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1 Introductions

1.1 Background and motivations

The formulation of partial differential equations in unbounded domains in terms
of boundary integral equations has a long history. The roots stretch back at
least to the ground breaking publication of a certain set of integral identities by
George Green in 1828 [1]. These ideas, which became well known only after his
death, became generalized into the notion of Green’s functions which are the
key elements in all investigations involving boundary integral equations, and
many other places in pure and applied science. It would for example be hard to
imagine solid state physics and particle physics without Green’s functions.

Using computational methods to solve PDEs by solving their corresponding
boundary integral equations, also has fairly deep roots, but not nearly as deep as
the boundary integral equations themselves. This is because such methods only
became feasible in the 1960s after the invention and widespread availability
of electronic computers. This approach to solving PDEs numerically became
known as the Boundary Element method(BEM) [2].

The boundary element method has several attractive features that makes
it well suited to take on any computational problem involving some kind of
wave scattering from compact objects in an infinite domain. Many modeling
problems in science and engineering are of this type.

First and foremost, the solution of the original PDEs is changed to the so-
lution of an integral equation defined only on the boundaries of the scattering
objects. Thanks to this, one whole space dimension is removed from the prob-
lem, and no numerical grids outside the scattering objects are needed. This
greatly reduces the computational cost and complexity, and therefore BEM is
more efficient compared to a traditional domain-based method. The reduction
of the number spatial dimensions in the problem is the main advantage of the
BEM. For a domain-based method, all spatial dimensions are retained and must
be discretize in a numerical solutions algorithm. The discretizations of the out-
side domain is usually resolved by introducing a box big enough to include all
the scattering objects. This domain can easily become very large and thus the
computational box will have to be very large. For 3D scattering problems this
translates into a large memory requirement for the numerical implementation.
In addition, boundary conditions have to be imposed at the boundary of the
computational box in such a way that reflections are minimized. For the case
of electromagnetic scattering this problem was solved by the introduction of a
perfectly matched layer(PML) [3,4]. This is a key element of the finite difference
time domain method(FDTD) [5–7], which is the method of choice for simulating
electromagnetic scattering. The introduction of PML however does not come
free. There are both an increased computational cost, because the PML layer
has to be thick enough in order to ensure minimal reflection, and an increased
implementional complexity needed to counter the numerical instabilities that
are originating from the PML layer. The PML approach has subsequently been
simplified and generalized to all kinds of scattering problems [8,9] using an ap-
proach where the physical space outside the computational box is complexified.

Secondly, there is usually a big difference in the material properties be-
tween the scattering objects and their surroundings, which in the mathematical
model appears as discontinuous, or near-discontinuous, coefficients in the PDEs
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defining the model. It is not easy to represent this difference accurately using a
domain-based method, like FDTD or the Finite Element method (FEM) [10–12].
This is usually resolved by introducing multiple, interlinked grids. However it
is challenging to design accurate and stable numerical algorithm on such grids
and it also adds to computation cost of these methods.

Thirdly, the surface localization of boundary integral equations also means
that the boundary discretization, which leads to the BEM equations, can be
optimized with respect to the geometry of each surface separately when there
are more than one scattering object, which there usually is. For domain-based
methods like Finite Element methods(FEM) [10–12] and FDTD, such an opti-
mization can only be achieved by using non-uniform or multiple grids tailored
to the geometrical shape of the objects. These kinds of efforts have met with
some degree of success, but it does add new layers of complexity. Methods such
as these, combined with Transformational Optics(TO) [13,14] have an intuitive
appeal and have recently met with some amount of success [15], but numerical
stability issues are a major concern.

Lastly, BEM, is exceptionally well suited for modeling scattering problems
where the sources are slow on relevant timescales. In this setting the bound-
ary integral equations are derived in the spectral domain and the discretized
equations defining BEM only needs to be solved for the small set of discrete
frequencies that are required for an accurate representation of the time depen-
dent source. For a domain-based method like FDTD, near-stationary sources
are the worst possible case since FDTD is, as the name indicate, a time domain
method, and slow sources mean that Maxwell’s equations have to be solved for a
long interval of time, which is costly in terms of computational resources. FEM,
on the other hand, originated in the context of stationary problems in elastic-
ity [16, 17], and as such is well suited to frequency domain problems. However
for fast sources in 3D electromagnetic scattering the computational load builds
quickly.

Given all these attractive features of BEM for solving scattering problems in
electromagnetics, it is somewhat surprising that in a popularity contest, FEM
and FDTD beats BEM hands down [2]. The reason for this is that in addition
to all its attractive features, BEM has some real drawbacks too.

