout all the iptesscenarios.

Sustainable reverse logistics network design mudti-objective programming problem
that aims at simultaneously balancing the tradeeffveen profitability and environmental
impact. Given by Sakawa et al. (2013), a generfismfof a multi-objective minimization

problem is presented in Equation (37). Herei(w) = (z;(x), z,(x), ...,zk(x))T is a k-
dimensional vector ankl is the set of feasible solutions in decision spata multi-objective
optimization problem, the definition of Pareto opai solution or efficient solutior® is that

if and only if it is impossible to find anothex € X such thatz;(x) < z;(x*) for all i and
zj(x) # z;(x™) for at least on¢ (Sakawa et al., 2013). It is obvious from the wi&itin that, at

a Pareto optimal point, the target objective vataanot be improved without a sacrifice on
the performance of other objective functions, alsth éhere may exist an infinite number of
Pareto solutions. There is a weaker form of Pasptonality, which is called weakly efficient
or weak Pareto solution. The definition of weakd®amoptimal solutiox™ is if and only if it

is impossible to find anothex € X such thatz;(x) < z;(x*) for all i (Sakawa et al., 2013),
and it is easy to see that the set of Pareto opswlations is a subset of the set of weak
Pareto optimal solutions.

Min 2(x) = (2,6, 2,(®), ., z(0))"
S.t. XEX

(37)

Scalarization methods are well-developed technidaesletermining the Pareto optimal
solutions for a multi-objective optimization proble The basic idea of scalarization methods
is to convert a multi-objective programming problemo a set of single objective
optimization problems with the introduction of indtors or constraints. In this paper, two
well-known scalarization methods are employed andtanized to resolve the multi-
objective optimization problems: weighing method anigmented—constraint method.

4.1 Weighting method

The principle of weighting method is to convert thmilti-objective problem into a
weighted sum with the combination of objective waklhnd weight, and the Pareto optimal
solution can be determined through resolving thmglsi objective weighted sum function
(Zadeh, 1963). Equation (38) illustrates a genierim of the weighing method for resolving a
minimization problem, andv = (w;,w,, ...,wy) is the weight vectors of each objective
function, which indicates the relative importangalecision-making.
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k
Min wz(x) = ) w;z;(x)
Z (38)

St. xeX

The equation above cannot be used directly to vesthe proposed bi-objective
optimization problem, because different units aseduin the objective functions. Thus, the
objective value must be first normalized before Weighted sum is calculated, and the
procedures are presented as follows.

1. Calculating the Maximum and Minimum values of eauflividual objective function
with both capacity settings.
Non-flexible Capacity: 0bj1}sY:, Obj2mes, Obj1M" ., Obj2in -
Solve: Max Obj1, Max Obj2, Min Obj1 Min 0bj2, s.t. (3)-(24)
Flexible Capacity: Obj1¥%, Obj2}%, 0bj1}2, 0bj2 )T
Solve: Max Obj1, Max Obj2, Min Obj1 Min 0bj2, s.t. (3)-(9), (18)-(24), (25)-(36)
2. Determining the weight combinations between the twjective functionswt), where
WtObjl + Wtoij =1.
3. Determining the set of Pareto optimal solution®tigh calculating the weighted sum
with different weight combinationswt).
Non-flexible Capacity: Pareto;,

Objllxggf_()bjlnonf Objlnonf_Oij%oizf
Solve: Min Pareto), . - = Wgop i , — Wopi . —
nonf = HObIL opjalisy—obj i T 0PI obj2)ly ~ob )2},
s.t. (3)-(24)
H L. wt
Flexible Capacity: Paretog, |
Objll}”l‘;fc—Objlﬂex Objlflex_Oij]I“/Illg;c

Solve: Min Pareto?. . = wp; . W, i -
nonf = TObJL opjiMax _opjalin T T ObIZ opjaMax_opjoMin

s.t. (3)-(9), (18)-(24), (25)-(36)

As many argues (Das and Dennis, 1997), the berafitssing weighting method is the
simplicity and efficiency, because the derived Wwé&g sum is at the same level of
computational complexity as the single objectivaction in the model. However, it also
suffers from some well-known pitfalls in determigithe set of Pareto solutions (Das and
Dennis, 1997). One of them is the weighting metbacinot generate a complete set of Pareto
optimal solutions depicting all the features of thentier. Weighting method only calculates
the extreme efficient solutions (Mavrotas, 2009)t & cannot find out the non-convex
solutions in the decision space. The other problerhaveighting method include the
generation of weakly non-dominant solutions, redumdcalculations for the same Pareto
optimal solutions with different weight combinatgrand incapability for generating a set of
evenly distributed Pareto optimal solutions (Dad Bennis, 1997). Therefore, the proposed
model is also resolved with another scalarizati@hod: augmenteg-constraint method.

