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“Somewhere, something incredible is waiting to be known.”
–Carl Sagan





Abstract
This thesis investigates speckle properties from Sentinel-1 GRDM data to ex-
plore its dependency of incidence angle. The data is processed using the
SNAP-tool such that a uniform region can be selected and estimation of speckle
variance, skewness and kurtosis can be carried out. These speckle properties
are calculated over ocean and sea ice for comparison and modeled to fit a
regression line. Hypothesis testing is carried out to determine the statistical
significance. Due to the GRDM product having different number of multi-looks
depending on the swath, a normalization is done to fit the regression line.

It is shown that there is a slight decrease in variance over incidence angle with
statistical significance for both ocean and sea ice. The response is however low.
It is further shown that the trend in texture measurements such as skewness
and kurtosis have a lower statistical significance and may be deemed to have
little to no variation over incidence angle.





Acknowledgements
I would like to thank my supervisors Andrea Marinoni and Anthony Doulgeris
for their assistance and guidance throughout this project. I would also like to
thank my familiy for their support through these stressful times.





Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

My list of definitions xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution to the Field . . . . . . . . . . . . . . . . . . . 2

2 Basic Theory 3
2.1 Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Imaging Geometry . . . . . . . . . . . . . . . . . . . 3
2.1.2 Range Resolution . . . . . . . . . . . . . . . . . . . 4
2.1.3 Azimuth Resolution . . . . . . . . . . . . . . . . . . 4
2.1.4 Radar Equation . . . . . . . . . . . . . . . . . . . . 5

2.2 Synthetic Aperture Radar . . . . . . . . . . . . . . . . . . . 5
2.3 Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Polarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Reflection, absorption and transmittance . . . . . . . . . . . 7

2.5.1 Double Bounce . . . . . . . . . . . . . . . . . . . . . 8
2.5.2 Volume Scattering . . . . . . . . . . . . . . . . . . . 8

2.6 Speckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Radar Cross Section . . . . . . . . . . . . . . . . . . . . . . 10
2.8 Signal to noise ratio . . . . . . . . . . . . . . . . . . . . . . 10
2.9 Image Deformation . . . . . . . . . . . . . . . . . . . . . . 11

3 Statistics and Linear Regression 15
3.1 Theory on Incidence Angle . . . . . . . . . . . . . . . . . . 15

vii



viii CONTENTS

3.2 Speckle Statistics . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Multi-look Speckle Statistic . . . . . . . . . . . . . . 18

3.3 Speckle Noise model . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . 21
3.7 Central Moments . . . . . . . . . . . . . . . . . . . . . . . 21
3.8 Mixed Pixels and Variance . . . . . . . . . . . . . . . . . . . 22
3.9 Multivariate Gaussian Distribution . . . . . . . . . . . . . . 22

4 SAR Remote Sensing of Ocean and Sea Ice 23
4.1 Ocean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Sea Ice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Area of Study and Data Sets 27
5.1 Satellite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Extra Wide Swath Mode . . . . . . . . . . . . . . . . . . . . 28
5.3 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Method 31
6.1 Linear Trend of Variance . . . . . . . . . . . . . . . . . . . . 31
6.2 Processing of images . . . . . . . . . . . . . . . . . . . . . . 32

6.2.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . 33
6.2.2 Multi-looking . . . . . . . . . . . . . . . . . . . . . . 33

6.3 Regions of Interest . . . . . . . . . . . . . . . . . . . . . . . 33
6.4 Sentinel 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.5 Hypothesis Test . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Results and Discussion 35
7.1 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.1.1 Image 1 . . . . . . . . . . . . . . . . . . . . . . . . 36
7.1.2 Image 2 . . . . . . . . . . . . . . . . . . . . . . . . 42

7.2 Skewness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.3 Kurtosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.4 Implication to modeling . . . . . . . . . . . . . . . . . . . . 48

8 Conclusion 51

9 Future Work 53

Appendices 55

A Appendix A 57
A.1 Variance Near the Noise Floor . . . . . . . . . . . . . . . . 57



CONTENTS ix

B Appendix B 59
B.0.1 Ocean 77BA . . . . . . . . . . . . . . . . . . . . . . 59
B.0.2 Sea Ice 77BA . . . . . . . . . . . . . . . . . . . . . . 60

Bibliography 61





List of Figures
2.1 Imaging Geometry . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 a) Left illustrate specular reflection. b) illustrate diffuse scat-

tering. c) illustrate spreading. . . . . . . . . . . . . . . . . . 7
2.3 Double bounce, a) show double bounce on perpendicular sur-

faces, b) show double bounce on non-perpendicular surfaces. 9
2.4 Volume Scattering . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 The composite return signal, this process is often called a ran-

dom walk. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Shadow & depression angle . . . . . . . . . . . . . . . . . . 11
2.7 Radar foreshortening . . . . . . . . . . . . . . . . . . . . . 12
2.8 Radar layover . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 An illustration of a typical effect which can be seen in SAR
images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Illustration of scattering on multi-year ice, first year ice and
ocean surface (based on Figure 3.6 in [23]). . . . . . . . . . 25

5.1 Image id 77BA . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Image id 4479 . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Image 77BA to the left and 4479 to the right, Svalbard in the

bottom center . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1 Processing Steps . . . . . . . . . . . . . . . . . . . . . . . . 32

7.1 First image used where ocean water is in the top of the image
and sea ice at the bottom. . . . . . . . . . . . . . . . . . . . 36

7.2 Region of interest in image id :77BA . . . . . . . . . . . . . 37
7.3 Scatter plot of variance over incidence angle. The blue dots

are from the first subswath while the red is the from the rest.
A regression line is fitted through the data for both cases. . . 37

7.4 Mean of the logarithmic values caluclated in a 7x7 box plot-
ted in [dB] to see the simple log-linear trend. . . . . . . . . 38

7.5 Corrected Sub-Swath . . . . . . . . . . . . . . . . . . . . . 39

xi



xii L IST OF FIGURES

7.6 Corrected scatter plot of variance over sea ice . . . . . . . . 41
7.7 a) Scene with sea ice covering all incidence angles. b) Regions

selected over incidence angles. . . . . . . . . . . . . . . . . 42
7.8 Variance over sea ice, id 4479 . . . . . . . . . . . . . . . . . 43
7.9 Skewness over incidence angle . . . . . . . . . . . . . . . . 44
7.10 Third central moment. The values in the first sub-swath are

more centered around zero. . . . . . . . . . . . . . . . . . . 45
7.11 Kurtosis over ocean area in image 77BA . . . . . . . . . . . 46
7.12 Fourth Central moment over ocean in image 77BA . . . . . . 47
7.13 Model of intensity over incidence angle, step change of first

swath indicated. . . . . . . . . . . . . . . . . . . . . . . . . 48

A.1 Scene with only ocean with low backscatter. . . . . . . . . . 58
A.2 Variance for low backscatter regions . . . . . . . . . . . . . 58



List of Tables
2.1 Frequency bands for SAR-remote sensing . . . . . . . . . . . 6

5.1 Sentinel-1 modes . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Scenes and corresponding ID . . . . . . . . . . . . . . . . . 29

7.1 Hypothesis test statistics in 7x7 window . . . . . . . . . . . 40
7.2 Window-sizes and corresponding t-score . . . . . . . . . . . 40
7.3 Hypothesis test statistics for sea ice in 77BA in a 7x7 window 41
7.4 Window-sizes and corresponding t-score for Sea Ice . . . . . 41
7.5 Hypothesis test statistics in 7x7 window . . . . . . . . . . . 42
7.6 Window-sizes and corresponding t-score for Sea Ice in image

4479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.7 Hypothesis test statistics in 7x7 window for skewness over

ocean, id: 77BA . . . . . . . . . . . . . . . . . . . . . . . . 45
7.8 Hypothesis test statistics in 7x7 window for Kurtosis over

ocean, id: 77BA . . . . . . . . . . . . . . . . . . . . . . . . 46

A.1 Name of scene with low backscatter. . . . . . . . . . . . . . 57

B.1 Anova table for 7x7 window for Variance over ocean, id: 77BA 59
B.2 Anova table for 15x15 window for Variance over ocean, id:

