Complete Genome Sequence of *Pseudomonas aeruginosa* K34-7, a Carbapenem-Resistant Isolate of the High-Risk Sequence Type 233

George Taiaroa,a,b Ørjan Samuelsen,c,d Tom Kristensen,e Ole Andreas Løchen Økstad,f,g Adam Heikal,f,g

Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
Department of Pharmacy, Faculty of Health Sciences, UiT—The Arctic University of Norway, Tromsø, Norway
Department of Biosciences, University of Oslo, Oslo, Norway
Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
Laboratory for Microbial Dynamics (LaMDa), Section for Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway

**ABSTRACT** Carbapenem-resistant *Pseudomonas aeruginosa* is defined as a "critical" priority pathogen for the development of new antibiotics. Here we report the complete genome sequence of an extensively drug-resistant, Verona integron-encoded metallo-β-lactamase-expressing isolate belonging to the high-risk sequence type 233.

Carbapenem-resistant *Pseudomonas aeruginosa* is a critical threat to public health (1). *P. aeruginosa* K34-7 belongs to sequence type 233 (ST233) and is an extensively drug-resistant (XDR), carbapenem-resistant clinical isolate expressing the Verona integron-encoded metallo-β-lactamase (VIM-2) (2). ST233 has been identified as a high-risk clone in both Mexico (3) and the United States (4). K34-7 was the first metallo-β-lactamase-producing *P. aeruginosa* isolate identified in Norway, and PCR analysis previously confirmed that the *bla*~VIM-2~ gene was contained within an unusual class 1 integron (GenBank accession number FM165436) (2). As only one other *P. aeruginosa* ST233 complete genome has been published (5), this high-quality *P. aeruginosa* K34-7 genome will provide a valuable additional genomic resource for investigation of this high-risk ST.

Genomic DNA was prepared from a culture grown from a single colony using the Mo Bio DNeasy UltraClean microbial kit (Qiagen, USA) and sequenced on a PacBio RS II platform. A standard library of 20-kb fragments was prepared using the BluePippin preparative electrophoresis system (Sage Science, USA) with a 9-kb cutoff and sequenced on a single-molecule real-time (SMRT) cell using P6-C4 chemistry with 360-min movie-time chemistry. Additional whole-genome sequencing (WGS) was performed using an Illumina HiSeq sequencer. Genome assembly involved a *de novo* approach, using default HGAP 4 settings for the assembly of 96,269 PacBio reads (average length, 10,760 bp), before manual curation and validation. Iterative read mapping of Illumina sequences using custom settings in Geneious 10.1.3 (6) was used to identify assembly errors, primarily single-base insertions and deletions, and for variant correction (0.7 minimum variant frequency, 5 × minimum coverage). Custom settings included allowed gaps (15% maximum/read and 15-bp maximum size); word and index word lengths of 18 and 13, respectively; and 20% maximum mismatch/read and maximum ambiguity of 4.

Received 22 June 2018 Accepted 29 June 2018 Published 2 August 2018


**Editor** David A. Baltrus, University of Arizona

**Copyright** © 2018 Taiaroa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Ole Andreas Løchen Økstad, aloechen@farmasi.uio.no, or Adam Heikal, adam.heikal@farmasi.uio.no.
The K34-7 genome consists of a 7,038,012-bp chromosome and one plasmid, pK34-7-1 (4,440 bp). A *P. aeruginosa* genomic island 5 (PAGI-5)-like hybrid (7) pathogenicity island (84,893 bp) and bacteriophage (38,832 bp) were found on the chromosome (positions 4154015 to 4238618 and 6469185 to 6508016, respectively). The XDR K34-7 phenotype is predominantly due to genes associated with three chromosomally located class 1 integrons, including genes imparting resistance to aminoglycosides (aac(3)-I, aac(3)-II, adaA2, and aph(3’)-Iib), β-lactams (bla*OXA-48*, bla*OXA-48*-*bla*PDC-3*-*bla*VIM-3*), chloramphenicol (catB, cmlA6, and floR), trimethoprim (*dfrB5*), fosfomycin (*fosA*), sulfonamide (*sul1*, *tetG*), and tetracycline (*tetG*), as annotated by the PGAP pipeline (8). Additionally, *tetK*, encoding the tetracycline efflux pump TetK, is found on the small pK34-7-1 plasmid.

A region (1936000 to 2043700) of 12 direct tandem repeats (7,122 bp) mean Illumina coverage (9, 10). Similar regions appear in other *P. aeruginosa* genomes but not in the ST233 *P. aeruginosa* PA83 genome (5). Additionally, *P. aeruginosa* K34-7 contains a type I-F CRISPR-Cas system (1656563 to 1664702), previously described in *P. aeruginosa* strain UCBPP-PA14 (11).

Complete high-quality bacterial genomes facilitate further research into mechanisms of resistance and their dissemination and aid in the development of new therapies for XDR infections.

**Data availability.** This complete genome project has been deposited at GenBank under the accession numbers CP029707 and CP029708.

**ACKNOWLEDGMENTS**

The sequencing service was provided by the Norwegian Sequencing Centre (http://www.sequencing.uio.no), a national technology platform hosted by the University of Oslo and supported by the “Functional Genomics” and “Infrastructure” programs of the Research Council of Norway and the Southeastern Regional Health Authorities.

We thank Ewa Jaroszewicz for technical support.

**REFERENCES**


