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Intermittent fluctuations due to uncorrelated Lorentzian pulses
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Fluctuations due to a super-position of uncorrelated Lorentzian pulses with a random distribution

of amplitudes and duration times are considered. These are demonstrated to be strongly intermittent

in the limit of weak pulse overlap, resulting in large skewness and flatness moments. The character-

istic function and the lowest order moments are derived, revealing a parabolic relationship between

the skewness and flatness moments. Numerical integration reveals the probability density functions

in the case of exponential and Laplace distributed pulse amplitudes. This stochastic model

describes the intermittent fluctuations and probability densities with exponential tails commonly

observed in turbulent fluids and magnetized plasmas. Published by AIP Publishing.
https://doi.org/10.1063/1.5020555

From numerous experiments on and model simulations of

fluids and magnetized plasmas, it has been demonstrated that

chaotic fluctuations have an exponential frequency power

spectral density.1–15 In many cases, this has been associated

with Lorentzian pulses in the underlying time series.8–15

Recently, a novel analysis method was applied in order to sep-

arate the complexity and randomness of the fluctuations.13–15

However, intermittency of the fluctuations and the probability

density function has usually not been investigated. This is

despite the fact that in many turbulent fluid and plasma sys-

tems it has been found that the fluctuations are strongly inter-

mittent and that there is an exponential tail in the probability

density function for large fluctuation amplitudes.16–41

Here, a stochastic model is presented which describes

all these features of the fluctuations by describing them as a

super-position of uncorrelated Lorentzian pulses with a ran-

dom distribution of amplitudes and duration times. General

expressions for the lowest order moments and the character-

istic function are derived. The fluctuations are shown to be

strongly intermittent when the ratio of the average pulse

duration and waiting times is small, most clearly manifested

by large skewness and flatness moments. In the opposite

limit with significant pulse overlap, the probability density

function approaches a normal distribution. There is a univer-

sal parabolic relationship between the skewness and flatness

moments. A closed form of the characteristic function for the

process is derived for exponential and Laplace distributed

pulse amplitudes. The corresponding probability density

functions are calculated numerically and shown to have

exponential tails for large fluctuation amplitudes in the case

of weak pulse overlap. The results presented here comple-

ment previous works on the same stochastic process with an

emphasis on the frequency power spectral density presented

in Refs. 42 and 43.

Consider a stochastic process given by a super-position

of K uncorrelated pulses with a fixed shape in a time interval

of duration T42–50

UKðtÞ ¼
XKðTÞ
k¼1

Ak/
t� tk

sk

� �
; (1)

where each pulse labeled k is characterized by an amplitude

Ak, arrival time tk, and duration sk, all assumed to be uncorre-

lated and each of them independent and identically distrib-

uted. The number of pulses K in an interval of duration T is

given by the Poisson distribution

PKðKjTÞ ¼
1

K!

T

sw

� �K

exp � T

sw

� �
; (2)

with the mean value

hKi ¼
X1
K¼0

KPKðKjTÞ ¼
T

sw

: (3)

Here and in the following, angular brackets denote the

average of the argument over all random variables unless

otherwise explicitly stated. From this, it follows that the

waiting times between the pulses are exponentially distrib-

uted with mean value sw and that the pulse arrival times are

uniformly distributed on the time interval under consider-

ation, that is, their probability density function is given

by 1/T.

The pulse duration times sk are assumed to be randomly

distributed with the probability density Ps(s), and the aver-

age pulse duration time is defined by

sd ¼ hsi ¼
ð1

0

ds sPsðsÞ: (4)

The pulse shape /(h) is taken to be the same for all events

in Eq. (1) and is in this study given by the normalized

Lorentzian function

/ðhÞ ¼ 1

p
1

1þ h2
: (5)

The integral of the n-th power of the Lorentzian pulse shape

is given by
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In ¼
ð1
�1

dh /ðhÞ½ �n ¼ 1

pn�1=2

Cðn� 1=2Þ
CðnÞ ; (6)

where C is the Gamma function. The lowest order pulse

function integrals are given by I1¼ 1, I2¼ 1/2p, I3¼ 3/8p2,

and I4¼ 5/16p3.

Starting with the case of exactly K events in a time inter-

val of duration T, the mean value of the process is given by

integrating over all random variables and neglecting end

effects by taking the integration limits for the pulse arrival

times tk to infinity, giving hUKi ¼ sdI1hAiK=T. Taking into

account that the number of pulses K is also a random vari-

able and averaging over this as well gives the mean value for

the stationary process

hUi ¼ sd

sw

hAi: (7)

The mean value is large when there is significant overlap of

pulse events, that is, for long pulse durations and short pulse

waiting times.