77BA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.3 Anova table for 7x7 window for Variance over sea ice, id: 77BA 60
B.4 Anova table for 15x15 window for Variance over sea ice, id:

77BA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xiii





My list of definitions
SAR - Synthetic Aperture Radar
CIRFA - Center for Integrated
Remote sensing and Forecasting for Arctic Operations
UHF - Ultra High Frequency
EM - Electro Magnetic
ESA - European Space Agency
EW - Extra Wide (swwath width)
ID - Identifier
LUT - Look Up Tables
VV - Vertical Vertical
(Polarization - Transmitted and Received)
HV - Horizontal Vertical
(Polarization - Transmitted and Received)
RCS - Radar Cross Section
SNAP - Sentinel Application Platform
NRCS - Normalized Radar Cross Section
NESZ - Noise Equivalent Sigma Zero
GRD - Ground Range Detected
GRDM - Ground Range Detected Medium Resolution

xv





1
Introduction
Synthetic aperture radar (SAR) has the ability to provide a continuous stream
of information. In the arctic region, SAR has the ability to operate even with
the challenges that this area has with harsh weather conditions and the polar
nights with absence of sunlight during the winter. This widely used tool is
however, not without issues. A very well known error is the intensity decay
which occurs over the incidence angle [13]. Clustering based on intensity will
therefore contain banding regions due to the decrease of intensity. The mean
of the intensity tend to an exponential function and can be modeled to be
linear in the log domain. This study aim to investigate the variance, skewness
and kurtosis and its dependence on incidence angle, to see if modeling this can
further improve classification in SAR scenes. This is done by investigating the
speckle over incidence angle in uniform areas in different window-sizes and
apply linear regression models to information gathered.

1.1 Motivation
The variance and higher moments of speckle have not to the authors knowledge
been investigated over incidence angles. This thesis therefore aims to investi-
gate speckle as a function of incidence angle to be used for modeling. Firstly,
speckle properties will be explored over the whole scene and investigated over
the different classes to see if these properties are dependent on the incidence
angle and its response within each class. In the first simple log-normal case,

1



2 CHAPTER 1 INTRODUCT ION

where the mean is assumed log-linear, the first step of the investigation will
be the dependency of the variance. If it can be determined to be a correlation
between the incidence angle and variance, further analysis will be done to
find a model which later can be implemented into the algorithm provided by
the Center of Integrated Remote Sensing and Forecasting for Arctic Operations
(CIRFA). However, should it be the case where variance does not seem to be
related, there are several other features that may be explored. The distribution
for the log-intensity along an incident angle is assumed to follow a Gaussian
distribution in [6]. However, this may not be the case for the speckle properties
and will be further investigated. Different moments, such as skewness and
texture may then be explored to be able to define a distribution applicable for
modelling.

1.2 Objectives
As the goal of this thesis is to investigate the normalized central moments with
respect to incidence angle, the objectives can therefore be listed as:

• Investigate the dependency of incident angle on speckle properties

• Develop a model of the different moments as a function of the incidence
angle

• Implement the model into the algorithm provided by CIRFA if a strong
response is found.

1.3 Contribution to the Field
This study provides an investigation of speckle over incidence angle as to
improve classification. To the author’s knowledge, earlier investigations have
only considered the simplest case withGaussian distribution andmean intensity
value in order to prove the concept, while variance and higher moments have
been left unexplored.



2
Basic Theory
2.1 Radar
One of the most commonly used sections of the electromagnetic spectrum that
is utilized for remote sensing is the microwave region; which as mentioned
extend from wavelengths of about 1 [mm] to 1 [m]. Both active and passive
sensors are used to capture this region of electromagnetic waves, although the
primary sensor is the active one.

Active Microwave Sensors are commonly referred to as radar devices. These
devices transmit a microwave signal, and capture its reflection and use that to
transform it to images of the Earth’s surface.

2.1.1 Imaging Geometry
The configuration of an imaging radar system is shown in Figure 2.1. The an-
tenna is pointed to either side of the nadir as to eliminate right-left ambiguities
from two symmetric equidistant points. As the imaging system moves along in
azimuth direction a continuous swath width [SW] is mapped and is given by:

SW ≈
hβ

cos2ψ
=

λh

W cos2ψ
(2.1)

where β is the antenna beam width in elevation,W is the antenna width and

3



4 CHAPTER 2 BAS IC THEORY

Figure 2.1: Imaging Geometry

ψ is the look angle. An assumption is made that β � 1 and does not consider
the earth curvature.

2.1.2 Range Resolution
The range resolution is defined by the minimum distance that two points on
a surface are still separable. The echos of the points will be separated in time
given by:

∆t =
2Xr

c
sinψ (2.2)

where Xr is the distance between the points, θ is the look angle and c is the
speed of light. To find the absolute minimum distance, would mean to find the
smallest time difference which is τ = 1/B, where B is the band width

Xr =
cτ

2 sinψ
=

c

2B sinψ
(2.3)

θ is the look angle and c is the speed of light. This is known as the ground
range resolution. The resolution of two targets along the direct line of sight of
the radar is called the slant range resolution of the radar and only differ from
the ground range by the sinψ term.

2.1.3 Azimuth Resolution
As in the range direction the azimuth resolution is defined as the two nearest
separable points along the an azimuth line. This is equal to the width of the



2.2 SYNTHET IC APERTURE RADAR 5

antenna footprint as the echoes from all the points along a line spanning that
width return at the same time. This is described by:

Xa =
hβ ′

cosψ
=

hλ

L cosψ
(2.4)

where β ′ is the antenna beam width in the azimuth, λ is the wavelength and
L is the antenna length.

2.1.4 Radar Equation
The power returned to the antenna is given by the radar equation:

Pr =
σG2Ptλ

2

(4π )3R4 (2.5)

Where Pr is the power returned to the antenna, σ is the backscattering coef-
ficient, G is the gain, Pt is the power transmitted and λ is the wavelength. σ
is defined by the specific characteristics of the terrain surface. For image inter-
pretation this parameter carries information about the landscape. It conveys
information of the amount of energy scattered from a specific region in on the
landscape and is measured by σ 0 and is called the radar cross section.

2.2 Synthetic Aperture Radar
Synthetic aperture radar is an extension of regular radar. It uses the theory
that an object will remain within the beam over a longer interval of time as
the system moves along the azimuth direction. By later reconstruction we can
synthesize an artificially long antenna. Therefore, the azimuth resolution for a
SAR imaging system is described by:

Xa =
L

2
(2.6)

where L is the real antenna length.

2.3 Frequency
SAR operate in the microwave region, however, there are several sections: P,
UHF, L, S, C, X, Ku, K and Ka band. They range from 0.3 GHz and up to 40



6 CHAPTER 2 BAS IC THEORY

Band Wavelengths
P 107-77 cm

UHF 100-30 cm
L 30-15 cm
S 15-7.5 cm
C 7.5-3.75 cm
X 3.75-2.40 cm
Ku 2.40-1.67 cm
K 1.67-1.18 cm
Ka 1.18-0.75 cm

Table 2.1: Frequency bands for SAR-remote sensing

GHz which is shown in Table 2.1. Depending on band used, they will interact
with matter differently. This is of course due to the relative wavelength to the
size of particles. Longer wavelengths which correspond to lower frequency, will
have the ability to propagate further in mediums such as the atmosphere. The
penetration depth is given by

ep =
λ
√
ϵ ′

2πϵ ′′
(2.7)

where λ is the wavelength of the electromagnetic wave and ϵ ′ and ϵ ′′ cor-
respond to the real and complex part of the complex dielectric constant
ϵ = ϵ ′ + iϵ ′′. The P, L, S, C and X bands penetrate the atmosphere easier
than the shorter wavelengths.