4.2 Augmentecd—constraint method
The principle ofe—constraint method is to select one objective fonctrom the original
multi-objective optimization problem and convere thther objective functions into inequality

constraints, and the Pareto optimal solution ismeined through resolving the derived single
objective constrained optimization problem (Haim&371). Formula (39) shows a generic
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form of thee—constraint method for a multi-objective minimizatiproblem, and the Pareto
optimal solutions can be generated through proptjysting the value of the right hand side
value of the added inequalities)(

Min Zj(.X)
St. z;(x)<¢g,i=12 . ki#j (39)
xX€eEX

Although, compared with weighting method, theonstraint method has several benefits
in determining the Pareto optimal solutions, itgjioal form suffers from two problems: (1)
generation of dominant solutions in ranging theugadfe due to the possible dominant worst-
case points found in the payoff matrix by the conimmal method; (2) generation of weakly
efficient solutions (Mavrotas, 2009). Efforts halveen spent in resolving those problems
(Ehrgott and Ryan, 2002). In this paper, the audetkrr-constraint method developed by
Mavrotas (2009) is employed. With the augmentonstraint method, the payoff matrix is
first calculated through a lexicographic approatlorder to eliminate the dominant solutions
in ranging the value of. For overcoming the weakly efficient solution plerh, a slack
variable is introduced to transform the inequabtynstraints of the original method into
equality constraints, as illustrated in Equatiofl)(4vheres; is the slack variable antlis a
sufficiently small number (1810°).

Min z;j(x) — 9 x Z S
i=1,.ki%j

(40)
S.t. Zl'(x) + S; = Ei,i = 1, 2, ...,k,i 7‘—']

xeX

The procedures for implementing augmenteeconstraint method for resolving the
proposed bi-objective programming problem are gagiollows.

1. Calculating the payoff matrix through a lexicograpapproach with both capacity
settings. It is noted, compared with conventionathod, the lexicographic method
eliminates the dominant solutions related to thestvoase point.

Non-flexible capacity: Obj1)ax,, Obj2)ax-1ex, 0pj1Min-tex, opjarin .
Solve:

a) Obj13¥: = Max Obj1, s.t. (3)-(24)

b) Min 0bj2, s.t.0bj1 = 0bj1y5, (3)-(24)

c) Repeating the same proceduresdoy?2
Flexible capacity: 0bj1}/2%, 0bj21 3571, 0bj1}i='e*, 0bj2 Tt
Solve:

a) Objl}"’l‘;i = Max 0bj1, s.t. (3)-(9), (18)-(24), (25)-(36)

b) Min 0Obj2, s.t.0bj1 = 0bj1]’¥’,‘;§, (3)-(9), (18)-(24), (25)-(36)

c) Repeating the same proceduresdoy?2
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2. Calculating the range favbj2 with both capacity settings, because @ig1 is
considered at higher priority.

Non-flexible capacity: Range’?/2 = opj2Max-lex _ gpjpMin

nonf nonf nonf
Flexible capacity: Rangef > = Obj2i2x1ex — obj2}
3. Setting the values af,; j,. In this step, the number of gridsgj is first determined,
.. . Obj2
and the variation ok, ;, is the calculatediey,,;, = Ra"iz .

4. Determining the set of Pareto optimal solutionsotigh resolving the derived
constrained optimization problem.
Non-flexible capacity: Pareto,,,
Solve:Max Obj1 + 9 X s,
S.t.Obj2 + 55 = €gpj2, (3)-(24)
Flexible capacity: Paretof,,
Solve:Max Obj1 + 9 X s,
S.t.0bj2 + s, = €opj2, (3)-(9), (18)-(24), (25)-(36)

5. Computational Experiments

In this section, computational experiments are mitee test model and solution methods.
The problem includes twelve generation points afduproducts, five candidate points for
central collection center, five candidate points femanufacturing center, five candidate
points for recycling center, three candidate podiatsenergy recovery center, one landfill, and
two types of products. The test parameters arergtate randomly based upon uniform
distribution as illustrated in Table 3, and all th#ner parameters are given in Appendix.
(Datain Excel)

Table 3 Some of the parameter intervals used in the cortipotd experiments.

