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Abstract

The study in this PhD thesis aims at development of certain
mathematical methods used in applications, in particular, in the
study of regularity properties of solutions in various mathematical
models described by Partial Differential Equations (PDEs). To this
end, we study various operators of harmonic analysis in certain
function spaces, since solutions to many PDEs may be expressed in
terms of such operators.

This PhD thesis consists of four papers (papers A–D) and an
Introduction.

In Paper A we introduce a version of weighted anisotropic mixed
norm Morrey spaces and anisotropic Hardy operators. We derive
conditions for boundedness of these operators in such spaces. We
also reveal the role of these operators in the solving of some degen-
erate hyperbolic PDEs of some class.

In Paper B we prove the boundedness of potential operators in
weighted generalised Morrey space in terms of Matuszewska-Orlicz
indices of weights and apply this result to the Helmholtz equation
in R3 with a free term in such a space. We also give a short overview
of some typical situations when potential type operators arise when
solving PDEs.

In Paper C we study the boundedness of some multi-dimensional
Hardy type operators in Hölder spaces and derive some new results
of interest also in the theory of inequalities.

In Paper D we prove some differentiation formulas for weighted
singular integrals, which we suppose to apply in our future studies
concerning the solution of some integral equations of the first kind.
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vi ABSTRACT

These new results are put into a more general frame in an In-
troduction, where also crucial parts of previous research by the
candidate (e.g. published in two Licentiate theses) are briefly de-
scribed. Note, in particular, that this PhD thesis may be regarded
as a more theoretically based continuation of the Licentiate thesis
in Wood Technology. This important link is carefully described in
the Introduction.



Preface

This PhD thesis in Applied Mathematics and Computational
Engineering is composed of four papers (A-D). These publications
are reflected and put into a more general frame in an Introduc-
tion. Moreover, this Introduction contains an overview about some
applied problems, which are of importance as background of the
studies in this PhD thesis.

A S. Lundberg and N. Samko, On some hyperbolic type equa-
tions and weighted anisotropic Hardy operators. Math.
Meth. Appl. Sci., 40 (2017), no. 5, 1414-1421.

B E. Burtseva, S. Lundberg, L.-E. Persson and N. Samko,
Potential type operators in PDEs and their applications.
AIP Conference Proceedings, 1798, 020178, 11 pp, (2017).

C E. Burtseva, S. Lundberg, L.-E. Persson and N. Samko,
Multi-dimensional Hardy type inequalities in Hölder spaces.
J. Math. Inequal., 12 (2018), no. 3, 719-729.

D S. Lundberg, On precise differentiation formula for weighted
singular integrals of Sobolev functions. AIP Conference
Proceedings, 1637, 621, 6 pp, (2014).

Remark 0.1. The candidate is also author of the following Li-
centiate theses:

L1 S. Lundberg, Experimental Investigations in Wood Ma-
chining related to Cutting Forces, Sawdust Gluing and Sur-
face Roughness, Licentiate thesis, Lule̊a University of Tech-
nology, 1994.

L2 S. Lundberg, On Adjoint Symmetries and Reciprocal Bäcklund
Transformations of Evolution Equations, Licentiate thesis,
Lule̊a University of Technology, 2009.
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viii PREFACE

In particular, these Licentiate theses include the following Jour-
nal publications:

1 S. Lundberg and B. Porankiewicz, Studies of non-contact
methods for roughness measurements on wood surfaces, Holz
als Roh- und Werkstoff , 53 (1995), 309-314.

2 B. O. M. Axelsson, S. Lundberg and J. A. Grönlund, Stud-
ies of the main cutting force at and near a cutting edge,
European Journal of Wood and Wood Products, 51, no.
1, (1995), 43-48.

3 M. Euler, N. Euler and S. Lundberg, Reciprocal Bäcklund
transformations for autonomous evolution equations. The-
oret. Math. Phys., 159 (2009), no. 3, 770-778.

Since these publications constitute the content of my Licentiate
theses [L1] and [L2], they are not included into this PhD thesis.
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Introduction

This PhD thesis in Applied Mathematics and Computational
Engineering is devoted to the development of some mathematical
methods known to be widely used in applied sciences and to ap-
plications of this development in the theory of Partial Differential
Equations (PDEs).

Before we proceed to the description of the main topics and
results of this PhD thesis, I find it natural to present the background
in my previous studies, which led me to investigations realised in
this dissertation.

I have defended two Licentiate theses, [L1] and [L2], (c.f. [51]
and [52]). In [L1], I studied the cutting forces on a cutting tool
when cutting frozen and non-frozen wood at full speed and with all
cutting edges of the tool. The research in this Licentiate thesis is
connected to some investigations in this PhD thesis. In fact, some
research in this PhD thesis may be regarded as a more theoretically
based continuation of the practically based research in [L1].

Figure 1. Cutting forces. Fp: Main cutting force,
Fn: Normal cutting force, R: Total cutting force.
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2 INTRODUCTION

In [L2], I studied some methods to obtain conservation laws and
transformations between nonlinear PDEs and, moreover, to classify
nonlinear PDEs with respect to these methods.

To better illustrate the above mentioned background which is
essential for my studies in this PhD thesis, I find it reasonable to
shortly describe the research questions and to characterise some
main results obtained in my both Licentiate theses.

1. Short description of [L1] and [L2]

In [L1], the research was related to an investigation of the cutting
forces on a cutting tool when cutting frozen and non-frozen wood
at full industrial feed speed and with all (three) cutting edges of
the tool. The results from the investigations showed that the main
cutting force increased with increasing moisture content.

As a special issue, investigations related to the sawdust gluing
phenomenon – a serious problem for sawmills in the northern part
of the globe – were performed. These investigations showed that the
heartwood/sapwood ratio was a determining factor for the amount
of sawdust glued to the sawn surfaces.

An application, close to wood machining, was also studied,
namely non-contact surface roughness measurements on sawn wood.
The results indicate that a measurement approach, based on a laser
scan principle, can measure surface roughness at industrial feed
speeds with a sufficient degree of accuracy.

Remark 1.1. The research in [L1] was, to a great extent, ex-
perimental, so this type of research could be much supported by
some complementary theoretical research. Parts of the research in
this PhD thesis may be regarded as such a theoretical continua-
tion of some results in [L1]. In particular, the following Journal
publications were included in [L1]: [2] and [53].

In [L2], we discussed special transformations and so-called ad-
joint symmetries of nonlinear PDEs. The main emphasis was on
adjoint symmetries and transformations of evolutions equations. In
particular, we studied the adjoint symmetries and the construction
of reciprocal Bäcklund transformations for evolution equations.
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The obtained results show that by using integrating factors,
together with corresponding conservation laws, we are able to con-
struct reciprocal Bäcklund transformations for evaluation equa-
tions. Moreover, the achievements indicate the possibility to con-
struct and classify a family of third-order evolution equations with
respect to adjoint symmetries up to second-order, by means of an
algorithmic procedure, so that the work, obtaining adjoint symme-
tries, can be substantially simplified.

Remark 1.2. The Journal publication [16] was included in [L2].

2. The link to the new results in this PhD thesis

As mentioned above, my Licentiate thesis [L1], was related to a
study of the cutting forces on a cutting tool when cutting frozen
and non-frozen wood at full speed and with all (three) cutting edges
of the tool. Earlier studies of these phenomena have been performed
under low speed conditions. By our study, the feed speed can be
increased up to normal industrial conditions, yet obtaining results
with a sufficient grade of accuracy.

One of the conclusions being that the main cutting force grows
with increasing moisture content, after that study my interests
turned to the question - how moisture transfer in wood in general
influences on the wood production processes? Such studies can be
found in literature, see for instance [39] and the references therein.

The study of the problem of moisture transfer is important for
various other applications, for instance it is essential for better un-
derstanding the durability of materials. In general, the role of tem-
perature and moisture is essential for most of material properties,
when dealing with building materials. The process of temperature
and moisture transfer in materials depends in particular on the en-
vironment climate and the geometry of the structure. Thus, it is
difficult to overestimate the importance of studies of heat and mois-
ture transfer in various branches of technology, industrial and civil
engineering, chemical technology etc.

For various applied studies related to the role of heat and mois-
ture transfer, we refer in particular to [97] with respect to the role
of composition of materials, [98] for coupled thermal and moisture
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fields with application to tailoring of composites, [67] for isothermal
moisture transport in various porous building materials, [104] for
heat and moisture transfer in the special case of concrete. See also
[17], [18], [32], [46], [66], [80], [105] and [107].

Mathematically, moisture transfer as well as heat transfer is
described by parabolic-hyperbolic type PDEs. Recall the classifi-
cation of types of PDEs, in the case of two independent variables.
Let

(1) A(x, y)
∂2u

∂x2
+2B(x, y)

∂2u

∂x∂y
+C(x, y)

∂2u

∂y2
+F (x, y,

∂u

∂x
,
∂u

∂y
) = 0

be partial differential equation of the second order, linear with re-
spect to the second order derivatives and with discriminant D =
D(x, y) defined by

(2) D(x, y) := B2(x, y)− A(x, y)C(x, y).

The equation (1) is called elliptic, hyperbolic or parabolic at a point
(x0, y0) if

(3) D(x0, y0) < 0, D(x0, y0) > 0 or D(x0, y0) = 0,

respectively. It is called elliptic, hyperbolic or parabolic in a domain
in R2 if it is elliptic, hyperbolic or parabolic at every point of this
domain.

Sometimes in applied sciences there appear mixed type or de-
generate hyperbolic partial differential equations of the form

(4) ym
∂2u

∂x2
− ∂2u

∂y2
+ a(x, y)

∂u

∂x
+ b(x, y)

∂u

∂y
+ C(x, y)u = f(x, y),

where the equation is of elliptic or hyperbolic type for y < 0 or
y > 0, respectively, when m is odd, and of hyperbolic type in both
the half planes when m is even, with the line y = 0 of parabolic
degeneration in both the cases. The famous Tricomi equation

(5) y
∂2u

∂x2
+
∂2u

∂y2
= 0,
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which is used, in particular, to describe near-sonic flows of gas, is
a particular case of (4) of mixed type. The moisture transport
equation

(6) y2∂
2u

∂x2
− ∂2u

∂y2
+ a

∂u

∂x
= 0,

which was obtained by the well-known thermophysicist
A. Luikov [48] for the density of moisture flux in a colloidal capillary-
porous media, is another particular case of (4), this time with pa-
rabolic degeneration. An equation of type (6) in fact was earlier
considered as a theoretical object by A.V.Bitsadze, see the book
[8], who studied the Cauchy problem for such an equation. Be-
cause of this, the moisture transport equation (6) is also referred
to as Bitsadze-Luikov equation.

For partial differential equations appearing in the study of heat
and moisture transfer we refer to the book [48] by A. Luikov, widely
known to experts in the field, and also [19], [60] and [73].

Mostly heat and moisture transfer is described by parabolic
equations. In cases of more complicated media structure the go-
verning equation may be of hyperbolic type with degeneracy to the
parabolic type on the boundary of the domain or on some specific
lines in the domain. Such hyperbolic type differential equations
are known to appear in the study of moisture transfer in capillary-
porous bodies, see e.g. [48], Section 1.6. Note that the history of
degenerate hyperbolic equations goes back to the classical Tricomi
equation, see for instance the book [102], the papers [4], [5], [6],
[13], [23], [24], [25], [77], [78], and the references therein.

Differential equations in general are very effective mathematical
models for the study of various phenomena in applied sciences.
Several problems of physics and other natural sciences supply new
ideas to the theory of PDEs via many applications, from which
the rich content of the theory grows. Conversely, it also happens
that a mathematical study, born within the mathematics itself,
may lead to solving some specific physical problems in the process
of their more profound study, although after maybe considerable
time. Thus, the Tricomi problem for equations of mixed type, after
more than a quarter of a century after its solution, found important
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applications in the problem of modern gas dynamics in the study
of supersonic gas flows, see [61] and the references therein.

One of the features of the modern theory of differential equa-
tions is its deep connection with functional analysis and harmonic
analysis.

My studies in this PhD thesis were highly influenced by the
effectiveness of interplay between mathematical theories and their
applications. We concentrate ourselves on the study of the follow-
ing operators of harmonic analysis: Potential type operators and
Hardy type operators, which are known to play a crucial role in
applications to PDEs. We study these operators in the setting of
generalised or modified Morrey type and Hölder function spaces,
both popular in PDEs. This is motivated by the needs in appli-
cations to have properties of solutions inherited from prescribed
properties of the data, see e.g. the Figure below.

Data f

Input

Modelling: Differential Equation Du = f (∗)

Properties of solution u of (∗)
Output

Figure 2. The relation between properties of data
and inherited solutions.
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3. Short description of the main research ques-
tions and results in this PhD thesis

The classical versions of function spaces in this PhD thesis:

In this PhD thesis we deal with Morrey- and Hölder-type spaces
and their modifications and/or generalisations. We present here the
definitions of the classical versions of these spaces and later, in the
parts where descriptions of the main results will be presented, we
will give some of their modifications and/or generalisations.

Morrey space:

The classical Morrey space Lp,λ is defined as follows:

(7) Lp,λ = {f ∈ Lploc(Ω) : ‖f‖p,λ <∞}, 1 ≤ p <∞, 0 ≤ λ < n,

where Ω ⊆ Rn, and Lploc(Ω) is the set of functions such that f ∈
Lp(B ∩ Ω) for every ball B ⊂ Rn. Equipped with the norm
(8)

‖f‖p,λ = sup
x∈Ω,r>0

 1

rλ

∫
B(x,r)

|f(t)|p dt


1
p

= sup
x∈Ω,r>0

‖f‖Lp(B(x,r))

r
λ
p

,

where B(x, r) = {y ∈ Ω : |y − x| < r}, it is a Banach space.
The approach to measure regularity properties of solutions to

PDEs by means of the property∫
B(x,r)

|f(t)|pdt ≤ crλ

is due to C. B. Morrey [62]. The set of functions with this property
as a function space Lp,λ with the corresponding norm appeared first
in [10] and is called Morrey space since then.

Such spaces are known to be used often in PDEs, since Morrey
spaces describe local regularity of solutions more precisely than
Lebesgue spaces, and in the last decades they became also widely
popular in harmonic analysis. We refer, for instance to the books
[1], [20], [38], [41] and [103]. Various properties of functions in
Morrey spaces are well studied and may be found in these books.
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Many operators of harmonic analysis, e.g.singular, maximal and
potential type operators and their commutators, have been inten-
sively studied in Morrey spaces. We refer to the book [38], where
a lot of references may be found.

Hölder space:

The classical Hölder space Cλ(Ω), 0 < λ ≤ 1, where Ω is an
open set in Rn,Ω ⊆ Rn, n ≥ 1, is defined by the seminorm

(9) [f ]λ := sup
x,x+h∈Ω
|h|<1

|f(x+ h)− f(x)|
|h|λ

<∞.

Equipped with the norm

(10) ‖f‖Cλ = sup
x∈Ω
|f(x)|+ [f ]λ

Cλ(Ω) is a Banach space.
Hölder spaces adjoin in a sense to Morrey space and together

with Morrey spaces constitute the scale of so called Morrey-Campa-
nato spaces, see for instance [20] and [41]. Hölder spaces are also
known to be widely used in applications, in particular in PDEs.
See, for instance [20].

Some operators of harmonic analysis studied in this PhD the-

sis:

Among the operators studied in this PhD thesis, the main are
Hardy- and Potential-type operators. The classical Hardy operators
Hα and Hα for functions of one variable are defined as follows:

Hαf(x) := xα−1

x∫
0

f(y)dy and(11)

Hαf(x) := xα
∞∫
x

f(y)

y
dy, α ≥ 0.
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Their multidimensional versions are also known in the forms

Hαf(x) := |x|α−n
∫

|y|<|x|

f(y)dy and(12)

Hαf(x) := |x|α
∫

|y|>|x|

f(y)

|y|n
dy, α ≥ 0, x ∈ Rn

For more information on Hardy type operators and inequalities,
see the recent book [43] by A. Kufner, L. E. Persson and N. Samko.
We also consider anisotropic Hardy operators

Hα = Hα(x1, x2), α = (α1, α2),

of functions of two variables, defined by

(13) Hαf(x, y) := xα1−1yα2−1

x∫
0

y∫
0

f(t1, t2) dt1 dt2.

