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Abstract: With the focus on sustainable development, the value recovery from End-of-Life 
(EOL) and End-of-Use (EOU) products has been given considerable attention by the whole 
society. Reverse logistics is the process for value recovery and re-creation through a series of 
activities, i.e., repair, remanufacturing, recycling and energy recovery. However, due to the 
stochastic reverse product flow, unstable quality of used products, and the price fluctuation of 
recycled and remanufactured products, the planning of a reverse logistics system is more 
complex compared with that of a forward supply chain. In this paper, we propose a two-stage 
stochastic bi-objective mixed integer programming model for the network design problem of 
a multi-product multi-echelon sustainable reverse logistics system under uncertainty, which 
aims at providing a set of Pareto solutions between profitability and environmental 
performance. Furthermore, due to the heterogeneous nature, the processing operations 
performed at remanufacturing and recycling centers for different products are by no means 
identical. Different from the previous modelling efforts derived from a genetic “capacitated 
location problem”, this paper considers the impact from the system flexibility on sustainable 
reverse logistics network design. Thus, the model is formulated in two parallel ways with 
either efficiency-focused non-flexible capacity or effectiveness-focused flexible capacity. The 
experimental analysis illustrates that increasing environmental requirement will decrease the 
profitability of the reverse logistics system, while, increasing flexibility may yield positive 
impacts on both economic and environmental performance when the efficiency loss is kept at 
a proper level. 

 

Key words: reverse logistics; sustainable supply chain; facility locations; flexibility; 
sustainability 

 

 

1. Introduction 

In recent years, with the stringent environmental regulations enacted and ever increasing 
focus on sustainable development from the whole society, the value recovery from the End-
of-Life (EOL) and End-of-Use (EOU) products has been given considerable attention by 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

2 

 

decision-makers, companies as well as academic researchers around the world (John et al., 
2017). Not only from the perspective of landfill depletion and environmental pollution, but 
also from the economic perspective, the recovery of EOL and EOU products improves the 
utilization of recourses and also yields profits through some high value-added operations, i.e. 
remanufacturing (Guide Jr, 2000). Reverse logistics is the system dealing with the whole 
process and material flow for value recovery and re-creation from EOL and EOU products, 
and typical operations in a reverse logistics system include collection, transportation, 
inspection and disassembly, and distribution for reuse, remanufacturing, recycling, energy 
recovery and proper disposal of the EOL and EOU products (Rogers and Tibben‐Lembke, 
2001).  

Reverse logistics is believed to be one of the most important steps for circular economy 
and sustainable development. As defined by the Brundtland Commission of the United 
Nations (UN, 1987), sustainable development is “development that meets the present without 
compromising the ability of future generations to meet their own needs”. Introduced in 2005 
World Summit, sustainable development is supported by three dimensions: economic, 
environmental and social sustainability (Chopra and Meindl, 2015). Through implementing 
the reverse logistics activities in an effective and efficient manner, companies can 
significantly improve the use of materials and cost saving (Kannan et al., 2012), while 
simultaneously obtaining a higher customer loyalty and potential profitability in future 
(Kannan, 2009). Meanwhile, reverse logistics can also enhance the environmental and social 
dimensions of sustainable development through, for example, reduction on landfilled waste, 
improved resource recovery and job creation in the business (Govindan et al., 2016a).  

However, on the other hand, the improper recovery activities and operations may reduce 
the economic benefits while simultaneously impose great environmental risks on the workers 
and local residents. For instance, the transcontinental shipment of waste electrical and 
electronic equipment (WEEE) and packaging waste to Southeast Asia results in increased 
shipping costs, fuel consumptions and carbon emissions. Meanwhile, the low-tech treatment 
for value recovery of WEEE and packaging waste used in those countries yields significant 
pollution on the environment and imposes risks on the health and lifestyles of the workers and 
nearby residents. Thus, in order to improve sustainability, not only economic benefits, but 
also the other dimensions of sustainable development should be taken into account in the 
decision-making of reverse logistics activities. Furthermore, due to the pressure from the 
public and stakeholder interests (Fahimnia et al., 2015b), practice-based studies have also 
revealed the top management of companies has paid more attention for the green practices 
and management of the supply chain (Vlachos et al., 2007).  

The network planning of a reverse logistics system is one of the most important strategic 
decisions (Melo et al., 2009).  It involves determination of the number and locations of new 
facilities to be opened, identification of the mode for transportation, and establishment of the 
distribution channels for the treatment of EOL and EOU products (Melo et al., 2014). 
Compared with the network design problem of a traditional forward supply chain, the 
planning of a reverse logistics system is more complex due to three reasons. First, reverse 
logistics involves more types of activities (e.g., collection, sorting and disassembly, 
transportation and distribution, reuse, remanufacturing, recycling, energy recovery and 
disposal) and the network structure is therefore more complicated. Second, reverse logistics 
involves more uncertainties in the returned flow in terms of both quantity and quality (Talaei 
et al., 2016). Further, in the long period of the lifecycle of a reverse logistics system, the price 
for the recovered products are heavily influenced by the market fluctuation and can hardly be 
predicted accurately (Soleimani et al., 2016). The third reason is that, due to the 
heterogeneous nature, the processing operations performed at remanufacturing and recycling 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

3 

 

centers of different products are by no means identical (Guide Jr, 2000). This further 
complicates the reverse logistics network design problem with the consideration of the trade-
off between efficiency and flexibility (Yu and Solvang, 2017).  

In order to solve those challenges, a great number of mathematical models and methods 
have been developed for helping with a better decision-making of reverse logistics network 
design. The earlier modelling efforts have been done with single objective function focusing 
only on the economic performance of the reverse logistics system under a deterministic 
environment (Govindan et al., 2015), the objective is either to maximize profits or minimize 
costs (Govindan et al., 2015, John et al., 2018). However, with more emphasis on the 
environmental and social dimensions of sustainable development, the trade-off between 
economic performance and sustainability-related measures of reverse logistics network design 
under an uncertain environment has been increasingly focused by recent research works (See 
Table 1). However, from the literature review, one of the most important decisions regarding 
the strategic network configuration has not been thoroughly investigated with the 
mathematical modelling approach, that is the flexibility of a reverse logistics system. Even if 
the flexibility issues have been formulated and focused in some activities related to 
sustainable supply chain management, e.g., supplier selection (Kaur et al., 2016), there is still 
a lack of decision-support models considering flexibility issues in the network design problem 
of a sustainable supply chain in existing literature (Gunasekaran et al., 2016). Due to the 
uncertainty related to the quantity and quality of the input materials, improving the system 
flexibility of a reverse logistics system may yield significant impacts on both economic and 
environmental performance. Furthermore, the network decisions at strategic level will 
influence the decisions on the plant planning, e.g., layout design, internal route planning, etc. 
At this point, a mathematical modelling approach can provide decision-makers and 
practitioners with quantitative analysis of the flexibility issues in the strategic planning of a 
multi-product sustainable reverse logistics system.  

The modelling idea behind a product-specified non-flexible configuration is the traditional 
mass production system that maximizes the efficiency and takes advantage of economy of 
scale. While, on the other hand, implementing a flexible configuration or flexible 
manufacturing system aims at improving the effectiveness and taking advantage of economy 
of scope. However, the improvement on system flexibility usually leads to a compromise on 
the productivity. Therefore, in the context of a reverse logistics system, this paper aims to 
answer the following research questions.      

1. What is the influence of flexibility on sustainable reverse logistics network design? 
2. Does the increase on flexibility can always lead to an improvement on the 

performance of a multi-product reverse logistics system?  
3. In which conditions a flexible configuration performs better than a non-flexible 

configuration in reverse logistics?       

In order to answer the aforementioned questions, we propose a new two-stage stochastic 
bi-objective mixed integer programming model for the planning of a multi-product 
sustainable reverse logistics system, and the model aims at balancing the profitability and 
environmental performance. The goal of this research is, by using an optimization model, to 
understand the influence of the flexibility on both economic and environmental performances 
of a multi-product reverse logistics system under uncertainty. To our knowledge, this is the 
first research work focusing on the flexibility issues in sustainable reverse logistics network 
design under uncertainty. 

The main contributions of this research are summarized as follows: 
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1. We developed a mathematical modelling approach incorporating the flexibility in 
sustainable reverse logistics network design under uncertainty. 

2. Through the numerical experiments, we investigated the impact of flexibility on the 
performance of a multi-product reverse logistics system under both deterministic and 
stochastic environments. 

3. Some generic managerial implications related to flexibility and efficiency in 
sustainable reverse logistics network design under different conditions are discussed 
based upon scenario analysis.  

4. In addition, we also compared the effectiveness and computational efficiency of two 
solution methods in resolving a multi-objective optimization problem.       

The remainder of the paper is organized as follows. Section 2 presents an extensive 
literature review on reverse logistics network design with a focus on recent publications, and 
the literature gap regarding the flexibility issues in sustainable reverse logistics network 
design is discussed. Section 3 gives the problem, method, notations as well as the 
mathematical model. Section 4 presents a brief introduction of the solution methods. In 
section 5, experimental analysis is given to illustrate the application of the model. Section 6 
summarizes some generic managerial implications. Finally, section 7 concludes the paper and 
suggests directions for future study. 

