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Discrete nonlinear two and three species prey-predator models are considered. Focus is on stability and nonstationary behaviour.
Regarding the two species model, depending on the fecundity of the predator, we show that the transfer from stability to instability
goes through either a supercritical flip or a supercritical Neimark-Sacker bifurcation and moreover that there exist multiple
attractors in the chaotic regime, one where both species coexist and another where the predator population has become extinct.
Sizes of basin of attraction for these possibilities are investigated. Regarding the three species models, we show that the dynamics
may differ whether both predators prey upon the prey or if the top predator preys upon the other predator only. Both the sizes of
stable parameter regions as well as the qualitative structure of attractors may be different.

1. Introduction

In 1924 and 1926, respectively, Lotka [1] and Volterra [2]
independently established a two species prey-predatormodel
which today is known under the name ‘the Lotka-Volterra
prey-predator model’. The model consists of a system of
two coupled nonlinear differential equations and as it is
well known; the dynamical outcome of such a system is
either a stable equilibrium or a limit cycle. Unfortunately,
the Lotka-Volterra model has an undesired property; namely,
it is structurally unstable, which in turn implies that most
attempts to apply the model on real world phenomena are
likely to fail. Therefore, after the pioneer works in the 1920s,
there has been a tremendous development of prey-predator
models. At first, most of these models were formulated in
continuous time; see for example the work by Rosenzweig
andMacArthur 1963 [3] and Holling 1965 [4] and the study of
equations of Kolmogorov type as presented by Freedman and
Waltman [5]. The studies cited above, together with lots of
other contributions, lead to a variety of functional responses
for different species which are widely used in prey-predator
interaction models.

Regarding discrete population models, we find it fair to
say that there was a major breakthrough in 1976 when Sir

Robert May [6] published his influential Nature paper where
he showed that a simple one-dimensional nonlinear differ-
ence equation model could generate dynamics of stunning
complexity, ranging from stable fixed points, periodic orbits
of even and odd periods, and chaotic behaviour. Later, the
number of papers on discrete population models flourished
(confer [7–11]), and it became clear that the dynamics found
from these studies was much richer than from their con-
tinuous counterparts. Ergodic properties of discrete models
may be obtained in [12, 13] while the question of permanence
is addressed in [14]. Discrete harvest models, both with or
without age structure, are studied in [15–17].

Parallel to the development of discrete age and stage
structured population models, it became also customary to
analyze prey-predator models formulated in discrete time.
Indeed, Neubert and Kot [18] showed that the equilibrium in
a two species prey-predator model may undergo a subcritical
flip bifurcation with a subsequent concomitant crash of the
predator population. Other excellent studies may be obtained
from [19–24] and, more recently, the dynamical behaviour
of fractional order Lotka-Volterra and generalized Lotka-
Volterra models together with its discretizations have been
scrutinized in [25, 26].
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Unlike most of the papers quoted above, we shall in this
paper assume interactions between the prey and predator
species of exponential form, a choice which is inspired by
the seminal work of Ricker [27], also cf. [21]. The purpose
of this work is to analyze (A) a two species prey-predator
model and (B) two versions of a three species models (two
predators), where focus is on stability, nonstationary, and
chaotic behaviour as well as on mechanisms which may lead
to extinction of predators. Regarding the results, we prove in
case (A) that the size of the region in parameter space where
the equilibrium is stable strongly depends on the fecundity
of the predator and moreover that the transfer from stability
to instability may go through either a supercritical flip
bifurcation or alternatively through a supercritical Neimark-
Sacker bifurcationwhen the fecundity of the prey is increased.
In the chaotic regime there may be two different attractors,
one where both the prey and the predator coexist and another
where only the prey survives. We investigate the size of basin
of attraction for these possibilities. In case (B) focus is much
on the same as in (A). One major result is that if the top
predator preys upon both the prey and the predator or only
on the predator, this has profound effects on the size of stable
parameter regions and on possible nonstationary dynamics.

The plan of the paper is as follows. In Section 2 we
formulate and analyze the two species prey-predator model.
Section 3 deals with the case where there is one prey popu-
lation and two predator populations. Finally, in Section 4 we
summarize and discuss results.

2. The 2-Dimensional Model

Let 𝑥𝑡 and 𝑦𝑡 be the sizes of a prey and a predator population
at time 𝑡, respectively. The relation between the two species
at two consecutive time steps (years) is assumed to be on the
form

𝑥𝑡+1 = 𝑓 (𝑥𝑡, 𝑦𝑡) 𝑥𝑡𝑦𝑡+1 = 𝑔 (𝑥𝑡, 𝑦𝑡) 𝑦𝑡 (1)

Natural restrictions to impose are

𝜕𝑓𝜕𝑥 ≤ 0,𝜕𝑓𝜕𝑦 ≤ 0,𝜕𝑔𝜕𝑥 ≥ 0,𝜕𝑔𝜕𝑦 ≤ 0
(2)

which biologically means that intraspecific competition leads
to a decrease in size of both populations while interspecific
competition (predation) results in a decrease of the survival of
the prey and an increase of the size of the predator population.

In this sectionwe shall consider themodel (which satisfies
the restrictions above)

𝑥𝑡+1 = 𝐹𝑒−𝑥𝑡𝑒−𝛼𝑦𝑡𝑥𝑡𝑦𝑡+1 = 𝐺𝑒−𝑦𝑡 (1 − 𝑒−𝛽𝑥𝑡) 𝑦𝑡 (3)

The capital letters 𝐹 and 𝐺 denote density independent
fecundity terms. 𝛼 and 𝛽 are positive interaction parameters
and from a biological point of view it is natural to assume𝛼 ≥ 𝛽. When 𝛽 󳨀→ 0+, (3) degenerates to a ‘pure’ prey map.

Map (3) possesses three equilibria, the trivial one (𝑥, 𝑦) =(0, 0), the point (𝑥, 𝑦) = (ln𝐹, 0) where 𝐹 > 1, and the
nontrivial one

(𝑥∗, 𝑦∗) = (𝑥∗, 1𝛼 (ln𝐹 − 𝑥∗)) (4)

where 𝑥∗ satisfies the equation
𝑒(1/𝛼)𝑥∗ − 𝑒(1/𝛼−𝛽)𝑥∗ = 𝐹1/𝛼𝐺−1 (5)

and ln𝐹 > 𝑥∗. In order to investigate stability properties
we linearize about the equilibrium. This gives birth to the
eigenvalue equation

𝜆2 + 𝑎1𝜆 + 𝑎2 = 0 (6)

where the coefficients are

𝑎1 = 𝑥∗ + 𝑦∗ − 2,𝑎2 = 1 − 𝑥∗ − 𝑦∗ + (𝑄∗ + 1) 𝑥∗𝑦∗,
𝑄∗ = 𝛼𝛽𝐹−1/𝛼𝐺𝑒(1/𝛼−𝛽)𝑥∗

(7)

(𝑥∗, 𝑦∗) is a stable equilibrium as long as all eigenvalues of
(6) are located on the inside of the unit circle and according
to the Jury criteria this is satisfied whenever the inequalities1 + 𝑎1 + 𝑎2 > 0, 1 − 𝑎1 + 𝑎2 > 0, and 1 − |𝑎2| > 0 hold.
Following Murray [28], when the first of these inequalities
fails (i.e., when 1 + 𝑎1 + 𝑎2 = 0), it corresponds to 𝜆 = 1.
The second one fails when 𝜆 = −1 (the flip case) and the
third fails when the solution of (6) is a pair of complex valued
eigenvalues located on the boundary of the unit circle (i.e.,𝜆 = 𝑒±𝑖𝜃, the Neimark-Sacker case). Consequently, (𝑥∗, 𝑦∗) is
stable for those parameter combinations who satisfy

