We present a new approach for incorporating incidence angle derived synthetic aperture radar (SAR) brightness variation directly into SAR image analysis. This approach is unique in that the incidence angle dependency is modeled explicitly into the probability density function rather than an image-wide pre-processing 'correction'. It can then be used for supervised and unsupervised image analysis, and is notably able to account for a different dependency rate for each class. This has potential benefits for wide-swath SAR imagery over flat areas and ocean, wide angled airborne and UAV based SAR data, connecting narrow-beam SAR images at different acquisition angles, as well as land-based analysis with local topographic terrain angles. An initial example demonstrates unsupervised image segmentation applied to sea ice mapping for meteorological services and climate science, and is compared to the same algorithm without the incidence angle modeling.

Index Terms— Synthetic Aperture Radar, Incidence Angle Correction, Wide-swath imagery, Terrain Correction, Sentinel-1

1. INTRODUCTION

Wide-swath SAR images, such as from Sentinel-1, cover hundreds of kilometers, but this wide coverage, and side-looking SAR geometry, means that the imaged pixels are viewed over a large range of incidence angles. The incidence angle (IA) affects the microwave interaction with the surface properties, produces varying backscatter brightness from near range to far range and thus confuses image interpretation. The brightness variations are usually much greater than the class-to-class differences and will significantly affect image classification. This work shall initially explore wide-swath Sentinel-1 imagery for Arctic sea ice monitoring, where the brightness variation of wide swath SAR imaging has restricted its use for operational services.

Our research group, at UiT - The Arctic University of Norway, has developed advanced and automatic algorithms for analyzing narrow-swath quad-polarization SAR images over sea ice, where the IA variation is minimal and can generally be ignored [1, 2, 3, 4]. However, two distinct problems were encountered when applying these same algorithms to wide-swath SAR imagery, in particular from Sentinel-1. The first relates to the IA dependency already noted, and produced too many classes, essentially over-segmenting into bands or zones in the range direction. The second relates to the variable noise-floor patterns in the range direction from stitching the different acquisition strips into the one image, which was reduced by using the thermal noise removal method from the ESA’s SNAP software. Both problems and the ice type dependencies are well described in [5].

This IA effect has strong foundations in the physical interaction of the electro-magnetic microwave signal with the surface properties such as roughness, and can be described with Lambert’s cosine law, Minnaert’s law, or approximated with an exponential relation or log-linear model [5]. Many research papers for ocean surface modeling, particularly sea ice monitoring, have published the observed decay rates for this effect, and have demonstrated that it depends on the particular surface properties, i.e., the terrain type, most likely due to differing surface roughness. The traditional, and practical, approach is to apply a mean IA rate to the entire intensity image in a pre-processing stage, and is known as incidence angle correction or compensation. This means that a single image-wide rate is applied to all pixels and does not account for the terrain-type dependent relations, but is all that can be considered before the terrain type is known. However, in a circular fashion, the IA variation will affect the ability of classification algorithms to determine the terrain type, because it broadens the class probability distributions making image-wide classification less distinct. The single image-wide IA correction will at best be correct for only one terrain class and may over or under-correct other classes.

Our solution to account for this systematic IA dependency is to incorporate the IA variation directly into our statistical probability models that are used for supervised classification and unsupervised segmentation (clustering). This approach is unique and the first to automatically and simultaneously distinguish the terrain type and determine the different IA rates for each class.

The first simplified prototype has shown promising results for sea ice and ocean surface SAR image segmentation of wide-swath Sentinel-1 imagery (publication in prep.), and
will be demonstrated here.

Our example focuses on using Sentinel-1 wide-swath images over sea ice and ocean, since they are freely available, routinely acquired for operational monitoring, and we have good cooperation with the Norwegian Meteorological office and the Norwegian Polar Institute for this topic. We will demonstrate unsupervised segmentation, as it is more difficult than supervised classification, but additional knowledge is needed to label the classes. Comparison will be made between our previous non-incident-angle algorithm to highlight the clear effect of incorporating the IA into the modeling.