As regards Potential operators, the classical potential operator
Iα, known also under the name of Riesz fractional integral, has the
form

Iαf(x) :=
1

γn(α)

∫
Rn

f(y) dt

|x− y|n−α
, x ∈ Rn, 0 < α < n,

where γn(α) is a certain normalising constant. In the case α = 2
(when n > 2) this is also referred to as the Newton potential.

We also study weighted modifications of the above operators.

3.1. Main results obtained in Paper A. We recall that the
degenerate hyperbolic equation (6) of the form

y2 ∂2u

∂x∂x
− ∂2u

∂y∂y
+ a

∂u

∂x
= f(x, y)

is known as an equation describing moisture and temperature trans-
fer in porous media, as it was mentioned above. This equation, by
the transformation

ξ = x− y2

2
, η = x+

y2

2
,
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reduces (see for instance [15], [79]) to the equation in the following
form:

(ξ − η)
∂2u

∂ξ∂η
+ lower terms = g(ξ, η).

The degenerate hyperbolic equation, related to the use of the
anisotropic Hardy operators (13) introduced in Paper A, has the
form

(14) xy
∂2u

∂x∂y
+ x

∂u

∂x
+ y

∂u

∂y
+ u(x, y) = f(x, y).

We study a possibility to find a solution of this equation within
the frame of weighted Morrey spaces, when the right-hand side of
the equation is in such spaces well suited for their use in PDEs.
Such a possibility is based on the boundedness of the weighted
Hardy operators in the corresponding spaces. To this end, we in-
troduce a version of weighted anisotropic Morrey spaces, and prove
a theorem on the boundedness of the weighted anisotropic dou-
ble Hardy operator in the framework of anisotropic Morrey spaces
which are defined below.

We find conditions for the boundedness of these operators in
weighted anisotropic Morrey spaces, with an emphasis on the role
of the function spaces used in the solving process.

Some definitions:

We consider Morrey spaces defined above by (7)-(8) on Rn. The
weighted Morrey spaces Lp,λ are treated in the usual sense:

Lp,λ(Ω, w) := {f : wf ∈ Lp,λ(Rn)},
equipped with the norm ‖f‖Lp,λ(Ω,w) := ‖wf‖Lp,λ(Rn).

Below we present the definitions of the anisotropic Morrey spaces.



3. SHORT DESCR. OF MAIN RESEARCH QUESTIONS/RESULTS 11

Anisotropic Morrey space Lp,λ1,λ2(R2
+)

is defined in [69] by the norm

‖f‖p,λ1,λ2 := sup
x>0,y>0
r1>0,r2>0

 1

rλ1
1 r

λ2
2

x+r1∫
(x−r1)+

y+r2∫
(y−r2)+

|f(t1, t2)|p dt1 dt2


1
p

=

(15)

= sup
x,r∈R2

+

‖f‖Lp(Q(x,r))

r
λ1
p

1 r
λ2
p

2

,

where (xi − ri)+ =

{
xi − ri, if xi − ri ≥ 0

0, if xi − ri < 0,
, i = 1, 2,

Q(x, r) =
{
t = (t1, t2) ∈ R2

+ : (xi − ri)+ < ti < xi + ri, i = 1, 2
}

=

= Ix,r1 × Iy,r2 , x = (x, y), r = (r1, r2), and

Ixi,ri = ((xi − ri)+, xi + ri), i = 1, 2.

Anisotropic mixed norm Morrey space Lp,λ(R2
+)

is defined by the norm

(16) ‖f‖p,λ := sup
x,r∈R2

+

‖f‖Lp(Q(x,r))

r
λ1
p1
1 r

λ2
p2
2

,

where p = (p1, p2), λ = (λ1, λ2), with the mixed norm ‖f‖Lp(Q(x,r))

over the rectangle Q(x, r), where

‖f‖Lp(Q(x,r)) :=

 ∫
Ix,r1

 ∫
Iy,r2

|f(t1, t2)|p2 dt2


p1/p2

dt1


1/p1

=(17)

=
∥∥‖f(t1, ·)‖Lp2 (I2)

∥∥
Lp1 (I1)

,
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where ”·” stands for the variable in which the inner norm is applied
(we refer to [7] for more information about mixed norm Lebesgue
spaces).

Weighted anisotropic mixed norm Morrey space Lp,λ(R2
+, w1w2)

is defined by

Lp,λ(R2
+, w1w2) := {f : w1(x)w2(y)f(x, y) ∈ Lp,λ(R2

+).

We consider the weighted two-dimensional Hardy operators

Hα,w, defined by

(18)

Hα,wf(x, y) := xα1−1yα2−1w1(x)w2(y)

x∫
0

y∫
0

f(t1, t2)

w1(t1)w2(t2)
dt1 dt2,

where α = (α1, α2) and w = w(x, y) = w1(x) · w2(y).

We may assume that f ≥ 0. If the double integral (18) con-
verges, then by Fubini’s theorem it coincides with the also conver-
gent iterated integrals:

(19) Hα,wf = Hα1,w1

1 Hα2,w2

2 f = Hα2,w2

2 Hα1,w1

1 f,

where
(20)

Hα1,w1

1 Hα2,w2

2 f(x, y) =
w1(x)w2(y)

x1−α1y1−α2

x∫
0

1

w1(t1)

 y∫
0

f(t1, t2)

w2(t2)
dt2

 dt1,

and
(21)

Hα2,w2

2 Hα1,w1

1 f(x, y) =
w1(x)w2(y)

x1−α1y1−α2

y∫
0

1

w2(t2)

 x∫
0

f(t1, t2)

w1(t1)
dt1

 dt2,
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so that we can use any one of the forms in (19). Thus, we can in-
terpret our anisotropic Hardy operator as a composition of the one-
dimensional Hardy operators applied in the corresponding variable.

In Theorem 3.1 below on the boundedness of double Hardy type
operator in the mixed norm anisotropic case, which is one of the
main results of this paper, we use the notion of Zygmund classes of
almost monotonic functions on R+, which are defined as follows:

(i) By W = W (R+) we denote the class of functions ϕ continu-
ous and positive on R+ such that there exists the finite limit
lim
x→0

ϕ(x).

(ii) By W0 = W0(R+) we denote the class of functions ϕ ∈ W
almost increasing on (R+).

(iii) By W = W (R+) we denote the class of functions ϕ ∈ W such
that xaϕ(x) ∈ W0 for some a = a(ϕ) ∈ R.

We say that a function ϕ ∈ W belongs to the Zygmund class
Zγ, γ ∈ R1, if

(22)

∫ ∞
r

ϕ(t)

t1+γ
dt ≤ c

ϕ(r)

rγ
, r ∈ (0,∞).

Let ϕ ∈ W. The following numbers M(ϕ) and M∞(ϕ) are known
as upper Matuszewska-Orlicz indices of the function ϕ, at the origin
and infinity, respectively:

M(ϕ) = sup
r>1

ln

(
lim sup
h→0

ϕ(rh)
ϕ(h)

)
ln r

= lim
r→∞

ln

(
lim sup
h→0

ϕ(rh)
ϕ(h)

)
ln r

M∞(ϕ) = inf
r>1

ln

[
lim sup
h→∞

ϕ(rh)
ϕ(h)

]
ln r

.

The following theorem on weighted Hardy type inequality was
conjectured in [69]:
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Theorem 3.1. Let 0 ≤ λi < 1, 0 ≤ αi < 1− λi, 1 < pi <
1−λi
αi

,
1
qi

= 1
pi
− αi

1−λi and wi ∈ W (R+), i = 1, 2. For the weighted Hardy

type inequality

(23)
∥∥Hα,wf

∥∥
p,λ
≤ C ‖f‖p,λ

to hold, the condition wi ∈ Zλi
pi

+ 1
p′
i

(R+) is sufficient, and the con-

dition wi ∈ Zλi
pi

+ 1
p′
i
+ε

(R+) with an arbitrary ε > 0, is necessary,

i = 1, 2.

The detailed proof of Theorem 3.1 was given in Paper A. More-
over, based on the boundedness of weighted Hardy operators pro-
vided by Theorem 3.1, we stated and proved the following result for
solutions in weighted Morrey space of the inhomogeneous equation
(14):

Theorem 3.2. Let f ∈ Lp,λ(R2
+, w1w2), where 1 < pi <∞, 1

pi
+

1
p′i

= 1, 0 ≤ λi < 1, i = 1, 2. Then there exists in Lp,λ(R2
+, w1 ·w2) a

particular solution u(x, y) of the equation (14) given by the Hardy
operator

u(x, y) =
1

xy

x∫
0

y∫
0

f(t1, t2) dt1 dt2

for all weights w1 and w2 such that

(24) wi ∈ Zλi
pi

+
λi
p′
i

(R+),

or, equivalently,

max (M(wi),M∞(wi)) <
λ

pi
+

1

p′i
, i = 1, 2.

If we consider the case of power weights, i.e. when w1(x) = xθ1

and w2(y) = yθ2 , we can formulate the following statement:

Corollary 3.3. In the case of power weights, i.e. when w1(x) =
xθ1 and w2(y) = yθ2, the condition (24) is reduced to the condition
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(25) max (θi) <
λi
pi

+
1

p′i
, i = 1, 2,

which means that Theorem 3.2 in this case holds with (24) replaced
by the simpler condition (25).

The results in Paper A are related to the following publications:
[3], [7], [15], [34], [36], [48], [49], [50], [69], [71], [72], [75], [79], [86],
[87], [88], [97] and [98].

3.2. Main results obtained in Paper B. It is well known
that Potential type operators arise in the study of for instance the
Poisson and Helmholtz equations. Such equations occur quite often
in a variety of applied problems of science and engineering.

In this paper we prove the boundedness of Potential operators in
weighted generalised Morrey space in terms of Matuszewska-Orlicz
indices of weights and apply this result to the Helmholtz equation
in R3 with a free term in such a space. We do an emphasis on
the role of the function space used in the solving process. We also
give a short overview of some typical situations when Potential type
operators arise when solving PDEs.

We start with some definitions and assumptions.

Let W be the class of quasi-monotonic functions on R+ defined in
the above overview of Paper A.

Besides this we also need the class W defined as follows. To
underline separate roles of Matuszewska-Orlicz indices at the origin
and infinity, we give here the definition of W via the corresponding
classes on [0, 1] and [1,∞].

Definition 3.4.
(i) By W = W ([0, 1]) we denote the class of continuous and posi-

tive functions ϕ on (0, 1] such that there exists finite or infinite
limit lim

r→0
ϕ(r).

(ii) By W = W ([0, 1]) we denote the class of functions ϕ ∈ W
such that tbϕ(t) is almost decreasing for some b ∈ R1.
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Definition 3.5.

(i) ByW∞ = W∞([1,∞]) we denote the class of functions ϕ which
are continuous and positive and almost increasing on [1,∞)
and which have the finite or infinite limit limr→∞ ϕ(r).

(ii) By W∞ = W∞([1,∞)) we denote the class of functions ϕ ∈
W∞ such that tbϕ(t) ∈ W∞ for some b = b(ϕ) ∈ R1.

By W (R+) we denote the set of functions on R+ whose restric-
tions onto (0, 1) are in W ([0, 1]) and restrictions onto [1,∞) are in
W∞([1,∞)). The set W (R+) is interpreted similarly.

Generalised Morrey space

Definition 3.6. Let ϕ(r) be a non-negative function on [0, `],
positive on (0, `], and 1 ≤ p < ∞. The generalised Morrey space
Lp,ϕ(Ω) is defined as the space of functions f ∈ Lploc(Ω) such that

(26) ‖f‖p,ϕ := sup
x∈Ω,r>0

 1

ϕ(r)

∫
B(x,r)

|f(y)|p dy


1
p

<∞.

The classical Morrey space

Lp,λ(Rn)

corresponds to the case ϕ(x, r) ≡ rλ, 0 < λ < n.

Everywhere in the sequel it is assumed that the functions ϕ
and ψ, defining the generalised Morrey spaces are non-negative, are
almost increasing functions and continuous in a neighborhood of the
origin, such that ϕ(0) = 0, ϕ(r) > 0, for r > 0, and ϕ ∈ W

⋂
W,

and similarly for ψ.

For the function ϕ(r), we will make use of the following condi-
tions:

(27) ϕ(r) ≥ crn

for 0 < r ≤ 1, which makes the spaces Lp,ϕ(Ω) non-trivial, see [70,
Corollary 3.4],
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(28)

∫ ∞
r

ϕ
1
p (t)

t
n
p

+1
dt ≤ C

ϕ
1
p (r)

r
n
p

and

(29)

∫ ∞
r

ϕ
1
p (t)

t
n
p
−α+1

dt ≤ Cr−
αp
q−p .

We will consider the action of the Potential operator from one
Morrey space Lp,ϕ to another Morrey space Lq,ψ.

The weighted generalised Morrey spaces are treated in the
usual sense:

Lp,ϕ(Ω, w) := {f : wf ∈ Lp,ϕ(Ω)}, Ω ⊆ Rn,

‖f‖Lp,λ(Rn,w) := ‖wf‖Lp,λ(Rn).

For the weights w we use the classes W (R+),W (R+), and Vµ
±

defined as follows:

Definition 3.7. Let 0 < µ ≤ 1. By Vµ
±, we denote the classes of

functions w non-negative on [0,∞) and positive on (0,∞), defined
by the conditions:
(30)

Vµ
+ :

|w(t)− w(τ)|
|t− τ |µ

≤ C
w(t+)

tµ+
,

(31)

Vµ
− :

|w(t)− w(τ)|
|t− τ |µ

≤ C
w(t−)

tµ+
,

where t, τ ∈ (0,∞), t 6= τ, and t+ = max(t, τ), t− = min(t, τ).

Besides the upper Matuszewska-Orlicz indices defined in the
above overview of Paper A, here we also need lower Matuszewska-
Orlicz indices m(ϕ) and m∞(ϕ) for ϕ ∈ W :

m(ϕ) = sup
0<r<1

ln

(
lim sup
h→0

ϕ(hr)
ϕ(h)

)
ln r

= lim
r→0

ln

(
lim sup
h→0

ϕ(hr)
ϕ(h)

)
ln r
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and

m∞(ϕ) = sup
r>1

ln
[
lim inf
h→∞

ϕ(rh)
ϕ(h)

]
ln r

.

One main result from Paper B reads:

Theorem 3.8. Let 0 < α < n, 1 < p < n
α
, q > p, and

w ∈ [W (R+)∩W (R+)]∩ [Vµ
−(R+)∪Vµ

+(R+)], µ = min{1, n−α}.
Suppose also that the functions ϕ and ψ satisfy the assumptions

(32)

M(ϕ),M∞(ϕ) < n− αp, ϕ(r) ≤ cr
n− α

1
p−

1
q and

ϕ1/p(|y|)
|y|

n
p
−α ∈ L

q,ψ.

Under the conditions

(33) α− n−M(ϕ)

p
< m(w) ≤M(w) <

n

p′
+
m(ϕ)

p
,

and

(34) α− n−M∞(ϕ)

p
< m∞(w) ≤M∞(w) <

n

p′
+
m∞(ϕ)

p
,

the weighted Riesz potential operator wIα 1
w

is bounded from Lp,ϕ(Rn)

to q,ψ(Rn).

The above theorem leads us to the following result for the
Helmholtz equation, in the case n = 3, α = 2. In this applica-
tion we consider Morrey spaces imbedded into the corresponding
weighted Lebesgue spaces, i.e. Lp,ϕ(R3, w) ↪→ Lp(R3, w). To this
end, it suffices to assume that ϕ(r) is a bounded function.

Theorem 3.9. Let 1 < p < 3
2
, q > p, and

w ∈ [W (R+) ∩W (R+)] ∩ [V1
−(R+) ∪V1

+(R+)].