(𝑄∗ + 1) 𝑥∗𝑦∗ > 0 (8a)

𝑥∗𝑦∗ > 2 (𝑥∗ + 𝑦∗) − 4𝑄∗ + 1 (8b)

𝑥∗𝑦∗ < 𝑥∗ + 𝑦∗𝑄∗ + 1 (8c)

Hence, (4) will be stable whenever

𝑓1 < 𝑥∗𝑦∗ < 𝑓2 (9)
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where

𝑓1 = 2 (𝑥∗ + 𝑦∗) − 4𝑄∗ + 1 ,
𝑓2 = 𝑥∗ + 𝑦∗𝑄∗ + 1

(10)

and in order for 𝑓1 < 𝑓2 we must have 𝑥∗ + 𝑦∗ < 4.
If 𝑓1 = 𝑥∗𝑦∗ the solutions of (6) are 𝜆1 = −1 and 𝜆2 =3−(𝑥∗+𝑦∗). If 𝑥∗𝑦∗ = 𝑓2 is assumed, the solutions of (6) are

𝜆1,2 = 12 {2 − 𝑥∗ − 𝑦∗ ± 𝑖√4 (𝑥∗ + 𝑦∗) − (𝑥∗ + 𝑦∗)2} (11)

and these eigenvalues are indeed located on the boundary of
the unit circle since󵄨󵄨󵄨󵄨𝜆1,2󵄨󵄨󵄨󵄨

= 12√(2 − (𝑥∗ + 𝑦∗))2 + √4 (𝑥∗ + 𝑦∗) − (𝑥∗ + 𝑦∗)22= 1
(12)

Note that when 𝑥∗ + 𝑦∗ 󳨀→ 4, all eigenvalues (both real and
complex) approach 𝜆 = −1 and the stable parameter region
approaches zero.

Example 1. First we scrutinize the special case 𝛼 = 𝛽 = 1, i.e.,𝑥𝑡+1 = 𝐹𝑒−𝑥𝑡𝑒−𝑦𝑡𝑥𝑡𝑦𝑡+1 = 𝐺𝑒−𝑦𝑡 (1 − 𝑒−𝑥𝑡) 𝑦𝑡 (13)

By use of the Jury criteria, it is straightforward to show that(𝑥, 𝑦) = (0, 0) is stable for 0 < 𝐹 < 1 and all values of 𝐺.
Regarding (𝑥, 𝑦) = (ln𝐹, 0) it is stable whenever 1 < 𝐹 < 𝑒2
and𝐺 < 𝐹(𝐹−1)−1. Note thatwhen𝐹 󳨀→ 1+, then𝐺 becomes
arbitrary and when 𝐹 󳨀→ 𝑒2, then 𝐺 󳨀→ 𝑒2(𝑒2 − 1)−1. At
threshold 𝐺 = 𝐹(𝐹 − 1)−1, 𝜆1 = 1 and 𝜆2 = 1 − ln𝐹 which
satisfies −1 < 𝜆2 < 1. The nontrivial equilibrium point may
be expressed as

(𝑥∗, 𝑦∗) = (ln(𝐹 + 𝐺𝐺 ) , ln( 𝐹𝐺𝐹 + 𝐺)) (14)

Note that 𝑥∗ + 𝑦∗ = ln𝐹 and in order to have a feasible
equilibrium wemust assume𝐹𝐺 > 𝐹+𝐺 (or 𝐹 > 𝐺(𝐺−1)−1).

The coefficients in (6) become𝑎1 = ln𝐹 − 2,
𝑎2 = 1 − ln𝐹 + (𝐺𝐹 + 1)𝑥∗𝑦∗ (15)

and subsequently the Jury criteria (8a)-(8c) may be cast in the
form (𝐹 + 𝐺𝐹 )𝑥∗𝑦∗ > 0 (16a)

𝑥∗𝑦∗ > 2𝐹 (ln𝐹 − 2)𝐹 + 𝐺 = 𝑓1 (𝐹, 𝐺) (16b)

𝑥∗𝑦∗ < 𝐹 ln𝐹𝐹 + 𝐺 = 𝑓2 (𝐹, 𝐺) (16c)

The stable parameter region is characterized by 𝑓1 < 𝑥∗𝑦∗ <𝑓2. Moreover, (16b) and 𝑓1 < 𝑓2 imply 𝑒2 < 𝐹 < 𝑒4. Hence,
depending on 𝐺, the largest 𝐹 interval where (𝑥∗, 𝑦∗)may be
stable is 𝑒2 < 𝐹 < 𝑒4.

At threshold 𝑓1 = 𝑥∗𝑦∗ the equilibrium point may be
expressed as

(𝑥∗, 𝑦∗) = (𝑏, 𝑐) = (12 ln𝐹 + √𝑎, 12 ln𝐹 − √𝑎) (17)

where

𝑎 = (12 ln𝐹)2 − 2𝐹 (ln𝐹 − 2)𝐹 + 𝐺 (18)

The solutions of (6) are 𝜆1 = −1 and 𝜆2 = 3 − ln𝐹. Note
that when 𝐹 󳨀→ 𝑒2, then (𝑏, 𝑐) 󳨀→ (2, 0) and 𝐺 = 𝑒2(𝑒2 −1)−1 ≈ 1.157. When 𝐹 󳨀→ 𝑒4, the quantities 𝑏, 𝑐, and𝐺 may be expressed by use of the Lambert function 𝑊0 as(𝑏, 𝑐) = (2(1 + 𝑊0(𝑒−1)), 2(1 − 𝑊0(𝑒−1))) ≈ (2.55, 1.44) and𝐺 = −𝑒4(W0(𝑒−1))2((𝑊0(𝑒−1))2 − 1)−1 ≈ 4.58956.

From 𝑥∗𝑦∗ = 𝑓2 we find
(𝑥∗.𝑦∗) = (𝑝, 𝑞) = (12 ln𝐹 + √𝑑, 12 ln𝐹 − √𝑑) (19)

where

𝑑 = (12 ln𝐹)2 − 𝐹 ln𝐹𝐹 + 𝐺 (20)

and the corresponding complex modulus 1 eigenvalues
become

𝜆 = 2 − ln𝐹2 ± 𝑖√ ln𝐹 (4 − ln𝐹)4 (21)

In Figure 1(a) we have visualized the stable parameter regions
in the 𝐹 − 𝐺 plane. When 0 < 𝐹 < 1, (𝑥.𝑦) = (0, 0) is stable
for any value of 𝐺. In the interval 1 < 𝐹 < 𝑒2, the point(𝑥, 𝑦) = (ln𝐹, 0) is stable for 𝐺 < 𝐹(𝐹 − 1)−1, and whenever𝑒2 < 𝐹 < 𝑒4, the nontrivial equilibrium (𝑥∗.𝑦∗) given by
(14) is stable for those combinations of 𝐹 and 𝐺 which satisfy𝑓1 < 𝑥∗𝑦∗ < 𝑓2 (confer (16b), (16c)); i.e., the stable parameter
region is located between the curves.