Parameters Uniform distribution

Productag, Producta,
Amount of EOL and EOU products generatiuy,, 4,000-12,000 6,000-20,000
Fixed costs of collection centefs 3-5 million 3-5 million
Processing costs at collection centerg, 50-80 50-80
Fixed costs of remanufacturing centg&fs 5-9 million 5-9 million
Processing costs at remanufacturing cerleys, 100-120 100-120
Price of remanufactured produéts;,, 800-1200 800-1200
Government subsidy of remanufactured prodsiais, 200-300 200-300

Table 4 Scenario generation for the problem.

Scenarios Probability of occurrence Stochasticrpatars
Amount of EOL and Price of the recovered | Quality level
EOU products collected| products

1 (Deterministic) 20% Mean Mean Mean

2 10% Low Low Low

3 10% Low Low High

4 10% Low High Low

5 10% Low High High

6 10% High Low Low

7 10% High Low High

8 10% High High Low
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IE | 10% | High | High | High |

The problem considers the scenario-based unceesirdlated to the amount of the used
products Pdy,,), price of recovered products or enerddt() and quality level #7). As
discussed by previous authors (Pishvaee et al9)2@0e increase on the number of test
scenarios in a stochastic model achieves limitgatavement on the optimal solution with a
huge sacrifice on computational efficiency. Therefoconsidering both performance and
efficiency, the scenario generation method use8ddgimani et al. (2016) is employed in this
paper to generate nine scenarios. As shown in Halilee mean values of the given intervals
of stochastic parameters are used for the detestidrsicenario with the highest probability of
occurrence at 20%. With the combinations of theclsstic parameters, another eight
scenarios are generated with equal probabilityd&.1

The calculation is performed with Lingo 16.0 optzation solver on a PC with 2.20 GHz
CPU and 8 GB RAM under Windows 10 operating system.

5.1 Effect of flexible capacity on economic perfoamce

The model is first solved with only profit-maximizan objective, and the rate of
efficiency loss is tested withf">**=0% andEf"°**=15%. The calculation results are
presented in Tables 4 and 5, respectively. We &oshpared the network performance and
structure under both deterministic and stochastiirenments. When non-flexible capacity is
implemented, the profit achieved under deterministivironment is 6.7% higher than that of
the stochastic scenario. However, when flexibleaciy is implemented with £,-°**=0%, the
profit obtained under stochastic environment i928gher. When the rate of efficiency loss
increases to 15%, the deterministic scenario aeBiev1% higher profit. In addition, more
facilities are opened under a stochastic envirommenorder to deal with the market
fluctuation, and this will lead to an increase ba bverall system costs due to the low facility
utilization under low demand scenarios. It is otedr under market fluctuation, a highly
flexible reverse logistics system may achieve debgdrofitability than that under a stable
environment.

Table 5 Computational results of the components in theaibje functions with non-flexible/flexible capacity
under deterministic/stochastic environment (resoltsd’).

Components in the Non-flexible capacity Flexible capacity Flexible capacity
objective functions (Efiost=0%) (Efiost=15%)
Deterministic| Stochastic Deterministjc  Stochasti¢c etddministic| Stochastic
Profit 7436 6941 8173 8354 8096 8009
Revenue 17244 17124 17244 17901 17244 17551
Subsidy 6896 6640 7162 7228 7168 7238
Total costs 16704 16823 16233 16774 16316 16780
Facility costs 8696 8551 8027 8406 7970 8396
Transportation costs 8008 8272 8206 8368 8346 8384
Total emissions 28428 30484 28682 29066 29176 2929
Facility emissions 13409 15496 13952 14228 14760 448%
Transportation emissions 15019 14988 14730 14837 4418 14806

Table 6 Selection of facilities in different scenarios.