 

2. Literature Review 

Quantitative modelling efforts for a logistics system aim at providing decision-makers with 
strategic analysis for an effective and efficient decision-making of logistics network design 
(Fahimnia et al., 2015a). Due to the complex nature of a reverse logistics system, the network 
design problem has been focused by both academic researchers and practitioners (Govindan et 
al., 2015), and numerous mathematical models have been developed for a large variety of 
industries and businesses (Alshamsi and Diabat, 2015). Comprehensive literature reviews 
related to reverse logistics problems have been given with different focuses, i.e., conceptual 
development and perspectives (Wang et al., 2017), industry focused studies (Campos et al., 
2017), quantitative models and techniques (Govindan et al., 2015, Govindan and Soleimani, 
2017), and modelling methods incorporating with sustainability (Eskandarpour et al., 2015).  

Due to the quantitative nature of the current study, this section presents an overview of the 
recent development on the optimization models for reverse logistics network design. Based 
upon the characteristics of the models and methods, the literature can be categorized into four 
groups with their primary research focuses: (1) economic performance; (2) multi-criteria 
sustainable performance; (3) control of uncertainty; (4) development of efficient 
computational algorithms.  

2.1 Economic performance focused reverse logistics network design  

Value recovery from the EOL and EOU products are the primary concern of the planning 
of a reverse logistics system. Alshamsi and Diabat (2015) developed a mixed integer 
programming for maximizing the profits of a reverse logistics system, and the model 
formulates both in-house and outsourcing options of transportation. In order to maximize the 
profits generated from the recycling of used refrigerators, John et al. (2018) proposed an 
optimization model for the planning of a reverse logistics network over multiple periods. 
Budak and Ustundag (2017) proposed a multi-period model for minimizing the costs of the 
reverse logistics network of healthcare institutions. 
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Taking into account of disassembly line balancing, Kannan et al. (2017) developed a 
mixed integer nonlinear optimization model for planning a multi-product reverse logistics 
system from the third-part provider’s perspective. The model aims at maximizing the profits 
from product recovery, and the market fluctuation is resolved with inventory balancing 
strategy. Kheirkhah and Rezaei (2016) proposed a single objective cost-minimization model 
for reverse logistics network design considering cross-docking operations. Alshamsi and 
Diabat (2017) investigate a mixed integer programming for profit-maximization of recovery 
activities, and a genetic algorithm was developed to efficiently resolve large problems. In 
order to provide optimal decisions on the biding price and facility operations, Capraz et al. 
(2015) proposed a mixed integer linear programming for the recycling system of waste 
electrical and electronic equipment (WEEE).  Demirel et al. (2016) investigated a multi-
period mixed integer programming for reverse logistics network design of EOL vehicles.  

2.2 Multi-criteria sustainable reverse logistics network design  

Due to the pressure from different stakeholders on sustainable development, environmental 
and social aspects of sustainability have been incorporated in supply chain design (Govindan 
et al., 2014), and the focus of the optimization problem becomes therefore the balance 
between economic incentives and ecological influence (Zhu and Sarkis, 2004). With the help 
of advanced mathematical models, a variety of policy mechanisms combined with economic 
incentives for the design of a sustainable reverse logistics network are tested, among which 
implementing different carbon policies for emission reduction has been extensively focused. 
At this point, the impact of carbon tax on the planning of a reverse logistics network is 
investigated by Diabat et al. (2013), Haddadsisakht and Ryan (2018), John et al. 
(2017),Kannan et al. (2012), and Yu and Solvang (2016a), while the implementation of a 
carbon cap under market fluctuation is tested by Soleimani et al. (2017) and Yu and Solvang 
(2017). 

The most frequently used method for modelling sustainability-related concerns in reverse 
logistics network design is multi-objective programming. Yu and Solvang (2016b) developed 
a bi-objective model for balancing the costs and carbon emissions of a reverse logistics 
system. Considering the economic, environmental and social sustainability in reverse logistics, 
Govindan et al. (2016b) investigated a fuzzy multi-objective optimization model. In this study, 
the environmental performance is evaluated by Eco-indicator 99 and the social indicator is 
evaluated by the created job opportunities and working conditions. Feitó-Cespón et al. (2017) 
proposed a multi-objective stochastic model for balancing the trade-off among costs, 
environmental performance and level of service in the redesign of a multi-product reverse 
logistics system. Considering the decision-making at operational level, Ramos et al. (2014) 
developed a multi-objective optimization model for the routing problem in a reverse logistics 
system. The model simultaneously balances the costs, carbon emissions as well as working 
time.  

With the implementation of extended producer responsibility (EPR) and other regulations, 
manufacturers are required to take responsibilities for the returned flow of their products. In 
this regard, the supply chain structure becomes more complex with the inclusion of reverse 
logistics activities. Significant efforts have been spent in order to develop advanced decision-
making models for planning an integrated forward/reverse logistics system. Taking into 
account of both economic and environmental performance of an integrated forward/reverse 
supply chain, Ghayebloo et al. (2015) developed a bi-objective model for balancing the costs 
and greenness. Babaveisi et al. (2017) proposed a multi-objective programming for 
simultaneously minimizing the costs, risks as well as shortage of products in designing a 
closed-loop supply chain. Considering the economic, environmental and social sustainability, 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

6 

 

Govindan et al. (2016a) investigated a multi-objective model for planning a multi-product 
forward/reverse supply chain with hybrid production plants for both manufacturing and 
remanufacturing operations. 

2.3 Reverse logistics network design under uncertainty  

The network planning is a strategic decision that has a long-term impact on the 
performance of a reverse logistics system. Within the lifespan of a reverse logistics system, 
some parameters may exist significant uncertainties. However, some important decisions, i.e., 
facility location, have to be made with inexact information (King and Wallace, 2012). Thus, 
uncertainty control is another focus in reverse logistics network design (Talaei et al., 2016). In 
order to redesign a reverse logistics network for treating wood waste, Trochu et al. (2018) 
developed a mixed integer model with scenario-based extension for controlling the 
uncertainty. Govindan et al. (2016b) proposed a fuzzy multi-objective mathematical model for 
planning a sustainable reverse logistics system. The model aims at balancing the economic, 
environmental and social sustainability for reverse logistics network design under uncertainty. 
Yu and Solvang (2017) investigated a two-stage stochastic programming with carbon 
constraint for reverse logistics network design, and an augmented multi-criteria scenario-
based risk-averse solution method was developed for maximizing the profits from reverse 
logistics activities while minimizing the risks from uncertainty. 

Considering the network design of an integrated forward/reverse supply chain under 
uncertainty, El-Sayed et al. (2010) and Pishvaee et al. (2009) formulated mathematical models 
with stochastic parameters for cost minimization, while a robust optimization model was 
given by Pishvaee et al. (2011).  In order to simultaneously maximize the profits, fill rate of 
customer demands and satisfaction level of stakeholders, Özkır and Başlıgil (2013) developed 
a fuzzy multi-objective model for planning a closed-loop supply chain with inexact 
parameters. Soleimani et al. (2017) formulated a fuzzy multi-objective programming for 
designing a sustainable closed-loop supply chain with carbon emission requirement, and the 
model aims to seek the optimal balance among profits, level of customer service and the 
missing working days due to occupational accident. Talaei et al. (2016) proposed a fuzzy 
robust optimization model for effectively managing the trade-off between total costs and 
carbon emissions in the design of an integrated forward/reverse logistics system.  

2.4 Development of highly efficient computational algorithms   

Reverse logistics network design is a complex decision-making problem, which involves a 
large amount of parameters, decision variables and constraints. With the increase on the size 
of the problem, computational time required for calculating the optimal solution will increase 
dramatically. Thus, the improvement on the computational efficiency is focused in previous 
research works. Several approximation methods, heuristics and meta-heuristics have been 
developed, i.e., genetic algorithm (Alshamsi and Diabat, 2017), particle swarm optimization 
(Guo et al., 2017a, Guo et al., 2017b), Lagrangian relaxation (Jabbarzadeh et al., 2018), 
Benders cuts (Haddadsisakht and Ryan, 2018), simulated annealing (Fattahi and Govindan, 
2017), and non-dominated sorting genetic algorithm (Babaveisi et al., 2017, Ghezavati and 
Beigi, 2016).  

In addition, some research works have been done with the development and 
implementation of new artificial intelligent methods for resolving large-sized planning 
problems. Li et al. (2017) developed a hybrid artificial bee colony algorithm for a cost-
minimization model for reverse logistics network design. Zandieh and Chensebli (2016) 
proposed a water-flow-like algorithm for planning a single-period two-echelon reverse 
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logistics system. Fard and Hajaghaei-Keshteli (2018) formulated a static Stackelberg game 
and a tri-level metaheuristic to manage the interactions among different players in a reverse 
logistics system.  

2.5 Summary and literature gap 

Table 1 presents a vis-à-vis comparison of the relevant literature in reverse logistics 
network design with respect to several criteria. Compared with the result from a 
comprehensive review by Govindan et al. (2015), it is observed the earlier modelling efforts 
focus primarily on economic benefits of reverse logistics system under a predictable 
environment. While, an increasing number of recent publications investigated models with 
inexact parameters and multiple objectives in order to incorporate environmental and social 
sustainability in decision-making under uncertainty. Besides, the value recovery of multiple 
types of products has attracted more attentions in recent mathematical models.  