Let also the functions ϕ and ψ satisfy the assumptions

(35) M(ϕ) < 3− 2p, ϕ(r) ≤ cr
3− 2

1
p−

1
q and

ϕ1/p

r
3
p
−2
∈ Lq,ψ.
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Under the conditions

(36) 2− 3−M(ϕ)

p
< m(w) ≤M(w) <

3

p′
+
m(ϕ)

p
,

and

(37) 2− 3−M∞(ϕ)

p
< m∞(w) ≤M∞(w) <

3

p′
+
m∞(ϕ)

p
,

for every f ∈ Lp,ϕ(R3, w), there exists a twice Sobolev differentiable
particular solution u ∈ Lq,ψ(R3, w) of the Helmholtz equation

(∆ + k2I)u(x) = f(x).

In the case of classical Morrey spaces, i.e. when ϕ(r) = rλ, 0 <
r < n, the statement of Theorem 3.9 holds in a more precise form
as given in the following theorem.

Theorem 3.10. Let 1 < p < 3
2
, q > p, λ < 3− 2p and

w ∈ [W (R+) ∩W (R+)] ∩ [V1
−(R+) ∪V1

+(R+)].

Under the conditions

(38) 2− 3− λ
p

< min(m(w),m∞(w))

and

(39) max(M(w),M∞(w)) <
3

p′
+
λ

p

for every f ∈ Lp,λ(R3, w), there exists a twice Sobolev differentiable
particular solution u ∈ Lq,λ(R3, w) of the Helmholtz equation

(∆ + k2I)u(x) = f(x),

where 1
q

= 1
p
− 2

3−λ .

The results in Paper B are related to the following publications:
[3], [11], [12], [29], [30], [31], [33], [34], [35], [40], [44], [47], [55], [56],
[57], [58], [59], [63], [64], [68], [70], [71], [72], [74], [76], [82], [84],
[87], [88], [90], [92], [93], [94], [96], [99], [101], [106] and [108].
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3.3. Main results obtained in Paper C. In this paper we
study mapping properties of the multi-dimensional Hardy type op-
erators Hα and Hα (we write H = Hα and H = Hα in the case
α = 0) defined above in (12) as

Hαf(x) := |x|α−n
∫

|y|<|x|

f(y)dy

and

Hαf(x) := |x|α
∫

|y|>|x|

f(y)

|y|n
dy, α ≥ 0,

in Hölder spaces Cλ(Ω) defined above in (9)-(10). We deal with
Ω = BR, where BR = B(0, R) := {x ∈ Rn : |x| < R}, 0 < R ≤ ∞.

We will also use the subspaces Cλ
0 (BR) of Cλ(BR), defined by

Cλ
0 (BR) :=

{
f ∈ Cλ(BR) : f(0) = 0

}
,

and we deal also with the space C̃λ
0 (BR) consisting of functions f

for which [f ]λ < ∞ and f(0) = 0. This space contains functions
which are unbounded in the case R =∞. Note that [f ]λ is a norm
in Cλ

0 (BR).
In Paper C we also consider Hölder spaces of the functions on

the whole space Rn, i.e. in the case R = ∞ with the requirement
that functions have also Hölder type behaviour at the infinite point,
i.e. we deal with a compactification of Rn by a single infinite point,
which we denote as Ṙn.

The space Cλ(Ṙn) is defined by the norm

‖f‖Cλ(Ṙn) := ‖f‖C(Ṙn) + sup
x,y∈Rn

|f(x)− f(y)|
(

(1 + |x|)(1 + |y|)
|x− y|

)λ
.

The operator Hα, α = 0, may be considered both with and
without compactification, but a consideration of H requires the
choice of the space Cλ(Ṙn) instead of the space Cλ(Rn) due to the
needed convergence of integrals at infinity. We prove the theorem
for the operator Hα, α ≥ 0, without compactification, and for both
the operators H and H with compactification. We also show that
in the setting of the spaces with compactification we may consider
only the case α = 0.



3. SHORT DESCR. OF MAIN RESEARCH QUESTIONS/RESULTS 21

Our first main result in Paper C is the following theorem for
the operator Hα :

Theorem 3.11. Let α ≥ 0, λ > 0, λ+ α ≤ 1 and 0 < R ≤ ∞.
In the case α = 0 the Hardy operator Hα is bounded in Cλ(BR) and
[Hαf |α=0]λ ≤ C[f ]λ. In the case α > 0 the operator Hα is bounded
from C̃λ

0 (BR) into C̃λ+α
0 (BR).

We also consider the generalised Hölder space Cω(·)(Ω).
The space Cω(·)(Ω) is defined as the set of functions, continuous

in Ω, having the finite norm

‖f‖Cω(·) := sup
x∈Ω
|f(x)|+ [f ]ω(·)

with the seminorm

[f ]ω(·) = sup
x,x+h∈Ω
|h|<1

|f(x+ h)− f(x)|
ω(|h|)

,

where ω : [0, 1] → R+ is a non-negative increasing function in
C([0, 1]) such that ω(0) = 0 and ω(t) > 0 for 0 < t ≤ 1. Such
spaces are known in the literature, see for instance [36, Section
13.6].

The classes C
ω(·)
0 (BR) and C̃λ

0 (BR) are defined similarly to the
above case ω(t) = tλ.

The following statement is a generalisation of Theorem 3.11 for
the case of ω = ω(t), defined in this paper.

Theorem 3.12. Let ω ∈ C([0, 1]) be positive on (0, 1], increa-

sing and such that ω(0) = 0 and ω(t)
t1−α

is almost decreasing. In the

case α = 0 the operator Hα|α=0 is bounded in Cω(·)(BR). When

α > 0, it is bounded from C̃
ω(·)
0 (BR) into C̃

ωα(·)
0 (BR), where ωα(t) =

tαω(t).

In the setting of the spaces Cλ(Ṙn) we consider only the case
α = 0, and our main results in this case for H and H read:

Theorem 3.13. Let 0 ≤ λ < 1. Then the operator H is bounded
in Cλ(Ṙn).
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To formulate the corresponding result for the operator H we
need to consider the following subspaces:

Cλ
0 (Ṙn) :=

{
f ∈ Cλ(Ṙn) : f(0) = 0

}
,

Cλ
∞(Ṙn) :=

{
f ∈ Cλ(Ṙn) : f(∞) = 0

}
,

and

Cλ
∞,0 := Cλ

∞ ∩ Cλ
0 .

Theorem 3.14. Let 0 < λ < 1. Then the operator H is bounded
from Cλ

∞,0(Ṙn) to Cλ
∞(Ṙn).

Remark 3.15. When α > 0, Theorems 3.13 and 3.14 may not
be extended to the setting Cλ(Ṙn) −→ Cλ+α(Ṙn), in which we
require the Hölder behaviour of functions also at the infinite point,
in contrast to the situation in Theorem 3.11.

The main results in Paper C are also cited and described in the
recent book [43] by A. Kufner, L. E. Persson and N. Samko.

The results in Paper C are also related to the following publications:
[9], [26], [27], [28], [36], [37], [42], [45], [50], [54], [65], [69], [70], [83],
[86], [88], [95] and [100].

3.4. Main results obtained in Paper D. Besides the Hardy
and Potential operators, singular operators play an important role
in various applications, e.g. connected to problems related to PDEs.
One-dimensional singular operators S, defined by

Sf(t) :=
1

π

∫ b

a

f(t)

τ − x
dτ, x ∈ (a, b)

have various applications e.g. in aerodynamics and elasticity theory.
In particular, the integral equation Sf = g is known as the famous
Söngen equation in aerodynamics. Sometimes it is also called thev
Tricomi equation. More generally, equations of the form

a(t)f(t) + b(t)Sf(t) = g(t),



3. SHORT DESCR. OF MAIN RESEARCH QUESTIONS/RESULTS 23

where in general (a, b) is replaced by an arbitrary closed or open
curve are known as singular integral equations. Due to numerous
applications the theory of these equations was intensively and com-
prehensively developed in the middle decades of the previous cen-
tury. In the process of solving such equations there appear singular
integrals with power weights T µ, defined by

(40) (T µf) (x) := (x− a)µ1(b− x)µ2

b∫
a

f(t) dt

(t− a)µ1(b− t)µ2(t− x)

(written for the case of the interval (a, b)), where a < x < b, µ =
(µ1, µ2), the numbers µ1 and µ2 may be complex and Re(µ1) <
1,Re(µ2) < 1.

On the other hand it is known that integral equations of the
first kind with logarithmic kernel, have various applications. In
particular, many applied problems, where logarithmic kernels and
potentials are used, can be dscribed and reduced to singular integral
equations via differentiation. Consequently, there arises a problem
of differentiation of the weighted singular integral (T µf) (x). Direct
differentiation in x in the form as (T µf) (x) is written, leads to
a cumbersome and non-applicable results with strong singularities
of the so obtained results at the endpoints of the interval. This
happens because such a direct differentiation does not use differen-
tiability properties of the function f itself. Meanwhile the problem
to study here is to show that if df

dt
belongs to some class, then

d
dx

(T µf) (x) belongs to the same class. Results of such a type were
known in some specific setting for the class of derivatives. Here
we solve the problem of justification of the differentiation formula
for such a weighted singular integral (T µf) (x) in the framework of
weighted Sobolev spaces W p,1 = W p,1(w), defined by

W p,1(w) := {f ∈ Lp(w, [a, b]) : df/dx ∈ Lp(w, [a, b])} .

Here the derivative is understood as usual in the weak sense.



24 INTRODUCTION

The weighted space Lp(w, [a, b]) =: Lp(w), 1 ≤ p < ∞, is defined
by

Lp(w) :=

{
ϕ : ‖ϕ‖Lp(w) :=

∫ b

a

|ϕ(x)w(x)|pdx <∞
}
.

We also use the notations:

fµ :=

b∫
a

f(t) dt

(t− a)µ1(b− t)µ2
,

%1−µ(x) :=
1

(x− a)1−µ1(b− x)1−µ2
and D = d/dx.

One main result in Paper D is the following:

Theorem 3.16. Let f ∈ W p,1(w, [a, b]) , where 1 < p < ∞,
1
p

+ 1
p′

= 1, and w = (x− a)α1(b− x)α2. Under the assumption that

−1/p ≤ α1 + Re(µ1 − 1) ≤ 1/p′

and

−1/p ≤ α2 + Re(µ2 − 1) ≤ 1/p′,

the following differentiation formula is valid:

d

dx
T µf(x) =

=
1

(x− a)1−µ1(b− x)1−µ2

b∫
a

(t− a)1−µ1(b− t)1−µ2
f ′(t) dt

(t− x)
+(41)

+
(µ1 + µ2 − 1)fµ

(x− a)1−µ1(b− x)1−µ2
,

or in short form

(42) (DT µf) (x) =
(
T µ−1Df

)
(x) + (µ1 + µ2 − 1)fµ · %1−µ(x).

Similar differentiation results are also obtained when there is
admitted an additional logarithmic behavior at the endpoints of the
interval, i.e. when f(t) is replaced by f(t) ln(t−a) or f(t) ln(b− t),
but f(t) still belongs to W p,1(w, [a, b]).
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The results in Paper D are related to the following publications:
[14], [21], [22], [81], [85], [89] and [91].
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Hölder condition. Proc. A. Razmadze Math. Inst, 120:107–134, 1999.

[82] N. Samko. Singular integral operators in weighted spaces with generalized
hölder condition. Proc. A. Razmadze Math. Inst., 120:107–134, 1999.

[83] N. Samko. On compactness of Integral Operators with a Generalized
Weak Singularity in Weighted Spaces of Continuous Functions with a
Given Continuity Modulus. Proc. A. Razmadze Math. Inst, 136:91–113,
2004.

[84] N. Samko. On non-equilibrated almost monotonic functions of the
Zygmund-Bary-Stechkin class. Real Anal. Exchange, 30(2):727–745,
2004/05.

[85] N. Samko. Singular integral operators in weighted spaces of continu-
ous functions with non-equilibrated continuity modulus. Math. Nachr.,
279(12):1359–1375, 2006.

[86] N. Samko. Weighted Hardy and singular operators in Morrey spaces. J.
Math. Anal. Appl., 350:56–72, 2009.

[87] N. Samko. Weighted Hardy and potential operators in Morrey spaces. J.
Funct. Spaces Appl., Article ID 678171, 2012.

[88] N. Samko. Weighted Hardy operators in the local generalized vanishing
Morrey spaces. Positivity, 17(3):683–706, 2013.

[89] S. Samko. lntegral equations of the first kind with a logarithmic kernel (in
Russian). In Mapping methods (Russian), pages 41–69. Checheno-Ingush.
Gos. Univ., Grozny, 1976.

[90] S. Samko. Hypersingular Integrals and their Applications. London-New-
York: Taylor & Francis, Series ”Analytical Methods and Special Func-
tions”, vol. 5, 2002.

[91] S. Samko and R. Gorenflo. Integral Equations of the First Kind with a
Logarithmic Singularity. Preprint, No. A-34/94, 1994. Freie Universität
Berlin.

[92] A.P.S. Selvadurai. Partial Differential Equations in Mechanics 2. The
Biharmonic Equation. Poisson’s Equation. Springer-Verlag, Berlin, 2000.

[93] F.-O. Speck. A class of interface problems for the Helmholtz equation in
Rn. Math. Methods. Appl. Sci., 40(2):391–403, 2017.

[94] F.-O. Speck and E. Stephan. Boundary value problems for the Helmholtz
equation in an octant. In Integral Equations and Operator Theory, vol-
ume 62, pages 269–300. SP Birkhäuser Verlag Basel, 2008.
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On some hyperbolic type equations and
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We introduce a version of weighted anisotropic Morrey spaces and anisotropic Hardy operators. We find conditions for
boundedness of these operators in such spaces. We also reveal the role of these operators in solving some classes of
degenerate hyperbolic partial differential equations. Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

It is well known that many operators of harmonic analysis such as potential type operators, singular operators, and others are widely
used in PDEs. In this paper, the authors present their results on anisotropic double Hardy type operators arising in relation to some
degenerate hyperbolic type PDEs, with an emphasis on the role of the function space used in the solving process.

Degenerate hyperbolic equations arise in various applied problems, for instance, in the study of distribution of heat and moisture
transfer in capillary-porous media. We do not provide any historical overview: this would lead us too far away. We just present here
some references, see, for example, [1–5], and references therein.

We also refer to some papers where the degenerate hyperbolic equation of the form

y2 @
2u

@x@x
�
@2u

@y@y
C a

@u

@x
D f .x, y/ (1.1)

was studied, see, for instance, [1, 3], and references therein, which by the transformation

� D x �
y2

2
, � D x C

y2

2

reduces to the equation in the following form:

.� � �/
@2u

@�@�
C lower terms D g.� , �/.

The degenerate hyperbolic equation related to the use of the anisotropic weighted Hardy operator has the form

xy
@2u

@x@y
C ax

@u

@x
C by

@u

@y
C cu.x, y/ D f .x, y/. (1.2)

We study a possibility to find a solution of the equation within the frame of weighted Morrey spaces well suited for their use in PDEs.
For Morrey spaces and investigation of various operators of harmonic analysis in such spaces, related to studies here, we refer, for

instance, to [6–8]. See also [9] and references therein. Precise definitions of the spaces are given in Section 2.
We will study this equation in the weighted anisotropic Morrey space, when the right-hand side of the equation is in that space. Such

a possibility is based on the boundedness of weighted Hardy operators in the corresponding spaces. To this end, we prove a theorem
on the boundedness of weighted anisotropic double Hardy operator in the frameworks of anisotropic Morrey spaces.
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Anisotropic Morrey spaces were introduced in [10] .
In order not to overload the exposition with details, and for reader’s convenience, we present all necessary definitions and properties

of the weights in the Appendix.

