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Chapter 1

Introduction

Contents
1.1 The Schrödinger equation . . . . . . . . . . . . . 7

1.2 Quantum Chemistry . . . . . . . . . . . . . . . . . 8

1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 The Schrödinger equation

Modern computational chemistry is, usually, based on the Schrödinger Equa-
tion (SE) postulated by Erwin Schrödinger in 1926. The equation was made
to model the spectrum of the Hydrogen atom. Although the SE is only
analytically solvable for one electron systems (H,He+, H+

2 etc.), it soon be-
came apparent that the equation also could be used for larger systems. The
solutions Ψ of the time independent SE

ĤΨ(~x) = EΨ(~x) (1.1)

are called wave functions; they contain all the information about a system.
The Hamiltonian Ĥ is the total energy operator, and the eigenvalue E the
total energy. Ψ is an eigenfunction of the Hamiltonian, and is generally
a complex-valued multi-dimensional function. Ψ = Ψ(~x1, ~x2, , , , , ~xn) where
~xi = (~ri, si) denotes, respectively, the position and spin of the particle, n is
the number for particles. This means that the dimensionality of the wave-
function increases with a factor of 4 (if spin is regarded as a dimension in its
own right) with respect to the number of particles.

The specific information of interest can be determined by operators and
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8 1.2. QUANTUM CHEMISTRY

their respective expectation value.

〈ω̂〉 =
〈Ψ| ω̂ |Ψ〉
〈Ψ|Ψ〉

(1.2)

Throughout the rest of this thesis, unless otherwise stated, atomic units
have been used. This means that j0 = ~ = me = 1, distances are expressed
in terms of the Bohr radius (a0) and energies are expressed in Hartree (Eh).

1.2 Quantum Chemistry

The main focus of this thesis is how a solvent effect the total energy of a sys-
tem. For experimental chemists, it is important to have precise calculations
on molecules in an environment that is as realistic as possible. This is why
many computational chemists work to improve their codes to include solvent
effect, and it is the reason why it is implemented in MRChem [1].

A common way of splitting the Hamiltonian, without external influence,
is in the kinetic energy of the nuclei (T̂N) and the electrons (T̂e), and the
potential energy of the nuclear-nuclear repulsion (V̂NN), the electron-electron
repulsion (V̂ee) and the electron-nuclear attraction (V̂eN):

Ĥ = T̂N + T̂e + V̂NN + V̂ee + V̂eN (1.3)

Assuming that the solvent-solute system is one big macro-system, the Hamil-
tonian describes all the interactions. The SE is not solvable for systems larger
than one-electron systems, meaning that we need approximations to describe
the macro-system at hand. There are usually three steps needed to produce
useful theoretical models for such a system.

• First; we need to reduce the macro-system into subsystems. This re-
sults in the ability to describe the different subsystems at different
level of theory. Usually this is done by describing the molecule with
Quantum Mechanics (QMs) and the solvent with Molecular Mechan-
ics (MMs) or Polarizable Continuum model (PCM).

• Second; we need to approximate the SE equation of the subsystem of
interest. In this thesis this is done by the Hartree-Fock (HF) method
and Density Functional Theory (DFT).

• Third; we need to approximate the mathematical solutions of the model.
In chemistry this is usually done by Gaussian-Type Orbitals (GTOs)
bases. The method used in this thesis is however Multiresolution Anal-
ysis (MRA) through a MultiWavelet (MW) basis
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1.3 Structure

The structure of this thesis is basically the opposite of the three steps de-
scribed above. We start off with a discussion about basis sets in chapter
2. The types of bases discussed are the MWs and the atom centered GTO.
Chapter 2 is needed to present the different computational methods discussed
in chapter 3. The methods discussed are the HF method and DFT. Chapter
4 discusses the inclusion of solvent effect with focus on the Gaussian type
formalism. Chapter 5 discusses how the solvent effects are formulated and
implemented for the MW basis used in MRChem [1] . Finally, in chapter
6 some results are posted. It contains energy calculations from MRChem
compared with Gaussian [2], verifications that the algorithms discussed work
and concluding remarks concerning the implementations done in relation to
this thesis.





Chapter 2

Basis sets

Contents
2.1 Introduction to function basis . . . . . . . . . . . 12

2.2 Atom-centered basis functions . . . . . . . . . . . 12

2.2.1 Gaussian Type Orbitals (GTOs) . . . . . . . . . . 14

2.2.2 Gaussian contractions . . . . . . . . . . . . . . . . 15

2.3 MultiResolution Analysis (MRA) . . . . . . . . . 16

2.3.1 The Haar basis . . . . . . . . . . . . . . . . . . . . 16

2.3.2 The multiwavelet basis . . . . . . . . . . . . . . . 22

2.4 Multiwavelet vs. Gaussian Type Orbitals . . . . 24

Some Partial Differential Equations (PDEs) do not have a known analyt-
ical solution, but with approximations and computational tools we can get
very close to a solution. This chapter will discuss a few ways of representing
functions so that a solution to the PDEs may be approximated. The two
most prominent ways of solving PDEs, are either by numerical methods or
spectral methods. Finite difference method is one of the most widespread
numerical methods (see [3] for further reading). The method transforms the
PDE into a set of solvable difference equations. This chapter will, however,
focus on the spectral methods used in computational chemistry.

Spectral methods are techniques where one projects the problem onto a
set of known basis functions with known properties. By fitting the coefficients
to the differential equation at hand, a solution can be obtained. How these
basis functions are built to fit the PDEs is the topic of this chapter. The most
widespread basis for molecular computations are Atomic Orbital (AO) rep-
resented as a linear combination of atom-centered Gaussian functions. Gaus-
sian basis will be discussed in detail, furthermore, the MultiWavelet (MW)
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12 2.1. INTRODUCTION TO FUNCTION BASIS

basis will be discussed. MW bases are emerging as a promising alternative to
the Gaussian basis and is the basis used for a new way of calculating solvent
effects which has been implemented for this thesis.

2.1 Introduction to function basis

A basis, from a mathematical point of view, can be something as simple as
the vector space V = {~e1, ~e2, ~e3} = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} which spans
R3. Any point in space can be written as a linear combination of the three
orthonormal vectors, ex: (0, 1, 2) = 0~e1 + ~e2 + 2~e3. This means that any set
of vectors {~e1, ~e2, ..., ~en} where 〈~ei|~ej〉 = δij, spans an n-dimensional space.

The same basic principle applies to a basis set of functions, where one
represents a function f(x) as a linear combination of basis functions gµ(x):

f(x) =
n∑
µ

cµgµ(x) (2.1)

where, by carefully choosing the basis function gµ(x) and with a large enough
n, one can represent a function accurately. To represent a function accurately
is usually not doable because of the complexity of the functions used for
quantum molecular calculations. This leads to a choice between accurate
representation and reasonable computational time.

• greater number of basis functions =⇒ higher accuracy.

• lower number of basis functions =⇒ faster calculation.

For computational purposes, the most important factor is that the ba-
sis functions have known properties, with differentiation and integration as
their main properties for solving differential equations. Another important
factor is that the basis set needs to have the possibility to be systematically
improved. Meaning that the basis sets should be able to not only be ad-
justed according to the users preferences but be applicable for the growing
computational power emerging every year (Moore’s Law [4]).

2.2 Atom-centered basis functions

Gaussian-Type Functions (GTFs) and Slater-Type Functions (STFs) are
atomic centered functions made to mimic the solutions to the one-electron
Schrödinger Equation (SE). Both GTFs and STFs are routinely used as basis
functions in computational chemistry.
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The STF and GTF are written in equation 2.2 and 2.3. STF represents
the cusp of the electronic wave-function well and decays towards 0 at the
correct rate.

s(r, θ, φ;n, l,m, ζ) = rn−l−1e−ζrΥlm(~r) = rn−1e−ζrYlm(θ, φ) (2.2)

A single GTF does not represent the cusp in a correct manner and decays
towards 0 too fast. In spite of that, it will after this section become apparent
why the GTFs are the more widely used basis functions.

g(r, θ, φ;n, l,m, α) = r2(n−l−1)e−αr
2

Υlm(~r) = r2n−l−2e−αr
2

Ylm(θ, φ) (2.3)

In equation 2.2 and 2.3 r, θ, φ are the spherical coordinates (r = |r − r′|;
distance from nuclei), n ∈ Z, l and m are the quantum numbers. ζ and α are
positive fitted parameters to the specific GTF or STF, Υlm(~r) is related to the
spherical harmonics through Υlm(~r) = rlYlm(θ, φ). The spherical harmonics
are the set of functions that satisfies the angular part of the Laplace equation

∇2Yl,m(φ, θ) = 0 (2.4)

Using the STF as a basis for chemical calculations is a sound strategy, for
the simple reason that the functions can be advocated by the physics of AOs.
However, STF poses a problem when it comes to integral evaluation, and
especially the three- and four-centered two-electron integrals (2.5) performed
in the Hartree-Fock (HF) calculations in the form:

gpqrs =

∫ ∫
φp(r1)φq(r1)

1

||r1 − r2||
φr(r2)φs(r2)drdr2 (2.5)

There exists no analytical solution to the two-electron integrals with STF,
resulting in time consuming numerical evaluations. In addition, the STF
first derivative is not continuous, which causes troublesome evaluation of
derivatives.

The only major difference between STF and GTF is that while STFs
are linear in the exponent, GTFs are quadratic (Gaussian). The important
similarities between a linear and quadratic exponent is that they both decay
towards 0 at great distance from the nuclei.

Separability is an important factor. GTFs can be separated into a product
of functions, one for each Cartesian direction (ex

2+y2+z2 = ex
2
ey

2
ez

2
). How-

ever, integral evaluation is the determining factor in choosing GTFs as build-
ing blocks for a basis. Depending on the operator Ô in 〈χµ| Ô |χν〉, integral
evaluation of exp(−x2) can be performed analytically (

∫∞
−∞ exp(−αr

2)dr =

(π
α

)1/2). This makes sums of GTFs a more efficient representation of AOs,
which again translates to a more efficient representation of Molecular Or-
bitals (MOs).
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2.2.1 Gaussian Type Orbitals (GTOs)

Equation 2.2 and 2.3 show that the only difference between the two is the
radial function; this will be the primary focus. For all types of function bases,
the spherical harmonics Ylm(θ, φ) are the same set of functions [5], while the
radial part is different. For Gaussian-Type Orbitals (GTOs), the standard
form of the radial function

g(x, y, z; l,m, n, α) = Nxlymzne−αr
2

(2.6)

is relatively straightforward, with a few key properties. If the sum of the
parameters l, m and n are equal to 0, the function does not contain any
radial nodes. This means that a sum of functions with L = l+m+n = 0 can
be fitted to represent a 1s GTO. With this logic, it is theoretically possible
to build all kinds of AOs from the universal GTO by varying the angular
momentum quantum number L, the normalization N and the parameter α.

