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Evaluation of feature ranking and regression
methods for oceanic chlorophyll-a estimation

Katalin Blix and Torbjørn Eltoft

Abstract— This paper evaluates two alternative regression
techniques for oceanic Chlorophyll-a (Chl-a) content estimation.
One of the investigated methodologies is the recently introduced
Gaussian Process Regression (GPR) model. We explore two
feature ranking methods derived for the GPR model, namely
Sensitivity Analysis (SA) and Automatic Relevance Determination
(ARD). We also investigate a second regression method, the
Partial Least Squares Regression (PLSR) for oceanic Chl-a
content estimation. Feature relevance in the PLSR model can
be accessed through the Variable Importance in Projection (VIP)
feature ranking algorithm. The paper thus analyses three feature
ranking models, SA, ARD and VIP, which are all derived from
different fundamental principles, and uses the ranked features as
inputs to the GPR and PLSR to assess regression strengths. We
compare the regression performances using some common per-
formance measures, and show how the feature ranking methods
can be used to find the lowest number of features to estimate
oceanic Chl-a content by using the GPR and PLSR models,
while still producing comparable performance to the state-of-
art algorithms. We evaluate the models on a global MERIS
matchup dataset. Our results show that the GPR model has the
best regression performance for most of the input feature sets
we used, and our conclusion is this model can favorably be used
for Chl-a content retrieval, already with two features, ranked by
the either the SA or ARD methods.

I. INTRODUCTION

Continuous monitoring of the occurence and distribution
of phytoplankton has high ecological [1] and economical
importance (http://oceancolor.gsfc.nasa.gov/). Phytoplankton
content can be indirectly estimated from the Chlorphyll-a (Chl-
a) concentration. Similar to terrestrial plants, phytoplankton
also use photosynthesis in order to live and grow. Chl-a is
the key molecule for capturing light, which is the driving
of photosynthesis [2]. Hence, Chl-a content is used as an
indicator for several biophysical processes, which can be used
for various applications.

Phytoplankton removes CO2 from the atmosphere, through
the photosynthetic process [3], and therefore the monitoring
of phytoplankton via Chl-a has important relevance in climate
studies [4], [5], [6].

Chl-a is also used to determine water-quality. Eutrophication
of coastal waters and lakes has been increasing in the past

Manuscript received January 18, 2018;
KB is with the Department of Physics and Technology, University of

Tromsø - The Arctic University of Norway. E-mail: katalin.blix@uit.no.
TE is with the Centre for Integrated Remote Sensing and Forecasting

for Arctic Operations (CIRFA) and the Department of Physics and Tech-
nology, University of Tromsø - The Arctic University of Norway. E-mail:
torbjorn.eltoft@uit.no.

decades, leading to degraded water-quality [7], [8]. A symp-
tom of degraded water quality is an increase of algae biomass,
which may be measured by the concentration of Chl-a. Hence,
estimates of aquatic Chl-a concentration may also be used to
derive information about water-quality in coastal waters.

Monitoring can be achieved by optical sensors onboard
satellites. It is often required to have high spatial resolution
in order to monitor water-quality on a finer scale. However,
optical remote sensing has its limitations with regard to
spectral-spatial resolution [9], [10]. In order to achieve high
spatial resolution, the number of spectral bands are limited.
Therefore, it is critical to know the number, position and width
of the bands required to retrieve Chl-a for the given aquatic
condition, without loosing accuracy in the estimation.

Satellite derived Chl-a concentration is usually based on
globally tuned parametric bio-optical models, such as NASA’s
Ocean Color (OC) models [11], [12], [13], [14], [15]. In the
reminder we refer to these models as the OC algorithms. The
OC algorithms are polynomial regression models, which are
trained by relating in situ Chl-a content to Remote Sensing
Reflectance Rrs(�) (sr�1), measured at predefined wavelengths
through a so called band ratio, R. There is a variaty of Chl-
a content retrieval models based on band ratios [16]. In this
work, we will confine ourselves to band ratios used in NASA’s
OC algorithms. This band ratio is calculated at the spectral
position of the Chl-a absorption peak [17], and given by
Rrs(�blue)/Rrs(�green) [13]. Even though these algorithms
are fast, simple and reflect the biophysical properties of aquatic
Chl-a, they have certain weaknesses. This is due to the fact
that the absoption spectrum varies with the amount of Chl-a
concentration in the water, and it is also affected by the amount
of other surfactant materials in the ocean waters near to the
surface [17]. Furthermore, the coefficients of the polynomial
in the OC regression models are determined by using a global
training dataset. In order to allow a model to adapt to local
variations, the coefficients need to be adjusted by extending the
training data with measurements from the region of interest.
Several studies have shown that algorithms based on band-
ratios result in erroneous retrieval of Chl-a content [16] due
to the regional variations of the optical properties of ocean
waters. In order to overcome these difficulties in the retrieval
of Chl-a content from remotely sensed data with OC models,
it is important to use the correct combination of spectral bands
in the computation of the band ratios.

Several studies have proposed alternative regression models
for increasing the accuracy, reliabiality and effectiveness in
the monitoring of oceanic Chl-a content from optical remote
sensing data. (For further details we refer to [16] for a review
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of these algorithms.) Machine learning regression methods are
known to have strong regression capabilities, and several such
algorithms have been studied for Chl-a content estimation.
The investigated models include neural networks [18]–
[20], support vector regression [21]–[23], relevance vector
regression [24], and the lately introduced Gaussian Process
Regression (GPR) algorithm [25].

The objectives of this work are as follows. Firstly, we
study the relevance of features (i.e. spectral bands and/or
band ratios), and regression performances of two regression
methods, namely the Gaussian Process Regression (GPR)
[26], [27] and the Partial Least Squares Regression (PLSR)
[28] models, when applied for Chl-a content estimation from
satellite-based optical measurements. Both these two models
are known to have good regression performance, and both have
model-tailored methods for assessing the relevance of input
feature.

The GPR model uses a Bayesian approach to learn the non-
linear functional relationship between the input feature vectors
and the output Chl-a measurements, and feature ranking 1 can
be conducted using the Automatic Relevance Determination
(ARD) and Sensitivity Analysis (SA). PLSR is a well-known
linear regression model, which uses a so-called latent variable
space to relate the input features to the Chl-a measurement. In
PLSR, feature relevance is analyzed using a ranking method
called Variable Importance in Projection (VIP). Secondly,
using a set of regression performance measures, we evaluated
the regression strength of individual spectral features and
sets of spectral features, and used the performance tests to
propose a lowest number of spectral bands and/or features
needed to estimate Chl-a content without any significant loss
of accuracy compared to the state-of-the-art Ocean Colour
(OC) algorithms. Finally, we include an assessment of the
uncertainty level of some Chl-a estimates.

The GPR model differs from other machine learning and
parameteric methods in its underlying fundamental principles.
Instead of proposing a function to relate Rrs to Chl-a, the
GPR model learns the function by using a Bayesian approach,
which has an analytic closed form solution.

The GPR model has been shown to perform better than
other machine learning methods [29] and parametric models
[30] in terms of accuracy and speed for the retrieval of
biophysical parameters. In addition to the estimated Chl-a
content, the GPR model is able to output the certainty level
of the estimates.