Our next goal is to study the nonstationary dynamics as(𝑥∗, 𝑦∗) becomes unstable. This is done by considering two
representative fixed values of 𝐺, 𝐺 = 4 and 𝐺 = 5, see
Figure 1(b), and vary 𝐹. Assuming 𝐺 = 4, (𝑥∗, 𝑦∗) is stable
as long as 𝑒2 < 𝐹 < 41.438 and undergoes a flip bifurcation
when 𝐹 is increased to 𝐹 = 41.438 where 𝑓1 = 𝑥∗𝑦∗.𝐺 = 5 implies that (𝑥∗, 𝑦∗) is stable in the interval 𝑒2 < 𝐹 <40.18 and undergoes a Neimark-Sacker bifurcation when 𝐹
becomes 40.18 where 𝑥∗𝑦∗ = 𝑓2.

As it is well known, a flip bifurcation may be of both
supercritical or subcritical nature. In the former case, there
exists a stable 2-cycle just beyond instability threshold. In the
latter case such a stable 2-cycle does not exist. Regarding our
model we have the following result:
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Figure 1: (a) Stability regions for equilibria: 𝐹 ∈ ⟨0, 1⟩: (𝑥, 𝑦) = (0, 0) is stable for any 𝐺. 𝐹 ∈ ⟨1, 𝑒2⟩: (𝑥, 𝑦) = (ln𝐹, 0) is stable under the
curve𝐺 = 𝐹(𝐹 − 1)−1. 𝐹 ∈ ⟨𝑒2, 𝑒4⟩: (𝑥∗, 𝑦∗) = (ln(𝐹 + 𝐺)𝐺−1, ln𝐹𝐺(𝐹 + 𝐺)−1) is stable between the curves. (b)The points (𝐹, 𝐺) = (41.438, 4)
and (𝐹, 𝐺) = (40.18, 5) in parameter space are located on the flip and Neimark-Sacker bifurcation curve, respectively.

Theorem 2. Consider the map(𝑥, 𝑦) 󳨀→ (𝐹𝑒−𝑥𝑒−𝑦𝑥, 𝐺𝑒−𝑦 (1 − 𝑒−𝑥) 𝑦) (22)

under the assumptions𝐹 ∈ (𝑒2, 𝑒4) and𝐺 ∈ (1.157, 4.59).�en
for all combinations of 𝐹 and 𝐺 such that 𝑥∗𝑦∗ = 2𝐹(ln𝐹 −2)(𝐹+𝐺)−1, the equilibrium (𝑥∗, 𝑦∗) undergoes a supercritical
flip bifurcation.

Proof. See Appendix.

Figure 2(a) displays a stable 2-cycle just beyond threshold
in the case (𝐹, 𝐺) = (45, 4). The figure clearly demonstrates
how the orbits of the prey and predator are synchronized.The
amplitude of the predator follows one time unit (year) after
the amplitude of the prey.

Still assuming 𝐺 = 4, we may describe the dynamics of
the system for a range of 𝐹 values by use of the Lyapunov
exponent 𝐿 of the orbit generated by (13). In Figure 2(b) we
have computed 𝐿 for 𝐹 values between 30 and 60. 𝐿 < 0
in the interval 𝑒2 < 𝐹 < 41.438 where (𝑥∗, 𝑦∗) is stable.
Stable 2-cycles (𝐿 < 0) exist whenever 41.438 < 𝐹 <53.454 which is followed by stable 4-cycles when 53.454 <𝐹 < 56.173. The findings above are also displayed in the
bifurcation diagram, Figure 2(c). Chaos is introduced as 𝐿
becomes positive, i.e., when 𝐹 exceeds 57.045. In Figure 2(d)
we visualize the dynamics for the pair (𝐹, 𝐺) = (60, 4).
Although the dynamics occurs in the chaotic regime, onemay
still argue that a certain kind of two-periodicity is preserved.
This is due to the fact that each of the two subsets of the
attractor shown in Figure 2(d) are visited only once every
second iteration. Finally, still considering (𝐹, 𝐺) = (60, 4),
Figure 2(e) shows 𝑥 and 𝑦 as functions of time. Evidently, the
synchronization found in the 2-periodic case (Figure 2(a)) is
necessarily not present in the chaotic regime.

There is also another kind of dynamics that may occur. It
dominates completely when𝐹 exceeds 63.61 and is visualized

in Figure 2(f) where 𝐹 = 65. For several iterations, the
populations exhibit chaotic oscillations similar to what is
shown in Figures 2(d) and 2(e) where 𝐹 = 60, but once 𝑥
falls below a critical value 𝑥𝑐 we observe a dramatic change.
When 𝑥 < 𝑥𝑐, the predator population becomes very small
as well, actually so small that it does not manage to recover
and consequently goes extinct. At the same time, in case of𝑥 small, map (13) degenerates to 𝑥𝑡+1 = 𝐹𝑥𝑡. Hence, the
prey indeed manages to recover and may in fact be large
before it is damped again by the factor 𝑒−𝑥. This mechanism
explains the change of dynamics seen in Figure 2(f). Thus
for 𝐹 > 63.61 the only possibility is an attractor, which we
fromnow on shall refer to as𝐴2, where the prey shows highly
oscillatory behaviour and 𝑦 = 0. For all practical purposes
we may regard 𝐴2 as generated by the pure prey map 𝑥 󳨀→𝐹 exp(−𝑥)𝑥 (after the original map (13) first has driven the
predator to extinction).𝐴2 also exists for𝐹 ≤ 63.61.There𝐴2
coexists with the attractors already accounted for. In Figure 3
we show the situation in somewhat more detail. For each 𝐹
value in Figure 3 we have considered about 20000 different
initial values (𝑥0, 𝑦0) and for each of them performed 10000
iterations (map (13)) to see where the corresponding orbit
settles. The fraction of all orbits starting at (𝑥0, 𝑦0) which
does not converge towards 𝐴2 is below the curve. Hence,
for 𝐹 < 36 (roughly), all orbits converge towards (𝑥∗, 𝑦∗);
thus, (𝑥∗, 𝑦∗) is not locally but also globally stable in this
region. As we continue to increase 𝐹, 36 < 𝐹 < 63.61
there is coexistence between the stable equilibrium (𝑥∗, 𝑦∗)
and 𝐴2, periodic orbits and 𝐴2, and chaotic orbits and A2,
and we observe that the basin of attraction for 𝐴2 gradually
increases as 𝐹 becomes larger. The ultimate situation occurs
when 𝐹 = 63.61; then, all orbits converge towards 𝐴2.

Next, consider 𝐺 > 4.59 and 𝑒2 < 𝐹 < 𝑒4. If an
equilibrium shall undergo a supercritical Neimark-Sacker
bifurcation, then a pair of complex valued eigenvalues must
cross the unit circle outwards at instability threshold and an
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Figure 2: (a) 2-Periodic dynamics generated by (13). Parameter values (𝐹, 𝐺) = (45, 4). (b) Values of Lyapunov exponent𝐿 of orbits generated
by (13). 𝐺 = 4 and 30 < 𝐹 < 60. (c) Bifurcation diagram generated by (13). Same parameter values as in (b). (d) Chaotic dynamics generated
by (13). (𝐹, 𝐺) = (60, 4). (e) 𝑥 and 𝑦 as functions of time. (𝐹, 𝐺) = (60, 4). (f) The route to attractor𝐴2. (𝐹, 𝐺) = (65, 4).
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Figure 3: Below the curve is the fraction of all orbits starting at20000 different initial conditions (𝑥0, 𝑦0) which do not converge
towards attractor𝐴2. 𝐺 = 4, 10 < 𝐹 < 80.
attracting quasiperiodic orbit restricted to an invariant curve
is created beyond the threshold. Regarding (13) we have the
following:

Theorem 3. Consider the map

(𝑥, 𝑦) 󳨀→ (𝐹𝑒−𝑥𝑒−𝑦𝑥, 𝐺𝑒−𝑦 (1 − 𝑒−𝑥) 𝑦) (23)

under the assumptions 𝐹 ∈ (𝑒2, 𝑒4) and 𝐺 > 4.59. �en, for
those combinations of 𝐹 and G such that 𝑥∗𝑦∗ = 𝐹 ln𝐹(𝐹 +𝐺)−1, the equilibrium undergoes a supercritical Neimark-
Sacker bifurcation.

