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Abstract

In this paper we discuss some of the mathematical and numerical issues that
have to be addressed when calculating wave scattering using the EOS approach.
The discussion is framed in context of light scattering by objects whose optical
response can be of a nonlinear and/or inhomogeneous nature. The discussions
address two issues that, more likely than not, will be part of any investigation
of wave scattering using the EOS approach.

1 Introduction

A new hybrid numerical approach for solving linear and nonlinear scattering
problems, the Ewald Oseen Scattering(EOS) formulation, has recently been
introduced and applied to the cases of 1D transient wave scattering [1] and
3D light scattering [2]. The approach combines a domain-based method and a
boundary integral representation in such a way that the wave fields inside the
scattering objects are updated in time using the domain-based method, while
the integral representation is used to update the boundary values of the fields,
which are required by the inside domain-based method. In such a way, for the
numerical implementations, no numerical grids outside the scattering objects are
needed. This greatly reduces the computational complexity and cost compared
to fully domain based methods like the Finite Difference Time Domain(FDTD)
method or the Finite Element Methods. The method can handle inhomogeneous
and/or nonlinear optical response, and include the time dependent Boundary
Element Method(TBEM), as a special case.

For the case of 1D transient wave scattering [1], the method solves the model
equations accurately and efficiently, but we don’t expect the 1D case to be fully
representative for the problems and issues that need to be resolved, while using
the EOS formulation to calculate wave scattering. We do, however, expect the
case of 3D light scattering [2] to be fairly representative with respect to which
problems arise, and also the computational and mathematical severity of these
problems. We have seen three types of mathematical and computational issues
arise for the case of light scattering which we believe are to be found in any
nontrivial application of the EOS formulation to wave scattering.
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Firstly, we have the issue of numerical stability. Instabilities in numerical
implementations of the EOS formulation can arise from discretization of the do-
main part of the algorithm but also from discretization of the boundary update
part of the algorithm. The numerical instability arising from the boundary part
of the algorithm has been noted earlier in the context of transient light scat-
tering from objects that has a linear homogeneous optical response. For this
situation, realized for example in antenna theory, the boundary part of the EOS
algorithm can be disconnected from the domain part of the algorithm, which
in this case can be discarded. The EOS formulation becomes a pure boundary
update algorithm which is solving a set integro-differential equations located
on the boundary of the scattering objects. These integro-differential equations,
which are the defining equations for TBEM, are subject to an instability that,
in many common situations, strikes at late times. This late time instability is a
major nuisance, and has prevented TBEM from being more widely applied than
it is today. The sources of these instabilities are not yet fully understood, but
we believe that our investigation of light scattering using the EOS approach,
gives some new insight into the origin of these instabilities.

Even without a true understanding of the underlying causes of the late time
instability, efforts have been made and several techniques have, over the last
several decades, been developed with the goal of improving the stabilities of the
numerical schemes designed to solve the integro-differential equations underlying
TBEM.

Broadly speaking, there are two different directions that has been pursued.
One direction is to delay or remove the late time instability by applying in-
creasing accurate spatial integration schemes [3–9]. For instance Danile. S.
Weiler and his co-authors have published a series of articles focused on illus-
trating the dependence of the stability on the different numerical integration
schemes [3–6]. The other direction is aimed at designing more stable time dis-
cretization schemes. M. J. Bluck and his co-authors developed a stable, but
implicit numerical method, [8, 9] for the integro-differential equations underly-
ing TBEM, for the case when the magnetic response is the dominating one.
These are the so called magnetic field integral equations. Some authors have
reported some success in mitigating the instability by both making better ap-
proximations to the integrals and also applying improved algorithms for the
time derivatives [10,11].

Our work has not been directly aimed at contributing to this discussion, but,
as already noted above, the integro-differential equations discussed by these au-
thors can be seen as a special case of our general EOS approach, and we therefore
believe that the insights we have gained on how this long time instability depend
on the different pieces of the EOS algorithm, in particular how it depends on
the material parameters describing the optical response of the scattering object,
do have some relevance to the discussion described above.

Secondly, there is the issue of the singular integrals that appear when the in-
tegral part of the EOS algorithm is discretized. This issue is very much present
in BEM and in TBEM [12–15], but they are more prevalent and severe for the
EOS formulation, where we have to tackle both surface integrals and volume
integrals. We believe that the type of singular integrals, and how to treat them
for the case of light scattering, are fairly representative for the level of com-
plexity one will encounter, while applying the EOS approach to wave scattering
problems. For this reason we find it appropriate to include a section in this
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paper, where we discuss relevant types of integrals, and how to treat them.
Thirdly, the fundamental equations underlying both the TBEM and our

more general EOS approach to transient wave scattering, are retarded in time.
This retardation is unavoidable since their underlying equations can only be de-
rived using space-time Green’s functions. Thus the solutions at a certain time
depend on a values of the solutions from a potentially very long previous interval
of time. Computationally this means that the method can be very demanding
with respect to memory, and it also means that the updating of the boundary
values of the fields, which is done by the boundary part of the EOS algorithm,
can be very costly. Parallel processing, either using a computational cluster or
a shared memory machine can take on these computational tasks. However,
whenever large scale parallel processing is needed, the issue of appropriate par-
titioning of the problem and load balancing inevitably comes into play. In our
work the EOS algorithm was implemented on a large cluster, but we will not in
this paper report on any of the parallel issues that our EOS approach for light
scattering gave rise to. These kind of considerations, which are important in
practical terms, but typically have fairly low generality, are somewhat distinct
from the mathematical and numerical issues that are the focus of the current
paper, and will therefore be reported elsewhere at a later time.

However, the high memory requirement of the EOS approach to light scat-
tering, is something that should be addressed at this point. On the one hand,
the EOS approach represents a large, potentially very large, reduction in mem-
ory use, as compared to fully domain based methods, since only the surface
and inside of the scattering objects has to be discretized. On the other hand,
because of the retardation, there is a large, potentially very large increase in
memory use compared to the memory usage needed by the domain part of the
algorithm. It is appropriate to ask if anything has been gained with respect
to memory usage compared to a fully domain based method like the FDTD
method? We don’t, as of yet, know the answer to this question, and the answer
is almost certainly not going to be a simple one. It will probably depend on the
detailed structure of the problems like the nature of the source, the number,
shape and distribution of scattering objects etc. However, even if the memory
usage for purely domain based methods and our EOS approach are roughly the
same for many problems of interest, our approach avoid many of the sources of
problems that need to be taken into account while using purely domain based
methods. These are problems like stair-casing at sharp interfaces defining the
scattering objects, issues of accuracy, stability and complexity associated with
the use of multiple grids in order to accommodate the possibly different geo-
metric shapes of the scattering objects and the need to minimize the reflection
from the boundary of the finite computational box. The EOS approach is not
subject to any of these problems.

In this paper our effort are aimed towards testing the EOS formulations
of light scattering with respect to implementation complexity and numerical
stability. Thus we illustrate the method by the simplest situation where we
have single scattering object in the form of a rectangular box.

