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Frequency power spectra due to a super-position of uncorrelate Lorentman pulses with a
random distribution of amplitudes are considered. For se ith*eonstant duration, there
is an exponential frequency spectrum which is indep E-QLthe degree of pulse overlap
and the pulse amplitude distribution. The spect 1s fu more shown to be unaffected
by skewness of the Lorentzian pulses and eV aran 1str1but10n of the pulse asymme-
try parameter and its correlation with the pul mA)tude This stochastic model provides
new insight to the ubiquitous exponenti :pksltn_ﬁulds and magnetized plasmas exhibit-
ing deterministic chaos, where non- hnmdion processes lead to amplitude dependent

steepening of smooth pulses.
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PublishingAn intrinsic property of deterministic chaos is an exponential frequency power spectral density
for the fluctuations.!=® This has been observed in numerous experiments and model simulations of
fluids and magnetized plasmas.®2% Recently, the exponential spectrum has been attributed to the
presence of uncorrelated Lorentzian pulses in the temporal dynamics.®31-22 However, far from
the threshold for linear instability in continuum systemes, it is expecte?/that non-linear advection

ot?he se parameters.?>~%

processes and chaos will lead to steepening effects and randomnes
This motivates investigations of the effect of pulse skewness and a distgibution of pulse amplitudes
and asymmetry.20-26 \

In this work, a stochastic model for intermittent ﬁuctug}\l in physical systems based on a
super-position of uncorrelated pulses is considered. By'analogy with the characteristic function
for stable distributions, the symmetric Lorentzian pulse is generalized to have finite skewness. The
mean, variance, auto-correlation function and fréquency L[.)—a)ver spectral density are all shown to

be independent of a random distribution of theb\rd metry parameter and its correlation with
the pulse amplitudes. The model present he}*pgo es a novel framework for describing inter-

—_—

mittent fluctuations and exponential f quscn ower spectral densities in fluids and magnetized
~

plasmas.
Consider a stochastic proces gi&\ the super-position of K uncorrelated pulses with a fixed
shape and duration 74 in a time in%&f duration 7,26-35

K(T) _
chm W (tr—”‘) - (1)
y k=1 d
&.\

Each pulse labelqé\\h %terized by an amplitude Ay and arrival time 7, both assumed to be
uncorrelated d?jch of'them independent and identically distributed. The number of pulses K in

an intervalOf duration 7T is given by the Poisson distribution,

£
. 4 1 K
S PelkiT) = () ew (o). @

ith meag value of the number of pulses given by

\ &)=Y KPc(K|T) = T 3)
K=0

w

Here and in the following, angular brackets denote the average of the argument over all random
variables unless otherwise explicitly stated. From the Poisson distribution it follows that the wait-

ing times between the pulses are exponentially distributed with mean value 7, and that the pulse
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Publishiagival times are uniformly distributed on the time interval under consideration, that is, their prob-
ability density function is given by 1/T.

The pulse shape ¢(0) is taken to be the same for all events in Eq. (1). This function is normal-

| _aole(@)=1. y 4)

Thus, each pulse contributes equally to the mean value of ®k (). The @\bf the n’th power of
the pulse shape will appear frequently in the following and is dek&

ized such that

L= [ a0 ooy, & e 5

for positive integers n. It is assumed that 7 is large co aredyith the range of values of ¢ for
which ¢(z/14) is appreciably different from zero, t@allgp%vmg to neglect end effects in a given

realization of the process. &

The normalized auto-correlation function@s function is defined by’
po(6) = W(M(He), ©)

and the Fourier transform of this gi Q{recﬂfency spectrum,

0o (0) 0 po(6)expl(i99) = - l9(3)[, )

0o

where the transform of t pmunction is defined by

£ U) = de 0)exp(i00). (8)
ANy (9)= | _d09(8)exp(i60)