Firstly, reformulating the scattering problem for a system of PDEs in terms
of boundary integral equations typically will involve classical but fairly intricate
mathematical tools, as will the discretization of the resulting integral equations.
In particular one will need to content with singularities which appear in the
limits that always must be taken while deriving the boundary equations from the
PDEs. Accurately representing these singularities in the ensuing discretization
leading to BEM, is a major issue. FEM have some of the same issues, whereas
FDTD is much simpler to implement using mathematical tools that are straight
forward and known to all.

Secondly, BEM relies on Green’s functions and such functions can only be
defined for linear systems of PDEs. In our opinion this is one of the major
reasons why BEM is significantly less popular than the major contenders FEM
and FDTD. Nonlinearities are common in most areas of pure and applied science,
and having to change your whole computational approach when nonlinearities
are added to your model is a major nuisance. In some areas of application
nonlinearities dominate and hence a computational approach based on Green’s
functions is out of the question, fluid mechanics is such an area. However in
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other areas one can frequently disregard nonlinearities and a computational
approach based on Green’s functions is feasible. Scattering of electromagnetic
waves, where nonlinearities only come into play at very high field intensities, is
such an area.

Thirdly, BEM, which is simplest to formulate in the spectral domain, is at
it’s best when we are looking at a near stationary situation with narrow band
sources. For transient scattering with broad band sources one needs to formulate
BEM in the time domain and this involves space-time Green’s functions that in
general tends to be more singular than the frequency domain ones. However, for
the specific case of electromagnetic scattering, an integral formulation has been
derived [18] whose singularities are fairly weak. This integral formulation of
electromagnetics is the foundation of all time dependent BEM formulations to
date, and is also the basis for our approach. However, the progress in developing
these time dependent BEM schemes has been slow due to several drawbacks.

The time-domain integral equations are retarded and this means that in
order to compute the solutions at a certain time, one needs to retain the solutions
for an interval of previous times that in some cases can be very large. This leads
to a large memory requirement that needs to be met using parallel processing. In
today’s computational environment parallel implementation of time dependent
BEM is fairly standard, but the possibly limited efficiency due to the problem
of load balancing is something that always must be contended with.

However the major obstacle that has prevented this method from being
widely applied for electromagnetic scattering is the occurrence of numerical
instabilities. These instabilities, whose source is not fully understood, occur
not at early times, but at later times and have become known as the late time
instability. Many efforts have been made and several techniques have been
developed in order to improve the stabilities of BEM schemes for time dependent
electromagnetics in the last several decades. Basically there are two directions
that are pursued. One direction is focused on delaying or removing the late
time instability by applying increasing accurate spatial integrations [19–25]. The
other direction is aimed at designing more stable time discretization schemes [24,
25]. Some researches were reported to mitigate the instability by both making
better approximations of the integrals and applying improved time derivatives
[26,27].

In this thesis we have developed a new hybrid approach for solving linear
and nonlinear scattering problems, an approach which is aimed at a situation
where a collection of compact scattering objects are located in a homogeneous
unbounded space and where the scattering objects can have an inhomogeneous
and/or nonlinear response. The basic idea is to combine a domain-based method
and a boundary integral method in such a way that the domain-based method
is used to propagate the equations governing the wave field inside the scattering
objects forward in time while the boundary integral method is used to supply
the domain-based method with the required boundary values. The boundary
integral method is derived from a space-time integral formulation of the PDEs
such that all the scattering and re-scattering outside the scattering objects will
be taken into account automatically. As a result, for the numerical implemen-
tations, there is no need for grids outside the scattering objects, only grids on
the inside and the boundaries of the scattering objects are needed. Thus the
new approach combines the best features of both methods; the response inside
the scattering objects, which can be caused by both material inhomogeneity
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and nonlinearities, is easily taken into account using the domain-based method,
and the boundary conditions supplied by the boundary integral method makes
it possible to confine the domain based method to the inside of each scattering
object.

This kind of idea was firstly proposed in 1972 by E. Wolf and D. N. Pat-
tanyak [28] for the stationary linear scattering of electromagnetic waves in fre-
quency space. The approach was based on the Ewald-Oseen optical extinction
theorem, and because of this we call our method the Ewald-Oseen Scatter-
ing(EOS) formulation.

In this thesis our aim is to calculate the scattering of waves from objects that
are in general inhomogeneous and, additionally, may have a nonlinear response.
Thus a space-time integral formulation of the PDEs of interest is needed.

Firstly, we explored the viability of our approach by applying it to two toy
models of 1D linear and nonlinear transient wave scattering. These two problems
are set up to be analogs of the 3D scattering of electromagnetic waves, whose
mathematical incarnation are Maxwell’s equations . Our investigation of these
two 1D problems is detailed in Paper 1.