Proof. See Appendix.

Assuming 𝐺 = 5, a supercritical Neimark-Sacker bifur-
cation will occur when 𝐹 is increased to 40.18. Figure 4(a),
where (𝐹, 𝐺) = (43, 5), shows an attracting invariant curve
as predicted byTheorem 3.There is also a clear tendency that
the predator population has a peak one unit of time later than
the prey, but the tendency is not as profound as in cases where𝐺 < 4.59 (the ‘flip’ cases). This is exemplified in Figure 4(b).

Still keeping 𝐺 = 5 fixed, we have also in this case
computed the Lyapunov exponent 𝐿 and the bifurcation
diagram for different values of 𝐹. Results are presented in
Figure 5 where we have used the initial value (𝑥0, 𝑦0) =(2.5, 1.25). The equilibrium (𝑥∗, 𝑦∗) is stable when 𝑒2 <𝐹 < 40.18 and the invariant curve which is created at 𝐹 =40.18 persists in the interval 40.18 < 𝐹 < 𝑒4. For higher
values of 𝐹 we find windows (𝐿 < 0) where the dynamics
is periodic as well as new invariant curves. The rationale
behind this dynamics is as follows: once the invariant curve
is established, map (13) is basically topological equivalent
to a circle map. Associated with a circle map is a rotation
number 𝜎 and whenever there are specific 𝐹 values such that𝜎 becomes rational, the dynamics is periodic. Moreover, the
implicit function theorem guarantees that the periodicity is
maintained in an interval about the specific 𝐹 values as well.
Chaos is introduced when 𝐿 becomes positive, i.e., when 𝐹
exceeds 65.6, which is interrupted by windows of different

widths where the dynamics is periodic (𝐿 < 0). The large
window corresponds to period 2 orbits.

The value of𝐿 jumpswhen𝐹 reaches 90.18. Depending on(𝑥0, 𝑦0) the ultimate fate of orbits generated by (13) is now𝐴2.
This is exemplified in Figure 6(a) when (𝐹, 𝐺) = (91, 5) and(𝑥0, 𝑦0) = (2.5, 1.25). Those initial conditions and associated
orbits which do not settle on𝐴2 end up on a chaotic attractor
as displayed in Figure 6(b).This attractor has been established
through a series of period doubling bifurcations as a result of
increasing 𝐹 from the ‘2 period window’ in Figure 5. When 𝐹
exceeds 94.6, all orbits are attracted by 𝐴2.
Example 4. Next, consider the case 𝛼 = 1 and 𝛽 = 1/2.
This means that we are now entering a part of a parameter
space where the predator gains less from the prey than the
prey is able to ‘give’, so in many respects one may argue that
this example is of more biological relevance than the previous
one.

The nontrivial equilibrium point is found to be

(𝑥∗, 𝑦∗) = (ln(1 + √𝑎2 )2 , ln( 4𝐹(1 + √𝑎)2)) (24)

where 𝑎 = (4𝐹 + 𝐺)𝐺−1. Moreover, note that the difference
between 𝑥∗ given by (24) and (14) may be written as

𝑥∗(24) − 𝑥∗(14) = ln{1 + 1 + (√𝑎 − 1)2 (𝐹 + 𝐺) } > 0 (25)

and further

𝑦∗(24) − 𝑦∗(14) = ln{ 2𝐹 (𝐹 + 𝐺)2𝐹 (𝐹 + 𝐺) + 𝐹𝐺 (√𝑎 − 1)} < 0 (26)

Hence, when 𝛽 < 𝛼 we conclude that the size of 𝑥∗ increases
and the size of 𝑦∗ decreases compared to the case 𝛼 = 𝛽.
Biologically, this makes sense. 𝛽 < 𝛼means that the predator
will benefit less by eating which in turn will lead to a decrease
of the size of the predator population. Subsequently, the
predation pressure on the prey becomes smaller which again
leads to an increase of the prey population.

At bifurcation threshold 𝑓1 = 𝑥∗𝑦∗ (confer (9)) the
eigenvalues are 𝜆1 = −1 and 𝜆2 = 3 − (𝑥∗ + 𝑦∗) = 3 −
ln𝐹, while the eigenvalues at the Neimark-Sacker threshold𝑥∗𝑦∗ = 𝑓2 are given by (11) and (24). Consequently, we do
not expect any qualitative changes of the dynamics compared
to the symmetric case 𝛼 = 𝛽 = 1.

Numerically, we have found that when 𝐺 = 4.623 the
graphs of𝑓1, 𝑥∗𝑦∗ and 𝑓2 intersect at 𝐹 = 𝑒4.This is displayed
in Figure 7.Thus, the largest possible 𝐹 interval (𝑒2 < 𝐹 < 𝑒4)
where (𝑥∗, 𝑦∗)may be stable occurs for this particular value
of 𝐺. Note that 𝐺 here is slightly larger than in the 𝛼 = 𝛽 = 1
case which suggests that a decrease of 𝛽 acts in a stabilizing
fashion.

For comparison reasons we have also investigated the
cases 𝐺 = 4 and 𝐺 = 5 in somewhat more detail. Regarding
the former, we find that equilibrium (24) is stable in the
interval 𝑒2 < 𝐹 < 37. At 𝐹 = 37, (24) undergoes a
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−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Ly
ap

un
ov

 ex
po

ne
nt

40 60 80 10050 907030
F

(a)

0

5

10

15

20

25

30

35

40
x

40 50 60 70 80 90 10030
F

(b)
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diagram generated by (13). Same parameter values as in (a).
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(supercritical) flip bifurcation and a stable period 2 orbit is
established.Through further enlargement of𝐹 periodic orbits
of period 2𝑘, 𝑘 > 1 is the dynamical outcome. Chaos is
introduced when 𝐹 = 41 and the structure of the attractor
is similar to the one shown in Figure 2(d). For higher values
of 𝐹 (𝐹 > 46), chaotic behaviour of 𝐴2 form dominates.
(Note that some of the 𝐹 thresholds above strongly depend on
the initial conditions.) Thus, compared with the symmetric
case 𝛼 = 𝛽 = 1, see the Lyapunov exponent diagram
in Figure 2(b); the case under consideration appears to be
somewhat more unstable in the sense that the road from
stability to chaos appears to be shorter here.