In this contrib iﬁ%‘;h uto-correlation function and the frequency power spectral density for the
process define g. (1) will be investigated for the case of skewed Lorentzian pulses.
The dégree©f pulse overlap, and therefore the intermittency of the process, is given by the ratio

of thefpulse duration and waiting times. This ratio is referred to as the intermittency parameter and
dby y

defing = T4/ Tw. The mean value of the process is given by (®) = yI;(A) and the variance
by ®2 % yI,(A?). In the following, the rescaled variable defined by
\J 5_ 2 (@)
o ® = ; )
¢I'Il'lS

with vanishing mean and unit standard deviation will be considered. The auto-correlation function

for a time lag r is defined by
R (r) = (Pk (1) Pk (t+7)). (10)
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Publishi.ﬁlg stituting the variable defined by Eq. (1), the expressions for the auto-correlation function and

the frequency power spectral density for the rescaled random variable defined by Eq. (9) are given
by26,27

8(r) =Py (r/Ta), (11a)
. &

R
Qs (0) =14 0y (074), 3\ (11b)

that is, they are simply determined by the shape and duration o‘(\hg\ms‘e function ¢. It is em-

phasized that the auto-correlation function and frequency p e‘r)pect are independent of the

The pulse shape to be considered in the following is the normalized Lorentzian function,

1 (L
\ ) (12)
T

which satisfies the requirement given by Eq. ’6@ egral of the n-th power of the Lorentzian

pulse shape is given by

amplitude distribution P4 and the intermittency parametegj@.t\ha i Tt‘ﬁ'é degree of pulse overlap.

/

1 F(n—1/2

hS o

where I" is the Gamma function. \k){ t order pulse function integrals are given by I} =1,

(13)

L=1/2n,1=3/87% and I; = From this it follows that the mean value of the stationary
process is glven by (P the variance is ®2_ = 7(A?) /27, and the skewness and flatness
moments are’S
1/2 A3
) < . 3> o (14a)
ny) (A%
5 (A%
Fp =34+ — 14b

clearly reyealing the strong intermittency in the case of weak pulse overlap.

Wi({eﬁj)rentzian pulse, the normalized auto-correlation function and its Fourier transform

AQS
4
\ I Po(0) = 3 (152)
0¢ (V) =2mexp(—2[¥|). (15b)

This gives the auto-correlation function and the power spectral density for the stochastic process

by use of Egs. (11). It follows that the auto-correlation function is itself a Lorentzian function and
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Publishithgicfore has algebraic tails while the power spectral density has an exponential dependence on

the frequency,®

4
4+ (r/1a)*

Qg () = 2ntsexp (—27|@]). /\ (16b)

Ry(r) = (16a)

This establishes the familiar exponential spectrum for a superpoit\gr uncorrelated Lorentzian
6-8,16-22

pulses.
The Lorentzian pulse shape can be generalized to have finiteskéwness based on an analogy with

sy
stable probability density functions.?” Since closed analytical f%r are in general not known, it

is defined via the inverse Fourier transform, or thefcharacteristic function in the case of stable
distributions, )
f -

1 o
0(0;0,0,1) = —/ W ,0,A)exp(—ifV), (17)
2 \

where the Fourier transform of the pulse f§~\'7’r‘b~deﬁned by

o(V;0,0,1) Q\V\ 9%l — iosign(9)G(9, a))). (18)
The phase function is given by \

To .
@ tan 2), ifa#1, (19)

——1n|19| ifa=1.

Here A is al at1 para eter O 1s an asymmetry parameter and ¢ is referred to as the stability
parameterdn the text of stable distributions. For stable distributions, the stability parameter is

restricted to aige 0 < o < 2 and the asymmetry parameter is restricted to the range —1 < ¢ <
1. Théigymm
ewe

OElB(W
)

w\ 0(8:1,0,4) = exp(—|®])exp (iw—i%"ﬁlnw). 20)

Here it is to be noted that the asymmetry and location parameters affect only the phase of this