2. Preliminaries

2.1. Morrey space

Morrey space Lp,� is defined as follows:

Lp,� D
˚

f 2 Lp
loc.�/ : kfkp,� <1

�
, 1 � p <1, 0 � � < n, (2.1)

where� � Rn. Equipped with the norm

kfkp,� D sup
x2�,r>0

0
B@ 1

r�

Z
B.x,r/

jf .t/jp dt

1
CA

1
p

D sup
x2�,r>0

kfkLp.B.x,r//

r
�
p

, (2.2)

where B.x, r/ D fy 2 � : jy � xj < rg, it is a Banach space.
We consider Morrey space on Rn, and weighted Morrey spaces are treated in the usual sense:

Lp,�.�, w/ :D ff : wf 2 Lp,�.Rn/g, kfkLp,�.�,w/ :D kwfkLp,�.Rn/.

Next, we present the definitions of the anisotropic Morrey spaces.
Anisotropic Morrey space Lp,�1,�2.R2

C
/ is defined in [10] by the norm

kfkp,�1,�2 D sup
x>0,y>0

r1>0,r2>0

0
B@ 1

r�1
1 r�2

2

xCr1Z
.x�r1/C

yCr2Z
.y�r2/C

jf .t1, t2/j
p dt1 dt2

1
CA

1
p

D sup
x,r2R2

C

kfkLp.Q.x,r//

r
�1

p

1 r
�2

p

2

, (2.3)

where .xi � ri/C D

�
xi � ri , if xi � ri � 0
0, if xi � ri < 0,

, i D 1, 2, Q.x, r/ D ft D .t1, t2/ 2 R2
C

: .xi � ri/C < ti < xi C ri , i D 1, 2g D Ix,r1 � Iy,r2 , x D

.x, y/, r D .r1, r2/, and Ixi ,ri D ..xi � ri/C, xi C ri/, i D 1, 2.
Anisotropic mixed norm Morrey space Lp,�.R2

C
/ is defined by the norm

kfkp,� D sup
x,r2R2

C

kfkLp.Q.x,r//

r
�1
p1

1 r
�2
p2

2

, (2.4)

where p D .p1, p2/,� D .�1,�2/, with the mixed norm kfkLp.Q.x,r// over the rectangle Q.x, r/, where

kfkLp.Q.x,r// D

0
BB@
Z

Ix,r1

0
B@
Z

Iy,r2

jf .t1, t2/j
p2 dt2

1
CA

p1=p2

dt1

1
CCA

1=p1

D kkf .t1, �/kLp2 .I2/kLp1 .I1/
, (2.5)

where "�" stands for the variable in which the inner norm is applied (we refer to [11] for mixed norm Lebesgue spaces).
Weighted anisotropic mixed norm Morrey space Lp,�.R2

C
, w1w2/ is defined as

Lp,�
�
R2
C, w1w2

�
:D ff : w1.x/w2.y/f .x, y/ 2 Lp,�

�
R2
C

�
.

3. On Hardy operators appearing in partial differential equations

3.1. Non-weighted case

The main facts in this section concern the application of double Hardy operators of functions of two variables.
We will consider the well-known one-dimensional Hardy operators

Hf .x/ D
1

x

xZ
0

f .t/dt, Hf .x/ D

1Z
x

f .t/dt

t
, x > 0 (3.1)
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and the following double Hardy operators of two variables

H1H2f D
1

xy

xZ
0

yZ
0

f .t1, t2/dt1dt2, (3.2)

H1H2f D
1

x

xZ
0

1Z
y

f .t1, t2/

t2
dt2dt1, (3.3)

H1H2f D
1

y

1Z
x

1

t1

yZ
0

f .t1, t2/dt2dt1 (3.4)

and

H1H2f D

1Z
x

1Z
y

f .t1, t2/

t1t2
dt1dt2. (3.5)

It is not hard to check that in terms of these operators, we obtain particular solutions of the partial differential Equation (1.2) with
certain values of the coefficients a, b, and c, namely,

if a D b D c D 1, then the Equation (1.2), that is, the equation

xy
@2u

@x@y
C x

@u

@x
u.x, y/C y

@u

@y
C u.x, y/ D f .x, y/ (3.6)

has the solution
u D H1H2f ;

if a D c D 0, b D 1, then the Equation (1.2) has the solution

u D H1H2f ;

if a D 1, b D c D 0, then the Equation (1.2) has the solution

u D H1H2f ;

if a D b D c D 0, then the Equation (1.2) has the solution

u D H1H2f .

3.2. Weighted case

Consider the double-weighted Hardy operator, defined by

Hw1
1 Hw2

2 f .x/ D
w1.x/w2.y/

xy

xZ
0

yZ
0

f .t1, t2/

w1.t1/w2.t2/
dt1 dt2, x D .x, y/. (3.7)

The function u.x, y/ D Hw1
1 Hw2

2 f .x/ satisfies the differential equation:

xyu00xy C xa2.y/u
0
x C ya1.x/u

0
y C a1.x/a2.y/u D f .x, y/, (3.8)

where

a1.x/ D 1 � x
@

@x
.ln w1/ ,

a2.y/ D 1 � y
@

@y
.ln w2/ ,

and the weights w1.x/ and w2.y/ can be expressed as

w1.x/ D exp

�Z
1 � a1.x/

x
dx

�
,

w2.y/ D exp

�Z
1 � a2.y/

y
dy

�
,

respectively.
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In the case of power weights, that is, when w1.x/ D x�1 and w2.y/ D y�2 ; a1.x/ D 1 � �1 and a2.y/ D 1 � �2, the function

u.x, y/ D H�1
1 H�2

2 f .x/ D x�1�1y�2�1

xZ
0

yZ
0

f .t1, t2/

t�1
1 t�2

2

dt1 dt2, x D .x, y/,

satisfies the differential equation:

xyu00xy C x.1 � �2/u
0
x C y.1 � �1/u

0
y C .1 � �1/.1 � �2/u D f .x, y/.

3.3. Application of weighted boundedness of two-dimensional Hardy operators to the study of partial differential equations

In this section, based on the mapping properties of the two-dimensional weighted Hardy operator in anisotropic mixed norm Morrey
space, we study Morrey-type properties of a particular solution of the inhomogenious Equation (3.6).

We consider the weighted double Hardy operator

H˛,wf .x, y/ :D x˛1�1y˛2�1w1.x/w2.y/

xZ
0

yZ
0

f .t1, t2/

w1.t1/w2.t2/
dt1 dt2, (3.9)

where ˛ D .˛1,˛2/, w D w1.x/ � w2.y/.
We may assume that f � 0. Then, if the double integral Equation (3.9) converges then by Fubini’s theorem, it coincides with the also

convergent iterated integrals:

H˛,wf D H˛1,w1
1 H˛2,w2

2 f D H˛2,w2
2 H˛1,w1

1 f , (3.10)

where

H˛1,w1
1 H˛2,w2

2 f .x, y/ D
w1.x/w2.y/

x1�˛1 y1�˛2

xZ
0

1

w1.t1/

0
@

yZ
0

f .t1, t2/

w2.t2/
dt2

1
A dt1, (3.11)

and

H˛2,w2
2 H˛1,w1

1 f .x, y/ D
w1.x/w2.y/

x1�˛1 y1�˛2

yZ
0

1

w2.t2/

0
@

xZ
0

f .t1, t2/

w1.t1/
dt1

1
A dt2, (3.12)

so that we can use any one of the forms in Equation (3.10). Thus, we can interpret our anisotropic Hardy operator as a composition of
the one-dimensional Hardy operators applied in the corresponding variable. However, with respect to the notation used in Equations
(3.11) and (3.12), note that H˛,w

1 is an operator defined on functions of two variables, while the notation H˛i ,wi stands for operators
defined on functions of one variable. So to interpret, for example, H˛1,w1

1 H˛2,w2
2 as a composition, we should write H˛1,w1

1 ˝ I instead of
H˛1,w1

1 and I˝H˛2,w2
2 instead of H˛2,w2

2 , where I is the identity operator and˝ stands for the tensor product of one-dimensional operators
(see e.g., [12, Chapter 24] for this notion). However, to avoid complications on writing, we keep the simple notation H˛1,w1

1 and H˛2,w2
2

without danger of confusion of notation.
To formulate and prove our Theorem 3.2 on the boundedness of double Hardy type operator in the mixed norm anisotropic case, we

need the following result:

Theorem 3.1 ([8], Theorem 4.5)
Let 0 � � < 1, 0 � ˛ < 1 � �, 1 < p < 1��

˛
and 1

q D
1
p �

˛
1�� and w 2 W.RC/. For the weighted Hardy type inequality

������x˛�1w.x/

xZ
0

f .t/

w.t/
dt

������
Lq,�.RC/

� C kfkLp,�.RC/ (3.13)

to hold, condition

w 2 Z �
pC

1
p0
.RC/, or equivalently max .M.w/, M1.w// <

�

p
C

1

p0
, (3.14)

is sufficient, and the condition

w 2 Z �
pC

1
p0
C"
.RC/, or equivalently max .M.w/, M1.w// �

�

p
C

1

p0
, (3.15)

with an arbitrary " > 0, is necessary.

Theorem 3.1 was proved in [13] for the case ˛ D 0 and in [8] for ˛ > 0.
The following theorem on weighted Hardy type inequality was formulated without proof, in [10]. We give here its complete proof.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 40 1414–1421
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S. LUNDBERG AND N. SAMKO

Theorem 3.2
Let 0 � �i < 1, 0 � ˛i < 1 � �i , 1 < pi <

1��i
˛i

and 1
qi
D 1

pi
� ˛i

1��i
and wi 2 W.RC/, i D 1, 2. For the weighted Hardy type inequality

���H˛,wf
���

p,�
� C kfkp,� (3.16)

to hold, the condition wi 2 Z �i
pi
C 1

p0i

.RC/ is sufficient, and the condition wi 2 Z �i
pi
C 1

p0i
C"
.RC/ with an arbitrary " > 0 is necessary,

i D 1, 2.

The proof of Theorem 3.2 will be obtained from two theorems: Theorems 3.4 and 3.5 proved next for the operators

A1f D H˛1,w1 ˝ If D
w1.x/

x1�˛1

xZ
0

f .t, y/

w1.t/
dt

A2f D I˝ H˛2,w2 f D
w2.y/

y1�˛2

yZ
0

f .x, �/

w2.�/
d� .

The operators A1, A2 behave like the identical operators in the variables y, x, respectively, so they keep the behavior of functions with
respect to the variables y, x, respectively, and they will be considered in the following setting:

A1 : Lp,� ! Lq1,�, q1 D .q1, p2/; A2 : Lp,� ! Lq2,�, q2 D .p1, q2/.

Clearly, our anisotropic Hardy operator is their composition:

H˛,w D A1 � A2f D A2 � A1f .

We need also the following lemma.

Lemma 3.3
For the norm (2.4), the equality

kfkp,�

�
R2
C

�
D
���kf .t1, �/kLp2,�2 .RC/

���
Lp1,�1 .RC/

(3.17)

holds.

Proof
By (2.2) and (2.5), we have

kfkLp,� .R
2
C/ D sup

x,r2R2
C

1

r
�1
p1

1

������
1

r
�2
p2

2

kf .t1, �/kLp2 .Iy,r2 /

������
Lp1 .Ix,r1 /

. (3.18)

Because sup
u,v

g.u, v/ D sup
u

sup
v

g.u, v/ for non-negative functions g.u, v/, from Equation (3.18), we obtain Equation (3.17).

Theorem 3.4
Let 0 � �i < 1, 0 � ˛1 < 1 � �1, i D 1, 2, 1 < p1 <

1��1
˛1

and 1
q1
D 1

p1
� ˛1

1��1
, 1 < p2 <1 and w1 2 W.RC/. For the boundedness

kA1fkLq1,� � C kfkLp,� , (3.19)

where q1 D .q1, p2/, it is sufficient that w1 2 Z �1
p1
C 1

p01

.RC/ and necessary that w1 2 Z �1
p1
C 1

p01
C"
.RC/with an arbitrary " > 0.

Proof
By Lemma 3.3, we have to estimate

kkA1fkLp2,�2 kLq1,�1 .

By Minkowski inequality, we have

kA1fkLp2,�2 �
w1.x/

x1�˛1

Z x

0

kf .t, �/kLp2,�2

w1.t/
dt

(the validity of Minkowski inequality for Morrey spaces follows from its validity for Lebesgue spaces). Then

kkA1fkLp2,�2 kLq1,�1 �

����w1.x/

x1�˛1

Z x

0

kf .t, �/kLp2,�2

w1.t/
dt

����
Lq1,�1

,

it remains to apply Theorem 3.1 in the sufficiency part. To cover the necessity part, it suffices to observe that the boundedness of the
operator A1 in particular on functions f of the form f .x, y/ D f1.x/ � f2.y/, where f1 2 Lp1,�1 .RC/ and f2 2 Lp2,�2.RC/. Taking f2 fixed
and f1 running the space Lp1,�1.RC/, it remains to refer again to Theorem 3.1.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 40 1414–1421
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Theorem 3.5
Let 0 � �i < 1, 0 � ˛1 < 1 � �1, i D 1, 2, 1 < p2 <

1��2
˛2

and 1
q2
D 1

p2
� ˛2

1��2
, 1 < p1 <1 and w2 2 W.RC/. For the boundedness

kA2fkLq2,� � C kfkLp,� , (3.20)

where q2 D .p1, q2/, it is sufficient that w2 2 Z �2
p2
C 1

p02

.RC/ and necessary that w2 2 Z �2
p2
C 1

p02
C"
.RC/with an arbitrary " > 0.

Proof
The proof is similar to that of Theorem 3.4 with the only difference that now we have to estimate the norm

kkA2fkLq2,�2 kLp1,�1

and here is enough to apply Theorem 3.1. The necessity part is similarly proved.

Proof of Theorem 3.2 itself:

Sufficiency part. For
H˛,w D A1 � A2

we have that
A2 : Lp,� ! Lq2,�

by Theorem 3.5 and then

A1 : Lq2,� ! Lq,�

by Theorem 3.4.
Necessity part. Use the familiar argument with the passage f D f1.x/ � f2.y/ and fixing the function f2 when obtaining necessary

condition in the first variable and fixing the function f1 in the case of the second variable.

Based on the boundedness of weighted Hardy operators provided by Theorem 3.2, we obtain the following result for solutions in
weighted Morrey space of the inhomogeneous Equation (3.6).

Theorem 3.6
Let f 2 Lp,�.R2

C
, w1 �w2/, where 1 < pi <1, 0 � �i < 1, i D 1, 2. Then there exists in Lp,�.R2

C
, w1 �w2/ a particular solution u.x, y/ of

the Equation (3.6) given by the Hardy operator

u.x, y/ D
1

xy

xZ
0

yZ
0

f .t1, t2/ dt1 dt2

for all weights w1 and w2 such that

wi 2 Z �i
pi
C 1

p0i

.RC/, or equivalently max .M.wi/, M1.wi// <
�

pi
C

1

p0i
, i D 1, 2. (3.21)

Proof
We need to see that the non-weighted Hardy operator is bounded in the weighted Morrey space Lp,�.R2

C
, w1w2/. This is equivalent to

the boundedness of Hardy operator Hw1 Hw2 in the non-weighted Morrey space Lp,�.R2
C
/. For the latter, it suffices to apply Theorem

3.2 with ˛1 D ˛2 D 0.

If we consider the case of power weights, that is, when w1.x/ D x�1 and w2.y/ D y�2 , we formulate the following statement:

Corollary 3.7
In the case of power weights, that is, when w1.x/ D x�1 and w2.y/ D y�2 , the condition 3.21 is reduced to the condition

max .�i/ <
�

pi
C

1

p0i
, i D 1, 2. (3.22)

4. Appendix

4.1. On some classes of quasi-monotone functions

Next, we give the known definitions and properties of some classes of quasi-monotone functions. For more details and proofs, we refer
to [14, 15], see also [16] and references therein.