Considering the heterogeneous nature of different products, most of the modelling efforts 
for a multi-product reverse logistics system formulate a product-specified non-flexible 
capacity constraint, while the other models neglect the difference between the processing 
procedures for recycling different products. However, the impact of system flexibility on 
sustainable reverse logistics network design has not been thoroughly investigated in the 
existing literature. Modelling a sustainable reverse logistics network design problem under 
uncertainty based upon a generic “capacitated location problem” may neither be able to find 
out the optimal solution in strategic decision-making nor provide valuable suggestions for the 
plant planning decisions, i.e., layout planning, internal route planning.       

The most significant problem of those models is the way they deal with the demand 
fluctuation. With a non-flexible capacitated model under uncertainty, an increased demand for 
managing used products and a more stringent regulation on emission reduction may lead to 
either a decision on facility expansion or a compromised service level on waste management. 
However, both decisions may not be the optimal solution in some cases. Facility expansion 
requires an additional investment, while at the same time; this decision may also cause a 
reduction on facility utilization and higher operating costs when the generation of used 
products is low. From the mathematical programming perspective, a reduction on service 
level is another option, for example, a more economically attractive solution may be found by 
incorporating a chance constraint in a stochastic optimization model in order to allow a 
certain probability of demands are not met. However, in practice, “leaving the garbage on the 
street” will result in a dramatically reduced satisfaction of the local residents. In addition, the 
plant planning of a flexible and a non-flexible configuration is of great difference, but the 
generic capacitated location models cannot provide implications for supporting the plant 
planning decisions.  

A reverse logistics system is featured with significant uncertainty related to the quantity 
and quality of different returned products and a variety of processing procedures are required 
to recover them. Practical-based survey (Guide Jr, 2000) and computational-based analysis 
(Seebacher and Winkler, 2014, Feng and Shen, 2017) have both confirmed the profitability of 
a reverse logistics system can be improved through incorporating with flexible capacity. 
Furthermore, a recent quantitative modelling effort has revealed, by improving the system 
flexibility under an uncertain environment, both economic and environmental performance of 
a multi-product reverse logistics system may be improved without a large investment on 
facility expansion or a compromise on service level (Yu and Solvang, 2017).  

Based on the discussion above, the raison d'être of this paper is to fill the literature gap by 
incorporating flexibility in sustainable reverse logistics network design. The problem is 
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modelled in two parallel ways with both efficiency-focused non-flexible capacity and 
effectiveness-focused flexible capacity. Managerial implications regarding the sustainable 
reverse logistics network design under uncertainty with both capacity configurations are 
discussed through experimental analysis. Besides, as shown in Table 1, only 17% of the 
recent mathematical models considers the control of uncertainty in sustainable reverse 
logistics network design. Thus, we formulates a new two-stage stochastic bi-objective mixed 
integer programming model aiming at providing decision-makers and practitioners with 
robust optimal decisions on sustainable reverse logistics network design under an uncertain 
environment.   
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Table 1 Review of the recent research works on reverse logistics network design 

Articles Product flow Capacity  Network  Objectives Parameter Modelling 
approach 

Solution Solver  Validation 

Single Multiple Non-
flexible 

Flexible Unspecified Forward Reverse Economic Environmental Social Others   Exact Approximation   

Pishvaee et al. 
(2009) 

˅    ˅ ˅ ˅ ˅    Non-
deterministic 

Stochastic MIP ˅  LINGO Experiment 

El-Sayed et al. 
(2010) 

˅    ˅ ˅ ˅ ˅    Non-
deterministic 

Stochastic MIP ˅  XpressSP Experiment 

Pishvaee et al. 
(2011) 

˅    ˅ ˅ ˅ ˅    Non-
deterministic 

Robust MIP ˅  CPLEX Experiment 

Kannan et al. 
(2012) 

˅    ˅  ˅ ˅ ˅   Deterministic  MIP ˅  LINGO Experiment 

Demirel et al. 
(2016) 

˅    ˅  ˅ ˅    Deterministic MIP ˅  GAMS 
CPLEX 

Case 

Alshamsi and 
Diabat (2015) 

˅    ˅  ˅ ˅    Deterministic MIP ˅  GAMS 
CPLEX 

Case 

Ghezavati and Beigi 
(2016) 

˅    ˅  ˅ ˅  ˅  Deterministic  MOMIP  ˅ MATLAB 
GAMS 

Experiment 

Yu and Solvang 
(2016b) 

˅    ˅  ˅ ˅ ˅   Deterministic MOMIP ˅  LINGO Experiment 

Govindan et al. 
(2016b) 

˅    ˅  ˅ ˅ ˅ ˅  Non-
deterministic 

Fuzzy MOMIP ˅ ˅ MATLAB 
MINITAB 

Experiment 

Zandieh and 
Chensebli (2016) 

˅    ˅  ˅ ˅    Deterministic MIP  ˅ MATLAB Experiment 

Li et al. (2017) ˅    ˅  ˅ ˅    Deterministic MIP  ˅ C++ Experiment 

Silva et al. (2017) ˅    ˅  ˅ ˅  ˅  Deterministic MOMIP ˅  CPLEX Case 

Guo et al. (2017a) ˅    ˅  ˅ ˅    Deterministic  MIP  ˅  Case 

Guo et al. (2017b) ˅    ˅ ˅ ˅ ˅ ˅   Deterministic  Two-stage MIP  ˅  Case 

Budak and 
Ustundag (2017) 

˅    ˅  ˅ ˅    Deterministic MIP ˅  Xpress 
IVE 

Case 

Fard and Hajaghaei-
Keshteli (2018) 

˅    ˅ ˅ ˅ ˅    Deterministic Game theoretic tri-
level MIP 

 ˅  Experiment 

Rahimi and 
Ghezavati (2018) 

˅    ˅  ˅ ˅ ˅ ˅  Non-
deterministic 

Stochastic 
MOMIP 

˅  GAMS Experiment 

Demirel and 
Gökçen (2008) 

 ˅ ˅   ˅ ˅ ˅    Deterministic MIP ˅  GAMS 
CPLEX 

Experiment 

Amin and Zhang 
(2012) 

 ˅   ˅ ˅ ˅ ˅    Deterministic MIP ˅  GAMS Experiment 

Diabat et al. (2013)  ˅   ˅ ˅ ˅ ˅ ˅   Deterministic MIP ˅  GAMS 
CPLEX 

Experiment 

Özkır and Başlıgil  ˅   ˅ ˅ ˅ ˅   ˅ Non- Fuzzy MOMIP ˅  GAMS Experiment 
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(2013) deterministic 

Ramos et al. (2014)  ˅   ˅  ˅ ˅ ˅ ˅  Deterministic  MOMIP ˅  CPLEX Case 

Garg et al. (2015)  ˅   ˅ ˅ ˅ ˅ ˅   Deterministic  MOMIP ˅  LINGO Experiment 

Ghayebloo et al. 
(2015) 

 ˅   ˅ ˅ ˅ ˅ ˅   Deterministic MOMIP ˅  GLPK Experiment 

Capraz et al. (2015)  ˅   ˅  ˅ ˅    Deterministic MIP ˅  CPLEX Case 

Govindan et al. 
(2016a) 

 ˅   ˅ ˅ ˅ ˅ ˅ ˅  Deterministic MOMIP ˅  LINGO Experiment 

Yu and Solvang 
(2016a) 

 ˅ ˅    ˅ ˅ ˅   Non-
deterministic 

Stochastic MIP ˅  LINGO Experiment 

Kheirkhah and 
Rezaei (2016) 

 ˅ ˅    ˅ ˅    Deterministic MIP ˅  GAMS Experiment 

Talaei et al. (2016)  ˅ ˅   ˅ ˅ ˅ ˅   Non-
deterministic 

Robust fuzzy MIP ˅   Experiment 

Entezaminia et al. 
(2017) 

 ˅ ˅   ˅ ˅ ˅    Non-
deterministic 

Robust MIP ˅  CPLEX Case 

Keshavarz 
Ghorabaee et al. 
(2017) 

 ˅ ˅   ˅ ˅ ˅ ˅   Non-
deterministic 

Fuzzy MOMIP ˅   Experiment 

Jindal and Sangwan 
(2017) 

 ˅ ˅   ˅ ˅ ˅ ˅   Non-
deterministic 

Fuzzy MOMIP ˅  LINGO Experiment 

John et al. (2017)  ˅ ˅    ˅ ˅ ˅   Deterministic MIP ˅  LINGO Experiment 

Yilmaz et al. (2017)  ˅   ˅  ˅ ˅  ˅  Deterministic MOMIP ˅  OPL Case 

Kannan et al. 
(2017) 

 ˅ ˅    ˅ ˅    Deterministic MIP ˅  LINGO Experiment 

Temur and Bolat 
(2017) 

 ˅   ˅  ˅ ˅ ˅   Deterministic MOMIP ˅  GAMS 
CPLEX 

Case 

Fattahi and 
Govindan (2017) 

 ˅ ˅   ˅ ˅ ˅    Non-
deterministic 

Stochastic MIP  ˅ GAMS 
CPLEX 

Experiment 

Feitó-Cespón et al. 
(2017) 