• 1s

g1s = Ne−αr
2

(2.7)

• 2p

g2px = Nxe−αr
2

g2py = Nye−αr
2

g2pz = Nze−αr
2

(2.8)

• 3d

g2dxx = Nx2e−αr
2

g2dxy = Nxye−αr
2

g2dxz = Nxze−αr
2

g2dyy = Ny2e−αr
2

g2dyz = Nyze−αr
2

g2dzz = Nz2e−αr
2

(2.9)

This way of building the orbital can be continued for 4f , 5g etc, the
building blocks are often referred to as primitives or Gaussian primitives.
At first glance these functions have a few quirks: The primitives are not
eigenfunctions of the square angular momentum operator (L̂2), and there are
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too many d orbitals and consequently to many f and g orbitals. Although
this seems odd, it is not a problem, rather a clever design, superposing three
d-orbitals gives one totally symmetric s-orbital;

gdxx + gdyy + gdzz = gs (2.10)

N1x
2e−αr

2

+N2y
2e−αr

2

+N3z
2e−αr

2

= N ′r2eαr
2

(2.11)

where r2 = x2 + y2 + z2

2.2.2 Gaussian contractions

It is important to note that a single Gaussian primitive in itself is usually not
used to mimic the solutions of the one-electron SE. However, superposing a
collection of primitives can be used to mimic the one electron-system. These
collections are typically called contractions, and are a collection of primitives
with the same total angular momentum L but with different α. The α’s are
typically fitted from quantum calculations (HF, post HF).

This means that the more primitives and the better fitted the α parameter
is, the more accuracy can be expected from the basis-set. This makes the
two goals of a function-basis-set posted in the introduction of this chapter a
reality; systematic improvement of the basis set and the connection to the
physical world.

Doing this contraction lowers the cost of computations, and we get a
more physically sound function. Still, for high accuracy calculations, the
uncontracted versions are used. The design of the basis sets usually has
contracted functions to represent core orbitals and uncontracted bases for the
valence orbitals. This gives a more accurate representation of the chemically
important valence electrons, while the core electrons, which are usually not
part of a chemical bond, are more fixed in space.

An important notion on Gaussian basis sets is that since there are many
ways of choosing the α parameters and many ways to contract the Gaussian
primitives, there are a lot of different Gaussian basis sets in use and in de-
velopment. This is a two sided issue. On the one hand, the user can use a
basis set that is close to perfect for the system and the properties that are in
question. On the other hand, knowing which basis-set is the best is difficult
for inexperienced users.

Another issue is that when more accurate basis sets are developed, which
in many cases means more basis functions, the linear dependency in the
functions starts to play a big role. The linear dependency leads to a loss
of accuracy, due to numerical instabilities, if the number of functions are
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too large. This means that there is a limit to how accurate calculations can
become with GTO.

Although GTOs have problems achieving chemical accuracy (∼ 1kcal/mol)
and the limitations of what the GTO can achieve are closing in, the basis
sets are widely used and new basis-sets are being produced [6]. A promising
new type of basis-functions is the MW basis functions, which will be in focus
in the next section.

2.3 MultiResolution Analysis (MRA)

Multiresolution Analysis (MRA) is a different approach to the representation
of functions for computational chemistry purposes. The main upside of using
MRA is that in some resolution differs for different parts of the space you
are working in. This means that starting from an analytical function, say
exp(−|r|), one can take the function and project it onto a grid where there are
more data-points around r = 0 and less as we approach larger displacements.
With the adaptive grid structure of the MRA, one could argue that the MW
bases can be classified as somewhere in between a numerical method and a
spectral method.

The following discussion will limit us to a 1-dimensional unit interval and
not the whole R. But before discussing the multi-wavelet basis, it is useful
to discuss a slightly simpler basis that, in principle, has the same build and
exhibits many of the same properties: the Haar-basis[7].

2.3.1 The Haar basis

The Haar basis was defined by Alfred Haar[7]. It is one of the first MRA
bases and is used in this thesis as an introduction to MRA for the simple
reason that the equations are simpler which makes the deduction simpler to
read.

The build

The Haar basis in L2[0, 1] is the collection of functions with a specific property
(2.12)

χnl (x) = 2n/2χ(2xn − l) (2.12)

With n, l ∈ Z and by varying n and l one changes the domain of the function.
In MRA, χ is commonly known as the scaling function, in the Haar basis it
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is defined as

χ0
0(x) =

{
1 for x ∈ [0, 1)

0 else
(2.13)

which is a very simple function, but exhibits the property in equation 2.12
which makes it the simplest possible basis for a complete MRA basis. It is
important to note the two scale difference equation (2.14):

χ(x) = χ(2x) + χ(2x− 1) (2.14)

χnl (x) = χn+1
2l (2n+1x− 2l) + χn+1

2l+1(2
n+1x− 2l − 1) (2.15)

which is resulting from 2.13 and 2.12.
Introducing another function with many of the same properties, the Haar

function

hnl (x) = 2n/2h(2nx− l) (2.16)

where n, l ∈ Z.

h00(x) =


1 for x ∈ [0, 1/2)

−1 for x ∈ [1/2, 1)

0 else

(2.17)

Although the Scaling functions may be used as basis functions, it is not
generally the case, and the set of the Haar functions and scaling functions
is used. The Haar functions h and the scaling functions χ are connected via
another very important two scale relation:

h(x) = χ(2x)− χ(2x− 1) (2.18)

hnl (x) = χn+1
2l (2n+1x− 2l)− χn+1

2l+1(2
n+1x− 2l − 1) (2.19)

From the definitions above, the Haar-functions h(x) and the scaling func-
tions χ(x) have a few key properties which make the collection of the two
better suited as a basis:

• Their L2-norm is equal to 1 for all n, l ∈ Z∫
R
hnl (x)2dx =

∫
R
χnl (x)2dx = 1 (2.20)

• The Haar functions are orthonormal in L2[0, 1]

〈hnl , hn
′

l′ 〉 =

∫
hnl (x)hn

′

l′ (x)dx = δn,n′δl,l′ for n, n′, l, l′ ∈ Z (2.21)
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• The Haar functions are dense in L2[0, 1], meaning that they produce
a basis that is arbitrary close to L2[0, 1]. This is a consequence of the
fact that any continuous function(C[0, 1]) can be approximated with
arbitrary precision by the Haar Functions with sufficiently small dyadic
interval.

The functions χnl (x) defined on [0,1] create a hierarchical chain of linear
subspaces in L2[0, 1]:

V 0 ⊂ V 1 ⊂ ... ⊂ V n−1 ⊂ V n ⊂, V n+1 ⊂ ... ⊂ L2[0, 1] (2.22)

where V 0 is spanned by the single function χ0
0, V

1 spanned by {χ1
0, χ

1
1}. Any

space V n is then defined as being spanned by:
∑

l χ
n
l

For an equivalent representation, we produce a space W n called Difference
space, defined as V n+1 = W n ⊕ V n where the Haar functions span W n.

Applying the definition of W n recursively leads to equation (2.23)

V n = V 0 ⊕W 0 ⊕W 1 ⊕ · · · ⊕W n−1 (2.23)

Projecting functions

The next step is to determine the scaling and difference coefficients of a
projection of a function f(x). The function f(x) is defined as values of
scaled averages of f(x) in intervals of length 2−j

sjl =

∫
R
χlj(x)f(x)dx = 2j/2

∫ 2−j(l+1)

2−j l

f(x)dx (2.24)

Using the two-scale difference equations, we obtain:

dj−1l =

∫
R
hj−1l (x)f(x)dx = 2(j−1)/2

∫
h(2(j−1)x− l)f(x)dx

dj−1l = 2(j−1)/2
(∫

χ(2jx− 2l)f(x)dx−
∫
χ(2jx− 2l − 1)f(x)dx

)
dj−1l = 2(j−1)/2

(∫ 2−j(2l+1)

2−j(2l)

f(x)dx−
∫ 2−j(2l+2)

2−j(2l+1)

f(x)dx

)
dj−1l = 2−1/2(sj2l − s

j
2l+1) (2.25)

where d is called the difference coefficients, the coefficient for the Haar func-
tions h,
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sj−1l =

∫
R
χj−1l (x)f(x)dx = 2(j−1)/2

∫
h(2(j−1)x− l)f(x)dx

sj−1l = 2(j−1)/2
(∫

χ(2jx− 2l)f(x)dx+

∫
χ(2jx− 2l − 1)f(x)dx

)
sj−1l = 2(j−1)/2

(∫ 2−j(2l+1)

2−j(2l)

f(x)dx+

∫ 2−j(2l+2)

2−j(2l+1)

f(x)dx

)
sj−1l = 2−1/2(sj2l + sj2l+1) (2.26)

where s is called the scaling coefficients. With this we have a method of ob-
taining the Haar/difference coefficients (2.25) and scaling coefficients (2.26).
An important notion is that the projection of coefficients to a coarser scale
can be written as: (

dnl
snl

)
=

(
2−1/2 −2−1/2

2−1/2 2−1/2

)(
sj+1
2n

sj+1
2n+1

)
(2.27)

And the invers: (
sj+1
2n

sj+1
2n+1

)
=

(
2−1/2 2−1/2

−2−1/2 2−1/2

)(
dnl
snl

)
(2.28)

It is now possible to evaluate the entire set of coefficients.