Secondly, after confirming the viability of our approach in Paper 1, we ex-
tended our approach to the real world highly relevant, but also mathematically
highly complex, case of 3D electromagnetic scattering. This extension of our
method was successful, and we take this as proof that our EOS formulation is a
general approach that is applicable to a wide array of linear and nonlinear wave
scattering problems. In Paper 2 we report on the main features of this extension
and the problems that needed to be addressed in order for us to succeed in the
application of our EOS formulation to the 3D Maxwell’s equations.

In paper 3 we discuss, in the context of electromagnetic scattering, two
issues that are relevant for the application of our EOS formulation to any wave
scattering problem of real world relevance and complexity. This is the issues of
stability of the numerically implemented EOS formulation, and the issue of how
to handle the singular integrals that occurs as matrix elements in the numerical
implementation of the boundary part of the EOS formulation.

1.2 Summary of the papers

This section summarizes the work and the main results of the three papers that
are the core of the current thesis.

1.2.1 Paper 1

In this paper, we introduce a new method, which we have called the EOS formu-
lations, for solving linear and nonlinear transient wave scattering problems. As
stated in section 1, the method has been developed by combining a boundary
integral representations and a domain-based method. This is done in such a
way that the inside fields will be propagated forward in time by the domain-
based method, while the needed boundary values will supplied by the boundary
integral representations. The method is illustrated on two 1D toy models which
are chosen as analogs of electromagnetic wave scattering.
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Model 1 is governed by equations

ϕt = c1ϕx + j,

ρt = −jx,
jt = (α− βρ)ϕ− γj, a0 < x < a1,

(1.1)

and model 2 is governed by

ϕt = µ1ψx + j,

ψt = ν1ϕx,

ρt = −jx,
jt = (α− βρ)ϕ− γj, a0 < x < a1,

(1.2)

where α, β and γ are constants, ϕ = ϕ(x, t) is the “electric field”, ψ(x, t) is
the “magnetic” field, j = j(x, t) is the “current density” and ρ is the “charge
density”, c1 is the propagation speed inside the “material”. µ1, ν1 are ”material”
parameters and under the translations of µ = 1

ε and ν = 1
µ , µ and ν are

the analog of the electric permittivity and magnetic permeability. The charge
density and current density are confined to the interval [a0, a1], which is an
analog to a compact scattering object in the electromagnetic situation. The
fields ϕ and ψ are defined on the whole real axis. The equation for the “current
density”, j is a simplification of a real electromagnetic current density model
[29].

Outside the interval the two models are respectively governed by

ϕt = c0ϕx + js,

and

ϕt = µ0ψx + js,

ψt = ν0ϕx,

where js(x, t) is a given source that has its support in interval x > a1. Model
1 describes a one way propagation with its speed c0 outside the interval [a1, a1]
and model 2 describes a two way propagation with its speed c0 =

√
µ0ν0 outside

the interval. In order to derive the space-time integral formulation of the EOS
formulations, we firstly need to derive an integral identity involving the operator

L1 = ∂t − v∂x,

for model 1 and

L2 =

(
∂t −µ∂x
−ν∂x ∂t

)
,

for model 2 and the needed advanced Green’s functions of their adjoint opera-
tors. The integral identities on different intervals will be obtained by inserting
the corresponding advanced Green’s functions. Finally the integral represen-
tations on the boundaries are reached by taking the limit of the integral iden-
tities with x approaching the boundaries a0 and a1 of the interval. However,
the boundary integral representations and the boundary conditions compose an
overdetermined system for both model 1 and model 2. This is a general situation
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occurring when the EOS formulation is applied to systems of PDEs. An general
approach to handling this kind of problem is introduced in this paper. This
approach is subsequently applied to the case of Maxwells equations in paper2.

Equations (1.1) or (1.2) together with their corresponding boundary integral
representations, by definition, is the EOS formulations of toy model 1 and toy
model 2 respectively.

In order to get a second order accuracy numerical solution, we apply the
Lax-Wendroof method to the first two equations of (1.1) and the first three
equations of (1.2) and we apply the modified Euler’s method to the equations of
the current density j for the inside interval. For the boundary integrals, we use
the mid-point rule. A space grid for the inside of the scattering objects, (a, b),
need to support both this mid-point integration rule and also finite difference
formulas for the partial derivatives, and it will for this reason be nonuniform
close to the boundary. This occurrence of nonuniform internal spatial grids also
occur for the case of electromagnetic scattering in paper 2 and is generic if one
discretize the EOS formulation using finite difference methods.