 ˅ ˅    ˅ ˅ ˅ ˅  Non-
deterministic 

Stochastic 
MOMIP 

˅  MATLAB Experiment 

Babaveisi et al. 
(2017) 

 ˅ ˅   ˅ ˅ ˅  ˅ ˅ Deterministic MOMIP  ˅  Experiment 

Soleimani et al. 
(2017) 

 ˅   ˅ ˅ ˅ ˅ ˅ ˅ ˅ Non-
deterministic 

Fuzzy constrained 
MOMIP 

 ˅ LINGO Experiment 

Alshamsi and 
Diabat (2017) 

 ˅   ˅  ˅ ˅    Deterministic  MIP  ˅ CPLEX Case 

Yu and Solvang 
(2017) 

 ˅ ˅    ˅ ˅ ˅   Non-
deterministic 

Stochastic 
constrained MIP 

˅  LINGO Experiment 

Coelho and Mateus 
(2017) 

 ˅   ˅  ˅ ˅    Deterministic  MIP  ˅ CPLEX Experiment 

John et al. (2018)  ˅ ˅    ˅ ˅    Deterministic MIP ˅  LINGO Case 
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Trochu et al. (2018)  ˅   ˅  ˅ ˅    Non-
deterministic 

Stochastic MIP ˅   Case 

Jabbarzadeh et al. 
(2018) 

 ˅ ˅   ˅ ˅ ˅    Non-
deterministic 

Robust MIP  ˅ GAMS Case 

Haddadsisakht and 
Ryan (2018) 

 ˅   ˅ ˅ ˅ ˅    Non-
deterministic 

Stochastic robust 
MIP 

 ˅ CPLEX Experiment 

This research  ˅ ˅ ˅   ˅ ˅ ˅   Non-
deterministic 

Stochastic 
MOMIP 

˅  LINGO Experiment 

Note: MIP=Mixed integer programming; MOMIP=Multi-objective mixed integer programming 
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3. Model development  

3.1 Problem description 

  As illustrated in Figure 1, the main operations in a generic reverse logistics system 
include customer return and local collection, central collection for quality inspection, sorting 
and disassembly, value recovery operations including remanufacturing, recycling and energy 
recovery, and disposal for non-recyclable products. The material flow of the reverse logistics 
starts from the customer return to the retailers or local collection centers for EOL and EOU 
products, and then those products will be collected at the central collection centers where 
quality inspection, sorting and disassembly will be conducted. In accordance with the type of 
product and quality level, different value recovery operations will be performed and then the 
recovered products will be sold in the market.  

 

Figure 1. Structure of a generic reverse logistics system. 

3.2 Modelling methods 

For decision-support of sustainable reverse logistics network design under uncertainty, the 
model developed in this paper combines three modelling methods: (1) mixed integer 
programming; (2) multi-objective programming; and (3) stochastic programming.  

• Mixed integer programming: As shown in Table 1, mixed integer programming is the 
basic modelling method for supply chain network design problems. It involves two 
types of decision variables: Binary integer variable and continuous variable. The binary 
integer variables determine whether a candidate location is selected to open a new 
facility, while the continuous variable provide decisions on facility operations and 
transportation strategy.  

• Multi-objective programming: Sometimes, decision-making involves several 
objectives that are usually in conflict with one another. In sustainable reverse logistics 
network design, multi-objective programming is used to balance the trade-off between 
economic benefits and sustainability-related measures (e.g. environmental impacts). 

• Two-stage stochastic programming: In this paper, the quantity and quality of used 
products as well as the price for the recovered products and energy are formulated as 
stochastic parameters. As many argues (King and Wallace, 2012), a two-stage 
stochastic programming provides decisions at two levels with different characteristics: 
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robust or flexible. The first stage decisions are made before the realization of uncertain 
parameters and should be robust to withstand random events, while the second stage 
decisions can be made after the realization of scenarios with more certain information 
and should be flexible to cope with the change of external environment in order to 
maximize benefits.  
 

Table 2 Modelling methods in sustainable reverse logistics network design. 

Modelling methods Functions in sustainable reverse logistics network design  

Mixed integer programming Fundamental technique for a location-allocation problems 
Multi-objective programming Trade-off analysis with multiple objectives 
Two-stage stochastic programming Control of uncertainty 

 

Table 2 shows the functions of those modelling methods in sustainable reverse logistics 
network design under uncertainty. With the consideration of sustainability and control of 
uncertainty, the proposed model supports decision-making of at both levels: 

1) First stage decisions: 
• Number and locations of central collection centers 
• Number and locations of remanufacturing plants 
• Number and locations of recycling plants 
• Number and locations of energy recovery plants 

2) Second stage decisions: 
• Amount of used products processed at each facility 
• Transportation strategy among different facilities 

It is obvious the first stage decisions have long-term impacts on the performance of a 
reverse logistics system and should be featured with robustness, while even if the model can 
also determine the optimal values for the second stage decisions, they can be easily altered 
after the realization of uncertain parameters due to their flexible nature. 

3.3 Notations 

Sets and indices: 

W Set of customers, indexed by w 

I Set of candidate locations for central collection centers, indexed by i 

M Set of candidate locations for remanufacturing centers, indexed by m 

C Set of recycling centers, indexed by c 

R Set of energy recovery centers, indexed by r 

D Set of landfills, indexed by d 

Q Set of products, indexed by q   

S Set of scenarios, indexed by s 

V Set of candidate locations for remanufacturing centers, recycling 
centers and energy recovery centers � = ��, �, ��, indexed by v 

X Set of all candidate locations 	 = �
, ��, indexed by x 

U(yz) Set of all routes between different facilities ��
, �� = ���, ��, ��,��, ��, ��, ��, ��, ��, ��	|	∀� ∈ �, � ∈ 
, � ∈
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�, � ∈ �, � ∈ �, � ∈ ��, indexed by yz 

  

Parameters: ����  Price of the products or energy generated from recovering one unit of 
product q at facility v in scenario s !"�� Government subsidy for recovering one unit of product q at facility v 
in scenario s #$ Fixed operating costs for opening a facility at candidate location x %�$� Processing costs for treating one unit of product q at facility x &'(� Gate fee for sending one unit of product q to landfill d )��*+ Transportation cost for shipping one unit of product q between 
different facilities within the reverse logistics system �,�$� CO2 emissions for treating one unit of product q at facility x �,�(� CO2 emissions for landfilling one unit of product q at facility d �,�)�*+ CO2 emissions of the transportation of one unit of product q between 
different facilities within the reverse logistics system �  Probability of the realization of scenario s ��-�  Amount of product q collected at customer w in scenario s �,.$� Capacity for dealing with product q at facility x �/.$� Required rate of utilization for treating product q at facility x 0�12 Fraction of product q suitable for remanufacturing 0�1* Fraction of product q suitable for recycling 0�13 Fraction of product q suitable for energy recovery 4�  Quality level of product q in scenario s 56� Environmental policy requirement presenting the minimum 
recovered percentage from the recoverable fraction of product p 7� Percentage of the recoverable fraction if product q is at good quality,  

7� = Percentage of set C0�12 ∪ 0�
1* ∪ 0�13E ≤ 100% 

It is noted that, ∑(0�12, 0�
1*, 0�13) , ∀K ∈ L may be more than 100% 

due to the overlap fraction suitable for multiple treatments.  

7�M  Percentage of the non-recoverable fraction if product q is at good 
quality, 7�M = Percentage of the complement set of C0�12 ∪ 0�

1* ∪
0�13E, and 7�M + 7� = 100% 

�,.$STU$
 Flexible capacity of facility x 

V$�STU$
 Conversion rate of the usage of flexible capacity for processing 

product q at facility x 
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5'WXY   Rate of the efficiency loss for implementing flexible capacity at 
facility x �/.WSTU$ Required rate of utilization of facility x with flexible capacity 

  

Decision variables Z[�$ Binary decision variables determining if a new facility is open at 
candidate location x L6$�  Quantity of product q treated at facility x in scenario s L�6�*+  Quantity of product q transported via route yz in scenario s 

 

3.4 Mathematical model for sustainable reverse logistics network design with non-
flexible capacity 

The model is formulated as follows: 

Max	Obj1 = a�  ∈b ca ad��2� + !"2�eL62� 
2∈f�∈g

+ aad��3� + !"3�eL63� + aad��1� + !"1�e1∈h�∈g3∈M�∈g L61� i
− kla#WZ[�WW∈m + a #2Z[�22∈f +a#3Z[�33∈M +a#1Z[�11∈h n
+a�  ∈b caa%�W�L6W� W∈m�∈g + a a %�2�L62� 

2∈f�∈g+ aa%�3�L63� 3∈M�∈g + aa%�1�L61� 1∈h�∈g + a a&'(�L6(� (∈o�∈g+ a a a)��-WL�6�-W 
W∈m-∈p�∈g + aa a )��W2L�6�W2 

2∈fW∈m�∈g+ aaa)��W33∈MW∈m�∈g L�6�W3 + aaa)��W1L�6�W1 
1∈hW∈m�∈g

+ aaa)��W(L�6�W( 
(∈oW∈m�∈g iq 

(1) 
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Min	Obj2=a�  ∈b caa�,�W�L6W� W∈m�∈g + a a �,�2�L62� 
2∈f�∈g + aa�,�3�L63� 3∈M�∈g+ aa�,�1�L61� 1∈h�∈g + a a�,�(�L6(� (∈o�∈g+ a a a�,�)�-WL�6�-W 