Definition 4.1

1. By W D W.RC/, we denote the class of functions ' continuous and positive on RC such that there exists the finite limit lim
x!0

'.x/;

2. by W0 D W0.RC/, we denote the class of functions ' 2 W almost increasing on .RC/;

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 40 1414–1421
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3. by W D W.RC/, we denote the class of functions ' 2 W such that xa'.x/ 2 W0 for some a D a.'/ 2 R;

4. by W D W.RC/, we denote the class of functions ' 2 W such that there exist a number b 2 R such that f.t/
tb is almost decreasing.

Zygmund–Bary–Stechkin classes and Matuszewska–Orlicz indices

Definition 4.2
We say that a function ' 2 W belongs to the Zygmund class Zˇ , ˇ 2 R1, if

Z r

0

'.t/

t1Cˇ
dt � c

'.r/

rˇ
, r 2 .0,1/, (4.1)

and to the Zygmund class Z� , � 2 R1, if Z 1
r

'.t/

t1C�
dt � c

'.r/

r�
, r 2 .0,1/. (4.2)

We also denote

ˆˇ� .RC/ :D Zˇ.RC/ \ Z� .RC/, (4.3)

the latter class being also known as Zygmund–Bary–Stechkin class [17].

It is known that the property of a function to be almost increasing or almost decreasing after the multiplication (division) by a power
function is closely related to the notion of the so-called Matuszewska–Orlicz indices. We refer, for instance, to [15] and later paper [18]
and references therein, for the properties of the indices of such a type.

For a function ' 2 W
T

W , such indices at the origin are defined as follows:

m.'/ D sup
0<r<1

ln

�
lim sup

h!0

'.rh/
'.h/

�

ln r
D lim

r!0

ln

�
lim sup

h!0

'.rh/
'.h/

�

ln r
(4.4)

and

M.'/ D sup
r>1

ln

�
lim sup

h!0

'.rh/
'.h/

�

ln r
D lim

r!1

ln

�
lim sup

h!0

'.rh/
'.h/

�

ln r
. (4.5)

Similarly, there are introduced such indices at infinity:

m1.'/ D sup
r>1

ln

	
lim inf
h!1

'.rh/
'.h/




ln r
, M1.'/ D inf

r>1

ln

	
lim sup

h!1

'.rh/
'.h/




ln r
. (4.6)

The following properties of the indices of functions u, v 2 W
T

W are known, see for instance [4, 15].

mŒrau.r/	 D aCm.u/, MŒrau.r/	 D aCM.u/, a 2 R1, (4.7)

mŒ.u/a	 D am.u/, MŒ.u/a	 D aM.u/, , a � 0 (4.8)

m

�
1

u

�
D �M.u/, M

�
1

u

�
D �m.u/. (4.9)

m.uv/ � m.u/Cm.v/, M.uv/ � M.u/CM.v/. (4.10)

c1rM.u/C" � u.r/ � c2rm.u/�", 0 < r < 1, (4.11)

hold with an arbitrarily small " > 0 and c1 D c1."/, c2 D c2."/.
Similarly,

m1Œr
au.r/	 D aCm1.u/, M1Œr

au.r/	 D aCM1.u/, a 2 R1, (4.12)

m1Œ.u/
a	 D am1.u/, M1Œ.u/

a	 D aM1.u/, , a � 0 (4.13)

m1

�
1

u

�
D �M1.u/, M1

�
1

u

�
D �m1.u/. (4.14)

m1.uv/ � m1.u/Cm1.v/, M1.uv/ � M1.u/CM1.v/. (4.15)

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 40 1414–1421
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c1rm1.u/�" � u.r/ � c2rM1.u/C", r � 1. (4.16)

The properties (4.12) – (4.16) follow from the properties (4.7) – (4.11) in view of the equivalences:

u 2 Zˇ.Œ1,1//” u� 2 Z�ˇ.Œ0, 1	/, u 2 Z� .Œ1,1//” u� 2 Z�� .Œ0, 1	/, (4.17)

where u�.t/ D u
�

1
t

�
.

We will also use the following known properties:

u 2 Zˇ” minfm.u/, m1.u/g > ˇ and u 2 Z�” maxfM.u/, M1.u/g < � . (4.18)
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Abstract. We prove the boundedness of Potential operator in weighted generalized Morrey space in terms of Matuszewska-Orlicz
indices of weights and apply this result to the Hemholtz equation in R3 with a free term in such a space. We also give a short
overview of some typical situations when Potential type operators arise when solving PDEs.

INTRODUCTION

It is well known that many operators of harmonic analysis such as potential type operators, singular operators and
others are widely used in PDE and PDO. The present paper is aimed to show some typical situations when Potential
type operators arise when solving PDE. We do an emphasis on the role of the function space used in the solving
process.

It is well known that the Potential type operators arise in study for instance Poisson’s and Helmholtz equations.
Such equations occur quite frequently in a variety of applied problems of science and engineering. The boundary value
problems for the three-dimensional Laplace and Poisson equations are encountered in such fields as electrostatics, heat
conduction, ideal fluid flow, elasticity and gravitation [1, 2, 3, 4]. Nowadays there are a lot of problems in physics
which are reduced to the consideration of such equations. Laplace and Poisson equations (the inhomogeneous form of
Laplace equation) appear in problems involving volume charge density. Applications of Laplace and Poisson equations
to the electrostatics in fractal media are discussed in [3]. Such equations are also used in constructing satisfactory
theories of vacuum tubes, ion propulsion and magnetohydrodynamic energy conversion [5].

Helmholtz equation which represents time-independent form of wave equation appears in different areas of
physics. It is mostly known to be used in the case of the acoustic equation and to apply to the study of waveguides (de-
vices that transmit acoustic or electromagnetic energy), see for instance [6, 7, 8] and [9, 10, 11, 12, 13] and references
therein. But it typically works at certain discrete frequencies [14]. Many other applications of Helmholtz equation
involve unbounded domains. For instance (see [14]) the simplest scattering problem for the case of an inhomogeneous
medium is reduced to such equation in R3 .

We do not provide any historical overview: this would lead us too far away.

To avoid burdeness of the exposition by details, and for readers convenience, we present all necessary definitions
and properties of the spaces and weights in the Appendix.

ICNPAA 2016 World Congress
AIP Conf. Proc. 1798, 020178-1–020178-11; doi: 10.1063/1.4972770

Published by AIP Publishing. 978-0-7354-1464-8/$30.00
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Laplace, Poisson and Helmholtz equations related operators

Newton and Riesz potential operators

Let x = (x1, x2, ..., xn) ∈ Rn and let ∆ =
∂2

∂x2
1

+ · · · + ∂2

∂x2
n

be the Laplace operator. Consider the integral operator

I2 f (x) =
1

γn(2)

∫

Rn

f (t) dt
|x − t|n−2 , n ≥ 3,

see the definition of γn(α) below, known as Newton potential. In the planar case n = 2 it is replaced by the logarithmic
potential

I2 f (x) =
1

2π

∫

R2
ln |x − t| f (t) dt.

For all n ≥ 2 the function u(x) = I2 f (x) is related to the Laplace operator. Namely, the function u(x) = I2 f (x) is a
particular solution of the Poisson equation

−∆u = f ,

see for instance [15].
From the Sobolev theorem for potential operators there follows the well known fact that f ∈ Lp(R), 1 < p < n/2

implies that u ∈ Lq(R)
⋂

W2,p(R), 1/q = 1/p − 2/n.

It is also known that the potential operators of the form

I2k f (x) =
1

γn(2k)

∫

Rn

f (t) dt
|x − t|n−2k , k = 1, 2, ..., 2k < n,

is similarly a particular solution of the Poisson type equation generated by the power of the Laplace operator:

(−∆)ku = f .

In the case k = 2 we have the bi-harmonic Poisson equation.

Potential operators are known to be considered of arbitrary order α ≥ 0 not only α = 2k. In the case 0 < α < n
they are introduced as

Iα f (x) =
1

γn(α)

∫

Rn

f (t) dt
|x − t|n−α ,

known also as the Riesz fractional integral. Here γn(α) is the normalizing constant chosen so that

Iα f = F−1 1
|ξ|α F f ,

where F is the Fourier transform. Such a potential u = Iα f serves as a solution of the pseudo-differential equation

Dαu = f .

The PDO Dα is also known as a hyper-singular operator. (We refer to [16, 17, 18] for pseudo-differential operators in
general and to [19] for hyper-singular integrals). The hyper-singular operators Dα are interpreted as fractional powers
of the Laplace operator:

Dα = (−∆)α/2.

The particular case α = 1 leads to the case (−∆)1/2 =
√−∆, which is widely used in mathematical physics, see for

instance [20, 21].
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Modified Newton potential operator
Let us consider the modified Newton potential operator:

u(x) =
1

|x|2γn(2)

∫

Rn

f (t) dt
|x − t|n−2 .

This potential operator is a particular solution of the Poisson equation:

∆(u · |x|2) = − f .

By the well known formula for Laplacian of the product of two functions, we then easily obtain that u satisfies the
following equation:

|x|2∆u(x) + 4x∇u(x) + 2nu(x) = − f (x).

Weighted potential operators
Now we pass to the weighted Newton potential operators:

u(x) =
1

w(x)γn(2)

∫

Rn
w(t) f (t)

dt
|x − t|n−2 .

It is a particular solution of the equation:

∆u(x) +
u(x)
w(x)

∆w(x) + 2∇(ln |w(x)|)∇u(x) = − f (x).

Potential operators related to Helmholtz equation

Let x = (x1, x2, x3) ∈ R3 and let ∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

be the Laplace operator. The potential

V f (x) = − 1
4π

∫

R3

e−ik |x−y|

|x − y| f (y) dy, x ∈ R3 (1)

is a particular solution (see for instance [14, Paragraph 2.2] ) of the inhomogeneous Helmholtz equation ∆u + k2u =

f (x) widely used in diffraction theory, so that

(∆ + k2I)u(x) = f (x), x ∈ R3 (2)

where I is the identity operator.
The function V(x) is also known as Helmholtz potential.

The corresponding weighted potential

W(x) := − 1
4πw(x)

∫

R3

e−ik |x−t|

|x − t| f (t)w(t) dt

is a particular solution of the following second order differential equation

∆W + 2
∇w
w
∇W +

(
∆w
w

+ k2I
)

W = f

In the case of power weights w(x) = xβ := xβ1
1 · xβ2

2 · xβ3
3 ,

∇w
w

=

[
β1

x1
,
β2

x2
,
β3

x3

]

and
∆w
w

=
β1

x1
2 (1 − β1) +

β2

x2
2 (1 − β2) +

β3

x3
2 (1 − β3) .
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Application of weighted boundedness of potential operators to the study of Helmholtz
equation

In this section we consider behavior of the particular solution u(x) = V f (x) of Helmholtz equation (2), when f is in
the weighted generalized Morrey space Lp,ϕ(R3,w) (see the definition 5 in Section Appendix).

We need the following result (Theorem 1) about the boundedness of potential operators in generalized Morrey
spaces the proof of which can be found in [22]; we give its formulation under slightly modified conditions due to the
assumptions on ϕ and w, given below.

We begin with some assumptions and the theorem.
We will consider the action of the potential operator from one Morrey space Lp,ϕ to another Lq,ψ. Note that the

reader can find a detailed survey of mapping properties of potential operators in various function spaces in [23].

Everywhere in the sequel it is assumed that the functions ϕ, and ψ, defining the Generalized Morrey spaces are
non-negative almost increasing functions continuous in a neighborhood of the origin, such that ϕ(0) = 0, ϕ(r) > 0,
for r > 0, and ϕ ∈ W

⋂
W, and similarly for ψ.

For the function ϕ(r), we will make use of the following conditions:

ϕ(r) ≥ crn (3)

for 0 < r ≤ 1, which makes the spaces Lp,ϕ(Ω) non-trivial, see [22, Corollary 3.4],

∫ ∞

r

ϕ
1
p (t)

t
n
p +1

dt ≤ C
ϕ

1
p (r)

r
n
p
. (4)

and

∫ ∞

r

ϕ
1
p (t)

t
n
p−α+1

dt ≤ Cr−
αp

q−p , (5)

For the weights w we use the classes W(R+),W(R+) and Vµ
±, the definition of which may be found in Section

Appendix.
We will also use Zygmund classes Zβ and Zγ, where β, γ ∈ R, Matuszewska-Orlicz indices M(ϕ) and m(ϕ), of

functions in such classes, see the corresponding Definitions in Appendix.

Theorem 1 [22, Theorem 5.5] Let 0 < α < n, 1 < p < n
α
, q > p and ϕ(r) satisfy conditions (3) and (4)-(5). Let

the weight w ∈ W(R+) ∩W(R+) satisfy the conditions

w ∈ Vµ
− ∪ Vµ

+, µ = min{1, n − α}.
Then the weighted Riesz potential operator wIα 1

w is bounded from Lp,ϕ(Rn) to Lq,ψ(Rn) under the conditions

sup
x∈Ω,r>0

1
ψ(r)

∫

B(x,r)
wq(|y|)|y|q(α−n)


∫ |y|

0

t
n
p′ −1ϕ

1
p (t)

w(t)
dt


q

dy < ∞, (6)

where 1
p′ is the conjugate exponent: 1

p + 1
p′ = 1, and

sup
x∈Rn,r>0

1
ψ(r)

∫

B(x,r)

(∫ ∞

|y|
tα−

n
p−1ϕ

1
p (t)dt

)q

dy < ∞, (7)

in the case w ∈ Vµ
+, and the conditions

sup
x∈Rn,r>0

1
ψ(r)

∫

B(x,r)
|y|q(α−n)

(∫ |y|

0
t

n
p′ −1ϕ

1
p (t)dt

)q

dy < ∞, (8)
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and

sup
x∈Rn,r>0

1
ψ(r)

∫

B(x,r)
wq(|y|)


∫ ∞

|y|

tα−
n
p−1ϕ

1
p (t)

w(t)
dt


q

dy < ∞, (9)

in the case w ∈ Vµ
−.

In the case when either ϕ ∈ Φ0
n or ϕ(r) = rn, conditions (6) - (9) are also necessary.

Note that Theorem 1 was proved in [22] for the case ψ = ϕ, but the analysis of the proof shows that the theorem
holds in the above stated form.

We will use the above theorem to give conditions of the boundedness, more effective for possible applications.
They particulary use numerical characteristics, known as Matuszewska-Orlicz indices, of weights and the function ϕ,
which enables us to write some assumptions in terms of easily verified numerical inequalities. For the corresponding
definitions and properties of such indices we refer to Appendix. Note that we admit the situation where the indices of
functions at infinity are in general different from the indices at the origin.

Theorem 2 Let 0 < α < n, 1 < p < n
α
, q > p, and

w ∈ [W(R+) ∩W(R+)] ∩ [Vµ
−(R+) ∪ Vµ

+(R+)], µ = min{1, n − α}.

Suppose also that the functions ϕ and ψ sutisfy the assumptions:

M(ϕ),M∞(ϕ) < n − αp, and ϕ(r) ≤ cr
n− α

1
p − 1

q and
ϕ1/p(|y|)
|y| np−α

∈ Lq,ψ. (10)

Under the conditions

α − n − M(ϕ)
p

< m(w) ≤ M(w) <
n
p′

+
m(ϕ)

p
, (11)

and

α − n − M∞(ϕ)
p

< m∞(w) ≤ M∞(w) <
n
p′

+
m∞(ϕ)

p
, (12)

the weighted Riesz potential operator wIα 1
w is bounded from Lp,ϕ(Rn) to Lq,ψ(Rn).

Proof We have to show that the conditions of this theorem imply the assumptions of Theorem 1.

The condition (4) means (see (22)) that ϕ1/p ∈ Zγ, with γ = n/p. By (42) ϕ1/p ∈ Zγ ⇐⇒ M(ϕ1/p) <
n/p,M∞(ϕ1/p) < n/p. Therefore, by (26) and (36) , M(ϕ),M∞(ϕ) < n which is satisfied by the first inequality in
(10).

From the property (30) and the first inequality in (10), we can see that (3) is satisfied.
Integration of the second inequality in (10), implies (5).