Example

The main purpose of the MRA bases is that the difference coefficients will be
small for smooth functions. To illustrate the effect, an example program was
made using Mathematica[8]. The example program projects the function
f(x) onto a Haar basis at scale 4.

f(x) = e−100(x−0.5)
2

(2.29)

The function is then approximated according to definition 2.23

f 5(x) ≈
2n−1∑
l

5∑
n

snl χ
n
l = s00χ

0
0 +

2n−1∑
l

4∑
n

dnl h
n
l (2.30)

With scaling and difference coefficients calculated with the relationship 2.27
The figures in 2.2 shows five functions, summing up the first five results

in the sixth figure. Note that the functions are on a uniform grid in every
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(a) f(x) (b) f5(x) ≈
∑2n−1

l

∑5
n s

n
l χ

n
l

Figure 2.1: The projected function f5(x) and the original function f(x), plotted
with Mathematica

figure, this is to illustrate the effect of adaptivity. The example shows that
the coefficients of the Haar functions, in regions where the approximation
of the function is good from the sum of the coarser scales, are closing in on
0. This means that in these regions (see figure 2.2c in region (0,0.2) and
(0.8,1)) the refinement of the grid can be stopped. In other regions (around
0.4 and 0.6) the refinement continues, this is how an adaptive grid is made.
Although the functions can be more complicated and the basis functions
more complicated, the principle of MRA is the same.
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(a) s00χ
0
0 (b) d11h

1
0 + d11h

1
1

(c)
∑3

l=0 d
2
l h

2
l (d)

∑7
l=0 d

3
l h

3
l

(e)
∑15

l=0 d
4
l h

4
l (f) f5(x) ≈

∑2n−1
l

∑5
n s

n
l χ

n
l

Figure 2.2: The road to approximation, plotted with Mathematica
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2.3.2 The multiwavelet basis

The similarities between the MW basis and the Haar basis is profound. In
simple terms, the Haar functions and the scaling functions are replaced by
polynomial bases. This means that the Haar basis is a multiwavelet basis
with polynomial order 0.

There are a few important properties that emerge when higher order
polynomials are used, but first we need to discuss the build.

The build

Building the multiwavelet basis is very similar to the Haar basis. The scaling
function for the multiwavelet basis (2.31) is built in a similar manner as for
the Haar basis (2.12) and the wavelet functions (2.32) are constructed in a
similar manner as the Haar function for the Haar basis (2.16). They produce
the same sequence of subspaces as in 2.22 and exhibit the same properties
as in 2.23.

The big difference is the two scale relations:

φni,l(x) =
√

2
k∑
j=0

(
H

(0)
ij φ

n+1
j,2l (x) + H

(1)
ij φ

n+1
j,2l+1(x)

)
(2.31)

ψni,l(x) =
√

2
k∑
j=0

(
G

(0)
ij φ

n+1
j,2l (x) + G

(1)
ij φ

n+1
j,2l+1(x)

)
(2.32)

Since the functions now are polynomials, we get the H(m) matrices and the
G(m) matrices instead of the simpler two-scale relations for the Haar-basis
(2.14 and 2.18). The matrices describe the transformation between different
spaces.

The disjoint form of the wavelets ψ and scaling functions φ means that
there is an overlap and that the relation between two scales is made up of a
matrix of matrices (G(1), G(0, H(1), H(0)), with the representation of ψ and φ

as vectors ~ψ and ~φ

(
~ψnl
~φnl

)
=

(
G(1) G(0)

H(1) H(0)

)(
~ψn+1
2l+1
~φn+1
2l

)
(2.33)
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Projecting Functions

Projecting a function on the scaling space V n
k where k is the highest order

of polynomial is done in a similar manner as for the Haar basis. The MW
transform:

f(x) ≈ P n
k f(x) = fn(x) =

2n−1∑
l=0

k∑
j=0

sn,fj,l φ
n
j,l(x) (2.34)

where n is the scale on which f is projected, l is the individual function for
each box, j the order of the polynomial and sn,fj,l is defined as in equation
2.35 (see eq. 2.26)

sn,fj,l =

∫ 1

0

φnj,l(x)f(x)dx (2.35)

The Poisson and Helmholtz operator

Derivative operators, and in particular the Laplacian (∇2), poses a problem
in the MW basis. The reason for this is the discontinuity in the basis. One
way to solve this is by transforming the differential equation into an integral
equation.

The numerical noise due to the discontinuity, here represented as a wave,
amplifies when the Laplacian is applied:

∇2(f(x) + λeikx) = f ′′(x)− k2λeikx (2.36)

where λ is the order of noise and k the frequency. The inverse operator,
however, has the opposite effect:

(∇2)−1(f(x) + λeikx) = (∇2)−1f(x)− λ

k2
eikx (2.37)

This means that two convolution operators are introduced, the Poisson (P̂)
and Helmholtz (Ĥν) operator. The Poisson operator

P̂ [f ](r) =

∫
1

4π||r − r′||
f(r′)dr′ (2.38)

is the inverse Laplacian (P̂ = (−∇2)−1) and the Helmholtz operator

Ĥν [f ](r) =

∫
e−ν||r−r

′||

4π||r − r′||
f(r′)dr′ (2.39)

is the inverse of the shifted Laplacian (Ĥν = (−∇2+ν2)−1). Both convolution
operators have been implemented in MRChem [1], and used in this thesis
for solving the equations emerging form chapter 3, 4 and 5.
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2.4 Multiwavelet vs. Gaussian Type Orbitals

There are many differences between GTO and multiwavelets. This section
will discuss the most important differences.

• The Gaussian basis has issues when it comes to reliably determining
how accurate the calculations are with a given method. This is on the
other hand something the MW codes do perfectly.

• The scaling of computational time vs. system size for a naive HF
calculation with GTO is n4 where n is the number of orbitals, this
is, after decades of optimization closer to n with small and localized
Gaussian basis sets.[9] With the MW basis, the scaling is quadratic
due to the inherent linear scaling of the necessary integral convolution
operators (P̂ and Ĥν) [10]. However, the MW computations come with
a larger prefactor.

• The two-electron integrals (2.5) pose a problem for both the MW and
GTO codes. Although the gaussian form of the basis functions in GTO
has an analytic form, the two-electron integrals pose a numerical prob-
lem. This problem is however simpler in the MW codes, but to rep-
resent a function in MW one typically needs more functions. If the
Gaussian approach uses 1′000 basis functions, the MW basis needs, de-
pending on the order of polynomials, somewhere between 106 and 107

functions to obtain the same accuracy.

• With the simplicity of the MW in mind, it is safe to assume that
the possibility of parallelization is greater for the MW codes. The
MADNESS code written at Stony Brook University in New York is
leading the parallelization effort for chemical computations on MW
[11].

• Some properties like magnetizability and NMR-shielding are affected
by the gauge origin. This means that basis functions that have a spe-
cific origin, like GTOs, have issues. There have been many attempts
to solve this problem with the GTO. Many of them are successful,
and especially the Gauge Including Atomic Orbitals (GIAO) [12]. Be-
cause of the highly adaptable grid and the theoretical completeness of
the MW basis, this problem is not an issue and successful implementa-
tions have been produced for calculating NMR-shielding constant and
magnetizabilities in MRChem [13].
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This chapter contains an outline of the Hartree-Fock (HF) method and
Density Functional Theory (DFT). The focus will mainly be on the HF
Self-Consistent Field (SCF) method, HF method for short, which is one of
the big driving forces behind modern computational chemistry. The HF
method is important not only in its own right, but is used as a starting
point for other more accurate models for computing electronic structures in
molecules. (Couple-Cluster (CC), Møller-Plesset perturbation (MPn) and
more are based on HF [14]). The derivation of the HF method follows that
of standard textbooks like Atkins [5], Szabo and Ostlund [15], Helgaker [14]
and F. Jensen [16] and from the thesis of S.R. Jensen [17]
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3.1 The electronic Schrödinger equation

As a starting point for the discussion one can use the non-relativistic Hamil-
tonian from equation 1.3, written again in 3.1

Ĥ = T̂N + T̂e + V̂NN + V̂ee + V̂eN (3.1)

The most widespread first step approximation is the Born-Oppenheimer ap-
proximation (BO). The BO views the nuclei as fixed in space and the elec-
trons as particles in a static potential field made by the nuclei. The motiva-
tion for this is that the electrons are much lighter than protons and neutrons
(1836.1493me and 1838.6802me [18]). This leads to the following assump-
tion; the electrons instantly react to the motion of the nuclei, which leads to;
in an electronic time scale, the nuclei are fixed in space. Since the nuclei are
fixed in space, the instantaneous correlation between the nuclei and electrons
can be disregarded and we can separate the nuclear kinetic energy from the
Hamiltonian:

Ĥ = T̂nuc + Ĥel (3.2)

The total electronic Hamiltonian (Ĥel) consists of four operators, the electron
kinetic energy

T̂e = −
∑
i

1

2
∇2

i (3.3)

the electron-nuclei attraction

V̂eN = −
∑
i,I

ZI
||ri −RI ||

(3.4)

the electron-electron repulsion

V̂ee = −
∑
i=1

∑
i>j

1

||ri − rj||
(3.5)

and the nuclear-nuclear repulsion

V̂NN =
∑
I>J

ZIZJ
||RI −RJ ||

(3.6)

What is left is the dilemma of solving the electronic Schrödinger Equation
(SE);

ĤelΨel = EelΨel. (3.7)
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which, for the remainder of this chapter, will be the main equation, making
the subscript el redundant.

There is a particular state of a quantum-chemical system called ground
state (ψ0). ψ0 is associated via the SE to its eigenvalue E0, which is called
ground state energy (the minimal energy of a system). This state is of special
importance to computational chemists. Under normal lab-conditions this is
the state which is most populated, which means that many chemical proper-
ties can be explained from the ground state system. This means that making
adequate approximations to the ground state wave-function has been given a
lot of attention through the development of Quantum Mechanic (QM) meth-
ods. The way the ground state system can be calculated is by the use of the
variational principle, which states that for any given Ĥ, with a true ground
state ψ0, we have for an arbitrary approximated wave-function ψ̃〈

ψ̃
∣∣∣ Ĥ ∣∣∣ψ̃〉〈
ψ̃
∣∣∣ψ̃〉 ≥ 〈ψ0| Ĥ |ψ0〉

〈ψ0|ψ0〉
(3.8)

which has an expectation value that is always greater or equal to the true
ground state. This theorem results in the possibility of formulating methods
as a minimization problem. The variational formulation is an important part
of both the HF method and DFT.

3.2 The Hartree-Fock method

The HF method is formulated differently with respect to which basis is used.
In this thesis the Gaussian-Type Orbital (GTO) and the MultiWavelet (MW)
basis have been considered and will therefore be considered again in relation
to HF. First some general considerations will be presented, then the two
bases force a split in the section for which the formulation differs.

3.2.1 General considerations

One of the major problems of solving the electronic-SE is the high dimen-
sionality that emerges when working with molecules. The dimensionality of a
system with n electrons results in a wave-function as a 3n-dimensional scalar
function (disregarding spin). This is not feasible for computational pur-
poses, we introduce Ψ as a product of n one-electron wave-functions called
spin-orbitals (φi).