2.4 Polarimetry
Polarization has a major role in remote sensing. All electromagnetic waves
can be described by complex vectors [1]. Depending on the orientation of the
electromagnetic wave, the information of the output may vary. Depending on
the number of polarizations a system operates in, more information of the
surface area can be interpreted.

The orientation of the electromagnetic wave is decided upon the electric
field of said wave. If the electric field is moving in the horizontal plane, the
electromagnetic wave is said to be horizontal. The same goes for every other
orientation, such as vertical and elliptical.

In remote sensing, the system may transmit in one or more polarization and
receive in another or the same polarizations. This is commonly abbreviated,
e.g.: HH, HV, VH, VV. The first letter refer to the transmitted signal and the
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last refers to the interpreted signal. A system may very operate with several of
these, such as dual pol and quad pol.

2.5 Reflection, absorption and transmittance
When an electromagnetic wave is incident on a surface, some of the energy
is reflected in the specular direction and some of it is scattered, depending
on the surface. Specular reflection occurs when the surface is smooth relative
to the wavelength. Diffusion or isotropic reflectance occurs when the surface
is rough relative to the wavelength (J. Zyl, C. Elachi[1]). A surface which
perfectly diffuses the incoming electromagnetic wave is called a Lambertian
surface, named after Johan Henrich Lambert. This means that the radiance of
the surface is equal for any angle of reflection θ to the surface normal (Slater,
P. [3]). Specular reflection, diffuse scattering and spreading is illustrated in
Figure 2.2.

Figure 2.2: a) Left illustrate specular reflection. b) illustrate diffuse scattering. c)
illustrate spreading.

Lambert’s cosine law states that the flux per unit solid angle in any direction
from a Lambertian surface varies with the cosine of the angle between the
direction of the wave and the normal to the surface:

Iθ = I0 cosθ (2.8)

Where I0 is the incoming radiant flux, and Iθ is the outgoing radiant flux and
angle θ of the surface normal.

Snell’s law describe the relationship of incidence angles and the refracted
energy and is given by:

n1 sinθi = n2 sinθt (2.9)

where n1 and n2 is the refractive index of medium 1 and medium 2 respectively
given by the Maxwell relations nr =

√
ϵr and θi is the incidence angle, and θt

is the transmission angle. Smooth surfaces relative to the incident wavelength
λ cause the energy to be reflected in specular direction and the reflectivity is



8 CHAPTER 2 BAS IC THEORY

given by equation 2.10. The reflection coefficient is a function of the refractive
index and the incidence angle and is given by:

|Rh |
2 =

sin2 (θ − θt )

sin2 (θ + θt )
(2.10)

where Rh is the reflection coefficient for horizontally polarized waves, θ is the
wave incident on the surface and θt is the transmission angle. For vertically
polarized incident waves the reflection coefficient is given by:

|Rv |
2 =

tan2 (θ − θt )

tan2 (θ − θt )
(2.11)

This derivation is only valid for smooth surfaces, however in most cases the
geometry of the surface is not smooth and will affect the relationship between
the incident wave and the reflected wave.

Since the electromagnetic waves depend on the roughness of the surface, a
criteria must be decided to establish if a surface is "smooth" or "rough" in
relation to the wavelength. The most common criteria is the Rayleigh criterion
defined as

h >
λ

8 cosθ
(2.12)

where h is the root mean squared height, λ is the radar wavelenght and θ is the
incidence angle [1]. It is considered rough if the equality holds. A more accurate
description is that a surface is considered smooth if h < λ

25 cos θ and rough
if h > λ

4 cos θ while the values in between is considered to have intermediate
roughness [29].

2.5.1 Double Bounce
Double bounce refers to the occurence where the EM wave comes in contact
with two surfaces before it returns to the imaging sensor. When an EM wave
interacts with surfaces as shown in Figure 2.3, there will be a 180 degree change
in the VV channel.

2.5.2 Volume Scattering
Volume scattering occur when the EM wave bounces within a medium when
there is variation of dielectric properties. When this occur the wavelength will
also decide how far the signal propagate inside the medium as the penetration
depth is strongly dependent on wavelength. Volume scattering is illustrated in
Figure 2.4.
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Figure 2.3: Double bounce, a) show double bounce on perpendicular surfaces, b) show
double bounce on non-perpendicular surfaces.

Figure 2.4: Volume Scattering

2.6 Speckle
As the radar pulse illuminates a point on the scene, the return signal includes
scatter from several adjacent areas and thus includes additional information.
The returns from each point add vectorially and lead to a single vector that
represents the amplitude and phase of the total echo.

The phase is related to the distance between the scatterer and the sensor. A
change in position will result in a difference in phase for each elementary
vector, which in turn lead to change in the composite amplitude.

Therefore, different observations over the same area will result in variations of
the amplitude V . To resolve this a method called multilooking is used to even
out the differences. In essence, an image of homogeneous surface and constant
backscatter cross section will show variations of intensity, called speckle. The
effect of speckle can further mathematically be represented by:

V =
NS∑
n=1

Vne
iϕ′n = Vee

iϕ′ = Vx + jVy (2.13)

This expression represents the voltage V due to NS scatterers. V is the ampli-
tude of the wave and ϕ ′ is the phase angle. Ve is the envelope of the signal,
Vx = Ve cosϕ ′ and Vy = Ve sinϕ ′.
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Figure 2.5: The composite return signal, this process is often called a random walk.

2.7 Radar Cross Section
The radar cross section (RCS) is a ratio which determines the detectability of
an object. A larger radar cross section equals an object which is easier to detect.
The radar cross section of any reflector is thought to be the projected area of
an isotropic scatterer where it returns the EM wave with equivalent power [2].
The RCS can be expressed as

σ ′ =
Ir ecieved
Iincident

4πR2 (2.14)

where I is the intensity and R is the range [7]. It is common to transform σ ′

to the normalized radar cross section (NRCS),

σ0 =
σ ′

A
(2.15)

where A is the area of illumination.

2.8 Signal to noise ratio
SAR images will be affected by several forms of noise. It is therefore important
to note that the signal received will have to be larger relative to the noise for
the product to hold useful information. SAR images contain two forms of noise,
additive and multiplicative. The additive noise is due to the equipment and
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the limitations it hold with regard to the imaging system. An example of this
is the thermal noise which occur in the satellites. This noise is known and can
be considered to be white noise with Gaussian distributions.

Multiplicative noise is noise is an undesired random signal which is multiplied
into a relevant signal during the imaging process. An example of this is the
speckle effect which is discussed above and in later sections.

To be able to quantify the retrieved signal we have to be able to ascertain
the quality of the signal. A measure of this is the signal to noise ratio defined
as:

SNR =
Psiдnal

Pnoise
(2.16)

where Psiдnal and Pnoise is the power of the signal and noise respectively. Any
ratio higher than 1, indicate more signal than noise. Increasing the power of
the output signal will increase the signal to noise ratio. Due to the nature of
noise in SAR imagery a noise-floor can be established which is a threshold of
where the uncertainty of the true signal is to great. This noise floor vary from
sensor to sensor as it is greatly dependent on each component.

2.9 Image Deformation

Figure 2.6: Shadow & depression angle

Depending on the depression angle and the steepness of the terrain some areas
may not be illuminated by the radar beam, generating shadows. This is shown
in the figure above. As the depression angle become smaller, the radar shadows
become more severe.

As the radar system measures the time between transmitted signal and the
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received signal in the slant-range, images may contain geometric artifacts. This
can be shown in Figure 2.7 and 2.8.

Figure 2.7: Radar foreshortening

Radar layover is when the top of an object is closer to the antenna than the
base of the object, causing the radar echo from the top reach the antenna
before the base. As the system measures distance with respect to time, the top
will appear closer to the antenna than its base.

Radar foreshortening is when the geometric locations are the correct order but
the echo from the base is perceived closer to the the echo from the top than it
truly is.
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Figure 2.8: Radar layover





3
Statistics and LinearRegression
This chapter covers the theory needed for this thesis. It involves incidence
angles and statistics necessary to investigate variance, skewness and kurtosis
over incidence angles.

