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Abstract

In this work, we introduce a method for solving linear and nonlinear

scattering problems for wave equations using a new hybrid approach. This

new approach consists of a reformulation of the governing equations into a

form that can be solved by a combination of a domain-based method and

a boundary-integral method. Our reformulation is aimed at a situation

in which we have a collection of compact scattering objects located in an

otherwise homogeneous unbounded space.

The domain-based method is used to propagate the equations gov-

erning the wave �eld inside the scattering objects forward in time. The

boundary integral method is used to supply the domain-based method

with the required boundary values for the wave �eld.

In this way, the best features of both methods come into play. The re-

sponse inside the scattering objects, which can be caused by both material

inhomogeneity and nonlinearities, is easily considered using the domain-

based method, and the boundary conditions supplied by the boundary

integral method makes it possible to con�ne the domain-method to the

inside of each scattering object.

1 Introduction

Boundary integral formulations are well known in all areas of science and tech-
nology and lead to highly e�cient numerical algorithms for solving partial dif-
ferential equations (PDEs). Particularly, their utility is evident for scattering
waves from objects located in an unbounded space. For these situations, one
whole space dimension is taken out of the problem by reducing the solution of
the original PDEs to the solution of an integral equation located on the bound-
aries of the scattering objects.

However, this reduction relies on the use of Green's functions and is there-
fore only possible if the PDEs are linear. For computational reasons, one is
also usually restricted to situations in which Green's functions are given by
explicit formulas, which rules out most situations in which the materials are
inhomogeneous. Since many problems of interest involve scattering waves from
objects that display both material inhomogeneity and nonlinearity, boundary
integral methods have appeared to be of limited utility in computational science.
Adding to the limited scope of the method, the fact that somewhat advanced

1



mathematical machinery is needed to formulate PDEs in terms of boundary
integral equations, it is perhaps not di�cult to understand why the method is
that popular.

Domain-based methods, like the �nite di�erence method and �nite element
method, appear to have much wider utility. Their simple formulation and wide
applicability to many types of PDEs, both linear and nonlinear, have made
them extremely popular in the scienti�c computing community. In the context
of scattering problems, they have problems of their own to contend with. These
problems are of two quite distinct types.

The �rst type of problem is related to the fact that the scattering objects
frequently represent abrupt changes in material properties compared to the
properties of the surrounding homogeneous space. This abrupt change leads
to PDEs with discontinuous or near-discontinuous coe�cients. Such features
are hard to represent accurately using the �nite element or �nite di�erence
methods. The favored approach is to introduce multiple, interlinked grids that
are adjusted so that they conform to the boundaries of the scattering objects.
Generating such grids, tailored to the possibly complex shape of the scattering
objects, linking them together in the correct way and designing them in such a
way that the resulting numerical algorithm is accurate and stable, is challenging.
The approach has been re�ned over many years and in general works quite well,
but it certainly adds to the implementation complexity of these methods.

The second type of problem is related to the fact that one cannot grid the
domain where the scattering objects are located for the simple reason, that in
almost all situations of interest, this domain is unbounded. This problem is
well known in the research community and the way it is resolved is to grid
a computational box that is large enough to contain all scattering objects of
interest. This can easily become a very large domain, leading to a very large
number of degrees of freedom in the numerical algorithm. However, most of
the time, the numerical algorithm associated with the domain has a simple
structure for which it is possible to design very fast implementations. However,
the introduction of the �nite computational box in what is an unbounded do-
main leads to the question of designing boundary conditions on the boundary
of the box so that it is fully transparent to waves. This is not easy to achieve,
as most approaches will introduce inhomogeneity that will partly re�ect the
waves hitting the boundary. This problem was �rst solved satisfactorily for the
case of scattering electromagnetic waves. The domain-based method of choice
for electromagnetic waves is the �nite di�erence time domain method (FDTD)
[1],[2],[3]. As the name indicates, this is a �nite di�erence method that has
been designed to consider the special structure of Maxwell's equations. The
removal of re�ections from the �nite computational box was achieved by the
introduction of a perfectly matched layer (PML)[4],[5]. This amounts to adding
a narrow layer of a specially constructed arti�cial material to the outside of the
computational box. The PML layer is only perfectly transparent to wave prop-
agation if the grid has in�nite resolution. For any �nite grid there is still a small
re�ection from the boundary of the computational box. This can be reduced by
making the PML layer thicker, but this leads to more degrees of freedom and
thus an increasing computational load. However, overall PML works well and
certainly much better than anything that came before it. There is no doubt
that the introduction of PML was a breakthrough.

The use of PML was closely linked to the special structure of Maxwell's
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equations. However, it was soon realized that the same e�ect could be achieved
by complexifying the physical space outside the computational box and analyt-
ically continuing the �elds into this complex spatial domain[6],[7]. Signi�cantly,
this realization made the bene�ts of a re�ection-less boundary condition avail-
able to all kinds of scattering problems. However, the use of these re�ection
less boundary conditions certainly leads to an increased computational load,
increased implementation complexity, and numerical stability issues that must
be resolved. It is at this point worth recalling that the boundary of the com-
putational box is not part of the original physical problem, and all the added
implementation complexity and computational cost is spent trying to make it
invisible after the choice of a domain method forced us to put it there in the
�rst place.

In this paper, we are dedicated to developing an e�cient new method to solve
transient wave scattering in two 1D models in which the scattering objects have
a nonlinear response where we only apply the domain-based method inside each
scattering object. First, this will reduce the size of the computational grid
enormously since we now need only to grid the inside of the scattering objects.
Second, our approach makes it possible to use di�erent computational grids
for each scattering object, with each grid tailored to the corresponding object's
geometric shape, without having to worry about the inherent complexity caused
by letting the di�erent grids meet up. Third, it makes the introduction of a large
computational box, with its arti�cial boundary, redundant. In this way, the
computational load is substantially reduced, and we remove the implementation
complexity and instabilities associated with the boundary of the computational
box.

However, the domain based-method restricted to the inside of each scatter-
ing object requires �eld values on the boundaries of the scattering objects to
propagate the �elds forward in time. These boundary values will be supplied by
a boundary integral method derived from a space-time integral formulation of
the PDEs to be solved. This boundary integral method will consider all the scat-
tering and re-scattering of the solution to the PDEs in the unbounded domain
outside the scattering objects. Since the boundary integral method explicitly
considers the radiation condition at in�nity, no �nite computational box with
its arti�cial boundary conditions is needed.

This kind of idea for solving scattering problems was, to our knowledge, �rst
proposed in 1972 by Pattanayak and Wolf [8] for the case of electromagnetic
waves. They discussed their ideas in the context of a generalization of the
Ewald-Oseen optical extinction theorem; therefore, we will refer to our method
as the Ewald-Oseen Scattering(EOS) formulation.

However, Pattanayak and Wolf only discussed stationary linear scattering
of electromagnetic waves and they therefore did their integral formulation in
frequency space. This approach is not the right one when one is interested in
transient scattering from objects that are generally inhomogeneous and addi-
tionally may have a nonlinear response. What is needed for our approach is a
space-time integral formulation of the PDEs of interest.

In sections 2 and 3, we illustrate our approach by implementing our EOS
formulation for two di�erent 1D scattering problems. Both cases can be thought
of as toy models for scattering electromagnetic waves. This should not be taken
to mean that only models that in some way are related to electromagnetic scat-
tering can be subject to our approach. It merely re�ects our particular interest
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in electromagnetic scattering. The way we see it, only one essential require-
ment must be ful�lled for our method to be applicable. It must be possible
to derive an explicit integral formulation for the PDEs of interest. This means
that at some point one needs to �nd the explicit expression for Green's function
for some di�erential operator related to our PDEs. In general, it is di�cult to
�nd explicit expressions for Green's function belonging to nontrivial di�erential
operators. However, the Green's function needed for our EOS formulation will
always be of the in�nite, homogeneous space type, and explicit expressions for
such Green's functions can frequently be found.

The two toy models presented in this work have been chosen for their sim-
plicity, which makes them well suited for illustrating our EOS approach for
scattering of waves. For more general and consequently more complicated cases,
there are no new ideas beyond the technical details that must be mastered for
each case to derive the EOS formulation and implement it numerically. To
explore the feasibility of our approach for more realistic and useful PDEs, we
have implemented our approach for several other cases, both 2D and 3D. Par-
ticularly we have derived and implemented our EOS approach for the full 3D
vector Maxwell's equations. The results of these investigations will be reported
elsewhere.