Ψ(~x1, ~x2, ~x3, ..., ~xN) =
∑
m

cmφ
m
1 (~x1)φ

m
2 (~x2)φ

m
3 (~x3), ..., φ

m
n (~xn), (3.9)
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The spin-orbitals (φi) are solutions of the one-electron SE.

ĥiφi =
(
− 1

2
∇2 −

∑
I

ZI
|ri −RI |

)
φi (3.10)

This representation, however, does not converge well and a large number
of terms are usually needed and is missing electron-electron repulsion. In
addition, the representation does not abide the fermionic properties of the
electrons (Pauli exclusion principle[19]). The Pauli-principle states that a
fermionic wave function needs to be antisymmetric with respect to exchange
of two particles.

Ψ(~x1, ~x2, ~x3, ..., ~xn) = −Ψ(~x1, ~x3, ~x2, ..., ~xn) (3.11)

Slater-determinants are therefore used:

|φ〉 = (N !)−1/2

∣∣∣∣∣∣∣∣∣∣∣

φ1(~x1) φ1(~x2) . . . φ1(~xn)
φ2(~x1) φ2(~x2) . . . φ2(~xn)

...
...

. . .
...

φn−1(~x1) φn−1(~x2) · · · φn−1(~xn)
φn(~x1) φn(~x2) · · · φn(~xn)

∣∣∣∣∣∣∣∣∣∣∣
= |φ1φ2...φn−1φn〉

(3.12)

The HF method considers a single Slater determinant as the trail wave-
function, one of the ways of improving the HF method is by including more
determinants.

To derive the HF equations, it is potent to sort the different parts of the
Hamiltonian (3.3)(3.5)(3.4)(3.6) after electron indices:

Ĥ = V̂NN +
∑
i=1

hi +
∑
i=1

∑
j>i

gij (3.13)

where gij = 1/||ri − rj||, V̂NN is a scalar multiplication operator 〈φ|V̂NN |φ〉 =
VNN 〈φ|φ〉. The expectation value of hi for a specific i = k is:

〈φ1φ2...φk...φn|hk |φ1φ2...φk...φn−1φn〉 (3.14)

= 〈φ1|φ1〉 〈φ2|φ2〉 . . . 〈φk|hk|φk〉 . . . 〈φn|φn〉 = 〈φk|hk|φk〉 (3.15)

The two-electron part of the operator demands the full representation of
the Slater determinant. Considering a two-electron system with the short
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hand notation ~xi = {~ri, qi}, q is the charge.

〈φ1φ2|g12|φ1φ2〉 (3.16)

=
1

2
〈φ1(~x1)φ2(~x2)− φ1(~x2)φ2(~x1)|g12|φ1(~x1)φ2(~x2)− φ1(~x2)φ2(~x1)〉 (3.17)

=
1

2
〈φ1(~x1)φ2(~x2)|g12|φ1(~x1)φ2(~x2)〉

+
1

2
〈φ1(~x2)φ2(~x1)|g12|φ1(~x2)φ2(~x1)〉

− 1

2
〈φ1(~x1)φ2(~x2)|g12|φ1(~x2)φ2(~x1)〉

− 1

2
〈φ1(~x2)φ2(~x1)|g12|φ1(~x1)φ2(~x2)〉

(3.18)

where the integrals are over ~xi, renaming the indices gives us:

〈φ1φ2|g12|φ1φ2〉 (3.19)

= 〈φ1(~x1)φ2(~x2)|g12|φ1(~x1)φ2(~x2)〉 (3.20)

− 〈φ1(~x2)φ2(~x1)|g12|φ1(~x1)φ2(~x2)〉 (3.21)

= Ĵ12 − K̂12 (3.22)

Note that g12 = g21. This procedure is valid for systems with arbitrary
number of electrons.

With this we arrive at the one-orbital Hartree-Fock equation, where the
nuclear-nuclear (V̂NN) repulsion is omitted,

F̂ φi = ĥiφi +
1

2

∑
j

(Ĵj − K̂j)φi = εiφi (3.23)

εi is the orbital energy eigenvalue. V̂ee (3.5) is transformed into the Coulomb
interaction Ĵj and the Exchange operator K̂j, which assumes that φ is known
for the j − 1 other electrons. The 1/2 factor is to correct for the double
counting emerging in both Ĵ and K̂

Ĵjφi(~x) = 〈φj(~x′)|
1

||r − r′||
|φj(~x′)〉φi(~x) (3.24)

K̂jφi(~x) = 〈φj(~x′)|
1

||r − r′||
|φi(~x′)〉φi(~x) (3.25)

The Coulomb operator (Ĵj) takes into account the Coulombic repulsion be-

tween electrons. The Exchange operator (K̂j) represents the modification of
this energy that can be ascribed to the effect of spin correlation.
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Equation 3.23 is the same for both the formulation of the method in
GTO and MW bases and is in theory ready for implementation. But as
the molecules grow, the complexity of the numerical solutions increases and
rapidly becomes unfeasible. This is why additional modifications are needed
and the modifications differ for the different bases.

3.2.2 Hartree-Fock method with Gaussian Type Or-
bitals

The additional modifications needed to implement the HF method in a GTO
basis comes from the Linear Combination of Atomic Orbitals (LCAO) (3.26)
which states that one can express a Molecular Orbital (MO) (φi) as a linear
combination of Atomic Orbitals (AOs) (χµi).

φi =

Nµ∑
µ

cµiχµ (3.26)

where i is the specific MO, µ is ranging over the Nµ basis functions (χµ) in
use. This procedure is called the LCAO, and was independently developed
by C.C.J.Roothaan [20] in 1951 and G.G.Hall [21] in 1950. Assuming that
the AOs represented by GTO are known, this transforms the differential
equation (3.23) into a problem where one needs to compute the coefficients
cµi.

Substituting the expansion from equation 3.26 in equation 3.23 yields:

F̂

Nµ∑
µ

cµiχµ(r1) = εi

Nµ∑
µ

cµiχµ(r1) (3.27)

Multiplying each side by χ∗µ′(r1) and integrating over all space gives:

Nµ∑
µ

〈χµ′(r1)| F̂ |χµ(r1)〉 = εi

Nµ∑
µ

〈χµ′(r1)|χµ(r1)〉 (3.28)

Introducing the overlap matrix, S, and the Fock matrix, F, both with di-
mensions Nµ ×Nµ and with matrix elements S and F ;

Sµ′µ = 〈χµ′(r1)|χµ(r1)〉 (3.29)

Fµ′µ = 〈χµ′(r1)| F̂ |χµ(r1)〉 (3.30)
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which transforms equation 3.27 into:

Nµ∑
µ

Fµ′µcµi = εi

Nµ∑
µ

Sµ′µcµi (3.31)

Combining the whole set of equations from the Roothaan equations (3.31)
results in a matrix representation of the HF equation (3.23)

Fnc = εScn+1 (3.32)

where every member of the equation is an Nµ × Nµ matrix, ε is a diagonal
matrix. Note that F has the matrix elements Fµ′µ (3.30) that is made from
the Fock operator (3.23) that contains the coefficients cµi. Solving equation
3.32 is an iterative process, where one starts with an initial guess of what the
matrix c0 looks like and from that makes the Fock matrix F0 which again
changes a new matrix c1. This process is often referred to as a self-consistent
field method, thereby HF-SCF method. The SCF is said to converge, and
thereby stopped, when the ε from iteration n is significantly close (user spec-
ified) to ε from iteration n+ 1.

3.2.3 Hartree-Fock method with multi-wavelets

To formulate a solution algorithm for the MW basis, it is useful to write the
full HF equation (3.23) for electron i:(
− 1

2
∇2

i +
∑
I

ZI
||r − r′||

+
∑
j

〈φj|
1

||r − r′||
|φj〉 −

∑
j

〈φj|
1

||r − r′||
|φi〉

)
φi = εiφi

(3.33)

Note that V̂eN and Ĵj are scalar multiplication operators, which makes them

easier to work with, results in a notation change where V̂eN is transformed
veN . This is done to underline the property and simplify the equations. V̂eN
runs over all electrons as well as nuclei, veN runs over the nuclei:

veN(r) =
∑
I

ZI
||r −RI ||

(3.34)

and Jj is changed to

vel =

n/2∑
j

2Jj = 2

n/2∑
j

P̂ [φjφj](r) (3.35)
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K̂j represented with P̂

K̂jφi = P̂ [φiφj](r)φi (3.36)

where each j represents a closed shell doubly occupied orbitals. The number
of orbitals is therefore half of the number of electrons, n/2. With this in
mind and some rearranging, we end up with the equation(

−∇2 − 2εi

)
φi = −2

(
veN + vel − K̂j

)
φi (3.37)

which is a better representation of equation 3.23 for MW purposes.
Applying Ĥν to 3.37 results in the equation which is solved in MRChem

is;

φn+1
i (r) = −2Ĥν [(veN + vnel − K̂n

j )φni ](r) (3.38)

where ν = (−2εni )−1/2. Note again that the both the right hand side and the
left hand side are determined by the orbitals, meaning a SCF procedure with
K̂ is applied and updated each iteration for each oribital.