Selection of facilities Non-flexible capacity Fible capacity Flexible capacity
(EfiLostzo%) (EfiLost:lS%)
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Deterministic| Stochastic Deterministjc  Stochasti¢ etddministic| Stochastic

Central collection centers|  (1,0,1,1,0) (0,0,1,1,1) 0,0,1,0) (2,0,1,1,0) (0,0,1,1,0) (1,0,1,1,0

Remanufacturing centers (2,0,0,1,0) (0,1,0,1,0) ,0110) (0,1,0,1,0) (2,0,0,1,0) (0,1,0,1,0

Recycling centers (0,1,0,1,0) (0,0,0,1,0 (0,1,0,1,0{ (0,1,0,1,0) (0,1,0,1,0) (0,1,0,1,0)

Energy recovery centers (1,0,0) (1,1,0) (1,0,0) 1,0, (0,1,0) (0,1,0)

Under a stochastic environment, comparted withnitre-flexible configuration, the profit
expectation with flexible capacity increases by20 (Ef2°°=0%) and 15.4%Kf“°**=15%).
Besides, we also conduct a sensitivity analysisiglit scenarios witl f~°**=0%, 5%, 10%,
15%, 20%, 25%, 30%, 35% and 40%, respectively.reigupresents the comparison of profit
expectation, overall income, total costs and totabon emissions of the different scenarios.
With the increase of the rate of efficiency lossmplementing a flexible capacity, the profit
expectation gradually decreases and eventuallyrbesdower than that of the non-flexible
configuration wherEf2°$=35% and 40%. In contrast, the total costs remgbles until
Ef{~°S increases to 20% from which a sharp increase serobd. The change of the overall
income and carbon emissions does not show a censisbnotonicity over the test scenarios.
In general, the performance of the two indicat@srdases with the increaseByff-°**, but it
Is better than that of the non-flexible configunatiover all the test scenarios. The result has
illustrated that the flexible configuration is affeetive tool for improving the economic
performance of a reverse logistics system undekendluctuation, but the effectiveness is
affected by the rate of efficiency loss in the sfammation. Furthermore, the profit
expectation may become worse with the flexible ciapavhenEf~°**is large enough.
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Figure 2. Comparison of profits, overall income, total caatgl carbon emissions of the different scenarios
under stochastic environment.

Figures 3 and 4 present the comparison of the pedioce on facility operations and
transportation of the test scenarios. As shownh whie increase dff;*sS, the change of
facility costs is in consistency with the changehs total costs with a variation at 22%, while
the change of the transportation costs is not nomotvith a much smaller variation at 1.5%,
so the change of the total costs is the result ffacility operations. The carbon emissions
related to facility operations and transportatibowg the similar pattern even if the difference
on the variation is not that big compared with tbétthe costs. The result illustrates the
effectiveness of facility operation is the most ortant consideration for implementing a
flexible configuration.
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Figure 3. Comparison of costs and carbon emissions relatéatiiity operations of different scenarios under
stochastic environment.
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Figure 4. Comparison of costs and carbon emissions relatednsportation of different scenarios under
stochastic environment.

5.2 Effect of flexible capacity on economic and @mnmental performance

In this section, the model is tested with both otoye functions. First, the bi-objective
stochastic optimization model is solved by weightnethod, and 11 Pareto optimal solutions
are obtained with respect to the changing;; from 1 to 0 with a step at 0.1 each. Then, the
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problem is resolved by augmentgdconstraint method in order to generate anothdtdk&to
optimal solutions accordingly. Table 7 presentsdbenputational results, which includes the
generation of Pareto solutions, computational perémce and information on the slacks.
Figures 5 and 6 present the Pareto frontiers betvpeefits and carbon emissions of the
reverse logistics system with both non-flexibleaty and flexible capacity.

Table 7 Computational results of the Pareto optimal sohgiby both weighting method and augmented
constraint method.

Points | Weighting method Augmentede-constraint method
wopj1 | Non-flexible capacity Flexible capacity Non-flexébtapacity Flexible capacity
Time | Profit | Carbon| Time | Profit | Carbon| Time | Profit | Carbon| Slack | Time| Profit| Carbon| Slack
0% | @10h 10%) | @10} (10h | @10} (10h | (10Y

1 1 11 6941 30484 13 8354 29066 53 6941 30484 0 118354 29066 0
2 0.9 90 6927 | 30150/ 61 8349 28939 75 6849 29655 O 17 1 8223 | 28349| O
3 0.8 84 6907 29988 163 833D 28744 116 6710 28826 Q 102 8053 27632 0
4 0.7 146 6464 | 27549 140 827p 28495 185 65350 27998 121 7799 | 26915 O
5 0.6 77 6158 26816 80 7491 26166 121 6359 27169 g 88 7506 26198 0
6 0.5 52 5653 25426 70 7026 25330 108 6089 26341 g 103 7116 25482 0
7 0.4 55 4817| 24321 84 5918 24054 61 5702 25812 O 09 1 6553 | 24765| O
8 0.3 26 4220 23803 24 5024 23374 62 5106 24683 g 1 7 5912 24048 0
9 0.2 31 766 22225 13 1934 21924 41 42D2 23855 O 394950 | 23331 | O
10 0.1 12 702 22205 6 184 2190 40 2677 23026 0 133590 22614 0
11 0 9 639 22198| 4 1147 21898 25 639 22198 O 10 11B21898 | O