For the two models in this paper we use the following spatial grid for the
inside of the scattering object

xi = a0 + (i+
1

2
)
a1 − a0
N

, i = 0, 1, · · · , N − 1. (1.3)

The “electric field” and the “magnetic field” are continuous through the bound-
aries of the scattering objects. Their space derivatives are therefore approxi-
mated by finite difference formulas which involve values both from the inside
and the outside of the scattering object. The current density j1, and the charge
density ρ1, are entirely supported inside the scattering object, and for these
quantities it is thus appropriate to approximate their space derivatives using
only values from inside the scattering object. For the discretizations of the
boundary values that is located between the grid points for the time grid, we
choose to use a quadratic interpolation in order to maintain overall second order
accuracy for our scheme.

For both toy models we verify the stability and accuracy of our EOS for-
mulations using an approach based on the use of artificial sources. The idea
is motivated by a fact that adding an arbitrary source to all the governing
equations of the system normally will lead to only minor changes to the nu-
merical scheme. The introduction does however change the model equations
in an interesting and useful way. Extending the model equations by the addi-
tion of arbitrary sources means that any function is a solution to the extended
equations for some choice of sources.

For example, model 1 extended by the addition of artificial sources is of the
form

ϕt = c1ϕx + j + g1,

ρt = −jx + g2,

jt = (α− βρ)ϕ− γj + g3,

(1.4)

where g1, g2, g3, are the artificial sources. If we choose some functions ϕ̂, ĵ and
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ρ̂ and let

ĝ1 = ϕ̂t − c1ϕ̂x − ĵ,
ĝ2 = ρ̂t + ĵx,

ĝ3 = ĵt − (α− βρ̂)ϕ̂+ γĵ,

then model 1 with these source functions will have the functions ϕ̂, ĵ and ρ̂ as
solution. If we now use these sources in our numerical discretization of model
1, we know that the correct solution is given by ϕ̂, ĵ and ρ̂, and we can now
validate our numerical solution by comparing it to the known correct solution

The comparison between the EOS formulations and the exact solutions of the
two toy models show that discretization of our EOS formulation give accurate
numerical solutions, and thus shows that our new approach to wave scattering is
viable. The solutions of a general scattering where the source is located outside
the interval are also implemented for both toy models. The implementations
of both the artificial source test and the general scattering are stable with a
proper choice of the time step. We observe in this paper that the numerical
implementation of the EOS formulations for model 1 and model 2 is stable if
the time step is bounded both above and below, and thus belong to a bounded
interval. We show in the paper that this stability interval is a consequence of
the nonuniform spatial grid used inside the scattering object.

1.2.2 Paper 2

This paper is a continuation and extension of Paper 1 where we explore the
possibility of applying the EOS formulations to 3D electromagnetic scattering
problems. The goal of this paper is to derive, and implement numerically,
the EOS formulation for the scattering of electromagnetic waves from a single
scattering object. The extension to several such objects is conceptually trivial,
although with respect to computational load, the extension will of course be
nontrivial. The basic equations for the situation discussed in this paper are the
Maxwell’s equations

∇×Ej + ∂tBj = 0, (1.5a)

∇×Bj −
1

c2j
∂tEj = µjJ, (1.5b)

∂tρj +∇ · Jj = 0, (1.5c)

with the index j = 0 representing the outside of the scattering object and j = 1
representing the inside of the object. Ej is the electric field, Bj is the magnetic
field, Jj and ρj are the current density and the charge density respectively.
The speed of light in a material with electric permittivity εj and magnetic
permeability µj is given by cj = 1/(εjµj). For the inside of the object, the
dynamics of the current density is determined by the equation

∂tJ1 = (α− βρ1)E1 − γJ1 = F (E1, ρ1,J1), (1.6)

where α, β, γ are some constants. For the outside of the object, the current
density J0 and the electric density ρ0 are some given sources that satisfy the
continuity equation (1.5c).
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The principle of the EOS formulations for 3D electromagnetic scattering is
the same as in the 1D case in Paper 1. We solve the inside domain of the
model using a domain-based method and use a integral identity on the surface
to support the surface values needed by the inside updating in time. In order to
derive the boundary integral representations, we firstly need to derive a space-
time integral identities for the electric field and the magnetic field. The required
integral identities can be derived by noting that each component of the electric
and magnetic fields satisfy scalar wave equations. From the integral identities
satisfied by solutions to the 3D wave equations one can, after highly nontrivial
vector calculus manipulations, derive the integral representations of the electric
field and the magnetic field in the form