6}rlc Lorentzian pulse shape is obtained for & = 1 and 6 = 0. The Fourier transform

orentzian pulse function is thus given by

complex function. As will be shown below, this is the reason why the frequency spectrum is

unaffected by the skewness of the Lorentzian pulses.
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PublishingThe integral of the n’th power of the skewed Lorentzian pulse function in general depends on

both the asymmetry and location parameters,
L(o.2)= [ de[p(e:1.0.4))"

— [_a07 1 (Fle"I0))(0)

1
= do — do —i00) ——— 21
/_oo 2n /_oo exp(—i )(27r)”*1 @D
where there are n — 1 convolutions of the pulse function denote [¢(0)] =
¢ (1) denotes the Fourier transform. By first performing th ntic)ation ver O this simplifies to
I(o,A) = W 9] Qg (22)
The two lowest order pulse integrals turn out to be i ependen T the pulse parameters, /1 = 1 and
N 1
12_/ d6[¢(6:1,5,4)) = d84P(9:1,6, )% = —. (23)
7r —oo 2
consistent with the requirement given by E Parseval’s theorem. From this it follows

the pulse function and its normalized a

that for fixed pulse asymmetry and location‘parameters, the frequency power spectral density for
%0}:{6 ation function are the same as for a symmetric

Lorentzian function,

19,1,01 \w,l,oz 2 =0y (8), (24a)
} / 49 gg (8:1,0,1)exp(i0) = py(6), (24b)

given by Egs. (1 is'co /c ded that a stochastic process given by a super-position of un-
correlated Loren ulseswith a fixed but skewed shape has an exponential frequency power

spectrum. H e@ it should be noted that the pulse asymmetry modifies the higher order pulse

integrals n;l 14;%s0 the skewness and flatness moments given in Egs. (14) are only valid for
symm tric L nt#ian pulses.
F ny fu ctron £ (1) with the property f7(9) = f(—1©), where the dagger denotes the com-

p X conyggate the following relation holds,

| avs)=2 [ aw#ir(o)) 25)

re Z denotes the real part of the argument. The integrand in Eq. (17) with ¢ given by Eq. (20)

has this property, and thus the skewed Lorentzian pulse function can be written in integral form as

0(6:1,0,2) = / d6 exp(— ) cos (919—/119+276191m9). (26)
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FIG. 1. Skewed Lorentzian pulse functions with vanishing lacation Barameter and various values of the

asymmetry parameter o. C

While this integral cannot be calculated in cléged fo

The skewed Lorentzian pulse function is rekn{ i

,Li't' is suitable for numerical integration.
ig. 1 for various values of the asymmetry
parameter and vanishing location paramete ,\:U.‘ As o approaches unity, the pulse function is
strongly asymmetric with a fast rise an \s))\agdecay. In the case 6 = 1 and A = 0 this is known
as the Landau distribution. The asy \ il for the skewed Lorentzian pulse is for —1 <o <1

a power law,
—92 (6;1,0,1) = 1. (27)
6—>oo
By the reflection prop, y, mi rly follows that for —1 < o < 1,
hm 92 —6:1,0,1) =1. (28)
When ¢ =4 ft tail of the function is not asymptotically a power law and when ¢ = —1

the right tail of the function is not asymptotically a power law. However, in all cases there is an
exponéntial frequéncy power spectral density. The role of power law tails in the pulse function for
t ﬁ;g%/ pectrum will be further discussed below.

The Sfychastic process defined by Eq. (1) can be generalized to take into account a random dis-
‘t’ﬁy.lti\on of the pulse asymmetry and location parameters for the skewed Lorentzian pulse shapes.
Its natural to define the peak value of the pulse function at 8 = O for all values of 6. However,
since the mode of a stable distribution is not analytically expressible, a more general relationship
in the form of a joint distribution is introduced. Moreover, a joint distribution Psy4(0,A,A) be-

tween the pulse amplitudes and the asymmetry and location parameters is considered. The mean
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Publishivedue of the random variable ® (¢) in the case of exactly K pulses is then given by

