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Abstract 

This investigation assessed the impact of hearing loss and lateralized auditory attention on 

spatiotemporal parameters of gait during overground dual-tasking by the use of the dichotic 

listening task. Seventy-eight right-handed, healthy older adults between 60 and 88 years were 

assigned to a Young-Old (<70 years) or an Old-Old (>71 years) group. Cognitive assessment 

and pure tone audiometry were conducted. Spatiotemporal parameters of gait quantified by 

mean (M), and coefficient of variations (CoV) were evaluated with the OptoGait system 

during 3 dichotic listening conditions: Non-Forced, Forced-Right and Forced-Left. Factorial 

analyses of variance and covariance were used to assess group differences and the moderating 

effects of hearing status, respectively. Results demonstrated that three of the gait parameters 

assessed were affected asymmetrically by the dual-task paradigm after controlling for hearing 

status. Asymmetries existed on step width, gait speed and variability of stride length. Finally, 

correlations between gait outcomes and dichotic listening results showed that M and CoVs in 

gait parameters during right-ear responses were longer compared with left-ear. Left-ear 

responses were related to increased variability on stride length, which indicates higher 

difficulty level. Hearing status varying from normal to mild levels of hearing loss modulates 

spatiotemporal gait outcomes measured during dichotic listening execution. Findings suggest 

that attending to left side stimuli relates to increased gait variability, while focusing on right-

side assures a safe walk. Results demonstrated that attending to right-ear stimuli is an adaptive 

strategy for older adults that compensates for limited sensorimotor and cognitive resources 

during walking.   

 

Key words: Hearing loss, dichotic listening, healthy aging, cognitive decline, walking 

overground   
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The impact of age-related hearing loss and lateralized auditory attention on spatiotemporal 

parameters of gait during dual-tasking among community dwelling older adults 

 

The “dual-task paradigm” has been broadly employed to study aging effects on 

multitasking, and more specifically, on the interplay of gait and cognition. This paradigm is 

used to disentangle the possible causes of falls in older populations. Notwithstanding, there 

are some caveats. One is the absence of appropriate rationale for the selection of the cognitive 

tasks challenging gait. Since type of cognitive task used during walking matters (Beauchet, 

Aminian, Gonthier, & Kressig, 2005), tests measuring specific cognitive mechanisms that can 

be naturally adapted on dual-tasking should be prioritized.  A second limitation is the lack of 

information about the role of sensory loss influencing the gait-cognition association. To our 

knowledge, the very common condition of age-related hearing loss among older adults over 

60 years has not yet been explored in dual-task investigations. 

Age-related hearing loss (ARHL) or presbycusis is a chronic, degenerative condition 

following accumulating extrinsic and intrinsic factors resulting in impairments in cochlear 

transduction of acoustic signals (Huang & Tang, 2010). ARHL is also one of the most 

prevalent chronic conditions in the older population (Yamasoba et al., 2013). As it is well 

established, ARHL aggravates with increasing age and it goes hand by hand with declined 

cognition (Lin et al., 2011). It is calculated that 37% of older persons between 60-70 years 

have a hearing loss over 25dB, while the proportion elevates to 60% among those over 70 

years (Van Eyken, Van Camp, & Van Laer, 2007). Whether ARHL and cognitive decline 

arise due to a common etiology or as a result of a direct link between the two phenomena 

(Wayne & Johnsrude, 2015) is still a matter of debate. Nonetheless, hearing loss and cognitive 

deficits co-exist in the older adult and both conditions have been associated with impaired 

functional status (Chen et al., 2015) and increased risk of falls (Lopez et al., 2011). To our 
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knowledge, there are only two earlier studies addressing the issue of hearing loss and dual-

tasking (Lau, Pichora-Fuller, Li, Singh, & Campos, 2016; Bruce et al., 2017).  

Because hearing loss is closely connected to cognitive decline in aging and it also 

affects walking and balance (Lin, Thorpe, Gordon-Salant, & Ferrucci, 2011) it is important to 

take the condition into account in dual-task studies. A central interest is to understand the 

relevance of sensorimotor changes due to aging when walking, listening and talking occur 

concurrently. In fact, such a scenario has been addressed under experimental conditions using 

the dichotic listening test (DL) (Decker, Cignetti, & Stergiou, 2013; Decker et al., 2017). DL 

is a robust task for the study of divided attention and executive function in which participants 

need to attend to specific auditory information during trials where competing stimuli are 

simultaneously applied to both ears. During three conditions subjects are required to report 

information based on a self-selected choice or from one specific ear. DL tests hemispheric 

lateralization of language and the fact that the brain mechanisms underlying DL performance 

are well-known is of great interest for dual-task research. The benefit of the test is its ability 

to assess attention across different levels of task difficulty as well as possible asymmetrical 

effects on gait due to lateralized focus of attention.  

Why does lateralized focus of auditory attention influence gait asymmetrically? 

In order to answer this question, we need to address the topic of hemispheric 

specialization in aging and specifically in DL and gait. With increasing age, hemispheric 

specialization tends to diminish as observed in functional imaging studies (Cabeza, 2002). 

However, hemispheric specialization is differently affected by age depending on the cognitive 

modality or function under consideration. For instance, during performance of the DL test, 

right-handed older adults demonstrate larger difficulties to report stimuli from left-ear while 

their ability to report from right ear is more accentuated (Stecker, McLaughlin, & Higgins, 

2015). The preference for right-ear stimuli is a phenomenon called “the right ear advantage”, 
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which exists in all right-handed subjects and is explained by the left-hemispheric dominance 

for language processing (Hugdahl, 1988). In contrast, processing of left-ear stimuli is more 

challenging as information coming from left-ear is transmitted via the anatomical decussation 

of fiber pathways to the right hemisphere. There, the signal has to be further transferred 

through corpus callosum to the left hemisphere for final processing (Hugdahl, Westerhausen, 

Alho, Medvedev, & Hamalainen, 2008). Thus, the difficulty to report stimuli from left-ear in 

aging is thought to be caused by decreased inter-hemispheric transfer of the auditory input, 

probably due to size reduction of the corpus callosum (Westerhausen, Bless, & Kompus, 

2015).  

Concerning the effects of aging on lateralized organization of motor functions, 

findings depend on the action in question. For example, in upper-limb function preservation 

of lateralized capacities has been documented (Sebastjan, Skrzek, Ignasiak, & Slawinska, 

2017). As for walking, the situation is quite different. In healthy individuals gait is a rather 

symmetric function (Viteckova et al., 2018), controlled by basic spinal motor programs that 

keep movement synchronization (Ivanenko, Poppele, & Lacquaniti, 2006). However, under 

specific contexts like in dual-tasking, the nervous system needs to integrate additional 

sensorimotor information by utilizing higher-level cortical functions and volitional actions. 

These events perturb central generator patterns for locomotion (Ivanenko et al., 2006; 

Robinson & Kiely, 2017). In aging, walking becomes a more demanding action and more 

involvement of executive functions and attention is required (Yogev-Seligmann, Hausdorff, & 

Giladi, 2008). Thus, additional cognitive loading in dual-tasking further disturbs gait patterns.  