For both models we use an approach for testing the stability and accuracy
of our implementations that involves what is known as arti�cial sources. This
method has probably been around for a long time but apart from an application
to the Navier-Stokes equations [9], we are not aware of any published work using
this method. The method is based on the simple observation that, if arbitrary
source terms are added to any system of PDEs then any function is a solution
for some choice of the source. Adding a source term typically introduce only
trivial modi�cations to whichever numerical method was used to solve the PDEs.
This essentially means that for any PDEs of interest, we can design particular
functions to test various critical aspects of the numerical method related to
numerical stability and accuracy.

This is a very simple approach to validating numerical implementations for
PDEs that deserves to be much better known than it is.

2 The �rst scattering model; one way propaga-

tion

Our �rst toy model, model 1, is

ϕt = c1ϕx + j,

ρt = −jx,
jt = (α− βρ)ϕ− γj a0 < x < a1, (2.1)

where α, β and γ are real parameters determining the �material response� part
model 1 and where ϕ = ϕ(x, t) is the �electric �eld�, j = j(x, t) the �current
density� and ρ the �charge density�. These quantities are analogs for the cor-
responding quantities in Maxwell's equations. With this in mind, we observe
that the second equation in the model (2.1) is a 1D version of the equation of
continuity from electromagnetics, and c1 is the analog of the speed of light inside
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the �material� scattering object residing inside the interval [a0, a1]. The charge
density and current density are the material degrees of freedom and are there-
fore assumed to be con�ned to the interval [a0, a1] on the real axis, whereas ϕ
is a �eld de�ned on the whole real axis. Thus the interval [a0, a1] is the analog
of a compact scattering object in the electromagnetic situation. Outside the
scattering object the model takes the form

ϕt = c0ϕx + js x < a0 or x > a1, (2.2)

where c0 is the propagation speed for the electric �eld in the �vacuum� outside
the scattering object and the function js(x, t) is a �xed source that has its
support in a compact set in the interval x > a1. For the �eld ϕ we impose the
condition of continuity at the points a0 and a1. The equation for the current
density, j is a radical simpli�cation of a real current density model used to
describe second harmonic generation in nonlinear optics [10].

2.1 The EOS formulation

In order to derive the EOS formulation for the model (2.1), we will �rstly need
a space-time integral identity involving the operator

L = ∂t − v∂x,

where v is some constant. Using integration by parts it is easy to see that the
following integral identity holds∫

S×T
dxdt{Lϕ(x, t)ψ(x, t)− ϕ(x, t)L†ψ(x, t)}

=

∫
S

dxϕ(x, t)ψ(x, t)|t1t0 − v
∫
T

dtϕ(x, t)ψ(x, t)|x1
x0
, (2.3)

where L† = −∂t + v∂x is the formal adjoint of L and where S = (x0, x1) and
T = (t0, t1) are open space and time intervals.

The second item we need in order to derive the EOS formulation for model
(2.1), is the advanced Green's function for the operator L†. This is a function
G = G(x, t, x′, t′) which is a solution to the equation

L†G(x, t, x′, t′) = δ(t− t′)δ(x− x′),

and that vanishes when t > t′. Since the operator L+ is invariant under time
and space translations we can without loss of generality assume that

G(x, t, x′, t′) = G(x− x′, t− t′).

Thus it is su�cient to solve the equation

L†G(x, t) = δ(x)δ(t). (2.4)

After performing the Fourier transform

f̂(k, ω) =

∫ ∞
−∞

∫ ∞
−∞

f(x, t)e−i(kx−ωt) dxdt, (2.5)
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on (2.4), we get

Ĝ(k, ω) =
−i

ω + vk
.

It is noticed that there's a single pole at ω = −vk on the real axis, we need to
�nd the advanced Green's function. It is de�ned by shifting the integral contour
from the real ω-axis to a contour below and parallel to the real axis at a distance
cε : z = ω − iε, ε > 0. Using the inverse Fourier transform

f(x, t) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

f̂(k, ω)ei(kx−ωt) dk dω, (2.6)

we get the representation

G(x, t) =
1

4π2

∫ +∞

−∞
g(k, t)eikx dk,

with

g(k, t) =

∫
cε

−i
z + vk

e−izt dz.

For t < 0, we close the contour cε in the upper half plane and get by Cauchy's
residue theorem

g(k, t) = 2πeivkt,

and for t > 0, we close the contour cε in the lower half plane and get g(k, t) = 0.
This gives for t < 0

G(x, t) =
1

4π2

∫ +∞

−∞
2πeivkteikxdk = δ(x+ vt),

and for t > 0,
G(x, t) = 0.

In the end G is given by

G(x, t, x′, t′) = θ(t′ − t)δ(x′ − x+ v(t′ − t)), (2.7)

where θ is the Heaviside step function with θ(x) = 1 for x > 0 and zero other-
wise.

We will now apply the integral identity (2.3) to each space interval (−∞, a0),
(a0, a1) and (a1,∞). For the function ψ we will substitute the advanced Green's
function (2.7) and we will let ϕ be the solution to equation (2.2) with vanishing
initial condition, ϕ(x, t0) = 0. We thus have a problem where all solutions are
purely source-generated. For the �rst interval, (−∞, a0), we let ψ be the Green's
function

G0(x, t, x′, t′) ≡ θ(t′ − t)δ(x′ − x+ c0(t′ − t)), (2.8)

and ϕ = ϕ0 be the solution to the equation

ϕ0t = c0ϕ0x,

m
L0ϕ0 = 0. (2.9)
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Inserting (2.8), (2.9) and S = (−∞, a0) into the integral identity (2.3), using
the initial condition and the fact that the Green's function is advanced, we get
for x in (−∞, a0)∫

S×T
{Lϕ0(x′, t′)G(x′, t′, x, t)− ϕ0(x′, t′)L+G(x′, t′, x, t)}dx′ dt′

=

∫ a0

−∞
ϕ0(x′, t1)θ(t− t1)δ(x− x′ + c0(t− t1)) dx′

−
∫ a0

−∞
ϕ0(x′, t0)θ(t− t0)δ(x− x′ + c0(t− t0)) dx′

− c0
∫ t1

t0

ϕ0(a0, t
′)θ(t− t′)δ(x− a0 + c0(t− t′)) dt′

+ c0 lim
x′→−∞

∫ t1

t0

ϕ0(x′, t′)θ(t− t′)δ(x− x′ + c0(t− t′)) dt′,

after interchanging the primed and unprimed variables. The initial condition
and t0 < t < t1 imply that the integrals on S vanish. The last integral vanishes
also because x − x′ + c0(t − t′) > 0 when x′ < x for all t′ in the integration
interval (t0, t). So we �nally get

ϕ0(x, t) = c0

∫ t

t0

dt′ϕ0(a0, t
′)δ(x− a0 + c0(t− t′)). (2.10)

Note that when writing formula (2.10) we have made the substitution

ϕ0(a0, ·) ≡ lim
x→a−0

ϕ0(x, ·).

Similar substitutions will be made without comment later in the following sec-
tions.

For the second interval, (a0, a1), we let ψ be the Green's function

G1(x, t, x′, t′) ≡ θ(t′ − t)δ(x′ − x+ c1(t′ − t)), (2.11)

and ϕ = ϕ1 be the solution to the equation

ϕ1t = c1ϕ1x + j,

m
L1ϕ = j, (2.12)

with vanishing initial conditions. Inserting (2.11),(2.12) and S = (a0, a1) into
the integral identity (2.3), using the initial condition and the fact that the
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Green's function is advanced, we get for x in (a0, a1)

ϕ1(x, t) =

∫ a1

a0

dx′
∫ t

t0

dt′j(x′, t′)δ(x− x′ + c1(t− t′))

+ c1

∫ t

t0

dt′ϕ1(a1, t
′)δ(x− a1 + c1(t− t′))

− c1
∫ t

t0

dt′ϕ1(a0, t
′)δ(x− a0 + c1(t− t′))

=

∫ a1

a0

dx′
∫ t

t0

dt′j(x′, t′)δ(x− x′ + c1(t− t′))

+ c1

∫ t

t0

dt′ϕ1(a1, t
′)δ(x− a1 + c1(t− t′)), (2.13)

after interchanging primed and unprimed variables. The last equality sign fol-
lows because x − a0 + c1(t − t′) > 0 for all t′ in the integration interval when
a0 < x < a1.