The relative relevance of the features being used in the
regression process is not directly accessible in GPR, since
it is a non-linear kernel method. Feature relevance of Gaus-
sian Processes (GPs) in land Chl-a content estimation was
proposed computed by the so-called Automatic Relevance
Determination (ARD) method in [30], [31]. Another method,
the Sensitivity Analysis (SA) of GPs was introduced in [32]
for oceanic Chl-a content estimation.

PLSR is an iterative statistical model, which has several
advantageous properties. It can reduce co-linearity and noise

1Feature ranking methods have refer to methods, which assign relative
relevance to the input features.

in the dataset, and it can provide multidimensional outputs.
Feature relevance can be accessed through a measure denoted
the Variable Importance in Projection (VIP). Lately, another
method for band selection in PLSR (and Random Forest and
Support Vector Machine regression) was proposed in [33], the
so called ensemble approach. This study was conducted for
leaf Chl-a content estimation. PLSR has been widely used
in chemometrics [34], [28], and in several fields where there
are a large amount of control variables with corresponding
multi-dimensional outputs, for example in controlling and
monitoring industrial processes [35]. The PLSR model has
also been successfully applied for Chl-a content estimation in
optically challenging oceanic waters [36].

In this paper, we first demonstrate feature ranking by the
ARD, SA and VIP methods on two simulated datasets; a
simple low-dimensional dataset, and a more complicated test
example, with a very high-dimensional feature space. The
purpose of these controlled experiments is to give the readers
some confidence in the applied methods.

Then we use a global Chl-a validated SeaBASS dataset
[37], [38] to train the regression models and to evaluate the
feature ranking methods. We conduct a performance study
of the regression models discussed above with respect to
estimation of Chl-a based on a MERIS (MEdium Resolu-
tion Imaging Spectrometer) dataset, and we compare feature
ranking by SA, ARD and VIP for GPR, and PLSR. Finally,
we demonstrate how uncertainty can be accessed for the
proposed models. Note, we have performed the same study for
two additional global datasets for the SeaWiFS (Sea-Viewing
Wide Field-of-View Sensor) and MODIS-Aqua (MODerate-
resolution Imaging Spectroradiometer) sensors. These results
are in correspondence with the results for the MERIS dataset,
and presented in Appendix.

The remainder of this paper is organized as follows. Section
II reviews the GPR and PLSR models and the associated
feature ranking methods. Section III illustrates the concept
of the feature ranking methods on two simulated examples.
Section IV details the experimental setup of this study. Section
V evaluates and compares the performance of the feature
ranking methods and regression models. Finally, Sec. VII
concludes this paper and outlines future work.

II. FEATURE RANKING METHODS FOR REGRESSION

A. Gaussian Process Regression (GPR)

Here, we apply regression in the context of estimating
oceanic Chl-a contents (outputs) from Rrs values (inputs) by
fitting a flexible GPR model to the training data. This training
dataset consists of in situ Chl-a contents and corresponding Rrs
values, measured in mgm�3 and sr�1, respectively. Further-
more denote Chl-a by {yn}Nn=1 and Rrs by {xn 2 RD}Nn=1,
where n = 1, ..., N is the number of measurements, and
d = 1, ..., D is the number of spectral bands. The GPR
model assumes that the observed Chl-a content is a function
(also called a latent function) of the Rrs values, and the
latent function values or outputs follow a multivariate joint
Gaussian distribution, if (f(x1), ..., f(xN ) ⇠ N (0,K)), with
zero mean and covariance matrix K. The observed outputs
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are usually contaminated by noise "n, thus yn = f(xn) + "n
for n = 1, ..., N . The noise terms are assumed to be additive,
independently, identically Gaussian distributed with zero mean
and constant variance, i. e, "n ⇠ N (0,�2

).
Consider now a new input Rrs data, x⇤, where the goal is

to estimate the corresponding output Chl-a content, y⇤. Then
the Gaussian Process GP defines a joint prior distribution of
the available Chl-a observations y ⌘ {yn}Nn=1 and the unseen
y⇤. This can be written by
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where k⇤ is the covariance between the training vector and the
test point, k⇤⇤ is the covariance between the test point with
itself, and K + �2

In is the noisy covariance matrix of the
training inputs. Applying Bayesian inversion, it is possible to
analytically compute the posterior distribution over the output
y⇤, given the new input, and the training dataset D
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y is the weight vector of the GP mean, and A =
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�1 is the weight matrix of the GP variance.
Note that the predictive mean µGP⇤ depends on the ob-

servations through the weight vector ↵, while the predictive
variance �2

GP⇤ only depends on the inverse of the covariance
function A, and �2 is a regularization factor. Intuitively, the
predicted Chl-a content in Eq. (3) is a linear combination of
the observed Chl-a content values, while the certainty level,
Eq. (4), only depends on the Rrs values, as seen from Eq. (5).
In this work, we use the squared exponential kernel function
to access similarity in the data by computing the elements of
the covariance matrices. This can be written by
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where the length-scale for band d, �d, and the positive scale
factor, ⌫, are two hyperparameters of the kernel function.
These hyperparameters, together with the noise variance �2,
are optimized by maximizing the marginal likelihood of the
training data. For further details on the GPR model we refer
to [26].

B. Feature ranking for GPR

1) Automatic Relevance Determination (ARD): Relative
relevance of the features can be accessed though optimizing
the length-scale hyperparameters of the kernel function in Eq.
(5) [30]. Since these hyperparameters controls the spread of
the inputs on each spectral band, small values of �d indicate
greater relevance. Therefore, the inverses of the optimized
parameters allow the ranking of the spectral bands used in
the GPR model. The length-scale hyperparameter is optimized
through the maximization of the marginal likelihood function

with respect to the given parameter. The optimization is
achieved by computing the partial derivatives with respect to
�d of the negative log-marginal likelihood function. However,
this method can result local maxima, which might lead to in-
correct ranking of the spectral bands [30].

2) Sensitivity Analysis (SA): We want to analyze the im-
portance of spectral bands and features for a given function
�(x) by using a trained GPR model. To do so, let us define
the sensitivity of spectral band (also called feature) j as

sj =

Z ✓
@�(x)

@xj

◆2

p(x)dx, (6)

where p(x) is the probability density function over the D-
dimensional input vector xn = [x1

n, . . . , x
D
n ]

>. Intuitively, the
objective of the sensitivity analysis is to evaluate changes of
the function �(x) in the jth direction. In order to avoid the
possibility of cancellation of the terms due to its signs, the
derivatives are squared. Therefore, the resulting sensitivities
sj will be positive for all bands and features. The empirical
estimate of the sensitivity for the jth feature can be written as
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1

N
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✓
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where N denotes the number of training samples.
In our study �(x) represents the conditional mean function

µGP⇤. The resulting empirical estimate of the GP mean sensi-
tivity is therefore:
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Note that the calculation of the empirical sensitivity is com-
puted in closed-form using the training data points and the
inferred ↵.