The variance can similarly be calculated by averaging

the square of the random variable, giving hU2i ¼ hUi2
þ sdI2hA2i=sw. The square of the root mean square (rms)

value is therefore

U2
rms ¼

1

2p
sd

sw

hA2i: (8)

For reasons to become clear presently, the ratio of the aver-

age pulse duration and waiting times

c ¼ sd

sw

(9)

is referred to as the intermittency parameter of the process.

In the case of a finite mean value, the relative fluctuation

level for Lorentzian pulses is given by

U2
rms

hUi2
¼ 1

2pc
hA2i
hAi2

; (10)

which is large when there is weak overlap of the pulse struc-

tures. The intermittency is clearly illustrated in Fig. 1, which

shows realizations of the process for Lorentzian pulses with

a constant duration and a Laplace distribution of the pulse

amplitudes. Here, the rescaled variable with zero mean and

unit standard deviation

~U ¼ U� hUi
Urms

(11)

has been introduced. For large values of c, there is a signifi-

cant overlap of pulse structures. This results in a small rela-

tive fluctuation level and realizations of the process resemble

random noise. For small values of c, the time series are dom-

inated by large-amplitude bursts and the process is strongly

intermittent with large relative fluctuations. The intermit-

tency is quantified by the skewness and flatness moments,

which follow from the characteristic function for the

process.

The characteristic function CU(u) for a random variable

is the Fourier transform of the probability density function

PU(U), defined by

CUðuÞ ¼
ð1
�1

dU PUðUÞ exp ðiUuÞ: (12)

The characteristic function for a sum of independent random

variables is the product of their individual characteristic func-

tions. The conditional probability density function for exactly

K uncorrelated pulses in a time interval of duration T is

PUðUjKÞ ¼
1

2p

ð1
�1

du exp ð�iUuÞh exp ðiAk/kuÞiK; (13)

where the characteristic function for each pulse /k¼/((t –

tk)/sk) is

h exp ðiAk/kuÞi ¼
ð1
�1

dAk PAðAkÞ
ð1

0

dsk PsðskÞ

�
ðT

0

dtk
T

exp iuAk/
t� tk

sk

� �� �
: (14)

The probability density function for the random variable U is

thus

PUðUÞ ¼
X1
K¼0

PUðUjKÞPKðKjTÞ

¼ 1

2p

ð1
�1

du exp �iUuþ T

sw

hexp ðiAk/kuÞi � T

sw

� �
;

(15)

where PKðKjTÞ is the Poisson distribution given by Eq. (2).

The stationary probability density function for U is obtained

by extending the integration limits for tk to infinity and mak-

ing the change of the integration variable given by h¼ (t – tk)/
sk in Eq. (14). This leads to the desired result

CUðuÞ ¼ exp c
ð1
�1

dA PAðAÞ
ð1
�1

dh exp ðiuA/ðhÞÞ � 1½ �
� �

;

(16)

FIG. 1. Realizations of the stochastic process for Lorentzian pulses with

constant duration sd and Laplace distributed pulse amplitudes. The degree of

pulse overlap is determined by the intermittency parameter c ¼ sd/sw.
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which notably is independent of the distribution function for

the pulse duration times. The characteristic function for the

stationary process is determined by the pulse shape, the

amplitude distribution, and the degree of pulse overlap.

By expanding the exponential function in Eq. (16) and

then performing the integration over h, the logarithm of the

characteristic function for the process is

ln CUðuÞ ¼
X1
n¼1

cInhAni ðiuÞ
n

n!
; (17)

where In is defined by Eq. (6). The cumulants jn are the coef-

ficients in the expansion of the logarithm of the characteristic

function for PU. For the stochastic process considered here,

the cumulants are thus given by

jn ¼ cInhAni: (18)

From the cumulants, the lowest order moments are readily

obtained. A formal power series expansion shows that the

characteristic function is related to the raw moments of U

CUðuÞ ¼ 1þ
X1
n¼1

hUni ðiuÞ
n

n!
: (19)

Further expanding the logarithmic function in Eq. (17) and

using Eq. (19), it follows that the lowest order centred

moments ln ¼ hðU� hUiÞni are related to the cumulants by

the relations l2¼j2, l3¼ j3 and l4 ¼ j4 þ 3j2
2. From this,

general expressions for the skewness and flatness moments

are readily obtained45,46

SU ¼
3

4

2

pc

� �1=2 hA3i
hA2i3=2

; (20a)

FU ¼ 3þ 5

4pc
hA4i
hA2i2

: (20b)

Both these moments increase with decreasing c, clearly dem-

onstrating the intrinsic intermittent features of a process

composed by a super-position of uncorrelated pulses. For a

symmetric amplitude distribution, the skewness moment

vanishes together with the mean value of the random vari-

able. More generally, Eqs. (20) imply that there is a para-

bolic relationship between the skewness and flatness

moments45

FU ¼ 3þ 2p2

5

hA2ihA4i
hA3i2

S2
U: (21)

This relation holds for any amplitude and duration time dis-

tributions as far as the amplitude moments exist.

