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1 Introductions

1.1 Background and motivations

The formulation of partial differential equations in unbounded domains in terms
of boundary integral equations has a long history. The roots stretch back at
least to the ground breaking publication of a certain set of integral identities by
George Green in 1828 [1]. These ideas, which became well known only after his
death, became generalized into the notion of Green’s functions which are the
key elements in all investigations involving boundary integral equations, and
many other places in pure and applied science. It would for example be hard to
imagine solid state physics and particle physics without Green’s functions.

Using computational methods to solve PDEs by solving their corresponding
boundary integral equations, also has fairly deep roots, but not nearly as deep as
the boundary integral equations themselves. This is because such methods only
became feasible in the 1960s after the invention and widespread availability
of electronic computers. This approach to solving PDEs numerically became
known as the Boundary Element method(BEM) [2].

The boundary element method has several attractive features that makes
it well suited to take on any computational problem involving some kind of
wave scattering from compact objects in an infinite domain. Many modeling
problems in science and engineering are of this type.

First and foremost, the solution of the original PDEs is changed to the so-
lution of an integral equation defined only on the boundaries of the scattering
objects. Thanks to this, one whole space dimension is removed from the prob-
lem, and no numerical grids outside the scattering objects are needed. This
greatly reduces the computational cost and complexity, and therefore BEM is
more efficient compared to a traditional domain-based method. The reduction
of the number spatial dimensions in the problem is the main advantage of the
BEM. For a domain-based method, all spatial dimensions are retained and must
be discretize in a numerical solutions algorithm. The discretizations of the out-
side domain is usually resolved by introducing a box big enough to include all
the scattering objects. This domain can easily become very large and thus the
computational box will have to be very large. For 3D scattering problems this
translates into a large memory requirement for the numerical implementation.
In addition, boundary conditions have to be imposed at the boundary of the
computational box in such a way that reflections are minimized. For the case
of electromagnetic scattering this problem was solved by the introduction of a
perfectly matched layer(PML) [3,4]. This is a key element of the finite difference
time domain method(FDTD) [5–7], which is the method of choice for simulating
electromagnetic scattering. The introduction of PML however does not come
free. There are both an increased computational cost, because the PML layer
has to be thick enough in order to ensure minimal reflection, and an increased
implementional complexity needed to counter the numerical instabilities that
are originating from the PML layer. The PML approach has subsequently been
simplified and generalized to all kinds of scattering problems [8,9] using an ap-
proach where the physical space outside the computational box is complexified.

Secondly, there is usually a big difference in the material properties be-
tween the scattering objects and their surroundings, which in the mathematical
model appears as discontinuous, or near-discontinuous, coefficients in the PDEs
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defining the model. It is not easy to represent this difference accurately using a
domain-based method, like FDTD or the Finite Element method (FEM) [10–12].
This is usually resolved by introducing multiple, interlinked grids. However it
is challenging to design accurate and stable numerical algorithm on such grids
and it also adds to computation cost of these methods.

Thirdly, the surface localization of boundary integral equations also means
that the boundary discretization, which leads to the BEM equations, can be
optimized with respect to the geometry of each surface separately when there
are more than one scattering object, which there usually is. For domain-based
methods like Finite Element methods(FEM) [10–12] and FDTD, such an opti-
mization can only be achieved by using non-uniform or multiple grids tailored
to the geometrical shape of the objects. These kinds of efforts have met with
some degree of success, but it does add new layers of complexity. Methods such
as these, combined with Transformational Optics(TO) [13,14] have an intuitive
appeal and have recently met with some amount of success [15], but numerical
stability issues are a major concern.

Lastly, BEM, is exceptionally well suited for modeling scattering problems
where the sources are slow on relevant timescales. In this setting the bound-
ary integral equations are derived in the spectral domain and the discretized
equations defining BEM only needs to be solved for the small set of discrete
frequencies that are required for an accurate representation of the time depen-
dent source. For a domain-based method like FDTD, near-stationary sources
are the worst possible case since FDTD is, as the name indicate, a time domain
method, and slow sources mean that Maxwell’s equations have to be solved for a
long interval of time, which is costly in terms of computational resources. FEM,
on the other hand, originated in the context of stationary problems in elastic-
ity [16, 17], and as such is well suited to frequency domain problems. However
for fast sources in 3D electromagnetic scattering the computational load builds
quickly.

Given all these attractive features of BEM for solving scattering problems in
electromagnetics, it is somewhat surprising that in a popularity contest, FEM
and FDTD beats BEM hands down [2]. The reason for this is that in addition
to all its attractive features, BEM has some real drawbacks too.

Firstly, reformulating the scattering problem for a system of PDEs in terms
of boundary integral equations typically will involve classical but fairly intricate
mathematical tools, as will the discretization of the resulting integral equations.
In particular one will need to content with singularities which appear in the
limits that always must be taken while deriving the boundary equations from the
PDEs. Accurately representing these singularities in the ensuing discretization
leading to BEM, is a major issue. FEM have some of the same issues, whereas
FDTD is much simpler to implement using mathematical tools that are straight
forward and known to all.

Secondly, BEM relies on Green’s functions and such functions can only be
defined for linear systems of PDEs. In our opinion this is one of the major
reasons why BEM is significantly less popular than the major contenders FEM
and FDTD. Nonlinearities are common in most areas of pure and applied science,
and having to change your whole computational approach when nonlinearities
are added to your model is a major nuisance. In some areas of application
nonlinearities dominate and hence a computational approach based on Green’s
functions is out of the question, fluid mechanics is such an area. However in
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other areas one can frequently disregard nonlinearities and a computational
approach based on Green’s functions is feasible. Scattering of electromagnetic
waves, where nonlinearities only come into play at very high field intensities, is
such an area.

Thirdly, BEM, which is simplest to formulate in the spectral domain, is at
it’s best when we are looking at a near stationary situation with narrow band
sources. For transient scattering with broad band sources one needs to formulate
BEM in the time domain and this involves space-time Green’s functions that in
general tends to be more singular than the frequency domain ones. However, for
the specific case of electromagnetic scattering, an integral formulation has been
derived [18] whose singularities are fairly weak. This integral formulation of
electromagnetics is the foundation of all time dependent BEM formulations to
date, and is also the basis for our approach. However, the progress in developing
these time dependent BEM schemes has been slow due to several drawbacks.

The time-domain integral equations are retarded and this means that in
order to compute the solutions at a certain time, one needs to retain the solutions
for an interval of previous times that in some cases can be very large. This leads
to a large memory requirement that needs to be met using parallel processing. In
today’s computational environment parallel implementation of time dependent
BEM is fairly standard, but the possibly limited efficiency due to the problem
of load balancing is something that always must be contended with.

However the major obstacle that has prevented this method from being
widely applied for electromagnetic scattering is the occurrence of numerical
instabilities. These instabilities, whose source is not fully understood, occur
not at early times, but at later times and have become known as the late time
instability. Many efforts have been made and several techniques have been
developed in order to improve the stabilities of BEM schemes for time dependent
electromagnetics in the last several decades. Basically there are two directions
that are pursued. One direction is focused on delaying or removing the late
time instability by applying increasing accurate spatial integrations [19–25]. The
other direction is aimed at designing more stable time discretization schemes [24,
25]. Some researches were reported to mitigate the instability by both making
better approximations of the integrals and applying improved time derivatives
[26,27].

In this thesis we have developed a new hybrid approach for solving linear
and nonlinear scattering problems, an approach which is aimed at a situation
where a collection of compact scattering objects are located in a homogeneous
unbounded space and where the scattering objects can have an inhomogeneous
and/or nonlinear response. The basic idea is to combine a domain-based method
and a boundary integral method in such a way that the domain-based method
is used to propagate the equations governing the wave field inside the scattering
objects forward in time while the boundary integral method is used to supply
the domain-based method with the required boundary values. The boundary
integral method is derived from a space-time integral formulation of the PDEs
such that all the scattering and re-scattering outside the scattering objects will
be taken into account automatically. As a result, for the numerical implemen-
tations, there is no need for grids outside the scattering objects, only grids on
the inside and the boundaries of the scattering objects are needed. Thus the
new approach combines the best features of both methods; the response inside
the scattering objects, which can be caused by both material inhomogeneity
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and nonlinearities, is easily taken into account using the domain-based method,
and the boundary conditions supplied by the boundary integral method makes
it possible to confine the domain based method to the inside of each scattering
object.

This kind of idea was firstly proposed in 1972 by E. Wolf and D. N. Pat-
tanyak [28] for the stationary linear scattering of electromagnetic waves in fre-
quency space. The approach was based on the Ewald-Oseen optical extinction
theorem, and because of this we call our method the Ewald-Oseen Scatter-
ing(EOS) formulation.

In this thesis our aim is to calculate the scattering of waves from objects that
are in general inhomogeneous and, additionally, may have a nonlinear response.
Thus a space-time integral formulation of the PDEs of interest is needed.

Firstly, we explored the viability of our approach by applying it to two toy
models of 1D linear and nonlinear transient wave scattering. These two problems
are set up to be analogs of the 3D scattering of electromagnetic waves, whose
mathematical incarnation are Maxwell’s equations . Our investigation of these
two 1D problems is detailed in Paper 1.

Secondly, after confirming the viability of our approach in Paper 1, we ex-
tended our approach to the real world highly relevant, but also mathematically
highly complex, case of 3D electromagnetic scattering. This extension of our
method was successful, and we take this as proof that our EOS formulation is a
general approach that is applicable to a wide array of linear and nonlinear wave
scattering problems. In Paper 2 we report on the main features of this extension
and the problems that needed to be addressed in order for us to succeed in the
application of our EOS formulation to the 3D Maxwell’s equations.

In paper 3 we discuss, in the context of electromagnetic scattering, two
issues that are relevant for the application of our EOS formulation to any wave
scattering problem of real world relevance and complexity. This is the issues of
stability of the numerically implemented EOS formulation, and the issue of how
to handle the singular integrals that occurs as matrix elements in the numerical
implementation of the boundary part of the EOS formulation.

1.2 Summary of the papers

This section summarizes the work and the main results of the three papers that
are the core of the current thesis.

1.2.1 Paper 1

In this paper, we introduce a new method, which we have called the EOS formu-
lations, for solving linear and nonlinear transient wave scattering problems. As
stated in section 1, the method has been developed by combining a boundary
integral representations and a domain-based method. This is done in such a
way that the inside fields will be propagated forward in time by the domain-
based method, while the needed boundary values will supplied by the boundary
integral representations. The method is illustrated on two 1D toy models which
are chosen as analogs of electromagnetic wave scattering.
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Model 1 is governed by equations

ϕt = c1ϕx + j,

ρt = −jx,
jt = (α− βρ)ϕ− γj, a0 < x < a1,

(1.1)

and model 2 is governed by

ϕt = µ1ψx + j,

ψt = ν1ϕx,

ρt = −jx,
jt = (α− βρ)ϕ− γj, a0 < x < a1,

(1.2)

where α, β and γ are constants, ϕ = ϕ(x, t) is the “electric field”, ψ(x, t) is
the “magnetic” field, j = j(x, t) is the “current density” and ρ is the “charge
density”, c1 is the propagation speed inside the “material”. µ1, ν1 are ”material”
parameters and under the translations of µ = 1

ε and ν = 1
µ , µ and ν are

the analog of the electric permittivity and magnetic permeability. The charge
density and current density are confined to the interval [a0, a1], which is an
analog to a compact scattering object in the electromagnetic situation. The
fields ϕ and ψ are defined on the whole real axis. The equation for the “current
density”, j is a simplification of a real electromagnetic current density model
[29].