Considering the case 𝐺 = 5, we find that 𝑒2 < 𝐹 < 39
guarantees a stable equilibrium. At 𝐹 = 39 a (supercritical)
Neimark-Sacker bifurcation takes place, creating an attract-
ing invariant curve which persists until 𝐹 = 62 where it
breaks up and chaotic oscillations are the outcome. Chaotic
attractors of 𝐴2 form have also been identified just as in the𝛼 = 𝛽 = 1 case.
3. The 3-Dimensional Models

In this section we shall extend the two-dimensional model
(3) by including one more predator which we shall refer to as
the top predator 𝑧. There is basically two ways of including 𝑧:
one way is to assume that 𝑧 preys upon 𝑦 only, and the other
possibility is to assume that 𝑧 preys upon both 𝑥 and 𝑦. In
order to analyze the former case we consider the model

𝑥𝑡+1 = 𝐹𝑒−𝑥𝑡𝑒−𝛼𝑦𝑡𝑥𝑡
𝑦𝑡+1 = 𝐺𝑒−𝑦𝑡 (1 − 𝑒−𝛽𝑥𝑡) 𝑒−𝛾𝑧𝑡𝑦𝑡
𝑧𝑡+1 = 𝐻𝑒−𝑧𝑡 (1 − 𝑒−𝛿𝑦𝑡) 𝑧𝑡

(27)

In the latter case:

𝑥𝑡+1 = 𝐹𝑒−𝑥𝑡𝑒−𝛼𝑦𝑡𝑒−𝛽𝑧𝑡𝑥𝑡𝑦𝑡+1 = 𝐺𝑒−𝑦𝑡 (1 − 𝑒−𝛾𝑥𝑡) 𝑒−𝛿𝑧𝑡𝑦𝑡𝑧𝑡+1 = 𝐻𝑒−𝑧𝑡 (1 − 𝑒−𝜖𝑥𝑡) (1 − 𝑒−𝜎𝑦𝑡) 𝑧𝑡
(28)

Model (27) possesses the nontrivial equilibrium

(𝑥∗, 𝑦∗, 𝑧∗) = (ln (𝐹𝑒−𝛼𝑦∗) , 𝑦∗, ln (𝐻(1 − 𝑒−𝛿𝑦∗))) (29)

where 𝑦∗ satisfies the equation
𝑒(𝛼𝛽−1)𝑦∗ 1 − 𝐹𝛽𝑒−𝛼𝛽𝑦∗1 − 𝑒−𝛿𝛾𝑦∗ = −𝐹𝛽𝐻𝛾𝐺 (30)

Regarding equilibrium (𝑥∗, 𝑦∗, 𝑧∗) of model (28) we find

(𝑥∗, 𝑦∗, 𝑧∗) = (ln (𝐹𝑒−𝛼𝑦∗𝑒−𝛽𝑧∗) , 𝑦∗, 𝑧∗) (31)

and 𝑦∗, 𝑧∗ must be obtained from the system

𝐻𝑒−𝑧∗ [𝐹𝜖𝑒−𝛼𝜖𝑦∗𝑒−𝛽𝜖𝑧∗ − 1] (1 − 𝑒−𝜎𝑦∗) − 𝐹𝜖𝑒−𝛼𝜖𝑦∗𝑒−𝛽𝜖𝑧∗
= 0

𝐺𝑒−𝑦∗ [𝐹𝛾𝑒−𝛼𝛾𝑦∗𝑒−𝛽𝛾𝑧∗ − 1] 𝑒−𝛿𝑧∗ − 𝐹𝛾𝑒−𝛼𝛾𝑦∗𝑒−𝛽𝛾𝑧∗ = 0
(32)

Stability analysis is performed by linearizing about the equi-
librium in the same way as in Section 2. This gives birth to
eigenvalue equations of form

𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + 𝑎3 = 0 (33)

where the coefficients 𝑎1 − 𝑎3 in case of model (27) and
equilibrium (29) become

𝑎1 = (𝑥∗ + 𝑦∗ + 𝑧∗) − 3
𝑎2 = 3 − 2 (𝑥∗ + 𝑦∗ + 𝑧∗) + (1 + 𝛼𝛽 (𝐺𝑒−𝑦∗ − 1)) 𝑥∗𝑦∗

+ 𝑥∗𝑧∗ + (1 + 𝛾𝛿(𝐻𝑒−𝑧∗ − 1)) 𝑦∗𝑧∗
𝑎3 = (𝑥∗ + 𝑦∗ + 𝑧∗) − (1 + 𝛼𝛽 (𝐺𝑒−𝑦∗ − 1)) 𝑥∗𝑦∗

− 𝑥∗𝑧∗ − (1 + 𝛾𝛿(𝐻𝑒−𝑧∗ − 1)) 𝑦∗𝑧∗
+ [𝛾𝛿 (𝐻𝑒−𝑧∗ − 1) + 𝛼𝛽 (𝐺𝑒−𝑦∗ − 1)] 𝑥∗𝑦∗𝑧∗
− 1

(34)



Discrete Dynamics in Nature and Society 9

while the corresponding coefficients considering model (28)
and equilibrium (31) may be written as𝑎1 = (𝑥∗ + 𝑦∗ + 𝑧∗) − 3𝑎2= 3 − 2 (𝑥∗ + 𝑦∗ + 𝑧∗) + (1 + 𝛼𝛾𝐴) 𝑥∗𝑦∗

+ (1 + 𝛽𝜖𝐵) 𝑥∗𝑧∗ + (1 + 𝛿𝜎𝐶) 𝑦∗𝑧∗𝑎3= (𝑥∗ + 𝑦∗ + 𝑧∗) − (1 + 𝛼𝛾𝐴) 𝑥∗𝑦∗ − (1 + 𝛽𝜖𝐵) 𝑥∗𝑧∗
− (1 + 𝛿𝜎𝐶)) 𝑦∗𝑧∗
+ (1 + 𝛿𝜎𝐶 + 𝛼𝛾𝐴 − 𝛼𝛿𝜖𝐵 + 𝛽𝜎𝛾𝐴𝐶 + 𝛽𝜖𝐵) 𝑥∗𝑦∗𝑧∗− 1

(35)

Here 𝐴 = 𝐺𝑒−𝑦∗𝑒−𝛿𝑧∗ − 1
𝐵 = 𝐻𝑒−𝑧∗ (1 − 𝑒−𝜎𝑦∗) − 1
𝐶 = 𝐻𝑒−𝑧∗ (1 − 𝑒−𝜖𝑥∗) − 1

(36)

Equilibria (29) and (31) are stable as long as all eigenvalues
of (33) are located inside the unit circle in the complex plane.
According to the Jury criteria [28] this is satisfied as long as
the inequalities𝑆1 = 1 + 𝑎1 + 𝑎2 + 𝑎3 > 0𝑆2 = 1 − 𝑎1 + 𝑎2 − 𝑎3 > 0𝑆3 = 1 − 󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨 > 0𝑆4 = 󵄨󵄨󵄨󵄨󵄨1 − 𝑎23 󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝑎2 − 𝑎3𝑎1󵄨󵄨󵄨󵄨 > 0

(37)

hold.
The strategywe shall use in order to study the impact from

top predator 𝑧 on 𝑥 and 𝑦 is to fix values of fecundities 𝐹 and𝐺 and then study the dynamic consequences of varying 𝐻.

Example 5. We start by considering model (27).The parame-
ter space is huge so at first we limit the discussion and assume
that 𝛼 = 𝛽 = 𝛾 = 𝛿 = 1. Then, the nontrivial equilibrium (29)
may be expressed as(𝑥∗, 𝑦∗, 𝑧∗)
= (ln(𝐻𝐹 + 𝐺𝐺 +𝐻 ) , ln (𝐹 (𝐺 + 𝐻)𝐻𝐹 + 𝐺 ) , ln(𝐻𝐺(𝐹 − 1)𝐹 (𝐺 + 𝐻) )) (38)

and in order for 𝑧∗ > 0,𝐻must satisfy the inequality

𝐻 > 𝐹𝐺𝐹𝐺 − 𝐹 − 𝐺 (39)

Moreover, left hand side of 𝑆1 (see (37)) reduces to(𝐻 + 𝐺𝐹−1) 𝑒−𝑧∗𝑥∗𝑦∗𝑧∗ (40)

which is clearly positive for all nonzero equilibrium popula-
tions 𝑥∗, 𝑦∗, and 𝑧∗.