Finally, for the third integration interval, (a1,∞), we let ψ be the Green's
function

G0(x, t, x′, t′) ≡ θ(t′ − t)δ(x′ − x+ c0(t′ − t)), (2.14)

and ϕ = ϕ2 be the solution to the equation

ϕ2t = c0ϕ2x + js,

m
L0ϕ2 = js, (2.15)

with vanishing initial conditions. Inserting (2.14),(2.15) and S = (a1,∞) into
the integral identity (2.3), using the initial conditions and the fact that the
Green's function is advanced, we get for x in (a1,∞)

ϕ2(x, t) =

∫ ∞
a1

dx′
∫ t

t0

dt′js(x
′, t′)δ(x− x′ + c0(t− t′))

+ c0 lim
x′→∞

∫ t

t0

dt′ϕ2(x′, t′)δ(x− x′ + c0(t− t′))

− c0
∫ t

t0

dt′ϕ2(a1, t
′)δ(x− a1 + c0(t− t′))

=

∫ ∞
a1

dx′
∫ t

t0

dt′js(x
′, t′)δ(x− x′ + c0(t− t′)), (2.16)

after interchanging primed and unprimed variables. The third term vanishes
because x− a1 + c0(t− t′) > 0 for all t′ in the integration interval when x > a1.
The second term vanishes because x − x′ + c0(t − t′) < 0 for all �xed x > a1,
t > t0 and all t′ in the integration interval (t0, t) when x

′ is large enough.
We now investigate the limit of these integral identities as x approaches the

boundary points {a0, a1} of the open interval (a0, a1) from inside and outside
the interval. This will give us four equations for the four quantities

ϕ0(a0, t), ϕ1(a0, t), ϕ1(a1, t), ϕ2(a1, t).
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However, by assumption, acceptable solutions of model 1 are continuous across
the boundary points {a0, a1}. Therefore, we have two additional equations

ϕ0(a0, t) = ϕ1(a0, t),

ϕ1(a1, t) = ϕ2(a1, t).

At this point we are faced with a problem. The four unknown quantities must
satisfy six linear equations. The problem is thus overdetermined and we would
not normally expect any nontrivial solutions to exist.

On the other hand, the equations, boundary conditions and source function
js that de�ne model 1 do determine a unique function ϕ. This function satis�es
by construction the integral identities (2.10),(2.13) and (2.16), whose limits
yielded the overdetermined system. Thus the overdetermined linear system
does have a solution.

There is a more direct way to see why the overdetermined system will have
a solution. Let us consider the inside of the scattering object, thus x ∈ (a0, a1).
Here, the �eld ϕ is determined in terms of the current j(x, t), and the boundary
value ϕ(a1, t) by identity (2.13)

ϕ1(x, t) =

∫ a1

a0

dx′
∫ t

t0

dt′j(x′, t′)δ(x− x′ + c1(t− t′))

+ c1

∫ t

t0

dt′ϕ1(a1, t
′)δ(x− a1 + c1(t− t′)). (2.17)

Naively, one would expect that we would obtain an equation determining the
unknown boundary value ϕ(a1, t), by taking the limit of (2.17) as x approaches
a1 from below. However, this would make the �eld inside the scattering object
independent of the outside source, which must be wrong from a scattering point
of view. After all, it is the outside source js(x, t) that determines the �eld both
outside and inside the scattering object. If this source is turned o� the �eld
would simply be zero everywhere. So what is going on?

Note that if we actually take the limit of (2.17) we get the equation

0 ϕ1(a1, t) = 0,

which leaves the boundary value entirely arbitrary. If we analyze the rest of
the overdetermined system in the same way, we �nd that one more equation for
the boundary data is redundant, and that the two unknown boundary values,
ϕ1(a0, t) and ϕ(a1, t), are uniquely determined by the following two equations

ϕ1(a0, t) =

∫ a1

a0

dx′θ(a0 − x′ + c1(t− t0))j(x′, t− a1 − a0

c1
)

+ θ(a0 − a1 + c1(t− t0))ϕ(a1, t−
a1 − a0

c1
), (2.18)

ϕ1(a1, t) =
1

c0

∫ ∞
a1

dx′θ(a1 − x′ + c0(t− t0))js(x
′, t− x′ − a1

c0
). (2.19)

We emphasize the fact that we end up with an overdetermined system of linear
equations for the boundary values because this is a generic outcome when we
derive the EOS formulation for any given system of PDEs. We see that this
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very same problem will appear when we discuss the second toy model in Section
3.

This problem has been recognized by the research community in the context
of space-time boundary integral formulation for Maxwell's equations, and a
simple �x has been invented to resolve it.

However, as far as we know, the universal nature of this problem in the area
of space-time integral formulations of linear and nonlinear scattering problems
has not been recognized.

Observe that equation (2.19) determines the value of the �eld at the bound-
ary point a1 in terms of the given external source js, and the equation (2.18)
determines the value of the �eld at the boundary point a0 in terms of the current
density j inside the scattering object and the �eld values at the boundary point
a1.

Equations (2.1) restricted to the the open interval (a0, a1) together with the
integral identities (2.18) and (2.19) de�ne the EOS formulation for model 1.

2.2 Numerical implementation of the EOS formulation

In this section, a numerical implementation of the EOS formulation for model
1 is presented. Many di�erent numerical implementations are possible. The
EOS formulation itself does not in any way dictate the use of a particular im-
plementation. However it does put some constraints on how we proceed with
our method of choice.

If our problem was to calculate the free-space propagation according to the
�rst equation in (2.1) with vanishing j the obvious choice would be to use the
standard Lax-Wendro� method[11] on a uniform space grid. However, the EOS
formulation presents us with an integro-di�erential equation because the bound-
ary update rule is de�ned in terms of integrals of the current density over the
scattering domain (a0, a1). Thus our grid must also give a good approxima-
tion for the integrals (2.18) and (2.19) that de�ne the update rule. We will be
looking for second-order accuracy and would like to use the midpoint rule to
approximate the integrals and thus introduce the following nonuniform space
grid inside the scattering object, (a0, a1),

xi = a0 + (i+ 0.5)∆x, i = 0, 1, · · · , N − 1, (2.20)

where ∆x = a1−a0
N . The grid points (2.20) will be called internal nodes. We

also introduce a discrete time grid

tn = n∆t, n = 0, 1, · · · .

The values of the parameter ∆t will, as usual, be bounded by the requirement
of stability for the scheme. We will say a few words about this bound later.

To obtain a numerical scheme of second-order accuracy, we apply the Lax-
Wendro� method to the �rst two equations of (2.1) and apply the modi�ed
Euler's method to the last equation of (2.1). Because of these choices the nu-

10



merical scheme for iteration at the internal nodes takes the form

ϕn+1
i =ϕni + ∆t (c1

∂ϕ

∂x
+ j)ni +

1

2
(∆t)2(c21

∂2ϕ

∂x2
+ c1

∂j

∂x
+ f)ni ,

ρn+1
i =ρni + ∆t (− ∂j

∂x
)ni +

1

2
(∆t)2(−∂f

∂x
)ni ,

j̄n+1
i =jni + ∆t fni ,

jn+1
i =

1

2
(jni + j̄n+1

i + ∆t f(ρn+1
i , ϕn+1

i , j̄n+1
i )), (2.21)

for i = 0, 1, · · · , N and where f = (α− βρ)ϕ− γj . Except for the two internal
nodes closest to the boundary points a0 and a1, the space derivatives are ap-
proximated to second-order accuracy by the following standard �nite di�erence
formulas

(
∂φ

∂x
)ni =

φni+1 − φni−1

2∆x
,

(
∂2φ

∂x2
)ni =

φni+1 − 2φni + φni−1

(∆x)2
, φ = ϕ, j, f, and i = 1, 2, · · · , N − 2. (2.22)

For the two internal nodes closest to the boundary, the standard, second-order
accurate di�erence formulas, cannot be used because the internal nodes are
non-uniformly distributed in this part of the domain. For the �eld, ϕ, we must
rather use the following second-order accurate di�erence formulas for these two
nodes

(
∂ϕ

∂x
)n0 = − 1

3∆x
(4ϕna0 − 3ϕn0 − ϕn1 ),

(
∂2ϕ

∂x2
)n0 =

4

3(∆x)2
(2ϕna0 − 3ϕn0 + ϕn1 ),

(
∂ϕ

∂x
)nN−1 =

1

3∆x
(4ϕna1 − 3ϕnN−1 − ϕnN−2),

(
∂2ϕ

∂x2
)nN−1 =

4

3(∆x)2
(2ϕna1 − 3ϕnN−1 + ϕnN−2). (2.23)

The boundary value ϕna0 needed in formulas (2.23) can be calculated from the
discretized form of the integral update rules (2.18)

ϕn+1
a0 =

∆x

c1

N−1∑
i=0

θ(tn+1 − t0 −
xi − a0

c1
)j(xi, tn+1 −

xi − a0

c1
),

+ θ(tn+1 − t0 −
a1 − a0

c1
)ϕ(a1, tn+1 −

a1 − a0

c1
),

(2.24)

while ϕna1 is determined by the outside source using (2.19).
The current density, j, is entirely supported inside the scattering object and

in general would be discontinuous at a0 and a1 if extended to the whole domain
by making it zero external to the scattering object. Because of this, we need
di�erence rules for j at the nodes closest to the boundary points a0 and a1 that
only depend on the values of j on internal nodes. The following second-order
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accurate di�erence rules for j are of this type

(
∂j

∂x
)n0 =

1

2∆x
(4jn1 − 3jn0 − jn2 ),

(
∂j

∂x
)nN−1 = − 1

2∆x
(4jnN−2 − 3jnN−1 − jnN−3). (2.25)

It is evident that the discretized boundary update rule (2.24) needs values of
the current density that are located between the grid points for the time grid
{tn}. This situation is general and will always arise when we seek numerical
implementations of EOS formulations of PDEs. Some numerical interpolation
scheme will always be needed to calculate the �eld values and/or the material
variables between the time grid locations. We use a quadratic interpolation for
values of the current density located between two time levels to maintain overall
second-order accuracy for our scheme.