Outside the interval the two models are respectively governed by

ϕt = c0ϕx + js,

and

ϕt = µ0ψx + js,

ψt = ν0ϕx,

where js(x, t) is a given source that has its support in interval x > a1. Model
1 describes a one way propagation with its speed c0 outside the interval [a1, a1]
and model 2 describes a two way propagation with its speed c0 =

√
µ0ν0 outside

the interval. In order to derive the space-time integral formulation of the EOS
formulations, we firstly need to derive an integral identity involving the operator

L1 = ∂t − v∂x,

for model 1 and

L2 =

(
∂t −µ∂x
−ν∂x ∂t

)
,

for model 2 and the needed advanced Green’s functions of their adjoint opera-
tors. The integral identities on different intervals will be obtained by inserting
the corresponding advanced Green’s functions. Finally the integral represen-
tations on the boundaries are reached by taking the limit of the integral iden-
tities with x approaching the boundaries a0 and a1 of the interval. However,
the boundary integral representations and the boundary conditions compose an
overdetermined system for both model 1 and model 2. This is a general situation
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occurring when the EOS formulation is applied to systems of PDEs. An general
approach to handling this kind of problem is introduced in this paper. This
approach is subsequently applied to the case of Maxwells equations in paper2.

Equations (1.1) or (1.2) together with their corresponding boundary integral
representations, by definition, is the EOS formulations of toy model 1 and toy
model 2 respectively.

In order to get a second order accuracy numerical solution, we apply the
Lax-Wendroof method to the first two equations of (1.1) and the first three
equations of (1.2) and we apply the modified Euler’s method to the equations of
the current density j for the inside interval. For the boundary integrals, we use
the mid-point rule. A space grid for the inside of the scattering objects, (a, b),
need to support both this mid-point integration rule and also finite difference
formulas for the partial derivatives, and it will for this reason be nonuniform
close to the boundary. This occurrence of nonuniform internal spatial grids also
occur for the case of electromagnetic scattering in paper 2 and is generic if one
discretize the EOS formulation using finite difference methods.

For the two models in this paper we use the following spatial grid for the
inside of the scattering object

xi = a0 + (i+
1

2
)
a1 − a0
N

, i = 0, 1, · · · , N − 1. (1.3)

The “electric field” and the “magnetic field” are continuous through the bound-
aries of the scattering objects. Their space derivatives are therefore approxi-
mated by finite difference formulas which involve values both from the inside
and the outside of the scattering object. The current density j1, and the charge
density ρ1, are entirely supported inside the scattering object, and for these
quantities it is thus appropriate to approximate their space derivatives using
only values from inside the scattering object. For the discretizations of the
boundary values that is located between the grid points for the time grid, we
choose to use a quadratic interpolation in order to maintain overall second order
accuracy for our scheme.

For both toy models we verify the stability and accuracy of our EOS for-
mulations using an approach based on the use of artificial sources. The idea
is motivated by a fact that adding an arbitrary source to all the governing
equations of the system normally will lead to only minor changes to the nu-
merical scheme. The introduction does however change the model equations
in an interesting and useful way. Extending the model equations by the addi-
tion of arbitrary sources means that any function is a solution to the extended
equations for some choice of sources.

For example, model 1 extended by the addition of artificial sources is of the
form

ϕt = c1ϕx + j + g1,

ρt = −jx + g2,

jt = (α− βρ)ϕ− γj + g3,

(1.4)

where g1, g2, g3, are the artificial sources. If we choose some functions ϕ̂, ĵ and
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ρ̂ and let

ĝ1 = ϕ̂t − c1ϕ̂x − ĵ,
ĝ2 = ρ̂t + ĵx,

ĝ3 = ĵt − (α− βρ̂)ϕ̂+ γĵ,

then model 1 with these source functions will have the functions ϕ̂, ĵ and ρ̂ as
solution. If we now use these sources in our numerical discretization of model
1, we know that the correct solution is given by ϕ̂, ĵ and ρ̂, and we can now
validate our numerical solution by comparing it to the known correct solution

The comparison between the EOS formulations and the exact solutions of the
two toy models show that discretization of our EOS formulation give accurate
numerical solutions, and thus shows that our new approach to wave scattering is
viable. The solutions of a general scattering where the source is located outside
the interval are also implemented for both toy models. The implementations
of both the artificial source test and the general scattering are stable with a
proper choice of the time step. We observe in this paper that the numerical
implementation of the EOS formulations for model 1 and model 2 is stable if
the time step is bounded both above and below, and thus belong to a bounded
interval. We show in the paper that this stability interval is a consequence of
the nonuniform spatial grid used inside the scattering object.

1.2.2 Paper 2

This paper is a continuation and extension of Paper 1 where we explore the
possibility of applying the EOS formulations to 3D electromagnetic scattering
problems. The goal of this paper is to derive, and implement numerically,
the EOS formulation for the scattering of electromagnetic waves from a single
scattering object. The extension to several such objects is conceptually trivial,
although with respect to computational load, the extension will of course be
nontrivial. The basic equations for the situation discussed in this paper are the
Maxwell’s equations

∇×Ej + ∂tBj = 0, (1.5a)

∇×Bj −
1

c2j
∂tEj = µjJ, (1.5b)

∂tρj +∇ · Jj = 0, (1.5c)

with the index j = 0 representing the outside of the scattering object and j = 1
representing the inside of the object. Ej is the electric field, Bj is the magnetic
field, Jj and ρj are the current density and the charge density respectively.
The speed of light in a material with electric permittivity εj and magnetic
permeability µj is given by cj = 1/(εjµj). For the inside of the object, the
dynamics of the current density is determined by the equation

∂tJ1 = (α− βρ1)E1 − γJ1 = F (E1, ρ1,J1), (1.6)

where α, β, γ are some constants. For the outside of the object, the current
density J0 and the electric density ρ0 are some given sources that satisfy the
continuity equation (1.5c).
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The principle of the EOS formulations for 3D electromagnetic scattering is
the same as in the 1D case in Paper 1. We solve the inside domain of the
model using a domain-based method and use a integral identity on the surface
to support the surface values needed by the inside updating in time. In order to
derive the boundary integral representations, we firstly need to derive a space-
time integral identities for the electric field and the magnetic field. The required
integral identities can be derived by noting that each component of the electric
and magnetic fields satisfy scalar wave equations. From the integral identities
satisfied by solutions to the 3D wave equations one can, after highly nontrivial
vector calculus manipulations, derive the integral representations of the electric
field and the magnetic field in the form

Ej(x, t) = −∂t
µj
4π

ˆ
Vj

dV ′
Jj(x

′, T )

|x′ − x|
− ∇ 1

4πεj

ˆ
Vj

dV ′
ρj(x

′, T )

|x′ − x|

∓ ∂t[
1

4π

ˆ
S

dS′{ 1

cj |x′ − x|
(n′ ×Ej(x

′, T ))×∇′|x′ − x|

+
1

cj |x′ − x|
(n′ ·Ej(x′, T ))∇′|x′ − x|+ 1

|x′ − x|
n′ ×Bj(x

′, T )}]

± 1

4π

ˆ
S

dS′{(n′ ×Ej(x
′, T ))×∇′ 1

|x′ − x|

+ (n′ ·Ej(x′, T ))∇′ 1

|x′ − x|
},

(1.7)

Bj(x, t) = ∇× µj
4π

ˆ
Vj

dV ′
Jj(x

′, T )

|x′ − x|

+ ∂t[
1

4π

ˆ
S

dS′{ 1

cj |x′ − x|
(n′ ×Bj(x

′, T ))×∇′|x′ − x|

∓ 1

cj |x′ − x|
(n′ ·Bj(x

′, T ))∇′|x′ − x| − 1

c2j

1

|x′ − x|
n′ ×Ej(x

′, T )}]

± 1

4π

ˆ
S

dS′{(n′ ×Bj(x
′, T ))×∇′ 1

|x′ − x|

+ (n′ ·Bj(x
′, T ))∇′ 1

|x′ − x|
},

(1.8)

for x ∈ Vj . These are however not the only integral identities that follows
from this procedure. We also find that from the two outer identities we get two
additional inner identities and similarly from the two inner we get two additional
outer identities. In optics, which is a subfield of electromagnetics, these extra
identities are called the Ewald-Oseen extinction theorem. From a mathematical
point of view they follow from a defining property of Dirac delta functions. The
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extra pair of integral identities are

0 = −∂t
µ1−j

4π

ˆ
V1−j

dV ′
J1−j(x

′, T )

|x′ − x|
− ∇ 1

4πε1−j

ˆ
V1−j

dV ′
ρ1−j(x

′, T )

|x′ − x|

± ∂t[
1

4π

ˆ
S

dS′{ 1

c1−j |x′ − x|
(n′ ×E1−j(x

′, T ))×∇′|x′ − x|

+
1

c1−j |x′ − x|
(n′ ·E1−j(x

′, T ))∇′|x′ − x|+ 1

|x′ − x|
n′ ×B1−j(x

′, T )}]

∓ 1

4π

ˆ
S

dS′{(n′ ×E1−j(x
′, T ))×∇′ 1

|x′ − x|

+ (n′ ·E1−j(x
′, T ))∇′ 1

|x′ − x|
},

(1.9)

and

0 = ∇× µ1−j

4π

ˆ
V1−j

dV ′
J1−j(x

′, T )

|x′ − x|

± ∂t[
1

4π

ˆ
S

dS′{ 1

c1−j |x′ − x|
(n′ ×B1−j(x

′, T ))×∇′|x′ − x|

+
1

c1−j |x′ − x|
(n′ ·B1−j(x

′, T ))∇′|x′ − x|

− 1

c21−j |x′ − x|
n′ ×E1−j(x

′, T )}]

∓ 1

4π

ˆ
S

dS′{(n′ ×B1−j(x
′, T ))×∇′ 1

|x′ − x|

+ (n′ ·B1−j(x
′, T ))∇′ 1

|x′ − x|
},

(1.10)

for x ∈ Vj . After taking the limits of (1.7)-(1.10) when x approaches the sur-
faces from both the inside and the outside of the scattering objects, we get four
integral representations on the surfaces. We also have four electromagnetic in-
terface conditions at the boundary of the scattering object.boundary conditions
for the usual electromagnetics. We have thus four unknowns and six interface
conditions, which is overdetermined. The technique for solving this overdeter-
mined problem is explained in the main text of Paper 2. The final boundary
integral identities takes the following compact form

(I +
1

2
(
ε1
ε0
− 1)n n)E+(x, t) = Ie + Oe + Be, (1.11a)

(I +
1

2
(1− µ0

µ1
)n n)B+(x, t) = Ib + Ob + Bb, (1.11b)

where I is a 3× 3 identity matrix, E+ and B+ are the limits of the electric field
and the magnetic field by letting x approach the surface from the inside of the
scattering object, Ie and Ib are volume integrals of the inside current density
and the charge density, Oe and Ob are fields on the surfaces generated by the
source in the absence of the scattering objects, Be and Bb are surface integrals
of the historical values of the fields on the surface. Expressions of these integrals
are presented in Paper 2. Equations (1.5) and (1.6) together with the boundary
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integral identities (1.11a) and (1.11b) compose the EOS formulations of the 3D
model.

In Paper 2, our aim is focused on illustrating the EOS formulations with
respect to its complexity and numerical stability, thus we choose a scattering
object of the simplest possible shape.set the shape , a rectangular box. In order
to get a second order accuracy numerical solutions, we use the Lax-Wendroff
method on (1.5) and the modified Euler’s method on (1.6). For the boundary
integral identities, we use the mid-point rules for second order accuracy. Inside
the scattering object we introduce, for the reasons explained in paper 1, a non-
uniform spatial grid of the form

xi = xa + (i+ 0.5)∆x, i = 0, 1, · · ·Nx − 1,

yj = ya + (j + 0.5)∆y, j = 0, 1, · · ·Ny − 1,

zk = za + (k + 0.5)∆z, k = 0, 1, · · ·Nz − 1,

(1.12)

with

∆x =
xb − xa
Nx

,

∆y =
yb − ya
Ny

,

∆z =
zb − za
Nz

,

where Nx, Ny and Nz are the number of grid points in x, y and z directions
respectively.