The results presented above show that the skewness and

excess flatness moments vanish in the limit c!1. It can be

demonstrated that the probability density function for ~U then

approaches a normal distribution, independent of the details

of the pulse shape and amplitude and duration time distribu-

tions. The stationary distribution PU can be written in terms

of the characteristic function given by Eq. (19)

PUðUÞ ¼
1

2p

ð1
�1

du exp �iUuþ
X1
n¼1

jnðiuÞn

n!

 !
; (22)

where the cumulants are given by Eq. (18). In the limit of

large c, the exponential function can be expanded as a power

series in u. Integrating term by term then gives44–46

lim
c!1

P~Uð~UÞ ¼ lim
c!1

1

ð2pÞ1=2
exp �

~U
2

2

 !

� 1þ l3

3!U3
rmsð2pÞ1=2

ð~U3 � 3~UÞ þ Oð1=cÞ
� �

:

(23)

The terms inside the square bracket in Eq. (23) are of order

1, 1/c1=2, and 1/c, respectively. The last of these represents

the sum of the remaining terms in the expansion. This shows

how the probability density function for ~U approaches a nor-

mal distribution in the limit of large c. The transition to nor-

mal distributed fluctuations is expected from the central limit

theorem, since in this case a large number of uncorrelated

pulses contribute to ~U at any given time. The normal limit is

valid for arbitrary pulse shapes and amplitude and duration

time distributions as far as the cumulants are finite.

By introducing the rescaled variable ~U defined by Eq.

(11), it is straight forward to show that the corresponding

characteristic function is given by

C~UðvÞ ¼ exp �i
hUi
Urms

v

� �
CU

v

Urms

� �
; (24)

where CU(u) is given by Eq. (17). Closed analytical expres-

sions for C~U will be obtained for two relevant amplitude dis-

tributions. Consider first the case of an exponential

distribution of the pulse amplitudes

PAðAÞ ¼
1

hAi exp � A

hAi

� �
; (25)

where hAi is the mean pulse amplitude and PA is defined only

for positive amplitudes, A> 0. In this case, the raw amplitude

moments are given by hAni ¼ n!hAin. For the stationary pro-

cess, it follows that the mean value is finite, hUi ¼ chAi, and

the variance is given by U2
rms ¼ chAi2=p, giving the relative

fluctuation level Urms=hUi ¼ 1=ðpcÞ1=2
. The skewness and

flatness moments become SU¼ 9/4(pc)1=2 and FU¼ 3þ 15/

2pc, respectively. Note that in this case there is a parabolic rela-

tionship between the skewness and flatness moments given by

FU ¼ 3þ 40S2
U=27. For positive definite pulse amplitudes, the

condition U > 0 corresponds to ~U > �ðpcÞ1=2
.

The characteristic function for an exponential amplitude

distribution is given by

ln CUðuÞ ¼ pc
ihAiu

ðp� ihAiuÞ1=2
: (26)

Making the substitution w¼ v/(pc)1=2, the characteristic

function for the rescaled variable ~U is given by
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P~Uð~UÞ ¼
1

2

p
c

� �1=2 ð1
�1

dw

� exp �i
ffiffiffiffiffi
pc
p ~U þ ffiffiffiffiffi

pc
p� �

wþ ipcwffiffiffiffiffiffiffiffiffiffiffiffiffi
1� iw
p

� �
: (27)

It is noted that for any function f(w) with the property

f †ðwÞ ¼ f ð�wÞ, where the dagger denotes the complex con-

jugate, the following relation holds:ð1
�1

dw f ðwÞ ¼ 2

ð1
0

dwR f ðwÞ½ �; (28)

where R denotes the real part of the argument. Any charac-

teristic function satisfies this condition, so the probability

density can be written as an integral over a function that

takes only real values

P~Uð~UÞ ¼
p
c

� �1=2 ð1
0

dw exp �
cpw sin

1

2
arctan w

� �
ð1þw2Þ1=4

0
B@

1
CA

� cos pcwþ ffiffiffiffiffi
pc
p ~Uw�

pcw cos
1

2
arctan w

� �
ð1þw2Þ1=4

0
B@

1
CA
:

(29)