To show the validity of (6), under our assumptions, note that interior integral in (6) is dominated, by (8), by the
function c ϕ1/p(|y|)

w(|y|)|y|−
n
p′
, which follows from the fact that ϕ1/p

w ∈ Zβ, with β = − n
p′ . The latter is implied by the right hand

side inequalities (11) and (12) in view of the properties (26)-(29) and (36)-(38), (42). Consequently, the third condition
in (10) implies (6).

To show the validity of (7), under our assumptions, note that interior integral in (7) is dominated by the function
c ϕ

1/p(|y|)
|y| np −α , which follows from the fact that ϕ1/p ∈ Zγ, with γ = n

p −α. The latter is implied by the first inequality in (10)

in view of the properties (26) and (29), and (36) and (42). Consequently, the third condition in (10) implies (7).

To show the validity of (8), under our assumptions, note that interior integral in (8) is dominated by the function
c ϕ

1/p(|y|)
|y|−

n
p′
, which follows from the fact that ϕ1/p ∈ Zβ, with β = − n

p′ . In view of the properties (26), (29), and (36), (42),
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the latter holds under the condition p > 1 − m(ϕ)
n , and p > 1 − m∞(ϕ)

n , which always holds since m(ϕ),m∞(ϕ) ≥ 0.
Consequently, the third condition in (10) implies (7).

To show the validity of (9), under our assumptions, note that interior integral in (9) is dominated by the function
c ϕ1/p(|y|)

w(|y|)|y| np −α , which follows from the fact that ϕ1/p

w ∈ Zγ, with γ = n
p − α. The latter is implied by the left hand side

inequalities (11) and (12) in view of the properties (26)-(29) and (36)-(38), (42). Consequently, the third condition in
(10) implies (9).

The proof is complete.

The above theorem leads us to the following result for the Helmholtz equation, in the case n = 3, α = 2.
In this application we consider Morrey spaces imbedded into the corresponding weighted Lebesgue spaces, i.e.
Lp,ϕ(R3,w) ↪→ Lp(R3,w). To this end, it suffices to assume that ϕ(r) is a bounded function.

Theorem 3 Let 1 < p < 3
2 , q > p, and

w ∈ [W(R+) ∩W(R+)] ∩ [V1
−(R+) ∪ V1

+(R+)].

Let also the functions ϕ and ψ satisfy the assumptions:

M(ϕ) < 3 − 2p, and ϕ(r) ≤ cr
3− 2

1
p − 1

q and
ϕ1/p

r
3
p−2
∈ Lq,ψ. (13)

Under the conditions

2 − 3 − M(ϕ)
p

< m(w) ≤ M(w) <
3
p′

+
m(ϕ)

p
, (14)

and

2 − 3 − M∞(ϕ)
p

< m∞(w) ≤ M∞(w) <
3
p′

+
m∞(ϕ)

p
, (15)

for every f ∈ Lp,ϕ(R3,w), there exists a twice Sobolev differentiable particular solution u ∈ Lq,ψ(R3,w) of the
Helmholtz equation:

(∆ + k2I)u(x) = f (x).

Proof The function u chosen as u = V f , where V f is the Helmholtz potential (1), is a particular solution of the
Helmholtz equation (2).

Since the Helmholtz potential (1) is dominated by the Newton potential: |V f | ≤ I2(| f |), the inclusion of this
solution u = V f into the space Lq,ψ(R3,w) is guaranteed by Theorem 2.

As regards the differentiability of u, a direct differentiation of V f leads to the sum of a Calderón-Zigmund
singular operator of f and potential type operators. A justification of such a procedure for Sobolev derivatives in
the case of weighted Lebesgue spaces is done for Muckenhoupt weights, see for instance [24]. The classical Morrey
spaces are imbedded into the weighted Lebesgue spaces with the weight w(x) = (1 + |x|)−γ, γ > λ, see [25]. Therefore
imbedding of such a type is also valid for generalized Morrey spaces under the assumption that ϕ(r) ≤ crγ for all
r ∈ R+ with some γ ∈ [0, n). The condition of such a type is assumed in (13). Then the above mentioned procedure is
valid within the frameworks of generalized Morrey spaces under the conditions of our theorem.

Therefore, the existence of the second derivatives of V f follows from Theorem 2. For the singular operators in
generalized weighted Morrey spaces we refer to [26, Theorem 3.5].

The proof is complete.

In the case of classical Morrey spaces, i.e. ϕ(r) = rλ, 0 < r < n, the statement of Theorem 3 holds in a more
precise form as given in the following theorem.

Theorem 4 [27, Theorem 5.3]. Let 1 < p < 3
2 , q > p, λ < 3 − 2p and

w ∈ [W(R+) ∩W(R+)] ∩ [V1
−(R+) ∪ V1

+(R+)].
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Under the conditions
2 − 3 − λ

p
< min(m(w),m∞(w)) (16)

and
max(M(w),M∞(w)) <

3
p′

+
λ

p
(17)

for every f ∈ Lp,λ(R3,w), there exists a twice Sobolev differentiable particular solution u ∈ Lq,λ(R3,w) of the
Helmholtz equation:

(∆ + k2I)u(x) = f (x),

where 1
q = 1

p − 2
3−λ .

Appendix

Morrey space

Lp,λ = { f ∈ Lp
loc(Ω) : ‖ f ‖p,λ < ∞}, 1 ≤ p < ∞, 0 ≤ λ < n, (18)

where Ω ⊆ Rn. Equipped with the norm

‖ f ‖p,λ = sup
x∈Ω,r>0


1
rλ

∫

B(x,r)

| f (y)|p dy



1
p

= sup
x∈Ω,r>0

‖ f ‖Lp(B(x,r))

r
λ
p

(19)

where B(x, r) = {y ∈ Ω : |y − x| < r}, it is a Banach space.

Generalized Morrey space

Definition 5. Let ϕ(r) be a non-negative function on [0, `], positive on (0, `], and 1 ≤ p < ∞. The generalized
Morrey space Lp,ϕ(Ω) is defined as the space of functions f ∈ Lp

loc(Ω) such that

‖ f ‖p,ϕ := sup
x∈Ω,r>0


1
ϕ(r)

∫

B(x,r)

| f (y)|p dy



1
p

< ∞. (20)

The classical Morrey space
Lp,λ(Rn)

corresponds to the case ϕ(x, r) ≡ rλ, 0 < λ < n.

The weighted Morrey spaces are treated in the usual sense:

Lp,ϕ(Ω,w) := { f : w f ∈ Lp,ϕ(Ω)}, Ω ⊆ Rn, ‖ f ‖Lp,λ(Rn,w) := ‖w f ‖Lp,λ(Rn).

On some classes of quasi-monotone functions
Below we give the known definitions and properties of some classes of quasi-monotone functions. For more details
and proofs we refer for instance to [28, 29, 30] and references therein.

Definition 6.
1) By W = W([0, 1]) we denote the class of continuous and positive functions ϕ on (0, 1] such that there exists finite
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or infinite limit lim
r→0

ϕ(r);

2) by W0 = W0([0, 1]) we denote the class of almost increasing functions ϕ ∈ W on (0, 1);
3) by W = W([0, 1]) we denote the class of functions ϕ ∈ W such that raϕ(r) ∈ W0 for some a = a(ϕ) ∈ R1;
4) by W = W([0, 1]) we denote the class of functions ϕ ∈ W such that ϕ(t)

tb is almost decreasing for some b ∈ R1.

Definition 7.
1) By W∞ = W∞([1,∞]) we denote the class of functions ϕ which are continuous and positive and almost increasing
on [1,∞) and which have the finite or infinite limit limr→∞ ϕ(r),
2) by W∞ = W∞([1,∞)) we denote the class of functions ϕ ∈ W∞ such that raϕ(r) ∈ W∞ for some a = a(ϕ) ∈ R1.

By W(R+) we denote the set of functions on R+ whose restrictions onto (0, 1) are in W([0, 1]) and restrictions
onto [1,∞) are in W∞([1,∞)). Similarly, the set W(R+) is defined.

ZBS-classes and MO-indices at the origin

Definition 8. We say that a function ϕ ∈ W0 belongs to the Zygmund class Zβ, β ∈ R1, if
∫ r

0

ϕ(t)
t1+β

dt ≤ c
ϕ(r)
rβ

, r ∈ (0, 1), (21)

and to the Zygmund class Zγ, γ ∈ R1, if

∫ 1

r

ϕ(t)
t1+γ

dt ≤ c
ϕ(r)
rγ

, r ∈ (0, 1). (22)

We also denote
Φ
β
γ := Zβ

⋂
Zγ,

the latter class being also known as Bary-Stechkin-Zygmund class [31].
It is known that the property of a function to be almost increasing or almost decreasing after the multiplication

(division) by a power function is closely related to the notion of the so called Matuszewska-Orlicz indices. We refer
to [32, 33, 34, 30, 35, 36, 29] for the properties of the indices of such a type.

For a function ϕ ∈ W :

m(ϕ) = sup
0<r<1

ln
(
lim sup

h→0

ϕ(hr)
ϕ(h)

)

ln r
= lim

r→0

ln
(
lim sup

h→0

ϕ(hr)
ϕ(h)

)

ln r
(23)

and

M(ϕ) = sup
r>1

ln
(
lim sup

h→0

ϕ(hr)
ϕ(h)

)

ln r
= lim

r→∞

ln
(
lim sup

h→0

ϕ(hr)
ϕ(h)

)

ln r
(24)

The following properties of the indices of functions u, v ∈ W
⋃

W are known, see for instance [37, Section 6]
and references therein.

m[rau(r)] = a + m(u), M[rau(r)] = a + M(u), a ∈ R1, (25)

m[(u)a] = am(u), M[(u)a] = aM(u), , a ≥ 0 (26)

m
(

1
u

)
= −M(u), M

(
1
u

)
= −m(u). (27)

m(uv) ≥ m(u) + m(v), M(uv) ≤ M(u) + M(v). (28)
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u ∈ Zβ ⇐⇒ m(u) > β and u ∈ Zγ ⇐⇒ M(u) < γ. (29)

c1rM(u)+ε ≤ u(r) ≤ c2rm(u)−ε, 0 < r < 1, (30)

hold with an arbitrarily small ε > 0 and c1 = c1(ε), c2 = c2(ε).

ZBS-classes and MO-indices of weights at infinity
The indices m∞(u) of functions u ∈ W∞ and M∞(u) of functions u ∈ W∞ responsible for the behavior of functions u
at infinity are introduced in the way similar to (23) and (24):

m∞(u) = sup
r>1

ln
[
lim inf

h→∞
u(rh)
u(h)

]

ln r
, M∞(u) = inf

r>1

ln
[
lim sup

h→∞
u(rh)
u(h)

]

ln r
. (31)

The corresponding classes Zβ∞ ([1,∞)) of functions u ∈ W∞ and Zγ∞ ([1,∞)) of functions u ∈ W∞ are introduced
by the conditions

∫ r

1

ϕ(t)
t1+β

dt ≤ c
ϕ(r)
rβ

, r ∈ (1,∞), (32)

∫ ∞

r

ϕ(t)
t1+γ

dt ≤ c
ϕ(r)
rγ

, r ∈ (1,∞), (33)

respectively
In view of the following equivalences

u ∈ Zβ([1,∞))⇐⇒ u∗ ∈ Z−β([0, 1]), u ∈ Zγ([1,∞))⇐⇒ u∗ ∈ Z−γ([0, 1]), (34)

where u∗(t) = u
(

1
t

)
, properties of functions in the above introduced classes are easily derived from those of functions

in Φ
β
γ([0, 1]) :

m∞[rau(r)] = a + m∞(u), M∞[rau(r)] = a + M∞(u), a ∈ R1, (35)

m∞[(u)a] = am∞(u), M∞[(u)a] = aM∞(u), , a ≥ 0 (36)

m∞

(
1
u

)
= −M∞(u), M∞

(
1
u

)
= −m∞(u). (37)

m∞(uv) ≥ m∞(u) + m∞(v), M∞(uv) ≤ M∞(u) + M∞(v). (38)

c1tm∞(u)−ε ≤ u(t) ≤ c2tM∞(u)+ε, t ≥ 1, u ∈ W∞, (39)

We say that a continuous function u in (0,∞) is in the class W0,∞(R+), if its restriction to (0, 1) belongs to
W([0, 1]) and its restriction to (1,∞) belongs to W∞([1,∞]).

Without confusion of notation, by the same symbols Zβ0 ([0, 1]) and Zβ∞ ([1,∞)) we also denote the set of mea-
surable functions on R+ such that their restrictions onto [0, 1] and (1,∞) belong to Zβ0 ([0, 1]) and Zβ∞ ([1,∞)), respec-
tively, and then we define

Zβ0,β∞ (R+) = Zβ0 ([0, 1]) ∩ Zβ∞ ([1,∞)), Zγ0,γ∞ (R+) = Zγ0 ([0, 1]) ∩ Zγ∞ ([1,∞)). (40)

In the case where the indices coincide, i.e. β0 = β∞ := β, we will simply write Zβ(R+) and similarly for Zγ(R+). We
also denote

Φ
β
γ(R+) := Zβ(R+) ∩ Zγ(R+). (41)

Similarly to the case of the interval [0, 1] the following properties
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u ∈ Zβ ⇐⇒ m(u) > β, m∞(u) > β and u ∈ Zγ ⇐⇒ M(u) < γ, M∞(u) < γ. (42)

hold for u ∈ W(R+) and u ∈ W(R+). respectively.

Definition 9. Let 0 < µ ≤ 1. By Vµ
±, we denote the classes of functions w non-negative on [0,∞) and positive on

(0,∞), defined by the conditions:

Vµ
+ :

|w(t) − w(τ)|
|t − τ|µ ≤ C

w(t+)
tµ+

, (43)

Vµ
− :

|w(t) − w(τ)|
|t − τ|µ ≤ C

w(t−)
tµ+

, (44)

where t, τ ∈ (0,∞), t , τ, and t+ = max(t, τ), t− = min(t, τ).
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Abstract. Most Hardy type inequalities concern boundedness of the Hardy type operators in

Lebesgue spaces. In this paper we prove some new multi-dimensional Hardy type inequalities in

Hölder spaces.

1. Introduction

The original Hardy inequality from 1925 (see [2])reads:

∞∫

0


1

x

x∫

0

f (y)dy




p

dx 6
(

p

p − 1

)p ∞∫

0

f p(x)dx, p > 1.

Since the constant
(

p
p−1

)p

is sharp this means that the Hardy operator H defined

by H f (x) := 1
x

x∫
0

f (y)dy maps Lp into Lp with the operator norm p′ := p
p−1

.

After this fundamental discovery by Hardy it was an almost unbelievable develop-

ment of this area which today usually is referred to as Hardy type inequalities. A great

number of papers and even books have been published on the subject and the research

in this area is still very intensive. One important reason for that is that Hardy type in-

equalities are especially useful for various types of applications within different parts

of Mathematics but also in other Sciences, see e.g. the books [5], [6] and [7] and the

references therein.

Most of the developments described above are devoted to study the boundedness

of Hardy type operators between weighted Lebesgue spaces and most of the results

are for the one-dimensional case. But for applications it is also often required to con-

sider the boundedness between other function spaces. Unfortunately, there exist not

so many results concerning the boundedness of Hardy type operators in other func-

tion spaces. However, some results of this type can be found in Chapter 11 of the
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book [6], where it is reported on Hardy type inequalities in Orlicz, Lorentz and rear-

rangement invariant spaces and also on some really first not complete results in general

Banach function spaces. Moreover, in [15] some corresponding Hardy type inequali-

ties in weighted Morrey spaces were proved; in [13] the weighted estimates for multi-

dimensional Hardy type operators were proved in generalized Morrey spaces; in [1]

was proved the weighted boundedness of some multi-dimensional Hardy type operators

from generalized Morrey to Orlicz-Morrey spaces. For more information concerning

Hardy type inequalities in Morrey type spaces and their applications we refer to [1],

[9], [10], [12], [16] and references therein.

In this paper we continue this research by investigating Hardy type inequalities in

Hölder spaces in the multi-dimensional case. Hölder spaces on unbounded sets can be

defined with compactification at infinity (see Definition 3.1) or without.