For the inside grids, the discretized solutions of (1.5) at grid point (xi, yj , zk)
at time tn+1 are calculated by

φn+1
i,j,k = φni,j,k + ∆t(

∂φ

∂t
)ni,j,k +

1

2
(∆t)2(

∂2φ

∂t2
)ni,j,k, (1.13)

where φ represents ei, bi, ρ1, i = 1, 2, 3. The expressions of ∂φ
∂t and ∂2φ

∂t2 will be
expressed by the space derivatives through Lax-Wendroff method. The same as
for the 1D models, due to the sharp changes of the properties of the material
on the boundaries of the scattering objects, the space derivatives of the electric
field and the magnetic field involve both the inside values and the outside values
while the space derivatives of the current density and the charge density only
involve the inside values.

After discretization the current equation (1.6), using the modified Euler’s
method, we get a numerical scheme defined by the difference equation

(j̄l)
n+1
i,j,k = (jl)

n
i,j,k + ∆t · F ((el)

n
i,j,k, (ρ1)ni,j,k, (jl)

n
i,j,k),

(jl)
n+1
i,j,k =

1

2
((jl)

n
i,j,k + (j̄l)

n+1
i,j,k + ∆t · F ((el)

n+1
i,j,k, (ρ1)n+1

i,j,k(j̄l)
n+1
i,j,k)),

(1.14)

where l = 1, 2, 3, representing the three components of the current density.
For the discretizations of the boundary integral identities, the final formulas

takes the form (
M11 M12

M21 M22

)(
Enp
Bn
p

)
=

(
ER
BR

)
, (1.15)
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where Enp and Bn
p are the numerical solutions at grid point xp at time tn. ER

and BR are the right hand of (1.11a) and (1.11b) respectively after moving the
unknown into the right side of the equations. M11 and so on are 3× 3 matrices.
The numerical solution for a general case where the sources are located outside
the scattering domain is implemented. In order to be easily integrated in space,
we have set up the outside source J0 and ρ0 as a combination of a smooth
localized function in time and a delta function in space.

In order to validate our method, we solve an extended system with artificial
sources described by

∂tB +∇×E = 0, (1.16a)

1

c21
∂tE−∇×B = −µ1J, (1.16b)

∇ ·E =
1

ε1
ρ, (1.16c)

∂tJ = (α− βρ)E− γJ + ϕ. (1.16d)

If we choose some functions for Ẽ, B̃, then these choices will be a solution to
model (1.16), if the artificial source are chosen to be

ϕ = ∂tJ̃− (α− βρ̃)Ẽ− γJ̃, (1.17)

with

J̃ =
1

µ1
(∇× B̃− 1

c21
∂tẼ),

and
ρ̃ = ε1∇ · Ẽ.

The comparison between the numerical implementations and the exact solutions
show high accuracy without instabilities with proper choices of parameters and
restricted time step. It’s also noted in Paper 2 that the numerical solution is
stable if the time step is contained in a certain bounded interval. This interval is
determined by both the inside domain-based method and the boundary integral
identities.

1.2.3 Paper 3

In this paper we discuss the three major issues involved in solving the 3D
Maxwell’s equations using the EOS formulations. We believe that these is-
sues are representative for the kind of problems that must be overcome while
using the EOS formulation to calculate transient scattering of waves.

The first issue to be discussed in this paper is numerical stability. As men-
tioned above, the numerical scheme for the EOS formulation derived in paper2
is stable for time steps in a certain bounded interval. In the two 1D toy models,
this interval is purely determined by the domain-based method, namely the Lax-
Wendroff method, in our case. For the 3D model of Maxwell’s equations, our
finding is that the instability, when it occur, shows up at late times and comes
from two sources. One source is the domain-based method applied inside the
scattering object and the other source is the integral identities applied on the
surfaces of the scattering object which are supplying the boundary conditions
that are needed by the domain-based method. Specifically, the lower limit of
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this interval comes from the boundary integral identities and are determined by
the material of the scattering object through the relative electric permittivity
and the relative magnetic permeability, while the upper limit is determined by
the domain-based method applied inside the scattering object. Our conclusions
are based on two tests.

In the first test we assume that there is no current density and the charge
density inside the object, and that the inside and outside has the same material
parameters. Thus µ1 = µ0, ε1 = ε0, J1 = 0 and ρ1 = 0. In other words, there is
no scattering object present in the material sense. Under these assumptions, the
electric field inside the scattering object E1 can be calculated by three methods.

In method 1, the field inside the scattering object is produced directly by
the outside sources, thus the exact solution is calculated by

E1(x, t) = −∂t
µ0

4π

ˆ
V0

dV ′
J0(x′, T )

|x′ − x|
− ∇ 1

4πε0

ˆ
V0

dV ′
ρ0(x′, T )

|x′ − x|
, (1.18)

where V0 denotes the outside domain of the scattering object while x is located
inside of the object.

Note that by using the formula (1.18), for the electric field, and the corre-
sponding one for the magnetic field, we find that the boundary values for the
electric and magnetic field are given by

E+(x, t) = −∂t
µ0

4π

ˆ
V0

dV ′
J0(x′, T )

|x′ − x|
− ∇ 1

4πε0

ˆ
V0

dV ′
ρ0(x′, T )

|x′ − x|
, (1.19)

and

B+(x, t) = ∇× µ0

4π

ˆ
V0

dV ′
J0(x′, T )

|x′ − x|
, (1.20)

where x is located on the surface S of the scattering object. E+(x, t) and
B+(x, t) respectively represent the limits of the electric filed E+ and the mag-
netic field B+ by letting x approach the surface from the inside of the scattering
object.

Based on this we can now calculate the inside electric field E+ by two meth-
ods more.

In method 2, we calculate the inside electric field using the boundary integral
identity of the inside solution,

E1(x, t) = ∂t[
1

4π

ˆ
S

dS
′
{ 1

c1|x′ − x|
(n′ ×E+(x′, T ))×∇′|x′ − x|

+
1

c1|x′ − x|
(n′ ·E+(x′, T ))∇′|x′ − x|

+
1

|x′ − x|
n′ ×B+(x′, T )}]

− 1

4π

ˆ
S

dS
′
{(n′ ×E+(x′, T ))×∇′ 1

|x′ − x|

+ (n′ ·E+(x′, T ))∇′ 1

|x′ − x|
},

(1.21)

which involves the surface values E+ and B+ expressed by (1.19) and (1.20).
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In method 3, we update the inside values using the Lax-Wendroff method
with boundary values given by the same surface values E+ and B+ as in method
2.

The comparison of the results from these three method show high accuracy
and no instabilities if the time step is confined in the stable interval.

If we break the upper limit, Method 2 works well but Method 3 has late
time instabilities. Thus the upper limit is controlled by the domain-based part
of the EOS method.

The second test is based on the artificial source model (1.16). Given exact
solutions of E1 and B1, the artificial source can be calculated by (1.17). Then
we numerically calculate E1 and B1 by two methods.

In method 1 we apply the EOS formulations developed in this thesis which
combines a domain based method and the boundary integral representation.

In method 2 we update the inside values of the fields using the Lax-Wendroff
method with boundary values given explicitly by our choice of the electric E1

field and magnetic B1 field. Results show that for time steps that breaks the
lower limit of the stable interval, Method 1 shows the late time instability while
Method 2 works perfectly. Thus the lower limit is determined by the boundary
integral part of the EOS method

Considering test 1 together with test 2, we come to the conclusion that the
lower limit is determined the boundary integral representations while the upper
limit is determined by the inside domain-based method. Specifically, the lower
limit is directly determined by the relative electric permittivity and magnetic
permeability and the upper limit is determined by the introduction of the non-
uniform grids of the inside domain-based method.

The second issue is how to handle the singular integrals that appear in matrix
elements when we discretize the EOS formulation. These singular integrals
come from the process taking limits of the integral representations when the
observing point moves from the inside or the outside onto the surfaces of the
scattering object. The integrals are calculated by splitting them in a regular
part and a singular core. The regular part we calculate using midpoint rule or
3D Gaussian integration and the singular core we calculate exactly using certain
integral theorems.

The third issue is parallelization. Because of the retardation in time which
is an integral part of the EOS formulation, or any formulation using dimen-
sional reduction based on space-time Greens functions, there is a large memory
requirement for the algorithm. Implementation in a parallel computational en-
vironment will therefore be necessary for most nontrivial application of our
method.

1.3 Discussions and future work

A new hybrid method for solving linear and nonlinear transient scattering prob-
lems is introduced in this thesis. The hybrid method combines a domain based
method and boundary integral representations in the time domain.

In this thesis, our focus has been to provide proof of principle that our new
method is viable as an approach to the numerical calculation of transient wave
scattering. By detailing the mathematical formulation and numerical imple-
mentation of our approach for two models of 1D transient wave scattering, and
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the 3D transient scattering of electromagnetic waves, we have achieved what
the goal of this thesis.

Beyond the proof of viability of our new approach, there are several topics
relating to this new method that needs to be investigated.

Firstly, it would be very useful if an unconditional stable numerical im-
plementation of our EOS formulation could be found. The numerical imple-
mentations we have introduced, through our proof of principle studies, are all
only conditionally stable. For all cases the numerical implementations are only
stable for the time step in a bounded interval. For the 1D case this interval
is entirely determined by the inner domain based method whereas for the 3D
electromagnetic case the upper limit is determined by the domain based part
of the method whereas the lower limit is determined by the boundary part of
the method. Specifically the lower limit depends on the difference in material
properties outside and inside the scattering object. If this difference is too large,
the lower limit become larger than the higher limit and thus the numerical im-
plementation is unstable for all sizes of the step length and thus the scheme is
useless. In applications of our scheme to antenna theory this situation is realized
and this might be the whole explanation, or part of the explanation, for the late
time instability that always, in one way or another, seems to appear in this area
of application of boundary methods. A fully implicit implementation of the EOS
formulation , if it can be found, would remove restriction on the time step for
stable operation and, inn all probability, may remove the late time instability
for good. During this thesis work we briefly investigated the possibility of an
implicit implementation of the EOS formulation, but did not achieve anything
worth reporting here. We did however gain enough insight into the problem to
realize that this is a difficult, perhaps even impossible, thing to achieve. This
is certainly a topic worth looking into in any future investigation of the EOS
formulation.

Secondly, the fundamental integral equations underlying both the BEM and
the EOS formulations, developed in this work, are always retarded in time. This
is because the underlying equations can only be derived using space-time Green’s
functions. Thus the solutions at a specific grid point at a certain time will de-
pend on a series of historical solutions of all other grid points of the scattering
object. Therefore, these methods are memory intensive. This is in particular
true for the EOS formulation, because it grids the inside of the scattering ob-
ject as well as it boundary. Although this can be solved by parallel computing,
whenever large scale parallel processing is needed, there are always the issues
of load balancing and saturation to take into account. In our work, the EOS
formulation of 3D Maxwell’s model was implemented on a large cluster, but we
were not focused on parallel issues in any systematic way and have not reported
on any parallelization issues that came up during our investigations. Because
of the memory intensive nature of the EOS formulation these are however im-
portant issues, and therefore must form the part of any future work aimed at
making our approach to transient wave scattering into at practical and efficient
tool in the toolbox of scientific computing.

Thirdly, there is the issue how the EOS formulation compare to other, more
conventional approaches to transient wave scattering. The main contenders
here are FDTD and FEM. On the surface of it, it would appear that the EOS
formulation is a clear front runner in any such comparison. After all, using
this method removes the need to grid most of the physical domain, only the
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inside and the boundaries of the actual scattering objects need to be discretized.
Thus the EOS formulation requires much fewer spatial grid points than either
of FDTD and FEM. However, the retardation of the equations defining the
boundary part of the EOS formulation means that this method require many
more temporal grid points than the two main contenders. It is appropriate to
ask if anything has been gained with respect to memory usage compared to a
fully domain-based method like the FDTD method?

The outcome of comparing the memory usage of FDTD and FEM with the
EOS formulation is anything but obvious. The outcome of such an investigation
most likely will not present us with a clear winner. The ranking will almost
surely depend on the nature of the problems under investigation. If the EOS
formulation is going to take its place in the toolbox of scientific computing
investigations like the one described in this section is sorely needed.