We first compared the performance of the two sotutnethods in calculating the Pareto
frontier of a multi-objective optimization problenRue to the convex nature of the test
problem, the shape of the Pareto frontier deterdchimye both methods is similar. However,
weighting method can only find the Pareto optimalugons at the extreme points of the
curve, while augmentegl-constraint method is able to generate evenlyibliged Pareto
optimal solutions and a smoother curve. Furthermamgmented—constraint method can
effectively eliminate the dominant solutions, bwighing method is incapable with that. For
example, it is easy to see in Figure 5, point 14 dominant solution of point 10 in the Pareto
curve with flexible configuration, and it is elinated by augmenteg-constraint method.
Thus, augmenteg-constraint method has a better performance irffieetiveness; while on
the other hand, the computational time requireavbighting method is less in most cases, so
the weighting method has a better performancermdef computational efficiency.

Pareto frontier with weighting method
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Figure5. Pareto frontier determined by weighting method.
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Pareto frontier with augmented e-constraint method
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Figure 6. Pareto frontier determined by augmentecbnstraint method.

We then compared the performance of the revergsticg system in terms of both profit
expectation and environmental impact with the ipooation of flexible capacity. It is
observed that the carbon emissions from reversstiog activities increase with the increase
of the profit expectation. In order to reduce tlaebon emissions, some economic benefits
will be lost, so Pareto frontier provides a setha optimal trade-offs between the profits and
environmental influence. As can be seen, the remlucin carbon emissions at the beginning
stage from the profit-maximization scenario is magéective without a significant
compromise on the economic benefits compared widt bn the latter stage. It is also
observed the implementation of a flexible configura in the reverse logistics system
improves both profit expectation and environmeptaformance.

Pareto frontiers of different scenarios
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Figure 7. Pareto frontiers determined by augmenrtembnstraint method of different scenari@y{°s*=0%,
10%, 20%, 30% and 40%).

The transformation from a non-flexible system tibeaible system without a compromise
on efficiency is hardly to achieve in reality, sensitivity analysis is performed with an
adjustment onEf;*°%S from 0% to 40% with 10% step each, and the résgiven in Figure 7.
With the increase of the rate of efficiency losenir 0% to 30%, both economic and
environmental performance of the Pareto optimaltemis decrease gradually, but they still
have a better performance than the Pareto optiolatiens obtained with a non-flexible
configuration. However, when the rate of efficierlogs reaches 40%, the reverse logistics
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system with a flexible capacity achieves much loprexfits and has more carbon emissions in
most cases.

Thus, it is of interest to “take a closer look #t& model behavior in the segment where the
performance of a flexible reverse logistics systentlose to a non-flexible one. Figure 8
illustrates the comparison of the Pareto frontieesween non-flexible configuration and
flexible configuration withE £;"°5=30%, 32.5% and 35%, respectively. WHgfit°$5=32.5%,
the performance of the reverse logistics systerh Wwith capacity settings is very close to
each other. In this case, the flexible reversestigs system favors more on profit-focused
scenarios. While, on the other hand, the non-flexitonfiguration has a slightly better
performance on the emission-focused scenarios.

Pareto frontiers of different scenarios
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Figure 8. Pareto frontiers determined by augmentembnstraint method of different scenari@y£°**=30%,
32.5% and 35%).

6. Managerial Implications

The planning of a sustainable reverse logisticdesysis a complex decision-making
problem that aims at optimizing the trade-off bedaweconomic benefits and environmental
influence. Furthermore, in the planning horizoraafeverse logistics system, there are many
uncertainties related the quantity and quality leé teverse flow, and market fluctuation,
which make the problem becoming more complicatelde Tatest modelling efforts and
computational analysis on sustainable reversetlogiaetwork design under uncertainty have
shown a significant improvement on the understapdinhthe trade-offs among economic,
environmental and social sustainability (Feito-Gespet al., 2017, Talaei et al., 2016),
implications from the customer satisfaction (Ozlamd Baligil, 2013), on-site/off-site
separations (Rahimi and Ghezavati, 2018), as vgetloanputational performance (Govindan
et al., 2016b, Soleimani et al., 2017). In thisgraphe managerial implications regarding the
impact of flexibility on sustainable reverse logist network design under uncertainty is
focused.