C. Partial Least Squares Regression (PLSR)

Assume once again the in-situ Chl-a (X) and Rrs (y)
training dataset D ⌘ {X,y}, where now the observations
are collected in matrices, such that X is an N ⇥ D input
data-matrix consisting of d = 1, ..., D dimensions (spectral
bands) and n = 1, ..., N observations, and let y be the
corresponding N ⇥ 1 output-vector (Chl-a measurements),
holding n = 1, ..., N observations.

The Partial Least Squares (PLS) model is based on intro-
ducing so-called latent variables, or X-scores, denoted by T

(N⇥H). T is relating X and y, and H is the number of latent
variables (PLS components) [28], [39]. These latent variables
are usually fewer than the number of features (H < D) and
they are representing both X and y in the latent T- space,
such that the covariance between the projection of X and y
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in the T- space is maximized. Then the PLS model can be
formally written by

X = TP

T
+E (9)

y = Tc+ f

T = XW

?

W

?
= W(P

T
W)

�1,

where P (D⇥H) is a matrix of the X-loadings and c (H⇥1) is
the y-loadings, and they are good representations (also referred
to "summaries" in [28]) of X and y, respectively. The term
W

? (D⇥H) holds the weights of X, and defines the common
latent variable space (X-scores). The error terms, E (N ⇥D)
and f (N ⇥ 1), are assumed to be iid. ⇠ N (0,�2

). In order to
impose orthogonal latent variables (T), the weight matrix W

(D ⇥H) is introduced, and W holds the eigenvectors of the
variance-covariance matrix, XT

YY

T
X. Thus the vectors of

W are orthonormal, and the row-vectors of T are orthogonal
to each other.

Then the PLS model can be used for regression by express-
ing y as

y = XW

?
c+ f = Xb+ f , (10)

where b = W

?
c. This way y can be estimated from X,

obtaining a meaningful relationship between X and y. The
best fit is achieved by minimizing the error term f in the PLSR
model.

The X-scores, X- and y-loadings and the weights can be
computed by using a PLS algorithm (An example of a PLS
algorithm can be seen in Appendix VII). For further details
on the PLS model and the various PLS algorithms we refer to
[40], [41], [42], [43] and [44], [45].

The number of latent variables can be determined by using
cross validation. However, in this work, the training-data is a
multi-spectral dataset, where the maximum number of bands is
8 and N >> D, and we keep H = D in the training process.

D. Feature ranking for PLSR

Feature relevance in the PLSR model can be accessed
directly from the regression coefficients b (D⇥1) in Eq. (10).
However, here we focus another way to assign relevance to the
input features, called the Variable Importance in Projection
(VIP) method.

1) Variable Importance in Projection (VIP): The Variable
Importance in Projection (VIPj) measures the contribution to
the total variance of the jth input feature (j = 1, ..., D), which
is reflected by the weights (whj) from each component [46],
[47]. It can be written by (Note, the dataset is centered and
scaled.)

VIPj =

vuutD

HX

h=1

(c2ht
T
hth) (whj/ k wj k2)/

HX

h=1

(c2ht
T
hth).

(11)
VIP is a measure of the contribution of each feature through
the variance explained by each latent variable. The term�
c2ht

T
hth

�
is the variance of y explained by the hth latent

variable. Thus, the VIP measure can also be expressed in term
of Sum-of-Squares [48] by

VIPj =

vuutD

HX

h=1

SSh(whj/ k wj k2)/
HX

h=1

SSh, (12)

where SSh is the percentage of y explained by the hth

latent variable. Intuitively, the VIP value is a sum of squares,
weighted by the PLS weights wj , which takes into account
the explained variance in the PLSR model. The average of the
(VIPj)2 is equal to one, therefore features with VIPj > 1 are
picked as the most relevant feature [39].

III. ILLUSTRATING THE CONCEPT OF THE FEATURE
RANKING METHODS

In this section, we demonstrate the performance of the fea-
ture ranking methods and regression models on two controlled
datasets. We simulate two cases; one simple low-dimensional
and one complicated, very high-dimensional example. In both
cases, the relationship between the input and output is known,
and the output is constructed to be a function of both relevant
and irrelevant input features. These experiments give us some
insight into the performance of the methods, and provide
potentially more confidence in the results obtained, when they
are applied to real data, where no ground-truth information is
available.

A. Description of the data
In the first experiment we try to predict the response variable

y from input vectors xn = [x1
n, x

2
n], where x1

n ⇠ N (0, 0.1),
x2
n ⇠ U(0, 1), and yn = 2x2

n, n = 1, ..., 1000. The output
(predicted mean) changes only in the second dimension, while
it is fairly constant in the first. We expect that the feature
ranking methods would identify the second dimension to be
important in the prediction of yn.

For the second experiment, we use a high-dimensional
dataset D = {xn, yn}Nn=1, where xn = [x1

n, ..., x
1600
n ] is

the input, and yn is a scalar output, for n = 1, ..., 200. Let
R1600 define a 1600-dimensional feature space, and let Ri

i ,
for i = 1, 2, 3, 4, be four 121-dimensional subspaces of R1600,
where i denote the sets of feature indices of these subspaces.
Let furthermore for each x

0
n 2 R1600 be independent random

variables distributed according to a Gaussian distribution with
zero mean and 0.5 variance, N(0, 0.5). Let zin for i = 1, 2, 3, 4
be four random variables, also distributed by N(0, 0.5), and
let yn = z1nz

2
n. Define

xj
n =

(
izin for j 2 i and i = 1, 2, 3, 4,

xj
n otherwise,

(13)

for j = 1, ..., 1600. The output yn is hence only the product
of z1n and z2n, and we expect that the feature ranking methods,
(note, ARD for feature ranking could not be computed for the
toy example because the optimization of the hyper-parameters
(�) failed due to the high-dimensional dataset), assign rele-
vance only to the corresponding subspaces, R1 and R2 .

In this example, we also performed regression to compare
the performances of the GPR and PLSR models. The toy
example used here was inspired by [49].
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B. Experiment 1

Figure 1 shows the results obtained in the first example
for the ARD, SA and VIP methods. The left panel shows
that the output (predicted mean) changes only in the second
dimension. All the three methods can identify the feature
which contributes the most to the prediction of yn (Fig. 1
right panel).

x
1
 direction x

2
 direction

0

0.5

1

1.5

ARD

SA

VIP

Fig. 1. The data for the first experiment (left) and the result of the feature
ranking methods (right).

C. Experiment 2

First, applying the SA and the VIP to the second experi-
mental dataset returns a sensitivity map sd, where d = 1600.
Furthermore, transforming sd into a matrix (image) allows
the visualization of the performance of the feature ranking
methods. Figure 2 shows the sensitivity map for the VIP and
the SA. The two important features, z1n and z2n, correspond
to the squares in the left-top and right-bottom part in Fig.
2, respectively. It can be observed, that both feature ranking
methods could successfully identify the relevant features.
However, in the case of the VIP, all features above the value 1
count as important features [47]. The computed sensitivity map
(Fig. 2 left) reveals that inputs at the top-right and bottom-left
area, corresponding to z3n and z4n, respectively, which are not
relevant in the prediction of the output, were also assigned to
have a sensitivity above the value of 1. Overall, VIP seems to
show higher sensitivity to the irrelevant inputs than the SA.