Ej(x, t) = −∂t
µj
4π

ˆ
Vj

dV ′
Jj(x

′, T )

|x′ − x|
− ∇ 1

4πεj

ˆ
Vj

dV ′
ρj(x

′, T )

|x′ − x|

∓ ∂t[
1

4π

ˆ
S

dS′{ 1

cj |x′ − x|
(n′ ×Ej(x

′, T ))×∇′|x′ − x|

+
1

cj |x′ − x|
(n′ ·Ej(x′, T ))∇′|x′ − x|+ 1

|x′ − x|
n′ ×Bj(x

′, T )}]

± 1

4π

ˆ
S

dS′{(n′ ×Ej(x
′, T ))×∇′ 1

|x′ − x|

+ (n′ ·Ej(x′, T ))∇′ 1

|x′ − x|
},

(1.7)

Bj(x, t) = ∇× µj
4π

ˆ
Vj

dV ′
Jj(x

′, T )

|x′ − x|

+ ∂t[
1

4π

ˆ
S

dS′{ 1

cj |x′ − x|
(n′ ×Bj(x

′, T ))×∇′|x′ − x|

∓ 1

cj |x′ − x|
(n′ ·Bj(x

′, T ))∇′|x′ − x| − 1

c2j

1

|x′ − x|
n′ ×Ej(x

′, T )}]

± 1

4π

ˆ
S

dS′{(n′ ×Bj(x
′, T ))×∇′ 1

|x′ − x|

+ (n′ ·Bj(x
′, T ))∇′ 1

|x′ − x|
},

(1.8)

for x ∈ Vj . These are however not the only integral identities that follows
from this procedure. We also find that from the two outer identities we get two
additional inner identities and similarly from the two inner we get two additional
outer identities. In optics, which is a subfield of electromagnetics, these extra
identities are called the Ewald-Oseen extinction theorem. From a mathematical
point of view they follow from a defining property of Dirac delta functions. The
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extra pair of integral identities are

0 = −∂t
µ1−j

4π

ˆ
V1−j

dV ′
J1−j(x

′, T )

|x′ − x|
− ∇ 1

4πε1−j

ˆ
V1−j

dV ′
ρ1−j(x

′, T )

|x′ − x|

± ∂t[
1

4π

ˆ
S

dS′{ 1

c1−j |x′ − x|
(n′ ×E1−j(x

′, T ))×∇′|x′ − x|

+
1

c1−j |x′ − x|
(n′ ·E1−j(x

′, T ))∇′|x′ − x|+ 1

|x′ − x|
n′ ×B1−j(x

′, T )}]

∓ 1

4π

ˆ
S

dS′{(n′ ×E1−j(x
′, T ))×∇′ 1

|x′ − x|

+ (n′ ·E1−j(x
′, T ))∇′ 1

|x′ − x|
},

(1.9)

and

0 = ∇× µ1−j

4π

ˆ
V1−j

dV ′
J1−j(x

′, T )

|x′ − x|

± ∂t[
1

4π

ˆ
S

dS′{ 1

c1−j |x′ − x|
(n′ ×B1−j(x

′, T ))×∇′|x′ − x|

+
1

c1−j |x′ − x|
(n′ ·B1−j(x

′, T ))∇′|x′ − x|

− 1

c21−j |x′ − x|
n′ ×E1−j(x

′, T )}]

∓ 1

4π

ˆ
S

dS′{(n′ ×B1−j(x
′, T ))×∇′ 1

|x′ − x|

+ (n′ ·B1−j(x
′, T ))∇′ 1

|x′ − x|
},

(1.10)

for x ∈ Vj . After taking the limits of (1.7)-(1.10) when x approaches the sur-
faces from both the inside and the outside of the scattering objects, we get four
integral representations on the surfaces. We also have four electromagnetic in-
terface conditions at the boundary of the scattering object.boundary conditions
for the usual electromagnetics. We have thus four unknowns and six interface
conditions, which is overdetermined. The technique for solving this overdeter-
mined problem is explained in the main text of Paper 2. The final boundary
integral identities takes the following compact form

(I +
1

2
(
ε1
ε0
− 1)n n)E+(x, t) = Ie + Oe + Be, (1.11a)

(I +
1

2
(1− µ0

µ1
)n n)B+(x, t) = Ib + Ob + Bb, (1.11b)

where I is a 3× 3 identity matrix, E+ and B+ are the limits of the electric field
and the magnetic field by letting x approach the surface from the inside of the
scattering object, Ie and Ib are volume integrals of the inside current density
and the charge density, Oe and Ob are fields on the surfaces generated by the
source in the absence of the scattering objects, Be and Bb are surface integrals
of the historical values of the fields on the surface. Expressions of these integrals
are presented in Paper 2. Equations (1.5) and (1.6) together with the boundary
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integral identities (1.11a) and (1.11b) compose the EOS formulations of the 3D
model.