3.1 Theory on Incidence Angle
The brightness decay over incidence angle is a known issue in SAR images
where the swath width is relatively large. In 1941 Minnaert [9] explained this
phenomenon by studying the Moon, where he states that the Moon radiates
more energy in the direction of the Sun, which is the source, than in the normal
direction. This phenomenon can also be explained by Lamberts Cosine Law.
The effect can be seen in Figure 3.1 which illustrates a typical decrease in
brightness over incidence angle.

Minnaert modified Lamberts law to fit for non-ideal diffuse emitters [6, 9]:

Iim = I0 cos2k θi (3.1)

where I0 is the radiance in the normal direction, k is the Minnaert constant
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Figure 3.1: An illustration of a typical effect which can be seen in SAR images

which is a measure of surface roughness and θi is the incidence angle. The
usage of this is that two surfaces have different decay rates based on roughness
which can be utilized in classification.

Empirical evidence, indicate that the decay rate follows an exponential function
[6]:

Ii2 = I0e
−θi/θ0 (3.2)

where θ0 is the decay rate and θi is the same incidence angle as above. This
expression is linear in the logarithmic domain, such that the log-intensity
becomes a linear function of the incidence angle.

Ii2[dB] = aθi + b (3.3)

where a = −1/θ0 and b = log I0.

3.2 Speckle Statistics
For this project we need a further understanding of speckle than was discussed
in Section 2.6.

The addition of N scatterers which result in either constructive or destructive
addition, as mentioned in Chapter 2.6, can be assumed to be independent and
identically Gaussian, by the central limit theorem [8].

The amplitude of the wave is defined as:

Ve =
√
V 2
x +V

2
y (3.4)
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where Ve has a Rayleigh distribution. This is due to the randomness of the
scattering points and the large number of scatteres for each pixel. By the central
limit theoremVx andVy both have zero mean, has a Gaussian distribution and
can be assumed independent [8]. The joint probability distribution can then
be written as:

p(Vx ,Vy) = p(Vx )p(Vy)

=
1
√

2πσ
e−V

2
x /2σ

2 1
√

2πσ
e−V

2
y /2σ

2
=

1
2πσ 2e

−(V 2
x +V

2
y )/2σ

2 (3.5)

Since we are interested in the resulting sum of the phasors (Ve ) we transform
the above to polar coordinates:

p(Ve ,ϕ
′)dVe dϕ ′ = p(Vx ,Vy) dVx dVy (3.6)

Since Vx = Ve cosϕ ′ and Vy = Ve sinϕ ′ and the Jacobian is given as

dVx dVy =
cosϕ ′ −Ve sinϕ ′

sinϕ ′ Ve cosϕ ′ dVe dϕ ′ = Ve dVe dϕ ′ (3.7)

Inserting equation 3.5 and 3.7 into 3.6 which result in the joint probability
distribution function:

p(Ve ,ϕ
′) =

Ve
2πσ 2e

−V 2
e /2σ

2
(3.8)

Integrating Equation 3.8with respect toϕ ′ over the interval (−π ,π )which is one
rotation, the probability distribution function of the amplitude becomes:

p(Ve ) =
Ve
σ 2e

−V 2
e /2σ

2
, Ve ≥ 0 (3.9)

which is a Rayleigh distribution with mean µ1(Ve ) = σ
√
π/2 and variance

Var1(Ve ) = (2− π/2)σ 2. However, this only applies to single look SAR images.
For multi-look images the distribution changes which will be shown in a later
section.

Since the distribution for Ve is Rayleigh distributed, the power P will be expo-
nential distributed. Which is shown by:

P = V 2
e

dP = 2VedVe
(3.10)
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The distribution for the power then becomes:

p(P)dP = p(Ve )dVe =
1

2σ 2e
−P/2σ 2

dP (3.11)

since E(P) = E(V 2
e ) = 2σ 2 = µP :

p(P) =
1
P
e−P/µP (3.12)

which is exponentially distributed with mean µP = 2σ 2 and variance Var(P) =
µ2
P .

3.2.1 Multi-look Speckle Statistic
Multi-looking is a process where the goal is to reduce the effect of speckle
in the image, which is essentially averaging several independent estimates of
reflectivity [8]. This is done by dividing the Doppler frequency spectrum into
N segments commonly referred to as looks.

The intensity of the image with N looks can be be described by:

IS =
1
N

N∑
i=1

(Vx (i)
2 +Vy(i)

2) =
1
N

N∑
i=1

V 2
ei (3.13)

where Vx (i) and Vy(i) are the real and imaginary components of the ith look.
These parts are independently Gaussian distributed such thatNIS is Chi-square
distributed with 2N degrees of freedom. Therefore the probability density
function for a N-look intensity image follows the equation:

p(IS ) =
IN−1
S

(N − 1)!(2σ
2

N )
N
e−N Is /2σ 2

(3.14)

which is a chi-squared distribution. When N becomes larger, it approaches a
Gaussian distribution.

3.3 Speckle Noise model
Speckle can be considered to be a multiplicative noise. In image processing
this is illustrated by:

y(r , c) = x(r , c)n(r , c) (3.15)

where y(r , c) is the pixel intensity with noise, x(r , c) is the pixel intensity free
of noise and n(r , c) is the noise [8] with mean 1 and variance σv . The pixel
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intensity and noise is assumed to be statistically independent. This means that
E[y] = E[x]. The variance is defined as:

Var (y) = E[(y − ȳ)2] = E[(x(σv − 1) + (x − x̄)2)]
= (Var (x) + x̄2)σ 2

v +Var (x)
(3.16)

If the area is homogeneous, this would mean that Var (x) = 0, which results
in:

σv =

√
Var (y)

x̄
=

√
Var (y)

ȳ
(3.17)

This ratio is a measure of the speckle noise level and is dependant of the number
of looks done in the image.

3.4 Linear Regression
Linear regression is used when it is known that there exist an inherent rela-
tionship among variables. As this relationship exist it may be used to predict
values by creating a model which relates the response to the regressor [14].
This can be described by:

Y = β0 + β1x + ϵ (3.18)

where β0 is the intercept, β1 is the slope and ϵ is the error term. There are
several ways to calculate this relationship. One of the most used is the method
of least squares, where the goal is to determine β0 and β1 such that the residual
sum of squares is minimized, which can be described by:

SSE =
n∑
i=1

e2
i =

n∑
i=1

(yi − ŷi )
2 =

n∑
i=1

(yi − β0 − β1xi )
2 (3.19)

Differentiating SSE with respect to β0 and β1 and setting the partial derivatives
to zero, the coefficients can then be calculated:

∂(SSE)

∂β0
= −2

n∑
i=1

(yi − β0 − β1xi ) = 0 (3.20)

∂(SSE)

∂β1
= −2

n∑
i=1

(yi − β0 − β1xi )xi = 0 (3.21)

Solving for β0 and β1 yields:

β1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)
2 (3.22)
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β0 = ȳ − β1x̄ (3.23)

This can be extended to include several variables:

Y = β0 + β1x1 + β2x2 ..., βnxnϵ (3.24)

A special case for multiple linear regression is the polynomial regression where
the variables are exponential.

Y = β0 + β1x + β2x
2 + ... + βnx

n + ϵ (3.25)

3.5 Hypothesis Testing
When performing a linear regression, it is important to determine if the variable
explains the actual change in the data. To do this we have to establish a
hypothesis test. A hypothesis is defined as a statement about a population
parameter [15]. There exist several tests which can be utilized, among them
are the T-test and F-test. Both tests use the principle where the two hypothesis
are set:

H0 : β1 = β1,0

H1 : β1 , β1,0
(3.26)

To test these hypotheses a test statistic is used. The test statistic is based on
the test utilized. For a T-test the test statistic is

t0 =
β̂1 − β1,0

se(β̂1)
(3.27)

where β̂ is the estimated rate of the regressor for the fitted line, β1,0 is the test
value and se(β̂1) is the standard error of β̂1. The standard error is defined as

se =

√
σ 2
c

n
(3.28)

This test statistic is often applied when the tested variable is normally dis-
tributed. The test statistic forces the observations to a t-distribution under the
null-hypothesis.