W∈m-∈p�∈g + aa a �,�)�W2L�6�W2 
2∈fW∈m�∈g+ aaa�,�)�W3L�6�W3 

3∈MW∈m�∈g + aaa�,�)�W1L�6�W1 
1∈hW∈m�∈g

+ aaa�,�)�W(L�6�W( 
(∈oW∈m�∈g i 

(2) 

 

Subject to: 

 

 

(1) Demand satisfaction 
 

 

��-� = aL�6�-W 
W∈m , ∀t ∈ !,�u�, K ∈ L (3) 

(2) Flow balance 
 

 

a L�6�-W 
-∈p = L6W� , ∀t ∈ !, �u
, K ∈ L (4) 

aL�6�W2 
W∈m = L62� , ∀t ∈ !,�u�, K ∈ L (5) 

aL�6�W3 
W∈m = L63� , ∀t ∈ !, �u�, K ∈ L (6) 

aL�6�W1 
W∈m = L61� , ∀t ∈ !, �u�, K ∈ L (7) 

aL�6�W( 
W∈m = L6(� , ∀t ∈ !, �u�, K ∈ L (8) 

L6W� = a L�6�W2 
2∈f +aL�6�W3 

3∈M +aL�6�W1 
1∈h + aL�6�W( 

(∈o , ∀t ∈ !, �u
, K ∈ L (9) 

(3) Capacity constraints 
    

 

L6W� ≤ �,.W�Z[�W, ∀t ∈ !, �u
, K ∈ L (10) L62� ≤ �,.2�Z[�2, ∀t ∈ !,�u�, K ∈ L (11) L63� ≤ �,.3�Z[�3 , ∀t ∈ !, �u�, K ∈ L (12) 
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L61� ≤ �,.1�Z[�1 , ∀t ∈ !, �u�, K ∈ L (13) 

(4) Utilization requirements 
 

 

L6W� ≥ �/.W��,.W�Z[�W, ∀t ∈ !, �u
, K ∈ L (14) L62� ≥ �/.2��,.2�Z[�2, ∀t ∈ !,�u�, K ∈ L (15) L63� ≥ �/.3��,.3�Z[�3 , ∀t ∈ !, �u�, K ∈ L (16) L61� ≥ �/.1��,.1�Z[�1 , ∀t ∈ !, �u�, K ∈ L (17) 

(5) Conversion constraints 
 

 

4� 0�2L6W� ≥ a L�6�W2 
2∈f , ∀t ∈ !, �u
, K ∈ L (18) 

4� 0�3L6W� ≥ aL�6�W3 
3∈M , ∀t ∈ !, �u
, K ∈ L (19) 

4� 0�1L6W� ≥ aL�6�W1 
1∈h , ∀t ∈ !, �u
, K ∈ L (20) 

aL�6�W( 
(∈o ≥ w7�M + d1 − 4� 7�ex L6W� , ∀t ∈ !, �u
, K ∈ L (21) 

(6) Environmental policy 
 

 

a L�6�W2 
2∈f

+ a L�6�W3 
3∈M

+ a L�6�W1 
1∈h

≥ 4� 7�56�L6W� , ∀t ∈ !, �u
, K ∈ L (22) 

(7) Requirements for decision variables 
 

 

Z[�W, Z[�2, Z[�3 , Z[�1 ∈ �0, 1�, ∀�u
, � ∈ �, � ∈ �, � ∈ � (23) 

L6W� , L62� , L63� , L61� , L6(� , L�6�-W , L�6�W2 , L�6�W3 , L�6�W1 , L�6�W( ≥ 0, ∀t
∈ !, K ∈ L, � ∈ �, �u
, � ∈ �, � ∈ �, � ∈ �, � ∈ � 

(24) 

 

The objective function (1) maximizes the total profits of reverse logistics system, which is 
the surplus between income and costs. The income includes both sales revenue and subsidies 
from government for waste management. The costs include fixed costs (e.g. salary, bank 
interests, return of investment, etc.), processing costs and transportation costs. The second 
objective function (2) minimizes the environmental impact of reverse logistics activities, 
which is evaluated by carbon emissions. The carbon emissions related to facility operation 
and processing of used products can be estimated from material and energy consumption 
(Fahimnia et al., 2015b), while the carbon emissions from transportation is determined by the 
travelled distance, speed, load and fuel efficiency (Bektaş and Laporte, 2011, Tongwane et al., 
2015).  

The model also includes seven sets of constraints. Constraint (3) guarantees the customer 
demands for the treatment of used products are met. Constraints (4)-(9) specify the flow 
balance at each facility and each route. Inequalities (10)-(13) restrict the non-flexible capacity 
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for each facility with respect to each type of product. Inequalities (14)-(17) restrict a minimum 
level of utilization for the facilities, which aim to avoid inefficient use of facilities. 
Constraints (18)-(21) require the percentage of used products sent for remanufacturing, 
recycling, energy recovery and disposal should comply with the quality and proportion 
requirements. Constraint (22) is the environmental policy requirement that specifies the 
maximum amount of the recoverable fraction can be landfilled. Constraints (23) and (24) are 
requirements for decision variables.  

3.5 Model extension incorporating flexible capacity 

Compared with designing a forward supply chain, planning a reverse logistics system is 
more difficult due to the uncertainties from the unstable flow of used products, stochastic 
condition and quality, and market fluctuation. From the modelling perspective, those 
uncertainties can be managed with either to permit a certain probability of infeasibility (King 
and Wallace, 2012) or relax the  capacity constraint to accommodate increased demands (Yu 
and Solvang, 2017). While from the practical perspective, the interpretation of those 
techniques is to either reduce the service level of waste management or increase the 
investment for facility expansion, both of which are not easy ones for decision-makers to 
undertake. A reduction on service level will decrease the satisfaction of local residents, while 
facility expansion may lead to a low facility utilization when the generation of EOL and EOU 
products are low.  

However, research works have revealed uncertainties may be tackled with an increase on 
the  flexibility of reverse logistics system for treating multiple types of used products (Guide 
Jr, 2000, Yu and Solvang, 2017). The process flexibility has been considered as an effective 
solution for the mismatch between demand and capacity (Feng and Shen, 2017), and it has 
been investigated by practitioners for several decades in some reverse logistics activities, i.e., 
remanufacturing (Goodall et al., 2014, Nasr et al., 1998). Flexibility is defined as the 
capability to rapidly response to the change with little penalty on costs, efforts and 
performance (Upton, 1994). Compared with the traditional mass production system that 
emphasizes predominantly on productivity, the increase on process flexibility will, with a 
compromise on efficiency, lead to an improvement on the effectiveness under an uncertain 
environment. Therefore, the incorporation with flexibility in planning a multi-product 
sustainable reverse logistics system is important and may yield a great impact on both 
economic and environmental performance.    

 
(8) Conversion to flexible capacity 

 �,.WSTU$ = �1 − 5'WXY  ) a VW�STU$�,.W�
�∈g

, ∀� ∈ 
 (25) 

�,.2STU$ = (1 − 5'2XY  ) a V2�STU$�,.2�
�∈g

, ∀� ∈ � (26) 

�,.3STU$ = (1 − 5'3XY  ) a V3�STU$�,.3�
�∈g

, ∀� ∈ � (27) 

�,.1STU$ = (1 − 5'1XY  ) a V1�STU$�,.1�
�∈g

, ∀� ∈ � (28) 
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For incorporating flexibility in decision-making, Equations (25)-(28) are first formulated in 
order to convert the non-flexible capacity into flexibility capacity at different facilities in the 
reverse logistics system. It is noteworthy that, due to the reconfiguration required and change 
of in-plant operations, there will be a loss of productivity when converting an efficiency-
focused process to a flexibility-focused process (Ghemawat and Ricart Costa, 1993), so 5'WXY   is introduced for compensating the capacity loss.  

 
(9) Capacity constraints under flexible capacity 

 aL6W� �∈g ≤ �,.WSTU$Z[�W, ∀t ∈ !, � ∈ 
 (29) 

aL62� 
�∈g ≤ �,.2STU$Z[�2, ∀t ∈ !,� ∈ � (30) 

aL63� �∈g ≤ �,.3STU$Z[�3 , ∀t ∈ !, � ∈ � (31) 

aL61� �∈g ≤ �,.1STU$Z[�1, ∀t ∈ !, � ∈ � (32) 

(10) Utilization constraints under flexible capacity 

 aL6W� �∈g ≥ �/.WSTU$�,.WSTU$Z[�W, ∀t ∈ !, � ∈ 
 (33) 

aL62� 
�∈g ≥ �/.WSTU$�,.2STU$Z[�2, ∀t ∈ !,� ∈ � (34) 

aL63� �∈g ≥ �/.WSTU$�,.3STU$Z[�3 , ∀t ∈ !, � ∈ � (35) 

aL61� �∈g ≥ �/.WSTU$�,.1STU$Z[�1 , ∀t ∈ !, � ∈ � (36) 

 

After the flexible capacity have been defined by Equations (25)-(28), the mathematical 
model is expanded through replacing the constraints (10)-(17) in the original model by the 
flexible capacity constraints (29)-(32) and utilization constraints (33)-(36).  