The iteration (2.21) with the boundary update rule (2.24) supplemented
by the �nite di�erence rules (2.22),(2.23) and (2.25) constitute our numerical
implementation of the EOS formulation for model 1.

2.3 Arti�cial source test

The basic idea behind the arti�cial source test, of some numerical scheme de-
signed for a system of PDEs, is to slightly modify the system by adding an
arbitrary source to all the equations in the system. This modi�cation typically
leads to minimal modi�cations to the numerical scheme, where most of the ef-
fort and complexity are usually spent on the derivatives and nonlinear terms.
For the equations, however, the presence of the sources changes the situation
completely. This is because the presence of the added sources implies that any

function is a solution to the equations for some choice of sources.
With the risk of expanding on perhaps an already obvious idea, what we are

saying is that, if we have developed a numerical scheme for some system of dif-
ferential equations Lψ = 0, we can with small modi�cations extend our scheme
to the extended equation Lψ = g where g is any given function. Given this, we
test the numerical scheme by picking a function ψ0, then use the equation to
calculate the source function g0 = Lψ0 that ensures that our chosen function
is a solution to the extended equation. Finally, we run the numerical scheme
with the calculated source function and �nd an approximate solution that we
compare with the exact solution ψ0.

Mode 1 extended with arti�cial sources takes the form

ϕt = c1ϕx + j + g1,

ρt = −jx + g2,

jt = (α− βρ)ϕ− γj + g3, (2.26)

where g1, g2, g3, are the arti�cial source functions. For some choice of functions
ϕ̂, ĵ and ρ̂ the corresponding source functions are computed by

ĝ1 = ϕ̂t − c1ϕ̂x − ĵ,
ĝ2 = ρ̂t + ĵx,

ĝ3 = ĵt − (α− βρ̂)ϕ̂+ γĵ.

12



As our exact solution we choose

ϕ̂(x, t) =
2A1

π
arctan(b2t2)e−α1(x−xo+β1(t−ts))2 ,

ĵ(x, t) =A2e
−

(x−xj)
2

δ21
−

(t−tj)
2

δ22 ,

ρ̂(x, t) =A3e
− (x−xρ)2

δ23
− (t−tρ)2

δ24 , (2.27)

which is nowhere near a solution to the equations (2.2) de�ning the unmodi�ed
model 1. Note that the chosen exact solution satis�es the vanishing of the
initial data ϕ̂(x, t0 = 0) = 0, as it must in order to be consistent with the EOS
formulation. The boundary update rule for the source extended model (2.26) is
changed into

ϕn+1
a0 =

∆x

c1

N−1∑
i=0

θ(tn+1 − t0 −
xi − a0

c1
)j(xi, tn+1 −

xi − a0

c1
),

+
∆x

c1

N−1∑
i=0

θ(tn+1 − t0 −
xi − a0

c1
)ĝ1(xi, tn+1 −

xi − a0

c1
),

+ θ(tn+1 − t0 −
a1 − a0

c1
)ϕ̂(a1, tn+1 −

a1 − a0

c1
),

while ϕ̂na1 is given explicitly by the exact solution ϕ̂(x, t). The comparison

Figure 2.1: Comparison between the numerical solution and the exact solution
for the source extended model 1. Parameter values used are a0 = 0.0, a1 =
3.0, N = 1600, α = −1.0, β = 0.3, γ = 8.0, c = 2.0, c0 = 1.0, A1 = 1.0,
A2 = 1.0, A3 = 1.0, b = 1.0, α1 = 4.0, β1 = 4.0, xo = 6.0, ts = 1.0, xj =
1.1, xρ = 1.3, tj = 1.2, tρ = 1.3, δ1 = 0.3, δ2 = 0.32, δ3 = 1.0, δ4 = 0.33.
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Figure 2.2: A numerical solution of the EOS formulation for model 1 generated
by an external source. The parameter values used are a0 = 0.0, a1 = 3.0, N =
1600, c = 2.0, c0 = 1.0, α = −1.0, β = 0.3, γ = 8.0.

between the exact solution (2.27) and the approximative solution generated by
our numerical implementation of the EOS formulation of the source extended
model 1, (2.26), is shown in Fig 2.1 for some choice of the parameters. As we
can see, the correspondence between the exact and approximative solution is
excellent. After having established that our implementation is accurate using
the arti�cial source test, we show in Fig 2.2 the numerical solution ϕ of model
1, (2.1), where the system is driven by an outside source of the form

js = 5e−36(x−4)2−4(t−0.5)2 ,

which is chosen so that no in�uence hit the boundary at a1 before t = 0. This
will ensure that the initial condition ϕ(x, t = 0) = 0, underlying the EOS
formulation of model 1, is satis�ed.

In these simulations we used a ∆t which is in the stable range for the nu-
merical implementation, speci�cally we used ∆t = 0.4∆x

c . Observe that the
stability domain for our implementation of the EOS formulation is restricted
compared to the stability domain for the underlying Lax-Wendro� method on
an in�nite domain. The focus of the �rst two sections is to derive the EOS
formulation for two simple illustrative models and show that, using standard
�nite di�erence discretization of the EOS formulation, we get an accurate and
stable representation of the solution to the scattering problems de�ned by the
two toy models. A discussion of the stability of our schemes for both toy models
has been relegated to Appendix A. We have found that stability of our scheme
requires that the time step is contained in an interval. This interval is deter-
mined by the domain-based method, which is propagating the �elds inside the
scattering object forward in time. While applying the EOS approach to the
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case of 3D electromagnetic scattering, we also found a stability interval for the
time step. For this case however, we �nd that both the domain part and the
boundary part of the EOS formulation play a role in determining the interval.
We believe that the way that the material parameters for the scattering objects
in�uence the boundaries of the stability interval has some interesting things to
say about the occurrence of the late time instability from antenna theory.

3 The second scattering model; two way propa-

gation

Our second toy model, model 2 is

ϕt = µ1ψx + j,

ψt = ν1ϕx,

ρt = −jx,
jt = (α− βρ)ϕ− γj a0 < x < a1, (3.1)

where , like for model 1, ϕ = ϕ(x, t), j = j(x, t) and ρ(x, t) are interpreted
as �electric �eld�, �current density� and �charge density�. The additional �eld,
ψ(x, t) is interpreted as the �magnetic� �eld. The charge density and current
density will, as in model 1, be con�ned to the interval [a0, a1] on the real axis
whereas the �elds ϕ and ψ are de�ned on the whole real axis. The interval
[a0, a1] is, like for model 1, the analog of a compact scattering object in the
electromagnetic situation. Outside the interval the model equations are

ϕt = µ0ψx + js,

ψt = ν0ϕx, (3.2)

where the function js(x, t) is a given source that, like for model 1, has its
support on a compact set in the interval x > a1. The parameters µ1, µ0, ν1, ν0

are "material" parameters. Using the translation µ → 1
ε and ν → 1

µ they are
analogous for the electric permittivity, ε, and the magnetic permeability, µ,
inside and outside the scattering object.