In section 2 we analyze the numerical stability of our EOS scheme for light
scattering by using eigenvalues of the matrix defining the linearized version
of the scheme exactly like for the case of 1D wave scattering [1]. We find,
just like for the 1D case, that the internal numerical scheme, Lax-Wendroff for
our case determines a stability interval for the time step. In the 1D case, the
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stability interval of the EOS formulation is purely determined by the internal
numerical scheme. However for the 3D case, there is another lower limit of the
stability interval determined by the integral part of the scheme which leads to
the situation where the lower limit of the stability interval is determined by the
integral equations, and the upper limit is determined by the internal numerical
scheme. We find that the late time instability is highly depended on the features
of the scattering materials and specifically, it is directly related to the values
of the relative magnetic permeability µ1 and the relative electric permittivity
ε1. Using this we prove that, for the relative permeability and permittivity in a
certain range, the numerical scheme for our EOS formulation of light scattering,
works well and is without any late time instabilities. The late time instability
is only observed for high relative electric permittivity or high relative magnetic
permeability. We also observe that the lower limit of the stability interval for
the time step is more sensitive to relative differences in magnetic permeability
µ1 than electric permittivity ε1 between the inside and outside of the scattering
objects.

In section 3 we present the singular integrals that appear in our EOS formu-
lation for light scattering and the techniques we use to reduce their calculation
to a singular core, which we calculate exactly, and a regular part which we
calculate numerically.

2 Stability
In this section we discuss instabilities showing up at late times when we dis-
cretize the EOS formulation for light scattering. Whether or not the late time
instability show up, depends on the values of the material parameters defining
the problem. The overall method is far to complex for an analytical investigation
of the stability to be feasible, but using numerical calculation of the eigenvalues
of a linearization of the system of difference equations defining the numerical
implementation of the EOS formulation, supplemented by running of the full
algorithm, we find that the domain part and the boundary part of the algorithm
contribute to the instability separately and in different ways. The focus of this
section is to disentangle these two contributions to the instability. For the do-
main part of the algorithm we use Lax-Wendroff, which is an explicit method.
The discrete grid inside the scattering object must, for the EOS formulation of
light scattering, support both discrete versions of the partial derivatives, and
also discretizations of the integrals defining the boundary update part of the
algorithm. For this reason the grid is nonuniform close to the boundary. The
discretization of the domain part of the algorithm takes the form of a vector
iteration

Qn+1 = MQn, (2.1)

where Q is a vector containing the components of the electric field and the
magnetic field at all points of the grid with a size 6×Nx×Ny ×Nz, where Nx,
Ny and Nz are the number of grid points in the x, y and z directions. The entries
of the matrixM are presented in Appendix A. In order to get a stable numerical
solution, as discussed in [1], the largest eigenvalues of the matrix M must have
a norm smaller than 1. For the non-uniform grids and the discretizations in [2],
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we find that the vector iteration (2.1) is stable if

0.005 < τ < 0.48,

where τ = c1∆t/∆x.

Figure 2.1: Numerical solutions from different values of τ. µ1 = 1.0, ε1 =
1.5, µ0 = 1.0, ε0 = 1.0.

Figure 2.1 illustrates the intensity of the electric field at a specific point inside
the object, as a function of time, for different values of τ . The instability, which
in the TBEM literature is called the late time instability, is illustrated in the
second panel of figure 2.1. As we mentioned in the introduction in the paper,
the term late time instability has been much used in the community that is
focused on time dependent boundary element method. We believe that in their
domain of application, like antenna theory, the physical parameters are such
that the largest eigenvalue for the iteration is always only slightly bigger than
1, like it is in panel two of figure 2.1 . That’s why the instability always shows
up at late times. In panel three of the figure we are deeper into the unstable
domain for τ , and the larges eigenvalue is now so large that it destroys the whole
calculation. The late time instability has thus been transformed into an early
time instability. Note that the outside source in figure 2.1 is the same as in [2].

In our numerical experiments, we found that the stable range of the EOS
formulations is not only restricted by the eigenvalues of the matrix M , but is
also restricted by the boundary integral identities through the relative electric
permittivity ε1 and the relative magnetic permeability µ1. Figure 2.2 shows how
the stability depends on the values of ε1, and figure 2.3 shows how it depends on
the values of µ1. Together, they tell us that increasing the electric permittivity
or the magnetic permeability narrows the stable range. Figure 2.3 also tells us
that µ1 and ε1 don’t affect the stability of the full scheme in the same way. It
seems that the method is more sensitive to µ1 than ε1. After a series of numerical
experiments, our conclusion is that, for an explicit numerical method like the
one we are using, the lower limit of the stable range of the EOS formulation is
restricted by the electric permittivity ε1 and the magnetic permeability µ1 while
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Figure 2.2: Numerical solutions from different values of ε1. τ = 0.45, µ1 =
1.0, µ0 = 1.0, ε0 = 1.0.

Figure 2.3: Numerical solutions from different values of µ1. τ = 0.45, µ0 =
1.0, ε0 = 1.0.

the upper limit of the stable range is determined by the inside domain-based
method. This conjecture is verified by the following two tests.

2.1 Instabilities coming from the domain-based method
For the first test we consider a homogeneous model without current and charge
inside the object which implies µ1 = µ0, ε1 = ε0, J1 = 0 and ρ1 = 0. Under
these assumptions, the electric field and the magnetic field are continuous across
the surfaces,

E− = E+,

B− = B+,

6



where E±and B± are the integral representations of the solutions on the surface
by taking the limit from the inside and the outside of the object respectively.
The electric field inside the object can be calculated by the outside sources
directly

E1(x, t) = −∂t
µ0

4π

ˆ
V0

dV ′J0(x′, T )
|x′ − x| − ∇

1
4πε0

ˆ
V0

dV ′ ρ0(x′, T )
|x′ − x| , (2.2)

where x ∈ V1. (2.2) expresses the exact solution for the inside fields. Also
from [2] we have the boundary integral identity

E+(x, t) = −∂t
µ0

4π

ˆ
V0

dV ′J0(x′, T )
|x′ − x| − ∇

1
4πε0

ˆ
V0

dV ′ ρ0(x′, T )
|x′ − x| , (2.3)

and
B+(x, t) = ∇× µ0

4π

ˆ
V0

dV ′J0(x′, T )
|x′ − x| , (2.4)

for x ∈ S, E+(x, t) and B+(x, t) represent the limits by letting x approach the
surface from the inside of the scattering object. On the other hand, [2] gives
the integral representations for the inside domain by

E1(x, t) = ∂t[
1

4π

ˆ
S

dS
′
{ 1
c1|x′ − x| (n

′ ×E+(x′, T ))×∇′|x′ − x|

+ 1
c1|x′ − x| (n

′ ·E+(x′, T ))∇′|x′ − x|+ 1
|x′ − x|n

′ ×B+(x′, T )}]

− 1
4π

ˆ
S

dS
′
{(n′ ×E+(x′, T ))×∇′ 1

|x′ − x|

+ (n′ ·E+(x′, T ))∇′ 1
|x′ − x| }.

(2.5)

Thus the solution for the domain inside the scattering object can now be cal-
culated in three ways. The first is the exact solution expressed by (2.2), the
second, Method 2, is the Lax-Wendroff method supplied by the exact boundary
values (2.3) and (2.4) , and the third, Method 3, is to calculate the solution us-
ing formula (2.5) which expresses the field values inside the scattering object in
terms of the values of the fields on the boundary. Note that Method 3 uses the
same surface integral expressions as the one that form the boundary part of the
full implementation of our EOS formulation of light scattering. Thus, instabili-
ties in the full algorithm originating from the boundary part of the algorithm,
should appear as instability in Method 3.