 
4. Solution Method 

The objective of the model is to provide decision-makers with a set of non-dominant 
Pareto optimal solutions. In this paper, the stochastic parameters are formulated with a 
scenario-based approach. For representing the uncertainties, different scenarios with respect to 
stochastic parameters are first generated. Each scenario represents a prediction of the 
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uncertain parameters in the planning horizon, which includes the quantity of used products at 
different customer zones (��-� ), quality level (4� ) and market price (���� ). With the 
combinations of different stochastic parameters, a set of scenarios (s) with the probability of 
occurrence (� ) is then generated for representing the future conditions of the optimization 
problem. Therefore, the optimal solution of this stochastic optimization problem is not to seek 
the best solution for an individual scenario (sub-optimal solution), but it is to determine the 
most robust and optimal one throughout all the possible scenarios.  

 Sustainable reverse logistics network design is a multi-objective programming problem 
that aims at simultaneously balancing the tradeoff between profitability and environmental 
impact. Given by Sakawa et al. (2013), a generic form of a multi-objective minimization 

problem is presented in Equation (37). Herein, ��y� = d�z�y�, �{�y�,… , �}�y�e~ is a k-
dimensional vector and 	 is the set of feasible solutions in decision space. In a multi-objective 
optimization problem, the definition of Pareto optimal solution or efficient solution y∗ is that 
if and only if it is impossible to find another  y ∈ 	 such that  �W�y� ≤ �W�y∗� for all i and ���y� ≠ ���y∗� for at least one j (Sakawa et al., 2013). It is obvious from the definition that, at 
a Pareto optimal point, the target objective value cannot be improved without a sacrifice on 
the performance of other objective functions, and also there may exist an infinite number of 
Pareto solutions. There is a weaker form of Pareto optimality, which is called weakly efficient 
or weak Pareto solution. The definition of weak Pareto optimal solution y∗ is if and only if it 
is impossible to find another  y ∈ 	 such that  �W�y� ≤ �W�y∗� for all i (Sakawa et al., 2013), 
and it is easy to see that the set of Pareto optimal solutions is a subset of the set of weak 
Pareto optimal solutions. 

 

Min		��y� = d�z�y�, �{�y�,… , �}�y�e~ 

S.t.									y ∈ 																										 
(37) 

 

Scalarization methods are well-developed techniques for determining the Pareto optimal 
solutions for a multi-objective optimization problem. The basic idea of scalarization methods 
is to convert a multi-objective programming problem into a set of single objective 
optimization problems with the introduction of indicators or constraints. In this paper, two 
well-known scalarization methods are employed and customized to resolve the multi-
objective optimization problems: weighing method and augmented �–constraint method.  

 4.1 Weighting method 

The principle of weighting method is to convert the multi-objective problem into a 
weighted sum with the combination of objective value and weight, and the Pareto optimal 
solution can be determined through resolving the single objective weighted sum function 
(Zadeh, 1963). Equation (38) illustrates a generic form of the weighing method for resolving a 
minimization problem, and � = ��z, �{, … , �}�  is the weight vectors of each objective 
function, which indicates the relative importance in decision-making. 
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Min		���y� = a�W�W�y�
}

W�z
 

S.t.				y ∈ 																 
(38) 

 

The equation above cannot be used directly to resolve the proposed bi-objective 
optimization problem, because different units are used in the objective functions. Thus, the 
objective value must be first normalized before the weighted sum is calculated, and the 
procedures are presented as follows.  

1. Calculating the Maximum and Minimum values of each individual objective function 
with both capacity settings.  
Non-flexible Capacity: %��1�Y��f�$ , %��2�Y��f�$ , %��1�Y��fW� , %��2�Y��fW�  
  Solve:	Max	%��1,	Max	%��2,	Min	%��1	Min	%��2, s.t. (3)-(24) 
Flexible Capacity: %��1�TU$f�$ , %��2�TU$f�$, %��1�TU$fW� , %��2�TU$fW�  
  Solve:	Max	%��1,	Max	%��2,	Min	%��1	Min	%��2, s.t. (3)-(9), (18)-(24), (25)-(36) 

2. Determining the weight combinations between the two objective functions (��), where 
�����z + ��Y��{ = 1. 

3. Determining the set of Pareto optimal solutions through calculating the weighted sum 
with different weight combinations (��). 
Non-flexible Capacity: �,�/�[�Y��-� 	 
  Solve:	Min	�,�/�[�Y��- = ����z

���z������� ����z����
���z������� ����z������� + �Y��{

���z��������{�������

���{������� ����{�������   

             s.t. (3)-(24) 
Flexible Capacity: �,�/�[�TU$-� 	 
  Solve:	Min	�,�/�[�Y��- = ����z

���z�����������z����
���z�����������z������� + �Y��{

���z��������{�������

���{�����������{�������   

             s.t. (3)-(9), (18)-(24), (25)-(36) 
 

As many argues (Das and Dennis, 1997), the benefits of using weighting method is the 
simplicity and efficiency, because the derived weighted sum is at the same level of 
computational complexity as the single objective function in the model. However, it also 
suffers from some well-known pitfalls in determining the set of Pareto solutions (Das and 
Dennis, 1997). One of them is the weighting method cannot generate a complete set of Pareto 
optimal solutions depicting all the features of the frontier. Weighting method only calculates 
the extreme efficient solutions (Mavrotas, 2009), but it cannot find out the non-convex 
solutions in the decision space. The other problems of weighting method include the 
generation of weakly non-dominant solutions, redundant calculations for the same Pareto 
optimal solutions with different weight combinations, and incapability for generating a set of 
evenly distributed Pareto optimal solutions (Das and Dennis, 1997). Therefore, the proposed 
model is also resolved with another scalarization method: augmented ε–constraint method. 

4.2 Augmented �–constraint method 

The principle of �–constraint method is to select one objective function from the original 
multi-objective optimization problem and convert the other objective functions into inequality 
constraints, and the Pareto optimal solution is determined through resolving the derived single 
objective constrained optimization problem (Haimes, 1971). Formula (39) shows a generic 
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form of the �–constraint method for a multi-objective minimization problem, and the Pareto 
optimal solutions can be generated through properly adjusting the value of the right hand side 
value of the added inequalities (�W).  

 

Min		���y� 
S.t.					�W�y� ≤ �W, � = 1, 2, … , �, � ≠ � 

	y ∈ 		 
(39) 

Although, compared with weighting method, the �–constraint method has several benefits 
in determining the Pareto optimal solutions, its original form suffers from two problems: (1) 
generation of dominant solutions in ranging the value of � due to the possible dominant worst-
case points found in the payoff matrix by the conventional method; (2) generation of weakly 
efficient solutions (Mavrotas, 2009). Efforts have been spent in resolving those problems 
(Ehrgott and Ryan, 2002). In this paper, the augmented �–constraint method developed by 
Mavrotas (2009) is employed. With the augment �–constraint method, the payoff matrix is 
first calculated through a lexicographic approach in order to eliminate the dominant solutions 
in ranging the value of � . For overcoming the weakly efficient solution problem, a slack 
variable is introduced to transform the inequality constraints of the original method into 
equality constraints, as illustrated in Equation (40), where tW is the slack variable and V is a 
sufficiently small number (10-3-10-6).  

 

Min		���y� − V × a tW
W�z,..,},W��

 

S.t.					�W�y� + tW = �W, � = 1, 2, … , �, � ≠ � 
	y ∈ 		 

(40) 

The procedures for implementing augmented � –constraint method for resolving the 
proposed bi-objective programming problem are given as follows.  

1. Calculating the payoff matrix through a lexicographic approach with both capacity 
settings. It is noted, compared with conventional method, the lexicographic method 
eliminates the dominant solutions related to the worst-case point. 
Non-flexible capacity: %��1�Y��f�$ , %��2�Y��f�$�TU$, %��1�Y��fW��TU$, %��2�Y��fW�  
Solve:  

a) %��1�Y��f�$ = Max	%��1, s.t. (3)-(24) 
b) Min	%��2, s.t. %��1 = %��1�Y��f�$ , (3)-(24) 
c) Repeating the same procedures for %��2 

Flexible capacity: %��1�TU$f�$, %��2�TU$f�$�TU$, %��1�TU$fW��TU$, %��2�TU$fW�  
Solve:  

a) %��1�TU$f�$ = Max	%��1, s.t. (3)-(9), (18)-(24), (25)-(36) 
b) Min	%��2, s.t. %��1 = %��1�TU$f�$, (3)-(9), (18)-(24), (25)-(36) 
c) Repeating the same procedures for %��2 
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2. Calculating the range for %��2 with both capacity settings, because the %��1 is 
considered at higher priority. 
Non-flexible capacity: �,6 /�Y�����{ = %��2�Y��f�$�TU$ − %��2�Y��fW�  

Flexible capacity: �,6 /�TU$���{ = %��2�TU$f�$�TU$ − %��2�TU$fW�  

3. Setting the values of ����{. In this step, the number of grids (ng) is first determined, 

and the variation of  ����{ is the calculated: ∆����{ = h��¢U£¤¥¦
�¢ . 