However, even if the memory usage for purely domain based methods and
our EOS approach are roughly the same for many problems of interest, our
approach avoid many of the sources of problems that need to be considered while
using purely domain based methods. These are problems like stair-casing at
sharp interfaces defining the scattering objects, issues of accuracy, stability and
complexity associated with the use of multiple grids in order to accommodate
the possibly different geometric shapes of the scattering objects, and the need
to minimize the reflection from the boundary of the finite computational box.
The EOS approach is not subject to any of these problems.
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Abstract

In this work, we introduce a method for solving linear and nonlinear

scattering problems for wave equations using a new hybrid approach. This

new approach consists of a reformulation of the governing equations into a

form that can be solved by a combination of a domain-based method and

a boundary-integral method. Our reformulation is aimed at a situation

in which we have a collection of compact scattering objects located in an

otherwise homogeneous unbounded space.

The domain-based method is used to propagate the equations gov-

erning the wave �eld inside the scattering objects forward in time. The

boundary integral method is used to supply the domain-based method

with the required boundary values for the wave �eld.

In this way, the best features of both methods come into play. The re-

sponse inside the scattering objects, which can be caused by both material

inhomogeneity and nonlinearities, is easily considered using the domain-

based method, and the boundary conditions supplied by the boundary

integral method makes it possible to con�ne the domain-method to the

inside of each scattering object.

1 Introduction

Boundary integral formulations are well known in all areas of science and tech-
nology and lead to highly e�cient numerical algorithms for solving partial dif-
ferential equations (PDEs). Particularly, their utility is evident for scattering
waves from objects located in an unbounded space. For these situations, one
whole space dimension is taken out of the problem by reducing the solution of
the original PDEs to the solution of an integral equation located on the bound-
aries of the scattering objects.

However, this reduction relies on the use of Green's functions and is there-
fore only possible if the PDEs are linear. For computational reasons, one is
also usually restricted to situations in which Green's functions are given by
explicit formulas, which rules out most situations in which the materials are
inhomogeneous. Since many problems of interest involve scattering waves from
objects that display both material inhomogeneity and nonlinearity, boundary
integral methods have appeared to be of limited utility in computational science.
Adding to the limited scope of the method, the fact that somewhat advanced
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mathematical machinery is needed to formulate PDEs in terms of boundary
integral equations, it is perhaps not di�cult to understand why the method is
that popular.

Domain-based methods, like the �nite di�erence method and �nite element
method, appear to have much wider utility. Their simple formulation and wide
applicability to many types of PDEs, both linear and nonlinear, have made
them extremely popular in the scienti�c computing community. In the context
of scattering problems, they have problems of their own to contend with. These
problems are of two quite distinct types.

The �rst type of problem is related to the fact that the scattering objects
frequently represent abrupt changes in material properties compared to the
properties of the surrounding homogeneous space. This abrupt change leads
to PDEs with discontinuous or near-discontinuous coe�cients. Such features
are hard to represent accurately using the �nite element or �nite di�erence
methods. The favored approach is to introduce multiple, interlinked grids that
are adjusted so that they conform to the boundaries of the scattering objects.
Generating such grids, tailored to the possibly complex shape of the scattering
objects, linking them together in the correct way and designing them in such a
way that the resulting numerical algorithm is accurate and stable, is challenging.
The approach has been re�ned over many years and in general works quite well,
but it certainly adds to the implementation complexity of these methods.

The second type of problem is related to the fact that one cannot grid the
domain where the scattering objects are located for the simple reason, that in
almost all situations of interest, this domain is unbounded. This problem is
well known in the research community and the way it is resolved is to grid
a computational box that is large enough to contain all scattering objects of
interest. This can easily become a very large domain, leading to a very large
number of degrees of freedom in the numerical algorithm. However, most of
the time, the numerical algorithm associated with the domain has a simple
structure for which it is possible to design very fast implementations. However,
the introduction of the �nite computational box in what is an unbounded do-
main leads to the question of designing boundary conditions on the boundary
of the box so that it is fully transparent to waves. This is not easy to achieve,
as most approaches will introduce inhomogeneity that will partly re�ect the
waves hitting the boundary. This problem was �rst solved satisfactorily for the
case of scattering electromagnetic waves. The domain-based method of choice
for electromagnetic waves is the �nite di�erence time domain method (FDTD)
[1],[2],[3]. As the name indicates, this is a �nite di�erence method that has
been designed to consider the special structure of Maxwell's equations. The
removal of re�ections from the �nite computational box was achieved by the
introduction of a perfectly matched layer (PML)[4],[5]. This amounts to adding
a narrow layer of a specially constructed arti�cial material to the outside of the
computational box. The PML layer is only perfectly transparent to wave prop-
agation if the grid has in�nite resolution. For any �nite grid there is still a small
re�ection from the boundary of the computational box. This can be reduced by
making the PML layer thicker, but this leads to more degrees of freedom and
thus an increasing computational load. However, overall PML works well and
certainly much better than anything that came before it. There is no doubt
that the introduction of PML was a breakthrough.

The use of PML was closely linked to the special structure of Maxwell's
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equations. However, it was soon realized that the same e�ect could be achieved
by complexifying the physical space outside the computational box and analyt-
ically continuing the �elds into this complex spatial domain[6],[7]. Signi�cantly,
this realization made the bene�ts of a re�ection-less boundary condition avail-
able to all kinds of scattering problems. However, the use of these re�ection
less boundary conditions certainly leads to an increased computational load,
increased implementation complexity, and numerical stability issues that must
be resolved. It is at this point worth recalling that the boundary of the com-
putational box is not part of the original physical problem, and all the added
implementation complexity and computational cost is spent trying to make it
invisible after the choice of a domain method forced us to put it there in the
�rst place.

In this paper, we are dedicated to developing an e�cient new method to solve
transient wave scattering in two 1D models in which the scattering objects have
a nonlinear response where we only apply the domain-based method inside each
scattering object. First, this will reduce the size of the computational grid
enormously since we now need only to grid the inside of the scattering objects.
Second, our approach makes it possible to use di�erent computational grids
for each scattering object, with each grid tailored to the corresponding object's
geometric shape, without having to worry about the inherent complexity caused
by letting the di�erent grids meet up. Third, it makes the introduction of a large
computational box, with its arti�cial boundary, redundant. In this way, the
computational load is substantially reduced, and we remove the implementation
complexity and instabilities associated with the boundary of the computational
box.

However, the domain based-method restricted to the inside of each scatter-
ing object requires �eld values on the boundaries of the scattering objects to
propagate the �elds forward in time. These boundary values will be supplied by
a boundary integral method derived from a space-time integral formulation of
the PDEs to be solved. This boundary integral method will consider all the scat-
tering and re-scattering of the solution to the PDEs in the unbounded domain
outside the scattering objects. Since the boundary integral method explicitly
considers the radiation condition at in�nity, no �nite computational box with
its arti�cial boundary conditions is needed.

This kind of idea for solving scattering problems was, to our knowledge, �rst
proposed in 1972 by Pattanayak and Wolf [8] for the case of electromagnetic
waves. They discussed their ideas in the context of a generalization of the
Ewald-Oseen optical extinction theorem; therefore, we will refer to our method
as the Ewald-Oseen Scattering(EOS) formulation.

However, Pattanayak and Wolf only discussed stationary linear scattering
of electromagnetic waves and they therefore did their integral formulation in
frequency space. This approach is not the right one when one is interested in
transient scattering from objects that are generally inhomogeneous and addi-
tionally may have a nonlinear response. What is needed for our approach is a
space-time integral formulation of the PDEs of interest.

In sections 2 and 3, we illustrate our approach by implementing our EOS
formulation for two di�erent 1D scattering problems. Both cases can be thought
of as toy models for scattering electromagnetic waves. This should not be taken
to mean that only models that in some way are related to electromagnetic scat-
tering can be subject to our approach. It merely re�ects our particular interest
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in electromagnetic scattering. The way we see it, only one essential require-
ment must be ful�lled for our method to be applicable. It must be possible
to derive an explicit integral formulation for the PDEs of interest. This means
that at some point one needs to �nd the explicit expression for Green's function
for some di�erential operator related to our PDEs. In general, it is di�cult to
�nd explicit expressions for Green's function belonging to nontrivial di�erential
operators. However, the Green's function needed for our EOS formulation will
always be of the in�nite, homogeneous space type, and explicit expressions for
such Green's functions can frequently be found.

The two toy models presented in this work have been chosen for their sim-
plicity, which makes them well suited for illustrating our EOS approach for
scattering of waves. For more general and consequently more complicated cases,
there are no new ideas beyond the technical details that must be mastered for
each case to derive the EOS formulation and implement it numerically. To
explore the feasibility of our approach for more realistic and useful PDEs, we
have implemented our approach for several other cases, both 2D and 3D. Par-
ticularly we have derived and implemented our EOS approach for the full 3D
vector Maxwell's equations. The results of these investigations will be reported
elsewhere.

For both models we use an approach for testing the stability and accuracy
of our implementations that involves what is known as arti�cial sources. This
method has probably been around for a long time but apart from an application
to the Navier-Stokes equations [9], we are not aware of any published work using
this method. The method is based on the simple observation that, if arbitrary
source terms are added to any system of PDEs then any function is a solution
for some choice of the source. Adding a source term typically introduce only
trivial modi�cations to whichever numerical method was used to solve the PDEs.
This essentially means that for any PDEs of interest, we can design particular
functions to test various critical aspects of the numerical method related to
numerical stability and accuracy.

This is a very simple approach to validating numerical implementations for
PDEs that deserves to be much better known than it is.

2 The �rst scattering model; one way propaga-

tion

Our �rst toy model, model 1, is

ϕt = c1ϕx + j,

ρt = −jx,
jt = (α− βρ)ϕ− γj a0 < x < a1, (2.1)

where α, β and γ are real parameters determining the �material response� part
model 1 and where ϕ = ϕ(x, t) is the �electric �eld�, j = j(x, t) the �current
density� and ρ the �charge density�. These quantities are analogs for the cor-
responding quantities in Maxwell's equations. With this in mind, we observe
that the second equation in the model (2.1) is a 1D version of the equation of
continuity from electromagnetics, and c1 is the analog of the speed of light inside
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the �material� scattering object residing inside the interval [a0, a1]. The charge
density and current density are the material degrees of freedom and are there-
fore assumed to be con�ned to the interval [a0, a1] on the real axis, whereas ϕ
is a �eld de�ned on the whole real axis. Thus the interval [a0, a1] is the analog
of a compact scattering object in the electromagnetic situation. Outside the
scattering object the model takes the form

ϕt = c0ϕx + js x < a0 or x > a1, (2.2)

where c0 is the propagation speed for the electric �eld in the �vacuum� outside
the scattering object and the function js(x, t) is a �xed source that has its
support in a compact set in the interval x > a1. For the �eld ϕ we impose the
condition of continuity at the points a0 and a1. The equation for the current
density, j is a radical simpli�cation of a real current density model used to
describe second harmonic generation in nonlinear optics [10].

2.1 The EOS formulation

In order to derive the EOS formulation for the model (2.1), we will �rstly need
a space-time integral identity involving the operator

L = ∂t − v∂x,

where v is some constant. Using integration by parts it is easy to see that the
following integral identity holds∫

S×T
dxdt{Lϕ(x, t)ψ(x, t)− ϕ(x, t)L†ψ(x, t)}

=

∫
S

dxϕ(x, t)ψ(x, t)|t1t0 − v
∫
T

dtϕ(x, t)ψ(x, t)|x1
x0
, (2.3)

where L† = −∂t + v∂x is the formal adjoint of L and where S = (x0, x1) and
T = (t0, t1) are open space and time intervals.

The second item we need in order to derive the EOS formulation for model
(2.1), is the advanced Green's function for the operator L†. This is a function
G = G(x, t, x′, t′) which is a solution to the equation

L†G(x, t, x′, t′) = δ(t− t′)δ(x− x′),

and that vanishes when t > t′. Since the operator L+ is invariant under time
and space translations we can without loss of generality assume that

G(x, t, x′, t′) = G(x− x′, t− t′).