In Paper 2, our aim is focused on illustrating the EOS formulations with
respect to its complexity and numerical stability, thus we choose a scattering
object of the simplest possible shape.set the shape , a rectangular box. In order
to get a second order accuracy numerical solutions, we use the Lax-Wendroff
method on (1.5) and the modified Euler’s method on (1.6). For the boundary
integral identities, we use the mid-point rules for second order accuracy. Inside
the scattering object we introduce, for the reasons explained in paper 1, a non-
uniform spatial grid of the form

xi = xa + (i+ 0.5)∆x, i = 0, 1, · · ·Nx − 1,

yj = ya + (j + 0.5)∆y, j = 0, 1, · · ·Ny − 1,

zk = za + (k + 0.5)∆z, k = 0, 1, · · ·Nz − 1,

(1.12)

with

∆x =
xb − xa
Nx

,

∆y =
yb − ya
Ny

,

∆z =
zb − za
Nz

,

where Nx, Ny and Nz are the number of grid points in x, y and z directions
respectively.

For the inside grids, the discretized solutions of (1.5) at grid point (xi, yj , zk)
at time tn+1 are calculated by

φn+1
i,j,k = φni,j,k + ∆t(

∂φ

∂t
)ni,j,k +

1

2
(∆t)2(

∂2φ

∂t2
)ni,j,k, (1.13)

where φ represents ei, bi, ρ1, i = 1, 2, 3. The expressions of ∂φ
∂t and ∂2φ

∂t2 will be
expressed by the space derivatives through Lax-Wendroff method. The same as
for the 1D models, due to the sharp changes of the properties of the material
on the boundaries of the scattering objects, the space derivatives of the electric
field and the magnetic field involve both the inside values and the outside values
while the space derivatives of the current density and the charge density only
involve the inside values.

After discretization the current equation (1.6), using the modified Euler’s
method, we get a numerical scheme defined by the difference equation

(j̄l)
n+1
i,j,k = (jl)

n
i,j,k + ∆t · F ((el)

n
i,j,k, (ρ1)ni,j,k, (jl)

n
i,j,k),

(jl)
n+1
i,j,k =

1

2
((jl)

n
i,j,k + (j̄l)

n+1
i,j,k + ∆t · F ((el)

n+1
i,j,k, (ρ1)n+1

i,j,k(j̄l)
n+1
i,j,k)),

(1.14)

where l = 1, 2, 3, representing the three components of the current density.
For the discretizations of the boundary integral identities, the final formulas

takes the form (
M11 M12

M21 M22

)(
Enp
Bn
p

)
=

(
ER
BR

)
, (1.15)
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where Enp and Bn
p are the numerical solutions at grid point xp at time tn. ER

and BR are the right hand of (1.11a) and (1.11b) respectively after moving the
unknown into the right side of the equations. M11 and so on are 3× 3 matrices.
The numerical solution for a general case where the sources are located outside
the scattering domain is implemented. In order to be easily integrated in space,
we have set up the outside source J0 and ρ0 as a combination of a smooth
localized function in time and a delta function in space.

In order to validate our method, we solve an extended system with artificial
sources described by

∂tB +∇×E = 0, (1.16a)

1

c21
∂tE−∇×B = −µ1J, (1.16b)

∇ ·E =
1

ε1
ρ, (1.16c)

∂tJ = (α− βρ)E− γJ + ϕ. (1.16d)

If we choose some functions for Ẽ, B̃, then these choices will be a solution to
model (1.16), if the artificial source are chosen to be

ϕ = ∂tJ̃− (α− βρ̃)Ẽ− γJ̃, (1.17)

with

J̃ =
1

µ1
(∇× B̃− 1

c21
∂tẼ),

and
ρ̃ = ε1∇ · Ẽ.

The comparison between the numerical implementations and the exact solutions
show high accuracy without instabilities with proper choices of parameters and
restricted time step. It’s also noted in Paper 2 that the numerical solution is
stable if the time step is contained in a certain bounded interval. This interval is
determined by both the inside domain-based method and the boundary integral
identities.

1.2.3 Paper 3

In this paper we discuss the three major issues involved in solving the 3D
Maxwell’s equations using the EOS formulations. We believe that these is-
sues are representative for the kind of problems that must be overcome while
using the EOS formulation to calculate transient scattering of waves.