In the past, few studies have evaluated the effects of the concomitant cognitive task on 

gait asymmetries in healthy older adults, probably because asymmetries are regarded as a 

pathological feature (Yogev, Plotnik, Peretz, Giladi, & Hausdorff, 2007). One of these studies 

evaluated gait asymmetries by the use of a verbal fluency test (Dalton, Sciadas, & Nantel, 
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2016), but data only showed a trend towards disrupted asymmetry.  In another recent 

investigation, arm swing asymmetries in healthy older adults have been reported during 

execution of a dual-task employing the Stroop test (Killeen et al., 2017). Authors of this study 

remark the absence of information about asymmetric effects for lower limbs, implying that 

gait asymmetries might not arouse by dual-tasking in healthy populations. However, this is 

still an open question as for now, most of the cognitive tests adopted in dual-task research do 

not deliberately assess lateralized cognitive functions. Therefore, in the present study we used 

the DL test, which increases cognitive load in a lateralized way. Since DL performance 

recruits higher attentional resources on one brain hemisphere (Tervaniemi & Hugdahl, 2003), 

a lateralized cortical activation during DL is superimposed to motor programmes acting on 

both sides of the corticospinal pathway that control both sides of the body. Hence, it is 

reasonable to expect that lateralized focus of attention will disrupt coordination of these motor 

programmes asymmetrically.  

Interest of the present study 

The use of DL as a secondary task has only been investigated during walking on a 

treadmill (Decker et al., 2013; Decker et al., 2017). Because it is well documented that 

walking on a treadmill modifies the way in which participants ambulate (Hollman et al., 

2016), findings from these studies cannot generalize to normal walking, it is necessary to 

assess DL in dual-tasking during overground walking. In addition, gait studies using 

treadmills augment the attentional requirements as achievement of a steady walk on the 

device increases the cognitive load and subjects tend to prioritize walking at the expense of 

the secondary task (Regnaux, Robertson, Ben Smail, Daniel, & Bussel, 2006). This means 

that the effects exerted by DL need to be investigated on regular walking, especially 

concerning older adults for whom just walking already demands increased cognitive control 

(Yogev-Seligmann et al., 2008). For these reasons, it is important to evaluate DL as a 
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secondary task during walking overground, which will bring an optimal ecological valid 

environment that resembles daily situations. Therefore, the aim of the present study was two-

fold: First, evaluate possible asymmetric effects of DL in a dual-task paradigm during 

walking overground in right-handed healthy older adults and secondly, to assess the 

moderating effects of hearing loss on this experimental situation.  

Method 

Participants  

Seventy-eight right-handed volunteers ranging in age between 60 and 88 years (M = 

71.1, SD = 6.6) participated in the dual-task study. All the participants were involved in a 

larger umbrella project of motor functions and cognition at our institution. Only right-handed 

individuals were enrolled as it is demonstrated that left-handed people present atypical 

lateralization patterns (Westerhausen et al., 2015). Because specific age ranges of older adults 

may have an impact on study results (e.g., (Ihle, Jopp, Oris, Fagot, & Kliegel, 2016), 

participants were assigned to a Young-Old group (YO, ≤ 70, n =38) or to an Old-Old group 

(OO, ≥71, n = 40). This approach has been adopted by numerous investigations, and it assures 

inclusion of specific age-ranges of older adults with different levels of hearing loss and 

cognitive deficits. Educational level of the whole group was 13 years on average (SD = 3.9), 

72% of the participants were retired and 56% were females. All individuals were community 

living older adults from north-Norway, free of major diseases or cognitive troubles. Inclusion 

criteria were being right-handed, native Norwegian speaker, above the age of 60, no diagnosis 

of orthopaedic, motor or other co-morbidities likely to impact gait and cut-off criteria on 

MMSE >27 to assure normal cognitive status (Petersen et al., 1999). Exclusion criteria were 

having a diagnosis of pathology that directly affects the musculoskeletal system, recent 

surgery, acute illness, or cardiac/movement disorders. Participants were also screened for 

depression with the Beck Depression Inventory II (Beck, Steer, & Brown, 1996) and none of 
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the participants scored within the depression range. Exclusion criteria to avoid high-moderate 

to severe impaired hearing which may hampering DL execution included averaged pure-tone 

threshold higher than 45 dB on any ear and interaural asymmetry between ears of not more 

than 15 dB, which is the clinical definition for asymmetric sensorineural hearing loss (Saliba, 

Martineau, & Chagnon, 2009). The latter criterion is crucial in the present study due to the 

interest in evaluating lateralized auditory stimuli in healthy participants. It should be reminded 

that ARHL is a gradual process affecting both ears in parallel and that any asymmetric 

impairment suggest the existence of damage to the auditory system beyond normal effects of 

aging (Howarth & Shone, 2006). 

Recruitment of participants was conducted through advertisements at the local senior 

citizens’ center, flyers, and by means of word of mouth. Informed consent was obtained from 

all participants and they were aware that they could leave the study at any time if they so 

choose. The study was approved by the Regional Research Ethics Committee. 

Measures 

Audiometric screening and group assignment. A pure tone audiometry was 

conducted in all participants for frequencies: 0.25, 0.5, 1, 2, 4 and 8 kHz with a screening 

audiometer MADSEN Itera II. The average hearing sensitivity reflected by “pure tone 

averages” (PTA) of the frequencies 0.5, 1, 2 and 4 kHz was calculated for each ear. A score 

equal to or greater than 25 decibel (dB) on PTAs was used to classify those with impaired 

hearing, while a score equal to or less than 24 dB on PTAs was the cut-off to classify those 

with normal hearing (WorldHealthOrganization, 2017). We based group division on worst-

PTA, which is the highest threshold presented from the two ears. We employed worst-PTA 

since this calculation identifies individuals with heavily hearing dysfunction that may affect 

gait and auditory performance.  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

8 
 

 

Gait assessment and apparatus. Spatio-temporal parameters of gait were acquired 

during walking in single (only walking) and dual-task situations with the OptoGait 

photoelectric cell device (Microgate, Bolzano, Italy), which has proved to be a highly reliable 

and valid instrument (Bernal, Becerro-de-Bengoa-Vallejo, & Losa-Iglesias, 2016). 

Description of this system has been reported elsewhere (Lienhard, Schneider, & Maffiuletti, 

2013). Means and coefficient of variations for gait speed, step length, step width and stride 

length were calculated and used in statistical analyses. We selected these parameters as they 

represent the “pace” aspect of the gait cycle (Verghese, Wang, Lipton, Holtzer, & Xue, 2007; 

Hollman, Mcdade, & Petersen, 2011), which is controlled by subcortical and cortical areas 

while other gait features such as rhythm (i.e., cadence and various timing measures) are 

regulated by spinal and brainstem mechanisms (Verghese et al., 2007). For this reason, “pace” 

parameters have proved to be more sensitive to reduced executive functioning. Gait data were 

evaluated statistically for both limbs (i.e., average scores calculated by taking together the 

right and left side data) and for each separate limb to explore lateralized effects of the dual-

task. The OptoGait device was placed in a quiet room creating an area of 7 m. long X 1.3 m 

width in which subjects were asked to walk in rounds at a self-selected comfortable speed. 

Participants were instructed to use flat shoes with heel not exceeding 3 cm (Kressig & 

Beauchet, 2006).  