3.3 Density Functional Theory

The derivation of the DFT method in this section follows that of the Eu-
ropean Summerschool in Quantum Chemistry [22] and that of S.R. Jensen
[17]. DFT states that the complexity in the SE equation can be reduced by
use of a uniquely defined three-dimensional electron density:

ρ(r1) = N

∫
|ψ(x1, x2, ..., xn)|2ds1dx2...dxn (3.39)

The connection was made by Hohnberg and Kohn in 1964 [23]. It states that
a system can be uniquely determined by ρ and that the energy of a system
can be expressed in terms of a universal functional:

E[ρ] = T [ρ] + VeN [ρ] + Vee[ρ] (3.40)

The ground state density can be obtained by minimizing the energy E0 =
minρE[ρ]. The main challenge is that the operators V̂ee and T̂ are unknown.
To make a good approximation of the operators one can either base it on
theoretical consideration, empirical fitting or semi-empirical approach. One
of the approaches made is via the Kohn-Sham equation, often referred to
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as Kohn-Sham DFT [24]. The approach views the density ρ as a sum of
disconnected one-particle functions φi:

ρ(r) = 2

N/2∑
i

|φi(r)|2 (3.41)

The major assumption, which leads to an approximation, that the kinetic
energy is known for the individual parts of the disconnected system. The
expectation value of the kinetic energy operator becomes:

Ts[ρ] = 〈φi|−
1

2
∇2|φi〉 (3.42)

which is not the true kinetic energy, a small part is missing. Similarly we
can extract the classically defined self interaction of the density:

J [ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)

||r − r′||
drdr′ =

1

2

∫
ρ(r)vel(r)dr (3.43)

which again is missing a small part of the true energy.
This means that the energy calculated in equation 3.40 can be rewritten

as:

E[ρ] = Ts[ρ] + VeN [ρ] + J [ρ] + Exc[ρ] (3.44)

where Exc[ρ], called exchange-correlation energy, represents the missing parts
of J and T

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ] (3.45)

Minimizing the energy by differentiation of equation 3.44 with respect to ρ
gives:

µ =
δTs[ρ]

δρ(r)
+ veff (3.46)

where the chemical potential µ is a Lagrange multiplier and veff is as de-
scribed in equation 3.47.

veff =
δVeN
δρ(r)

+
δVel
δρ(r)

+
δExc
δρ(r)

(3.47)

The Euler equation (3.46) describes a system of non-interacting electrons
in an effective potential veff . The Hamiltonian for this kind of system is
given by:

Ĥ = −
N/2∑
i

1

2
∇2

i +

N/2∑
i

veff (ri) (3.48)
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Because this operator operates on a set of disconnected densities, the operator
is separable and we obtain the Kohn-Sham equation:(

− 1

2
∇2 + veN(r) + vel(r) + vxc(r)

)
φi(r) = εφi(r) (3.49)

This means that the orbitals are back, and the hope of expressing the prob-
lem in terms of a single three-dimensional function ρ is gone. Because the
potential veff in the Kohn-Sham equation is determined by the density, the
solution method is the same as the HF equation (3.38).

φn+1
i (r) = −2Ĥν [vneffφ

n
i ](r) (3.50)

3.4 Energy calculation with multi-wavelets

After the orbitals φi have converged in the HF approaches or the DFT ap-
proach and their respective orbital energies εi are known, the total energy of
a system can be computed. In addition to the orbital energies we have the
constant nuclear-nuclear repulsion V̂NN (3.6). The method of calculating the
energy in HF and DFT for a MW basis both have the same goal, to avoid
applying the kinetic energy operator T̂e (3.3).

3.4.1 Energy calculations for Hartree-Fock

In this section, calculating the energy of a closed-shell molecule with an even
number of electrons (doubly occupied orbitals) are discussed. The inclusion
of solvent effect in the energy calculations is discussed in chapter 4.

First, the expectation value for a closed shell system:

E =

N/2∑
i=1

〈φi| ĥi |φi〉+
1

2

N/2∑
i=1

2 〈φi| 2Ĵj − K̂j |φi〉 (3.51)

E =

N/2∑
i=1

2 〈φi| T̂e |φi〉+

N/2∑
i=1

2 〈φi| veN |φi〉+

N/2∑
i=1

〈φi| vel − K̂ |φi〉

E =

N/2∑
i=1

〈φi| 2T̂e − K̂ |φi〉+

∫
ρ(r)veNdr +

1

2

∫
ρ(r)veldr (3.52)

where it is important to note that in the second part of 3.51. The 1/2 factor
is to correct for the double counting done in Ĵ and K̂, the first 2 is for closed
shell (double occupation for each i), the second 2 is to correct for the spin.
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The second 2 factor is missing for K̂, this is due to the orthogonality of the
spin. The kinetic energy operator (T̂e) is avoided by noting that

N/2∑
i

2εi =

N/2∑
i

2 〈φi| T̂e + veN + vel − K̂ |φi〉

N/2∑
i

2εi =

N/2∑
i

2 〈φi| T̂e − K̂ |φi〉+

∫
ρ(r)veNdr +

∫
ρ(r)veldr (3.53)

which by subtracting from 3.51 gives:

E = 2

N/2∑
i

εi −
N/2∑
i

〈φi|K̂|φi〉 −
1

2

∫
ρ(r)vel(r)dr (3.54)

Equation 3.54 is a way to express the energy without the kinetic energy
operator, which is feasible for a MW basis, even though the Poisson operator
(P̂ in K̂) is applied.

3.4.2 Energy calculations for Density Functional The-
ory

In the deduction of the energy we assume a closed shell system with doubly
occupied orbitals. The inclusion of solvent effect for the energy calculations
with DFT is discussed in chapter 4. The energy functional for a Kohn-Sham
DFT calculation was given in equation 3.44.

E[ρ] = Ts[ρ] + VeN [ρ] + J [ρ] + Exc[ρ] (3.55)

which gives:

E =

N/2∑
i

2 〈φi|T̂e|φi〉+

∫
ρ(r)veNdr +

1

2

∫
velρ(r)dr +

∫
Fxcdr (3.56)

The sum of the orbital energy contributions can similarly to the HF be ex-
pressed as:

N/2∑
i

2εi =

N/2∑
i

2 〈φi|T̂e|φi〉+

∫
ρ(r)

(
veN(r) + vel(r) + vxc

)
dr (3.57)

Subtracting the sum over the orbital energy from the total energy gives:

E = 2

N/2∑
i

εi −
1

2

∫
ρ(r)veldr +

∫
Fxcdr −

∫
ρ(r)vxcdr (3.58)
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which again is an energy expression without the use of T̂e. It is important to
note that inf ρ(r)vxc 6=

∫
Fxcdr. vxc = ∂Exc/∂ρ(r) and

∫
Fxc = Exc[ρ]. The

functional Fxc is the specific approximated exchange correlation operator that
varies with each DFT method.
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In a lab setting we never find a single molecule in vacuum. This is why
precise calculations on molecules in a realistic environment are important.
This is why many computational chemists work to improve their codes to
include solvent effect. In this chapter we will look closer on how a molecule
reacts to liquid solvents.

4.1 Solvation Models

This part of the thesis will focus on the representation and calculation of the
effects of solvent on molecular systems. The effects of solvation can be viewed

37
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as a sort of perturbation which is added to the gas phase Hamiltonian.

Ĥtot = Ĥg + Ĥr (4.1)

where Ĥr is the operator that approximates how much the energy changes
in relation to the environment, Ĥg is the gas phase Hamiltonian discussed in
chapter 3.

Solvent models are often divided into two categories; discrete models and
a continuum models. A brief introduction to the discrete model is included
as well as a more in depth discussion of the continuum models.

4.1.1 The all inclusive discrete method

The discrete method explicitly includes the solvent molecules in the Quantum
Mechanic (QM) calculations. This means that all the effects of the solvent are
calculated at the same level as the solute. This method is easily advocated
in the physics of a solvent/solute system, the solvent is after all built up of
discrete molecules. The method has its drawbacks. To reach a reasonable
accuracy one needs to include a vast number of solvent molecules, which is
not feasible for more than very small systems. Even then the source of error
due to the number of solvent molecules included and their orientation will
be vast.

To use this method in a reasonable time scale, a number of approxima-
tions have been postulated. Molecular Mechanic (MM) methods is one of
them. MM methods view the solvent from a classical point of view with a
chemical force field and the solute from a QM view. In the MM region, one
atom is considered as one particle, typically with a van der Waals (vdW)
radius, charge and polarizability. The most popular QM/MM method is
the electrostatic embedding, where the solvent part of the Hamiltonian in
operator 4.1

Ĥr = ĤQM/MM + ĤMM (4.2)

is split in two. ĤQM/MM contains the electrostatic interaction between the

QM and MM subsystems. ĤMM is a completely classical term which rep-
resents the interactions within the MM part of the system. The ĤQM/MM

operator generally corresponds to a one-electron operator, which is combined
with the electrostatic operator for the electron-nuclear operator from the QM
region:

Ĥel
QM/MM =

∑
m

qmV̂ (rm) (4.3)
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where V̂ (rm) is the electrostatic potential due to the QM system calculated at
the MM site m. qm is the partial atomic charges representing the MM sites.
The issue with this kind of approach is that the operator ĤQM/MM allows
the QM part to be polarized by the surrounding MM subsystem, but not
the other way around. To render this issue, it is possible to account for the
mutual polarizable effect by using polarizable embedding. Examples of this
are the fluctuating charges [25], Drude oscillators [26] or the induced-dipoles
[27].

The QM/MM method is not only applicable for liquid solvents. The
method is widely used for computations on big molecules where only a part
of the molecule is of interest. This is often the case for medical computational
chemistry where protein structures are a big factor.

Applying MM makes the calculations faster, but one still has to consider
a large number of solvent conformations. With these methods one often has
to rely on chemical intuition, especially for the conformations of the solvent
molecules.

4.1.2 Continuum models

The second category of solvation model is the continuum model. Unlike the
discrete approach the solute/solvent energy is perturbed by the electrostatic
interaction from a dielectric continuum solvent. These models describe the
solvent with dielectric continuum, meaning that the solvent is represented by
a statistical average of the solvent molecules’ conformation and properties.
The statistical average is typically represented by macroscopic properties
such as dielectric constant, density etc. Comparing the two methods gives
us a preliminary outline for further discussion:

• The continuum model decreases the computational efforts that are
needed for the calculation, meaning shorter computational time.

• The function representing the solvent can easily be manipulated to
contain any sort of macroscopic property.

• The user usually needs less chemical intuition to run calculations. The
main reason for this is that the conformation of the solvent molecules
is not of concern to the user.

• The accuracy of calculation might be reduced, precisely because of the
solvent conformations. Continuum models sometimes have problems
with important intermolecular bonding between solvent and solute.
Multiscale modelling appears to be a viable resolution to this prob-
lem [28].
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The continuum models presented in this thesis are based on the Poisson
equation, derived from Maxwell’s equations:

∇ ~D = 4πρ (4.4)

~D = −eps∇V (4.5)

which results in the Poisson equation:

−∇ ·
(
ε(~r)∇V (~r)

)
= 4πρ(~r) (4.6)

where ρ is the total charge density, ε(~r) is the position dependent permittivity
function and V (r) is the electrostatic potential.

The two models presented are the Apparent Surface Charge (ASC) model
with Gaussian-Type Orbital (GTO) and Surface and Volume Polarization of
Electrostatics (SVPE) model with MultiWavelet (MW). Both methods can
be considered a form of Polarizable Continuum model (PCM), where the
solvent affects the electrostatic potential of the solute via polarization.