The method is generic and should also work without modification on RADARSAT-2 or any other wide-swath satellite data, and equivalently on wide-angled airborne SAR systems. We foresee valuable extensions to digital elevation model (DEM) based local terrain angle analyses, and supervised classification across multiple images acquired at different incidence angles.

2. THEORY

The brightness decay observed in wide-swath SAR images from near-range to far-range is a physical phenomenon relating to illumination and scattering, and probably has several contributing factors. Ideal diffuse reflections may follow Lambert’s law of illumination [6], which describes how the radiant intensity from an ideal diffuse emitter decreases from an emission at \(\theta = 0^\circ \) to an emission at \(\theta = 90^\circ \) proportionally to the cosine of the angle \(\theta \). Furthermore, the observed radiance varies as a function of the observed area according to the same law. For microwave remote sensing, the single antenna acts both as the emitter and the receiver and therefore the received intensity is proportional to the squared cosine of the incidence angle \(\theta \) [7].

Lambert’s law was extended by Minnaert [8] to the case of non-ideal diffuse emitters often observed in the real world:

\[
I_i = I_0 \cos^{2k}(\theta_i)
\]

where \(I_0 \) is the radiance along the normal direction (\(\theta_0 = 0^\circ \)), and \(k \) is a roughness-dependent exponent called the Minnaert constant to represent the less than ideally diffuse scattering. Minnaert’s law gives a simple mechanism to have different classes for all image pixels, with class priors \(\pi_m \), and class covariance matrix \(\Sigma_m \), is thus described by a set of parameters, \((\pi_m, a_m, b_m, \Sigma_m)\) for each class \(m \), and modeled by the \(d \)-dimensional distribution:

\[
p(x, \theta) = \frac{\pi_m}{(2\pi)^\frac{d}{2} \Sigma_m^{\frac{1}{2}}} e^{-\frac{1}{2}(x-(a_m+b_m\theta))^T \Sigma_m^{-1} (x-(a_m+b_m\theta))}
\]

3. METHODS

We have previously developed automatic segmentation methods based on the statistics of SAR polarimetry data, from a simple mixture of Gaussian features model [4] to variations using more complicated textured models [2]. We now present the first simplified version incorporating the incidence-angle dependency directly into the statistical model.

For one specific class, we consider its log-intensity along constant-incidence angle azimuth lines to follow a Gaussian distribution with a mean value expressed as a linear function of the given IA (eq. 3). For two channel data, for example Sentinel-1 HH and HV images, we allow different decay parameters for each channel, as well as each class, and thus \(a \) and \(b \) are multivariate. The resulting mixture distribution of \(M \) classes for all image pixels, with class priors \(\pi_m \), and class covariance matrix \(\Sigma_m \), is thus described by a set of parameters, \((\pi_m, a_m, b_m, \Sigma_m)\) for each class \(m \), and modeled by the \(d \)-dimensional distribution:

\[
p(x, \theta) = \sum_{m=1}^{M} \frac{\pi_m}{(2\pi)^\frac{d}{2} \Sigma_m^{\frac{1}{2}}} e^{-\frac{1}{2}(x-(a_m+b_m\theta))^T \Sigma_m^{-1} (x-(a_m+b_m\theta))}
\]

4. RESULTS

Our example is an Extra-Wide swath (EW) Sentinel-1 image acquired over the Fram Strait during the freeze-up season of 2015 (Fig. 1). The image was selected because of the clearly visible classes extending along the range direction. Ocean
water along the top quarter of the image, and sea ice else-
where, as seen in the greyscale intensity images of Fig. 1 (a)
and (b). This provides a clear demonstration of the algo-