4. Determining the set of Pareto optimal solutions through resolving the derived 
constrained optimization problem. 
Non-flexible capacity: �,�/�[�Y��§  
Solve: Max	%��1 + 	V × t{ 
           s.t.  %��2 + t{ = ����{, (3)-(24) 
Flexible capacity: �,�/�[�TU$§  
Solve: Max	%��1 + 	V × t{ 
           s.t.  %��2 + t{ = ����{, (3)-(9), (18)-(24), (25)-(36) 

 

5. Computational Experiments 

In this section, computational experiments are given to test model and solution methods. 
The problem includes twelve generation points of used products, five candidate points for 
central collection center, five candidate points for remanufacturing center, five candidate 
points for recycling center, three candidate points for energy recovery center, one landfill, and 
two types of products. The test parameters are generated randomly based upon uniform 
distribution as illustrated in Table 3, and all the other parameters are given in Appendix. 
(Data in Excel) 

 

Table 3 Some of the parameter intervals used in the computational experiments. 

Parameters Uniform distribution 
Product q1 Product q2 

Amount of EOL and EOU products generation ��-�  4,000-12,000 6,000-20,000 

Fixed costs of collection centers #W 3-5 million 3-5 million 
Processing costs at collection centers %�W� 50-80 50-80 

Fixed costs of remanufacturing centers #2 5-9 million 5-9 million 
Processing costs at remanufacturing centers %�2� 100-120 100-120 

Price of remanufactured products ��2�  800-1200 800-1200 

Government subsidy of remanufactured products !"2� 200-300 200-300 

 

Table 4 Scenario generation for the problem. 

Scenarios Probability of occurrence Stochastic parameters 
Amount of EOL and 
EOU products collected 

Price of the recovered 
products  

Quality level 

1 (Deterministic) 20% Mean Mean Mean 
2 10% Low Low Low 
3 10% Low Low High 
4 10% Low High Low 
5 10% Low High High 
6 10% High Low Low 
7 10% High Low High 
8 10% High High Low 
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9 10% High High High 

 

The problem considers the scenario-based uncertainties related to the amount of the used 
products (��-� ), price of recovered products or energy (���� ) and quality level (4� ). As 
discussed by previous authors (Pishvaee et al., 2009), the increase on the number of test 
scenarios in a stochastic model achieves limited improvement on the optimal solution with a 
huge sacrifice on computational efficiency. Therefore, considering both performance and 
efficiency, the scenario generation method used by Soleimani et al. (2016) is employed in this 
paper to generate nine scenarios. As shown in Table 4, the mean values of the given intervals 
of stochastic parameters are used for the deterministic scenario with the highest probability of 
occurrence at 20%. With the combinations of the stochastic parameters, another eight 
scenarios are generated with equal probability at 10%. 

The calculation is performed with Lingo 16.0 optimization solver on a PC with 2.20 GHz 
CPU and 8 GB RAM under Windows 10 operating system. 

5.1 Effect of flexible capacity on economic performance  

The model is first solved with only profit-maximization objective, and the rate of 
efficiency loss is tested with 5'WXY  =0% and 5'WXY  =15%. The calculation results are 
presented in Tables 4 and 5, respectively. We first compared the network performance and 
structure under both deterministic and stochastic environments. When non-flexible capacity is 
implemented, the profit achieved under deterministic environment is 6.7% higher than that of 
the stochastic scenario. However, when flexible capacity is implemented with 5'WXY  =0%, the 
profit obtained under stochastic environment is 2.2% higher. When the rate of efficiency loss 
increases to 15%, the deterministic scenario achieves a 1% higher profit. In addition, more 
facilities are opened under a stochastic environment in order to deal with the market 
fluctuation, and this will lead to an increase on the overall system costs due to the low facility 
utilization under low demand scenarios. It is observed, under market fluctuation, a highly 
flexible reverse logistics system may achieve a better profitability than that under a stable 
environment. 

 

Table 5 Computational results of the components in the objective functions with non-flexible/flexible capacity 
under deterministic/stochastic environment (results in 104). 

Components in the 
objective functions 

Non-flexible capacity Flexible capacity 
(5'WXY �=0%) 

Flexible capacity 
(5'WXY �=15%) 

Deterministic Stochastic Deterministic Stochastic Deterministic Stochastic 

Profit  7436 6941 8173 8354 8096 8009 
Revenue  17244 17124 17244 17901 17244 17551 
Subsidy  6896 6640 7162 7228 7168 7238 
Total costs  16704 16823 16233 16774 16316 16780 
Facility costs  8696 8551 8027 8406 7970 8396 
Transportation costs  8008 8272 8206 8368 8346 8384 
Total emissions  28428 30484 28682 29066 29176 29292 
Facility emissions  13409 15496 13952 14228 14760 14485 
Transportation emissions  15019 14988 14730 14837 14415 14806 

 

Table 6 Selection of facilities in different scenarios. 

Selection of facilities  Non-flexible capacity Flexible capacity 
(5'WXY �=0%) 

Flexible capacity 
(5'WXY �=15%) 
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Deterministic Stochastic Deterministic Stochastic Deterministic Stochastic 

Central collection centers (1,0,1,1,0) (0,0,1,1,1) (0,0,1,1,0) (1,0,1,1,0) (0,0,1,1,0) (1,0,1,1,0) 
Remanufacturing centers (1,0,0,1,0) (0,1,0,1,0) (1,0,0,1,0) (0,1,0,1,0) (1,0,0,1,0) (0,1,0,1,0) 
Recycling centers (0,1,0,1,0) (0,0,0,1,0) (0,1,0,1,0) (0,1,0,1,0) (0,1,0,1,0) (0,1,0,1,0) 
Energy recovery centers (1,0,0) (1,1,0) (1,0,0) (0,1,0) (0,1,0) (0,1,0) 

 

Under a stochastic environment, comparted with the non-flexible configuration, the profit 
expectation with flexible capacity increases by 20.4% (5'WXY  =0%) and 15.4% (5'WXY  =15%). 
Besides, we also conduct a sensitivity analysis of eight scenarios with 5'WXY  =0%, 5%, 10%, 
15%, 20%, 25%, 30%, 35% and 40%, respectively. Figure 2 presents the comparison of profit 
expectation, overall income, total costs and total carbon emissions of the different scenarios. 
With the increase of the rate of efficiency loss in implementing a flexible capacity, the profit 
expectation gradually decreases and eventually becomes lower than that of the non-flexible 
configuration when 5'WXY  =35% and 40%. In contrast, the total costs remain stable until 5'WXY   increases to 20% from which a sharp increase is observed. The change of the overall 
income and carbon emissions does not show a consistent monotonicity over the test scenarios. 
In general, the performance of the two indicators decreases with the increase of 5'WXY  , but it 
is better than that of the non-flexible configuration over all the test scenarios. The result has 
illustrated that the flexible configuration is an effective tool for improving the economic 
performance of a reverse logistics system under market fluctuation, but the effectiveness is 
affected by the rate of efficiency loss in the transformation. Furthermore, the profit 
expectation may become worse with the flexible capacity when 5'WXY  is large enough. 
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Figure 2. Comparison of profits, overall income, total costs and carbon emissions of the different scenarios 
under stochastic environment. 

Figures 3 and 4 present the comparison of the performance on facility operations and 
transportation of the test scenarios. As shown, with the increase of 5'WXY  , the change of 
facility costs is in consistency with the change of the total costs with a variation at 22%, while 
the change of the transportation costs is not monotonic with a much smaller variation at 1.5%, 
so the change of the total costs is the result from facility operations. The carbon emissions 
related to facility operations and transportation show the similar pattern even if the difference 
on the variation is not that big compared with that of the costs. The result illustrates the 
effectiveness of facility operation is the most important consideration for implementing a 
flexible configuration.  

  

Figure 3. Comparison of costs and carbon emissions related to facility operations of different scenarios under 
stochastic environment.  

  

Figure 4. Comparison of costs and carbon emissions related to transportation of different scenarios under 
stochastic environment. 

 

5.2 Effect of flexible capacity on economic and environmental performance 

In this section, the model is tested with both objective functions. First, the bi-objective 
stochastic optimization model is solved by weighting method, and 11 Pareto optimal solutions 
are obtained with respect to the changing ����z from 1 to 0 with a step at 0.1 each. Then, the 
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problem is resolved by augmented � –constraint method in order to generate another 11 Pareto 
optimal solutions accordingly. Table 7 presents the computational results, which includes the 
generation of Pareto solutions, computational performance and information on the slacks. 
Figures 5 and 6 present the Pareto frontiers between profits and carbon emissions of the 
reverse logistics system with both non-flexible capacity and flexible capacity.  

 

Table 7 Computational results of the Pareto optimal solutions by both weighting method and augmented �-
constraint method. 

