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A SHARP BOUNDEDNESS RESULT FOR RESTRICTED

MAXIMAL OPERATORS OF VILENKIN-FOURIER SERIES

ON MARTINGALE HARDY SPACES

I. BLAHOTA, K. NAGY, L.E. PERSSON AND G. TEPHNADZE

Abstract. The restricted maximal operators of partial sums with re-
spect to bounded Vilenkin systems are investigated. We derive the max-
imal subspace of positive numbers, for which this operator is bounded
from the Hardy space Hp to the Lebesgue space Lp for all 0 < p ≤ 1.
We also prove that the result is sharp in a particular sense.
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1. Introduction

Pointwise convergence problems are of fundamental importance in Fourier
analysis, and as it is well known they are closely related to studying bound-
edness of associated maximal operators. In the present paper we will deal
with maximal operators. Let us first recall in brief a historical development
of this theory.

It is well-known (for details see e.g. [2] and [11]) that Vilenkin systems do
not form bases in the space L1 (Gm) . Moreover, (for details see e.g. [18, 19])
there is a function in the martingale Hardy space H1 (Gm) , such that the
partial sums of f are not bounded in L1 (Gm)-norm, but Watari [17] (see
also Gosselin [10] and Young [20]) proved that there exist absolute constants
c and cp such that, for n = 1, 2, ...,

‖Snf‖p ≤ cp ‖f‖p , f ∈ Lp(Gm), 1 < p <∞,

sup
λ>0

λµ (|Snf | > λ) ≤ c ‖f‖1 , f ∈ L1(Gm), λ > 0.

In [14] it was proved that there exists a martingale f ∈ Hp (Gm) (0 < p < 1) ,
such that

sup
n∈N

‖SMn+1f‖Lp,∞
= ∞.

The reason of divergence of SMn+1f is that the Fourier coefficients of f ∈
Hp (Gm) (0 < p < 1) are not bounded (see Tephnadze [13]).
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Rustaveli National Science Foundation grants DI/9/5-100/13, DO/24/5-100/14, YS15-
2.1.1-47 and by a Swedish Institute scholarship no. 10374-2015.
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Uniform and point-wise convergence and some approximation properties
of the partial sums in L1 (Gm) norms were investigated by Goginava [8, 9]
and Avdispahić, Memić [1]. Some related results can also be found in the
recent PhD thesis by Tephnadze [15]. Moreover, Fine [4] obtained sufficient
condition for the uniform convergence it is in complete analogy with the
Dini-Lipschitz condition. Guličev [12] estimated the rate of uniform conver-
gence of a Walsh-Fourier series using Lebesgue constants and modulus of
continuity. Uniform convergence of subsequences of partial sums was also
investigated by Goginava and Tkebuchava [7]. This problem was considered
for the Vilenkin group Gm by Fridli [5], Blahota [3] and Gát [6].

In [14] the following maximal operator was considered:

S̃∗
pf := sup

n∈N

|Snf |

(n+ 1)1/p−1 log[p] (n+ 1)
, 0 < p ≤ 1

(where [x] denotes integer part of x). It was proved that the maximal op-

erator S̃∗
p is bounded from the Hardy space Hp (Gm) to the space Lp (Gm) .

Moreover, if 0 < p ≤ 1 and ϕ : N+ → [1,∞) is a non-decreasing function
satisfying the condition

lim
n→∞

(n+ 1)1/p−1 log[p] (n+ 1)

ϕ (n)
= +∞,

then

sup
n∈N

∥∥∥∥
Snf

ϕ (n)

∥∥∥∥
Lp,∞(Gm)

= ∞, for 0 < p < 1,

and

sup
n∈N

∥∥∥∥
Snf

ϕ (n)

∥∥∥∥
1

= ∞.

It is also known (for details see e.g. Weisz [19]) that

‖Snk
f‖1 ≤ c ‖f‖1

holds if and only if
sup
k∈N

‖Dnk
‖1 < c <∞,

where Dnk
denotes the nkth Dirichlet kernel with respect to Vilenkin system.