The first issue to be discussed in this paper is numerical stability. As men-
tioned above, the numerical scheme for the EOS formulation derived in paper2
is stable for time steps in a certain bounded interval. In the two 1D toy models,
this interval is purely determined by the domain-based method, namely the Lax-
Wendroff method, in our case. For the 3D model of Maxwell’s equations, our
finding is that the instability, when it occur, shows up at late times and comes
from two sources. One source is the domain-based method applied inside the
scattering object and the other source is the integral identities applied on the
surfaces of the scattering object which are supplying the boundary conditions
that are needed by the domain-based method. Specifically, the lower limit of
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this interval comes from the boundary integral identities and are determined by
the material of the scattering object through the relative electric permittivity
and the relative magnetic permeability, while the upper limit is determined by
the domain-based method applied inside the scattering object. Our conclusions
are based on two tests.

In the first test we assume that there is no current density and the charge
density inside the object, and that the inside and outside has the same material
parameters. Thus µ1 = µ0, ε1 = ε0, J1 = 0 and ρ1 = 0. In other words, there is
no scattering object present in the material sense. Under these assumptions, the
electric field inside the scattering object E1 can be calculated by three methods.

In method 1, the field inside the scattering object is produced directly by
the outside sources, thus the exact solution is calculated by

E1(x, t) = −∂t
µ0

4π

ˆ
V0

dV ′
J0(x′, T )

|x′ − x|
− ∇ 1

4πε0

ˆ
V0

dV ′
ρ0(x′, T )

|x′ − x|
, (1.18)

where V0 denotes the outside domain of the scattering object while x is located
inside of the object.

Note that by using the formula (1.18), for the electric field, and the corre-
sponding one for the magnetic field, we find that the boundary values for the
electric and magnetic field are given by

E+(x, t) = −∂t
µ0

4π

ˆ
V0

dV ′
J0(x′, T )

|x′ − x|
− ∇ 1

4πε0

ˆ
V0

dV ′
ρ0(x′, T )

|x′ − x|
, (1.19)

and

B+(x, t) = ∇× µ0

4π

ˆ
V0

dV ′
J0(x′, T )

|x′ − x|
, (1.20)

where x is located on the surface S of the scattering object. E+(x, t) and
B+(x, t) respectively represent the limits of the electric filed E+ and the mag-
netic field B+ by letting x approach the surface from the inside of the scattering
object.

Based on this we can now calculate the inside electric field E+ by two meth-
ods more.

In method 2, we calculate the inside electric field using the boundary integral
identity of the inside solution,

E1(x, t) = ∂t[
1

4π

ˆ
S

dS
′
{ 1

c1|x′ − x|
(n′ ×E+(x′, T ))×∇′|x′ − x|

+
1

c1|x′ − x|
(n′ ·E+(x′, T ))∇′|x′ − x|

+
1

|x′ − x|
n′ ×B+(x′, T )}]

− 1

4π

ˆ
S

dS
′
{(n′ ×E+(x′, T ))×∇′ 1

|x′ − x|

+ (n′ ·E+(x′, T ))∇′ 1

|x′ − x|
},

(1.21)

which involves the surface values E+ and B+ expressed by (1.19) and (1.20).
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In method 3, we update the inside values using the Lax-Wendroff method
with boundary values given by the same surface values E+ and B+ as in method
2.

The comparison of the results from these three method show high accuracy
and no instabilities if the time step is confined in the stable interval.

If we break the upper limit, Method 2 works well but Method 3 has late
time instabilities. Thus the upper limit is controlled by the domain-based part
of the EOS method.

The second test is based on the artificial source model (1.16). Given exact
solutions of E1 and B1, the artificial source can be calculated by (1.17). Then
we numerically calculate E1 and B1 by two methods.

In method 1 we apply the EOS formulations developed in this thesis which
combines a domain based method and the boundary integral representation.

In method 2 we update the inside values of the fields using the Lax-Wendroff
method with boundary values given explicitly by our choice of the electric E1

field and magnetic B1 field. Results show that for time steps that breaks the
lower limit of the stable interval, Method 1 shows the late time instability while
Method 2 works perfectly. Thus the lower limit is determined by the boundary
integral part of the EOS method

Considering test 1 together with test 2, we come to the conclusion that the
lower limit is determined the boundary integral representations while the upper
limit is determined by the inside domain-based method. Specifically, the lower
limit is directly determined by the relative electric permittivity and magnetic
permeability and the upper limit is determined by the introduction of the non-
uniform grids of the inside domain-based method.

The second issue is how to handle the singular integrals that appear in matrix
elements when we discretize the EOS formulation. These singular integrals
come from the process taking limits of the integral representations when the
observing point moves from the inside or the outside onto the surfaces of the
scattering object. The integrals are calculated by splitting them in a regular
part and a singular core. The regular part we calculate using midpoint rule or
3D Gaussian integration and the singular core we calculate exactly using certain
integral theorems.