In order to investigate the impact from the top predator𝑧 on the dynamics in more detail we consider the case(𝐹, 𝐺) = (43, 5) (which means that for 𝑧∗ = 0, the
dynamics occurs on an invariant curve in the 𝑥 − 𝑦 plane
as already accounted for; confer Figure 4(a)). When 𝑧∗ (or𝐻) is small, 𝑆2 > 0, 𝑆3 < 0, 𝑆4 > 0 and we find
quasiperiodic behaviour restricted on invariant curves in
the 𝑥 − 𝑦 − 𝑧 plane; see Figure 8(a). If we continue to
increase𝐻, the nontrivial fixed point (38) becomes attracting;
confer Figure 8(b). Thus, in this part of parameter space an
enlargement of 𝐻 acts stabilizing. However, this region is
small. Indeed, through further increase of 𝐻, 𝑆2 becomes
negative and stable periodic orbits of period 2𝑘, 𝑘 ≥ 1 are
established; see Figure 8(c). Eventually, the system exhibits
chaotic behaviour (see Figure 8(d)), and when 𝐻 exceeds2.46, both predators are driven to extinction and the prey
performs chaotic oscillations similar to what was reported
in Section 2. The graphs of 𝑆2, 𝑆3, and 𝑆4 may be obtained
in Figure 9. Turning to the parameter combination (𝐹, 𝐺) =(45, 4) we know from the analysis in Section 2 that the
dynamics is a stable period 2 orbit (confer Figure 2(a)). For
small values of 𝑧∗, 𝑆2 < 0 and becomes even more negative as𝐻 grows. Hence, we observe qualitatively the same dynamical
behaviour as in the (𝐹, 𝐺) = (43, 5) case. The only difference
really is that it is not possible to obtain an interval where(𝑥∗, 𝑦∗, 𝑧∗) is stable.
Example 6. Next, suppose that 𝑧 preys upon both 𝑥 and 𝑦.
Then, under the assumption 𝛼 = 𝛽 = 𝛾 = 𝛿 = 𝜖 = 𝜎 = 1
equilibrium (31) of model (28) is found to be

(𝑥∗, 𝑦∗, 𝑧∗)
= (ln (𝐹 + 𝐺𝐺 ) , ln(𝐺 + 𝐻𝐻 ) , ln( 𝐹𝐺𝐻(𝐹 + 𝐺) (𝐺 + 𝐻))) (41)

and

𝐻 > 𝐺 (𝐹 + 𝐺)𝐹𝐺 − 𝐹 − 𝐺 (42)

in order to ensure 𝑧∗ > 0. The equilibrium is stable as long as
the Jury criteria (37) are satisfied.

In order to account for the dynamics we refer to Figure 10,
where we have computed the Lyapunov exponent 𝐿 of the
orbit generated by (28) in the case (𝐹, 𝐺) = (43, 5) and1.43 < 𝐻 < 9. For 𝐻 close to 1.4371, 𝐿 = 0 and we observe
quasiperiodic behaviour. When 𝐻 exceeds 1.5, equilibrium
(41) becomes stable and remains stable until 𝐻 = 3.98
where 𝑆2 (confer (37)) equals zero and (41) undergoes a flip
bifurcation. Note that the stable interval here is much larger
than the corresponding interval found in Example 5. This
finding suggests that if the top predator preys upon both
populations, it leads to more stable dynamics compared to
the situation where 𝑧 preys upon 𝑦 only. Whenever 3.98 <𝐻 < 6.10, there are stable period 2 orbits and at 𝐻 = 6.10
a stable period 4 orbit is established through yet another flip.
However, in contrast to all cases discussed earlier, we do not
experience the flip bifurcation sequence and orbits of period2𝑘, 𝑘 ≥ 3 as 𝐻 is further increased. Instead at 𝐻 = 7.3 the



10 Discrete Dynamics in Nature and Society

z

y x
(a)

z

y x
(b)

z

y x
(c)

z

y x
(d)

Figure 8: (a) An invariant curve in 3-space in case of𝐻 small. Parameter values (𝐹, 𝐺,𝐻) = (43, 5, 1.3). (b) Convergence towards the stable
equilibrium (𝑥∗, 𝑦∗, 𝑧∗). Parameter values (𝐹, 𝐺,𝐻) = (43, 5, 1.32). (c) A 2 cycle generated by model (27). Parameter values (𝐹, 𝐺,𝐻) =(43, 5, 1.64). (d) Chaotic dynamics. Parameter values (𝐹, 𝐺,𝐻) = (43, 5, 2.38).
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Figure 9: Graphs of Jury criteria 𝑆2, 𝑆3, and 𝑆4, cf. (34) and (37).

fourth iterate of (28) undergoes aNeimark-Sacker bifurcation
and the outcome is four disjoint invariant curves that are
visited once every fourth iteration; see Figure 11(a).𝐿 becomes
positive at 𝐻 = 7.9 and the dynamics turns chaotic, as
displayed in Figure 11(b). After the jump at 𝐻 = 8.2 there

are chaotic oscillations where 𝑦 = 𝑧 = 0, i.e., the same kind
of dynamics as found in Example 5.

4. Discussion

In this paper we have analyzed two and three species prey-
predator models. Focus has been on stability properties
and dynamic behaviour in unstable and chaotic parameter
regions. As accounted for, the parameter space is huge.
Therefore, we have mainly concentrated on special cases, for
example, the cases 𝛼 = 𝛽 = 1 or 𝛼 = 1, 𝛽 = 1/2 in the
two species model. Regarding fecundity terms (𝐹, 𝐺, and𝐻),
results from only selected values of 𝐺 have been presented.
However, these values indeed seem to be representative as lots
of numerical experiments with other values suggest.

First, let us comment on the two species models. The
largest 𝐹 interval where (𝑥∗, 𝑦∗)may be stable is 𝑒2 < 𝐹 < 𝑒4.
This interval exists for only one value of𝐺,𝐺 = 𝐺𝐶 (𝐺𝐶 = 4.59
when 𝛼 = 𝛽 = 1, 𝐺𝐶 = 4.623 if 𝛼 = 1, 𝛽 = 1/2). When𝐺 < 𝐺𝐶, the region where (𝑥∗, 𝑦∗) is stable is on the form𝑒2 < 𝐹 < 𝐶1, while 𝐺 > 𝐺𝐶 implies the region 𝑒2 < 𝐹 < 𝐶2
and 𝐶1, 𝐶2 < 𝑒4. Moreover, for a fixed value of 𝐺,𝐺 < 𝐺𝐶
the equilibrium will undergo a supercritical flip bifurcation
at threshold 𝐹 = 𝐶1 while a supercritical Neimark-Sacker
bifurcation occurs at 𝐹 = 𝐶2, 𝐺 > 𝐺𝐶. Thus, the value
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Figure 10: Values of Lyapunov exponent 𝐿 of orbits generated by
(28). Parameters: (𝐹, 𝐺) = (43, 5) and 1.43 < 𝐻 < 9.
of 𝐺 decides what kind of nonstationary behaviour model
(3) may generate as 𝐹 is increased. In the former case an
increase of 𝐺 acts stabilizing while it acts in a destabilizing
way in the latter case. For a given value of 𝐺 an enlargement
of 𝐹 acts in a destabilizing fashion and when 𝐹 becomes
sufficiently large, chaotic behaviour is the outcome. However,
depending 𝐺 < 𝐺𝐶 or 𝐺 > 𝐺𝐶, the routes to chaos will
be different. Scrutinizing the chaotic regime, there are two
possibilities: (A) there may be chaotic oscillations where both
populations survive or (B) the prey exhibits chaotic large
amplitude oscillations while the predator faces extinction. If𝐹 exceeds a critical threshold 𝐹𝐶, possibility (B) will always
be the case. If 𝐹 < 𝐹𝐶 and |𝐹−𝐹𝐶| is small, the ultimate fate of
an orbit (extinction of the predator or not) strongly depends
on the initial conditions (𝑥0, 𝑦0).