The F-test follow the same principle as a t-test, where the tested variable has an
F-distribution under the null-hypothesis. The test statistic is defined as:

F0 =
MSR
MSE

=
SSR/(K − 1)
SSE/(N − K)

(3.29)



3.6 CORRELAT ION COEFFIC IENT 21

whereMSR is the regression mean square,MSE is the mean square error, K is
the number of groups and N is the sample size.

The F-tests are used in several cases where the most common are:

• Test if the means of data sets are equal [15, 16].

• Test the hypothesis that a regression model fits the data well[14, 16].

• That the data set in a regression analysis follows the simpler of two
nested regression models [14, 16].

3.6 Correlation Coefficient
Another measure for determining the slope of a data set is the Correlation
Coefficient [14]. It is the linear correlation of two variables. The coefficient
takes a value between -1 and 1 where a negative value correspond to a negative
linear correlation and a positive value correspond to a positive linear correlation.
If the coefficient is 0 there is no linear correlation. The coefficient is defined
as:

ρXY =
Cov(X ,Y )
σXσY

(3.30)

where Cov(X ,Y ) = E[(X − µX )(Y − µY )] and σX and σY is the standard
deviation of X and Y respectively.

3.7 Central Moments
Central moments is a moment around a probability distributions from a random
variables mean [14]. These values characterize the distribution of a random
variable, such as the much known variance. The n-th central moment is defined
as:

mn = E[(X − E[X ])n] (3.31)

The second central moment is equal to the variance:

m2 = E[(X − (E[X ])2] = E[X 2] − E[X ]2 (3.32)

The third and fourthmoments aremostly used to get the standardizedmoments,
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which is defined as
µ̃k =

mk

σk
(3.33)

wheremk is the k-th central moment and σ is the standard deviation.

The third moment is the skewness and holds information of the symmetry
around a distribution. For a Gaussian distribution this value is zero as it is
symmetric around its mean. Skewness can be described by:

µ̃3 =
m3

σ 3 =
E[(X − µ)3]

(E[(X − µ)2])3/2
(3.34)

The fourth moment is kurtosis. This standardized moment gives an indication
of how much the "tails" of the distribution impact the total shape. The kurtosis
of a univariate Gaussion distribution is 3.

µ̃4 =
m4

σ 4 =
E[(X − µ)4]

(E[(X − µ)2])4/2
(3.35)

3.8 Mixed Pixels and Variance
For classification, mixed pixels is something which needs to be considered.
Mixed pixels are created when a pixel is not completely occupied by a sin-
gle homogeneous area [24]. Therefore, when calculating variances in the
image where mixed pixel occur, we may obtain a larger value. This larger
value may then be an outlier for classification or a reason for error in linear
regression.

3.9 Multivariate Gaussian Distribution
As mentioned in Chapter 2.6, given that we follow the Rayleigh speckle model,
it can be assumed that the distribution of the intensities is Gaussian. The
multivariate case results in the equation

p(x ; µ, Σ) =
1

(2π )d/2 |Σ|1/2
e−

1
2 (x−µ)

TΣ−1(x−µ) (3.36)

for a vector-valued random variable X = [X1, ... ,Xn]
T, where µ is the mean

and the Σ is the covariance matrix and T is the transpose of the matrix.



4
SAR Remote Sensing ofOcean and Sea Ice
In this chapter ocean and sea ice will be discussed with respect to remote
sensing. Firstly a brief explanation of remote sensing on ocean will be given.
Then a short summary of different sea ice types and its interaction with
electromagnetic waves will be discussed.

4.1 Ocean
SAR is a widely used tool for oceanographic studies. It provides a tool where
large areas can easily be analysed granting insight into several important fields
such as wave and wind direction, ship detection and sea ice mapping [1]. One
of the properties of electromagnetic waves from the SAR is that they only
penetrate the surface by a few millimeters [25]. The SAR imagery thus only
reflects the surface expression, and is very useful for applications where this is
sought for.

Imaging of ocean is mainly dependant on Bragg resonance [26], except in the
specular direction where specular scattering is dominant. Bragg resonance is
the effect that explains the reflection of electromagnetic waves on periodic
structures.
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4.2 Sea Ice
The electromagnetic waves are dependent on the wavelength relative to the
roughness of the surface. For sea ice, the roughness is strongly dependent on
the weather conditions and the salinity of the surrounding sea. When the sea
water begins to freeze small ice crystals [10] called frazil begins to form on the
surface. The frazil crystals will push out the salt minerals which is called brine
causing the nearby water to be saltier. As the frazil begin to gather, they may
form different structures based on the outside sources of interaction. They are
sorted as:

• Grease Ice: Grease ice is formed from frazil crystals in relatively calm
waters. It is the coagulation of frazil ice crystals which has a dampening
effect on the small capillary waves on the ocean surface [10]. This has
a great impact on remote sensing, as calmer waters will have a low
backscattering level and will appear as a dark spot in radar images.

• Nilas: Should the grease ice be allowed to continue to freeze, a relatively
thin layer of ice will form and is called nilas if it is less than 10 cm thick.
Nilas is further divided into dark nilas and light nilas which depends on
the thickness of the ice. Furthermore, the brine drainage will also affect
the visual interpretation of the nilas which is important for visual remote
sensing. The pockets of brine surrounded by ice will begin to drain and
be replaced by air, which changes the appearance from darker to lighter.

• Pancake Ice: In the presence of wind and swells, which is not unlikely
in open waters, grease ice may break off forming small sheets of ice
from 30[cm] to 3 [m]. With the continuous collision between these
small sheets of ice they will form round and raised pancake formed ice
sheets with rims 5-20 [cm]. Due to the rims they are able to reflect
the electromagnetic radiation effectively and make them visible to the
radar remote sensing system. Pancake ice may also be formed by slush
or shuga, or any form of break-up in the ice formation under wind and
wave conditions.

• Floes are relatively flat large pieces of ice, ranging from 20[m] across to
up to 10[km] across.

Formations on the ice surface will vary with salinity and the amount of stress
it has been exposed to. The dielectric constant is also stongly dependent on
the salinity [23]. As newly formed and first year ice have a high salinity they
will be very lossy, having low penetration depth and high reflectance. Snow
will in a lot of cases be layered on top of the ice which will also affect the
electromagnetic properties. However, in the microwave region the snow will
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be mostly transparent unless the snow is wet. This is because non-frozen water
has a low penetration depth such that during melting season snow may act as
an opaque cover of the surface. Snow and ice may also be layered which will
affect the penetration depth. Temperature also impact the penetration depth
where lower temperature will increase the penetration depth.

Figure 4.1: Illustration of scattering on multi-year ice, first year ice and ocean surface
(based on Figure 3.6 in [23]).





5
Area of Study and Data Sets
This thesis is limited geographically to the arctic waters near Svalbard. This
is chosen as it has sufficient sea ice and ocean exposure. The below sections
describes the characteristics of the satellite and images used for the study.

5.1 Satellite
The images are taken with Sentinel 1 wide swath mode. Sentinel 1 SAR system
works in C-band and has several modes in which it operates. The main modes
are interferometric wide swath andwave. The interferometric wide swathmode
is the main acquisition mode over land. The wave mode is used to determine
the direction, wavelength and height of waves on the ocean [18].