The uncertainty in reverse logistics network desigay either result in a lower utilization
of resources in low demand scenarios or lead tmsufficient capacity to treat all the EOL
and EOU products. In the latter case, the decisiaker may either implement a reduction on
the service level or put more investment on facibixpansion (Yu and Solvang, 2017).
However, in the planning of a multi-product revelsgistics system, the transformation from

29



an efficiency-focused non-flexible configuration da effectiveness-focused flexible system
may be the third option, which may improve bothresnic and environmental performances.
The results of the computational experiments hawesva the flexible reverse logistics system
has a better performance in both economic benafits environmental influence under a
stochastic environment when the rate of efficieluss is maintained at lower than 32.5%.
Otherwise, the focus of the reverse logistics nétvdesign should be on efficiency.

Taking into account of the nature of the sustamaftglverse logistics network design
problem, some generic managerial implications arergas follows:

1. The implementation of a flexible configuration fareverse logistics system dealing
with multiple heterogamous products may improvenkeEtonomic and environmental
performance when the efficiency loss is kept im@pr level. In another words, if the
companies in the reverse logistics system havpdadsignificant efforts to achieve a
high flexibility, the benefits gained may be nedlig or even negative.

2. When reverse logistics system is operated undarmaertain environment, a highly
flexible configuration may provide a better charoegenerate higher profits while
simultaneously reduces carbon emissions.

3. When reverse logistic system is operated undedatively stable environment, the
efficiency-focused non-flexible configuration habetter performance.

4. The reduction on carbon emissions from the revergistics activities results in a
compromise on the profit expectation, and a Pdrettier can describe such a trade-
off.

5. For calculating the Pareto frontier of the problemgmented-constraint method is
more effective in generating evenly distributed 4glmminant efficient solutions, while
weighting method requires less computational time.

7. Conclusion

Reverse logistics network design is a complex dmtimaking problem that involves
conflicting objectives and uncertain parametersthis paper, we develop a new two-stage
stochastic bi-objective programming model for sustiale planning of a multi-product multi-
echelon reverse logistics system under uncertai@gnsidering the different processing
operations for the recovery of multiple types obducts with heterogeneous nature, the
model is formulated in two parallel ways equippeithweither an efficiency-focused non-
flexible capacity or an effectiveness-focused téicapacity. For resolving the multi-
objective optimization problem, two solution apprbes: weighting method and augmented
e-constraint method are employed to calculate the-daminant efficient Pareto optimal
solutions.

Compared with the modelling efforts in existinggfdture, the contribution of this paper is
the consideration of flexibility in sustainable eese logistics network design. Due to a lack
of system flexibility, the trade-off analysis withevious mathematical models may lead to an
excessive capacity installed with low utilizationder an uncertain environment. The paper
provides a decision-support model for performaneduation, under different environments,
between the flexible and non-flexible configurasan sustainable reverse logistics network
design. The experimental analysis illustrates imgleting a flexible configuration may
improve the overall performance of a sustainablense logistics system under an uncertain
environment. However, the result also suggests whenmarket environment is stable or
significant efforts are needed to improve the systiexibility, implementing a non-flexible
configuration is more favorable in order to maintthe efficiency. Furthermore, the strategic
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decision-making on flexibility or efficiency willlso affect the decisions on plant planning,
i.e., internal routing, layout design, etc.

The paper has provided important insights into iipocating flexible capacity in
sustainable reverse logistics network design. Nbewss, the research is not without
limitations and many research directions are wilithy for future investigation.

1.

Incorporating flexible capacity in remanufacturiagd recycling will result in an
increase on the costs for collection, separatitorage and pre-processing of the
heterogeneous EOL and EOU products. The future himeglefforts may consider the
cost increase on those operations.

Future works may be conducted to include more daiceparameters in sustainable
reverse logistics network design.

The inclusion of more uncertain parameters willdléa an increased computational
complexity, so more effective and efficiency sadatimethods and algorithm should
be developed.

For future research, focus may be given to theataustainability in sustainable
reverse logistics network design, and the seleafqoroper indicators for quantifying
the social sustainability is of interest.
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Highlights

* Incorporating flexibility in sustainable reverse logistics network design
* Formulating mathematical model for decision support under uncertainty
» Different solution methods were tested, compared and discussed

* Resultswere analyzed for providing managerial implications