4.2 Polarizable Continuum Model for Gaussian-

type basis-sets

Starting form the Poisson equation (4.6), we need to represent the dielec-
tric function ε(r). Under the assumption that the total charge density ρ is
contained within the cavity, ε(r) is split in two:

ε(r) =

{
1 , ~r ∈ C
ε∞ , ~r 6∈ C

(4.7)

This means that the Poisson equation (4.6) can be split in two, one inside
the cavity and one outside:

−∇2V (~r) = 4πρ(~r) ;~r ∈ C
−ε∞∇2V (~r) = 0 ;~r 6∈ C

(4.8)

with the following boundary conditions:

Vin(~s) = Vout(~s), ~s ∈ ∂C
∂V

∂~n

∣∣∣∣
in

= ε∞
∂V

∂~n

∣∣∣∣
out

(4.9)

where ~s represents a point on the surface of the cavity. At this point, we can
assume that the vacuum potential Vvac is known. To solve the electrostatic
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equation (4.8) we write the potential V as a sum of the potential arising from
the charge density inside C labeled Vvac plus the potential contribution from
polarization of the dielectric labeled Vr.

V (~r) = Vvac(~r) + Vr(~r) (4.10)

The potential inside the cavity (Vvac) is the same as the solutions of the
Schrödinger Equation (SE) of the gas phase calculations in chapter 3. Vr,
commonly known as the reaction potential, is in integral representation:

Vr(~r) =

∫
∂C

σ(~s)

|~r − ~s|
(4.11)

where the apparent surface charge σ is the fictional charge introduced on the
boundary between the solvent and the solute. The surface charge σ is the
solution of an integral equation on ∂C

(Aσ)(~s) = P̂ [σ(~s′)](~s) = bρ(~s) (4.12)

where the integral operator A and bρ varies from method to method, the
common denominator is that bρ is linearly dependent on ρ. A way to simplify
this equation is to introduce point charges on ∂C.

4.2.1 Cavity formulation using Tesseras

The goal of this section is to describe how and why the representation via
tesseras is used. Starting from a one atom system, meaning that C is a
spherical symmetric ball, one needs to restrict the solvent from being in an
unphysical distance from the solute atom. This means that the radius of C
usually is written as the vdW radius or some scalar multiple of that. The
simplest way to represent a sphere in space is by use of spherical coordinates,
but it is apparent that this representation will not hold. The reason for this
is that the data points will not be evenly spaced, the spherical coordinates
representations lead to a cluster of data points around the poles of the cavity
and too few points around equator (exactly like longitude and latitude lines
on a globus). The cavity C needs to be represented numerically and by evenly
(or close to evenly) spaced points. There are two reasons for this. Firstly,
the evenly spaced points on the spherical cavity make it easier to obtain a
surface that is as smooth as possible while using the fewest number of points.
Secondly, the continuous ASC σ needs to be discretized into point charges
and with the points evenly spaced, the weight ai of each point charge qi is of
the same size (or close to the same size).

σ(~s) =
∑
i

aiqi (4.13)
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This reduces the computational efforts compared to the spherical coordinates
representation. The most common way of making a sphere is (in short) by
starting from a polyhedron built up of polygons, then increase the number
of polygons until the preferred accuracy is obtained. This method of making
a sphere is often referred to as tessellation or Hierarchical Triangular Mesh
(HTM)[29]. Although some structures are better than others, any kind of
polyhedron and polygons may be used. In the following deduction we will
use an octahedron built from triangles as these are shapes most chemist are
comfortable with.

Figure 4.1: [30]

If we start from
an octahedron we
have 7 data points
(six corners and a
center) and 8 sides
(fig: 4.1). View-
ing one of these tri-
angles, made up of
3 points and 3 lines,
we can find 3 new
points, 1 for each
line, that are exactly
midway between 2
points. Drawing new
lines between the 3
new points gives us a
subdivision of the original triangle into 4 smaller triangles. The 3 new points
are then scaled to the surface (∂C) of the sphere (C) by a simple scalar mul-
tiplication by the predetermined radius of the sphere. This is done for every
side of the octahedron, which makes a new polyhedron with (8 ∗ 3

2
+ 6 + 1)

19 data points producing (8 ∗ 4) 32 triangles. These triangles produce 3 new
points but each point is produced twice plus the original 7 and each original
triangle produces 4 new triangles. Applying the procedure iteratively, we
obtain a convergence of the volume of the sphere VC = 4

3
πr3C .

With the tessalated cavity in place, it is possible to represent the total
ASC function σ. Each tessera (triangle), on ∂C, is associated with an ASC
point charge qi. The area of the tessera can be used directly as the weight
ai in equation 4.13, which allows us to calculate the electrostatic reaction
potential (4.11).



CHAPTER 4. SOLVATION MODELS 43

With the formulation of the tesserae we can rewrite equation 4.11:

Vr(~r) =

∑
i aiqi
|~r − ~s|

(4.14)

which means that we can rewrite the integral equation (4.15) to its analog
matrix equation:

(Aσ)(~s) = P̂ [σ(~s′)](~s) (4.15)

Q~q = −R ~fM (4.16)

where vector ~q and ~fM are vectors containing the values of the charge and of
the solute electrostatic potential at each point on the surface mesh. Q and
R are the matrix analogs of the integral operators, A and P̂ .

4.3 Polarizable Continuum Model for multi-

wavelet basis

Solving the Poisson equation in MW can be done with the SVPE method.
The equation is the same as for the GTO-PCM case (4.6). The derivations
in this section follows that of Harrison [31].

The difference between the two equations is that ε(r) is discontinuous
for the ASC case, making it possible to split the equation in two. In the
MWs basis, ε(r) is defined as a continuous function with a smooth transition
from solvent to solute, the specifics of how it is made and implemented are
discussed in chapter 5. The splitting of the Poisson equation is not possible
for a continuous function, but by rewriting the Poisson equation we can
reuse the Poisson operator (P̂) used in the Hartree-Fock (HF) and Density
Functional Theory (DFT) Self-Consistent Field (SCF):

−∇ ·
(
ε(r)∇V (r)

)
= 4πρ(r)

∇ε(r)∇V (r) + ε(r)∇2V (r) = 4πρ(r)

∇2V (r) = −4πρ(r)

ε(r)
− ∇ε(r)∇V (r)

ε(r)

∇2V (r) = − ρeff − γs

(4.17)

where the first part (ρeff ) is the effective volume charge distribution and
γs is the surface charge distribution. Once again, by applying the Poisson
operator P̂ the solution algorithm is an iterative process:

V m+1(r) = P̂ [ρneff + γm](r) (4.18)
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4.3.1 Solvent effect potential inclusion in HF

To include the solvent effect (V̂r) in the HF for the wavelet-basis is a matter
of including an additional scalar multiplication operator vr in equation 3.37:

veff = veN + vel + vr (4.19)

which combines all three operators into one, the veff . The new HF equation
then becomes: (

−∇2 − 2εi

)
φi = −2

(
veff − K̂

)
φi (4.20)

The reaction potential (V̂r) approximation is not straightforward. The main
problem is that that V̂r is a function of φi (or rather ρ). A detailed discussion
is found in chapter 5.

Assuming that veff is known, equation 4.20 can be solved with the SCF
procedure (3.38):

φn+1
i (r) = −2Ĥν [(veff − K̂n)φni ](r) (4.21)

4.3.2 Solvent effect potential inclusion in DFT

The inclusion of solvent effect in DFT is a matter of adding the effects of the
solvent-solute interaction in the universal energy functional (3.44):

E[ρ] = T∼[ρ] + VeN [ρ] + J [ρ] + Exc[ρ] + Er[ρ] (4.22)

where

Er[ρ] =
1

2

∫
ρ(r)vrdr (4.23)

for a closed shell system. In the solvent DFT case, vr is included in veff ;

veff =
δVeN
δρ(r)

+
δVel
δρ(r)

+
δExc
δρ(r)

+
δEr
δρ(r)

(4.24)

which, by assuming that vr is known, gives the same solution algorithm as
3.50

4.4 Solvent energy calculation with multi-wavelets

This section includes the solvent effect potential energy (vr) in the energy
calculations performed in HF and DFT. The deductions performed will be
less comprehensive than for the solvent free case, see chapter 3 for a more
detailed presentation.
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4.4.1 Solvent energy calculations for wavelet Hartree-
Fock

The inclusion of vr in the calculation of the energy will again be formulated
without the use of the kinetic operator T̂e. The solvent energy expectation
value for a closed shell system is:

E =

N/2∑
i=1

〈φi| ĥi |φi〉+
1

2

N/2∑
i=1

2 〈φi| 2Ĵj − K̂j |φi〉+

N/2∑
i

〈φi|vr|φi〉

E =

N/2∑
i=1

〈φi| 2T̂e − K̂ |φi〉+

∫
ρ(r)veNdr +

1

2

∫
ρ(r)veldr +

1

2

∫
ρ(r)vrdr

(4.25)

The kinetic energy operator (T̂e) is again avoided by use of the orbital energies
εi:

N/2∑
i

2εi =

N/2∑
i

2 〈φi| T̂e − K̂ |φi〉+

∫
ρ(r)veNdr +

∫
ρ(r)veNdr +

∫
ρ(r)vrdr

(4.26)

which by subtracting from 4.25 gives:

E = 2

N/2∑
i

εi −
N/2∑
i

〈φi|K̂|φi〉 −
1

2

∫
ρ(r)vel(r)dr −

1

2

∫
ρ(r)vr(r)dr (4.27)

4.4.2 Solvent energy calculations for wavelet Density
Functional Theory

The solvent energy functional for a Kohn-Sham DFT calculation was given
in equation 4.22.

E[ρ] = T∼[ρ] + VeN [ρ] + J [ρ] + Exc[ρ] + Vr[ρ] (4.28)

which gives:

E =

N/2∑
i

2 〈φi|T̂e|φi〉+

∫
ρ(r)veNdr +

1

2

∫
velρ(r)dr +

1

2

∫
vrρ(r)dr +

∫
Fxcdr

(4.29)
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The sum of the orbital energy contributions can similarly to the HF be ex-
pressed as:

N/2∑
i

2εi =

N/2∑
i

2 〈φi|T̂e|φi〉+

∫
ρ(r)

(
veN(r) + vel(r) + vr(r)

)
dr (4.30)

Subtracting the sum of the orbital energy from the total energy gives:

E = 2

N/2∑
i

εi −
1

2

∫
ρ(r)veldr −

1

2

∫
ρ(r)vr(r)dr +

∫
Fxcdr −

∫
ρ(r)vxcdr

(4.31)

which again is an energy expression without the use of T̂e.
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This section contains the specifics of how the theories from earlier chapters
were implemented in MRChem . Keep in mind that for the descriptions of
the code in this chapter, the gory details of projecting functions and operators
onto the MultiWavelet (MW) basis are not included. Note also that the
implementations are closely connected to the equations presented. This is an
effect that emerges when the basis gives the possibility of working directly
with the orbitals and densities vs. working on their representation in a
Gaussian-Type Orbital (GTO) basis.