Figure 2.4 compare the solutions calculated in these three ways, where µ1, ν1
and τ have been fixed in the stable range. Both Method 2 and Method 3 are
stable and give solutions that agree with the exact solution to high accuracy.
In Figure 2.5, τ has been set to be 0.49, and is thus is larger than the upper
limit of the stable range. The figure shows that Method 2 is now unstable but
Method 3 is still stable and equal to the exact solution to high accuracy. The
outside source in figure 2.4 and figure 2.5 is as same as in [2] and the values of
the parameters are shown under the figure.
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Figure 2.4: Comparison of the intensity of the electric field inside the object at
a specific point calculated by three methods. t0 = 1.5, x0 = −2.0, y0 = 0.0,
z0 = 0.0, τ = 0.45, µ1 = 1.0, ε1 = 1.0, µ0 = 1.0, ε0 = 1.0.

Figure 2.5: Comparison of the intensity of the electric field inside the object at
a specific point calculated by three methods. t0 = 1.5, x0 = −2.0, y0 = 0.0,
z0 = 0.0, τ = 0.49, µ1 = 1.0, ε1 = 1.0, µ0 = 1.0, ε0 = 1.0.

2.2 Instabilities coming from the boundary integral iden-
tities

In order to investigate the dependence of the stability on µ1 and ε1, we set up a
test based on the use of artificial sources as in [2]. The idea is to chose functional
forms for an electromagnetic field, and then calculate the sources, charge density
and current density, needed for making the chosen fields solutions to Maxwell’s
equations driven by the calculated sources

We now calculate the electromagnetic field inside the scattering object in two
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different ways. In Method 1 we use the discretization of the EOS formulation
developed in [2], which combines the Lax-Wendroff method for the domain part
of the algorithm and our discretization of the integral representations of the
boundary fields for the boundary part of the algorithm. Method 2 is to calculate
the inside field values by only using the Lax-Wendroff method supplemented by
the exact boundary values of the electromagnetic field which are the ones we
chose while setting up the artificial sources. Figure 2.6 is the numerical result

Figure 2.6: Comparison of the intensity of the electric field inside the object at
a specific point between the exact solution and the numerical results calculated
by two methods. τ = 0.45, µ1 = 1.0, ε1 = 2.5, µ0 = 1.0, ε0 = 1.0.

where the upper limit of the stable range is kept while the values of µ1 and
ε1 have been chosen to break the lower limit of the stable range of the EOS
formulations. It shows that even though the lower limit of the stable range has
been broken, Method 2, which only involves the Lax-Wendroff method works
perfectly. 2.5 and 2.6 tell us that the changing of the lower limit does not effect
the stability of the Lax-Wendroff method and the changing of upper limit does
not effect the stability of the surface integrals. For a general application where
the source is located outside the object and there are current density and electric
density inside the scattering object, the EOS formulations does have a range for
a stable numerical implementation. The upper limit of the range is determined
by the Lax-Wendroff method due to the non-uniform grids and the lower limit
is determined by the changing µ1 and ε1. The setting up of the artificial sources
and the values of the parameters in figure 2.6 are the same as the artificial
sources in [2]. From figure 2.5 and figure 2.6, we can also see that before the
instabilities show up, both the EOS formulations and the Lax-Wendroff method
solve the equations accurately.

3 Calculations of the singular integrals
In this section we introduce a technique to accurately calculate integrals with
singularities which can be applied for both the singular volume integrals and the
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singular surface integrals occurring in the EOS formulations of the 3D Maxwell’s
equations. Here we illustrate the technique by calculating one type of singular
volume integral

f1 =
˚

Vi,j,k

1
|x′ − xp|

dV =
˚

Vi,j,k

1
r

dV, (3.1)

where the integral domain Vi,j,k is adjacent to the surfaces of the scattering
object and given by

Vi,j,k = [xa, xa + ∆x]× [yj −
∆y
2 , yj + ∆y

2 ]× [zk −
∆z
2 , zk + ∆z

2 ],

with surfaces Sm, m = 1, 2, · · · , 6. Here, ∆x, ∆y and ∆z are the grid parameters
in x, y and z directions respectively.

The point xp
xp = (xa, yj , zk),

is centered on one of the surfaces of the scattering object. The geometry is
illustrated in figure 3.1, where nm is the unit normal vector on surface Sm
pointing out of Vi,j,k.

Figure 3.1: The integral domain of the singular integral

The components of the integration variable in (3.1) are given by

x′ = (x′, y′, z′),

and let us introduce the quantity

r = x′ − xp,

with r = |r|.
We want to apply the divergence theorem on (3.1), and therefore need to

find a function ϕ(r) that satisfies

∇ · (rϕ(r)) = 1
r
,

or equivalently
3ϕ(r) + rϕ′(r) = 1

r
.
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Solving the above equation, we get

ϕ(r) = 1
2r .

Because of the singularity on S1, we can not apply the divergence theorem
directly, however we can write f1 as

f1 = 1
2(

6∑
m=2

¨
Sm

1
r

r · nm dS + lim
ε→0

¨
Sε

1
r

r · nε dS +
¨
SΩ

1
r

r · n1 dS),

where Sε is a hemispherical surface of radius ε centered at xp and SΩ is the rest
of the surface S1 with a disk of radius ε around xp has been removed. nε is the
unit normal vector on Sε, pointing out of Vi,j,k. nm is the unit normal vector
on Sm, pointing out of Vi,j,k.

For the integral over SΩ, we have

r = (0, y′ − yj , z′ − zk)

and
n1 = (−1, 0, 0),

thus we get ¨
SΩ

1
r

r · n1 dS = 0.

For the integral over Sε, we use the spherical coordinate system,

r = ε(cos θ sinϕ, sin θ sinϕ, cosϕ),

and
nε = (cos θ sinϕ, sin θ sinϕ, cosϕ),

where ε, ϕ, θ are respectively the radial distance, polar angle and azimuthal
angle, so that

lim
ε→0

¨
Sε

1
r

r · nε dS = lim
ε→0

1
ε

ˆ 2π

0

ˆ π
2

−π2
ε(cos θ sinϕ, sin θ sinϕ, cosϕ)

· (cos θ sinϕ, sin θ sinϕ, cosϕ)ε2 sinϕdθ dϕ
= 0.

Defining
sm =

¨
Sm

1
r

r · nm dS,

f1 can be written as

f1 = 1
2

6∑
m=2

sm. (3.2)

(3.2) is not singular any more and can be calculated by 2D Gaussian quadrature.
However we will compute f1 by reducing the surface integral into a line integral,
which is also the approach we use to calculate the singular surface integrals
appearing in the implementation discussed in this paper.
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We first consider the integral over S2. The geometry is shown in figure 3.2.

Figure 3.2: Surface S2

As shown in figure 3.2, the surface S2 is bounded by the union of four straight
lines L2n, n = 1, 2, 3, 4. On this surface we have

r = (x′ − xa,
1
2∆y, z′ − zk)

and the unit normal is
n2 = (0,−1, 0),

so that
s2 = 1

2∆y
¨
S2

1√
(x′ − xa)2 + 1

4∆y2 + (z′ − zk)2
dS.

The goal is to use the divergence theorem on this surface integral and thereby
reduce it to line integrals over the four lines that forms the boundary of S2. We
therefore seek a function ϕ(r̄) that satisfies

∇ · (r̄ϕ(r̄)) = 1√
r̄2 + 1

4∆y2
,

where r̄ = (x′ − xa, z′ − zk) and r̄ = |r̄|. This equation can be rewritten in the
form

2ϕ(r̄) + rϕ′(r̄) = 1√
r̄2 + 1

4∆y2
.

Solving the above equation we get

ϕ(r̄) =

√
r̄2 + 1

4∆y2

r̄2 .