Fig. 2. Sensitivity map of the VIP (left) and the SA (right).

In addition, we performed regression on this toy dataset by
using the PLSR and GPR models. Figure 3 shows the targets
and the predicted values. In order to assess the strength of
the regression, we computed several regression performance
measures (Table I): Bias, accuracy by the Normalized-Root-
Mean-Square Error (NRMSE) and goodness of fit as measured
by squared Pearson’s correlation coefficient (R2). It can be
observed in Table I that the GPR model has the lowest bias,

NRMSE values and the highest correlation, R2 = 1. Hence
the GPR model shows a better regression performance than
the PLSR model. (The description of the computation of the
regression performance measures can be seen in Sec. IV-C.2.)
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Fig. 3. Target values and predicted values for the PLSR model (left) and
the GPR (right).

TABLE I
SUMMARY OF THE COMPUTED REGRESSION PERFORMANCE MEASURES

FOR THE PLSR AND GPR MODEL FOR THE TOY DATA.

Method Bias NRMSE R2

PLSR 2.7023 0.5208 0.5836
GPR 0.0271 0.0062 1.0000

D. Concluding remarks

From these simulations we may draw the following conclu-
sions.

The first example showed that all the three feature ranking
methods were sensitive to the relevant feature in the case of
the low-dimensional controlled dataset.

The second experiment revealed that both the SA and VIP
methods could successfully identify the important features in
a very high dimensional dataset. The GPR resulted in more
accurate regression than the PLSR model for this example.

Based on these experiments, we find it reasonable to apply
the presented ranking methodologies to multi-spectral data
in order to find the most relevant spectral bands in Chl-a
estimation.

IV. EXPERIMENTAL SETUP

Next, we describe the experimental setup and show the
results of the three ranking algorithms, the SA, ARD and
VIP, when applied to a Chl-a/Rrs matchup dataset, acquired
by the ESA’s MERIS sensor. (Note; we also performed the
same analysis as presented below for a SeaWiFS (NASA)
and a MODIS-Aqua (NASA) mathcup dataset, which have
different spectral resolutions, and therefore may give slightly
different conclusions [17]. The results of these analyses can
be found in the Appendix B.) The datasets can be obtained
from the SeaBASS database (http://seabass.gsfc.nasa.gov and
https://oceancolor.gsfc.nasa.gov/).
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TABLE II
SUMMARY OF THE MERIS DATASET.

MERIS
Chl-a range (mgm�3) 0.017 - 40.23
Nr. of samples 567
Bands (�c (nm)) 413 443 490 510 560 620 665 681
Band width 10 nm and 7.5 nm

A. Description of the dataset

Table II summarizes the MERIS dataset with respect to the
center wavelength (�c), bandwidth, the range of the Chl-a
contents, and the total number of samples.

The MERIS dataset consists of 567 measurements, mea-
sured between April 2002 and March 2012. It can be seen
that the Chl-a content spans a wide range of concentration
with values in the range between 0.017 and 40.23 mgm�3.
The bandwidth is here 10 nm for bands 1- 7, and 7.5 nm for
band 8. Figure 4 shows a few of the measured Rrs values for

400 450 500 550 600 650 700

Wavelength (nm)

0

0.005

0.01

0.015

0.02

0.025

R
rs

 (
s

r-1
)

MERIS

Fig. 4. The Rrs (sr�1) spectrum of the MERIS dataset. The red bars indicate
the location of the spectral bands.

the MERIS dataset. The red bars indicate the position of the
bands, and the width of the bars illustrates the band widths.
In the following, we will number the bands chronologically
1, 2,...,8, where 1 corresponds to the smallest and 8 to the
longest wavelengths.

The Rrs-values show large variations across the dataset, cor-
responding to both Case 1 and Case 2 conditions [50], which is
bound to cause randomness in the estimated Chl-a contents. By
definition [51] Case 1 conditions refer to waters, dominated by
phytoplankton, and phytoplankton associated products, while
Case 2 conditions can contain other constituents, and usually
correspond to optically complex waters.

B. Feature sets

1) Set A: Spectral band feature set: This feature set con-
tains 8 features, the spectral bands of the MERIS dataset,
ordered chronologically as noted above. Feature 1 is the band
centered at 413 nm, and feature 8 corresponds to the spectral
band at 681 nm.

2) Set B: Extended spectral band feature set: We extended
the spectral band feature set by adding three additional fea-
tures. These features are the band ratios from the OC2, OC3
and OC4 state-of-art models [11], [12], [13], [14] and [15].
These band ratios are the ratios of the measured Rrs in the
blue and the green regions. The bands included in the band
ratios are determined from the optical properties of the Chl-a
absorption spectrum [13]. The three additional features in Set
B are defined by:

ROC2 =

Rrs(490nm)

Rrs(560nm)

(14)

ROC3 =

max(Rrs(443, 490nm))

Rrs(560nm)

(15)

ROC3 =

max(Rrs(443, 490, 510nm))

Rrs(560nm)

. (16)

Hence, Set B consists of 11 features, features 1 to 8 are the
spectral bands chronologically ordered, and features 9, 10 and
11 are the band ratios, corresponding to ROC2, ROC3 and ROC4,
respectively.

C. Test setup
The test setup consists of a feature ranking analysis, and

three regression performance tests.
1) Feature ranking: First, we used Set B for ranking

the relevance of the features using the SA, ARD and VIP
methods.2 We also performed feature ranking on Set A. This
was to help determine which spectral bands, in the absence of
the band ratio features, that are important for Chl-a retrieval,
and to possibly add some insight to the physics of the problem.
3

2) Regression: We carried out regression by splitting the
dataset into 50% for training and 50% for testing. This was
done by sorting the dataset based on the increasing Chl-
a content. Then we split the dataset, with odd numbers
forming the training set and even numbers forming the test
set, respectively. This allowed us to have approximately similar
statistical variations in the training and test datasets.

Regression strength was evaluated by computing the fol-
lowing regression performance measures: The Bias, the Nor-
malized Root Mean Squared Errors (NRMSE) and the Squared
Correlation Coefficient (R2). These measures are expressed by

Bias =
1

N

NX

i=1

|(yi � ŷi)| (17)

NRMSE =

1

ymax � ymin

vuut 1

N

NX

i=1

(yi � ŷi)2 (18)

R2
=

PN
i=1(ŷi � y)2

PN
i=1(yi � yi)

2
, (19)

2Note, in the SA method, we assume that all features can be treated as
independent variables, although the band ratio features are functionally made
up of other spectral bands in the feature set. Despite this fact, our results
indicate that this has had no practical impact on the results.

3The GPR model has a computational load of O(n3). However, there
are several techniques, which can increase computational efficiency based
on dimensionality reduction [52], and feature ranking for GPR can be an
important tool in this regard.
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where N is the number of observations in the test set, y
is the true Chl-a content, ŷ is the predicted Chl-a, ymax is
the maximum observed value, ymin is the minimum observed
value, and y is the mean of the observed Chl-a contents in the
test set.