5.1 Cavity implementation

In a wavelet basis the procedure of tesselation does no hold for the rep-
resentation of the cavity. This means that a new approach to the cavity
implementation had to be adopted to perform solvent effect energy calcu-
lations in MRChem [1]. The way this was done was via the interlocking
sphere method described in [31]. Because of the different representation of
the cavity, there is a different representation of the dielectric function ε(r).
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ε(r) is represented as a smooth function instead of the discontinuous ε(r)
used for GTO (4.7). This results in a different solution algorithm as well.

5.1.1 The interlocking sphere approach and represen-
tation of ε(r)

The implementation of the cavity starts by defining a sphere around each
nucleus:

sI = |r − rI | −RI (5.1)

where rI is the nuclear center, RI is the van der Waals (vdW) radius of atom
I. Next, we introduce the characteristic sphere around atom I:

CI(r) = 1−Θ(sI(r)) (5.2)

where, for now, Θ is the Heaviside stepping function that is defined as 1
outside, 0 inside and 1/2 on the cavity:

Θ(s) =


0 for s < 0
1
2

for s = 0

1 for s > 0

(5.3)

CI is then a function that is 1 inside, 0 outside and 1/2 on the cavity:

CI(Θ) =


1 for Θ = 0
1
2

for Θ = 1/2

0 for Θ = 1

(5.4)

Taking the product of the spheres around each atom leads to the total cavity
of any system:

C(r) = 1−
N∏
I=1

(1− CI(r)) (5.5)

Again, defined as 1 inside, 0 outside and 1/2 on the cavity.
Replacing the Heaviside function with a smooth function, we obtain a

smooth transition from solvent to solute:

Θ(sI/σ) =
1

2
(1 + erf(sI/σ)) (5.6)
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where σ is the width of the smooth transition, referred to as ”slope”.
With the cavity represented, we can use it to represent the dielectric

function ε(r):

ε(r) = ε0e
ln( ε∞

ε0
)(1−C(r))

(5.7)

and the multiplicative inverse of ε(r)

ε(r)−1 = ε−10 eln(
ε0
ε∞

)(1−C(r)) (5.8)

Note that while Θ is symmetric around the vdW radius, ε(r) is not.
A simplified pseudocode is written in 5.1 where the analytic functions

ε(r) and ε(r)−1 are returned. The functions then have to be projected onto
the MW basis.

Listing 5.1: Evaluating dielectic function ε(r)

ε( r ) {
for ( I in n u c l e i ) {

sI = |r − rI | −RI
ΘI = 1/2 ∗ (1.0+erf(sI/σ)
CI = 1.0−ΘI

}

Ctot = 1.0 ;
for ( I in n u c l e i ) {

Ctot*=1.0− CI
}
Ctot = 1.0− Ctot

//Return func t i on ε or ε−1

i f ( i n v e r s e ) {
return 1.0/ε0 ∗ exp(log(ε0/ε∞)(1.0− Ctot))

} else {
return ε0 ∗ exp(log(ε∞/ε0)(1.0− Ctot))

}
}

With a smooth ε(r) and ε(r)−1 implemented, the Self-Consistent Field (SCF)
algorithm can be discussed.

5.2 SCF implementation

The implementation of the solvent effect in MRChem was done in three
stages.
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Figure 5.1: ε(r) for benzene (C6H6) with slope σ = 0.4, ε∞ = 78.304 plotted with
Gnuplot[32]

1. A pilot implementation of the iterative process for solving the Poisson
equation (4.18). This will, in addition to the Hartree-Fock (HF) and
Density Functional Theory (DFT) SCF, be referred to as a SCF.

2. The pilot implementation was expanded to include the solvent effect
HF-SCF for mono-atomic systems with at most 2 electrons. Testing
was performed for different slopes and compared with PCMSolver
[33]

3. Full implementation. The solvent effects were combined with the al-
ready existing framework for solvent free HF and DFT. The code was
tested against Gaussian for a variety of molecules, precisions and slopes.

The description of the different parts is discussed in two sections, first the
pilot code and then the full implementation.

5.2.1 Pilot code

The pilot code was designed to calculate the orbitals φ, the reaction potential
vr as well as the total potential V . The solutions to the Poisson equation
is the total V , while Vr is a ”bi-product”. The iterative process that was
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implemented is described in equation 4.18. The main structure of the code
is written in listing 5.2, the pseudo-code illustrates the procedure developed
to manage two different SCFs. The two different SCFs will be referred to
as potential-SCF (V -SCF) or orbital-SCF (φ-SCF). It is important at this
stage to underline the fact that the V -SCF is an algorithm determined by
the total density (ρ = ρel+ρnuc) and that the φ-SCF is determined by ρel(φ).

Listing 5.2: The double SCF procedure

SCF( prec , nucs , rho nuc , rho e l , eps 0 , e p s i n f , i n v e r s ) {

ε( nucs , s lope , ε0 ,ε∞ , i n v e r s e ) [5.1]
make{ rho nuc , V nuc } ;
ρ = ρnel + ρnuc ;

e r r o r p h i = 10 .0∗ prec ;
while ( e r r o r p h i > prec ){

i f ( e r r o r p h i < 10 .0∗ prec ){
while ( er ror V > prec ){

calcV (Vm , ρ , ε , εinv , ∇ε ) ; [5.4]
}

}
calcφ(φn , Vnuc , Vr ) ; [5.3]

}
energy (φn, Vr, Vm ) ;

}

Listing 5.2 shows that the two different while loops run over two different
functions, the calcV and calcφ. Prec is used as a parameter to determine
how accurate the user wants the calculations to be, how calcV and calcφ
are implemented is described in listings 5.3 and 5.4. The double SCF almost
converges the orbitals with vr = 0, before the algorithm includes the solvent
effect. This is forced with the if test. The if test also prevents the code from
jumping between calculating V and φ one to one.

Listing 5.3: orbital SCF

calcφ( phi n , V nuc , V r ){
ρel = phin ∗ phin ;
Vel = \po (\ rho { e l } ) ;
V φn = (Vr + Vnuc + 0.5 ∗ Vel)φn ;

ca lcEnergy ( ) ;
νn = s q r t (−2E n ) ;

φn+1 = Ĥν(V φn)/2π ;
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∆φn = φn+1 − φn
i f ( ||∆φni || < e r r o r p h i ) return ;

e r ror V = 1 . 0 ;
}

}

Listing 5.3 shows the basic φ-SCF for a one-atom two-electron system, with
the addition of error V = 1.0. error V needs to be updated, otherwise the
algorithm would only visit the V -SCF once.

The V -SCF described in listing 5.4 describes how the approximations
of the reaction potential vr were performed. vr is defined as the potential
difference between that gas-phase calculations and the total potential:

vr = P̂ [γ + ρeff − ρ](r) (5.9)

or equivalently:

vr = P̂
[
γ +

(1− ε(r))ρ
ε(r)

]
(r) (5.10)

where we assume that γ and ρ have converged and are known.

Listing 5.4: Pilot code for V -SCF approach

calcV (V m, ρ, ε, εinv,∇ε){

c a l c ∇V ;

γm = ∇ε ∗∇V̂ /ε ;
ρeff = ρ/(4πε) ;

V m+1 = P̂(ρeff + γ) ;
∆V = V m+1 − V m ;
i f ( ||∆V || < er ror V ) return ;

KAIN (V m,∆V m)→ (V m, δV m)

V m+1 = V m + δV

Vr = P̂(γm + ρeff − ρ) ;
}

The code returns (after convergence) V and computes vr for further use in
the φ-SCF. It is important to note that vr gives the possibility to calculate
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how much the energy changes due to the solvent effect.

Er = 〈φ|vr|φ〉 =

∫
ρ(r)vrdr (5.11)

To verify that the pilot code did what it was supposed to do, the following
integrals were compared: ∫

γdr =
1− ε∞
ε∞

∫
ρdr (5.12)

which is a direct desendant of Gauss’s Theorem. The integrals state that the
integral over the surface charge distribution γ = ∇ε(r)∇V (r)

ε(r)
is equal to the

integral over the total charge density ρ times 1−ε∞
ε∞

.

Krylov subspace accelerated inexact Newton Method

Due to numerical instabilities in the SCFs, a method of increasing the con-
vergence rate has been implemented in MRChem . The method is kalled
Krylov subspace Accelerated Inexact Newton Method (KAIN)[34]. Both in
the φ-SCFs and in the V -SCF, KAIN was used. The method is based on
Newtons methods, and computes an approximation to the Jacobi matrix.
The method gives an update of the function f (φ or V ) which is better than
the one used directly (fn+1 = fn + ∆f → fn+1 = fn + δf). KAIN uses the
information from the previous iterations to make a better guess for the next
iteration.

5.2.2 Full implementation

The full implementation of the solvent effect in the HF method and DFT are
closely related and will be described with one pseudocode.

Listing 5.5: Full implementation

c a l c ρel =
∑

i |φi|2
c a l c Vel(ρel), Vxc(ρel)
c a l c Vr(ρnuc, ρel)

c a l c V φi = (Vnuc + Vel + Vr + Vxc − K̂)φi

φn+1
i = Ĥν [V φni ]

∆φn = φn+1 − φn
i f ( ||∆φni || < e r r o r p h i ) return ;

KAIN (ψn,∆φn)→ (φn, δφn)
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φn+1 = φn + δφ
//Normalize〈
φn+1
i

∣∣∣φn+1
j

〉
= δij

The code (5.5) shows the procedure of one iteration of the solvent inclusion
φ-SCF. This means that the V -SCF is called as a simple function.

Spillover effect

A bi-effect of the continuous dielectric function ε(r) used in the formalism of
Polarizable Continuum model (PCM) in MW gives the possibility of calcu-
lating spillover effects.

spillOver =

∫
ε(r)− ε0
ε∞ − ε0

ρdr (5.13)

The spillover effect tells us how much of the charge density is located ”out-
side” the cavity.
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Presenting results for this thesis presented a few problems. The com-
bination of Surface and Volume Polarization of Electrostatics (SVPE) is a
MultiWavelet (MW) method is relatively new. This means that there are
few codes in the world that can do this, in fact, only one exist; MADNESS
[11]. Obtaining useful results from MADNESS proved to be to difficult to
do in the time frame of this thesis.