Thus it is su�cient to solve the equation

L†G(x, t) = δ(x)δ(t). (2.4)

After performing the Fourier transform

f̂(k, ω) =

∫ ∞
−∞

∫ ∞
−∞

f(x, t)e−i(kx−ωt) dxdt, (2.5)
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on (2.4), we get

Ĝ(k, ω) =
−i

ω + vk
.

It is noticed that there's a single pole at ω = −vk on the real axis, we need to
�nd the advanced Green's function. It is de�ned by shifting the integral contour
from the real ω-axis to a contour below and parallel to the real axis at a distance
cε : z = ω − iε, ε > 0. Using the inverse Fourier transform

f(x, t) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

f̂(k, ω)ei(kx−ωt) dk dω, (2.6)

we get the representation

G(x, t) =
1

4π2

∫ +∞

−∞
g(k, t)eikx dk,

with

g(k, t) =

∫
cε

−i
z + vk

e−izt dz.

For t < 0, we close the contour cε in the upper half plane and get by Cauchy's
residue theorem

g(k, t) = 2πeivkt,

and for t > 0, we close the contour cε in the lower half plane and get g(k, t) = 0.
This gives for t < 0

G(x, t) =
1

4π2

∫ +∞

−∞
2πeivkteikxdk = δ(x+ vt),

and for t > 0,
G(x, t) = 0.

In the end G is given by

G(x, t, x′, t′) = θ(t′ − t)δ(x′ − x+ v(t′ − t)), (2.7)

where θ is the Heaviside step function with θ(x) = 1 for x > 0 and zero other-
wise.

We will now apply the integral identity (2.3) to each space interval (−∞, a0),
(a0, a1) and (a1,∞). For the function ψ we will substitute the advanced Green's
function (2.7) and we will let ϕ be the solution to equation (2.2) with vanishing
initial condition, ϕ(x, t0) = 0. We thus have a problem where all solutions are
purely source-generated. For the �rst interval, (−∞, a0), we let ψ be the Green's
function

G0(x, t, x′, t′) ≡ θ(t′ − t)δ(x′ − x+ c0(t′ − t)), (2.8)

and ϕ = ϕ0 be the solution to the equation

ϕ0t = c0ϕ0x,

m
L0ϕ0 = 0. (2.9)
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Inserting (2.8), (2.9) and S = (−∞, a0) into the integral identity (2.3), using
the initial condition and the fact that the Green's function is advanced, we get
for x in (−∞, a0)∫

S×T
{Lϕ0(x′, t′)G(x′, t′, x, t)− ϕ0(x′, t′)L+G(x′, t′, x, t)}dx′ dt′

=

∫ a0

−∞
ϕ0(x′, t1)θ(t− t1)δ(x− x′ + c0(t− t1)) dx′

−
∫ a0

−∞
ϕ0(x′, t0)θ(t− t0)δ(x− x′ + c0(t− t0)) dx′

− c0
∫ t1

t0

ϕ0(a0, t
′)θ(t− t′)δ(x− a0 + c0(t− t′)) dt′

+ c0 lim
x′→−∞

∫ t1

t0

ϕ0(x′, t′)θ(t− t′)δ(x− x′ + c0(t− t′)) dt′,

after interchanging the primed and unprimed variables. The initial condition
and t0 < t < t1 imply that the integrals on S vanish. The last integral vanishes
also because x − x′ + c0(t − t′) > 0 when x′ < x for all t′ in the integration
interval (t0, t). So we �nally get

ϕ0(x, t) = c0

∫ t

t0

dt′ϕ0(a0, t
′)δ(x− a0 + c0(t− t′)). (2.10)

Note that when writing formula (2.10) we have made the substitution

ϕ0(a0, ·) ≡ lim
x→a−0

ϕ0(x, ·).

Similar substitutions will be made without comment later in the following sec-
tions.

For the second interval, (a0, a1), we let ψ be the Green's function

G1(x, t, x′, t′) ≡ θ(t′ − t)δ(x′ − x+ c1(t′ − t)), (2.11)

and ϕ = ϕ1 be the solution to the equation

ϕ1t = c1ϕ1x + j,

m
L1ϕ = j, (2.12)

with vanishing initial conditions. Inserting (2.11),(2.12) and S = (a0, a1) into
the integral identity (2.3), using the initial condition and the fact that the
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Green's function is advanced, we get for x in (a0, a1)

ϕ1(x, t) =

∫ a1

a0

dx′
∫ t

t0

dt′j(x′, t′)δ(x− x′ + c1(t− t′))

+ c1

∫ t

t0

dt′ϕ1(a1, t
′)δ(x− a1 + c1(t− t′))

− c1
∫ t

t0

dt′ϕ1(a0, t
′)δ(x− a0 + c1(t− t′))

=

∫ a1

a0

dx′
∫ t

t0

dt′j(x′, t′)δ(x− x′ + c1(t− t′))

+ c1

∫ t

t0

dt′ϕ1(a1, t
′)δ(x− a1 + c1(t− t′)), (2.13)

after interchanging primed and unprimed variables. The last equality sign fol-
lows because x − a0 + c1(t − t′) > 0 for all t′ in the integration interval when
a0 < x < a1.

Finally, for the third integration interval, (a1,∞), we let ψ be the Green's
function

G0(x, t, x′, t′) ≡ θ(t′ − t)δ(x′ − x+ c0(t′ − t)), (2.14)

and ϕ = ϕ2 be the solution to the equation

ϕ2t = c0ϕ2x + js,

m
L0ϕ2 = js, (2.15)

with vanishing initial conditions. Inserting (2.14),(2.15) and S = (a1,∞) into
the integral identity (2.3), using the initial conditions and the fact that the
Green's function is advanced, we get for x in (a1,∞)

ϕ2(x, t) =

∫ ∞
a1

dx′
∫ t

t0

dt′js(x
′, t′)δ(x− x′ + c0(t− t′))

+ c0 lim
x′→∞

∫ t

t0

dt′ϕ2(x′, t′)δ(x− x′ + c0(t− t′))

− c0
∫ t

t0

dt′ϕ2(a1, t
′)δ(x− a1 + c0(t− t′))

=

∫ ∞
a1

dx′
∫ t

t0

dt′js(x
′, t′)δ(x− x′ + c0(t− t′)), (2.16)

after interchanging primed and unprimed variables. The third term vanishes
because x− a1 + c0(t− t′) > 0 for all t′ in the integration interval when x > a1.
The second term vanishes because x − x′ + c0(t − t′) < 0 for all �xed x > a1,
t > t0 and all t′ in the integration interval (t0, t) when x

′ is large enough.
We now investigate the limit of these integral identities as x approaches the

boundary points {a0, a1} of the open interval (a0, a1) from inside and outside
the interval. This will give us four equations for the four quantities

ϕ0(a0, t), ϕ1(a0, t), ϕ1(a1, t), ϕ2(a1, t).
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However, by assumption, acceptable solutions of model 1 are continuous across
the boundary points {a0, a1}. Therefore, we have two additional equations

ϕ0(a0, t) = ϕ1(a0, t),

ϕ1(a1, t) = ϕ2(a1, t).

At this point we are faced with a problem. The four unknown quantities must
satisfy six linear equations. The problem is thus overdetermined and we would
not normally expect any nontrivial solutions to exist.

On the other hand, the equations, boundary conditions and source function
js that de�ne model 1 do determine a unique function ϕ. This function satis�es
by construction the integral identities (2.10),(2.13) and (2.16), whose limits
yielded the overdetermined system. Thus the overdetermined linear system
does have a solution.

There is a more direct way to see why the overdetermined system will have
a solution. Let us consider the inside of the scattering object, thus x ∈ (a0, a1).
Here, the �eld ϕ is determined in terms of the current j(x, t), and the boundary
value ϕ(a1, t) by identity (2.13)

ϕ1(x, t) =

∫ a1

a0

dx′
∫ t

t0

dt′j(x′, t′)δ(x− x′ + c1(t− t′))

+ c1

∫ t

t0

dt′ϕ1(a1, t
′)δ(x− a1 + c1(t− t′)). (2.17)

Naively, one would expect that we would obtain an equation determining the
unknown boundary value ϕ(a1, t), by taking the limit of (2.17) as x approaches
a1 from below. However, this would make the �eld inside the scattering object
independent of the outside source, which must be wrong from a scattering point
of view. After all, it is the outside source js(x, t) that determines the �eld both
outside and inside the scattering object. If this source is turned o� the �eld
would simply be zero everywhere. So what is going on?

Note that if we actually take the limit of (2.17) we get the equation

0 ϕ1(a1, t) = 0,

which leaves the boundary value entirely arbitrary. If we analyze the rest of
the overdetermined system in the same way, we �nd that one more equation for
the boundary data is redundant, and that the two unknown boundary values,
ϕ1(a0, t) and ϕ(a1, t), are uniquely determined by the following two equations

ϕ1(a0, t) =

∫ a1

a0

dx′θ(a0 − x′ + c1(t− t0))j(x′, t− a1 − a0

c1
)

+ θ(a0 − a1 + c1(t− t0))ϕ(a1, t−
a1 − a0

c1
), (2.18)

ϕ1(a1, t) =
1

c0

∫ ∞
a1

dx′θ(a1 − x′ + c0(t− t0))js(x
′, t− x′ − a1

c0
). (2.19)

We emphasize the fact that we end up with an overdetermined system of linear
equations for the boundary values because this is a generic outcome when we
derive the EOS formulation for any given system of PDEs. We see that this
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very same problem will appear when we discuss the second toy model in Section
3.

This problem has been recognized by the research community in the context
of space-time boundary integral formulation for Maxwell's equations, and a
simple �x has been invented to resolve it.

However, as far as we know, the universal nature of this problem in the area
of space-time integral formulations of linear and nonlinear scattering problems
has not been recognized.

Observe that equation (2.19) determines the value of the �eld at the bound-
ary point a1 in terms of the given external source js, and the equation (2.18)
determines the value of the �eld at the boundary point a0 in terms of the current
density j inside the scattering object and the �eld values at the boundary point
a1.

Equations (2.1) restricted to the the open interval (a0, a1) together with the
integral identities (2.18) and (2.19) de�ne the EOS formulation for model 1.

2.2 Numerical implementation of the EOS formulation

In this section, a numerical implementation of the EOS formulation for model
1 is presented. Many di�erent numerical implementations are possible. The
EOS formulation itself does not in any way dictate the use of a particular im-
plementation. However it does put some constraints on how we proceed with
our method of choice.

If our problem was to calculate the free-space propagation according to the
�rst equation in (2.1) with vanishing j the obvious choice would be to use the
standard Lax-Wendro� method[11] on a uniform space grid. However, the EOS
formulation presents us with an integro-di�erential equation because the bound-
ary update rule is de�ned in terms of integrals of the current density over the
scattering domain (a0, a1). Thus our grid must also give a good approxima-
tion for the integrals (2.18) and (2.19) that de�ne the update rule. We will be
looking for second-order accuracy and would like to use the midpoint rule to
approximate the integrals and thus introduce the following nonuniform space
grid inside the scattering object, (a0, a1),

xi = a0 + (i+ 0.5)∆x, i = 0, 1, · · · , N − 1, (2.20)

where ∆x = a1−a0
N . The grid points (2.20) will be called internal nodes. We

also introduce a discrete time grid

tn = n∆t, n = 0, 1, · · · .

The values of the parameter ∆t will, as usual, be bounded by the requirement
of stability for the scheme. We will say a few words about this bound later.