Using the divergence theorem and taking into account of the singularity at

x̄ = (xa, zk)

on L21, we get

s2 = 1
2∆y(

4∑
n=2

ˆ
L2n

ϕ(r̄)r̄ · n̄n dL+ lim
ε→0

ˆ
Lε

ϕ(r̄)r̄ · n̄ε dL+
ˆ
LΩ

ϕ(r̄)r̄ · n̄1 dL)
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where Lε is a semicircle with radius ε centered at point x̄ and LΩ is the rest of
L21. Here n̄n is the unit normal of L2n, pointing out of S2, and n̄ε is the unit
normal of Lε, pointing out of S2.

For the integral over LΩ, we have

r̄ = (0, z′ − zk),

and
n̄1 = (−1, 0),

so that ˆ
LΩ

√
r̄2 + 1

4∆y2

r̄2 (0, z′ − zk) · (−1, 0) dL = 0. (3.3)

For the integral over Lε, using the polar coordinates, we have

r̄ = ε(cos θ, sin θ),

and
n̄ε = −(cos θ, sin θ),

so that

lim
ε→0

ˆ
Lε

√
r̄2 + 1

4∆y2

r̄2 r̄ · n̄ε dL

= − lim
ε→0

ˆ π
2

−π2
ε(cos θ, sin θ) · (cos θ, sin θ)

√
ε2 + 1

4∆y2

ε2
εdθ

= −1
2∆yπ.

(3.4)

Summing up (3.3) and (3.4) gives

l21 = −1
2∆yπ.

Thus s2 is expressed by

s2 = 1
2∆y

4∑
n=1

l2n,

where

l22 = 1
2∆z

ˆ xa+∆x

xa

√
(x′ − xa)2 + 1

4∆y2 + 1
4∆z2

(x′ − xa)2 + 1
4∆z2 dx′,

l23 = ∆x
ˆ zk+ 1

2 ∆z

zk− 1
2 ∆z

√
∆x2 + 1

4∆y2 + (z′ − zk)2

∆x2 + (z′ − zk)2 dz′,

and due to the symmetry of the integrand r̄ϕ(r̄) on xz plane

l24 = l22.
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So finally we have
s2 = 1

2∆y(l21 + 2l22 + l23).

Due to the symmetry of r in Vi,j,k along y direction, we have

s5 = s2.

The calculation of s3 is similar to the one of s2 with the final result

s3 = 1
2∆z(l31 + 2l32 + l33),

where

l31 = −1
2∆zπ,

l32 = 1
2∆y

ˆ xa+∆x

xa

√
(x′ − xa)2 + 1

4∆z2 + 1
4∆y2

(x′ − xa)2 + 1
4∆y2 dx′,

l33 = ∆x
ˆ yj+ 1

2 ∆y

yj− 1
2 ∆y

√
∆x2 + 1

4∆z2 + (y′ − yj)2

∆x2 + (y′ − yj)2 dy′.

Also due to the symmetry of r in Vi,j,k along z direction, we have

s6 = s3.

The only surface integral remaining to be calculated is the one over S4. On this
surface we have

r = (∆x, y′ − yj , z′ − zk),

and
n4 = (1, 0, 0),

so that
s4 = ∆x

¨
S4

1√
∆x2 + (y′ − yj)2 + (z′ − zk)2

dS.

Defining
r̄ = (y′ − yj , z′ − zk)

and
r̄ = |r̄|,

we seek a function ϕ(r̄) that satisfies

∇ · (r̄ϕ(r̄)) = 1√
r̄2 + ∆x2

.

This equation can be written in the form

2ϕ(r̄) + r̄ϕ′(r̄) = 1√
r̄2 + ∆x2

.

Solving the above equation gives

ϕ(r̄) =
√
r̄2 + ∆x2

r̄2 .
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Figure 3.3: Surface S4

Applying the divergence theorem, we have

s4 = ∆x lim
ε→0

ˆ
Lε

√
r̄2 + ∆x2

r̄2 r̄ · n̄ε dL+ ∆x
ˆ
LΩ

√
r̄2 + ∆x2

r̄2 r̄ · n̄Ω dL,

where Lε is a circle with radius ε centered at point x̄ = (yj , zk), and LΩ is the
four edges of surface S4. n̄ε is the unit normal vector of Lε and n̄Ω is the unit
normal vector of LΩ, as shown in figure 3.3.

For the integral over Lε, we write

r̄ = ε(cos θ, sin θ),

and
n̄ε = −(cos θ, sin θ),

then

lim
ε→0

ˆ
Lε

√
r̄2 + ∆x2

r̄2 r̄ · n̄ε dL

= − lim
ε→0

ˆ 2π

0
ε(cos θ, sin θ) · (cos θ, sin θ)

√
ε2 + ∆x2

ε2
εdθ

= −2∆xπ.

(3.5)

For the integral over LΩ, there is no singularity anymore and this leads to
ˆ
lΩ

√
r̄2 + ∆x2

r̄2 r̄ · n̄Ω dL

= 2l41 + 2l42,

(3.6)

with

l41 = 1
2∆y

ˆ zk+∆z

zk−∆z

√
∆x2 + 1

4∆y2 + (z′ − zk)2

1
4∆y2 + (z′ − zk)2 dz′,

and

l42 = ∆z
ˆ yj+∆y

yj−∆y

√
∆x2 + 1

4∆z2 + (y′ − yj)2

1
4∆z2 + (y′ − yj)2 dy′.
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Summing up (3.5) and (3.6), we obtain,

s4 = 2∆x(l41 + l42 − π∆x).

We then finally get the following expression for f1

f1 = ∆y
2 (l21 + 2l22 + l23) + ∆z

2 (l31 + 2l32 + l33)

+ ∆x(l41 + l42 − π∆x).

All the line integrals l21 etc are non-singular and can be calculated accurately
using numerical integration.

4 Summary
In this paper we have, by considering 3D light scattering, discussed some im-
portant issues that we believe will be generic for numerical implementations of
the EOS formulation for wave scattering. We have shown that the numerical
instabilities can be thought as arising separately from the domain part and the
boundary update part of the algorithm. We have argued that the instability
arising from the boundary part of the algorithm is strongly related to the late
time instability noted earlier while solving antenna problems using TBEM. We
find that our version of the late time instability can be completely removed by
suitably chosen material values, in particular the jump in material values at the
boundary of the scattering object should not be too severe. In the limit where
the material parameters simulate the properties of highly conductive metal-
lic surfaces, we observe that our version of the late time instability is always
present. Thus the instability interval vanishes in this limit. We take this as
an indicator that for situations like in antenna theory, the late time instability
should always be present, which it is. We are now aware of work where it has
been noted that the instability can be removed by manipulating the material
parameters defining the scattering objects. The EOS formulation gives thus
different window into the late time instability that might be useful.

We have in our discretization used explicit methods. It would not be easy,
but we believe that it is possible to do a fully implicit method for the EOS for-
mulation, such an approach might remove all instabilities, which is the ultimate
goal both for TBEM and for our EOS formulation.

In this paper we have also discussed how to calculate singular volume and
surface integrals for light scattering. The reason for including this discussion
is that we think the type of singular integrals we discuss are generic for the
singular integrals that will arise while calculating wave scattering using the
EOS approach.

Appendices
A Matrix elements
In this section we detail the entries of the updating matrix M in (2.1) where
Q is a vector containing the components of the electric field and the magnetic
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field at all points of the grid with a size 6×Nx ×Ny ×Nz, where Nx, Ny and
Nz are the number of grid points in the x, y and z directions. To simplify the
writing, we denote

Λ1 = Nx ×Ny ×Nz,

Λ2 = Ny ×Nz,

Λ3 = 6Λ1,

Γ1 = Λ2i+Nzj + k,

Γ2 = Λ1 + Γ1,

Γ3 = 2Λ1 + Γ1,

Γ4 = 3Λ1 + Γ1,

Γ5 = 4Λ1 + Γ1,

Γ6 = 5Λ1 + Γ1.