Moreover, the corresponding subsequence Snk
of the partial sums Sn are

bounded from the Hardy space Hp (Gm) to the Hardy space Hp (Gm) , for
all p > 0.

It is also well-known (for details see e.g. Weisz [19] and Tephnadze [15])
that the following restricted maximal operator

S#f := sup
n∈N

|SMnf |

is bounded from the martingale Hardy space Hp (Gm) to the Lebesgue space
Lp (Gm) , for all p > 0.

In this paper we find the maximal subspace of positive numbers, for which
the restricted maximal operator of partial sums with respect to Vilenkin
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systems in this subspace is bounded from the Hardy spaceHp to the Lebesgue
space Lp for all 0 < p ≤ 1. As applications, both some well-known and new
results are pointed out.

The paper is organized as follows: Some Preliminaries (definitions, nota-
tions and basic facts) are presented in Section 2. The main result (Theorem
1) and some of its consequences (Corollaries 1-5) are presented and discussed
in Section 3. Theorem 1 is proved in Section 5. For this proof we need some
Lemmas, one of them is new and of independent interest (see Section 4).

2. Preliminaries

Let N+ denote the set of the positive integers, N := N+ ∪ {0} and assume
that m := (m0,m1, . . .) is a sequence of positive integers not less than 2.

Denote by

Zmk
:= {0, 1, . . . ,mk − 1}

the additive group of integers modulo mk.
Define the group Gm as the complete direct product of the group Zmk

with the product of the discrete topologies of Zmk
‘s.

The product measure µ of the measures

µk ({j}) := 1/mk (j ∈ Zmk
)

is a Haar measure on Gm with µ (Gm) = 1.
If the sequencem := (m0,m1, . . .) is bounded, then Gm is called a bounded

Vilenkin group, otherwise it is called an unbounded one. In the present paper
we deal only with bounded Vilenkin groups.

The elements of Gm are represented by sequences

x := (x0, x1, . . . , xk, . . .) (xk ∈ Zmk
) .

A base for the neighbourhood of Gm can be given as follows:

I0 (x) := Gm,

In(x) := {y ∈ Gm | y0 = x0, . . . , yn−1 = xn−1} (x ∈ Gm, n ∈ N).

Denote In := In (0) for n ∈ N and In := Gm\In.
It is evident that

(1) IN =

N−1⋃

s=0

Is\Is+1.

The generalized number system based on m is defined in the following
way

M0 := 1, Mk+1 := mkMk (k ∈ N),

Every n ∈ N can be uniquely expressed as

n =

∞∑

j=0

njMj , where nj ∈ Zmj
(j ∈ N)

and only a finite number of nj‘s differ from zero.
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Let

〈n〉 := min{j ∈ N : nj 6= 0} and |n| := max{j ∈ N : nj 6= 0},

that is M|n| ≤ n ≤M|n|+1. Set

ρ (n) := |n| − 〈n〉 , for all n ∈ N.

The norm (or quasi-norm) of the space Lp(Gm) is defined by

‖f‖p :=

(∫

Gm

|f |p dµ

)1/p

(0 < p <∞) .

The space Lp,∞ (Gm) consists of all measurable functions f for which

‖f‖Lp,∞
:= sup

λ>0
λµ (f > λ)1/p < +∞.

Next, we introduce on Gm an orthonormal system which is called Vilenkin
system.

First, we define the complex valued function rk (x) : Gm → C, the gener-
alized Rademacher functions as

rk (x) := exp (2πıxk/mk)
(
ı2 = −1, x ∈ Gm, k ∈ N

)
.

Let us define the Vilenkin system ψ := (ψn : n ∈ N) on Gm as:

ψn(x) :=

∞∏

k=0

rnk

k (x) (n ∈ N) .

Specifically, we call this system the Walsh-Paley one if m ≡ 2.
The Vilenkin system is orthonormal and complete in L2 (Gm) (see e.g.

[2, 16]).
Now, we present the usual definitions in Fourier analysis.
If f ∈ L1 (Gm) we can establish Fourier coefficients, the partial sums of

Fourier series, Dirichlet kernels with respect to the Vilenkin system in the
usual manner:

f̂ (k) :=

∫

Gm

fψkdµ, (k ∈ N) ,

Snf :=
n−1∑

k=0

f̂ (k)ψk, (n ∈ N+, S0f := 0) ,

Dn :=

n−1∑

k=0

ψk, (n ∈ N+) .