We performed regression studies in three test setups.
Test 1: First, we used Set B to evaluate the GPR and PLSR

models, when only one feature was used in the regression
models. For each feature, we computed the regression perfor-
mance measures, and the study would hence find which single
feature would result in the strongest regression.

Test 2: In the next step, we used features from Set B and
gradually extended the number of features input the regression
models by sequentially adding one more feature at a time,
following the order of importance determined by the SA, ARD
and VIP methods, respectively. In each case we computed the
Bias, NRMSE and R2 values. This revealed how the number
of features affected the regression performance, and how
many and which features that would produce the best values
for the regression performance measures. Furthermore, the
three ranking methods could also be comparatively evaluated.
Here, we assigned numbers to the ranked features from 1 to
11 according to the SA, ARD and VIP. Feature number 1
corresponds to the most important feature for the given ranking
method, while the number 11 is the least relevant feature.
Hence, since the ranking methods evaluate the importance of
the features differently, the actual feature associated with a
given number and ranking method needs to be looked up in
Table IV.

Test 3: Finally, we used Set A to perform the same sequen-
tial procedure as in Test 2. Using only the ranked spectral
bands for regression, allows to determine which bands and
the minimum number needed, without having a significantly
decrease in regression strength. Here the number 1 is assigned
to the most relevant spectral band according to the three
ranking methods, while the number 8 represents the least
important band. The actual feature associated with a given
number and ranking method needs to be looked up in Table
V.

By comparing the results of Tests 2 and 3 with the results
of Test 1 we can assess the increase in regression strength,
when an increasing number of the ranked features are used
in the regression. Hence, Test 1 can be seen as a reference
performance level.

3) Comparison to the OC models: The OC models are
empirical fourth-order models. They use band ratios. The
estimated Chl-a content can be expressed by

Chl-a = 10

a0+
4P

i=1
ai

⇣
log10

⇣
Rrs(�blue)

Rrs(�green)

⌘⌘i

, (20)

where a0 and ai are the (polynomial) coefficients, Rrs(�blue)

is the maximum of the measured Rrs values in the blue region,
and Rrs(�green) is the measured Rrs on the green band. The
sensor specific coefficients and bands used for the band ratios
are listed in Table III. For further details on the OC models
we refer to NASA’s ocean color website4.

4
oceancolor.gsfc.nasa.gov

4) Uncertainty of the estimates: Last, but not least we
illustrate the uncertainty of the estimates of the GPR model by
choosing the strongest model, and comparing the uncertainty
of the estimates with the best (lowest number of features and
still strong regression performance) model. This shows how
the uncertainty level changes, when we reduce the number of
bands in the GPR model.

V. RESULTS

A. Feature ranking

Fig. 5 and Table IV summaries the results of the SA , ARD
and VIP feature ranking on the MERIS dataset, when all the
features were used (Set B). As can be seen, both the SA
and the VIP methods assigned the highest relevance to the
three band ratios, but they ranked their individual relevance
differently. SA gave highest relevance to ROC3, ROC2 and ROC4,
in that order, and compared to these features, the relevance
of the eight band features is more or less negligible. In the
VIP method, only features with score above 1 are considered
important. As seen in the left panel of Fig. 5, all band ratio
features are scored above one, whereas the band features are
below, and hence, less important.

The ARD method, (middle panel of Fig. 5), ranked the
features differently. It gave highest relevance to the band
centred at 665 nm, and high relevance to the bands at 443 nm
and at 620 nm, in addition to the band ratio features. However,
except for the bands 560 nm and 413 nm, which both have very
low scoring, the relative differences in importance for ARD
are not as pronounced as for the other two ranking methods.

Fig. 6 and Table V show the results of the ranking methods,
when only the spectral bands are used (Set A). As can be
seen, all ranking methods assigned high relevance to the band
positioned at 560 nm. This band is the denominator in all band
ratio features, since this is a reference band because there is
little or no absorption by Chl-a in this region [53], and the
results reconfirm its importance. SA gave high importance also
to the bands at 413 nm and 620 nm, whereas VIP, in addition
to 560 nm, only gave the band at 413 nm a score above 1.
The other bands are scored slightly below 1. ARD also puts
high relevance to the bands at 490 nm and 510 nm. Both
these bands are included in the ROC4 band ratio. In summary,
these results suggest that the bands used in the band ratios
(560 nm and 490 nm) are important. The high relevance of
the band at 413 nm, as suggested by both SA and VIP, may
be explained by the fact that the dataset also includes samples
from eutrophic waters.

B. Regression experiments

Test 1: Fig. 7 shows the three regression measures, Bias,
NRMSE, and R2, for the single feature regression setup for
the GPR model (upper panel), and for the PLSR model (lower
panel). The numbers ticked on the x-axis are denoting band
features in increasing order of wave length, and the solid red
line horizontally across each figure is inserted as a reference to
ease the visual comparisons. As noted, using only one feature
at a time, both the GPR and PLSR models resulted in the best
performance for the three band ratio features, and according to
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TABLE III
COEFFICIENTS IN THE OC MODELS FOR THE MERIS DATASET

MERIS
Model blue band green band a0 a1 a2 a3 a4
OC2 490 560 0.2389 -1.9369 1.7627 -3.0777 -0.1054
OC3 443 > 490 560 0.2521 -2.2146 1.5193 -0.7702 -0.4291
OC4 443 > 490 > 510 560 0.3255 -2.7677 2.4409 -1.1288 -0.4990
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Fig. 5. SA of the GP mean (left), ARD (middle) and VIP (right) for Set B. For the VIP method features above the red line are important in the estimation
of Chl-a, while bands below are not likely to contribute to the prediction.
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Fig. 6. SA of the GP mean (right), ARD (middle) and VIP (left) for Set A . For the VIP method features above the red line are important in the estimation
of Chl-a, while bands below are not likely to contribute to the prediction.

TABLE IV
RANKED FEATURES FOR SET B.

MERIS
Ranked features SA ARD VIP
1 ROC3 665 nm ROC2
2 ROC2 620 nm ROC3
3 ROC4 681 nm ROC4
4 560 nm 443 nm 443 nm
5 620 nm ROC2 665 nm
6 413 nm ROC3 681 nm
7 665 nm 510 nm 413 nm
8 681 nm 490 nm 560 nm
9 443 nm 413 nm 510 nm
10 510 nm ROC4 490 nm
11 490 nm 560 nm 620 nm

the measures, all three have approximately similar regression
strength, (i.e. lowest Bias and NRMSE, and the highest R2).
We also note that the four bands with the longest wavelengths,
i.e. those centred at 560, 620, 665 and 681 nm, showed

TABLE V
RANKED FEATURES FOR SET A.

MERIS
Ranked bands SA ARD VIP
1 560 560 560
2 413 490 413
3 620 510 510
4 443 620 620
5 665 665 490
6 681 681 443
7 510 443 665
8 490 413 681

good regression performance, especially for the GPR model.
For this regression model, the four band features with the
shortest wavelengths showed a significantly weaker individual
regression strength. On the other hand, for the PLSR model,
this difference in performance between the short and the long
wavelengths is less pronounced.
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Fig. 7. Computed measures for the MERIS dataset for the GPR (top-row) and PLSR (bottom-row) model. Regression performance measures were computed
by performing regression with only one feature at the time for Set B. (The red line is a reference line, allowing an easier comparison of the performance of
the GPR and PLSR models.)