The third issue is parallelization. Because of the retardation in time which
is an integral part of the EOS formulation, or any formulation using dimen-
sional reduction based on space-time Greens functions, there is a large memory
requirement for the algorithm. Implementation in a parallel computational en-
vironment will therefore be necessary for most nontrivial application of our
method.

1.3 Discussions and future work

A new hybrid method for solving linear and nonlinear transient scattering prob-
lems is introduced in this thesis. The hybrid method combines a domain based
method and boundary integral representations in the time domain.

In this thesis, our focus has been to provide proof of principle that our new
method is viable as an approach to the numerical calculation of transient wave
scattering. By detailing the mathematical formulation and numerical imple-
mentation of our approach for two models of 1D transient wave scattering, and
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the 3D transient scattering of electromagnetic waves, we have achieved what
the goal of this thesis.

Beyond the proof of viability of our new approach, there are several topics
relating to this new method that needs to be investigated.

Firstly, it would be very useful if an unconditional stable numerical im-
plementation of our EOS formulation could be found. The numerical imple-
mentations we have introduced, through our proof of principle studies, are all
only conditionally stable. For all cases the numerical implementations are only
stable for the time step in a bounded interval. For the 1D case this interval
is entirely determined by the inner domain based method whereas for the 3D
electromagnetic case the upper limit is determined by the domain based part
of the method whereas the lower limit is determined by the boundary part of
the method. Specifically the lower limit depends on the difference in material
properties outside and inside the scattering object. If this difference is too large,
the lower limit become larger than the higher limit and thus the numerical im-
plementation is unstable for all sizes of the step length and thus the scheme is
useless. In applications of our scheme to antenna theory this situation is realized
and this might be the whole explanation, or part of the explanation, for the late
time instability that always, in one way or another, seems to appear in this area
of application of boundary methods. A fully implicit implementation of the EOS
formulation , if it can be found, would remove restriction on the time step for
stable operation and, inn all probability, may remove the late time instability
for good. During this thesis work we briefly investigated the possibility of an
implicit implementation of the EOS formulation, but did not achieve anything
worth reporting here. We did however gain enough insight into the problem to
realize that this is a difficult, perhaps even impossible, thing to achieve. This
is certainly a topic worth looking into in any future investigation of the EOS
formulation.

Secondly, the fundamental integral equations underlying both the BEM and
the EOS formulations, developed in this work, are always retarded in time. This
is because the underlying equations can only be derived using space-time Green’s
functions. Thus the solutions at a specific grid point at a certain time will de-
pend on a series of historical solutions of all other grid points of the scattering
object. Therefore, these methods are memory intensive. This is in particular
true for the EOS formulation, because it grids the inside of the scattering ob-
ject as well as it boundary. Although this can be solved by parallel computing,
whenever large scale parallel processing is needed, there are always the issues
of load balancing and saturation to take into account. In our work, the EOS
formulation of 3D Maxwell’s model was implemented on a large cluster, but we
were not focused on parallel issues in any systematic way and have not reported
on any parallelization issues that came up during our investigations. Because
of the memory intensive nature of the EOS formulation these are however im-
portant issues, and therefore must form the part of any future work aimed at
making our approach to transient wave scattering into at practical and efficient
tool in the toolbox of scientific computing.

Thirdly, there is the issue how the EOS formulation compare to other, more
conventional approaches to transient wave scattering. The main contenders
here are FDTD and FEM. On the surface of it, it would appear that the EOS
formulation is a clear front runner in any such comparison. After all, using
this method removes the need to grid most of the physical domain, only the
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inside and the boundaries of the actual scattering objects need to be discretized.
Thus the EOS formulation requires much fewer spatial grid points than either
of FDTD and FEM. However, the retardation of the equations defining the
boundary part of the EOS formulation means that this method require many
more temporal grid points than the two main contenders. It is appropriate to
ask if anything has been gained with respect to memory usage compared to a
fully domain-based method like the FDTD method?

The outcome of comparing the memory usage of FDTD and FEM with the
EOS formulation is anything but obvious. The outcome of such an investigation
most likely will not present us with a clear winner. The ranking will almost
surely depend on the nature of the problems under investigation. If the EOS
formulation is going to take its place in the toolbox of scientific computing
investigations like the one described in this section is sorely needed.

However, even if the memory usage for purely domain based methods and
our EOS approach are roughly the same for many problems of interest, our
approach avoid many of the sources of problems that need to be considered while
using purely domain based methods. These are problems like stair-casing at
sharp interfaces defining the scattering objects, issues of accuracy, stability and
complexity associated with the use of multiple grids in order to accommodate
the possibly different geometric shapes of the scattering objects, and the need
to minimize the reflection from the boundary of the finite computational box.
The EOS approach is not subject to any of these problems.
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