To obtain a numerical scheme of second-order accuracy, we apply the Lax-
Wendro� method to the �rst two equations of (2.1) and apply the modi�ed
Euler's method to the last equation of (2.1). Because of these choices the nu-
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merical scheme for iteration at the internal nodes takes the form

ϕn+1
i =ϕni + ∆t (c1

∂ϕ

∂x
+ j)ni +

1

2
(∆t)2(c21

∂2ϕ

∂x2
+ c1

∂j

∂x
+ f)ni ,

ρn+1
i =ρni + ∆t (− ∂j

∂x
)ni +

1

2
(∆t)2(−∂f

∂x
)ni ,

j̄n+1
i =jni + ∆t fni ,

jn+1
i =

1

2
(jni + j̄n+1

i + ∆t f(ρn+1
i , ϕn+1

i , j̄n+1
i )), (2.21)

for i = 0, 1, · · · , N and where f = (α− βρ)ϕ− γj . Except for the two internal
nodes closest to the boundary points a0 and a1, the space derivatives are ap-
proximated to second-order accuracy by the following standard �nite di�erence
formulas

(
∂φ

∂x
)ni =

φni+1 − φni−1

2∆x
,

(
∂2φ

∂x2
)ni =

φni+1 − 2φni + φni−1

(∆x)2
, φ = ϕ, j, f, and i = 1, 2, · · · , N − 2. (2.22)

For the two internal nodes closest to the boundary, the standard, second-order
accurate di�erence formulas, cannot be used because the internal nodes are
non-uniformly distributed in this part of the domain. For the �eld, ϕ, we must
rather use the following second-order accurate di�erence formulas for these two
nodes

(
∂ϕ

∂x
)n0 = − 1

3∆x
(4ϕna0 − 3ϕn0 − ϕn1 ),

(
∂2ϕ

∂x2
)n0 =

4

3(∆x)2
(2ϕna0 − 3ϕn0 + ϕn1 ),

(
∂ϕ

∂x
)nN−1 =

1

3∆x
(4ϕna1 − 3ϕnN−1 − ϕnN−2),

(
∂2ϕ

∂x2
)nN−1 =

4

3(∆x)2
(2ϕna1 − 3ϕnN−1 + ϕnN−2). (2.23)

The boundary value ϕna0 needed in formulas (2.23) can be calculated from the
discretized form of the integral update rules (2.18)

ϕn+1
a0 =

∆x

c1

N−1∑
i=0

θ(tn+1 − t0 −
xi − a0

c1
)j(xi, tn+1 −

xi − a0

c1
),

+ θ(tn+1 − t0 −
a1 − a0

c1
)ϕ(a1, tn+1 −

a1 − a0

c1
),

(2.24)

while ϕna1 is determined by the outside source using (2.19).
The current density, j, is entirely supported inside the scattering object and

in general would be discontinuous at a0 and a1 if extended to the whole domain
by making it zero external to the scattering object. Because of this, we need
di�erence rules for j at the nodes closest to the boundary points a0 and a1 that
only depend on the values of j on internal nodes. The following second-order
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accurate di�erence rules for j are of this type

(
∂j

∂x
)n0 =

1

2∆x
(4jn1 − 3jn0 − jn2 ),

(
∂j

∂x
)nN−1 = − 1

2∆x
(4jnN−2 − 3jnN−1 − jnN−3). (2.25)

It is evident that the discretized boundary update rule (2.24) needs values of
the current density that are located between the grid points for the time grid
{tn}. This situation is general and will always arise when we seek numerical
implementations of EOS formulations of PDEs. Some numerical interpolation
scheme will always be needed to calculate the �eld values and/or the material
variables between the time grid locations. We use a quadratic interpolation for
values of the current density located between two time levels to maintain overall
second-order accuracy for our scheme.

The iteration (2.21) with the boundary update rule (2.24) supplemented
by the �nite di�erence rules (2.22),(2.23) and (2.25) constitute our numerical
implementation of the EOS formulation for model 1.

2.3 Arti�cial source test

The basic idea behind the arti�cial source test, of some numerical scheme de-
signed for a system of PDEs, is to slightly modify the system by adding an
arbitrary source to all the equations in the system. This modi�cation typically
leads to minimal modi�cations to the numerical scheme, where most of the ef-
fort and complexity are usually spent on the derivatives and nonlinear terms.
For the equations, however, the presence of the sources changes the situation
completely. This is because the presence of the added sources implies that any

function is a solution to the equations for some choice of sources.
With the risk of expanding on perhaps an already obvious idea, what we are

saying is that, if we have developed a numerical scheme for some system of dif-
ferential equations Lψ = 0, we can with small modi�cations extend our scheme
to the extended equation Lψ = g where g is any given function. Given this, we
test the numerical scheme by picking a function ψ0, then use the equation to
calculate the source function g0 = Lψ0 that ensures that our chosen function
is a solution to the extended equation. Finally, we run the numerical scheme
with the calculated source function and �nd an approximate solution that we
compare with the exact solution ψ0.

Mode 1 extended with arti�cial sources takes the form

ϕt = c1ϕx + j + g1,

ρt = −jx + g2,

jt = (α− βρ)ϕ− γj + g3, (2.26)

where g1, g2, g3, are the arti�cial source functions. For some choice of functions
ϕ̂, ĵ and ρ̂ the corresponding source functions are computed by

ĝ1 = ϕ̂t − c1ϕ̂x − ĵ,
ĝ2 = ρ̂t + ĵx,

ĝ3 = ĵt − (α− βρ̂)ϕ̂+ γĵ.

12



As our exact solution we choose

ϕ̂(x, t) =
2A1

π
arctan(b2t2)e−α1(x−xo+β1(t−ts))2 ,

ĵ(x, t) =A2e
−

(x−xj)
2

δ21
−

(t−tj)
2

δ22 ,

ρ̂(x, t) =A3e
− (x−xρ)2

δ23
− (t−tρ)2

δ24 , (2.27)

which is nowhere near a solution to the equations (2.2) de�ning the unmodi�ed
model 1. Note that the chosen exact solution satis�es the vanishing of the
initial data ϕ̂(x, t0 = 0) = 0, as it must in order to be consistent with the EOS
formulation. The boundary update rule for the source extended model (2.26) is
changed into

ϕn+1
a0 =

∆x

c1

N−1∑
i=0

θ(tn+1 − t0 −
xi − a0

c1
)j(xi, tn+1 −

xi − a0

c1
),

+
∆x

c1

N−1∑
i=0

θ(tn+1 − t0 −
xi − a0

c1
)ĝ1(xi, tn+1 −

xi − a0

c1
),

+ θ(tn+1 − t0 −
a1 − a0

c1
)ϕ̂(a1, tn+1 −

a1 − a0

c1
),

while ϕ̂na1 is given explicitly by the exact solution ϕ̂(x, t). The comparison

Figure 2.1: Comparison between the numerical solution and the exact solution
for the source extended model 1. Parameter values used are a0 = 0.0, a1 =
3.0, N = 1600, α = −1.0, β = 0.3, γ = 8.0, c = 2.0, c0 = 1.0, A1 = 1.0,
A2 = 1.0, A3 = 1.0, b = 1.0, α1 = 4.0, β1 = 4.0, xo = 6.0, ts = 1.0, xj =
1.1, xρ = 1.3, tj = 1.2, tρ = 1.3, δ1 = 0.3, δ2 = 0.32, δ3 = 1.0, δ4 = 0.33.
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Figure 2.2: A numerical solution of the EOS formulation for model 1 generated
by an external source. The parameter values used are a0 = 0.0, a1 = 3.0, N =
1600, c = 2.0, c0 = 1.0, α = −1.0, β = 0.3, γ = 8.0.

between the exact solution (2.27) and the approximative solution generated by
our numerical implementation of the EOS formulation of the source extended
model 1, (2.26), is shown in Fig 2.1 for some choice of the parameters. As we
can see, the correspondence between the exact and approximative solution is
excellent. After having established that our implementation is accurate using
the arti�cial source test, we show in Fig 2.2 the numerical solution ϕ of model
1, (2.1), where the system is driven by an outside source of the form

js = 5e−36(x−4)2−4(t−0.5)2 ,

which is chosen so that no in�uence hit the boundary at a1 before t = 0. This
will ensure that the initial condition ϕ(x, t = 0) = 0, underlying the EOS
formulation of model 1, is satis�ed.

In these simulations we used a ∆t which is in the stable range for the nu-
merical implementation, speci�cally we used ∆t = 0.4∆x

c . Observe that the
stability domain for our implementation of the EOS formulation is restricted
compared to the stability domain for the underlying Lax-Wendro� method on
an in�nite domain. The focus of the �rst two sections is to derive the EOS
formulation for two simple illustrative models and show that, using standard
�nite di�erence discretization of the EOS formulation, we get an accurate and
stable representation of the solution to the scattering problems de�ned by the
two toy models. A discussion of the stability of our schemes for both toy models
has been relegated to Appendix A. We have found that stability of our scheme
requires that the time step is contained in an interval. This interval is deter-
mined by the domain-based method, which is propagating the �elds inside the
scattering object forward in time. While applying the EOS approach to the
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case of 3D electromagnetic scattering, we also found a stability interval for the
time step. For this case however, we �nd that both the domain part and the
boundary part of the EOS formulation play a role in determining the interval.
We believe that the way that the material parameters for the scattering objects
in�uence the boundaries of the stability interval has some interesting things to
say about the occurrence of the late time instability from antenna theory.

3 The second scattering model; two way propa-

gation

Our second toy model, model 2 is

ϕt = µ1ψx + j,

ψt = ν1ϕx,

ρt = −jx,
jt = (α− βρ)ϕ− γj a0 < x < a1, (3.1)

where , like for model 1, ϕ = ϕ(x, t), j = j(x, t) and ρ(x, t) are interpreted
as �electric �eld�, �current density� and �charge density�. The additional �eld,
ψ(x, t) is interpreted as the �magnetic� �eld. The charge density and current
density will, as in model 1, be con�ned to the interval [a0, a1] on the real axis
whereas the �elds ϕ and ψ are de�ned on the whole real axis. The interval
[a0, a1] is, like for model 1, the analog of a compact scattering object in the
electromagnetic situation. Outside the interval the model equations are

ϕt = µ0ψx + js,

ψt = ν0ϕx, (3.2)

where the function js(x, t) is a given source that, like for model 1, has its
support on a compact set in the interval x > a1. The parameters µ1, µ0, ν1, ν0

are "material" parameters. Using the translation µ → 1
ε and ν → 1

µ they are
analogous for the electric permittivity, ε, and the magnetic permeability, µ,
inside and outside the scattering object.

3.1 EOS formulation

In order to derive the EOS formulation for model 2 (3.1),(3.2), we will �rstly
need a space-time integral identity involving the matrix operator

L =

(
∂t −µ∂x
−ν∂x ∂t

)
,

where µ and ν are constants. The operator acts on vector valued functions in
the usual way

L

(
ϕ
ψ

)
=

(
∂tϕ− µ∂xψ
∂tψ − ν∂xϕ

)
.
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Using integration by parts, it is easy to derive∫
S×T

AL
(
ϕ

ψ

)
(x, t) dx dt

=

∫
S×T

(
−∂tA11 + ν∂xA12 µ∂xA11 − ∂tA12

−∂tA21 + ν∂xA22 µ∂xA21 − ∂tA22

)(
ϕ

ψ

)
(x, t) dx dt

+

∫
S

(
A11 A12

A21 A22

)(
ϕ

ψ

)
(x, t)

∣∣∣∣t1
t0

dx

+

∫
T

(
−νA12 −µA11

−νA22 −µA21

)(
ϕ

ψ

)
(x, t)

∣∣∣∣x1

x0

dt,

so we get the following integral identity∫
S×T

dxdt{AL
(
ϕ
ψ

)
(x, t)− L†A

(
ϕ
ψ

)
(x, t)}

=

∫
S

dxA

(
ϕ
ψ

)
(x, t)|t1t0 +

∫
T

dtB

(
ϕ
ψ

)
(x, t)|x1

x0
, (3.3)

where S = (x0, x1) and T = (t0, t1) are open space and time intervals and where
ϕ and ψ are smooth functions on the space-time interval S×T . Also A = A(x, t)
is a 2 × 2 matrix valued function and L† is the formal adjoint to the operator
L, and acts on the matrix valued function A in the following way

L†A =

(
−∂tA11 + ν∂xA12 µ∂xA11 − ∂tA12

−∂tA21 + ν∂xA22 µ∂xA21 − ∂tA22

)
. (3.4)

B is the 2× 2 matrix valued function

B =

(
−νA12 −µA11

−νA22 −µA21

)
. (3.5)

The second item we need in order to derive the EOS formulation for model
(3.1), (3.2), is the advanced Green's function for the operator L†. This is a 2×2
matrix valued function G(x, t, x′, t′) that satis�es the equation

L†G(x, t, x′, t′) = δ(t− t′)δ(x− x′)I, (3.6)

and that vanishes for t > t′. In (3.6), I is the 2× 2 identity matrix. Due to the
fact that any Green's function, because of translational invariance only depends
on x− x′ and t− t′, we can solve

L†G(x, t) = δ(t)δ(x)I,

instead. Writing out components we get

∂tG11 − ν∂xG12 = −δ(t)δ(x),

∂tG12 − µ∂xG11 = 0,

∂tG21 − ν∂xG22 = 0,

∂tG22 − µ∂xG21 = −δ(t)δ(x).