Test 2: In this experiment, we gradually extend the number
of features input to the regression models by sequentially
adding one more feature at a time, following the order of
importance determined by the SA, ARD and VIP methods. The
resulting regression performance measures as function of the
number of ranked input features are summarised in Fig. 8 for
GPR (upper panel) and PLSR (lower panel). The figures show
that for both regression models, the regression performance
improves as more and more input features are used. The
best regression performance is achieved when as many as 10
features, ranked by the SA method, were applied to the GPR
model. This only excludes the band positioned at 490 nm,
but this band is already contributing to the regression, as it is
included in the band ratios. We also note that the improvement
curves, i.e. the reduction in Bias and NRSME and increase
in R2 from left to right, vary with ranking method and also
with the regression model. We note that the curves associated
with the SA ranking in general provides the best regression
performance for both GPR and PLSR. For the SA ranking
we observe that the GPR-curves have a clear step-wise trend,
with big improvement steps at 3 and 5 feature inputs. There
is basically no improvement of adding adding ROC2 to ROC3,
but significant improvements when also ROC4 is used. Similar,
there is little change in the measures by adding band feature
560 nm, but big improvement when band 620 nm is added. The
curves for the PLSR model also have step-wise appearance,
but the steps are at different numbers of feature inputs, and
the curves seem to achieve the optimal performance with 8
number of features following the SA ranking.

The GPR and PLSR models showed similar trends in

performance when extending the feature sets. Also the values
for the performance measures were quite similar. The most
noticeable difference occurred in the NRMSE value, where
the GPR model showed a slightly lower value.

Test 3: Adding sequentially the ranked band features to
the GPR and PLSR models revealed improvements, already
when the second most important band was added (Fig. 9). We
observe that in general the band features ranked by the ARD
method showed the best regression performance measures as
we extended the input sets, both for the GPR and PLSR
models. Again we note that the ARD ranked the bands at
560 and 490 nm as the most relevant bands, and these bands
correspond to the bands used in the ROC2 band ratio. However,
the GPR model converged to a higher R2 value, when many
features were used, and the overall best performance was
achieved with the GPR model using all features.

C. Comparison to the OC models

Finally, we compared the regression performance of the
GPR and PLSR models with the OC2, OC3 and OC4 models.
These comparisons are summarised in Table VI in terms of
resulting performance measures associated with some selected
input features. The 9 first rows display the performance
measures associated with the three OC-models and the GPR
and the PLSR models using ROC2, ROC3 and ROC4 as inputs,
respectively. Note that both the GPR and PLSR perform better
than all the OC models. The best result is obtained with GPR
using ROC4 as input feature. In the next rows, we present the
numerical results for the GPR and PLSR using 1, 2, 8, and
10 input features, as described below.
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Fig. 8. Computed measures for Set B for the GPR (top-row) and PLSR (bottom-row) model. Here the numbers represent the ranked features of the SA (red
circle), ARD (green star) and VIP (black square) methods. The ranked features were added sequentially as inputs to the GPR and PLSR models.(The red line
is a reference line, allowing an easier comparison of the performance of the GPR and PLSR models.)
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Fig. 9. Computed measures for Set A for the GPR (top-row) and PLSR (bottom-row) model. Here the numbers represent the ranked features of the SA (red
circle), ARD (green star) and VIP (black square) methods. The ranked features were added sequentially as inputs to the GPR and PLSR models. (The red
line is a reference line, allowing an easier comparison of the performance of the GPR and PLSR models.)

i) Single band feature: We display the regression per-
formance of band features 7 (665 nm) and 8 (681 nm)
when used as single feature inputs. These correspond
to the band features with best performance, in the

single feature experiment (Fig. 7).
ii) Two band features: Here we display the regression

performance when two bands defines the input vec-
tor. We have chosen the bands at 560 and 490
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TABLE VI
COMPARISON OF THE OC MODELS WITH GPR AND PLSR MODELS FOR

THE MERIS DATASET.

Regression model Bias NRMSER2

OC2 0.27150.1114 0.7101
GPR with ROC2 0.23060.0920 0.7618
PLSR with ROC2 0.23450.0929 0.7570
OC3 0.26760.1090 0.7241
GPR with ROC3 0.23110.0938 0.7526
PLSR with ROC3 0.23910.0945 0.7491
OC4 0.23470.0949 0.7671
GPR with ROC4 0.22410.0912 0.7666
PLSR with ROC4 0.23920.0924 0.7598
GPR with band centered at 665 nm 0.28610.1143 0.6521
PLSR with band centered at 665 nm 0.48420.1780 0.1189
GPR with band centered at 681 nm 0.26910.1076 0.6793
PLSR with band centered at 681 nm 0.48090.1776 0.1257

GPR with bands centered at 490 and 560 nm 0.22590.0909 0.7666
PLSR with bands centered at 490 and 560 nm 0.28530.1120 0.6465
GPR with all bands 0.16920.0723 0.8578
PLSR with all bands 0.19220.0787 0.8257
GPR with all features, except band centered at 490 nm0.15870.0631 0.8889
PLSR with all features, except band centered at 490 nm 0.16700.0684 0.8680

nm, which according to Fig. 9 would give the best
performance (ARD-ranking).

iii) All band features: For comparison, we also include
the results when using all band features as input.

iv) Ten input features: We finally combine the 3 band
ratio features with 7 bands according to the SA
ranking. This resulted in the overall best regression
performance (see Fig. 8).

The GPR model with ten input features showed the strongest
regression strength, and it actually outperforms all the OC
models. The second strongest model was the PLSR with
the same features. Both GPR and PLSR performed well inn
comparison to the OC models, also with few input bands.
Hence, the results of Table VI suggest that Chl-a content
retrieval can be improved in comparison to the OC models
by using the GPR model with only two bands.

D. Uncertainty level of the GPR model

Based on our results in Sec. V-C, we illustrate the advan-
tageous property of the GPR model, i.e. its ability to assign
an uncertainty level to the estimates. Figure 10 (top) shows
the estimated Chl-a values by using the obtained strongest
GPR model (Table VI), the actual measured Chl-a values and
the uncertainty level of the estimates for the MERIS dataset.
Figure 10 (bottom) shows, how the uncertainty level changes,
when the GPR model uses only two spectral bands, 490 and
560 nm.

For some of the estimated values, the uncertainty level
increases slightly when fewer features are used. This is in good
correspondence with the computed regression performance
measures.

The interesting observation to note is that the uncertainty
level does not reveal a significant increase when only the two
most important spectral bands are used in model, compared to
the strongest GPR model, with 10 input features.
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Fig. 10. Observed and estimated Chl-a contents by using the GPR model
for the MERIS dataset. The black solid lines indicate the uncertainty level of
the estimates. The top figure shows some of the observations by using the
GPR model with the features that resulted the best values for the regression
performance measures. The bottom panel illustrates the GPR model by using
only two bands for regression.