Dichotic listening (DL) task. The Bergen dichotic listening paradigm adapted to be 

presented via the E-Prime software was used. Detailed explanation of the test has been 

previously reported (Andersson, Reinvang, Wehling, Hugdahl, & Lundervold, 2008). Shortly, 

two of six possible syllables (BA, DA, GA, KA, PA, TA) are presented dichotically through 

noise-cancelling headphones in three different conditions of 3 min. each. There are 30 

possible combinations of all syllables and 6 trials presenting the same syllables (homonyms). 

All stimuli were presented in a randomized order at a duration of 450-500 ms. with a 500 ms. 
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intertrial interval and with three randomizations for each attentional instruction. The first 

condition (Non-forced), requires participants to report the clearest perceived sound, which 

indicates side preference of attention (right vs. left ear advantage). Because this is a free 

choice situation, the NF condition is always presented first. Thereafter, the second and third 

conditions are presented counterbalanced, depending on the participant’s identification 

number. Subjects assigned with even identification numbers underwent the Forced-Right 

condition first and subjects with uneven identification numbers received the Forced-Left first.  

One of these conditions requires participants to report stimuli presented only to the right-ear 

(Forced-Right condition), while the other requires to report stimuli from left-ear (Forced-Left 

condition). Competing stimuli from the opposite ear has to be ignored. Scored outcomes 

reflect correct matched answers for each ear, homonyms, errors and non-responses by 

condition. Following standard procedures, correct answers are only considered when subjects 

correctly report an applied stimulus to any of the ears, disregarding the condition evaluated. 

This means that on every condition there are correct answers for right-ear and left-ear. 

Homonyms are accounted for when subjects report correctly the same paired stimuli on both 

ears (ex: BA “right-ear”- BA “left-ear”). Errors are intrusions (i.e., unrelated answers to 

applied stimuli, ex: answer “PA” when applied stimuli were “BA-DA”) and missed 

homonyms.  

Neuropsychological assessment and questionnaires. A test battery including the 

Trail Making Test A and B (Reitan & Wolfson, 1993), Stroop test (Golden, 1978), Phonemic 

(Benton, 1967) and Semantic fluency (Newcombe, 1969), Digits span forward and backwards 

(Wechsler, 2014), Logical Memory I and II Wechsler (Wechsler, 1997), Vocabulary 

(Wechsler, 2014), Block design (Wechsler, 2014), Purdue Pegboard (Lafayette Instrument 

Model 32020) and Finger tapping (Reitan & Wolfson, 1993) was applied to obtain a cognitive 

profile of the participants. In addition, the Waterloo Foot Preference Questionnaire (Elias, 
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Bryden, & Bulman-Fleming, 1998), and the Handedness Questionnaire (Briggs & Nebes, 

1975) were used to confirm the laterality preferences of the participants, although all of the 

volunteers were self-declared as being right-handed. The Falls Efficacy Scale International 

(FES-I) was employed to evaluate fear of falling while the Norwegian version of the F-36 

questionnaire (Loge, Kaasa, Hjermstad, & Kvien, 1998) was used to assess health status.  

Procedure  

Thorough information on the study was given and informed consent was taken at the 

beginning of the test sessions. An initial interview was carried out, followed by the 

neuropsychological test battery, questionnaires and audiometry. Then, after a rest period, the 

participants executed the dual-task paradigm. First, they were required to only walk during 

one minute in the OptoGait system to collect baseline measurements for gait. The time 

assigned to simple walking was based on pilot trials. After single walking, participants 

performed the dual-task procedure. For dual-tasking, participants were provided with a pair of 

wireless, noise cancelling head phones. Participants were given sufficient time to understand 

instructions and adjust the volume until reporting clear perception of the DL stimuli. At this 

stage, participants selected volume level after being presented with one example of stimulus 

at 80 dB. Thereafter, participants adjusted the volume over this range and up to 90 dB, which 

was the highest possible level of audibility for the experiment. Then, participants performed 

the dichotic listening at the same time that they walked in the OptoGait area. DL test started 

always with the Non-Forced condition (NF), followed by either the Forced-Right (FR) or 

Forced-Left (FL) condition, which were presented counterbalanced. Responses were recorded 

using a digital recorder that was placed around the participant’s neck. A rest was given to the 

participants between DL conditions. Recording of the oral responses was registered 

afterwards manually. All responses were recorded and written down by one experimenter at 

time of testing. After the experiment was completed, both recorded and written responses 
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were checked by a second experimenter who manually recorded all answers into the E-prime 

software to ensure reliable data. Finally, it is necessary to highlight that we intentionally did 

not assess DL as single task as we wanted to evaluate the impact of the experimental situation 

without previous knowledge.  

Statistical Analyses 

Evaluation of demographics and neuropsychological tests: Group comparisons for 

demographics, background variables, cognitive tests and questionnaires were performed with 

independent t-tests. 

 Evaluation of DL: A series of factorial analyses of variance with repeated measures in 

one factor with the design 2 Group (Young-Old, Old-Old) X 2 Ear (right, left) X 3 Condition 

(NF, FR, FL) was used. In case of a significant omnibus test, univariate tests were performed. 

In case of significant interactions, multivariate tests for simple main effects were carried out.  

Evaluation of gait: The mean and coefficient of variations (CoV) were analyzed 

separately on each gait parameter. Bilateral gait outcomes (i.e., values for both limbs taken 

together) were first analyzed and then lateralized outcomes (i.e., separate results for right and 

left limbs). For bilateral analyses a set of mixed-ANOVAs were conducted with the design 4 

Condition (Baseline, NF, FR, FL) as the within-subjects factor X 2 Group (Young-Old, Old-

Old) as the between-subjects factor. For lateralized analyses of gait, we used two-way 

ANOVAs with the design: 4 Condition (Baseline, NF, FR, FL) X 2 Foot (right, left) X 2 

Group (Young-Old, Old-Old). In all analyses, Geisser-Greenhouse corrections were chosen 

when the sphericity assumption was not met. Significant interactions or main effects 

involving group differences were followed up with appropriate post-hoc analyses.  

Evaluation of the effects of hearing loss: The impact of hearing loss was tested in a 

series of ANCOVAs for DL and gait measures by using the PTA-worst values as the 
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covariate. As suggested by Schneider et al. (Schneider, Avivi-Reich, & Mozuraitis, 2015) all 

values were centered before used as covariates. Also, data were scrutinized to assure 

compliance of all ANCOVA assumptions, which were met.  

Evaluation of the relationship between DL and gait: Pearson’s correlations analyses 

were performed to assess the relationship between DL performance and lateralized results of 

gait. All analyses were performed with the statistical package IBM SPSS Statistics 23. 