Turning to the three species models (27), (28) our finding
is that the inclusion of a top predator 𝑧 may act qualitatively
different on the dynamics depending on whether 𝑦 or both𝑥 and 𝑦 are targets. If 𝑧 preys upon 𝑦 only there exists a tiny
region in state space where 𝑧 is small, and if increased, acts
in a stabilizing fashion. However, if 𝑧 becomes larger, further
increase has a strong destabilizing effect. The transfer from
a stable equilibrium (𝑥∗, 𝑦∗, 𝑧∗) to nonstationary behaviour
occurs when an eigenvalue 𝜆 of (33) crosses the unit circle
at −1 (𝑆2 = 0) and periodic dynamics of period 2𝑘, 𝑘 ≥1 is established. Eventually, the dynamics becomes chaotic.
The reason why an increase of 𝑧 acts destabilizing may be
understood along the following line: when 𝑧 preys upon𝑦 only, the size of 𝑦 becomes smaller which reduces the
impact on 𝑥 from 𝑦.This allows 𝑥 to perform large amplitude
oscillations for smaller values of 𝐹 than if 𝑧 had been absent.
Consequently, in a worst-case scenario, 𝑥 may fall below a
critical value 𝑥𝐶 such that 𝑦 does not manage to recover from
a low population density and the result is extinction of both𝑦 and 𝑧.

When 𝑧 preys upon both species 𝑥 and 𝑦, we find changes
regarding stability properties as well as changes concerning
the nonstationary dynamics. As long as the interaction
parameters are equal, the region where (𝑥∗, 𝑦∗, 𝑧∗) is stable
appears to be significantly larger than in the previous case

where 𝑧 preys upon 𝑦 only. Thus, one may argue that
the inclusion of small and intermediate sized top predator
populations acts stabilizing compared to the findings in the
former case. The total predation pressure on 𝑥 is on a level
where it prevents large amplitude oscillations of the prey.
However, if 𝐻 is further increased, we observe just as in the
former case, periodic dynamics of period 2 and 4 but not
periodic dynamics of period 2𝑘, 𝑘 ≥ 3. Instead, the fourth
iterate of (28) undergoes a Neimark-Sacker bifurcation and 4
invariant closed curves are established which again implies
that the route to chaos is different from the route when 𝑧
preys upon 𝑦 only. Consequently, there are large regions in
parameter space where the dynamical outcomes are different
between the two models (27), (28) under consideration.
However, if we continue to increase 𝐻, we will eventually
arrive at the same situation as we experienced through model
(27); namely, that both the predator and the top predator will
die.

Appendix

A. Proof of Theorem 2 in the Main Text

At threshold 𝑥∗𝑦∗ = 𝑓1(𝐹, 𝐺) = 2𝐹(ln𝐹 − 2)(𝐹 + 𝐺)−1 the
Jacobian may be expressed as

𝐽 = (1 − 𝑏 −𝑏𝐺𝐹 𝑐 1 − 𝑐) (A.1)

Next, define the matrix

𝑇 = ( 𝑏2 − 𝑏 𝑏𝑐 − 21 1 ) (A.2)

where the columns are the eigenvectors corresponding to𝜆1 = −1 and 𝜆2 = 3 − ln𝐹 of 𝐽, respectively. Then after
expanding 𝐹𝑒−𝑥𝑒−𝑦 and 𝐺𝑒−𝑦(1 − 𝑒−𝑥) up to third order,
applying the change of coordinates (𝑥, 𝑦) = (𝑥 − 𝑥∗, 𝑦 − 𝑦∗)
(in order to translate the bifurcation to the origin), together
with the transformation

(𝑥𝑦) = 𝑇(𝑢V) (A.3)

we may cast map (13) into standard form as

(𝑢
V
) 󳨀→ (−1 00 3 − ln𝐹)(𝑢V) + (𝐻 (𝑢, V)𝑄 (𝑢, V)) (A.4)

where

𝐻(𝑢, V) = (2 − 𝑏) (𝑐 − 2)𝑏 (ln𝐹 − 4) {( ln𝐹 − 2𝑐 )
⋅ [ 𝑏2 − 𝑏𝑢 + 𝑏𝑐 − 2V] (𝑢 + V) + 16 [ 𝑏2 − 𝑏𝑢 + 𝑏𝑐 − 2V]3
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Figure 11: (a) 4 invariant curves just beyond threshold where the fourth iterate of (28) has gone through a Neimark-Sacker bifurcation.
Parameter values (𝐹, 𝐺,𝐻) = (43, 5, 7.5). (b) Chaotic dynamics generated by (28). Parameter values (𝐹, 𝐺,𝐻) = (43, 5, 8).

+ (2 − 𝑏2𝑐 ) [ 𝑏2 − 𝑏𝑢 + 𝑏𝑐 − 2V]2 (𝑢 + V)
+ 12 (1 − 2 (ln𝐹 − 2)𝑐 ) [ 𝑏2 − 𝑏𝑢 + 𝑏𝑐 − 2V] (𝑢 + V)2
− 𝑏6 (𝑐 − 2) (𝑢 + V)3}

(A.5)

and

𝑄 (𝑢, V) = (2 − 𝑏) (𝑐 − 2)𝑏 (ln𝐹 − 4) {−12 (ln𝐹 − 4)
⋅ [ 𝑏2 − 𝑏𝑢 + 𝑏𝑐 − 2V]2 + (𝑐 − 2𝑐 − (ln𝐹 − 3))
⋅ [ 𝑏2 − 𝑏𝑢 + 𝑏𝑐 − 2V] (𝑢 + V) + 𝑏2 (2 − 𝑏) (ln𝐹 − 4)
⋅ (𝑢 + V)2 + 16 (ln𝐹 − 5) [ 𝑏2 − 𝑏𝑢 + 𝑏𝑐 − 2V]3
+ 12 ((ln𝐹 − 4) − 𝑐 − 2𝑐 ) [ 𝑏2 − 𝑏𝑢 + 𝑏𝑐 − 2V]2 (𝑢 + V)
+ 12 ((ln𝐹 − 3) − 2𝑐 − 2𝑐 ) [ 𝑏2 − 𝑏𝑢 + 𝑏𝑐 − 2V]
⋅ (𝑢 + V)2 − 𝑏 (ln𝐹 − 5)6 (2 − 𝑏) (𝑢 + V)3}

(A.6)

The next step involves the restriction of (A.4) to the center
manifold. To do this we first seek (approximate) the center
manifold as a graph