Recall that (see [2])

(2) DMn (x) =

{
Mn, if x ∈ In,
0, if x /∈ In,
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and

(3) Dn (x) = ψn(x)




∞∑

j=0

DMj
(x)

mj−1∑

u=mj−nj

ruj (x)


 .

The σ-algebra generated by the intervals {In (x) : x ∈ Gm} will be denoted
by ̥n (n ∈ N). Let us denote a martingale with respect to ̥n (n ∈ N) by
f = (fn : n ∈ N) (for details see e.g. [18]). The maximal function of a
martingale f is defined by

f∗ = sup
n∈N

∣∣∣f (n)
∣∣∣ .

In the case f ∈ L1 (Gm) , the maximal function is also given by

f∗ (x) = sup
n∈N

1

µ (In (x))

∣∣∣∣∣

∫

In(x)
f (u) dµ (u)

∣∣∣∣∣

For 0 < p < ∞ the Hardy martingale spaces Hp (Gm) consist of all mar-
tingales, for which

‖f‖Hp
:= ‖f∗‖p <∞.

A bounded measurable function a is a p-atom, if there exists an interval
I, such that

∫

I
adµ = 0, ‖a‖∞ ≤ µ (I)−1/p , supp (a) ⊆ I.

The Hardy martingale spaces Hp (Gm) have an atomic characterization
for 0 < p ≤ 1. In fact the following theorem is true (see e.g. Weisz [18, 19]):

Theorem W. A martingale f = (fn : n ∈ N) ∈ Hp (Gm) (0 < p ≤ 1) if
and only if there exists a sequence (ak : k ∈ N) of p-atoms and a sequence
(µk : k ∈ N) of real numbers, such that for every n ∈ N,

(4)

∞∑

k=0

µkSMnak = fn

and
∞∑

k=0

|µk|
p <∞.

Moreover,

‖f‖Hp
∽ inf

(
∞∑

k=0

|µk|
p

)1/p

,

where the infimum is taken over all decomposition of f of the form (4).

If f ∈ L1 (Gm) , then it is easily shown that the sequence (SMnf : n ∈ N)
is a martingale.
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If f = (fn, n ∈ N) is a martingale, then Vilenkin-Fourier coefficients are
defined in a slightly different manner:

f̂ (i) := lim
k→∞

∫

Gm

fk (x)ψi (x) dµ (x) .

Vilenkin-Fourier coefficients of f ∈ L1 (Gm) are the same as the martingale
(SMnf : n ∈ N) obtained from f .

3. The Main Result

Our main theorem reads as follows:

Theorem 1. a) Let 0 < p ≤ 1 and {αk : k ∈ N} be a subsequence of positive
natural numbers, such that

(5) sup
k∈N

ρ (αk) =: κ <∞.

Then the maximal operator

S̃∗,△f := sup
k∈N

|Sαk
f |

is bounded from the Hardy space Hp to the Lebesgue space Lp.
b) Let 0 < p < 1 and {αk : k ∈ N} be a subsequence of positive natural

numbers satisfying the condition

(6) sup
k∈N

ρ (αk) = ∞.

Then there exists a martingale f ∈ Hp such that

sup
k∈N

‖Sαk
f‖Lp,∞

= ∞.

Remark 1. Since Lp ⊂ Lp,∞ part b) means in particular that the statement
in part a) is sharp in a special sense for the case 0 < p < 1.

We also mention the following well-known consequences (for details see
e.g. the books [18, 19] and [14]):

Corollary 1 (Tephnadze [14]). Let 0 < p ≤ 1 and f ∈ Hp. Then the
maximal operator

sup
n∈N+

|SMn+1f |

is not bounded from the Hardy space Hp to the space Lp.

In fact, we only have to notice that

|Mn + 1| = n, 〈Mn + 1〉 = 0, ρ (Mn + 1) = n.