Results 

Results for demographic variables, handedness, footedness, FES-I and SF-36 are 

presented in Table 1. Significant group differences in addition to age (t (76) = -12.26, p < 

0.001) were found for education (t (76) = 1.98, p < 0.05) and both PTA values (best: t (76) = -

4.40, p < 0.001; worst: t (76) = -4.90, p < 0.001). As expected the OO group had significantly 

higher PTA values than the YO participants. Also the OO group had significantly lower 

education. Results from the Handedness Inventory corroborated that all participants were 

right handed, as positives scores deviating from zero (i.e., no hand preference) indicate right-

hand preference.
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Table 1. Participant’s demographics and characteristics by age groups 

 Young-old 

(n = 38) 

Old-old 

(n = 40) 

   

Sex (male/female) 11/26 18/24 

     M          (SD)       M          (SD) 

Age (years)     65.4        (2.9)       76.4      (4.8)*** 

Education (years)     14.0        (3.5)       12.3      (4.3)* 

Height (cm)   168.8        (8.1)     170.2      (8.3) 

Handedness      20.7        (3.9)       19.8      (5.2) 

Footedness      12.1        (7.7)       10.8      (5.8) 

FES-I     19.0        (4.1)       19.9      (3.2) 

SF-36   105.2        (6.9)      105.1     (7.8)        

PTA best (dB)    17.12       (7.5)        26.6    (11.1)*** 

PTA worst (dB)    20.38       (8.7)       31.9     (11.9)*** 

Note: Significant group differences are denoted by: * = p < 0.05; ***= p < 0.001 

Abbreviations: FES-I = Falls Efficacy Scale International, SF-36 = 36-item Short-Form Health 

Survey, PTA = pure tone average. 
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Audiometric characteristics: As observed in Table 2, the large majority of subjects in the YO 

group (68.4%) had normal hearing while only 25% of the OO group had it. As for interaural 

differences, most of the YO participants, namely 86.8% of this sample, had small threshold 

differences between ears of not more than 5 dB. Less than 8% differed by 6-10 dB and only 5% 

had a difference between 11-15 dB. In the OO group 62.5% had a difference equal or lower than 5 

dB; 25% presented interaural difference between 6-10 dB and 12% had a difference over 11 dB. 

 

Table 2. Summary of auditory characteristics by group 

 

 Young-old 

(n = 38) 

Old-old 

(n = 40) 

 Number (%) Number (%) 

Hearing status 

Normal (< 25dB) 

Hearing loss (> 25 dB) 

 

26 (68.4) 

12 (31.6) 

 

10 (25) 

30 (75) 

Interaural differences 

0-5dB 

6-10 dB 

11-15 dB 

 

33 (86.8) 

3 (7.9) 

2 (5.3) 

 

25 (62.5) 

10 (25) 

5 (12.5) 

Best ear by interaural thresholds 

0-5dB  

         Right ear 

         Left ear 

         Equal 

6-10 dB 

         Right ear 

         Left ear 

         Equal 

11-15 dB 

         Right ear 

         Left ear 

         Equal 

 

 

12 (31.6) 

14 (36.8) 

7 (18.4) 

 

N/A 

3 (7.9) 

N/A 

 

1 (2.6) 

1 (2.6) 

N/A 

 

 

16 (40) 

6 (15) 

3 (7.5) 

 

5 (12.5) 

5 (12.5) 

N/A 

 

4 (10) 

1 (2.5) 

N/A 

 Equal = same threshold on both ears. N/A = not available 
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Regarding characteristics of the most sensitive ear on each group, we observed that in the YO 

group 34.2 % of the participants (n = 13) had better sensitivity with right ear, 47.4% with left (n= 

18) and 18.4 % (n = 7) had equal sensitivity thresholds on both ears. For the OO group, the large 

majority of participants (62.5 %, n = 25) had better sensitivity on right ear while only 30% (n 

=12) had better thresholds with left ear and 7.5% (n =3) presented equal sensitivity in both ears. 

Neuropsychological results. These data are shown in Table 3. There were found significant 

group differences in executive functions (TMT A, p < 0.05; TMT B, p < 0.001; Stroop test, p 

< 0.001) and attention (Digits span forwards, p < 0.01). Further significant differences were 

found for psychomotor function (all Pegboard measurements, p < 0.001), grip strength (right 

and left, p < 0.01), phonemic repetitions (p < 0.05) and semantic fluency answers (p < 0.01). 
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Table 3. Mean (M) and Standard deviations (SD) by age group for MMSE and 

neuropsychological tests. 

Note: MMSE = Mini Mental State Examination; TMT = Trail making test.  

* = p < .05, ** = p < .01, *** = p < .001. 

 

  Young-Old 

(n = 38) 

  M                   SD 

Old-Old 

(n = 40) 

    M                 SD 

t-score 

(76) 

MMSE 29.08               1.32 28.33                2.20     0.87 

TMT (seconds) 

   A  

   B  

 

34.85             16.81            

75.36             21.38 

 

42.20              14.16 

107.9              33.70  

 

    -2.09* 

-5.01** 

Stroop Test 

Word 

Color 

Color/Word 

 

91.92             14.39 

64.97             11.28 

34.45               7.89 

 

78.53               15.49  

55.25                 8.69 

27.10                 7.04 

 

     3.95*** 

 4.27*** 

 4.34*** 

Digit span 

Forwards 

Backwards 

   

  9.11               1.72 

  8.11               1.85 

  

  8.08                 1.77 

  7.50                 1.75 

 

2.60** 

    1.48 

Log Memory I 

Log Memory II 

10.39               3.10 

14.42               3.74 

10.58                 3.80 

13.53                 4.28 

    -0.22 

     0.98 

Vocabulary 33.05               5.72 30.70                 8.43     1.44 

Pegboard 

Right hand 

Left hand 

Both hands 

Assembly 

 

13.08               2.17 

11.95               2.08 

10.16               1.72 

  5.92               1.14 

 

10.58                 2.14 

10.23                 2.08 

  8.33                 1.60 

  4.70                 1.18 

 

  5.11*** 

  3.62*** 

  4.83*** 

  4.60*** 

Block Design 36.00             10.89  32.72                 9.91     1.38 

Finger tapping  

Right 

Left 

 

40.38             10.82 

38.60               9.71 

 

39.80               11.32 

36.04                 9.95 

 

    0.23 

    1.14 

Grip strength 

Right hand (kg) 

Left hand (kg) 

 

31.75               8.31 

30.54               7.53 

 

38.78               11.83 

37.39               11.47 

 

-3.04** 

-3.13** 

Phonemic Fluency  

Correct answers 

Repetitions 

Semantic Fluency 

Correct answers 

Repetitions 

 

13.67               3.85 

  0.37               0.40 

 

17.49               3.99 

  0.35               0.37 

 

12.02                 3.52 

  0.63                 0.60 

 

15.06                 2.52 

  0.46                 0.71 

 

    1.96 

   -2.19* 

 

    3.17** 

   -0.78 
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Dichotic Listening  

After controlling for hearing status there were no significant group differences in 

number of correct answers (F(1, 75) = 1.12, p = 0.29). The same applied for laterality indexes 

and homonyms. These results are presented in Table 4. However, the errors significantly 

differed between groups after controlling for PTA values [it is necessary to remind that 

according to the standard DL methodology, errors are defined as any answer not matching the 

applied stimuli. For instance if the syllables “BA-DA” were presented respectively to right 

and left-ear and the participants said “TA”, that will be considered a real error]. A closer 

analysis to these data showed that errors contained real errors but also several omissions. It 

turned out that many participants did not emit any answer in several trials. For this reason, we 

decided to calculate the total amount of errors and then, divided it into real errors and 

omissions. As depicted in Figure 1, omissions increased proportionally from NF to FL 

condition. In the NF condition almost all type of incorrect answers were real errors. 

Percentage of errors varies from 22.2% for the YO to 33.3% in the OO group. In FR 

condition, real errors decreased in both groups at expense of an increment in omissions. The 

percentage of total errors committed in the FR condition rises to 30.5% for YO and to 37.5% 

for OO. In the FL condition, again we observed an increment in omissions and in the total 

number of errors, especially for the YO group. This time, the percentage of total errors 

reaches 36.1% for YO and 38.8% for OO. 
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Figure 1. Dichotic listening results for errors by condition and age group. 