3.1 EOS formulation

In order to derive the EOS formulation for model 2 (3.1),(3.2), we will �rstly
need a space-time integral identity involving the matrix operator

L =

(
∂t −µ∂x
−ν∂x ∂t

)
,

where µ and ν are constants. The operator acts on vector valued functions in
the usual way

L

(
ϕ
ψ

)
=

(
∂tϕ− µ∂xψ
∂tψ − ν∂xϕ

)
.
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Using integration by parts, it is easy to derive∫
S×T

AL
(
ϕ

ψ

)
(x, t) dx dt

=

∫
S×T

(
−∂tA11 + ν∂xA12 µ∂xA11 − ∂tA12

−∂tA21 + ν∂xA22 µ∂xA21 − ∂tA22

)(
ϕ

ψ

)
(x, t) dx dt

+

∫
S

(
A11 A12

A21 A22

)(
ϕ

ψ

)
(x, t)

∣∣∣∣t1
t0

dx

+

∫
T

(
−νA12 −µA11

−νA22 −µA21

)(
ϕ

ψ

)
(x, t)

∣∣∣∣x1

x0

dt,

so we get the following integral identity∫
S×T

dxdt{AL
(
ϕ
ψ

)
(x, t)− L†A

(
ϕ
ψ

)
(x, t)}

=

∫
S

dxA

(
ϕ
ψ

)
(x, t)|t1t0 +

∫
T

dtB

(
ϕ
ψ

)
(x, t)|x1

x0
, (3.3)

where S = (x0, x1) and T = (t0, t1) are open space and time intervals and where
ϕ and ψ are smooth functions on the space-time interval S×T . Also A = A(x, t)
is a 2 × 2 matrix valued function and L† is the formal adjoint to the operator
L, and acts on the matrix valued function A in the following way

L†A =

(
−∂tA11 + ν∂xA12 µ∂xA11 − ∂tA12

−∂tA21 + ν∂xA22 µ∂xA21 − ∂tA22

)
. (3.4)

B is the 2× 2 matrix valued function

B =

(
−νA12 −µA11

−νA22 −µA21

)
. (3.5)

The second item we need in order to derive the EOS formulation for model
(3.1), (3.2), is the advanced Green's function for the operator L†. This is a 2×2
matrix valued function G(x, t, x′, t′) that satis�es the equation

L†G(x, t, x′, t′) = δ(t− t′)δ(x− x′)I, (3.6)

and that vanishes for t > t′. In (3.6), I is the 2× 2 identity matrix. Due to the
fact that any Green's function, because of translational invariance only depends
on x− x′ and t− t′, we can solve

L†G(x, t) = δ(t)δ(x)I,

instead. Writing out components we get

∂tG11 − ν∂xG12 = −δ(t)δ(x),

∂tG12 − µ∂xG11 = 0,

∂tG21 − ν∂xG22 = 0,

∂tG22 − µ∂xG21 = −δ(t)δ(x).

(3.7)
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Performing Fourier transform (2.5) on the �rst two equations of (3.7) gives

−iωĜ11 − iνkĜ12 = −1,

−iωĜ12 − iνkĜ11 = 0.
(3.8)

The solutions to (3.8) are

Ĝ11(k, ω) =
−iω

ω2 − c2k2
,

Ĝ12(k, ω) =
iµk

ω2 − c2k2
,

(3.9)

where c2 = µν. By enforcing the inverse Fourier transform (2.6) on (3.9), we get

G11(x, t) =
1

4π2

∫ ∞
−∞

g11(k, t)eikx dk,

G12(x, t) =
1

4π2

∫ ∞
−∞

g12(k, t)eikx dk,

(3.10)

where

g11(k, t) =

∫ ∞
−∞

Ĝ11(k, ω)e−iωt dω,

g12(k, t) =

∫ ∞
−∞

Ĝ12(k, ω)e−iωt dω.

The expressions for g11 and g12 are not really well de�ned since the integrands
have two poles on the real ω-axis, so we choose the advanced Green's function
for our work. It is de�ned by shifting the integral contour from the real ω-axis to
a contour below and parallel to the real axis at a distance cε : z = ω− iε, ε > 0,
thus

g11(k, t) =

∫
cε

−iz
z2 − c2k2

e−izt dz,

g12(k, t) =

∫
cε

iµk

z2 − c2k2
e−izt dz.

If t > 0,
lim

zi→−∞
ezit = 0,

so we close the contour in the lower half plane and have

g11(k, t) = 0,

g12(k, t) = 0.

If t < 0,
lim

zi→+∞
ezit = 0,

then we close the contour in the upper half plane. There are now two poles
z = ±ck inside the closed contour. Cauchy's residue theorem gives

g11(k, t) = π{eikct + e−ikct},

g12(k, t) =
πµ

c
{eikct − e−ikct}.

(3.11)
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Inserting (3.11) into (3.10), we obtain

G11(k, t) =
θ(−t)

2
(δ(x+ ct) + δ(x− ct)),

G12(k, t) =
µθ(−t)

2c
(δ(x+ ct)− δ(x− ct)).

G12 and G22 are calculated in the same way,

G21(k, t) =
νθ(−t)

2c
(δ(x+ ct)− δ(x− ct)),

G22(k, t) =
θ(−t)

2
(δ(x+ ct) + δ(x− ct)).

In the end, G is given by

G(x, t, x′, t′) =
θ(t′ − t)

2c
{
(
c µ
ν c

)
δ(x− x′ + c(t− t′))

+

(
c −µ
−ν c

)
δ(x− x′ − c(t− t′))}, (3.12)

where θ(s) is the Heaviside step function. Note that, using the identi�cations
introduced while describing model 2 at the start of the current section, the
formula de�ning the speed, c, is completely analogous to the one de�ning the
speed of light in electromagnetics.

We will now apply the integral identity (3.3) to each space interval (−∞, a0),
(a0, a1) and (a1,∞) with A equal to the advanced Green's function (3.12) for the
corresponding interval and where ϕ and ψ are solutions to the system (3.1),(3.2)
with vanishing initial conditions ϕ(x, t0) = ψ(x, t0) = 0.

For the �rst interval, (−∞, a0), we let A be the Green's function

G0(x, t, x′, t′) =
θ(t′ − t)

2c0
{
(
c0 µ0

ν0 c0

)
δ(x− x′ + c0(t− t′))

+

(
c0 −µ0

−ν0 c0

)
δ(x− x′ − c0(t− t′))}, (3.13)

where c20 = µ0ν0. In this interval we let ϕ = ϕ0, ψ = ψ0 be the solution to the
system

ϕ0t = µ0ψ0x,

ψ0t = ν0ϕ0x,

m

L0

(
ϕ0

ψ0

)
= 0. (3.14)

Inserting (3.13), (3.14) and S = (−∞, a0) into the integral identity (3.3), using
the initial conditions and the fact that the Green's function is advanced, we get

18



for x in the interval (−∞, a0).(
ϕ0

ψ0

)
(x, t) = −

∫ t1

t0

dt′B0(a0, t
′, x, t)

(
ϕ0

ψ0

)
(a0, t

′)

+ lim
R→−∞

∫ t1

t0

dt′B0(R, t′, x, t)

(
ϕ0

ψ0

)
(R, t′), (3.15)

after interchanging primed and unprimed variables.
The function B0 is from (3.5)

B0(x′, t′, x, t) = −θ(t− t
′)

2
{
(
c0 µ0

ν0 c0

)
δ(x− x′ + c0(t− t′))

+

(
−c0 µ0

ν0 −c0

)
δ(x− x′ − c0(t− t′))}. (3.16)

From (3.16) it is evident that the last term in (3.15) vanishes. This is because
for large enough R, the argument of the delta function does not change sign
in the interval of integration. Inserting the expression (3.16) into (3.15) and
changing to the variable de�ning the argument of the delta function in the two
integrals, we get that for x in (−∞, a0)(

ϕ0

ψ0

)
(x, t) =

θ(x− a0 + c0(t− t0))

2c0

(
c0 µ0

ν0 c0

)(
ϕ0

ψ0

)
(a0, t+

x− a0

c0
).