Thus Q is expressed by

Q =



[e1,i,j,k]Λ1

[e2,i,j,k]Λ1

[e3,i,j,k]Λ1

[b1,i,j,k]Λ1

[b2,i,j,k]Λ1

[b3,i,j,k]Λ1



n+1

=



[QΓ1 ]Λ1

[QΓ2 ]Λ1

[QΓ3 ]Λ1

[QΓ4 ]Λ1

[QΓ5 ]Λ1

[QΓ6 ]Λ1



n+1

,

where [e1,i,j,k]Λ1
represents the vector containing the components of the electric

field e1 at all points of the grid indexing in k, j, i order. [e2,i,j,k]Λ1
and so

on follow the same rule. Due to the complexity of the matrix, here we only
illustrate the entries of the rows of M corresponding to the components Qn+1

Γ1
.

Other entries of the matrix can be expressed in the same way.
After applying the Lax-Wendroff method, we have

en+1
1,i,j,k = en1,i,j,k + w1(en1,i,j,k)yy + w1(en1,i,j,k)zz − w1(en2,i,j,k)xy

− w1(en3,i,j,k)xz + w2(bn3,i,j,k)y − w2(bn2,i,j,k)z,

⇓

Qn+1
Γ1

= QΓ1 + w1(QΓ1)yy + w1(QΓ1)zz − w1(QΓ2)xy
− w1(QΓ3)xz + w2(QΓ6)y − w2(QΓ5)z,

(A.1)

where

w1 = c2∆t2

2 ,

w2 = c2∆t.
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The coefficients of the right side of the equation (A.1) are corresponding to the
Γ1-th row of the matrix M and the values of them are depended on the values
of i, j and k. In order to have a compact and uniform expressions, we write

(QΓ6)y = 1
∆y (ξ−2Qκ−2 + ξ−1Qκ−1 + ξQκ + ξ1Qκ1 + ξ2Qκ2),

(QΓ1)yy = 1
(∆y)2 (δ−2Qχ−2 + δ−1Qχ−1 + δQΓ1 + δ1Qχ1 + δ2Qχ2),

(QΓ2)xy = 1
3∆x∆y (ω−4QΥ−4 + ω−3QΥ−3 + ω−2QΥ−2 + ω−1QΥ−1 + ωQΥ

+ ω1QΥ1 + ω2QΥ2 + ω3QΥ3 + ω4QΥ4),

where

χ1 = Γ1 +Nz, χ2 = Γ1 + 2Nz, χ−1 = Γ1 −Nz,
χ−2 = Γ1 − 2Nz, κ = Γ6, κ1 = Γ6 +Nz,

κ2 = Γ6 + 2Nz, κ−1 = Γ6 −Nz, κ−2 = Γ6 − 2Nz,
η = Ny, Υ = Γ2, Υ−4 = Γ2 − Λ2 −Nz,
Υ−3 = Γ2 − Λ2, Υ−2 = Γ2 − Λ2 +Nz, Υ−1 = Γ2 −Nz,
Υ1 = Γ2 +Nz, Υ2 = Γ2 + Λ2 −Nz, Υ3 = Γ2 + Λ2,

Υ4 = Γ2 + Λ2 +Nz.

The expressions for (QΓ5)z, (QΓ1)zz and (QΓ3)xz have the same forms as (QΓ6)y,
(QΓ1)yy and (QΓ2)xy respectively, but with

χ1 = Γ1 + 1, χ2 = Γ1 + 2, χ−1 = Γ1 − 1,
χ−2 = Γ1 − 2, κ = Γ5, κ1 = Γ5 + 1,
κ2 = Γ5 + 2, κ−1 = Γ5 − 1, κ−2 = Γ5 − 2,
η = Nz, Υ = Γ3, Υ−4 = Γ3 − Λ2 − 1,
Υ−3 = Γ3 − Λ2, Υ−2 = Γ3 − Λ2 + 1, Υ−1 = Γ3 − 1,
Υ1 = Γ3 + 1, Υ2 = Γ3 + Λ2 − 1, Υ3 = Γ3 + Λ2,

Υ4 = Γ3 + Λ2 + 1.

After discussing the locations of i, j and k, the values of the coefficients are
listed in table 1 and table 2.

Table 1: ( ∂∂y ,
∂2

∂y2 ) or ( ∂∂z ,
∂2

∂z2 ) related coefficients
j or k δ−2 δ−1 δ δ1 δ2 ξ−2 ξ−1 ξ ξ1 ξ2
0 0 0 -5 2 -1/5 0 0 1/2 2/3 -1/10
η-1 -1/5 2 -5 0 0 1/10 -2/3 -1/2 0 0
[1,η-2] 0 1 -2 1 0 0 -1/2 0 1/2 0

For example, if i = 0, j = 0 and k = 0, the entries of the Γ1-th row of the
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Table 2: ∂2

∂x∂y or ∂2

∂x∂z related coefficients

i j or k ω−4 ω−3 ω−2 ω−1 ω ω1 ω2 ω3 ω4

0

0 0 0 0 0 9 -5 0 -5 1
η-1 0 0 0 5 -9 0 -1 5 0
[1,η2 ) 0 0 0 0 3 -3 1 -1 0
[ η2 , η − 2] 0 0 0 3 -3 0 0 1 -1

Nx-1

0 0 5 -1 0 - 9 5 0 0 0
η-1 1 -5 0 -5 9 0 0 0 0
[1,η2 ) -1 1 0 0 - 3 3 0 0 0
[ η2 , η − 2] 0 -1 1 -3 3 0 0 0 0

[1,Nx-3]
0 0 0 1 0 3 -1 0 -3 0
η-1 -1 0 0 1 -3 0 0 3 0
[1, η − 2] -3/4 0 3/4 0 0 0 3/4 0 -3/4

Nx-2
0 0 3 0 0 -3 1 0 0 -1
η-1 0 -3 0 -1 3 0 1 0 0
[1,η-2] -3/4 0 3/4 0 0 0 3/4 0 -3/4

matrix M are the following

MΓ1,Γ1 = 1− 5u1 − 5v1, MΓ1,Γ1+Nz = 2u1, MΓ1,Γ1+2Nz = −1
5u1,

MΓ1,Γ6 = 1
2u2, MΓ1,Γ6+Nz = 2

3u2, MΓ1,Γ6+2Nz = − 1
10u2,

MΓ1,Γ2 = 9u3, MΓ1,Γ2+Nz = −5u3, MΓ1,Γ2+Λ2 = −5u3,

MΓ1,Γ2+Λ2+Nz = u3, MΓ1,Γ1+1 = 2v1, MΓ1,Γ1+2 = −1
5v1,

MΓ1,Γ5 = 1
2v2, MΓ1,Γ5+1 = 2

3v2, MΓ1,Γ5+2 = − 1
10v2,

MΓ1,Γ3 = 9v3, MΓ1,Γ3+1 = −5v3, MΓ1,Γ3+Λ2 = −5v3,

MΓ1,Γ3+Λ2+1 = v3,

otherwise MΓ1,∗ = 0 and where

u1 = w1

(∆y)2 , u2 = w2

∆y , u3 = w1

3∆x∆y ,

v1 = w1

(∆z)2 , v2 = w2

∆z , v3 = w1

3∆x∆z .