Stacked bars show real errors in solid color and omitted responses in lined pattern. 
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      Table 4 Dichotic Listening means (M) and standard deviations (SD).  

 

 

       Note: All significant group differences presented are true after controlling for hearing status are denoted by: * = p < 0.05; ***= p < 0.001 

 
NON-FORCED CONDITION FORCED-RIGHT CONDITION FORCED-LEFT CONDITION 

Correct responses 

   Right Ear                    Left Ear 

   M     (SD)                    M    (SD) 

   Correct responses 

   Right Ear                     Left Ear 

   M     (SD)                     M    (SD) 

  Correct responses 

   Right Ear                      Left Ear 

   M     (SD)                      M    (SD) 

 

Young-Old  

Old-Old  

 

  13.0   (3.2)                   9.0   (3.1) 

  10.4   (3.8)                   7.9   (3.4) 

 

  13.2   (4.8)                    7.5   (2.8) 

  11.2   (4.9)                    7.0   (3.6) 

 

  10.7   (4.6)                     8.7   (3.7) 

    9.2   (5.0)                     9.0   (4.2) 

  Laterality index Laterality Index Laterality Index 

M         (SD) M         (SD) M         (SD) 

 

Young-Old  

Old-Old 

 

                    18.2      (22.2) 

                    14.0      (30.1) 

 

                  25.0        (26.9) 

                  23.4        (34.7) 

 

                     9.5         (27.6) 

                     3.4         (36.8) 

  Homonyms Homonyms Homonyms 

M         (SD) M         (SD) M         (SD) 

 

Young-Old  

Old-Old 

 

                    4.7        (1.1) 

                    4.2        (1.2) 

 

                    3.9        (1.9) 

                    3.6        (1.4) 

 

                     3.8         (1.8) 

                     3.7         (2.2) 

  Errors Errors Errors 

Total                 Real           Omissions 

M   (SD)        M    (SD)           M  (SD) 

Total               Real           Omissions       

M    (SD)      M   (SD)         M   (SD) 

Total               Real             Omissions 

M (SD)           M (SD)             M (SD) 

 

Young-Old  

Old-Old 

 

 8.2 (3.5)      8.0 (3.6)***       0.2  (0.6)  

11.8 (4.9)    11.1 (3.7)            0.9  (2.2) 

 

11.0 (6.3)      7.0  (3.9)*        4.0 (6.1) 

13.7 (7.5)       9.2  (4.6)         4.5 (5.8) 

 

11.2 (7.1)         6.3 (3.9)*         4.8 (6.8) 

13.3 (6.6)         9.0 (4.9)           4.1 (5.1) 
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Bilateral gait outcomes (see Table 5) 

Mean values: Step length showed a significant main effect for Condition and Group 

and a significant interaction between Condition X Group. Tests for simple main effects 

showed that group differences were present across all conditions with constant higher values 

for the YO group. However, when we controlled for hearing status the interaction was no 

longer significant, though the effect of Condition and Group remained. On Gait speed, there 

was a main effect of Condition and Group and a significant interaction. After controlling for 

hearing, results were not altered Again the YO group displayed higher values than the OO 

group. For Step width no main effect of Condition or interaction with Group were found. 

Though, a main effect of Group was observed which was removed after controlling for PTA 

values in which the OO group presented wider step widths than the YO group. Finally, results 

for Stride length showed a main effect of Condition and Group but no interaction. Controlling 

for PTA values did not remove the significant effects in which the YO group presented higher 

values.  

CoV values: There were limited significant effects on variability of gait. For step length, a 

significant main effect of Condition and Group were found but no interactions. The effect of 

Group turned non-significant after controlling for hearing status. The other significant result 

found on CoVs existed for gait speed in which the mixed ANOVA revealed only a main 

effect of Condition. This finding remained significant after controlling for hearing status.  
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Table 5. Results for bilateral gait parameters  

        CONDITION 

               Baseline                          Non-Forced            Forced-Right    Forced-Left                                    

      Y-O            O-O                  Y-O           O-O          Y-O            O-O             Y-O            O-O             RMANOVA, p                ANCOVA, p      

                         M   (SD)      M (SD)           M  (SD)    M (SD)          M  (SD)     M (SD)         M  (SD)     M (SD)     Condition/Interac./Group       Interac./Group/PTA 

Mean       

Step length       67.5 (6.0)     61.7 (8.1)     65.0 (6.1)   58.1 (9.1)      63.6 (6.2)  56.0 (9.3)       63.7 (6.0)   56.0 (9.3)        0.001/   0.047/  0.001            NS  / 0.023  / 0.001    

Gait speed          1.2 (0.1)       1.1 (0.2)       1.0 (0.2)     1.0 (0.2)        1.1 (0.2)    0.9 (0.2)        1.1 (0.2)      0.9 (0.2)         0.001/  0.001/  0.001              †   /  0.034  / 0.003 

Step width          8.1 (2.7)       9.5 (2.2)       8.4 (2.4)     9.8 (2.4)        8.3 (2.5)  10.3 (4.6)        8.5 (2.4)    10.3 (3.9)          NS  /   NS  /   0.004            NS  /  NS      / 0.003 

Stride length  138.0(14.0)  124.9(16.0)    132.3(13.1)  118.5(17.9)   130.0(13.5)  113.0(19.0)   130.0(12.1)  113.6(18)    0.001/    NS  /   0.001          NS  / 0.011  / 0.001       

 

CoV (%) 

Step length       5.1 (2.8)        6.1 (4.1)         5.4 (2.8)     7.1 (3.8)        5.4 (3.8)      9.1 (5.6)          5.4 (3.3)     8.4 (5.1)       0.01 /  NS /  0.001                NS  /   NS  / 0.002    

Gait speed        4.6 (3.4)        6.2 (5.6)         6.4 (4.8)     6.9 (4.4)        6.5 (7.7)    11.0(14.7)         6.4 (7.4)     9.5 (13.1)     0.034 /  NS /  NS                 NS  /   NS /   NS 

Step width      76.5(39.0)     75.8(29.2)     81.8(31.8)   71.8(23.8)     87.1(33.6)   79.9(29.9)      82.4(32.7)   79.3(32.9)        NS  /  NS /   NS                 NS  /   NS /   NS 

Stride length     8.9 (6.4)        7.4 (8.8)       10.0 (9.0)   10.7(12.1)     10.0(10.3)    9.4  (8.6)         10.6 (8.9)       9.1 (8.7)      NS /  NS /   NS                 NS  /   NS /   NS 

Note: Interaction marked with † refer to = Condition X Group p = 0.049. Units for Step length, Step width and Stride length = cm.; units for Gait speed = m/sec  

Abbreviations: Y-O = young-old group; O-O = old-old group; M = mean; SD = standard deviation; RMANOVA = repeated measures analysis of variance; ANCOVA 

= Analysis of covariance; CoV = Coefficient of Variation; Interac. = Interactions; PTA = worst Pure Tone Audiometry values; NS = Non Significant 

CoV = Calculated with the formula: [mean/ SD] x 100%  
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Lateralized gait outcomes (see Table 6)  

Mean values.  