(3.17)
For the second interval, (a0, a1), we let A be the Green's function

G1(x, t, x′, t′) =
θ(t′ − t)

2c1
{
(
c1 µ1

ν1 c1

)
δ(x− x′ + c1(t− t′))

+

(
c1 −µ1

−ν1 c1

)
δ(x− x′ − c1(t− t′))}. (3.18)

where c21 = µ1ν1. In this interval, the functions ϕ = ϕ1, ψ = ψ1 are the solutions
to the system

ϕ1t = µ1ψ1x + j,

ψ1t = ν1ϕ1x,

m

L1

(
ϕ1

ψ1

)
=

(
j
0

)
. (3.19)

Inserting (3.18), (3.19) and S = (a0, a1) in the integral identity (3.3), using the
vanishing initial conditions and the fact that the Green's function is advanced,
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we get for x in the interval (a0, a1).(
ϕ1

ψ1

)
(x, t) =

∫
S×T

dx′dt′G1(x′, t′, x, t)

(
j
0

)
(x′, t′)

−
∫ t1

t0

dt′B1(a1, t
′, x, t)

(
ϕ1

ψ1

)
(a1, t)

+

∫ t1

t0

dt′B1(a0, t
′, x, t)

(
ϕ1

ψ1

)
(a0, t), (3.20)

after interchanging primed and unprimed variables.
The function B1 is from (3.5)

B1(x′, t′, x, t) = −θ(t− t
′)

2
{
(
c1 µ1

ν1 c1

)
δ(x− x′ + c1(t− t′))

+

(
−c1 µ1

ν1 −c1

)
δ(x− x′ − c1(t− t′))}. (3.21)

Inserting (3.18) and (3.21) into (3.20), we get after changing variables to the
arguments in the delta functions that for x in (a0, a1)(

ϕ1

ψ1

)
(x, t) =

1

2c21

(
c1 −µ1

−ν1 c1

)∫ x

a0

dx′θ(c1(t− t0)− (x− x′))
(
j

0

)
(x′, t− x− x′

c1
)

+
1

2c21

(
c1 µ1

ν1 c1

)∫ a1

x

dx′θ(c1(t− t0)− (x′ − x))

(
j

0

)
(x′, t− x′ − x

c1
)

+ θ(c1(t− t0)− (a1 − x))
1

2c1

(
c1 µ1

ν1 c1

)(
ϕ1

ψ1

)
(a1, t−

a1 − x
c1

)

− θ(c1(t− t0)− (x− a0))
1

2c1

(
−c1 µ1

ν1 −c1

)(
ϕ1

ψ1

)
(a0, t−

x− a0

c1
). (3.22)

For the third interval, (a1,∞), we let A be the Green's function

G0(x, t, x′, t′) =
θ(t′ − t)

2c0
{
(
c0 µ0

ν0 c0

)
δ(x− x′ + c0(t− t′))

+

(
c0 −µ0

−ν0 c0

)
δ(x− x′ − c0(t− t′))}. (3.23)
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In this interval, the functions ϕ = ϕ2, ψ = ψ2 are the solutions to the system

ϕ2t = µ0ψ2x + js,

ψ2t = ν0ϕ2x,

m

L0

(
ϕ2

ψ2

)
=

(
js
0

)
. (3.24)

Inserting (3.23), (3.24) and S = (a1,∞) in the integral identity (3.3), using the
initial conditions and the fact that the Green's function is advanced, we get for
x in the interval (a1,∞).(

ϕ2

ψ2

)
(x, t) =

∫
S×T

dx′dt′G0(x′, t′, x, t)

(
js
0

)
(x′, t′)

− lim
R→∞

∫ t1

t0

dt′B0(R, t′, x, t)

(
ϕ2

ψ2

)
(R, t)

+

∫ t1

t0

dt′B0(a1, t
′, x, t)

(
ϕ2

ψ2

)
(a1, t), (3.25)

after interchanging primed and unprimed variables.
Since the arguments of the delta functions in B0 does not change sign in

the interval of integration, for R big enough, it is clear that the second term
in (3.25) will vanish. Inserting (3.23) and (3.16) into the remaining terms of
(3.25), we get after changing variables to the arguments in the delta functions
that for x in (a1,∞)(

ϕ2

ψ2

)
(x, t) =

− θ(c0(t− t0)− (x− a1))
1

2c0

(
−c0 µ0

ν0 −c0

)(
ϕ2

ψ2

)
(a1, t−

x− a1

c0
)

+

(
ϕi
ψi

)
(x, t), (3.26)

where ϕi and ψi are �elds that are entirely determined by the given source js(
ϕi
ψi

)
(x, t) =

1

2c20

(
c0 −µ0

−ν0 c0

)∫ x

a1

dx′θ(c0(t− t0)− (x− x′))
(
js
0

)
(x′, t− x− x′

c0
)

+
1

2c20

(
c0 µ0

ν0 c0

)∫ ∞
x

dx′θ(c0(t− t0)− (x′ − x))

(
js
0

)
(x′, t− x′ − x

c0
).

Taking the limit of the integral identities (3.17),(3.22) and (3.26) as x approaches
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the boundary points {a0, a1} from inside and outside the interval (a0, a1) we get(
c0 −µ0

−ν0 c0

)(
ϕ0

ψ0

)
(a0, t) = 0, (3.27)

(
c1 µ1

ν1 c1

)(
ϕ1

ψ1

)
(a0, t) =

1

c1

(
c1 µ1

ν1 c1

)∫ a1

a0

dx′θ(c1(t− t0)− (x′ − a0))

(
j

0

)
(x′, t− x′ − a0

c1
)

+ θ(c1(t− t0)− (a1 − a0))

(
c1 µ1

ν1 c1

)(
ϕ1

ψ1

)
(a1, t−

a1 − a0

c1
), (3.28)

(
c1 −µ1

−ν1 c1

)(
ϕ1

ψ1

)
(a1, t) =

1

c1

(
c1 −µ1

−ν1 c1

)∫ a1

a0

dx′θ(c1(t− t0)− (a1 − x′))
(
j

0

)
(x′, t− a1 − x′

c1
)

− θ(c1(t− t0)− (a1 − a0))

(
−c1 µ1

ν1 −c1

)(
ϕ1

ψ1

)
(a0, t−

a1 − a0

c1
), (3.29)

(
c0 µ0

ν0 c0

)(
ϕ2

ψ2

)
(a1, t) = 2c0

(
ϕi
ψi

)
(a1, t). (3.30)

Continuity of the �elds at the boundary points {a0, a1}, gives us two additional
equations, (

ϕ0

ψ0

)
(a0, t) =

(
ϕ1

ψ1

)
(a0, t), (3.31)(

ϕ1

ψ1

)
(a1, t) =

(
ϕ2

ψ2

)
(a1, t). (3.32)

Altogether we have six linear equations for the four vectors(
ϕ0

ψ0

)
(a0, t),

(
ϕ1

ψ1

)
(a0, t),

(
ϕ1

ψ1

)
(a1, t),

(
ϕ2

ψ2

)
(a1, t).

Thus our system (3.27)-(3.32) is overdetermined just like it was for model 1.
And just like for model 1, the system (3.27)-(3.32) contains equations that are
redundant. Mathematically this is re�ected in the fact that the determinant of
the matrices (

cj ±µj
±νj cj

)
, j = 0, 1 ,

are all zero. For the �rst toy model, it was obvious which two equations were
redundant. Here it is not immediately clear which equations we can remove, and
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this will also be the case if we write down the EOS formulation for more general
systems of PDEs, like for example Maxwell's equations. For the system (3.27)-
(3.32), it is not very di�cult to identify the redundant equations, but we would
rather introduce a di�erent approach that is generally quite useful when working
with the EOS formulations of PDEs. This is the method that has been used
by the research community to calculate electromagnetic scattering from linear
homogeneous scattering objects using a time dependent integral formulation of
Maxwell's equations. The reason that this method has been used for Maxwell's
equations has not been clearly stated in the research literature. It has taken the
form of a trick that is needed to achieve stability and accuracy for the numerical
implementation of the boundary formulation of electromagnetic scattering.

The point is that, although the system (3.27)-(3.32) is singular, we know
from its construction that it has a solution consisting boundary values coming
from the unique solution to the system (3.1),(3.2).

In terms of linear algebra, the situation is that for two given singular matrices
A and B, the system

Ax = b1,

Bx = b2, (3.33)

has a solution, x. Let us assume that there are numbers a and b such that

det(aA+ bB) 6= 0.

Given (3.33) it is clear that x is a solution to the linear system

(aA+ bB)x = ab1 + bb2, (3.34)

and since the system (3.34) is nonsingular, x is the unique solution to the system.
Finding numbers such that aA+ bB is nonsingular is in general not di�cult.