B Singular integrals
In this section, we detail the calculations of other types of singular integrals
involved in the EOS formulations of 3D Maxwell’s equations, denoted by f2, f3,
g1, g2, g3 in [2]. The techniques are similar with the calculating of f1 in section
3. The geometry is illustrated in figure 3.1.
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B.1 Calculation of f2

f2 =
˚

Vi,j,k

x′ − xp
|x′ − xp|2

dV. (B.1)

The components of the integration variable in (B.1) are given by

x′ = (x′, y′, z′),

and let us introduce the quantity

r = x′ − xp,

with r = |r|.
We want to apply the divergence theorem on (B.1), and therefore need to

find a function ϕ(r) that satisfies

∇ · (rrϕ(r)) = r
r2 ,

or equivalently
∇ · (rr)ϕ(r) + rr · ∇ϕ(r) = r

r2 .

Solving the above equation, we get

ϕ(r) = 1
2r2 .

Because of the singularity on surface S1, we can not apply the divergence theo-
rem directly. However we can write

f2 = 1
2(

6∑
m=2

¨
Sm

rr
r2 · nm dS + lim

ε→0

¨
Sε

rr
r2 · nε dS +

¨
SΩ

rr
r2 · n1 dS),

where Sε is a hemispherical surface of radius ε centered at xp and SΩ is the rest
of the surface S1 with a disk of radius ε around xp has been removed. nε is the
unit normal vector on Sε, pointing out of Vi,j,k. nm is the unit normal vector
on Sm, pointing out of Vi,j,k.

For the integral over SΩ, we have

r = (0, y′ − yj , z′ − zk),

and
n1 = (−1, 0, 0),

thus we get
¨
SΩ

rr
r2 · n dS = (0, 0, 0).

For the integral over surface Sε, we use the spherical coordinate system,

r = ε(cos θ sinϕ, sin θ sinϕ, cosϕ),

and
nε = (cos θ sinϕ, sin θ sinϕ, cosϕ),
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where ε, ϕ, θ are respectively the radial distance, polar angle and azimuthal
angle, so that

¨
Sε

1
r2 rr · nε dS = lim

ε→0

1
ε2

ˆ 2π

0

ˆ π
2

−π2
ε(cos θ sinϕ, sin θ sinϕ, cosϕ)

ε(cos θ sinϕ, sin θ sinϕ, cosϕ)
· (cos θ sinϕ, sin θ sinϕ, cosϕ)
ε2 sinϕdθ dϕ = (0, 0, 0).

Defining

sm =
¨
Sm

rr
r2 · nm dS,

f2 can be written as

f2 = 1
2

6∑
m=2

sm.

Due to the symmetry of r along y and z directions in Vi,j,k, we have

s5 = s2

and
s6 = s3.

Thus f2 can be written as,

f2 = 1
2(
¨
S2

∆y (x′ − xa, 0, z′ − zk)
(x′ − xa)2 + (z′ − zk)2 + 1

4∆y2 dx′ dz′

+
¨
S3

∆z (x′ − xa, y′ − yj , 0)
(x′ − xa)2 + (y′ − yj)2 + 1

4∆z2 dx′ dy′

+
¨
S4

∆x2 (1, 0, 0)
∆x2 + (y′ − yj)2 + (z′ − zk)2 dy′ dz′).

For computation simplicity, we define

s̄2 =
¨
S2

(x′ − xa, z′ − zk)
(x′ − x)2 + (z′ − zk)2 + 1

4∆y2 dx′ dz′,

s̄3 =
¨
S3

(x′ − xa, y′ − yj)
(x′ − xa)2 + (y′ − yj)2 + 1

4∆z2 dx′ dy′,

s̄4 =
¨
S4

x2 1
∆x2 + (y′ − yj)2 + (z′ − zk)2 dy′ dz′.

Thus for the calculations of s̄2 and s̄3, we consider a general form
¨
S

r̄
r̄2 +A2 dS, (B.2)
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where A is a constant, r̄ is a 2-component vector on surface S, and r̄ = |r̄|.
We want to apply the divergence theorem on (B.2), therefore we need to find a
function ϕ(r̄) that satisfies

∇ · (r̄r̄ϕ(r̄)) = r̄
r̄2 +A2 .

Solving the above equation, we get

ϕ(r̄) = −
A tan−1( r̄A )

r̄3 + 1
r̄2 .

For s̄2,
S = S2,

A = 1
2∆y,

and
r̄ = (x′ − xa, z′ − zk),

and because of the singularity on S2, we can not use the divergence theorem
directly, however we can write

s̄2 =
4∑

n=2

ˆ
L2n

ϕ(r̄)r̄r̄ · n̄n dL+ lim
ε→0

ˆ
Lε

ϕ(r̄)r̄r̄ · n̄ε dL+
ˆ
LΩ

ϕ(r̄)r̄r̄ · n̄1 dL,

where L2n are edges of S2. Lε is a semicircle with radius ε centered at point x̄
and LΩ is the rest of L21. n̄ε is the unit normal of Lε, pointing out of S2. n̄n
is the unit normal of L2n, pointing out of S2. Geometry is illustrated in figure
3.2.

For the integral over LΩ, we have

r̄ = (0, z′ − zk)

and
n̄1 = (−1, 0),

so that ˆ
LΩ

ϕ(r̄)r̄r̄ · n̄1 dL = (0, 0).

For the integral over Lε, using the polar coordinates, we have

r = ε(cos θ, sin θ),

and
nε = −(cos θ, sin θ),

so that
ˆ
Lε

ϕ(r̄)r̄r̄ · n̄ε dL = − lim
ε→0

ˆ π
2

−π2
−ε3(cos θ, sin θ)(cos θ, sin θ)

(−
1
2∆y tan−1( ε

1
2 ∆y )

ε3
+ 1
ε2

) · (cos θ, sin θ) dθ

= (0, 0).
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There is no singularity on L22, L23 and L24, finally,

s̄2 = (I1, 0),

where

I1 =
ˆ xa+∆x

xa

∆z(x′ − xa)ϕ(r1) dx′ +
ˆ zk+∆z

zk−∆z
∆x2ϕ(r2) dz′,

with

r1 =
√

(x′ − xa)2 + 1
4∆z2,

and
r2 =

√
∆x2 + (z′ − zk)2.

The calculation of s̄3 is similar to the one of s̄2 with the final result

s̄3 = (I2, 0),

where

I2 =
ˆ xa+∆x

xa

∆y(x′ − xa)ϕ(r3) dx′ +
ˆ yj+∆y

yj−∆y
∆x2ϕ(r4) dy′,

with

r3 =
√

(x′ − xa)2 + 1
4∆y2,

and
r4 =

√
∆x2 + (y′ − yj)2.

For the integral s̄4, defining

r̄ = (y′ − yj , z′ − zk),

and
r̄ = |r̄|,

we need to find a function ϕ(r̄) that satisfies

∇ · (r̄ϕ(r̄)) = 1
r̄2 + ∆x2 .

Solving the above equation gives

ϕ(r̄) = ln(r̄2 + ∆x2)
2r̄2 .

Because of the singularity at point x̄ = (yj , zk), we write

s̄4 = lim
ε→0

ˆ
Lε

ϕ(r̄)r̄ · n̄ε dL+
ˆ
LΩ

ϕ(r̄)r̄ · n̄Ω dL,

where Lε is a circle with radius ε centered at x̄ and LΩ is the four edges of
surface S4. n̄ε is the unit normal vector of Lε, n̄Ω is the unit normal vector of
LΩ, as shown in figure 3.3.
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For the integral over Lε, we use the polar coordinates,

r̄ = ε(cos θ, sin θ),

and
nε = −(cos θ, sin θ),

then

lim
ε→0

ˆ
Lε

ϕ(r̄)r̄ · n̄ε dL = lim
ε→0

ˆ 2π

0
−ε2(cos θ, sin θ) ln(ε2 + ∆x2)

2ε2 (cos θ, sin θ) dθ

= −π ln(∆x2).