Step length showed a main effect of Condition (F (3, 120.06) = 36.52, p < .001), 

Group (F (1, 76) = 16.31, p < .001; higher values for the YO group) and a significant 

interaction for Condition X Group (F (3, 120.06) = 3.67, p < .05). However, controlling for 

hearing status on these analyses affected the results for Group (F (1, 75) = 3.58, p = .06) as 

well as the interaction Condition X Group (F (3, 83.35) = 0.89, p = .36) which no longer were 

significant.  

Gait speed showed a main effect of Condition (F (3, 166.69) = 62.82, p < .001) and 

Group (F (1, 76) = 17.9, p < .001; higher values for the YO group). No significant main effect 

of Foot (F (1, 76) = 16.31, p < .001) or any significant interaction existed. Controlling for 

hearing status did not change these results.  Nonetheless, there was a significant three-way 

interaction “Condition X Foot X Group” (F (3, 85.63) = 4.01, p < .05) after controlling for 

hearing status. Follow-up pairwise comparisons demonstrated that significant group 

differences existed for right p < 0.05 and left foot p < 0.01 across conditions. The YO group 

displayed a mean of 1.095 (m/s) for right foot, while the OO group presented a mean of 0.992 

(m/s). As for the left foot, the mean speed displayed for YO was 1.101 (m/s) and 0.983 (m/s) 

for the OO group. Further scrutiny of the three-way interaction showed that the Non-Forced 

condition was a challenging situation for the OO group who displayed slower speed on the 

left foot (0.99 m/s) as compared to their right foot (1.03 m/s). 

Step width showed only a significant main effect of Foot (F (1, 76) = 14.1, p < .001) 

and Group (F (1, 76) = 7.8, p < .01; higher values for the OO group). When controlling for 

hearing the main effect of Foot remained unchanged but not that of Group (F (1, 75) = 1.34, p 

= .25). These data showed that right foot presents wider values in both groups (YO = 9.1 cm; 

OO = 9.8 cm) as compared to the left side (YO = 8.4 cm; OO = 9.2 cm). It is important to 
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remind that step width for each limb is calculated from the lateral displacement of the specific 

foot based on its previous position.  

Stride length, only significant main effects for Condition (F (3, 167.79) = 59.01, p < 

.001) and Group (F (1, 76) = 19.7, p < .001; higher values for the YO group) existed. 

Controlling for PTA values did not affect these results.  

CoV values. Results of CoV data show limited significant results. In step length, a 

main effect of Condition (F (3, 143.44) = 4.65, p < .05) and Group (F (1, 76) = 11.24, p < 

.001) were found, but effects disappeared after controlling for hearing status. The same 

applies for gait speed. As for variability in step width, we did not find significant effects (see 

Table 5). The only significant result on CoV relates to stride length, as this variable was the 

only one showing a main effect of Foot (F (1, 76) = 5.65, p < .05), even after controlling for 

hearing status (F (1, 75) = 5.76, p < .05). These data suggest higher variability on stride 

length of the right limb in both groups, especially during the FR condition. Changes in CoV 

are not straightforward since increment of variability did not followed level of attentional 

difficulty of the conditions.  
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Table 6 Mean and Standard deviations for gait parameters by foot expressed in mean values and coefficients of variation (CoV). 

                     CONDITIONS 

   Gait           Baseline                    Non-Forced   Forced-Right                Forced-Left                                    

variables     Y-O            O-O              Y-O           O-O              Y-O            O-O               Y-O            O-O            Two-way ANOVA, p Two-way ANCOVA, p      

              M   (SD)      M (SD)          M  (SD)    M (SD)         M  (SD)     M (SD)             M  (SD)     M (SD)        Condition/Foot/Inter/Group      Foot/Inter/Group/PTA 

Mean 

Step length R     65.9 (12.2)    61.6 (8.2)       65.0 (6.5)   58.1 (9.6)     63.4 (6.6)    55.6 (9.6)         63.6 (6.0)   55.7 (9.7)                      

Step length L     67.4   (6.1)    61.8 (8.0)       65.0 (5.8)   58.3 (8.7)     63.8 (5.8)    56.3 (9.1)          63.8 (6.0)   56.1 (9.1)           0.001/ NS/  0.038/ 0.001         NS /NS / NS / 0.002    

Gait speed R         1.2 (0.1)        1.1 (0.2)       1.1 (0.1)     1.0 (0.3)      1.1 (0.2)      0.9 (0.2)              1.1 (0.2)     0.9 (0.2)   

Gait speed L         1.2 (0.1)        1.1 (0.2)       1.1 (0.2)     0.9 (0.2)       1.1 (0.2)      0.9 (0.2)              1.1 (0.2)   1.0 (0.2)            0.001/ NS / NS/ 0.001            NS / † / 0.01 / 0.001    

Step width R        8.3 (3.5)        9.9 (2.2)        8.6 (2.5)     9.6 (4.2)       8.6 (2.8)     10.5 (4.4)            8.9 (2.7)  10.8 (3.7) 

Step width L        7.6 (2.6)        9.0 (2.8)        8.1 (2.5)     9.5 (3.1)       8.1 (2.2)     10.1 (4.9)             8.1 (2.1)     9.9 (4.1)          NS / 0.001/ NS/ 0.007         0.001/ NS / NS/ 0.001 

Stride length R   137.5(12.7)   125.1(16.1)    132.1(12.4)  118.8(18.0)   130.7(14.4)  113.2(19.0)   130.3(12.7)  113.8(18.2)    

Stride length L   138.3(15.3)   124.7(16.4)    132.4(14.0)  118.1(18.1)   129.3(12.9)  112.9(19.1)   129.6(12.0)  113.5(17.8)    0.001 / NS / NS/ 0.001           NS /NS /0.01 /0.001 

CoV (%) 

Step length R     4.8  (3.0)       6.1 (3.8)         4.7 (2.4)     6.8 (3.7)       5.2 (3.5)       8.6 (6.1)     5.2 (2.5)     8.0 (5.4) 

Step length L     4.7  (3.2)       5.7 (5.0)         5.4 (3.5)     6.8 (4.1)       5.2 (4.0)       8.7 (5.7)     5.3 (4.1)     8.2 (5.1)                 0.013 /  NS/ NS / 0.002          NS /NS /NS / 0.001 

Gait speed R      4.7 (4.3)        6.5 (6.1)         6.6 (5.1)     6.7 (4.7)       6.3 (8.0)     10.4 (15.3)    6.4 (7.1)     9.8 (14.2) 

Gait speed L      4.3 (2.5)        6.0 (5.6)         6.4 (4.8)     7.1 (4.4)       6.5 (7.7)     11.4 (14.6)    6.4 (7.7)     9.5 (13.1)               0.04 /  NS / NS / NS       NS /NS /NS / NS  
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Step width R     78.1(33.0)     69.1(24.5)       73.8(23.0)   65.6(19.2)    83.6(31.4)    73.7(23.4)   77.3(29.3)   72.3(28.1)   

Step width L     71.1(34.9)     77.1(34.2)       77.5(32.0)   71.2(25.1)    85.3(35.6)    76.0(26.8)   78.3(28.6)   76.9(29.0)              NS /  NS  /  NS /   NS            NS /NS /NS / NS    