Let us apply this approach to the system (3.27)-(3.32). Simply adding to-
gether the equations give us a matrix(

c0 −µ0

−ν0 c0

)
+

(
c1 µ1

ν1 c1

)
=

(
c1 + c0 µ1 − µ0

ν1 − ν0 c1 + c0

)
,

and

det

(
c1 + c0 µ1 − µ0

ν1 − ν0 c1 + c0

)
= 2c1c0 + µ0ν1 + µ1ν0,

which is nonzero since all the numbers νi, µj , cj are positive by assumption. In
a similar way, adding together (3.29) and (3.30) will result in a nonsingular
system. Thus from the singular system (3.27)-(3.32) we get the nonsingular
system(

c1 + c0 µ1 − µ0

ν1 − ν0 c1 + c0

)(
ϕ1

ψ1

)
(a0, t) =

1

c1

(
c1 µ1

ν1 c1

)∫ a1

a0

dx′θ(c1(t− t0)− (x′ − a0))

(
j

0

)
(x′, t− x′ − a0

c1
)

+ θ(c1(t− t0)− (a1 − a0))

(
c1 µ1

ν1 c1

)(
ϕ1

ψ1

)
(a1, t−

a1 − a0

c1
), (3.35)
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(
c0 + c1 µ0 − µ1

ν0 − ν1 c1 + c0

)(
ϕ1

ψ1

)
(a1, t) =

1

c1

(
c1 −µ1

−ν1 c1

)∫ a1

a0

dx′θ(c1(t− t0)− (a1 − x′))
(
j

0

)
(x′, t− a1 − x′

c1
)

− θ(c1(t− t0)− (a1 − a0))

(
−c1 µ1

ν1 −c1

)(
ϕ1

ψ1

)
(a0, t−

a1 − a0

c1
)

+ 2c0

(
ϕi
ψi

)
(a1, t). (3.36)

The system (3.35),(3.36), which determine the boundary values of the �elds in
term of internal and external current densities, together with the di�erential
equations (3.1), restricted to the inside the scattering object (a0, a1), constitute
the EOS formulation for model 2.

3.2 Numerical implementation of the EOS formulation

The numerical implementation of model 2 contains the same elements as the
ones we introduced for model 1. Thus we �rst de�ne a nonuniform space grid
inside the scattering object, (a0, a1),

xi = a0 + (i+ 0.5)∆x, i = 0, 1, · · · , N − 1, (3.37)

where ∆x = a1−a0
N . The grid points (3.37) are the internal nodes for model 2.

We also introduce the discrete time grid

tn = n∆t, n = 0, 1, · · · .

The values of the parameter ∆t will of course, like for model 1, be bounded by
the requirement of stability for the scheme. We apply the Lax-Wendro� method
to the �rst three equations of (3.1) and the modi�ed Euler's method to the last
equation of (3.1). For interval (a0, a1), the numerical iteration can be written
as

ϕn+1
i =ϕni + ∆t (µ1

∂ψ

∂x
+ j)ni +

1

2
(∆t)2(µ1ν1

∂2ϕ

∂x2
+ f)ni ,

ψn+1
i =ψni + ∆t (ν1

∂ϕ

∂x
)ni +

1

2
(∆t)2(µ1ν1

∂2ψ

∂x2
+ ν1

∂j

∂x
)ni ,

ρn+1
i =ρni + ∆t (− ∂j

∂x
)ni +

1

2
(∆t)2(−∂f

∂x
)ni ,

j̄n+1
i =jni + ∆t fni ,

jn+1
i =

1

2
(jni + j̄ni + ∆t f(ρn+1

i , ϕn+1
i , j̄n+1

i )),

(3.38)

where f = (α − βρ)ϕ − γj. The �nite di�erence approximations for the �elds
and the current density at all internal nodes, except the two nodes closest to
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the boundary points a0 and a1, are given by the standard expressions

(
∂φ

∂x
)ni =

φni+1 − φni−1

2∆x
,

(
∂2φ

∂x2
)ni =

φni+1 − 2φni + φni−1

(∆x)2
, φ = ϕ,ψ, j,

(3.39)

for i = 1, 2, · · · , N − 2,. For the two internal nodes closest to the boundary
points, we need to use alternative di�erence rules because the grid is nonuniform
in the domain around these nodes

(
∂φ

∂x
)n0 = − 1

3 ·∆x
(4φna0 − 3φn0 − φn1 ),

(
∂2φ

∂x2
)n0 =

4

3 · (∆x)2
(2φna0 − 3φn0 + φn1 ),

(
∂φ

∂x
)nN−1 =

1

3 ·∆x
(4φna1 − 3φnN−1 − φnN−2),

(
∂2φ

∂x2
)nN−1 =

4

3 · (∆x)2
(2φna1 − 3φnN−1 + φnN−2),

(
∂j

∂x
)n0 =

1

2∆x
(4jn1 − 3jn0 − jn2 ),

(
∂j

∂x
)nN−1 = − 1

2∆x
(4jnN−2 − 3jnN−1 − jnN−3),

(3.40)

where φ = ϕ,ψ. The discretization of the boundary update rules (3.35) and
(3.36) are(

c1 + c0 µ1 − µ0

ν1 − ν0 c1 + c0

)(
ϕ

ψ

)
(a0, tn+1)

=
∆x

c1

(
c1 µ1

ν1 c1

)N−1∑
i=0

θ(tn+1 − t0 −
xi − a0

c1
)

(
j

0

)
(xi, tn+1 −

xi − a0

c1
) (3.41)

+

(
c1 µ1

ν1 c1

)
θ(tn+1 − t0 −

a1 − a0

c1
)

(
ϕ

ψ

)
−

(a1, tn+1 −
a1 − a0

c1
),

(
c1 + c0 µ0 − µ1

ν0 − ν1 c1 + c0

)(
ϕ

ψ

)
(a1, tn+1) =

∆x

c1

 c1 −µ1

−ν1 c1

N−1∑
i=0

θ(tn+1 − t0 −
a1 − xi
c1

)

(
j

0

)
(xi, tn+1 −

a1 − xi
c1

)

−
(
−c1 µ1

ν1 −c1

)
θ(tn+1 − t0 −

a1 − a0

c1
)

(
ϕ

ψ

)
+

(a0, tn+1 −
a1 − a0

c1
) (3.42)

+ 2c0

(
ϕi
ψi

)
(a1, tn+1).
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where

(
ϕi
ψi

)
(a1, tn+1) are determined by the external source. The iteration

(3.38) with the boundary update rules (3.41), (3.42) supplemented by the �nite
di�erence rules (3.39) and (3.40) constitute our numerical implementation of
the EOS formulation for model 2.

3.3 Arti�cial source test

The source extended model 2, is given by

ϕt = µ1ψx + j + g1,

ψt = ν1ϕx + g2,

ρt = −jx + g3,

jt = (α− βρ)ϕ− γj + g4.

For the source extended model 2, any given set of functions ϕ̂, ψ̂, ĵ and ρ̂ is a
solution if the sources are chosen to be

ĝ1 = ϕ̂t − µ1ψ̂x − ĵ,

ĝ2 = ψ̂t − ν1ϕ̂x,

ĝ3 = ρ̂t + ĵx,

ĝ4 = ĵt − (α− βρ̂)ϕ̂+ γĵ.

The boundary update rules for the source extended model 2 are changed
into(

c1 + c0 µ1 − µ0

ν1 − ν0 c1 + c0

)(
ϕ1

ψ1

)
(a0, t) =

1

c1

(
c1 µ1

ν1 c1

)∫ a1

a0

dx′θ(c1(t− t0)− (x′ − a0))

(
j + ĝ1

ĝ2

)
(x′, t− x′ − a0

c1
)

+ θ(c1(t− t0)− (a1 − a0))

(
c1 µ1

ν1 c1

)(
ϕ1

ψ1

)
(a1, t−

a1 − a0

c1
),

(
c0 + c1 µ0 − µ1

ν0 − ν1 c1 + c0

)(
ϕ1

ψ1

)
(a1, t) =

1

c1

(
c1 −µ1

−ν1 c1

)∫ a1

a0

dx′θ(c1(t− t0)− (a1 − x′))
(
j + ĝ1

ĝ2

)
(x′, t− a1 − x′

c1
)

− θ(c1(t− t0)− (a1 − a0))

(
−c1 µ1

ν1 −c1

)(
ϕ1

ψ1

)
(a0, t−

a1 − a0

c1
)

+ 2c0

(
ϕi
ψi

)
(a1, t).
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In Fig 3.1 we compare the numerical and exact solution of the EOS formulation

Figure 3.1: Comparison between the numerical solution and the exact solution
for the source extended model 2. Parameter values used are a0 = 0.0, a1 =
3.0, N = 1600, α = −1.0, β = 0.3, γ = 8.0, µ = 2.0, ν = 2.0, µ0 = 1.0, ν0 = 1.0,
A1 = 1.0, A2 = 1.0, A3 = 1.0, A4 = 1.0, b1 = 1.0, b2 = 1.0, α1 = 4.0, β1 =
4.0, α2 = 4.0, β2 = 4.0, xo = 6.0, ts = 1.0, xj = 1.1, xρ = 1.3, tj = 1.2, tρ =
1.3, δ1 = 0.3, δ2 = 0.32, δ3 = 1.0, δ4 = 0.33.

for the source extended model 2. The exact solution we used for this test is

ϕ̂(x, t) =
2A1

π
arctan(b21t

2)e−α1(x−xo+β1(t−ts))2 ,

ψ̂(x, t) =
2A2

π
arctan(b22t

2)e−α2(x−xo+β2(t−ts))2 ,

ĵ(x, t) = A3e
−

(x−xj)
2

δ21
−

(t−tj)
2

δ22 ,

ρ̂(x, t) = A4e
− (x−xρ)2

δ23
− (t−tρ)2

δ24 .