(3.7)
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Performing Fourier transform (2.5) on the �rst two equations of (3.7) gives

−iωĜ11 − iνkĜ12 = −1,

−iωĜ12 − iνkĜ11 = 0.
(3.8)

The solutions to (3.8) are

Ĝ11(k, ω) =
−iω

ω2 − c2k2
,

Ĝ12(k, ω) =
iµk

ω2 − c2k2
,

(3.9)

where c2 = µν. By enforcing the inverse Fourier transform (2.6) on (3.9), we get

G11(x, t) =
1

4π2

∫ ∞
−∞

g11(k, t)eikx dk,

G12(x, t) =
1

4π2

∫ ∞
−∞

g12(k, t)eikx dk,

(3.10)

where

g11(k, t) =

∫ ∞
−∞

Ĝ11(k, ω)e−iωt dω,

g12(k, t) =

∫ ∞
−∞

Ĝ12(k, ω)e−iωt dω.

The expressions for g11 and g12 are not really well de�ned since the integrands
have two poles on the real ω-axis, so we choose the advanced Green's function
for our work. It is de�ned by shifting the integral contour from the real ω-axis to
a contour below and parallel to the real axis at a distance cε : z = ω− iε, ε > 0,
thus

g11(k, t) =

∫
cε

−iz
z2 − c2k2

e−izt dz,

g12(k, t) =

∫
cε

iµk

z2 − c2k2
e−izt dz.

If t > 0,
lim

zi→−∞
ezit = 0,

so we close the contour in the lower half plane and have

g11(k, t) = 0,

g12(k, t) = 0.

If t < 0,
lim

zi→+∞
ezit = 0,

then we close the contour in the upper half plane. There are now two poles
z = ±ck inside the closed contour. Cauchy's residue theorem gives

g11(k, t) = π{eikct + e−ikct},

g12(k, t) =
πµ

c
{eikct − e−ikct}.

(3.11)
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Inserting (3.11) into (3.10), we obtain

G11(k, t) =
θ(−t)

2
(δ(x+ ct) + δ(x− ct)),

G12(k, t) =
µθ(−t)

2c
(δ(x+ ct)− δ(x− ct)).

G12 and G22 are calculated in the same way,

G21(k, t) =
νθ(−t)

2c
(δ(x+ ct)− δ(x− ct)),

G22(k, t) =
θ(−t)

2
(δ(x+ ct) + δ(x− ct)).

In the end, G is given by

G(x, t, x′, t′) =
θ(t′ − t)

2c
{
(
c µ
ν c

)
δ(x− x′ + c(t− t′))

+

(
c −µ
−ν c

)
δ(x− x′ − c(t− t′))}, (3.12)

where θ(s) is the Heaviside step function. Note that, using the identi�cations
introduced while describing model 2 at the start of the current section, the
formula de�ning the speed, c, is completely analogous to the one de�ning the
speed of light in electromagnetics.

We will now apply the integral identity (3.3) to each space interval (−∞, a0),
(a0, a1) and (a1,∞) with A equal to the advanced Green's function (3.12) for the
corresponding interval and where ϕ and ψ are solutions to the system (3.1),(3.2)
with vanishing initial conditions ϕ(x, t0) = ψ(x, t0) = 0.

For the �rst interval, (−∞, a0), we let A be the Green's function

G0(x, t, x′, t′) =
θ(t′ − t)

2c0
{
(
c0 µ0

ν0 c0

)
δ(x− x′ + c0(t− t′))

+

(
c0 −µ0

−ν0 c0

)
δ(x− x′ − c0(t− t′))}, (3.13)

where c20 = µ0ν0. In this interval we let ϕ = ϕ0, ψ = ψ0 be the solution to the
system

ϕ0t = µ0ψ0x,

ψ0t = ν0ϕ0x,

m

L0

(
ϕ0

ψ0

)
= 0. (3.14)

Inserting (3.13), (3.14) and S = (−∞, a0) into the integral identity (3.3), using
the initial conditions and the fact that the Green's function is advanced, we get
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for x in the interval (−∞, a0).(
ϕ0

ψ0

)
(x, t) = −

∫ t1

t0

dt′B0(a0, t
′, x, t)

(
ϕ0

ψ0

)
(a0, t

′)

+ lim
R→−∞

∫ t1

t0

dt′B0(R, t′, x, t)

(
ϕ0

ψ0

)
(R, t′), (3.15)

after interchanging primed and unprimed variables.
The function B0 is from (3.5)

B0(x′, t′, x, t) = −θ(t− t
′)

2
{
(
c0 µ0

ν0 c0

)
δ(x− x′ + c0(t− t′))

+

(
−c0 µ0

ν0 −c0

)
δ(x− x′ − c0(t− t′))}. (3.16)

From (3.16) it is evident that the last term in (3.15) vanishes. This is because
for large enough R, the argument of the delta function does not change sign
in the interval of integration. Inserting the expression (3.16) into (3.15) and
changing to the variable de�ning the argument of the delta function in the two
integrals, we get that for x in (−∞, a0)(

ϕ0

ψ0

)
(x, t) =

θ(x− a0 + c0(t− t0))

2c0

(
c0 µ0

ν0 c0

)(
ϕ0

ψ0

)
(a0, t+

x− a0

c0
).

(3.17)
For the second interval, (a0, a1), we let A be the Green's function

G1(x, t, x′, t′) =
θ(t′ − t)

2c1
{
(
c1 µ1

ν1 c1

)
δ(x− x′ + c1(t− t′))

+

(
c1 −µ1

−ν1 c1

)
δ(x− x′ − c1(t− t′))}. (3.18)

where c21 = µ1ν1. In this interval, the functions ϕ = ϕ1, ψ = ψ1 are the solutions
to the system

ϕ1t = µ1ψ1x + j,

ψ1t = ν1ϕ1x,

m

L1

(
ϕ1

ψ1

)
=

(
j
0

)
. (3.19)

Inserting (3.18), (3.19) and S = (a0, a1) in the integral identity (3.3), using the
vanishing initial conditions and the fact that the Green's function is advanced,
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we get for x in the interval (a0, a1).(
ϕ1

ψ1

)
(x, t) =

∫
S×T

dx′dt′G1(x′, t′, x, t)

(
j
0

)
(x′, t′)

−
∫ t1

t0

dt′B1(a1, t
′, x, t)

(
ϕ1

ψ1

)
(a1, t)

+

∫ t1

t0

dt′B1(a0, t
′, x, t)

(
ϕ1

ψ1

)
(a0, t), (3.20)

after interchanging primed and unprimed variables.
The function B1 is from (3.5)

B1(x′, t′, x, t) = −θ(t− t
′)

2
{
(
c1 µ1

ν1 c1

)
δ(x− x′ + c1(t− t′))

+

(
−c1 µ1

ν1 −c1

)
δ(x− x′ − c1(t− t′))}. (3.21)

Inserting (3.18) and (3.21) into (3.20), we get after changing variables to the
arguments in the delta functions that for x in (a0, a1)(

ϕ1

ψ1

)
(x, t) =

1

2c21

(
c1 −µ1

−ν1 c1

)∫ x

a0

dx′θ(c1(t− t0)− (x− x′))
(
j

0

)
(x′, t− x− x′

c1
)

+
1

2c21

(
c1 µ1

ν1 c1

)∫ a1

x

dx′θ(c1(t− t0)− (x′ − x))

(
j

0

)
(x′, t− x′ − x

c1
)

+ θ(c1(t− t0)− (a1 − x))
1

2c1

(
c1 µ1

ν1 c1

)(
ϕ1

ψ1

)
(a1, t−

a1 − x
c1

)

− θ(c1(t− t0)− (x− a0))
1

2c1

(
−c1 µ1

ν1 −c1

)(
ϕ1

ψ1

)
(a0, t−

x− a0

c1
). (3.22)

For the third interval, (a1,∞), we let A be the Green's function

G0(x, t, x′, t′) =
θ(t′ − t)

2c0
{
(
c0 µ0

ν0 c0

)
δ(x− x′ + c0(t− t′))

+

(
c0 −µ0

−ν0 c0

)
δ(x− x′ − c0(t− t′))}. (3.23)
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In this interval, the functions ϕ = ϕ2, ψ = ψ2 are the solutions to the system

ϕ2t = µ0ψ2x + js,

ψ2t = ν0ϕ2x,

m

L0

(
ϕ2

ψ2

)
=

(
js
0

)
. (3.24)

Inserting (3.23), (3.24) and S = (a1,∞) in the integral identity (3.3), using the
initial conditions and the fact that the Green's function is advanced, we get for
x in the interval (a1,∞).(

ϕ2

ψ2

)
(x, t) =

∫
S×T

dx′dt′G0(x′, t′, x, t)

(
js
0

)
(x′, t′)

− lim
R→∞

∫ t1

t0

dt′B0(R, t′, x, t)

(
ϕ2

ψ2

)
(R, t)

+

∫ t1

t0

dt′B0(a1, t
′, x, t)

(
ϕ2

ψ2

)
(a1, t), (3.25)

after interchanging primed and unprimed variables.
Since the arguments of the delta functions in B0 does not change sign in

the interval of integration, for R big enough, it is clear that the second term
in (3.25) will vanish. Inserting (3.23) and (3.16) into the remaining terms of
(3.25), we get after changing variables to the arguments in the delta functions
that for x in (a1,∞)(

ϕ2

ψ2

)
(x, t) =

− θ(c0(t− t0)− (x− a1))
1

2c0

(
−c0 µ0

ν0 −c0

)(
ϕ2

ψ2

)
(a1, t−

x− a1

c0
)

+

(
ϕi
ψi

)
(x, t), (3.26)

where ϕi and ψi are �elds that are entirely determined by the given source js(
ϕi
ψi

)
(x, t) =

1

2c20

(
c0 −µ0

−ν0 c0

)∫ x

a1

dx′θ(c0(t− t0)− (x− x′))
(
js
0

)
(x′, t− x− x′

c0
)

+
1

2c20

(
c0 µ0

ν0 c0

)∫ ∞
x

dx′θ(c0(t− t0)− (x′ − x))

(
js
0

)
(x′, t− x′ − x

c0
).

Taking the limit of the integral identities (3.17),(3.22) and (3.26) as x approaches
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the boundary points {a0, a1} from inside and outside the interval (a0, a1) we get(
c0 −µ0

−ν0 c0

)(
ϕ0

ψ0

)
(a0, t) = 0, (3.27)

(
c1 µ1

ν1 c1

)(
ϕ1

ψ1

)
(a0, t) =

1

c1

(
c1 µ1

ν1 c1

)∫ a1

a0

dx′θ(c1(t− t0)− (x′ − a0))

(
j

0

)
(x′, t− x′ − a0

c1
)

+ θ(c1(t− t0)− (a1 − a0))

(
c1 µ1

ν1 c1

)(
ϕ1

ψ1

)
(a1, t−

a1 − a0

c1
), (3.28)

(
c1 −µ1

−ν1 c1

)(
ϕ1

ψ1

)
(a1, t) =

1

c1

(
c1 −µ1

−ν1 c1

)∫ a1

a0

dx′θ(c1(t− t0)− (a1 − x′))
(
j

0

)
(x′, t− a1 − x′

c1
)

− θ(c1(t− t0)− (a1 − a0))

(
−c1 µ1

ν1 −c1

)(
ϕ1

ψ1

)
(a0, t−

a1 − a0

c1
), (3.29)

(
c0 µ0

ν0 c0

)(
ϕ2

ψ2

)
(a1, t) = 2c0

(
ϕi
ψi

)
(a1, t). (3.30)

Continuity of the �elds at the boundary points {a0, a1}, gives us two additional
equations, (

ϕ0

ψ0

)
(a0, t) =

(
ϕ1

ψ1

)
(a0, t), (3.31)(

ϕ1

ψ1

)
(a1, t) =

(
ϕ2

ψ2

)
(a1, t). (3.32)

Altogether we have six linear equations for the four vectors(
ϕ0

ψ0

)
(a0, t),

(
ϕ1

ψ1

)
(a0, t),

(
ϕ1

ψ1

)
(a1, t),

(
ϕ2

ψ2

)
(a1, t).