Stride length R   7.6 (7.8)        7.1 (7.8)          9.2 (8.9)     11.2(13.7)    10.8 (11.7)   10.0(10.9)     10.8 (9.9)    8.8 (9.1)                               

Stride length L   7.5 (6.7)        6.3 (9.0)          9.4 (10.9)     9.1 (9.6)      7.9 (9.4)       7.8 (6.1)       8.9 (8.9)       8.4 (8.4)             NS / 0.02 / NS/ NS                 0.02 /NS /NS / NS 

 

Note: Interactions marked with † refer to = Condition X Foot X Group p < 0.05. Units for Step length, Step width and Stride length = cm.; units for Gait speed = 

m/sec  

Abbreviations: Y-O = young-old group; O-O = old-old group; M = mean; SD = standard deviation; RMANOVA = repeated measures analysis of variance; ANCOVA 

= Analysis of covariance; CoV = Coefficient of Variation; Interac. = Interactions; PTA = worst Pure Tone Audiometry values; NS = Non Significant 

CoV = Calculated with the formula: [mean/ SD] x 100% 
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Associations between DL performance and gait parameters 

Pearson’s correlations coefficients are shown in Table 7. In these analyses, we 

examined the associations between correct numbers of answers (i.e., answers matching the 

applied stimuli) for right or left ear and gait outcomes from right and left foot separately. 

Results demonstrated that right ear answers across conditions were significantly associated 

with gait results in the 3 DL conditions, while correlations with left-ear answers were only 

found in the NF condition.  

Correlations with mean values of gait and right-ear answers. Table 7 shows that right 

ear answers had the higher number of correlations with gait parameters across conditions. 

Mostly, right ear answers were significantly related with gait measures bilaterally, indicating 

that as number of responses from right ear increases the higher are mean values for gait. 

Though, few mean values showed lateralized associations.  

Correlations with CoV values of gait: Significant associations between matching 

answers and CoVs in gait parameters were found in the NF and FL condition. Right ear 

answers were negatively associated with bilateral CoVs of step length and speed in FL 

condition. In contrast, left ear answers were positively associated to bilateral CoVs of stride 

length in the NF condition. These latter correlations were the highest encountered showing r 

= 0.45 (p< 0.01) for right foot and r = 0.37 (p< 0.01) for left foot. All-in-all, data suggest that 

higher number of right ear answers when focus of attention is intended to the left ear decrease 

CoVs in speed and step length, while higher left ear responses in NF condition are linked to 

higher variability in stride length. 

 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

27 
 

 

Table 7. Pearson correlations between correct matched answers by ear and lateralized gait 

outcomes per DL condition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Only significant correlations are presented. * p < 0.05, ** p < 0.01. N.S = non 

significant results 

 

 Right ear answers  Left ear answers 

Gait parameters Non-Forced Forced-Right Forced-Left Non-Forced 

Right foot     

    Step length  

         mean   

         CoV 

 

NS 

NS 

 

NS 

NS 

 

0.29 * 

-0.37** 

 

NS 

NS 

    Stride length  

         mean 

         CoV 

 

NS 

NS 

 

0.23* 

NS 

 

0.27* 

NS 

 

NS 

0.45** 

    Gait speed  

         mean 

         CoV 

 

NS 

NS 

 

0.26* 

NS 

 

0.35** 

    -0.23* 

 

NS 

NS 

Left foot     

    Step length  

        mean 

        CoV 

 

0.27* 

NS 

 

0.24* 

NS 

 

0.31** 

    -0.37** 

 

NS 

NS 

    Stride length  

      mean 

      CoV 

 

NS 

NS 

 

NS 

NS 

 

0.27* 

NS 

 

NS 

0.37** 

    Gait speed  

      mean 

      CoV 

 

0.25* 

NS 

 

0.23* 

NS 

 

0.35** 

    -0.25* 

 

NS 

NS 
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Discussion 

 The first main finding of the present investigation indicates that lateralized focus of 

attention alters asymmetrically in three of the gait parameters evaluated in healthy older 

adults. These asymmetries were observed on step width, gait speed and variability of stride 

length.  

Results for step width demonstrated that right foot displayed higher values than left 

foot in both groups and in all conditions including baseline. This finding suggests that 

asymmetries in step width are not only related to the dual-task paradigm but are an intrinsic 

characteristic of older adults. The asymmetries encountered in the baseline condition should 

be regarded as a result of the overground methodology employed in our study. Usually, 

subjects are required to walk within a specific short distance and not during a time period. 

These results agree with earlier data showing that step width differentiates between young and 

older adults (Hamacher, Singh, Van Dieen, Heller, & Taylor, 2011). Even though, no 

significant interactions were found, we observed that step width asymmetries increased during 

DL execution, particularly for OO subjects during the forced-left condition. In this condition, 

the OO group presented a between-feet difference of almost 1 cm (10.8 cm for left foot vs 9.9 

cm for right foot) while their amount of correct responses from right and left ear was almost 

equal. These data show the difficulty from the OO participants to focus and/or process left 

side stimuli, which results in enlarged step width being particularly higher for the right foot.  

The next finding showing the effects of lateralized control of attention was observed 

on gait speed in the NF condition. This time, the OO group emitted a higher number of right-

ear answers while they demonstrated slower speed with left foot. Though, these participants 

also had the highest number of real errors in all DL conditions. All together, these data 

suggest that the NF condition is a challenging one for the OO group due to increased 
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uncertainty on attentional focus and perceptual constraints. Thus, it appears that the symmetry 

of walking speed is sensitive to hesitation in deciding which source of information has to be 

attended. The last asymmetric finding was that of increased stride length variability in both 

groups, specifically on their right foot. It is plausible that higher variability in this measure 

occurred due to reductions in rhythmicity caused by other gait asymmetries (LaRoche, Cook, 

& Mackala, 2012).      

Taken together the above findings, it is evident that asymmetric effects occurred 

mostly on the right limb. Our interpretation is that our paradigm exerts a more accentuated 

effect on right foot due to higher involvement of the left hemisphere. In spite of the lateralized 

focus of attention required on DL to both left and right ear, DL remains a language task that 

relies on the ultimate activation of left hemisphere to process the auditory signal. Increased 

loading on left hemisphere may destabilize mechanisms associated with contralateral control 

of lower limbs’ movements.   

  

Possible mechanisms underlying the effect of DL on gait  

The asymmetries encountered showed that DL perturbs asymmetrically “pace” 

measures of gait. Verghese et al (2007) proposed that velocity and length measures represent 

the “pace” aspect of gait, which is associated with executive functioning. Our data 

corroborated this assertion as DL relies not only on focusing attention to one side, but on 

mechanisms necessary for inhibiting the competing stimulus. The fact that DL disturbs these 

parameters asymmetrically can be understand as overloading of common brain areas 

necessary for accomplishing both tasks, which we suggest are related to frontal lobe circuitry. 

Although, the mechanisms of how the brain operates under dual-tasking remains an open 

question, it is plausible that proper wiring of frontal areas through integrity of corpus 

callosum (CC) is behind the observed asymmetries. The age-related thinning of CC has been 
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proved central for DL performance (Westerhausen et al., 2015) and it also has been reported 

as important for gait and balance (Bhadelia et al., 2009)). In addition, the CC might also play 

a main role in the context of dual-tasking where complex sensorimotor integration is required 

for maintenance of balance and integration of visual and proprioceptive cues. Information 

about the integrity of CC in our participants should have clarified this matter and future 

research may address this issue. 