This expression is suitable for numerical integration and the

distribution function for the rescaled variable is presented in

Fig. 2 for various values of the intermittency parameter. The

probability density function is unimodal for all values of the

intermittency parameter and has an exponential tail towards

large fluctuation amplitudes for small values of c. For large

values of c, the probability density function for ~U approaches

a normal distribution with vanishing mean and unit standard

deviation.44–46

Allowing both positive and negative pulse amplitudes,

the symmetric Laplace distribution with vanishing mean is

of particular interest

PAðAÞ ¼
1

21=2Arms

exp � 21=2jAj
Arms

 !
; (30)

where Arms is the standard deviation, hA2i ¼ A2
rms. The odd

moments for this distribution vanish, while the even

moments are given by hA2ni ¼ ð2nÞ!ðArms=21=2Þ2n
for posi-

tive integers n. For this symmetric distribution, both the

mean value and the skewness moment of the random vari-

able vanish, hUi ¼ 0 and SU¼ 0. The variance of the random

variable is now given by U2
rms ¼ cA2

rms=2p, while the flatness

moment is FU¼ 3þ 15/2pc. The latter is the same as for

exponentially distributed amplitudes discussed above.

Moreover, the characteristic function can be expressed in a

closed form

lnCUðuÞ

¼ � i
ffiffiffi
p
p

cArmsu

2

ð2p� i
ffiffiffi
2
p

ArmsuÞ1=2�ð2pþ i
ffiffiffi
2
p

ArmsuÞ1=2

4p2þ 2A2
rmsu

2
� �1=2

:

(31)

Again using the relation given by Eq. (28) and the change of

the integration variable defined by w¼ v/(pc)1=2, an expres-

sion for the probability density function that is suitable for

numerical integration is obtained

P~Uð~UÞ ¼
c
p

� �1=2 ð1
0

dw

� exp �
pcw sin

1

2
arctan w

� �
2ð1þ w2Þ1=4

0
B@

1
CA

cos
ffiffiffiffiffi
pc
p ~Uw
� �

:

(32)

This distribution is presented in Fig. 3 for various values

of the intermittency parameter c. For small values of c,

the distribution is strongly peaked and has exponential

tails for large fluctuation amplitudes. In this case, the pro-

cess spends long time intervals close to the zero value

between pulse arrivals, resulting in strong intermittency

as shown in Fig. 1. In the limit c ! 1, the probability

density function for ~U approaches a normal distribution

with vanishing mean and unit standard deviation as dis-

cussed earlier.44–46

FIG. 2. Probability density functions for a super-position of uncorrelated

Lorentzian pulses with an exponential amplitude distribution and various

values of the intermittency parameter c.

FIG. 3. Probability density functions for a super-position of uncorrelated

Lorentzian pulses with a Laplace amplitude distribution and various values

of the intermittency parameter c.
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Intermittent fluctuations in chaotic and turbulent contin-

uum systems have here been investigated by a stochastic

model describing these as a super-position of uncorrelated

Lorentzian pulses. The reference model has been extended to

include a random distribution of pulse amplitudes and dura-

tion times. The intermittency of the system is determined by

the degree of pulse overlap, quantified by the ratio of the aver-

age pulse duration and waiting times. When this parameter is

large, many pulses contribute to the process at any given time,

and the probability density function approaches a normal dis-

tribution as expected from the central limit theorem. In the

opposite limit where pulses generally appear isolated, the pro-

cess is strongly intermittent with a large relative fluctuation

level and skewness and flatness moments.

The characteristic function, and therefore the moments

and probability density function, is not affected by a random

distribution of the pulse duration times. The characteristic

function can be calculated in the closed form for several rele-

vant pulse amplitude distributions. Numerical solutions for the

probability density function have been obtained for exponen-

tially and Laplace distributed pulse amplitudes. In both cases,

there is an exponential tail for large fluctuation amplitudes in

the strong intermittency limit. This is a well known feature of

turbulent thermal convection and magnetized plasmas.

In summary, the stochastic model given by a super-

position of uncorrelated Lorentzian pulses describes many of

the salient features in chaotic and turbulent fluids and mag-

netized plasmas. This includes an exponential frequency

spectrum in the case of a constant pulse duration. Here, the

first predictions have been presented for the intermittency of

the fluctuations and the probability density function, which

has so far not been investigated in systems where Lorentzian

pulses have been identified.8–15 On the other hand, it was

recently established that the frequency power spectral den-

sity has an exponential shape for all values of the intermit-

tency parameter in the case of a constant pulse duration, thus

being independent of the degree of pulse overlap.42,43
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