For the integral over LΩ, there is no singularity any more and this leads to
ˆ
lΩ

ϕ(r̄)r̄ · n̄Ω dL = 1
2∆y

ˆ zk+∆z

zk−∆z

ln( 1
4∆y2 + ∆x2 + (z′ − zk)2)

1
4∆y2 + (z′ − zk)2 dz′

+ 1
2∆z

ˆ yj+∆y

yj−∆y

ln( 1
4∆z2 + ∆x2 + (y′ − yj)2)

1
4∆z2 + (y′ − yj)2 dy′

= I3.

Combining all the above calculations, we finally get,

f2 = 1
2(∆yI1 + ∆zI2 + ∆x2(I3 − π ln(∆x2)), 0, 0).

All the line integrals I1, I2, I3 are non-singular and can be calculated using
numerical integration.

B.2 Calculation of f3

f3 =
˚

Vi,j,k

x′ − xp
|x′ − xp|3

dV. (B.3)

The components of the integration variable in (B.3) are given by

x′ = (x′, y′, z′),

and let us introduce the quantity

r = x′ − xp,

with r = |r|.
We want to apply the divergence theorem on (B.3), and therefore need to

find a function ϕ(r) that satisfies

∇ · (rrϕ(r)) = r
r3 ,

thus we have

∇ · (rr)ϕ(r) + rr · ∇ϕ(r) = 4rϕ(r) + rrϕ′(r) = r
r3 .
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Solving the above equation gives

ϕ(r) = 1
r3 .

Because of the singularity on surface S1, we can not apply the divergence theo-
rem directly, however we can write

f3 =
6∑

m=2

¨
Sm

rr
r3 · nm dS + lim

ε→0

¨
Sε

rr
r3 · nε dS +

¨
SΩ

rr
r3 · n1 dS,

where Sε is a hemispherical surface of radius ε centered at xp and SΩ is the rest
of the surface S1 with a disk of radius ε around xp has been removed. nε is the
unit normal vector on Sε, pointing out of Vi,j,k. nm is the unit normal vector
on Sm, pointing out of Vi,j,k.

For the integral over SΩ, we have

r = (0, y′ − yj , z′ − zk),

and
n1 = (−1, 0, 0),

thus we get
¨
SΩ

rr
r3 · n dS = (0, 0, 0).

For the integral over surface Sε, we use the spherical coordinate system,

r = ε(cos θ sinϕ, sin θ sinϕ, cosϕ),

and
nε = (cos θ sinϕ, sin θ sinϕ, cosϕ),

where ε, ϕ, θ are respectively the radial distance, polar angle and azimuthal
angle, so that

¨
Sε

1
2r2 rr · nε dS = lim

ε→0

ˆ 2π

0

ˆ π
2

−π2

1
2r2 rr · nεε2 sinϕdθ dϕ = (0, 0, 0).

Defining

sm =
¨
Sm

rr
r3 · nm dS,

f3 can be written as

f3 =
6∑

m=2
sm.

Due to the symmetry of r in Vi,j,k along y and z direction , we have

s2 = s5
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and
s3 = s6.

So we have the following,

f3 =
¨
S2

∆y (x′ − xa, 0, z′ − zk)
((x′ − xa)2 + (z′ − zk)2 + 1

4∆y2) 3
2

dx′ dz′

+
¨
S3

∆z (x′ − xa, y′ − yj , 0)
((x′ − xa)2 + (y′ − yj)2 + 1

4∆z2) 3
2

dx′ dy′

+
¨
S4

∆x (∆x, 0, 0)
(∆x2 + (y′ − yj)2 + (z′ − zk)2) 3

2
dy′ dz′,

For computation simplicity, we define

s̄2 =
¨
S2

(x′ − xa, z′ − zk)
((x′ − xa)2 + (z′ − zk)2 + 1

4∆y2)3/2 dx′ dz′,

s̄3 =
¨
S3

(x′ − xa, y′ − yj)
((x′ − xa)2 + (y′ − yj)2 + 1

4∆z2)3/2 dx′ dy′,

and
s̄4 =

¨
S4

∆x
(∆x2 + (y′ − yj)2 + (z′ − zk)2)3/2 dy′ dz′.

Thus for the calculations of s̄2 and s̄3, we consider a general form
¨
S

r̄
(r̄2 +A2)3/2 dS, (B.4)

where r̄ is a 2-component vector, A is a constant and r̄ = r̄. We want to apply
the divergence theorem on (B.4), thus we need to find a function ϕ(r̄) that
satisfies

∇ · (r̄r̄ϕ(r̄)) = r̄
(r̄2 +A2)3/2 .

Solving the above equation, we get

ϕ(r̄) = log(
√
r̄2 +A2 + r̄)
r̄3 − 1

r̄2
√
r̄2 +A2

.

For s̄2,
S = S2,

A = 1
2∆y,

and
x̄ = (x′ − xa, z′ − zk),

because of the singularity on S2, we write

s̄2 =
4∑

n=2

ˆ
L2n

ϕ(r̄)rr̄ · n̄n dL+ lim
ε→0

ˆ
Lε

ϕ(r̄)r̄r̄ · n̄ε dL+
ˆ
LΩ

ϕ(r̄)r̄r̄ · n̄1 dL,

where L2n are edges of S2. Lε is a semicircle with radius ε centered at point x̄
and LΩ is the rest of L21. n̄ε is the unit normal of Lε, pointing out of S2. n̄n
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is the unit normal of L2n, pointing out of S2. Geometry is illustrated in figure
3.2.

For the integral over LΩ, we have

r̄ = (0, z′ − zk)

and
n̄ = (−1, 0),

so that ˆ
LΩ

ϕ(r̄)r̄r̄ · n̄1 dL = (0, 0).

For the integral over Lε, using the polar coordinates, we have

r̄ = ε(cos θ, sin θ),

and
n̄ε = −(cos θ, sin θ),

thenˆ
Lε

ϕ(r̄)r̄r̄ · n̄1 dL

= lim
ε→0

ˆ π
2

−π2
−ε2(cos θ, sin θ)3(− 1

ε2(ε2 + 1
4∆y2) 1

2
+

log(
√
ε2 + 1

4∆y2 + ε)
ε3

) dθ

= (−2 log(1
2∆y), 0),

There is no singularity on L22, L23 and L24 any more, finally,

s̄2 = (I1 − 2 log(1
2∆y), 0),

where

I1 =
ˆ xa+∆x

xa

∆z(x′ − xa)ϕ(r1) dx′ +
ˆ zk+∆z

zk−∆z
∆x2ϕ(r2) dz′,

with

r1 =
√

(x′ − xa)2 + 1
4∆z2,

and
r2 =

√
∆x2 + (z′ − zk)2.

The calculation of s̄3 is similar to the one of s̄2 with the final result

s̄3 = (I2 − 2 log(1
2∆z), 0),

where

I2 =
ˆ xa+∆x

xa

∆y(x′ − xa)ϕ(r3) dx′ +
ˆ yj+∆y

yj−∆y
∆x2ϕ(r4) dy′,
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with

r3 =
√

(x′ − xa)2 + 1
4∆y2,

and
r4 =

√
∆x2 + (y′ − yj)2.