 

Hearing status as moderator of attention and gait disturbances in dual-tasking 

The second goal of the present study was to evaluate the effects of hearing loss on DL 

execution and gait. As expected, hearing loss hampered DL performance, as controlling for 

hearing status ruled out significant group differences in this test. However, the 

neuropsychological results demonstrated that both groups differed in cognitive capacities, 

notably in those assessing similar functions to the DL, such as the Stroop test and the TMT 

that evaluate executive functions and inhibition.  

Hearing loss also modulated the effects on gait during dual-tasking. The moderating 

effects of hearing loss were first evaluated in bilateral gait measures, that is, when values for 

both limbs were taken together. Prior to controlling for hearing loss, we found significant 

group differences in the mean of all gait parameters including one variability measure on step 

length, which agrees with previous investigations (Hollman et al., 2011). However, after 

controlling for hearing status, many of the significant effects and interactions were partialled 

out. Also, after controlling for hearing loss one of the asymmetric effects (i.e., gait speed) was 

encountered, which implies that hearing loss masked this asymmetry. These findings suggest 

that hearing status in older adults, moderates result of the dual-task paradigm. These data need 

to be assembled to previous research showing that moderate to greater hearing impairments, 

i.e. PTA > 40 dB, are associated with falls and risk of developing frailty (Kamil et al., 2016). 

Our data suggest that even milder levels of hearing loss (25dB - 40 dB) in healthy older 
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adults, altered spatiotemporal measures of gait. As previous data have highlighted, age-related 

hearing loss is associated with falls and slower gait speed. In our study, group effects on gait 

speed remained after controlling for hearing status. However, the means of step width and 

step length seemed to be sensitive to the effects of hearing status as significant group 

differences disappeared after controlling for PTA values.  

Notwithstanding, in spite of finding that hearing status modulates gait and cognitive 

results, caution is required in the interpretation of these data as it is not possible to isolate the 

age-related variance from the hearing-related variance. The issue of whether controlling for 

degree of hearing loss helps or hinders our understanding of an age-related phenomenon has 

been addressed in the literature previously (Martin, Ellsworth, & Cranford, 1991). Some 

authors warns against indiscriminate use of statistical techniques to control for hearing loss 

“without careful consideration of theoretical foundations” (Martin et al., 1991). In the present 

study, we have presented thoroughly a paradigm for lateralized auditory attention that relies, 

among many mechanisms, on the correct perceptual recognition of an auditory signal. We 

believe that even though we cannot assert that hearing loss is the only factor modulating the 

reported effects on gait and cognition, it would also be biased to deny its role to accomplish 

the present experimental situation. In line with earlier research pointing to associations 

between walking difficulty and hearing acuity in age-adjusted models (Viljanen et al., 2009) 

our findings suggest that hearing loss cannot be underestimated as an important factor 

modulating group differences on gait asymmetries. 

 

Association between DL conditions and gait 

Overall, right ear answers had the most significant correlations with gait 

measurements, especially during the Forced-Left situation. All coefficients of correlation 

were rather modest, even if all of them were significant. Still, these data are suggestive as 

number of correlations were scarce in NF condition and they increase gradually in the FR and 
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became spread in the FL condition. All correlations of right-ear answers with mean values of 

gait were positive while correlations with CoVs were negative, indicating that correct right-

ear responses are related to larger mean values and lower gait variability in all participants. 

According to the standard procedure, any answer matching an applied stimuli to right or left 

ear is a correct answer. Attending to right-ear when the contrary is required can be regarded as 

maladaptive and an indication of difficulties with top-down attentional control, our 

interpretation is that increased number of right-ear answers secure participants to preserve a 

safe walk. Even though older adults experience some degree of hearing loss, they have 

developed through a long life a good capacity to process information from right ear. This 

peculiarity allows a compensatory strategy to avoid insecure walking as processing right-side 

information is not related to increased gait variability, which leads to deteriorated stepping 

control and falls in older adults (Dingwell, Salinas, & Cusumano, 2017). Thus, limitations in 

attending left-ear information help older adults to cope with sensory loss and cognitive 

demands during the challenging situation of walking, listening and talking. We suggest that an 

automatic adaptation exists in right-handed older persons to avoid listening to the left side 

during dual-tasking and avoid the risk of falling. 

Finally, the correlations observed for left ear answers were probably the most clear-cut 

associations as they were only present on CoVs of both feet in stride length during the NF 

condition. These correlations were positive and somewhat stronger than the previous set of 

results, suggesting that when participants report left-ear stimuli in the NF condition stride 

length variability increases significantly. Accordingly, these data indicate that by attending 

left-ear information the risk of a fall increases since stride length variability has been found to 

be a good predictor of injurious falls (Verghese, Holtzer, Lipton, & Wang, 2009).  

 

Limitations of the study 
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Although, we wanted to understand the effects of our paradigm in naive subjects the lack of 

single task results for DL in our investigation is a limitation. No correlations with the errors 

are presented, which is another limitation of the study. The reason for not including these 

correlations was the reduced and variable number of errors per subject and condition, which is 

disproportional to the available gait data. Another potential limitation is the difference in time 

concerning the baseline trial for walking (1 min.) vs the dual-task conditions (3 min.). It can 

be argued that comparisons between conditions and the baseline are not equivalent, as they do 

not match exact number of walking cycles. However, according to guidelines for appropriate 

evaluation of spatiotemporal analysis of gait in older populations there should be a minimum 

of 3 consecutive gait cycles by limb to obtain correct evaluations (Kressig & Beauchet, 2006). 

Thus, our participants performed between 30 and 50 gait cycles during the 1 minute baseline 

trial, which allows calculation of appropriate estimates of spatiotemporal gait parameters. 

Future investigations should assess whether results are affected by equal number of gait 

cycles. 

Conclusions 

The present study demonstrates that in right-handed older adults lateralized auditory 

attention affects gait asymmetrically. It also became evident that hearing status ranging from 

normal to mild hearing loss modulates the effects of focus of auditory attention on gait. 

Finally, we showed that focus of attention to the right side do not compromise gait. It can 

even be argued that attending to the right side is beneficial, as participants displayed larger 

and wider steps, larger strides and less gait variability while listening to right-ear stimuli. On 

the contrary, attending to left-side stimuli increases stride length variability. In summary, the 

present investigation demonstrates that DL is a convenient test to evaluate the interplay of 

gait, hearing and attentional control during overground walking and should be employed in 

future work as part of multifactorial analysis. For instance, future studies may address the 

neural correlates of the reported asymmetries as well as gender effects on lateralized gait 
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disturbances. The issue of asymmetries on left-handed participants is warranted as we only 

examined right-handed persons. Correspondingly, application of the dual-task paradigm in 

geriatric patient populations affected by cognitive dysfunctions would be highly valuable as 

information from patients will put in perspective the findings reported in the present 

investigation.  
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Highlights 

 

 Lateralized auditory attention affects gait asymmetrically. 

 Asymmetric effects are demonstrated in healthy right-handed older adults. 

 Age-related hearing loss modulates the effects of lateralized attention on gait. 

 Focus of attention to the right side do not compromise gait.  

 Attending left-side stimuli increases stride length variability. 
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