© * 1 le]
<‘I’K>=/ dAl/ dll/ldﬁlPoM(Gl,M,Al) T
o0 0 1 T drg & r—t
|k [ dik [ doxPora(or. Ax.Ax) /0 Y A T—dk;l,ck,zk). (29)
- - - k=1

Neglecting end effects by extending the integration limits for the pulse arrival times to infinity and

averaging over the number of pulses, it follows that the mean valu 'she same as for symmetric

Lorentzian pulses, (®) = y(A). Similarly, with reference to Eq,.(20)4t follews that the variance for
the stationary process is independent of the distribution of th O‘C)iwnd asymmetry parameters.
It follows that the mean and the variance in the case of raj d6\m1y skewed Lorentzian pulses are the
same as for symmetric Lorentzian pulses. - K
The auto-correlation function in the case of a ango.m @ﬁbution of the pulse asymmetry and
location parameters can be calculated by addit% e%'é"ging over these random variables. This
f

is determined by the K terms in the double SI}N D (1 + r) with equal pulse indices, given

by2627 C —
K oo = 1 S dt,  [(t—t t—t+r
T d k k
Z/ dAk/ dlk/ dor At Porhlar, Ak)/ —0 (—;1,Gk,7tk) ¢ (—;lyﬁk,lk)-
=1~ —oo -1 o T Td Td

(30)
Using the relations given by Eq.(%,\(fo lows that the auto-correlation function and the frequency
power spectral density f ara\ndﬁm distribution of the pulse location and asymmetry parameters
are the same as in th Casg 1 symmetric Lorentzian pulse shape, given by Eq. (16a). Thus,
a correlation bet\zu‘-,(en thepulde amplitude and skewness does not influence the frequency power
spectrum.

Finally, @s a }ernative smooth pulse function which also results in an exponential frequency

power spe ufh, c?n ider the sech function,
=

S 6(0) = — sech(0), 31)

—
w‘@% the Fourier transform

v
U¥)=sech| = ). 32
~ (V) =sec ( 5 ) (32)
Both the pulse function and its Fourier transform have exponential tails. The integral of the n’th

power of this pulse function is given by

I'(n/2)

In = )
120 (n/2 4 1/2)

(33)
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Publishigiging the mean (®) = y(A) and variance ®2,; = 27(A%)/n>. The normalized auto-correlation
function is py (8) = Ocsch(0), for which the Fourier transform gives gy () = % /[1 +cosh(nd)).
Thus, in the case of a super-position of uncorrelated sech pulses with constant duration, the nor-

malized auto-correlation function and power spectral density are given by

Rz (r) = Tidcsch (‘L’Ld) : <\ (34a)

2

1 T
()= Hcosh(mdw)j\ -

The auto-correlation function has an exponential tail for lag_z_g\e une lags and the frequency power

spectral density has the asymptotic limits 5

-

(35a)

—1, (35b)

\
decreasing exponentially for high fr l:,%é\qualitatively similar to the case of Lorentzian
pulses. However, the spectrum foxs::h

the algebraic tails of the Lorengzian \"&\f nction leads to a high power spectral density at low
frequencies. The exponential s;;g%for high frequencies reflects the curvature of the smooth

sech and Lorentzian pulsg$ aHCN‘}not due to algebraic tails in the pulse function.

Ises is flat for low frequencies. It is concluded that

Intermittent fluctuafions imphysical systems have been investigated by a stochastic model that
describe these as # super-pogition of uncorrelated pulses. It is demonstrated that for skewed
Lorentzian pulses Wstant duration, the spectrum is unaffected by the asymmetry parameter

even in the gase when this has a random distribution and is correlated with the pulse amplitudes.

atigns are.expected due to amplitude dependent steepening of smooth pulses resulting
from fon-linearadvection in continuum systems. The results presented here provide new insight
tothe ubi uitbus appearance of exponential spectra in fluctuating fluids and plasmas, in particular

onstl‘jting that the power spectral density is not influenced by the steepening process in the

O
.

times leads to frequency spectra with power law scaling regimes.

orentzian pulses. Previously, it has been shown that a broad distribution of pulse duration
26
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