Our implementation clearly passes the arti�cial source test with �ying colors.
Fig 3.2 shows scattering of a wave generated by an external source calculated
from our numerical implementation of the EOS formulation for model 2. The
source we used is given by

js = Ae−α1(x−xo)2−β1(t−ts)2 .
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Figure 3.2: A numerical solution of the EOS formulation for model 2 generated
by an external source. The parameter values used are a0 = 0.0, a1 = 3.0, N =
1600, α = −1.0, β = 0.3, γ = 8.0, µ = 2.0, ν = 2.0, µ0 = 1.0, ν0 = 1.0, A =
1.0, α1 = 36, β1 = 4, ts = 1.0, xo = 4.0.

A Stability of the numerical schemes for model

1 and model 2

As mentioned in the main text, we do not expect the two 1D models to be
representative for stability issues pertaining to numerical implementation to
EOS formulations in general. However, there is an issue that is worth discussing
here. From the EOS formulation of model 1, one might expect that there would
be severe stability issues associated with any numerical approximation. The
reason is that the basic equation for the �eld inside the domain (a0, a1)

ϕt = c1ϕx, (A.1)

uncoupled for simplicity from the internally generated current density j, can
only satisfy the boundary condition at the right boundary a1 induced by the
external source. This is because equation (A.1) is of order one in space deriva-
tives. Consequently, one cannot impose any additional boundary condition at
a0 that is independent of the one imposed at a1. The EOS formulation evades
this problem in this simpli�ed setting by imposing the boundary condition

ϕ1(a0, t) = θ(a0 − a1 + c1(t− t0))ϕ(a1, t−
a1 − a0

c1
), (A.2)
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which depends on the boundary condition at a1 in exactly the way it needs for
a solution, for the boundary value problem for (A.1) on the interval (a0, a1), to
exist. However, this existence seems precarious. If we miss the right value by
even a small amount in a numerical scheme, are we not then solving a boundary
value problem for (A.1) where the two boundary conditions are not related in
the right way, and is there not a danger that this non-existence will manifest
itself in a numerical instability? In fact, could it be that the restricted domain
of stability of the EOS formulation, as noted in the main text, is a result of
the very particular delay-boundary conditions imposed because of the EOS for-
mulation? If this was true it would be important because such delay boundary
conditions are a general feature of EOS formulations. We will however now show
that the restricted domain of stability for the 1D models are in fact caused by
nonuniformity rather than delayed type boundary conditions.

For this purpose we introduce a family of grids of the interval (a0, a1) that are
parametrized by ε. The grid is uniform for ε = 0 and is equal to the nonuniform
grid we used for our numerical implementations for model 1 and 2 when ε = 1.

xi = a0 + (i+ 1− 0.5ε)∆x, i = 0, 1, · · · , N − 1,

where ε ∈ [0, 1] and

∆ =
N + ε

N(N + 1)
(a1 − a0).

To derive a �nite di�erence scheme for (A.1), using the Lax-Wendro� approach,
as in the main text, we must to impose some boundary conditions. In the
end, these conditions do not in�uence the stability of the scheme. Therefor,
for simplicity, we impose �xed boundary conditions. Given this the numerical
scheme takes the form

Un+1 = M1Un + b, (A.3)

where U = (ϕ) is a N vector, M1 is a matrix of order N ×N given by

M1 =


η1 + c1 η2 γ1 + c1 γ2 0 0 0 . . . 0
κ1 − c1 κ2 χ κ1 + c1 κ2 0 0 . . . 0

0 κ1 − c1 κ2 χ κ1 + c1 κ2 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 0 κ1 − c1 κ2 χ κ1 + c1 κ2

0 . . . 0 0 0 γ3 − c1 γ4 η3 − c1 η4



where the entries of the matrix depend on the discrete grid but not on the
boundary conditions and where b is determined by the boundary values. For
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the numerical schemes in toy model 1,

η1 = 1− ∆2 + ∆1 ∆

δ1
τ2, η2 =

∆2 −∆2
1

δ1
D,

η3 = 1− ∆2 + ∆2 ∆

δ2
τ2, η4 =

∆2 −∆2
2

δ2
D,

γ1 =
∆1 ∆

δ1
τ2, γ2 =

∆2
1

δ1
D,

γ3 =
∆2 ∆

δ2
τ2, γ4 =

∆2
2

δ2
D,

κ1 =
1

2
τ2, κ2 =

1

2
D,

χ = 1− τ2,

where

∆t = τ
∆

c1
, D =

∆t

∆
,

∆1 = (1− 1

2
ε)∆, ∆2 =

N − 1
2Nε+ 1

2ε
2

N + ε
∆,

δ1 = ∆2
1 + ∆1 ∆, δ2 = ∆2

2 + ∆2 ∆.

Let us look for a constant solution to (A.3), U = U∗. For U∗ to be a solution,
we must have

(M1 − I)U∗ = b, (A.4)

where I is identity matrix of order N ×N . In order to have a unique solution
for (A.4), λ = 1 must not be an eigenvalue for M . Thus, the unique solution
will be given by

U∗ = (M1 − I)−1b.

De�ne now yn by
Un = yn + U∗.

yn+1 + U∗ = M1(yn + U∗) + b,

m
yn+1 = M1yn. (A.5)

The matrix M1 is not symmetric, but numerical investigations show that it in
general has N di�erent eigenvalues, λi, i = 1, 2, · · · , N . Then the corresponding
eigenvectors, yi, are then independent and form a basis for IR. Let now y0 ∈ IR
be an initial value for (A.5). Then we have

y0 =
∑
i

diyi,

m

yn = Mn
1 y0 =

∑
i

diλ
n
i yi.
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We can see that if there exists any eigenvalue that is located outside the unit
circle, then ‖yn‖ → ∞. To obtain a stable numerical solution to model (A.1),
the eigenvalues of M1 must satisfy

max
i
|λi | < 1.

Using this result we �nd that the stability domain as a function of ε is of the
form

τ1(ε)
∆x

c1
< ∆t < τ2(ε)

∆x

c1
. (A.6)

Figure A.1: The stability domain for the EOS formulation of (A.1).

It is evident from Fig A.1 that the restriction on the stability domain for
the EOS formulation of (A.1), as compared to the Lax-Wendro� scheme for the
case of free space propagation, is caused by the introduction of a nonuniform
grid for the EOS formulation.

For model 2 we �nd the same stability domain as illustrated in Fig A.1 for
model 1. That there should be some relation between the stability of these
two models is perhaps not very surprising at the level of PDEs. After all, if we
decouple the �elds in model 2 from the current, the resulting system is equivalent
to the wave equation and the solutions of that equation are sums of left and
right going waves of the type described by Model 1. However, at the level of
numerical schemes the coinciding of the stability domains for the two models is
somewhat less obvious. Note that we can write the matrix M1, determining the
stability for model 1, in the form

M1 = m1 + cm1,
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where m1 and m2 are N ×N matrices given by,

m1 =



η1 γ1 0 0 0 . . . 0
κ1 χ κ1 0 0 . . . 0
0 κ1 χ κ1 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 0 κ1 χ κ1

0 . . . 0 0 0 γ3 η3


,

m2 =



η2 γ2 0 0 0 . . . 0
−κ2 0 κ2 0 0 . . . 0

0 −κ2 0 κ2 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 0 −κ2 0 κ2

0 . . . 0 0 0 − γ4 − η4


.

Given this, the 2N × 2N matrix determining the stability of model 2 is given
by

M2 =

[
m1 µ1m2

−ν1m2 m1

]
.

The matrix M2 clearly has a block structure and the same blocks give a linear
decomposition of M1 into a sum of two terms. However, we were not able use
these commonalities between M1 and M2 to explain the fact that model 1 and
model 2 have, not approximately, but exactly the same domain of stability as
far as we can determine. Note that the occurence of a stability domain like
(A.6) might be a universal feature of EOS formulations. We have for example
found a stability domain of this type in the EOS formulation of 3D Maxwell's
equations. There, however, it is clear that the delay boundary conditions is at
least partly responsible for the width of the stability domain.
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