The mixture-of-Gaussians based segmentation algorithm
was applied directly to multi-looked HH and HV intensities
[decibels], and automatically converged when the model
shows a good fit to all classes. For simpler interpretation, and
in light of the Gaussian approximation, we multi-looked and
additional 5 × 5 (over the 18-look product) and sub-sampled
the image (to 20000 pixels) to reduce the number of distin-
guishable clusters presented. Fig. 1 (c) shows the segmenta-
tion results obtained without incidence-angle correction, and
Fig. 1 (d) shows the proposed incidence-angle modeling re-
sults. The effect of the incidence-angle correcting segmenta-
tion over the non-correcting one is clear, as the division of the
classes into multiple bands according to the decaying intensi-
ties along the range dimension is no longer visible.

Fig. 1 (e) shows the decay rates of the HH Intensity [dB]
for all classes in (d). The high decay rates of the water classes
(red and yellow) are clearly distinguishable from the lower
rates corresponding to the compact sea ice class (green) and
potentially frozen leads class (blue).

5. CONCLUSION

We introduce an automatic segmentation method for wide-
swath PolSAR images that incorporates class-based inci-
dence angle variation, and demonstrate that the algorithm is
functional and delivers good results which hold a physical
meaning, albeit for a simplified case. Improvements may be
achieved using a more flexible incidence-angle relation,
and by changing the statistical model to a more appropriate
one that captures the details of the heavy tails, such as the
Gamma or a compound distribution containing a texture term.
It could also prove worthwhile to test whether the polarimet-
ric features, previously used for segmentation, have decay
rates follow the same law as the intensities.

This modeling approach is quite generic and should work
with all wide incidence-angle ranged data, for supervised
classification across different acquisition ranges, as well as
for DEM based terrain angle compensation.

6. REFERENCES

[1] A. M. Johansson, J. A. King, A. P. Doulgeris, S. Ger-
land, S. Singha, G. Spreen, and T. Busche, “Combined
observations of Arctic sea ice with near-coincident colo-
cated X-band, C-band, and L-band SAR satellite remote
sensing and helicopter-borne measurements,” Journal of

and Markov Random Field Segmentation Algorithm for
PolSAR Images,” IEEE Transactions on Geoscience

Renner, and S. Gerland, “Assessing polarimetric SAR
sea-ice classifications using consecutive day images,”

mentation Method for Multi-Polarisation SAR Scenes,”
in The 6th International Workshop on Science and App-
lications of SAR Polarimetry and Polarimetric Interfer-
ometry (POLinSAR 2013), Frascati, Italy, January 28 -
February 1 2013, 2013.

Dependence of First-Year Sea Ice Backscattering Coef-
ficient in Sentinel-1 SAR Imagery Over the Kara Sea,”
IEEE Transactions on Geoscience and Remote Sensing,

Gradibus Luminis, Colorum et Umbrae, Augsburg,
1760.

Remote Sensing: Active and Passive, Volume II—Radar
Remote Sensing and Surface Scattering and Emission

[9] Juan Pablo Ardila, Valentyn Tolpekin, and Wietse Bij-
ker, “Angular Backscatter Variation in L-band ALOS
ScanSAR Images of Tropical Forest Areas,” IEEE Geo-
825, 2010.

[10] Wenhui Lang, Pan Zhang, Jie Wu, Yang Shen, and
Xuezhi Yang, “Incidence Angle Correction of SAR
Sea Ice Data Based on Locally Linear Mapping,” IEEE Trans-

dence angle Normalization of Wide Swath SAR Data
for Oceanographic Applications,” Open Geosciences,

[12] Zihang Zhao, Wenhui Lang, Anthony Paul Doulgeris,
and Lu Chen, “Improved Llm Methods Using Lin-
ear Regression,” in IEEE International Geoscience and
5353.
Fig. 1. Example of Sea Ice (lower part of image) and Ocean (top part of image) segmentation. Note how the banding due to incidence angle variation is automatically removed with the new approach, and the log-linear class dependencies from (d) are shown in (e).