For the integral s̄4, defining

r̄ = (y′ − yj , z′ − zk)

and
r̄ = |r̄|,

we seek a function that satisfies

∇ · (r̄ϕ(r̄)) = 1
(r̄2 + ∆x2)3/2 .

Solving this equation gives

ϕ(r̄) = − 1
r̄2
√
r̄2 + ∆x2

.

Because of the singularity at point x̄ = (yj , zk), we write

s̄4 =
ˆ
Lε

ϕ(r̄)r̄ · n̄ε dL+
ˆ
LΩ

ϕ(r̄)r̄ · n̄Ω dL,

where Lε is a circle with radius ε centered at x̄ and LΩ is the four edges of
surface S4. n̄ε is the unit normal vector of Lε, n̄Ω is the unit normal vector of
LΩ, as shown in figure 3.3.

For the integral over Lε, we use the polar coordinates,

r̄ = ε(cos θ, sin θ),

and
nε = −(cos θ, sin θ),

then
lim
ε→0

ˆ
Lε

ϕ(r̄)r̄ · n̄ε dL = 2π
∆x.

For the integral on LΩ, there is no singularity any more and this gives
ˆ
LΩ

ϕ(r̄)r̄ · n̄Ω dL

= −∆y
ˆ zk+∆z

zk−∆z

1

( 1
4∆y2 + (z′ − zk)2)

√
∆x2 + 1

4∆y2 + (z′ − zk)2
dz′

−∆z
ˆ yj+∆y

yj−∆y

1

( 1
4∆z2 + (y′ − yj)2)

√
∆x2 + 1

4∆z2 + (y′ − yj)2
dy′

= I3.
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Combining all the calculations above, we finally get

f3 = (∆yI1 + ∆zI2 − 2∆y log(1
2∆y)− 2∆z log(1

2∆z)

+ ∆x2I3 + 2π∆x, 0, 0).

All the line integrals I1, I2, I3 are non-singular and can be calculated using
numerical integration.

B.3 Calculations of singular surface integrals
When the observing point xp and the integrating point are both located on
the same integral surface, for instance S1, as shown in figure 3.1, the surface
integrals

g1 =
¨
S1

1
|x′ − xp|

dS, (B.5)

g2 =
¨
S1

x′ − xp
|x′ − xp|2

dS, (B.6)

g3 =
¨
S1

x′ − xp
|x′ − xp|3

dS, (B.7)

are singular where
x′ − xp = (0, y − y′, z − z′).

Defining
r̄ = (y′ − yj , z′ − zk),

and
r̄ = |r̄|,

we apply the divergence theorem on (B.5), thus we need to find a function ϕ(r̄)
that satisfies

∇r̄ϕ(r̄)) = 1
r̄
,

or equivalently
2ϕ(r̄) + r̄ϕ′(r̄) = 1

r̄
.

Solving the above equation, we get

ϕ(r̄) = 1
r̄
.

Thus g1 is turned into

g1 =
4∑

n=1

ˆ
Ln

x′ − x̄
|x′ − x̄| · nn dL,

where x̄ = (yj , zk), nn is the unit normal of Ln. There is no singularity any
more and g1 can be calculated using numerical integration.

For (B.6) and (B.7), due to the symmetry of vector x′ − xp on S1, we have

g2 = (0, 0, 0),

and
g3 = (0, 0, 0).
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C Parallelization
This paper closely follows [2] and we therefore directly address the final numer-
ical solving system of the EOS formulations of the 3D Maxwell’s equations. For
the inside domain, the updating rule follows (2.1). For the boundary part, the
discretized boundary integral identities are represented by

M1

(
En
p

Bn
p

)
=
(

ER

BR

)
, (C.1)

where
(

En
p

Bn
p

)
are the solution at the surface point xp at time tn and

(
ER

BR

)
are the summations of the integrals in the boundary integral representations
after moving the unknowns to the left of the equations. From equation (2.1),
it is easy to see that the updating for the inside domain at time now will only
involve the values that are one time step before. While the solutions on the
surface point xp in (C.1) require both the historical values of the current density
and the charge density and the historical field values of all the surface points due
to the retarded integrals involved. Therefore the part of the code calculating
the surface solution dominates both the memory usage and the processor usage.
The calculations are therefore parallelized based on partitioning the surface into
pieces and distributing each piece to separate processors, whereas the inside of
the scattering object is residing on each processor. The updating processes are
illustrated by the following C code where

p : index of surface point
n : index of time level
es, bs : fields solutions on surface up to time tn−1

e, b : fields solutions of inside domain at time tn

el, bl : fields solutions of inside domain at time tn−1

J, P : current density and electric density up to time tn−1

UpdateS(p,n,J,P,es,bs) : update surface solutions at xp at time tn

UpdateV(e,b,el,bl,es,bs,J,P,n) : update inside solutions at time tn

1

2 i n t rank , s i z e ; // p r o c e s s o r id and number o f p r o c e s s o r s
3

4 MPI_Init(&argc ,& argv ) ;
5 MPI_Comm_size(MPI_COMM_WORLD,& s i z e ) ;
6 MPI_Comm_rank(MPI_COMM_WORLD,& rank ) ;
7

8 i n t Nt , Ns , Nss , lp , l s i z e ;
9 i n t p , index , indexeb ;

10

11 lp=Ns/ s i z e ;
12 l s i z e =3∗ lp ;
13 double l s e [ l s i z e ] , l s b [ l s i z e ] ;
14

15 double ∗ e s u r f ac e , ∗ b s u r f a c e ;
16 e s u r f a c e = ( double ∗) mal loc ( Nss∗ s i z e o f ( double ) ) ;
17 b s u r f a c e = ( double ∗) mal loc ( Nss∗ s i z e o f ( double ) ) ;
18
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19 f o r (n=0;n<Nt ; n++){
20 f o r (p=rank ∗ lp ; p<(rank+1)∗ lp ; p++){
21 gs l_vector ∗ l r e s u l t=gs l_vec to r_a l l o c (6 ) ;
22 // update the s u r f a c e va lue s at each g r i d po int in p a r a l l e l
23 l r e s u l t=UpdateS (p , n , J , P, es , bs ) ;
24 index=(p%lp ) ∗3 ;
25 f o r ( i =0; i <3; i++){
26 indexeb=index+i ;
27 l s e [ indexeb ]= gs l_vector_get ( l r e s u l t , i ) ;
28 l s b [ indexeb ]= gs l_vector_get ( l r e s u l t , i +3) ;
29

30 }
31 gs l_vector_f ree ( l r e s u l t ) ;
32 }
33 // c o l l e c t data from a l l p r o c e s s e s
34 MPI_Allgather ( l s e , l s i z e , MPI_DOUBLE, e su r f ace , l s i z e ,

MPI_DOUBLE, MPI_COMM_WORLD) ;
35 MPI_Allgather ( l sb , l s i z e , MPI_DOUBLE, bsur face , l s i z e ,

MPI_DOUBLE, MPI_COMM_WORLD) ;
36

37 // updating the whole s u r f a c e
38 f o r (p=0;p<Nss ; p++){
39 gsl_matrix_set ( es , p , n , ∗ ( e s u r f a c e+p) ) ;
40 gsl_matrix_set ( bs , p , n , ∗ ( b s u r f a c e+p) ) ;
41 }
42

43 // update the i n s i d e domain by the domain based method supported
by the s u r f a c e va lue s

44 UpdateV ( e , b , e l , bl , es , bs , J , P, n) ;
45

46 }
47

48 MPI_Finalize ( ) ;
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