VI. ILLUSTRATIVE EXAMPLE

We illustrate the effect of using different algorithms and
bands for Chl-a estimation on a test image acquired in July in
2015 by MODIS-Aqua over high-latitude Arctic oceans (N =
89.9931�, S = 65.7186�, W = -174.2612�, E = 5.236�). Sea
ice concentration was estimated to 33.7383 % and the cloud-
coverage was 51.908 %. The quasi true color image can be
seen in Fig. 11.

Figure 12 shows the Chl-a content maps estimated by the
OC3 algorithm (top), by the GPR model with all the spectral
bands (middle), and by the GPR model with bands centered at
488 and 678 nm (bottom). We observe that the estimated Chl-
a maps have some differences. The GPR maps show lower
concentration values, and reveal more details than the map
of the OC3 algorithm. Both GPR estimates illustrate how the
model captures internal structures, presumably associated to
ocean current eddies. It is expected that phytoplankton blooms
follow the pattern of the current eddies.

The corresponding computed regression performance mea-
sures for these cases were (see Table XII, Appendix B): bias
= 0.2272, NRMSE = 0.1057, R2 = 0.7868 (OC3); bias =
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0.1628, NRMSE = 0.0702, R2 = 0.8844 (GPR, all bands)
bias =0.1774, NRMSE = 0.0746, R2 = 0.8684 (GPR, 488 and
678 nm). Based on these measures, the best results should
be expected to be achieved by using the GPR model with all
bands, followed by the GPR model, and with bands centered
at 488 and 678 nm. The most pronounced difference between
the maps computed by the GPR model with all bands (middle-
panel) and GPR with bands centered at 488 and 678 nm
(bottom-panel) is in the amount of the assigned Chl-a content.
Which one is most correct, cannot be concluded without in-
situ information. This example, together with the computed
statistics from the training set, shows that both the regression
model and the input feature vector are important in ocean
color applications, and that more research is needed to select
the most reliable methodology.

Fig. 11. Quasi true color image of the test site.

VII. CONCLUSION AND FUTURE WORK

In this work, we studied feature ranking and regression
performances of two regression methods, namely the Gaus-
sian Process Regression (GPR) and the Partial Least Squares
Regression (PLSR) models, when applied for Chl-a content es-
timation based on a global MERIS dataset. In the GPR model,
we use a Bayesian approach to learn the non-linear functional
relationship between the input feature vectors and the output
Chl-a measurements, and the feature ranking was conducted
using the Automatic Relevance Determination (ARD) and
Sensitivity Analysis (SA). The PLSR is a well-known linear
regression model, which uses a so-called latent variable space
to relate the input features to the Chl-a measurement. In PLSR,
feature relevance was analysed using a ranking method called
Variable Importance in Projection (VIP).

From the eight spectral bands of a MERIS matchup data set,
we created two input feature sets. One (Set A) consisting of all
the spectral bands, and another extended feature set (Set B),
which in addition to all bands, also consisted of the three band
ratio features, denoted ROC2, ROC3 and ROC4, which are the
inputs used in the state-of-art OC2, OC3, and OC4 regression
models. The relevance of features were analysed by all the
ranking methods, and subsequently input to the two regression
models in a test setup consisting of three tests. Using three
measures, the Bias, NRSME, and R2, the individual regression
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Fig. 12. Chl-a content estimates by using the OC3 algorithm (top), GPR
model with all bands (middle) and the GPR model with bands centered at
488 and 678 nm (bottom).

strength of each feature as single input was computed. Next,
we evaluated the regression strength of sets of features by
gradually extending the number of features, adding one more
feature at a time, following the order of importance determined
by the SA, ARD and VIP methods, respectively. We did this
analysis first for Set B, and then for Set A.

Our results show that the all feature ranking methods can
successfully assign sensible relevance to the features. Since
the methods operate according to different ranking criteria,
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it is expected that they might assess the features differently.
Both SA and VIP assigned the highest relevance to the three
band ratio features, whereas ARD gave highest scores to the
spectral bands centred at 665 nm, 443 nm, and at 620 nm.
ARD also found that the band ratio features to be important.
When applied to the features in Set A, i.e. only the band
features, all three methods agreed to give highest relevance to
the band at 560 nm, but the order of the next relevant bands
were somewhat different.

ARD ranked the spectral band at 490 nm as second most
important. We note that the bands at 490 and 560 nm are
included in all the band ratio features. The spectral region at
490 nm corresponds to the shifted Chl-a absorption peak, and
has been used to avoid contribution from CDOM [54]. Even
though this wavelength mostly represents accessory pigments,
due to the correlation of these accessory pigments with Chl-
a, the spectral band at 490 nm can successfully be used to
derive Chl-a concentration. The band centred at 560 nm is a
reference wavelength, since phytoplankton absorption is at the
minimum around this green band [54].

In regression Test 1 (single feature input), we found that
the three band ratio features achieved far the best regression
performance in both regression models. This is not surpris-
ing, given the fact that these features are composed of two
spectral bands, carefully selected. We also found that spectral
bands with the longest wavelengths, i.e. 560, 620, 665, and
681nm, were performing significantly better than the shorter
wavelengths, especially for the GPR model. It has previously
been shown that bands in the red part of the visible region of
the electromagnetic spectrum can successfully be applied for
Chl-a retrieval due to the second absorption maximum of the
Chl-a molecule [13]. Our results support this finding.

Not surprisingly, Test 2 showed that for both regression
models, the regression performance improved as more and
more input features are used as input. The best regression
performance is achieved when 10 features, ranked by the SA
method, were applied to the GPR model. We note that the
curves associated with the SA ranking in general provided the
best regression performance for both GPR and PLSR. We also
found that the improvement-curves of GPR associated with the
SA ranking had a clear step-wise trend, with big improvement
steps at 3 and 5 feature inputs. These jumps would intuitively
give clues to which features to select first, if dimensionality
reduction were to be applied to the input feature space.

Test 3 also showed that the regression performance grad-
ually improved when applying more and more input spectral
bands, and the overall best performance was obtained with
all 8 spectral bands. However, we note that the gain in
performance for the GPR model by increasing the number
of input spectral bands from 4 to 8, is only minor (see Fig.9).

Our comparisons between the GPR and PLSR regression
models and the three OC-models clearly demonstrated that
both GPR and PLSR performed better than the state-of-the-art
models for several different sets of input features. Based on the
performance measures we have used, we also find that the GPR
model in all cases has the strongest regression performance.

Note that we also performed the same study for two
additional global matchup datasets, the SeaWiFS and MODIS-

Aqua datasets. Due to lack of space, we did not include a
detailed description of these studies here, but some important
results have been tabulated in Appendix B. We found similar
results for the SeaWiFS and MODIS-Aqua datasets as those
reported in this paper for the MERIS dataset.

Based on the current studies, we conclude that there is
a big potential for improvements in Chl-a retrieval from
satellite-based observations by selecting the most appropriate
regression model in combination with an optimal set of input
features.