There are two additional modes on Sentinel 1 which are the stripmap mode
and the extra wide swath mode. The stripmap provide data with 80 km swath
width with a resolution of 5x5m. Finally, the extra wide swath mode, which
provide as indicated by the name, a product with wide coverage. This mode
is very useful for maritime, ice and polar zone operational services [18]. Due
to the large areas covered, the resolution is therefore reduced. The resolutions
are shown in Table 5.1.
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Mode Resolution Swath Width Maximum NESZ
Stripmap 5x5m 80km 22dB
Interferometric
Wide Swath

5x20m 250km -22dB

Extra Wide
Swath

20x40m 410km -22dB

Wave 5x5m Vignette Coverage -22dB

Table 5.1: Sentinel-1 modes

5.2 Extra Wide Swath Mode
The Extra Wide Swath mode (EW) have 5 subswaths and is delivered in
several product levels: 0, 1 and 2. Product level 0 is the raw data, and contains
compressed and unfocused data. Level 1 data products can be separated into
two categories, SLC (single-look complex) and GRD (Ground Range Detected).
Level 2 products contain geophysical products derived from level 1.

This thesis uses mainly level 1 GRD products, where the data has been detected,
multi-looked and projected to ground range. The data further consist of 5
sub-swaths of varying incidence angle. Depending on the end resolution, the
processing of this data may differ from each sub-swath. For ground range
detected medium resolution (GRDM), the first sub-swath, has been multi-
looked 6x3 times in range and azimuth respectivly, while the rest have been
multi-looked 6x2 times [19]. When calculating variance this is important as
multi-looking specifically reduce variance, such that the different swaths will
have an inherent difference unless a correction is made.

5.3 Images
Several images have been investigated and examined for use in the thesis. It
was however difficult finding scenes where there was enough uniform areas
for selection and calculations. Due to ocean surface having a low level of
backscatter, and the noise floor seemingly having an effect on the variance, the
image used over ocean need a high level of backscatter.

The final images used are all within the arctic circle and the file names are
shown in Table 5.2. They are centered around Svalbard (See Figs. 5.1, 5.2 and
5.3).
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Images Used ID
S1A_EW_GRDM_1SDH_20151127T152113_20151127T152213_008792_00C8A0_77BA.SAFE 77BA

S1A_EW_GRDM_1SDH_20180224T050038_20180224T050143_020744_0238C0_4479.SAFE 4479

Table 5.2: Scenes and corresponding ID

Figure 5.1: Image id 77BA
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Figure 5.2: Image id 4479

Figure 5.3: Image 77BA to the left and 4479 to the right, Svalbard in the bottom center



6
Method
The main parameters for this thesis are the speckle variance, skewness and
kurtosis. This chapter considers the analysis methodology used to examine
these features.

6.1 Linear Trend of Variance
The images provided by Sentinel-1 is taken in the EW mode, with incidence
angle ranging from 18.9 - 47.0 degrees. The scenes are opened in SNAP for
calibration and noise removal is applied using the built-in functions. After
calibration the sigma naught (NESZ) is obtained from the intensity of the
image. All images are then multi-looked with an additional 5 by 5 window, also
using the built-in function. By multi-looking the distribution of the speckle will
approach a Gaussian distribution as discussed in previous sections.

The first step is therefore to check that the previously obtained results are
correct, as to establish a basis for continuation. This is that the decay rate of
the mean follow an exponential distribution, which in the dB domain is linear
as discussed in Chapter 3. Furthermore, the decay rate will be different for
different classes such as ice and ocean water.

When the decay rate of the mean is established, further work on the variance
can be carried out. This is done by selection of a region of interest which is as
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Figure 6.1: Processing Steps

uniform as possible. This is because the variance of a uniform area should be
zero and therefore the remaining variance is due to speckle and not variation
in the surface [8]. The variance is calculated in the dB image as the trend
in mean in CIRFA’s model is done in this domain. In the first image shown
in 5.1, over Svalbard, sections of ocean is segmented out where the surface
is uniform. Then the section for sea ice is selected for comparison. The same
procedure is carried out for Figure 5.2 which is of newly formed sea ice. This
image is selected as it is easier to select regions which is uniform to use for
comparison.

To find the means, variances and higher moments, a moving window of a
predefined size moves across the image calculating the values for the local area.
If the window move close to the border of the selected area it may enclose
regions outside the region of interest. The fix for this is to remove these values
before calculation of variance and the higher moments. A minimum of 25 data
points for each calculation is set to prevent outliers.

By plotting the variance and higher moments over incidence angle, the depen-
dency can be visualized. With no dependence the trend will be flat over all
angles, while if there is a dependence the trend can be found.

6.2 Processing of images
The images provided by ESA has some processing done to them the start as the
images used are GRDM products as mentioned in Chapter 5.2. Although this
may be the case, further processing must be used to extract useful information
from the scene. These steps are shown in Figure 6.1.
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6.2.1 Calibration
Calibration is the first step for to get usefull information. This relates the
digital numbers from the satellite to a meaningful value [20]. The main goal
for calibration is to address the issue of noise and gain term. Calibration in
Sentinel-1 can be done by:

σ0 =
DN 2

K2 (6.1)

where σ0 is the backscatter coefficient, DN is the digital pixel amplitude value
and K is extracted from the look-up tables (LUT), in the metadata.

6.2.2 Multi-looking
As mentioned, the GRDM products used in this study has been multi-looked to
form the GRDM scenes. They are further Multi-looked to reduce the size of the
file. The additional multi-looking is done by a 5x5 window averaging.

6.3 Regions of Interest
As mentioned the regions we are to look at have to be as homogeneous as
possible to determine the variances dependence on incidence angle. From
the regions the arithmetic mean and local variance can be calculated over
the homogenous areas. The averages and variances are calculated from a box
moving over the incidence angle of the decibel image.

µa =
1
N

N∑
i

дi (6.2)

where µa is the local mean and дi is the pixel value in a N by N bounding box.
The local variance is also calculated the same way by

σ 2
a =

1
N − 1

N∑
i

(дi − µa)
2 (6.3)

where дi is the pixel value. When the moving box contain pixels which is not
in the region selected, they are removed from consideration which leaves the
local variance to be calculated from fewer points. Should the number of points
used be reduced below 25 data points, it moves to the next location.
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6.4 Sentinel 1
After careful selection of regions using Sentinel 1A and 1B products, there is
a change in variance values in the transition from the individual sub-swaths.
Every image investigated have an increase in variance at incidence angle 27
to 30 degrees. This jump in value is more noticeable when the number of
multi-looking is kept low as the averaging do not blur it out. Multi-looking 5x5
times seem to preserve the "step" in variance. If multi-looking is done too many
times this may indicate a upward trending slope which may not have anything
to do with incidence angle.

From this the following can be done, either change the satellites or find a work-
around that can be implemented. As this jump seemingly appear in all Sentinel
1 GRDM products, the investigation can be carried out for each sub-swath in
the scenes to further investigate the change in variance.

The HV channel in Sentinel 1 is presentedwith azimuthal noise which is periodic
in nature [21]. Most of this noise is removed through thermal noise removal.
Low backscatter level is also an issue with the HV polariziation as it is near
noise floor. To simplify the task at hand the main focus was put on the HH
polarization channel where these issues are less prominent.

6.5 Hypothesis Test
After the speckle features are found and plotted against the incidence angle, we
can test the statistical significance of the findings. This is done to substantiate
whether there is a statistical significance to the slope of variance, skewness or
kurtosis.



7
Results and Discussion
This chapter presents the results and findings of the thesis. It also shows the
results from the different processing steps to produce the final results for linear
regression and modelling of the speckle properties to incidence angle.

7.1 Variance
At higher incidence angles, the area on the ground will be larger, such that the
number of speckle from scatters will be larger [22]. This should results in a
decaying variance within the same class over the image. There is however, an
importance to the level of backscatter. If the intensity of the image approaches
the noise floor for the satellite, the variance seem to be severely infected by
the noise floor. An example of this is shown in the Appendix A.1. The focus is
therefore on images where the level of backscatter is high enough to provide
reasonable security that the variance observed is due to speckle variation and
not the noise floor. The region of interest can also be reduced to incidence
angles where it is sufficient level of backscatter. The limit is set to intensity of
-20 [dB] to be well above the noise floor.
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7.1.1 Image 1
As mentioned in previous chapters, the areas where the variance is to be
calculated has to be homogeneous such that the variance observed is not due
to between-class variance. This will tend to an increase in local variance. As
can be seen in Figure 7.1, there are at least two classes of ocean water due to
local difference in wind speeds. The regions selected are the brighter areas as
these regions are the most bountiful of the visual regions and spread across
the whole scene. These regions can be seen in Figure 7.2.