The second part of Theorem 1 implies our Corollary.

Corollary 2. Let p > 0 and f ∈ Hp. Then the maximal operator

sup
n∈N+

∣∣SMn+Mn−1
f
∣∣

is bounded from the Hardy space Hp to the space Lp.
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We notice that

|Mn +Mn−1| = n, 〈Mn +Mn−1〉 = n− 1, ρ (Mn +Mn−1) = 1.

Thus, the second part of Theorem 1 gives again Corollary 2.

Corollary 3. Let p > 0 and f ∈ Hp. Then the maximal operator

S#f := sup
n∈N

|SMnf |

is bounded from the Hardy space Hp to the space Lp.

We find that |Mn| = 〈Mn〉 = n, ρ (Mn) = 0. Using part b) of Theorem 1,
we immediately get Corollary 3.

Since SnP = P for every P ∈ P, where P is the set of all Vilenkin
polynomials. The set P is dense in the space L1(Gm). Combining Lemma 1
and part a) of Theorem 1, we obtain that under condition (5) the restricted
maximal operator of partial sums is bounded from the space L1(Gm) to the
space weak − L1(Gm) It follows that

Corollary 4. Let f ∈ L1 and {αk : k ∈ N} be a subsequence of positive
natural numbers, satisfying condition (5). Then

Sαk
f → f a.e. when k → ∞.

Corollary 5. Let f ∈ L1. Then

SMnf → f a.e. when n→ ∞.

4. Lemmas

First, we note the following well-known result, which was proved in Weisz
[18, 19]:

Lemma 1. Suppose that an operator T is sub-linear and, for some 0 < p ≤ 1∫

I

|Ta|p dµ ≤ cp <∞

for every p-atom a, where I denotes the support of the atom a. If T is
bounded from L∞ to L∞, then

‖Tf‖p ≤ cp ‖f‖Hp
.

Moreover, if p < 1, then we have weak (1,1) type estimate, i.e. it holds that

λµ {x ∈ Gm : |Tf (x)| > λ} ≤ ‖f‖1

for all f ∈ L1.

The next Lemma can be found in Tephnadze [13]:

Lemma 2. Let n ∈ N and x ∈ Is\Is+1, 0 ≤ s ≤ N − 1. Then
∫

IN

|Dn (x− t)| dµ (t) ≤
cMs

MN
.
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We also need the following estimate of independent interest:

Lemma 3. Let n ∈ N, |n| 6= 〈n〉 and x ∈ I〈n〉+1

(
e〈n〉

)
where ek :=

(0, . . . , 0, 1, 0, . . . ) ∈ Gm (only the k-th coordinate is one, the others are
zero). Then

|Dn (x)| =
∣∣∣Dn−M|n|

(x)
∣∣∣ ≥M〈n〉.

Proof. Let x ∈ I〈n〉+1

(
e〈n〉

)
. Since

n = n〈n〉M〈n〉 +

|n|−1∑

j=〈n〉+1

njMj + n|n|M|n|

and

n−M|n| = n〈n〉M〈n〉 +

|n|−1∑

j=〈n〉+1

njMj +
(
n|n| − 1

)
M|n|,

Applying (2) and (3) we can conclude that

∣∣∣Dn−M|n|

∣∣∣ ≥

∣∣∣∣∣∣
ψn−MnDM〈n〉

m〈n〉−1∑

s=m〈n〉−n〈n〉

rs〈n〉

∣∣∣∣∣∣
−

∣∣∣∣∣∣
ψn−Mn

|n|∑

j=〈n〉+1

DMj

mj−1∑

s=mj−nj

rsj

∣∣∣∣∣∣

=

∣∣∣∣∣∣
DM〈n〉

m〈n〉−1∑

s=m〈n〉−n〈n〉

rs〈n〉

∣∣∣∣∣∣

=

∣∣∣∣∣∣
DM〈n〉

r
m〈n〉−n〈n〉

〈n〉

n〈n〉−1∑

s=0

rs〈n〉

∣∣∣∣∣∣

= DM〈n〉

∣∣∣∣∣∣

n〈n〉−1∑

s=0

rs〈n〉

∣∣∣∣∣∣
.