However, some tests and verifications can be done; The pilot implemen-
tation have been verified by Gauss’ theorem 5.12. The full implementation
was compared with Gaussian[2]

The result section is divided in three main parts. The first contains
calculations done with the pilot code. The second contains calculations done
with the full implementation.

6.1 Pilot code

This section contains verifications that the V -Self-Consistent Field (SCF) is
working as it should. The verification was done with Gauss’ theorem (5.12).
A spherical charge distribution ρ was set too ρ(r) = (α/π)3/2e−αr

2
, so that∫

ρ(r)dr = 1, with α = 100. In the test cases, the reaction potential was

55
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converged with precision 10−3, 10−4, 10−5 and 10−6 and the integral of the
corresponding induced reaction charge γ was compared with the exact value
(1−ε∞

ε∞
).

Table 6.1: Reaction charge generated from a spherical Gaussian distribution of
unit charge with exponent α = 100, centered in a spherical cavity of unit radius,
and computed with two different slopes σ = 0.2, 0.4. Dielectric constant is that of
benzene (ε∞ = 2.27). Exact value computed from Gauss’ theorem eq. (5.12).

Prec Reaction charge Error Reaction charge Error
σ = 0.2 σ = 0.4

10−3 -0.554 985 726 4.4e-03 -0.559 317 865 1.5e-04
10−4 -0.559 543 028 -7.1e-05 -0.559 322 308 1.4e-04
10−5 -0.559 474 627 -3.2e-06 -0.559 464 890 6.4e-06
10−6 -0.559 472 038 -6.7e-07 -0.559 472 053 -6.8e-07

Exact -0.559 471 365 -0.559 471 365

Table 6.2: Reaction charge generated from a spherical Gaussian distribution of
unit charge with exponent α = 100, centered in a spherical cavity of unit radius,
and computed with two different slopes σ = 0.2, 0.4. Dielectric constant is that of
water (ε∞ = 78.30). Exact value computed from Gauss’ theorem eq. (5.12).

Prec Reaction charge Error Reaction charge Error
σ = 0.2 σ = 0.4

10−3 -0.983 925 412 3.3e-03 -0.986 280 718 9.4e-04
10−4 -0.987 286 244 -5.7e-05 -0.987 244 101 -1.5e-05
10−5 -0.987 230 349 -1.7e-06 -0.987 223 514 5.0e-06
10−6 -0.987 228 034 5.7e-07 -0.987 228 402 2.0e-07

Exact -0.987 228 607 -0.987 228 607

The tests where done with benzene (ε∞ = 2.27) and water (ε∞ = 78.30)
and with slopes σ = 0.2 and 0.4. The tests were proven successful.

6.2 Full implementation

The tables in this section compare the SVPE method used in MRChem
with Apparent Surface Charge (ASC) calculations. It is important to note
that these are different methods and thereby not directly comparable. SVPE
for wavelets is a new approach, which makes the choices for verification and
comparison limited. Nevertheless, Gaussian, which is the program used for
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ASC-Polarizable Continuum model (PCM), has been thoroughly tested. If
the calculations done with MRChem are in the same ballpark, it is a strong
indicator that the implementations of SVPE works. The quantities that have
been calculated are energy and dipole moment for the Hartree-Fock (HF)
method.

6.2.1 Solvent energy

There are four molecules that have been tested for the solvent energy calcu-
lations: One symmetric; H2O, one non-symmetric CH3CONH2, one cation;
NO+ and one anion; CN−. Geometry optimization of H2O, NO+ and
CH3CONH2 where performed using Gaussian with the basis set 6-31G**,

CN− was optimize with 6-31+G**[35].

Table 6.3: Energy calculations of H2O in water (ε∞ = 78.304), calculations with
MRChem with σ ∈ {0.5, 0.4, 0.3, 0.2} and vacuum at absolute precisions 10−2,
10−3 and 10−4

prec/σ 10−2 10−3 10−4

g09vac -76.057755 -76.065491 -76.067755
vac -76.075838 -76.068214 -76.068199
∆E0.5 0.019557 0.022781 0.023087
∆E0.4 0.01509 0.020939 0.021132
∆E0.3 0.000594 0.019195 0.019492
∆E0.2 ——– 0.017729 0.017727
∆Eg09 0.014892 0.014806 0.014724
basis set cc-pVTZ cc-pVQZ cc-pV5Z

All the calculations are performed with absolute accuracy 10−2, 10−3

and 10−4. The absolute precision parameter for MRChem means that the
energy output energy have guaranteed. The precision parameter, however,
does not say that the solvent energies are of that standard. To ensure better
convergence, the precision for V -SCF was set to 10 ∗ prec. As an example;
Looking at table 6.6 of CN− calculations, we see that the energy calculations
with σ = 0.4 differ in the first digit when the accuracy is improved from 10−2

to 10−3.

The calculations with higher accuracy (10−4) show a better trend, the
effect of the solvent is consistently larger for σ = 0.5 than for σ = 0.2. With
this we can conclude that the effects of the solvent is larger when the slope
is smoother.
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Table 6.4: Energy calculations of NO+ in water (ε∞ = 78.304), calculations with
MRChem with σ ∈ {0.5, 0.4, 0.3, 0.2} and vacuum at absolute precisions 10−2,
10−3 and 10−4

prec/σ 10−2 10−3 10−4

g09vac -128.969281 -128.979639 -128.981879
vac -128.983688 -128.982300 -128.982208
∆E0.5 0.1599829 0.180543 0.1806501
∆E0.4 0.1667047 0.174443 0.1745618
∆E0.3 0.1578163 0.169185 0.1693429
∆E0.2 0.1665965 0.16469 0.1647211
∆Eg09 0.156288 0.155913 0.15578
basis set cc-pVTZ cc-pVQZ cc-pV5Z

Table 6.5: Energy calculations of CH3CONH2 in water (ε∞ = 78.304), calcula-
tions with MRChem with σ ∈ {0.5, 0.4, 0.3, 0.2} and vacuum at absolute precisions
10−2, 10−3 and 10−4

prec/σ 10−2 10−3 10−4

g09vac -208.061351 -208.077224
vac -208.102308 -208.081705 -208.081728
∆E0.5 0.035670 0.037696 0.037730
∆E0.4 0.028093 0.034525 0.034634
∆E0.3 0.041725 0.031811 0.031682
∆E0.2 0.061099 0.029635 ——–
∆Eg09 0.023664 0.023911 ——–
basis set cc-pVTZ cc-pVQZ cc-pV5Z

When we compare the vacuum calculations and the ASC calculations
with Gaussian, the effect is further underlined. The difference between
them is consistently lower than for the difference between vacuum and SVPE
calculations. (∆Evac

sol (MW ) > ∆Evac
sol (GTO) )

The missing parts of the calculations are there for two reasons;

• The calculations with steep slope σ = 0.2 with precision 10−2 did not
converge the potential. This is because of the numerical noise emerging
when steep functions are represented with low accuracy in MWs.

• The calculations on relatively large molecules CH3CONH2 in table ??
ran out of memory. The super computer Stallo was used, where the
memory accessibilities of a student user was too small.
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Table 6.6: Energy calculations of CN− in water (ε∞ = 78.304), calculations with
MRChem with σ ∈ {0.5, 0.4, 0.3, 0.2} and vacuum at absolute precisions 10−2,
10−3 and 10−4

prec/σ 10−2 10−3 10−4

g09vac -92.333965 -92.344713 -92.348284
vac -92.348222 -92.349717 -92.349648
∆E0.5 0.134355 0.123122 0.123183
∆E0.4 0.016045 0.122701 0.122856
∆E0.3 0.134171 0.122398 0.122574
∆E0.2 ——– 0.121673 0.122198
∆Eg09 0.12337 0.121018 0.11925
basis set cc-pVTZ cc-pVQZ cc-pV5Z

6.2.2 Solvent dipole Moment

Table 6.7: Dipole moment calculations ofH2O in water (ε∞ = 78.304), calculations
with MRChem with σ ∈ {0.5, 0.4, 0.3, 0.2} and vacuum at absolute precisions
10−2, 10−3 and 10−4

prec/σ 10−2 10−3 10−4

g09vac 0.782591 0.775323 0.772920
vac 0.766106 0.764234 0.764085
∆µ0.5 -0.258606 -0.26051 -0.260437
∆µ0.4 -0.244328 -0.250666 -0.239371
∆µ0.3 -0.213728 -0.239243 -0.250424
∆µ0.2 -0.227844 -0.227657
∆µg09 -0.175628 -0.188796 -0.194355
basis set cc-pVTZ cc-pVQZ cc-pV5Z

The dipole moment where calculated as:

~µ =

∫
~rρtot(r)dr (6.1)

where ~r is the position operator and ~µ a vector. The norm of the vectors are
reported in table 6.7 and show the same trend as for the energy calculations.
Steeper slope gives less impact of the solvent.
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Table 6.8: Spillover effect, calculated with HF H2O, with precision 10−2, 10−3 and
10−4 and slope σ = 0.2, 0.3, 0.4

prec/σ 10−2 10−3 10−4

0.2 .153 196 .153 135
0.3 .134 079 .137 216 .137 190
0.4 .123 330 .123 810 .123 779
0.5 .112 253 .112 527 .112 522

Spillover

The spillover effect shows that more of charge density is located outside the
van der Waals (vdW) radius when the slope is steeper. This is an effect of
having a dielectric function (ε(r)) that is not symmetric around the radius
of the sphere. The effect is consistent with the energy and dipole moment
calculations.

6.3 Concluding remarks and ideas for improve-

ment

The implementations of V -SCF gives good insight in the possibilities that
resides within the MW framework implemented in MRChem . The imple-
mentations was shown to give consistent results with that of highly tested
programs like Gaussian.

The pilot implementation of the code gives hope of further improvement.
One idea is too give γ a new representation by;

∇ε(r)/ε(r) = ∇log(
ε0
ε∞

)∇C(r) = ∇log(ε(r)) (6.2)

The idea is; since the function values of C(r) resides in (0, 1), it is a smoother
function than ε(r). Which is easier to represent and thereby easier to differ-
entiate than ε(r). In theory, this should give better convergence.

Another idea is to use variational representation of the algorithm V -SCF.
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