V = ℎ (𝑢) = 𝐾𝑢2 + 𝐿𝑢3 + 𝑂 (𝑢4) (A.7)

and by inserting (A.7) into the second component of (A.4) we
arrive at

𝐾 (−𝑢𝑡 + 𝐻(𝑢𝑡, ℎ (𝑢𝑡)))2 + 𝐿 (−𝑢𝑡 + 𝐻(𝑢𝑡, ℎ (𝑢𝑡)))3= (3 − ln𝐹) (𝐾𝑢2𝑡 + 𝐿𝑢3𝑡 ) + 𝑄 (𝑢𝑡, ℎ (𝑢𝑡)) (A.8)

fromwhichwe obtain𝐾 and 𝐿. Finally, by inserting (A.7) into
the first component of (A.4), neglecting terms of order 4 and
higher, this results in the restricted map

𝑢𝑡+1 = 𝑤 (𝑢𝑡) = −𝑢𝑡 + (𝑐 − 2) (ln𝐹 − 2)𝑐 (ln𝐹 − 4) 𝑢2𝑡
+ {𝐾(ln𝐹 − 2) (𝑐 − 𝑏)(ln𝐹 − 4) 𝑐 + 𝑏2 (𝑐 − 2)6 (ln𝐹 − 4) (2 − 𝑏)2
− 𝑐 − 22𝑐 − 2 − 𝑏6 (ln𝐹 − 4)}𝑢3𝑡

(A.9)

where

𝐾 = − (𝑐 − 2)2(ln𝐹 − 4) (2 − 𝑏) 𝑐 (A.10)

Now, appealing to Theorem 3.5 in [29] the bifurcation will
be of supercritical nature whenever the quantity (evaluated
at threshold)

𝑧 = 12 (𝜕2𝑤𝜕𝑢2 )
2 + 13 (𝜕3𝑤𝜕𝑢3 ) > 0 (A.11)

which is equivalent to

𝑧 = 2{(𝑐 − 2)2 (ln𝐹 − 2) (1 − 𝑏)𝑐2 (ln𝐹 − 4) (2 − 𝑏)
+ 𝑏2 (𝑐 − 2)6 (ln𝐹 − 4) (2 − 𝑏)2 + 2 − 𝑐2𝑐 + 𝑏 − 26 (ln𝐹 − 4)} > 0

(A.12)
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Regarding the four terms in (A.12), the two terms in the
middle are positive.When𝐹 󳨀→ 𝑒2, the third termdominates
so 𝑧 becomes very large. When 𝐹 󳨀→ 𝑒4, the second term
dominates and 𝑧 becomes very large as well. For values of𝐹 not close to 𝑒2 or 𝑒4, the second term is by far the largest
and we conclude that (A.12) is positive for all parameter
combinations. Thus, the bifurcation is supercritical.

B. Proof of Theorem 3 in the Main Text

At threshold 𝑥∗𝑦∗ = 𝑓2(𝐹, 𝐺) = 𝐹 ln𝐹(𝐹 + 𝐺)−1 the Jacobian
becomes

𝐽 = (1 − 𝑝 −𝑝𝐺𝐹𝑞 1 − 𝑞) (B.1)

and we define the transformation matrix 𝑇 this time as

𝑇 = (−𝐹√𝑑𝐺𝑞 − 𝐹𝑚2𝐺𝑞1 0 ) (B.2)

where the columns in 𝑇 are the eigenvectors corresponding
to 𝜆 = (2 − ln𝐹)/2 + (𝑚/2)𝑖 of 𝐽 and 𝑚 = √ln𝐹(4 − ln𝐹).
Then we proceed in exactly the same way as in the proof of
Theorem 2, which allows us to cast the map (13) into standard
form as

(𝑢
V
) 󳨀→ (2 − ln𝐹2 −𝑚2𝑚2 2 − ln𝐹2 )(𝑢

V
) + (ℎ (𝑢, V)𝑔 (𝑢, V)) (B.3)

The functions ℎ and 𝑔 contain second and third order terms
of 𝑢 and V and may be expressed as

ℎ (𝑢, V) = −12 𝐹𝐺𝑞 (√𝑑𝑢 + 𝑚2 V)2
− 1 − 𝑞𝑞 (√𝑑𝑢 + 𝑚2 V) 𝑢 + 12 (𝑞 − 2) 𝑢2
− 16 𝐹2𝐺2𝑞2 (√𝑑𝑢 + 𝑚2 V)3
+ 12 (𝑞 − 1) 𝐹𝐺𝑞2 (√𝑑𝑢 + 𝑚2 V)2 𝑢
− 12 𝑞 − 2𝑞 (√𝑑𝑢 + 𝑚2 V) 𝑢2 + 16 (3 − 𝑞) 𝑢3

𝑔 (𝑢, V) = 𝐹𝑚2𝐺𝑞 ln𝐹 (√𝑑𝑢 + 𝑚2 V)2
+ 1𝑚𝑞 ln𝐹 [(ln𝐹)2 − 𝑚2𝑞] (√𝑑𝑢 + 𝑚2 V) 𝑢
− 𝑚𝑞2 ln𝐹𝑢2
+ 13 𝐹2𝑚𝐺2𝑞2 ( 𝑚22 ln𝐹 + 1)(√𝑑𝑢 + 𝑚2 V)3
− 𝐹2𝑚𝐺𝑞2 (𝑚2𝑞ln𝐹 − 2√𝑑)(√𝑑𝑢 + 𝑚2 V)2 𝑢
+ 12𝑚𝑞 ( 𝑚2ln𝐹 − 2𝑝)(√𝑑𝑢 + 𝑚2 V) 𝑢2
+ 13𝑚 ( 𝑞2 ln𝐹𝑚2 − √𝑑)𝑢3

(B.4)

Now, following Wan [30], the Neimark-Sacker bifurcation
will be of supercritical nature if

𝛾 = −Re[(1 − 2𝜆) 𝜆21 − 𝜆 𝜉11𝜉20] − 12 󵄨󵄨󵄨󵄨𝜉11󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝜉02󵄨󵄨󵄨󵄨2
+ Re (𝜆𝜉21)

(B.5)

is negative at instability threshold and that d|𝜆|/d𝐹 > 0
(which ensures that the eigenvalues leave the unit circle at
threshold). The quantities in 𝛾 are
𝜉20 = 18 [(ℎ𝑢𝑢 − ℎVV + 2𝑔𝑢V) + 𝑖 (𝑔𝑢𝑢 − 𝑔VV − 2ℎ𝑢V)]
𝜉11 = 14 [(ℎ𝑢V + ℎVV) + 𝑖 (𝑔𝑢𝑢 + 𝑔VV)]
𝜉02 = 18 [(ℎ𝑢𝑢 − ℎVV − 2𝑔𝑢V) + 𝑖 (𝑔𝑢𝑢 − 𝑔VV + 2ℎ𝑢V)]
𝜉21 = 116 [(ℎ𝑢𝑢𝑢 + ℎ𝑢VV + 𝑔𝑢𝑢V + 𝑔VVV)+ 𝑖 (𝑔𝑢𝑢𝑢 + 𝑔𝑢VV − ℎ𝑢𝑢V − ℎVVV)]

(B.6)

Next, assuming 𝐺 > 4.59, we have computed all derivatives
in (B.6) and the results of 𝜉20, . . . , 𝜉21 are then subsequently
substituted back into (B.5). Then 𝛾 has been computed
numerically in the interval 𝑒2 < 𝐹 < 𝑒4. The graph of𝛾 is displayed in Figure 12, and clearly 𝛾 < 0. Finally, (at
threshold)

d
d𝐹 |𝜆| = 𝑞 − 1𝐹 (1 − 𝐺𝐹𝑝) > 0 (B.7)

(= 0 in the special cases 𝑞 = 1 or 𝑝 = 𝐹/𝐺). Hence, we
conclude that the bifurcation is supercritical.
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