The variance is calculated as mentioned in Chapter 6, by a "sliding box" within
the selected regions. The resulting plot is shown in Figure 7.3. There is an
obvious skip at incidence angle 28 degrees, where the first sub-swath ends.
This is because the first sub-swath is multi-looked more than the others in
GRDM products (see Section 5.2). This extra multi-looking, 18-looks compared
to 12-looks, will therefore influence the variance values observed. This skip is
not seen in the mean values using the same regions shown in Figure 7.4.

Figure 7.1: First image used where ocean water is in the top of the image and sea ice
at the bottom.
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Figure 7.2: Region of interest in image id :77BA

Figure 7.3: Scatter plot of variance over incidence angle. The blue dots are from the
first subswath while the red is the from the rest. A regression line is fitted
through the data for both cases.



38 CHAPTER 7 RESULTS AND DISCUSS ION

Figure 7.4: Mean of the logarithmic values caluclated in a 7x7 box plotted in [dB] to
see the simple log-linear trend.
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As described by de Vries [17], variance in the intensity of multi-looked images
are related by

var(Im) =
var(I)
L

(7.1)

where var(Im) is the variance of multi-looked intensity with L looks and var(I )
is the variance of the intensity of the image.

An adjusted scatter plot, where the number of multi-looks in the first sub-swath
is normalized to the number of looks in the others can be done with simple
multiplication by 18

12 and is shown in Figure 7.5.

Figure 7.5: Corrected Sub-Swath

Figure 7.5 clearly shows a reduction in variance over incidence angle. The
correlation coefficient shows us that there is a downward trend in the data set.
The fitted regression line is also shown in Figure 7.5. However, the R2 value
tells us that the regression line does not model the variance of the data set
well. Therefore by doing a hypothesis test of the slope we can more clearly
determine if the variance is a function of incidence angle.

The hypothesis created is:

H0 : β1 = 0
H1 : β1 , 0

(7.2)
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The model tested is defined as

σ 2 = β0 + β1θ (7.3)

where σ 2 is the variance and θ is the incidence angle. The resulting statistics
from the model is displayed in Table 7.1. From the t score we can reject the
null hypothesis and state with a significance level of 0.001 that incidence angle
impact the variance.

Estimate (β) Standard Error t-score p-value
Intercept 0.6704 0.0119 56.32 0

θ −0.004335 0.0003698 −11.72 8.967 × 10−31

Table 7.1: Hypothesis test statistics in 7x7 window

These results change depending on the window size of the sliding window box
and the degrees of freedom. The sliding window does not use the same points
twice and therefore the degrees of freedom is reduced when the window size
increases. The window-sizes and t-score are shown Table 7.2.

Window-size t-score Degrees of Freedom
15x15 -5.515 455
30x30 -2.195 114
50x50 -0.5910 36

Table 7.2: Window-sizes and corresponding t-score

From the t-scores the null hypothesis is rejected for at a significance level
of 0.001 for window-sizes of 7x7 and 15x15. However, the null hypothesis for
window-size 30x30 it is rejected at a significance level of 0.05. And the 50x50
window-size the null hypothesis cannot be rejected. Due to the irregular shape
of the selected region, the larger window-sizes are more likely to have empty
data spots, such that the variance data points may not be too largely dependant
on the window-size stated.

In the case of sea ice, getting a clear section where the sea ice is uniform proves
difficult, as ridges and cracks will affect the variance greatly. As mentioned
earlier, the type of sea ice also affect the dielectric properties of the ice [23]. The
attempt to get clear sections large enough to calculate variance is displayed in
Figure 7.6. The correlation coefficient, which is r = −0.048394, is small and
negative which indicate that the slope has a slight downward trend. Fitting a
regression line grants a slope of −0.0026284 which is shown in Table 7.3. The
hypothesis test for this is displayed in Table 7.4.

From the t-score in Table 7.4, the null hypothesis that β1 = 0 cannot be
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Estimate (β) Standard Error t-score p-value
Intercept 1.0197 0.052294 19.498 0

θ −0.0026284 0.0015181 −1.7314 0.083626

Table 7.3: Hypothesis test statistics for sea ice in 77BA in a 7x7 window

Window-size t-score Degrees of Freedom
7x7 -1.731 1277
15x15 -0.2097 273

Table 7.4: Window-sizes and corresponding t-score for Sea Ice

rejected at 0.05 significance level. However, as discussed in Section 3.8, mixed
pixels provide a significant level of error when calculating variance and that
different type of sea ice have different dielectric properties. Therefore, to more
clearly represent sea ice, variance has been calculated in the scene with id
4479 where newly formed sea ice cover the entire span of incidence angles.
As it is newly formed the cracks and ridges are less dominant in the image
and uniform regions are more abundant. The findings for this is discussed in
Section 7.1.2.

Figure 7.6: Corrected scatter plot of variance over sea ice
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(a) (b)

Figure 7.7: a) Scene with sea ice covering all incidence angles. b) Regions selected
over incidence angles.

7.1.2 Image 2
This image is used due to the selection of ice covered regions have uniform
areas across the incidence angles and is illustrated in Figure 7.7a. After careful
selection of regions which appear to be uniform, the variance is calculated,
which is shown in Figure 7.8.

Pearsons Correlation coefficient is very small with a negative sign, indicating a
sligtly negative slope, which was found for image 77BA as well. The regression
line and its test statistic are found in Tables 7.5 and 7.6.

From these statistics the null hypothesis that the slope β1 = 0, is rejected up to
a significance level of 0.001 for the window size of 7x7, and 0.05 for a window
size of 15x15.

Estimate (β) Standard Error t-score p-value
Intercept 0.5067 0.019347 26.189 0

θ −0.0019525 0.0005883 −3.3189 0.00092661

Table 7.5: Hypothesis test statistics in 7x7 window

Window-size t-score Degrees of Freedom
7x7 -3.318948 1413
15x15 -2.212937 307
30x30 0.1104 89

Table 7.6: Window-sizes and corresponding t-score for Sea Ice in image 4479
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Figure 7.8: Variance over sea ice, id 4479
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Figure 7.9: Skewness over incidence angle

7.2 Skewness
The skewness is the standarized third central moment and is calculated as
described in Equation 3.33. As this is a function of the standard deviation it
is natural to assume that the step observed due to the number of multi-looks
would occur for skewness as well. The standard deviation of L number of looks
is defined as:

σL =

√
Var (I )
√
L

(7.4)

However, in Figure 7.9, the step cannot be seen. This would imply that the third
central moment is affected by the same factor

√
L as the standard deviation

or that the slightly different amount of looks has no observable effect on the
skewness. The third central moment is shown in Figure 7.10. As skewness is a
measure of symmetry, multi-looking more times will make it more symmetrical,
such that effect of more multi-looking is that it is more centered around
zero. The step is more evident in the fourth central moment shown in Figure
7.12.

The skewness is centered around zero which is to be expected for a Gaussian
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distribution. The correlation coefficient is slightly negative, indicating a neg-
ative slope. Running the same hypothesis test for this model on image 77BA
we get a t score of −3.0647 shown in Table 7.7. From this we get a p-value of
0.0022049 which means we cannot reject the null hypothesis at a significance
level of 0.001.

Estimate (β) Standard Error t score p-value
Intercept 0.11419 0.029376 3.8872 0.00010433

θ −0.0027157 0.00088614 −3.0647 0.0022049

Table 7.7: Hypothesis test statistics in 7x7 window for skewness over ocean, id: 77BA

Figure 7.10: Third centralmoment. The values in the first sub-swath aremore centered
around zero.