Let xn = 1. Then we readily get for sn < mn that
∣∣∣∣∣

sn−1∑

u=0

run (x)

∣∣∣∣∣ =

∣∣∣∣
rsnn (x)− 1

rn (x)− 1

∣∣∣∣

=
sin (πsnxn/mn)

sin (πxn/mn)

=
sin (πsn/mn)

sin (π/mn)
≥ 1.

It follows that ∣∣∣Dn−M|n|
(x)
∣∣∣ ≥ DM〈n〉

(x) ≥M〈n〉.

Moreover, by using the same arguments as above it is easily seen that

|Dn (x)| =
∣∣∣Dn−M|n|

(x)
∣∣∣ , for x ∈ I〈n〉+1

(
e〈n〉

)
, |n| 6= 〈n〉 , n ∈ N.
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The proof is complete. �

5. Proof of the main theorem

Proof of Theorem 1. First, we prove part a). Combining (2) and (3) we
easily conclude that if condition (5) holds, then

‖Dαk
‖1 ≤

|αk |∑

j=〈αk〉

∥∥DMj

∥∥
1
mj

≤ c

|αk |∑

j=〈αk〉

1 = c(ρ (αk) + 1) ≤ c <∞.

It follows that S̃∗,△ is bounded from L∞ to L∞. By Lemma 1 we obtain
that the proof of part a) will be complete if we show that

∫

IN

∣∣∣S̃∗,△a
∣∣∣
p
dµ ≤ c <∞

for every p-atom a with support I = IN . Since Sαk
(a) = 0 when αk ≤MN ,

we can suppose that αk > MN . (That is, |αk| ≥ N .)
Let t ∈ IN and x ∈ Is\Is+1, 1 ≤ s ≤ N − 1. If 〈αk〉 ≥ N, we get that

s < N ≤ 〈αk〉 and since x− t ∈ Is\Is+1, by combining (2) and (3) we obtain
that

(7) Dαk
(x− t) = 0.

Analogously, by combining again (2) and (3) we can conlude that (7) holds,
for s < 〈αk〉 ≤ N − 1.

It follows that

(8) |Sαk
a (x)| = 0, either 〈αk〉 ≥ N, or s < 〈αk〉 ≤ N − 1.

Let 0 < p ≤ 1, t ∈ IN and x ∈ Is\Is+1, 〈αk〉 ≤ s ≤ N − 1. Applying the

fact that ‖a‖∞ ≤M
1/p
N and Lemma 2 we find that

|Sαk
(a)| ≤ M

1/p
N

∫

IN

|Dαk
(x− t)| dµ (t) ≤ cpM

1/p−1
N Ms.

Let us set ̺ := mink∈N 〈αk〉 . Then, in view of (8) and (9) we can conclude
that

(9)
∣∣∣S̃∗,△a (x)

∣∣∣ = 0, for x ∈ Is\Is+1, 0 ≤ s ≤ ̺

and

(10)
∣∣∣S̃∗,△a (x)

∣∣∣ ≤ cpM
1/p−1
N Ms, for x ∈ Is\Is+1, ̺ < s ≤ N − 1.
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By the definition of ̺ there exists at least one index k0 ∈ N+ such that
̺ = 〈αk0〉 . By using contition (5) we can conclude that

N − ̺ = N − 〈αk0〉 ≤ |αk0 | − 〈αk0〉

≤ sup
k∈N

ρ (αk) = κ < c <∞.

Let us set m∗ := supkmk.
Let 0 < p < 1. According to (1) and using (9), (10) and (11) we obtain

that

∫

IN

∣∣∣S̃∗,△a (x)
∣∣∣
p
dµ (x) =

N−1∑

s=̺+1

∫

Is\Is+1

∣∣∣S̃∗,△a (x)
∣∣∣
p
dµ (x)

≤ cpM
1−p
N

N−1∑

s=̺+1

Mp
s

Ms

= cpM
1−p
N

N−1∑

s=̺+1

1

M1−p
s

≤
cpM

1−p
N

M1−p
̺

≤ cpm
κ(1−p)
∗ ≤ cp <∞.