We study multi-dimensional Hardy operators of order α ∈ [0,1) as defined in

(1.1). We refer to the paper [19] where a version of Hardy operators of the order α = 0

was studied within the frameworks of Triebel-Lizorkin spaces. This version may be

regarded as a one-dimensional Hardy type operator in a given direction x
|x| of a function

f of many variables. Multi-dimensional Hardy operators in our paper are of different

nature.

By Cλ (Ω) , 0 < λ 6 1, where Ω is an open set in Rn , Ω ⊆ Rn , n > 1, we denote

the class of bounded Hölder continuous functions, defined by the seminorm

[ f ]λ := sup
x,x+h∈Ω

|h|<1

| f (x + h)− f (x)|
|h|λ < ∞.

Equipped with the norm

‖ f‖Cλ = sup
x∈Ω

| f (x)|+[ f ]λ

Cλ (Ω) is a Banach space. We shall deal with the case Ω = BR, where BR = B(0,R) :=
{x ∈ Rn : |x| < R} , 0 < R 6 ∞.

We consider the Hardy type operators

Hα f (x) = |x|α−n
∫

|y|<|x|

f (y)dy and H α f (x) = |x|α
∫

|y|>|x|

f (y)

|y|n dy, α > 0, (1.1)

where x ∈ BR , 0 < R 6 ∞ for the operator Hα , and R = ∞ for the operator H α . We

write H = Hα and H = H α in the case α = 0.
The operator Hα , α = 0, may be considered in both with and without compact-

ification settings, but a consideration of H requires the compactification due to the

needed convergence of integrals at infinity. We provide details for the operator Hα ,

α > 0, without compactification, and for both the operators H and H with compact-

ification. We also show that in the setting of the spaces with compactification we may

consider only the case α = 0.
In Sections 2 and 3 we present and prove our new results on the boundedness of

the Hardy type operator Hα in Hölder spaces without compactification (Theorem 2.2),
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and for the operators H and H in the case with compactification (Theorems 3.5 and

3.6).

2. Boundedness of the Hardy type operator Hα in a Hölder type space

Denote

Cλ
0 (BR) = { f ∈ Cλ (BR) : f (0) = 0}.

For the Hardy operator Hα defined by

Hα f (x) := |x|α−n
∫

|y|<|x|

f (y)dy, α > 0,

we show that it maps Hölder space into itself in the case α = 0 and we prove a bound-

edness result of the type Cλ → Cλ+α in the case α > 0 provided that λ + α 6 1, see

Theorem 2.2.

In the case α > 0 we will need the following Lemma:

LEMMA 2.1. Let

g(r) =
1

rn

∫

|y|<r

f (y)dy, 0 < r < R,

where f ∈ Cλ (BR) , 0 < λ 6 1 , 0 < R 6 ∞. Then

|g′(r)| 6Cn,λ
[ f ]λ
r1−λ

, 0 < r < R, (2.1)

where Cn,λ depends only on n and λ .

Proof. Passing to polar coordinates, we have

g(r) =
1

rn

r∫

0

tn−1Φ(t)dt, Φ(t) =
∫

Sn−1

f (tσ)dσ .

Hence,

g′(r) = − n

rn+1

r∫

0

tn−1Φ(t)dt +
Φ(r)

r
=

n

rn+1

r∫

0

tn−1[Φ(r)− Φ(t)]dt.

Therefore,

|g′(r)| 6 n

rn+1

r∫

0

tn−1|Φ(r)− Φ(t)|dt.

It is easily seen that

|Φ(r)− Φ(t)| 6 [ f ]λ |Sn−1|(r − t)λ .
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Consequently,

|g′(r)| 6 n|Sn−1|[ f ]λ
rn+1

r∫

0

tn−1(r − t)λ dt =
n|Sn−1|[ f ]λ

r1−λ

1∫

0

sn−1(1 − s)λ ds,

and we arrive at (2.1). The proof is complete. �

In the following theorem we deal also with the space C̃λ
0 (Ω) consisting of func-

tions f for which [ f ]λ < ∞ and f (0) = 0. This space contains functions which are

unbounded in the case Ω is unbounded. Note that [ f ]λ is a norm in this space.

Now we are in a position to prove the following theorem:

THEOREM 2.2. Let α > 0 , λ > 0 and λ + α 6 1. In the case α = 0 the Hardy

operator Hα is bounded in Cλ (BR) and [Hα f |α=0]λ 6C[ f ]λ . In the case α > 0 the

operator Hα is bounded from C̃λ
0 (BR) into C̃λ+α

0 (BR) , 0 < R 6 ∞.

Proof. Let first α = 0. For H f = Hα f |α=0 we have

H f (x) = |x|−n
∫

|y|<|x|

f (y)dy =
∫

B(0,1)

f (|x|y)dy

so that

|H f (x + h)− H f (x)| 6
∫

B(0,1)

| f (|x + h|y)− f (|x|y)|dy

6 [ f ]λ

∫

B(0,1)

||x + h|− |x||λ |y|λ dy =: A.

Since, by triangle inequality ||x + h|− |x||λ 6 |h|λ , λ > 0, for all x,x + h ∈ Rn, we

obtain that

A 6 [ f ]λ

∫

B(0,1)

|h|λ |y|λ dy 6 [ f ]λ |h|λ
∫

B(0,1)

|y|λ dy = C|h|λ [ f ]λ .

Thus, |H f (x + h) − H f (x)| 6 C|h|λ [ f ]λ and therefore [H f ]λ 6 C[ f ]λ , with C not

depending on x and h.
Since the inequality sup

x∈Ω
|H f (x)| 6 csup

x∈Ω
| f (x)| is obvious, the proof is complete

for α = 0.
Let now α > 0 and f ∈ C̃λ

0 (BR). We have

Hα f (x) = |x|α g(|x|), g(r) =
1

rn

∫

B(0,r)

f (y)dy =
∫

B(0,1)

f (ry)dy. (2.2)
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Hence, by the triangle inequality,

|Hα f (x + h)− Hα f (x)| 6 ||x + h|α −|x|α | |g(|x + h|)|+ |g(|x + h|)− g(|x|)||x|α

6 C[ f ]λ ||x + h|α −|x|α | |x + h|λ + |g(|x + h|)− g(|x|)||x|α
=: ∆1 + ∆2,

where we used the fact that f (0) = 0 and consequently

|g(|x + h|)| = |H f (|x + h|)|6C|x + h|λ [ f ]λ (2.3)

according to the case α = 0 in the last passage.

We consider separately the cases |x + h|6 2|h| and |x + h|> 2|h|.
The case |x + h|6 2|h| .
In this case we also have |x| 6 3|h|.
Thus, by (2.3),

∆1 6C[ f ]λ |h|α |x + h|λ 6C1[ f ]λ |h|λ+α

and

∆2 6C[g]λ |h|λ |x|α 6C1[ f ]λ |h|λ+α .

The case |x + h|> 2|h| .
We have

∆1 6C[ f ]λ |x + h|λ+α

∣∣∣∣1 −
( |x|

|x + h|

)α ∣∣∣∣ .

Since, |1 − tα | 6 |1 − t| for all 0 < t 6 1, 0 < α 6 1, we obtain

∆1 6C[ f ]λ
||x + h|− |x||
|x + h|1−λ−α

6C[ f ]λ |h|λ+α .

For ∆2 we use the mean value theorem and find that

∆2 6C
∣∣g′(ξ )

∣∣ ||x + h|− |x|||x|α 6C|g′(ξ )||h||x|α

with ξ between |x| and |x + h|.
If |x| 6 |x + h|, then, by Lemma 2.1, we get

∆2 6C
[ f ]λ

|ξ |1−λ
|x|α |h| 6C

[ f ]λ
|x|1−λ−α

|h| 6C[ f ]λ |h|λ+α

because |x| > |x + h|− |h|> |h|. Finally, when |x| > |x + h|, we have

∆2 6C
[ f ]λ

|ξ |1−λ
|x|α |h| 6C

[ f ]λ
|x + h|1−λ

|x|α |h| = C
[ f ]λ

|x + h|1−λ−α

( |x|
|x + h|

)α

|h|,

where
|x|

|x+h| 6
|h|

|x+h| +
|x+h|
|x+h| 6

3
2
. Therefore,

∆2 6C[ f ]λ |h|λ+α .
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It remains to gather the estimates for ∆1 and ∆2.
In view of (2.2), the equality Hα f (0) = 0 is obvious, so the proof is complete. �
We define the generalized Hölder space Cω(·)(Ω) as the set of functions continu-

ous in Ω having the finite norm

‖ f‖Cω(·) = sup
x∈Ω

| f (x)|+[ f ]ω(·)

with the seminorm

[ f ]ω(·) = sup
x,x+h∈Ω

|h|<1

| f (x + h)− f (x)|
ω(|h|) ,

where ω : [0,1] → R+ is a non-negative increasing function in C([0,1]) such that

ω(0) = 0 and ω(t) > 0 for 0 < t 6 1. Such spaces are known in the literature, see

for instance [8], [14], [17, Section 13.6], [18].

Let also C
ω(·)
0 (BR) := { f ∈ Cω(·)(BR) : f (0) = 0}.

As usual, by saying that a function ϕ is almost decreasing, we mean that ϕ(t) 6
Cϕ(s) for some C > 1 and for all t > s.

Following the same lines as in proof of Theorem 2.2 one can prove the following

generalization of Theorem 2.2:

THEOREM 2.3. Let ω ∈ C([0,1]) be positive on (0,1], increasing and such that

ω(0) = 0 and
ω(t)

t1−α is almost decreasing. In the case α = 0 the operator Hα |α=0 is

bounded in Cω(·)(BR). When α > 0, it is bounded from C̃
ω(·)
0 (BR) into C̃

ωα (·)
0 (BR),

where ωα(t) = tα ω(t).

3. Boundedness of Hardy type operators in Hölder type spaces with

compactification

Let Ṙn denote the compactification of Rn by a single infinite point.

DEFINITION 3.1. Let 0 6 λ < 1. We say that f belongs to Cλ (Ṙn), for all x,y ∈
Rn, if

| f (x)− f (y)| 6C
|x − y|λ

(1 + |x|)λ (1 + |y|)λ
.

The set Cλ (Ṙn) is a Banach space with respect to the norm

‖ f‖Cλ (Ṙn) = ‖ f‖C(Ṙn) + sup
x,y∈Rn

| f (x)− f (y)|
(

(1 + |x|)(1 + |y|)
|x − y|

)λ

.

It may be shown that Cλ (Ṙn) is a subspace of Cλ (Rn), which is invariant with

respect to the inversion change of variables x∗ = x
|x|2 , i.e.

Cλ (Ṙn) = { f : f ∈ Cλ (Rn) and f∗ ∈ Cλ (Rn)},
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where f∗ = f (x∗).
In the setting of the spaces Cλ (Ṙn) we consider only the case α = 0, see Remark

3.4 below.

3.1. Hardy operator H

Our main result in this case reads:

THEOREM 3.2. Let 0 6 λ < 1. Then the operator H is bounded in Cλ (Ṙn).

Proof. We note that

H f (x)− H f (y) =
∫

B(0,1)

[ f (|x|z)− f (|y|z)]dz.

Hence,

|H f (x)− H f (y)| 6 c

∫

B(0,1)

||x|− |y||λ |z|λ
(1 + |x||z|)λ (1 + |y||z|)λ

dz

6 c ||x|− |y||λ
∫

B(0,1)

|z|λ
(1 + |x||z|)λ (1 + |y||z|)λ

dz =: A (3.1)

Let |x| > 1, |y| > 1. Then

A 6 c ||x|− |y||λ
∫

B(0,1)

|z|λ
(|x||z|)λ (|y||z|)λ

dz = c
||x|− |y||λ
|x|λ |y|λ

∫

B(0,1)

dz

|z|λ

6 C

[ ||x|− |y||
(1 + |x|)(1 + |y|)

]λ ∫

B(0,1)

dz

|z|λ 6C1

|x − y|λ
(1 + |x|)λ (1 + |y|)λ

, (3.2)

since 1
|x| < 2

1+|x| .
Let |x| < 1, |y| < 1. Then

A 6 c|x − y|λ
∫

B(0,1)

|z|λ dz = c1|x − y|λ

6 C
|x − y|λ

(1 + |x|)λ (1 + |y|)λ
, (3.3)

since 1 < 2
1+|x| .

Let |x| < 1, |y| > 1. Then

A 6 c|x − y|λ
∫

B(0,1)

|z|λ
(|y||z|)λ

dz 6C1
|x − y|λ

(1 + |x|)λ (1 + |y|)λ
.
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Let |x| > 1, |y| < 1. Then

A 6 c|x − y|λ
∫

B(0,1)

|z|λ
(|x||z|)λ

dz 6C1
|x − y|λ

(1 + |x|)λ (1 + |y|)λ
.

Since the inequality ‖H f‖C(Ṙn) 6 c‖ f‖C(Ṙn) is obvious, the proof is complete. �

3.2. Hardy operator H

To formulate the corresponding result for the operator H we need to consider the

following subspaces:

Cλ
0 (Ṙn) = { f ∈ Cλ (Ṙn) : f (0) = 0}, Cλ

∞(Ṙn) = { f ∈ Cλ (Ṙn) : f (∞) = 0}

and

Cλ
∞,0 = Cλ

∞ ∩Cλ
0 .

THEOREM 3.3. Let 0 < λ < 1. Then the operator H is bounded from Cλ
∞,0(Ṙ

n)

to Cλ
∞(Ṙn)

Proof. Let f ∈ Cλ
∞,0(Ṙn) and denote g(x) = H f (x). Clearly, g(∞) = 0, and

|g(x)− g(y)| =

∣∣∣∣∣∣∣

∫

|z|>1

[ f (|x|z)− f (|y|z)] dz

|z|n

∣∣∣∣∣∣∣
(3.4)

6 C|x − y|λ
∫

|z|>1

|z|λ−ndz

(1 + |x||z|)λ (1 + |y||z|)λ
=: ∆.

Let |x| > 1, |y| > 1. Then

∆ 6C
|x − y|λ
|x|λ |y|λ

∫

|z|>1

dz

|z|n+λ
6C1

|x − y|λ
(1 + |x|)λ (1 + |y|)λ

.

Hence g(x) ∈ Cλ
∞,0(Ṙ

n).
Let |y| < |x| < 2.
Since f (0) = 0, we have | f (z)| 6C|z|λ and then

|g(x)− g(y)|=

∣∣∣∣∣∣∣

|x|∫

|y|

f (z)

|z|n dz

∣∣∣∣∣∣∣
6C

|x|∫

|y|

|z|λ−ndz =C1

(
|x|λ −|y|λ

)
6C2

|x − y|λ

(1 + |x|)λ (1 + |y|)λ
,

since aλ − bλ 6 (a − b)λ , a > b > 0, 0 6 λ 6 1.
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Let now |y| < 1, |x| > 2. H f is bounded. Indeed,

|g(x)− g(y)|6
∫

Rn

f (z)

|z|n dz.

As already shown, for each function f ∈ Cλ
∞,0 we have that | f (z)| 6 c|z|λ , 0 < |z| < 1

and | f (z)| 6 c

|z|λ , |z| > 1. Therefore

|g(x)| 6 c1

1∫

0

1

|z|n−λ
dz+ c2

∞∫

1

1

|z|n+λ
dz = C < ∞,

for 0 6 λ < 1, and then

|g(x)− g(y)|6C.

It is easily checked that

1 6 6
|x − y|

(1 + |x|)(1 + |y|), when |y| < 1, |x| > 2. (3.5)

Consequently,

|g(x)− g(y)|6C 6C2
|x − y|λ

(1 + |x|)λ (1 + |y|)λ
,

which proves that g(x) ∈ Cλ
∞,0(Ṙ

n) also in this case.

The case |x| < 1, |y| > 2 can be similarly treated.