7.3 Kurtosis
The step observed in variance can be observed in the fourth central moment
as well, but as with the skewness, the normalization of the fourth central
moment by the standard deviation seem to correct for this error. The kurtosis
is calcuated as described by Equation 3.33.

The correlation coefficient is also slightly negative indicating a negative slope.
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Figure 7.11: Kurtosis over ocean area in image 77BA

The hypothesis test that test if the null hypothesis β1 = 0 grants the test
statistics shown in Table 7.8. The t-score is −1.5853 granting a p-value of
0.11304 which mean that we cannot reject the null hypothesis and the kurtosis
seem to not be affected by incidence angle.

Estimate (β) Standard Error t score p-value
Intercept 2.9607 0.056456 52.443 0

θ −0.0026998 0.001703 −1.5853 0.11304

Table 7.8: Hypothesis test statistics in 7x7 window for Kurtosis over ocean, id: 77BA



7.3 KURTOS IS 47

Figure 7.12: Fourth Central moment over ocean in image 77BA
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7.4 Implication to modeling
When using the variance as a meassure, Sentinel-1 GRDM scenes the variance
must first be pre-processed where the first swath is normalized to fit the rest
with a multiplication of 18

12 . An overexagerated plot is shown in Figure 7.13
of the implication of not correcting for the number of multi-looks. The first
sub-swath in Sentinel-1 is known for having issues [30], however as the scenes
from this satellite is becoming increasingly used due to its availability, this
error is important to note and may impact modeling and classification. It is
further important to note that the texture parameters looked at in this thesis is
unaffected by the step due to the normalization of the standard deviation of the
same order. However, other texture parameters which is not normalized by the
standard deviation may be impacted by the different number of looks.

Figure 7.13: Model of intensity over incidence angle, step change of first swath indi-
cated.

The variance has proven to be significant for ocean, and will slightly decrease
with incidence angles. The rate of change is small, as illustrated by the re-
gression lines in Figure 7.5, and has a slope of −0.004335. With incidence
angles ranging from 20 to 45 degrees, the change will only differ by about
0.1084. This point is also demonstrated by increasing the window-sizes, where
the statistical significance decreases as the window-sizes become larger. For
window-sizes of 30x30 the null hypothesis that the slope is zero cannot be
rejected at significance level of 0.025. The variance may therefore be constant
when modeling as assumed by Doulgeris et al. [6] for window sizes 30x30 and
larger.

The variance over sea ice in image 77BA has a lower valued slope than ocean,
which is shown in Table 7.3. However, as we cannot reject the null hypothesis
that the slope is zero at a 0.05 significance level, it is reasonable to let the
variance be constant based on this sample.
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Using the sample from image id 4479, the slope is still slightly negative. Fur-
thermore, the null hypothesis can be rejected at 0.001 significance level for a
window size of 7x7 and at 0.05 for a 15x15 window. At a value of −0.0019525
however, the change will not be very large resulting in a change of 0.0488
from 20 to 45 degrees. As with over ocean, the assumption that the variance is
constant for window sizes above 15x15 for sea ice is reasonable.

From the results we see that increasing window-sizes reduce the effect of
incidence angles on variance, skewness and kurtosis. When increasing the
window-sizes the range of incidence angles increases which in turn reduces
the resulting slope. The number of data points is also reduced and contributes
to further reduce the certainty that the slope carry statistical significance.
Therefore, by increasing the window-sizes the variance, skewness and kurtosis
may therefore not contribute much to classification.





8
Conclusion
The results found are based on mainly two scenes. This may be too few to
give a definite conclusions, but provide reasonable insight into the behaviour
of speckle properties.

The results has shown that when calculating the variance from the scene in
GRDM products from Sentinel-1, the first sub-swath needs to be normalized to
fit the other swaths. Furthermore, the variance of speckle has shown to have a
slight dependency on incidence angle where the dependency appear stronger
over ocean than for sea ice.

A linear regression line is fitted to the data and a hypothesis test where the
null hypothesis is that the slope is zero, can be rejected for window-sizes up
to 50x50. For sea ice the slope value is smaller and show nearly no response to
incidence angle. However, the null hypothesis for window-sizes of 7x7 can be
rejected for the scenes used in this study with a high level of significance,but
the significance level drops for larger window-sizes.

The step, which is observed in variance cannot be observed in the skewness-
plot as the skewness formula is normalized to the variance and modeling with
skewness is not affected by this error. Over ocean, skewness seem to have a
slight dependence of incidence angle as can be described by the correlation
coefficient, where the null hypothesis is rejected at a significance level of 0.001.
This hold for window-sizes up to 15x15. For window-sizes 30x30 and above ,
the test statistics indicate that the slope might be zero.
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Kurtosis is not affected by the step observed in variance either, and unlike the
other moments, from the t-score show no indication of dependence of incidence
angle. The null hypothesis cannot be rejected for all window-sizes.



9
Future Work
As mentioned in previous sections he step found in variance due to the different
number of looks for the first sub-swath may affect some texture parameters
unless normalized by the standard deviation and is something which should
be investigated.

Since incidence angles show slight statistical relevance to the variance, im-
plementing into a classification algorithm may further improve the results.
However, the backscatter level need to be of a sufficient level above the noise
floor as it seem to affect the variance significantly.

In this study, the HH channel is the only channel used which is due to the
fact that the noise floor was too dominant to carry out further calculations
on variance and higher moments with the polarimetric data at hand. Using
different satellites with a lower noise floor and other pre-processing of data
may also be used to confirm or verify findings.

Due to sea ice having different dielectric properties depending on the type, this
may also affect the variance and the rate at which it decay. Therefore future
studies may involve more accurate knowledge of the surface observed.
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Appendix A
A.1 Variance Near the Noise Floor
The noise floor is the sum of all sources of noise which impact the true signal
of what is being monitored. In remote sensing, one such thing is the thermal
noise from the imaging system. For uniform areas, the clean signal should have
zero variance [8]. The signal to noise ratio is defined as

SNR =
Psiдnal

Pnoise
(A.1)

where Psiдnal and Pnoise is the power of the signal and noise respectively.
With low signal no noise ratio, the variance within a area will then be mostly
affected by noise. In Figure A.2 the variance is plotted as a function of incidence
angle where the vertical lines are the region where the sub-swath changes.
The observed peaks when the sub-swath changes may be cause because of
several reasons. One is the interpolation of sub-swaths and the other is due
to the noise floor. The noise floor of Sentinel-1 is well documented [21, 27, 28]
and due to ocean having a low backscatter, the noise floor may dominate the
variance.

Name: ID
S1A_EW_GRDM_1SDH_20180830T045233_20180830T045337_023471_028E19_FDC6 FDC6

Table A.1: Name of scene with low backscatter.
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Figure A.1: Scene with only ocean with low backscatter.

Figure A.2: Variance for low backscatter regions



B
Appendix B
Anova tables may provide some insight to the plots and the underlying variation
of a model.

B.0.1 Ocean 77BA
SumSq DF MeanSq F p-value

θ 2.5992 1 2.5992 135.74 1.8971e-30
Error 40.461 2113 0.019148

Table B.1: Anova table for 7x7 window for Variance over ocean, id: 77BA

SumSq DF MeanSq F p-value
θ 0.36361 1 0.36361 29.817 7.7658e-08

Error 5.6339 462 0.012195

Table B.2: Anova table for 15x15 window for Variance over ocean, id: 77BA
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B.0.2 Sea Ice 77BA
SumSq DF MeanSq F p-value

θ 0.51882 1 0.51882 2.9977 0.083626
Error 221.01 1277 0.17307

Table B.3: Anova table for 7x7 window for Variance over sea ice, id: 77BA

SumSq DF MeanSq F p-value
θ 0.007092 1 0.007092 0.04398 0.8340

Error 44.02 273 0.1612

Table B.4: Anova table for 15x15 window for Variance over sea ice, id: 77BA
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