Let p = 1. We combine (9)-(11) and invoke identity (1) to obtain that

∫

IN

∣∣∣S̃∗,△a (x)
∣∣∣ dµ (x) =

N−1∑

s=̺+1

∫

Is\Is+1

∣∣∣S̃∗,△a (x)
∣∣∣ dµ (x)

≤ c

N−1∑

s=̺+1

Ms

Ms

= c
N−1∑

s=̺+1

1 ≤ cκ ≤ c <∞.

The proof of part a) is complete.
Now, we prove the second part of our theorem. Since,

M|αk|

M〈αk〉
≥ 2ρ(αk),

under condition (6), there exists an increasing subsequence {nk : k ∈ N} ⊂
{αk : k ∈ N} such that n0 ≥ 3 and

(11) lim
k→∞

M
(1−p)/2
|nk|

M
(1−p)/2
〈nk〉

= ∞
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and

(12)

∞∑

k=0

M
(1−p)/2
〈nk〉

M
(1−p)/2
|nk|

< c <∞.

Let f = (fn : n ∈ N) be a martingale defined by

fn :=
∑

{k: |nk|<n}

λkak,

where

ak :=
M

1/p−1
|nk|

m∗

(
DM|nk|+1

−DM
|nk|

)

and

(13) λk =
m∗M

(1/p−1)/2
〈nk〉

M
(1/p−1)/2
|nk|

.

It is easily seen that a is a p-atom. Under condition (12) we can conclude
that f ∈ Hp. (Theorem W immediately yields that ‖f‖Hp ≤ cp <∞.)

According to (13) we readily see that

f̂(j) =





M
(1/p−1)/2
〈nk〉

M
(1/p−1)/2
|nk|

, j ∈
{
M|nk|, ...,M|nk|+1 − 1

}
, k ∈ N,

0, j /∈
∞⋃
k=0

{
M|nk|, ...,M|nk|+1 − 1

}
.

Since, M|nk| < nk, we get

Snk
f =

M|nk|−1∑

j=0

f̂(j)ψj +

nk−1∑

j=M|nk|

f̂(j)ψj

= SM|nk |
f +M

(1/p−1)/2
〈nk〉

M
(1/p−1)/2
|nk|

ψM|nk|
Dnk−M|nk|

:= I + II.

According to part a) of Theorem 1 for I we have that

‖I‖pLp,∞
≤
∥∥∥SM|nk|

f
∥∥∥
p

Lp,∞
≤ cp ‖f‖

p
Hp

≤ cp <∞.

Moreover, under condition (6) we can conclude that

〈nk〉 6= |nk| and
〈
nk −M|nk|

〉
= 〈nk〉 .

Let x ∈ I〈nk〉+1

(
e〈nk〉

)
. Applying Lemma 3 we obtain that
∣∣∣Dnk−M|nk |

∣∣∣ ≥M〈nk〉
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Thus, we immediately have

|II| = M
(1/p−1)/2
〈nk〉

M
(1/p−1)/2
|nk|

∣∣∣Dnk−M|nk|

∣∣∣

≥ M
(1/p+1)/2
〈nk〉

M
(1/p−1)/2
|nk|

.

It follows that

‖II‖pLp,∞

≥ cp

(
M

(1/p+1)/2
〈nk〉

M
(1/p−1)/2
|nk|

)p
µ
{
x ∈ Gm : |II| ≥ cpM

(1/p+1)/2
〈nk〉

M
(1/p−1)/2
|nk|

}

≥ cpM
(1−p)/2
|nk|

M
(1+p)/2
〈nk〉

µ
{
I〈nk〉+1

(
e〈nk〉

)}
≥
cpM

(1−p)/2
|nk|

M
(1−p)/2
〈nk〉

.

Hence, for large enough k,

‖Snk
f‖pLp,∞

≥ ‖II‖pLp,∞
− ‖I‖pLp,∞

≥
1

2
‖II‖pLp,∞

≥
cpM

(1−p)/2
|nk|

M
(1−p)/2
〈nk〉

→ ∞, when k → ∞.

The proof is complete. �
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