Points Weighting method Augmented �-constraint method 

����z Non-flexible capacity Flexible capacity Non-flexible capacity Flexible capacity 
Time Profit 

(104) 
Carbon 
(104) 

Time Profit 
(104) 

Carbon 
(104) 

Time Profit 
(104) 

Carbon 
(104) 

Slack Time Profit 
(104) 

Carbon 
(104) 

Slack 

1 1 11 6941 30484 13 8354 29066 53 6941 30484 0 71 8354 29066 0 
2 0.9 90 6927 30150 61 8349 28939 75 6849 29655 0 117 8223 28349 0 
3 0.8 84 6907 29988 163 8330 28744 116 6710 28826 0 102 8053 27632 0 
4 0.7 146 6464 27549 140 8272 28495 185 6550 27998 0 121 7799 26915 0 
5 0.6 77 6158 26816 80 7491 26166 121 6359 27169 0 88 7506 26198 0 
6 0.5 52 5653 25426 70 7026 25339 108 6089 26341 0 103 7116 25482 0 
7 0.4 55 4817 24321 84 5918 24054 61 5702 25512 0 109 6553 24765 0 
8 0.3 26 4220 23803 24 5024 23374 62 5106 24683 0 71 5912 24048 0 
9 0.2 31 766 22225 13 1934 21924 41 4292 23855 0 39 4950 23331 0 
10 0.1 12 702 22205 6 1846 21900 40 2677 23026 0 13 3590 22614 0 
11 0 9 639 22198 4 1147 21898 25 639 22198 0 10 1831 21898 0 

 

We first compared the performance of the two solution methods in calculating the Pareto 
frontier of a multi-objective optimization problem. Due to the convex nature of the test 
problem, the shape of the Pareto frontier determined by both methods is similar. However, 
weighting method can only find the Pareto optimal solutions at the extreme points of the 
curve, while augmented �–constraint method is able to generate evenly distributed Pareto 
optimal solutions and a smoother curve. Furthermore, augmented �–constraint method can 
effectively eliminate the dominant solutions, but weighing method is incapable with that. For 
example, it is easy to see in Figure 5, point 11 is a dominant solution of point 10 in the Pareto 
curve with flexible configuration, and it is eliminated by augmented �–constraint method. 
Thus, augmented �–constraint method has a better performance in the effectiveness; while on 
the other hand, the computational time required by weighting method is less in most cases, so 
the weighting method has a better performance in terms of computational efficiency. 

 

Figure 5. Pareto frontier determined by weighting method. 
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Figure 6. Pareto frontier determined by augmented �-constraint method. 

We then compared the performance of the reverse logistics system in terms of both profit 
expectation and environmental impact with the incorporation of flexible capacity. It is 
observed that the carbon emissions from reverse logistics activities increase with the increase 
of the profit expectation. In order to reduce the carbon emissions, some economic benefits 
will be lost, so Pareto frontier provides a set of the optimal trade-offs between the profits and 
environmental influence. As can be seen, the reduction on carbon emissions at the beginning 
stage from the profit-maximization scenario is more effective without a significant 
compromise on the economic benefits compared with that on the latter stage. It is also 
observed the implementation of a flexible configuration in the reverse logistics system 
improves both profit expectation and environmental performance. 

 

Figure 7. Pareto frontiers determined by augmented �-constraint method of different scenarios (5'WXY  =0%, 
10%, 20%, 30% and 40%). 

The transformation from a non-flexible system to a flexible system without a compromise 
on efficiency is hardly to achieve in reality, so sensitivity analysis is performed with an 
adjustment on  5'WXY   from 0% to 40% with 10% step each, and the result is given in Figure 7. 
With the increase of the rate of efficiency loss from 0% to 30%, both economic and 
environmental performance of the Pareto optimal solutions decrease gradually, but they still 
have a better performance than the Pareto optimal solutions obtained with a non-flexible 
configuration. However, when the rate of efficiency loss reaches 40%, the reverse logistics 
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system with a flexible capacity achieves much lower profits and has more carbon emissions in 
most cases.  

Thus, it is of interest to “take a closer look at” the model behavior in the segment where the 
performance of a flexible reverse logistics system is close to a non-flexible one. Figure 8 
illustrates the comparison of the Pareto frontiers between non-flexible configuration and 
flexible configuration with 5'WXY  =30%, 32.5% and 35%, respectively. When 5'WXY  =32.5%, 
the performance of the reverse logistics system with both capacity settings is very close to 
each other. In this case, the flexible reverse logistics system favors more on profit-focused 
scenarios. While, on the other hand, the non-flexible configuration has a slightly better 
performance on the emission-focused scenarios.  

 

Figure 8. Pareto frontiers determined by augmented �-constraint method of different scenarios (5'WXY  =30%, 
32.5% and 35%). 

 

6. Managerial Implications 

The planning of a sustainable reverse logistics system is a complex decision-making 
problem that aims at optimizing the trade-off between economic benefits and environmental 
influence. Furthermore, in the planning horizon of a reverse logistics system, there are many 
uncertainties related the quantity and quality of the reverse flow, and market fluctuation, 
which make the problem becoming more complicated. The latest modelling efforts and 
computational analysis on sustainable reverse logistics network design under uncertainty have 
shown a significant improvement on the understanding of the trade-offs among economic, 
environmental and social sustainability (Feitó-Cespón et al., 2017, Talaei et al., 2016), 
implications from the customer satisfaction (Özkır and Başlıgil, 2013), on-site/off-site 
separations (Rahimi and Ghezavati, 2018), as well as computational performance (Govindan 
et al., 2016b, Soleimani et al., 2017). In this paper, the managerial implications regarding the 
impact of flexibility on sustainable reverse logistics network design under uncertainty is 
focused. 

The uncertainty in reverse logistics network design may either result in a lower utilization 
of resources in low demand scenarios or lead to an insufficient capacity to treat all the EOL 
and EOU products. In the latter case, the decision-maker may either implement a reduction on 
the service level or put more investment on facility expansion (Yu and Solvang, 2017). 
However, in the planning of a multi-product reverse logistics system, the transformation from 
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an efficiency-focused non-flexible configuration to an effectiveness-focused flexible system 
may be the third option, which may improve both economic and environmental performances. 
The results of the computational experiments have shown the flexible reverse logistics system 
has a better performance in both economic benefits and environmental influence under a 
stochastic environment when the rate of efficiency loss is maintained at lower than 32.5%. 
Otherwise, the focus of the reverse logistics network design should be on efficiency. 

Taking into account of the nature of the sustainable reverse logistics network design 
problem, some generic managerial implications are given as follows: 

1. The implementation of a flexible configuration for a reverse logistics system dealing 
with multiple heterogamous products may improve both economic and environmental 
performance when the efficiency loss is kept in a proper level. In another words, if the 
companies in the reverse logistics system have to spend significant efforts to achieve a 
high flexibility, the benefits gained may be negligible or even negative. 

2. When reverse logistics system is operated under an uncertain environment, a highly 
flexible configuration may provide a better chance to generate higher profits while 
simultaneously reduces carbon emissions. 

3. When reverse logistic system is operated under a relatively stable environment, the 
efficiency-focused non-flexible configuration has a better performance.  

4. The reduction on carbon emissions from the reverse logistics activities results in a 
compromise on the profit expectation, and a Pareto frontier can describe such a trade-
off.  

5. For calculating the Pareto frontier of the problem, augmented �-constraint method is 
more effective in generating evenly distributed non-dominant efficient solutions, while 
weighting method requires less computational time. 

 

7. Conclusion 

Reverse logistics network design is a complex decision-making problem that involves 
conflicting objectives and uncertain parameters. In this paper, we develop a new two-stage 
stochastic bi-objective programming model for sustainable planning of a multi-product multi-
echelon reverse logistics system under uncertainty. Considering the different processing 
operations for the recovery of multiple types of products with heterogeneous nature, the 
model is formulated in two parallel ways equipped with either an efficiency-focused non-
flexible capacity or an effectiveness-focused flexible capacity. For resolving the multi-
objective optimization problem, two solution approaches: weighting method and augmented � -constraint method are employed to calculate the non-dominant efficient Pareto optimal 
solutions.  

Compared with the modelling efforts in existing literature, the contribution of this paper is 
the consideration of flexibility in sustainable reverse logistics network design. Due to a lack 
of system flexibility, the trade-off analysis with previous mathematical models may lead to an 
excessive capacity installed with low utilization under an uncertain environment. The paper 
provides a decision-support model for performance evaluation, under different environments, 
between the flexible and non-flexible configurations in sustainable reverse logistics network 
design. The experimental analysis illustrates implementing a flexible configuration may 
improve the overall performance of a sustainable reverse logistics system under an uncertain 
environment. However, the result also suggests when the market environment is stable or 
significant efforts are needed to improve the system flexibility, implementing a non-flexible 
configuration is more favorable in order to maintain the efficiency. Furthermore, the strategic 
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decision-making on flexibility or efficiency will also affect the decisions on plant planning, 
i.e., internal routing, layout design, etc.      

The paper has provided important insights into incorporating flexible capacity in 
sustainable reverse logistics network design. Nevertheless, the research is not without 
limitations and many research directions are still worthy for future investigation.  

1. Incorporating flexible capacity in remanufacturing and recycling will result in an 
increase on the costs for collection, separation, storage and pre-processing of the 
heterogeneous EOL and EOU products. The future modelling efforts may consider the 
cost increase on those operations. 

2. Future works may be conducted to include more uncertain parameters in sustainable 
reverse logistics network design. 

3. The inclusion of more uncertain parameters will lead to an increased computational 
complexity, so more effective and efficiency solution methods and algorithm should 
be developed.  

4. For future research, focus may be given to the social sustainability in sustainable 
reverse logistics network design, and the selection of proper indicators for quantifying 
the social sustainability is of interest.  
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• Formulating mathematical model for decision support under uncertainty 
• Different solution methods were tested, compared and discussed 
• Results were analyzed for providing managerial implications 