Similarly as in Theorem 3.2 we note that the boundedness of the operator H in

C(Ṙn) is obvious, so the proof is complete. �

REMARK 3.4. When α > 0. Theorems 3.2 and 3.3 may not be extended to the

setting Cλ (Ṙn) −→ Cλ+α(Ṙn), in which we require the Hölder behavior of func-

tions also at the infinite point, in contrast to Theorem 2.2. In fact, the function f0 =
1

(1 + x)λ
∈ Cλ

∞(Ṙ+) provides a corresponding counterexample for both the operators

Hα and H α . For example, for the operator Hα we have

Hα f0(x) =
xα−1

1 − λ
[(1 + x)1−λ − 1].

Hence, when x → ∞ we obtain that Hα f0(x)∼ cxα−λ , while the inclusion Hα f0(x)
∈ Cλ+α

∞ (Ṙ+) requires the behavior |Hα f0(x)| 6 c(1 + x)−α−λ .

Corresponding generalizations of Theorems 3.2 and 3.3 may be also formulated

in terms of the generalized Hölder spaces Cω (Ṙn) , Cω
∞ (Ṙn) , Cω

0 (Ṙn) and Cω
∞,0(Ṙn)

defined below.
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DEFINITION 3.5. Let ω = ω(h) be an increasing function. The generalized Hölder

space Cω (Ṙn) is defined as consisting of all functions satisfying the condition

| f (x)− f (y)| 6Cω

( |x − y|
(1 + |x|)(1 + |y|)

)
, x,y ∈ Rn.

The subspaces Cω
∞ (Ṙn) , Cω

0 (Ṙn) and Cω
∞,0(Ṙn) of the space Cω(Ṙn) are defined by

the conditions f (∞) = 0, f (0) = 0 and f (0) = f (∞) = 0, respectively.
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Luleå University of Technology

SE 971 87 Luleå, Sweden
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Abstract. In various applications there appear integral equations of the first kind with a kernel which has a logarithmic
singularity. The corresponding classes of well-posedness for such equations are Sobolev spaces. We prove the differentiation
formulas for weighted singular integrals, which appear in such study, with the goal of its further application to integral
equations.
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INTRODUCTION

Integral equations are one of the mathematical models well adjusted for the study of problems arising in various applied
sciences. A key role among them is played by singular integral equations which are known to be related to boundary
value problems for analytic functions. The classical theory of singular integral equations is presented e.g. in the books
[1], [2]. In applications there also often arise integral equations of the first kind mainly corresponding to unstable
processes. An important class of such equations with logarithmic singularity in the kernel is less studied in comparison
with other types of singularities. A class of such equations has connection with singular integral equations which
enables a researcher to apply the technique and results used in the theory of singular integral equations. Various types of
such equations are used in various applications in the theory of logarithmic potential in plane problems of mathematical
physics, conformal mapping, elasticity and viscosity theory. There were developed various numerical methods of
approximate solutions of integral equations with logarithmic singularity. However, their theoretical treatment exists
only in some particular cases.

The problem treated in this paper is related to the theory of integral equations of the first kind with a kernel which
has a logarithmic singularity:

b∫

a

[u(x, t)+ v(x, t) ln |x− t|] φ(t)dt = f (x), a < x < b. (1)

Such equations of the first kind are ill-posed. The corresponding classes of well-posedness in this case are Sobolev
spaces for functions f . More precisely, if X is the space for solutions φ , then the class of the right hand sides f should
be the Sobolev space with derivatives in X . In our studies we use weighted Lebesgue space X = Lp(w, [a,b]) with a
power weight w = (x−a)α1(b− x)α2 .

In the theory of such equations it is admitted that the function u(x, t) may have a jump at the diagonal t = x and the
study of such equations is based on investigation of the model equations of the form

A(x)
x∫

a

φ(t)dt +B(x)
b∫

x

φ(t)dt +
C(x)

π

b∫

a

ln |x− t|φ(t)dt = f (x). (2)

There exists a formalism ([3, 4]) which allows to reduce the equation (2) to the ”loaded” singular integral equation.

10th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences
AIP Conf. Proc. 1637, 621-626 (2014); doi: 10.1063/1.4904632

©   2014 AIP Publishing LLC 978-0-7354-1276-7/$30.00

621



In justification of this formalism for the right-hand sides f in Sobolev spaces, there arises a problem of differentiation
of weighted singular integrals of functions in Sobolev spaces, originated by the fact that the solution of singular integral
equation in an interval contains such weighted singular integrals.

We do not dwell on the study of solvability of such integral equations of the first kind in this paper but present
a solution of the first problem which arises in this study of this first problem of differentiation of weighted singular
integrals. Note that the study of smoothness or regularity of weighted singular integrals usually requires special efforts
because of "bad" behaviour of such integrals near the end points. In the case where the scale of Hölder spaces is used
for measuring such kind of regularity, the reader can be referred to [5, 6, 7].

The weighted singular integrals under consideration in this paper have the following form:

(T µ f )(x) = (x−a)µ1(b− x)µ2

b∫

a

f (t)dt
(t −a)µ1(b− t)µ2(t − x)

(3)

(U µ
a f )(x) = (x−a)µ1(b− x)µ2

b∫

a

ln(t −a)

(t −a)µ1(b− t)µ2

f (t)dt
t − x

(4)

(
U µ

b f
)
(x) = (x−a)µ1(b− x)µ2

b∫

a

ln(b− t)
(t −a)µ1(b− t)µ2

f (t)dt
t − x

, (5)

where a < x < b, µ = (µ1,µ2), the numbers µ1 and µ2 may be complex and Re(µ1) < 1,Re(µ2) < 1, and where we
assume that the principal value of the power functions is chosen so that arg((t −a)µ1) = Im(µ1 ln(t −a)), and similarly
for (b− t)µ2 .

DIFFERENTIATION FORMULAS

We prove a theorem, where we use the following notation for the weighted Sobolev space:

W p,1(w) = { f ∈ Lp(w, [a,b]) : d f /dx ∈ Lp(w, [a,b])},

where the derivative is understood as usual in the weak sense.
Weighted space Lp(w, [a,b]) =: Lp(w) is defined as

Lp(w) := {φ :
∫ b

a
|φ(x)w(x)|pdx < ∞}.

We also use the notations:

fµ =

b∫

a

f (t)dt
(t −a)µ1(b− t)µ2

, ρ1−µ(x) :=
1

(x−a)1−µ1(b− x)1−µ2
and D = d/dx.

Theorem 1 Let f ∈ W p,1(w, [a,b]) , where w = (x−a)α1(b− x)α2 .
Under the assumption that

−1/p ≤ α1 +Re(µ1 −1) ≤ 1/p′ and −1/p ≤ α2 +Re(µ2 −1) ≤ 1/p′, where 1/p+1/p′ = 1,

the following differentiation formula is valid:

d
dx

T µ f (x) =

1
(x−a)1−µ1(b− x)1−µ2

b∫

a

(t −a)1−µ1(b− t)1−µ2
f ′(t)dt
(t − x)

+
(µ1 + µ2 −1) fµ

(x−a)1−µ1(b− x)1−µ2
, (6)
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or in short form

(DT µ f )(x) =
(
T µ−1D f

)
(x)+(µ1 + µ2 −1) fµ ·ρ1−µ(x). (7)

Proof The proof on nice functions is more or less direct but requires some tricks because we cannot differentiate the
singular integral directly under the integral sign. The extension to functions in the Sobolev space is based on the use
of definition of weak derivatives.

We start with the proof of the formula (7) for nice functions and then prove it for functions in W p,1(w), making use
of its validity for nice functions.

I: The case of nice functions.
By nice functions we may mean functions in C∞([a,b]) with support in (a,b). We follow ideas from [4, 3]. To prove

formula (7), we represent T µ f as

(T µ f )(x) =
(x−a)µ1(b− x)µ2

b−a

[ b∫

a

(b− t)1−µ2 f (t)dt
(t −a)µ1(t − x)

+

b∫

a

(t −a)1−µ1 f (t)dt
(b− t)µ2(t − x)

]
. (8)

The main trick is to make a substitution to avoid the presence of the variable x in the expression t − x in the
denominator. Namely, we put t −a = s(x−a) in the first integral and b− t = s(b− x) in the second one, which yields

(T µ f )(x) =
(b− x)µ2

b−a

(b−a)/(x−a)∫

0

[b−a− s(x−a)]1−µ2 f [a+ s(x−a)]

sµ1(s−1)
ds+

+
(x−a)µ1

b−a

(b−a)/(b−x)∫

0

[b−a− s(b− x)]1−µ1 f [b− s(b− x)]
sµ2(1− s)

ds (9)

In this form differentiate under the integral sign is possible.
After direct differentiation and some simple calculations we obtain formula (7). Technical details of this calculation

is given in Appendix.

II: The case of functions in W p,1(w).

In accordance with the definition of the Sobolev space, we need to show that the operator T µ−1 is bounded in the
space Lp(w), with the weight w = (x−a)α1(b− x)α2 i.e. that

∥T µ−1g∥Lp(w) ≤ C∥g∥Lp(w) for all g ∈ Lp(w).

This is equivalent to that
∥T µ−1+α φ∥Lp ≤ C∥φ∥Lp for all φ ∈ Lp,

where α = (α1,α2). The latter inequality is nothing else but the boundedness of the weighted singular operator in

Lp-spaces, which is well known to be valid if and only if µk +αk −1 ∈
(

− 1
p
,

1
p′

)
,k = 1,2, see for instance [1, p. 30]

and the references therein.

Thus the right hand side of formula (7) is well defined for all functions f in the Sobolev space W p,1(w) and belongs
to Lp(w).

To prove (7) with derivative D on the left hand side in the weak sense, we have to prove that

(DT µ f ,ω) =
(
T µ−1D f ,ω

)
+(µ1 + µ2 −1) fµ

(
ρ1−µ ,ω

)
(10)

for all test functions ω ∈ C∞ on [0,1] with support in (0,1), where ( f ,ω) is the usual bilinear form:

( f ,ω) =
∫ b

a
f (x)ω(x)dx.
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We start with the right hand side and work with the term
(
T µ−1D f ,ω

)
. We observe that the operator transposed to

T µ−1 is −T 1−µ and proceed as follows:
(
T µ−1D f ,ω

)
= −

(
D f ,T 1−µ ω

)
=

(
f ,DT 1−µ ω

)
,

where in the last passage the notion of weak derivative works.
Now we use the fact that our formula has been proved for nice functions, so that

DT 1−µ ω = T −µ Dω +(1− µ1 − µ2)ω1−µ ·ρµ(x)

where ω1−µ =
b∫
a

ω(t)dt
(t−a)1−µ1 (b−t)1−µ2

. Consequently,

(
T µ−1D f ,ω

)
=

(
f ,T −µ Dω

)
+(1− µ1 − µ2)ω1−µ( f ,ρµ)

and then
(
T µ−1D f ,ω

)
+(µ1 + µ2 −1) fµ

(
ρ1−µ ,ω

)
=

(
f ,T −µ Dω

)
+(µ1 + µ2 −1)

[
fµ

(
ρ1−µ ,ω

)
−ω1−µ( f ,ρµ)

]
.

It is easy to see that
fµ

(
ρ1−µ ,ω

)
−ω1−µ( f ,ρµ) = 0.

Therefore the right-hand side of (10) is equal to ( f ,T −µ Dω) which is nothing else but the left-hand side of (10),
since the operator (T −µ)∗ = −T µ , and D∗ = −D. This completes the proof.

Corollary 2 Let f ∈ W p,1(w, [a,b]) , where w = (x−a)α1(b− x)α2 and −1/p ≤ αk −1/2 ≤ 1/p′, k = 1,2. Then

d
dx

∫ b

a

√
(x−a)(b− x)
(t −a)(b− t)

f (t)dt
t − x

=
∫ b

a

√
(t −a)(b− t)
(x−a)(b− x)

f ′(t)dt
t − x

. (11)

Theorem 3 Let f ∈ W p,1(w) , where w = (x−a)α1(b− x)α2 .
Under the assumption that

−1/p ≤ α1 +Re(µ1 −1) ≤ 1/p′ and −1/p ≤ α2 +Re(µ2 −1) ≤ 1/p′, where 1/p+1/p′ = 1,

the following differentiation formulas are valid:

(DU µ
a f )(x) =

(
U µ−1

a D f
)
(x)+

(
T µ−1

(
f (t)

t −a

))
(x)+

(µ1 + µ2 −1) fa

(x−a)1−µ1(b− x)1−µ2
, (12)

(
DU µ

b f
)
(x) =

(
U µ−1

b D f
)

(x)+

(
T µ−1

(
f (t)

b− t

))
(x)+

(µ1 + µ2 −1) fb

(x−a)1−µ1(b− x)1−µ2
, (13)

where

fa =

b∫

a

ln(t −a) f (t)dt
(t −a)µ1(b− t)µ2

, fb =

b∫

a

ln(b− t) f (t)dt
(t −a)µ1(b− t)µ2

. (14)

Proof The proof follows mainly in the same way as the proof of Theorem 1, so we leave out the details.
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APPENDIX

We present some technical details of the proof of the formula (6) for nice functions. By using the substitutions
t −a = s(x−a) and b− t = s(b− x), we obtain

(T µ f )(x) = I1 + I2,

where

I1 =
(b− x)µ2

b−a

(b−a)/(x−a)∫

0

[b−a− s(x−a)]1−µ2 f [a+ s(x−a)]

sµ1(s−1)
ds

and

I2 =
(x−a)µ1

b−a

(b−a)/(b−x)∫

0

[b−a− s(b− x)]1−µ1 f [b− s(b− x)]
sµ2(1− s)

ds.

Next, differentiation with respect to x yields

d
dx

(T µ f )(x) =
d
dx

I1 +
d
dx

I2 (15)

By using the Leibniz rule for differentiating under the integral sign, we obtain after some calculations that

d
dx

I1 =
(−µ2)

b−a
(b− x)µ2−1

b−a
x−a∫

0

[b−a− s(x−a)]1−µ2 f [a+ s(x−a)]

sµ1(s−1)
ds+

+
(b− x)µ2

b−a

{ b−a
x−a∫

0

s
sµ1(s−1)(b−a− s(x−a))µ2

[
(µ2 −1) f (a+ s(x−a))+(b−a− s(x−a)) · f ′(a+ s(x−a))

]
ds

}

Following the same steps, we get that

d
dx

I2 =
µ1

b−a
(x−a)µ1−1

b−a
b−x∫

0

[b−a− s(b− x)]1−µ1 f [b− s(b− x)]
sµ2(1− s)

ds+

+
(x−a)µ1

b−a

{ b−a
b−x∫

0

s
sµ2(1− s)(b−a− s(b− x))µ1

[
(1− µ1) f (b− s(b− x))+(b−a− s(b− x)) · f ′(b− s(b− x))

]
ds.

}

We now re-substitute s → t in the integrals. By adding the derivatives of I1 and I2 and collecting terms containing f
and f ′ respectively, we obtain that the part containing f ′(t) is equal to

(b− x)µ2(x−a)µ1

(b−a)(x−a)

b∫

a

(t −a)1−µ1(b− t)1−µ2

t − x
f ′(t)dt+

+
(x−a)µ1(b− x)µ2

(b−a)(b− x)

b∫

a

(b− t)1−µ2(t −a)1−µ1

t − x
f ′(t)dt,
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which, after some simplifications, can be written as

1
(x−a)1−µ1(b− x)1−µ2

b∫

a

(t −a)1−µ1(b− t)1−µ2

t − x
f ′(t)dt (16)

Furthermore, the part containing f (t) is equal to

1
(b−a)(x−a)1−µ1(b− x)1−µ2

b∫

a

1
(t −a)µ1(b− t)µ2(t − x)

(
(µ1 + µ2 −1)((t −a)(b− x)− (b− t)(x−a))

)
f (t)dt,

which, after some simplifications, can be written as

µ1 + µ2 −1
(x−a)1−µ1(b− x)1−µ2

b∫

a

f (t)dt
(t −a)µ1(b− t)µ2

. (17)

Finally, according to (15), by adding (16) and (17), we obtain formula (6). The proof is complete.
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