For future work, we plan to perform extensive validation
studies of the GPR model, and compare its performance with
state-of-art Chl-a retrieval algorithms, and other algorithms
e.g. Neural Networks, on optically complex aquatic environ-
ments, such as coastal and Arctic waters, and mid-latitude
shallow lakes.
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APPENDIX A

PLSR algorithm

Here we present the so called NIPALS (Non-linear Iterative
Partial Least Squares) algorithm introduced by [55]. The
NIPALS algorithm can be written by

for h = 1, ..., H (21)
w = X

T
y

t = Xw

c = y

T
t/tT

t

p = X

T
t/tT

t

X = X� tp

T

y = y � tc

end for
W = w1, ...,WH

T = t1, ..., tH

P = p1, ...,pH

c = c1, ..., cH

APPENDIX B

We performed the same experiments as in Sec. IV and V
for two additional datasets, the SeaWiFS and MODIS-Aqua
datasets. We found that the results were in good correspon-
dence with our findings for the MERIS dataset, namely a
satisfactory regression can be already achieved by using the
spectral bands centered at 490 and 555 nm for the SeaWiFS
dataset, and 488 and 678 nm for the MODIS-Aqua dataset.

Below we present the description of the datasets and fea-
tures, and the results of the feature ranking methods, regression
models and comparisons for these additional datasets.

The SeaWiFS and MODIS-Aqua datasets

The SeaWiFS and MODIS-Aqua datasets are summarized
in Table VII. These datasets represent both Case 1 and 2
conditions.

TABLE VII
SUMMARY OF THE SEAWIFS AND MODIS-AQUA DATASETS.

SeaWiFS
Chl-a range (mgm�3) 0.024 - 129.332
Nr. of samples 1465
Bands (�c (nm)) 421 443 490 510 555 670
Band width 20 nm

MODIS-Aqua
Chl-a range (mgm�3) 0.0153 - 25.4985
Nr. of samples 579
Bands (�c (nm)) 412 443 488 531 547 667 678
Band width 10 nm, 15 nm

The band ratio features for the SeaWiFS dataset can be
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TABLE VIII
COEFFICIENTS IN THE OC MODELS FOR THE SEAWIFS AND

MODIS-AQUA DATASETS

Model blue band green band a0 a1 a2 a3 a4
SeaWiFS

OC2 490 555 0.2511 -2.0853 1.5035 -3.1747 0.3383
OC3 443 > 490 555 0.2515 -2.3798 1.5823 -0.6372 -0.5692
OC4 443 > 490 > 510 555 0.3272 -2.9940 2.7218 -1.2259 -0.5683

MODIS-Aqua
OC2 488 547 0.2500 -2.4752 1.4061 -2.8233 0.5405
OC3 443 > 488 547 0.2424 -2.7423 1.8017 0.0015 -1.2280

written by:

ROC2 =

Rrs(490nm)

Rrs(555nm)

(22)

ROC3 =

max(Rrs(443, 490nm))

Rrs(555nm)

(23)

ROC3 =

max(Rrs(443, 490, 510nm))

Rrs(555nm)

, (24)

and for the MODIS-Aqua dataset

ROC2 =

Rrs(488nm)

Rrs(547nm)

(25)

ROC3 =

max(Rrs(443, 488nm))

Rrs(547nm)

. (26)

Feature ranking for the SeaWiFS and MODIS-Aqua datsets
The ranked features can be seen in Table IX, and the ranked

spectral band features are presented in Table X.

TABLE IX
RANKED FEATURES FOR THE SEAWIFS AND MODIS-AQUA DATASETS.

SeaWiFS
Ranked features SA ARD VIP
1 ROC4 490 nm ROC4
2 ROC2 ROC2 ROC3
3 ROC3 ROC4 ROC2
4 490 nm 443 nm 412 nm
5 510 nm 412 nm 555 nm
6 555 nm 670 nm 490 nm
7 412 nm 510 nm 510 nm
8 443 nm ROC3 443 nm
9 670 nm 555 nm 670 nm

MODIS-Aqua
Ranked features SA ARD VIP
1 ROC3 678 nm ROC3
2 ROC2 531 nm ROC2
3 412 nm ROC2 488 nm
4 443 nm 412 nm 547 nm
5 547 nm 547 nm 531 nm
6 488 nm 443 nm 678 nm
7 678 nm 667 nm 443 nm
8 667 nm 488 nm 412 nm
9 488 nm ROC3 667 nm

Regression
Table XI and XII show the computed regression perfor-

mance measures for the SeaWiFS and MODIS-Aqua datasets,
respectively.

TABLE X
RANKED SPECTRAL BANDS FOR THE SEAWIFS AND MODIS-AQUA

DATASETS.

SeaWiFS
Ranked bands SA ARD VIP
1 412 555 555
2 555 490 412
3 443 443 670
4 670 412 443
5 490 670 510
6 510 510 490

MODIS-Aqua
Ranked bands SA ARD VIP
1 488 488 547
2 678 678 412
3 547 412 531
4 667 531 443
5 412 547 488
6 443 667 678
7 531 443 667
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TABLE XI
COMPARISON OF THE OC MODELS WITH GPR AND PLSR MODELS FOR THE SEAWIFS DATASET.

Regression model Bias NRMSE R2

OC2 0.2319 0.0990 0.8128
GPR with ROC2 0.2142 0.0908 0.8403
PLSR with ROC2 0.2159 0.0915 0.8373
OC3 0.2275 0.0977 0.8180
GPR with ROC3 0.2129 0.0914 0.8380
PLSR with ROC3 0.2225 0.0939 0.8289
OC4 0.2123 0.0907 0.8406
GPR with ROC4 0.2079 0.0890 0.8464
PLSR with ROC4 0.2302 0.0952 0.8243
GPR with bands centered at 490 and 555 nm 0.2101 0.0894 0.8450
PLSR with bands centered at 490 and 555 nm 0.2592 0.1082 0.7724
GPR with all bands 0.1792 0.0780 0.8820
PLSR with all bands 0.2394 0.1019 0.7980
GPR with bands centered at 412, 443, 490, 670 nm, and features ROC2 and ROC4 0.1805 0.0780 0.8820
PLSR with bands centered at 412, 443, 490, 670 nm, and features ROC2 and ROC4 0.2021 0.0854 0.8583

TABLE XII
COMPARISON OF THE OC MODELS WITH GPR AND PLSR MODELS FOR THE MODIS-AQUA DATASET.

Regression model Bias NRMSE R2

OC2 0.2270 0.1098 0.7697
GPR with ROC2 0.2072 0.0894 0.8115
PLSR with ROC2 0.2123 0.0910 0.8053
OC3 0.2272 0.1057 0.7868
GPR with ROC3 0.2062 0.0880 0.8173
PLSR with ROC3 0.2304 0.0958 0.7847
GPR with band centered at 678 nm 0.2713 0.1119 0.7042
PLSR with band centered at 678 nm 0.3760 0.1559 0.4403
GPR with bands centered at 488 and 678 nm 0.1774 0.0746 0.8684
PLSR with bands centered at 488 and 678 nm 0.2648 0.1064 0.7379
GPR with all bands 0.1628 0.0702 0.8844
PLSR with all bands 0.2049 0.0856 0.8271
GPR with bands centered at 412, 531 and 678 nm, and features ROC2 0.1697 0.0725 0.8771
PLSR with bands centered at 412, 531 and 678 nm, and features ROC2 0.1891 0.0837 0.8350