Thus our system (3.27)-(3.32) is overdetermined just like it was for model 1.
And just like for model 1, the system (3.27)-(3.32) contains equations that are
redundant. Mathematically this is re�ected in the fact that the determinant of
the matrices (

cj ±µj
±νj cj

)
, j = 0, 1 ,

are all zero. For the �rst toy model, it was obvious which two equations were
redundant. Here it is not immediately clear which equations we can remove, and
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this will also be the case if we write down the EOS formulation for more general
systems of PDEs, like for example Maxwell's equations. For the system (3.27)-
(3.32), it is not very di�cult to identify the redundant equations, but we would
rather introduce a di�erent approach that is generally quite useful when working
with the EOS formulations of PDEs. This is the method that has been used
by the research community to calculate electromagnetic scattering from linear
homogeneous scattering objects using a time dependent integral formulation of
Maxwell's equations. The reason that this method has been used for Maxwell's
equations has not been clearly stated in the research literature. It has taken the
form of a trick that is needed to achieve stability and accuracy for the numerical
implementation of the boundary formulation of electromagnetic scattering.

The point is that, although the system (3.27)-(3.32) is singular, we know
from its construction that it has a solution consisting boundary values coming
from the unique solution to the system (3.1),(3.2).

In terms of linear algebra, the situation is that for two given singular matrices
A and B, the system

Ax = b1,

Bx = b2, (3.33)

has a solution, x. Let us assume that there are numbers a and b such that

det(aA+ bB) 6= 0.

Given (3.33) it is clear that x is a solution to the linear system

(aA+ bB)x = ab1 + bb2, (3.34)

and since the system (3.34) is nonsingular, x is the unique solution to the system.
Finding numbers such that aA+ bB is nonsingular is in general not di�cult.

Let us apply this approach to the system (3.27)-(3.32). Simply adding to-
gether the equations give us a matrix(

c0 −µ0

−ν0 c0

)
+

(
c1 µ1

ν1 c1

)
=

(
c1 + c0 µ1 − µ0

ν1 − ν0 c1 + c0

)
,

and

det

(
c1 + c0 µ1 − µ0

ν1 − ν0 c1 + c0

)
= 2c1c0 + µ0ν1 + µ1ν0,

which is nonzero since all the numbers νi, µj , cj are positive by assumption. In
a similar way, adding together (3.29) and (3.30) will result in a nonsingular
system. Thus from the singular system (3.27)-(3.32) we get the nonsingular
system(

c1 + c0 µ1 − µ0

ν1 − ν0 c1 + c0

)(
ϕ1

ψ1

)
(a0, t) =

1

c1

(
c1 µ1

ν1 c1

)∫ a1

a0

dx′θ(c1(t− t0)− (x′ − a0))

(
j

0

)
(x′, t− x′ − a0

c1
)

+ θ(c1(t− t0)− (a1 − a0))

(
c1 µ1

ν1 c1

)(
ϕ1

ψ1

)
(a1, t−

a1 − a0

c1
), (3.35)
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(
c0 + c1 µ0 − µ1

ν0 − ν1 c1 + c0

)(
ϕ1

ψ1

)
(a1, t) =

1

c1

(
c1 −µ1

−ν1 c1

)∫ a1

a0

dx′θ(c1(t− t0)− (a1 − x′))
(
j

0

)
(x′, t− a1 − x′

c1
)

− θ(c1(t− t0)− (a1 − a0))

(
−c1 µ1

ν1 −c1

)(
ϕ1

ψ1

)
(a0, t−

a1 − a0

c1
)

+ 2c0

(
ϕi
ψi

)
(a1, t). (3.36)

The system (3.35),(3.36), which determine the boundary values of the �elds in
term of internal and external current densities, together with the di�erential
equations (3.1), restricted to the inside the scattering object (a0, a1), constitute
the EOS formulation for model 2.

3.2 Numerical implementation of the EOS formulation

The numerical implementation of model 2 contains the same elements as the
ones we introduced for model 1. Thus we �rst de�ne a nonuniform space grid
inside the scattering object, (a0, a1),

xi = a0 + (i+ 0.5)∆x, i = 0, 1, · · · , N − 1, (3.37)

where ∆x = a1−a0
N . The grid points (3.37) are the internal nodes for model 2.

We also introduce the discrete time grid

tn = n∆t, n = 0, 1, · · · .

The values of the parameter ∆t will of course, like for model 1, be bounded by
the requirement of stability for the scheme. We apply the Lax-Wendro� method
to the �rst three equations of (3.1) and the modi�ed Euler's method to the last
equation of (3.1). For interval (a0, a1), the numerical iteration can be written
as

ϕn+1
i =ϕni + ∆t (µ1

∂ψ

∂x
+ j)ni +

1

2
(∆t)2(µ1ν1

∂2ϕ

∂x2
+ f)ni ,

ψn+1
i =ψni + ∆t (ν1

∂ϕ

∂x
)ni +

1

2
(∆t)2(µ1ν1

∂2ψ

∂x2
+ ν1

∂j

∂x
)ni ,

ρn+1
i =ρni + ∆t (− ∂j

∂x
)ni +

1

2
(∆t)2(−∂f

∂x
)ni ,

j̄n+1
i =jni + ∆t fni ,

jn+1
i =

1

2
(jni + j̄ni + ∆t f(ρn+1

i , ϕn+1
i , j̄n+1

i )),

(3.38)

where f = (α − βρ)ϕ − γj. The �nite di�erence approximations for the �elds
and the current density at all internal nodes, except the two nodes closest to
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the boundary points a0 and a1, are given by the standard expressions

(
∂φ

∂x
)ni =

φni+1 − φni−1

2∆x
,

(
∂2φ

∂x2
)ni =

φni+1 − 2φni + φni−1

(∆x)2
, φ = ϕ,ψ, j,

(3.39)

for i = 1, 2, · · · , N − 2,. For the two internal nodes closest to the boundary
points, we need to use alternative di�erence rules because the grid is nonuniform
in the domain around these nodes

(
∂φ

∂x
)n0 = − 1

3 ·∆x
(4φna0 − 3φn0 − φn1 ),

(
∂2φ

∂x2
)n0 =

4

3 · (∆x)2
(2φna0 − 3φn0 + φn1 ),

(
∂φ

∂x
)nN−1 =

1

3 ·∆x
(4φna1 − 3φnN−1 − φnN−2),

(
∂2φ

∂x2
)nN−1 =

4

3 · (∆x)2
(2φna1 − 3φnN−1 + φnN−2),

(
∂j

∂x
)n0 =

1

2∆x
(4jn1 − 3jn0 − jn2 ),

(
∂j

∂x
)nN−1 = − 1

2∆x
(4jnN−2 − 3jnN−1 − jnN−3),

(3.40)

where φ = ϕ,ψ. The discretization of the boundary update rules (3.35) and
(3.36) are(

c1 + c0 µ1 − µ0

ν1 − ν0 c1 + c0

)(
ϕ

ψ

)
(a0, tn+1)

=
∆x

c1

(
c1 µ1

ν1 c1

)N−1∑
i=0

θ(tn+1 − t0 −
xi − a0

c1
)

(
j

0

)
(xi, tn+1 −

xi − a0

c1
) (3.41)

+

(
c1 µ1

ν1 c1

)
θ(tn+1 − t0 −

a1 − a0

c1
)

(
ϕ

ψ

)
−

(a1, tn+1 −
a1 − a0

c1
),

(
c1 + c0 µ0 − µ1

ν0 − ν1 c1 + c0

)(
ϕ

ψ

)
(a1, tn+1) =

∆x

c1

 c1 −µ1

−ν1 c1

N−1∑
i=0

θ(tn+1 − t0 −
a1 − xi
c1

)

(
j

0

)
(xi, tn+1 −

a1 − xi
c1

)

−
(
−c1 µ1

ν1 −c1

)
θ(tn+1 − t0 −

a1 − a0

c1
)

(
ϕ

ψ

)
+

(a0, tn+1 −
a1 − a0

c1
) (3.42)

+ 2c0

(
ϕi
ψi

)
(a1, tn+1).
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where

(
ϕi
ψi

)
(a1, tn+1) are determined by the external source. The iteration

(3.38) with the boundary update rules (3.41), (3.42) supplemented by the �nite
di�erence rules (3.39) and (3.40) constitute our numerical implementation of
the EOS formulation for model 2.

3.3 Arti�cial source test

The source extended model 2, is given by

ϕt = µ1ψx + j + g1,

ψt = ν1ϕx + g2,

ρt = −jx + g3,

jt = (α− βρ)ϕ− γj + g4.

For the source extended model 2, any given set of functions ϕ̂, ψ̂, ĵ and ρ̂ is a
solution if the sources are chosen to be

ĝ1 = ϕ̂t − µ1ψ̂x − ĵ,

ĝ2 = ψ̂t − ν1ϕ̂x,

ĝ3 = ρ̂t + ĵx,

ĝ4 = ĵt − (α− βρ̂)ϕ̂+ γĵ.

The boundary update rules for the source extended model 2 are changed
into(

c1 + c0 µ1 − µ0

ν1 − ν0 c1 + c0

)(
ϕ1

ψ1

)
(a0, t) =

1

c1

(
c1 µ1

ν1 c1

)∫ a1

a0

dx′θ(c1(t− t0)− (x′ − a0))

(
j + ĝ1

ĝ2

)
(x′, t− x′ − a0

c1
)

+ θ(c1(t− t0)− (a1 − a0))

(
c1 µ1

ν1 c1

)(
ϕ1

ψ1

)
(a1, t−

a1 − a0

c1
),

(
c0 + c1 µ0 − µ1

ν0 − ν1 c1 + c0

)(
ϕ1

ψ1

)
(a1, t) =

1

c1

(
c1 −µ1

−ν1 c1

)∫ a1

a0

dx′θ(c1(t− t0)− (a1 − x′))
(
j + ĝ1

ĝ2

)
(x′, t− a1 − x′

c1
)

− θ(c1(t− t0)− (a1 − a0))

(
−c1 µ1

ν1 −c1

)(
ϕ1

ψ1

)
(a0, t−

a1 − a0

c1
)

+ 2c0

(
ϕi
ψi

)
(a1, t).
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In Fig 3.1 we compare the numerical and exact solution of the EOS formulation

Figure 3.1: Comparison between the numerical solution and the exact solution
for the source extended model 2. Parameter values used are a0 = 0.0, a1 =
3.0, N = 1600, α = −1.0, β = 0.3, γ = 8.0, µ = 2.0, ν = 2.0, µ0 = 1.0, ν0 = 1.0,
A1 = 1.0, A2 = 1.0, A3 = 1.0, A4 = 1.0, b1 = 1.0, b2 = 1.0, α1 = 4.0, β1 =
4.0, α2 = 4.0, β2 = 4.0, xo = 6.0, ts = 1.0, xj = 1.1, xρ = 1.3, tj = 1.2, tρ =
1.3, δ1 = 0.3, δ2 = 0.32, δ3 = 1.0, δ4 = 0.33.

for the source extended model 2. The exact solution we used for this test is

ϕ̂(x, t) =
2A1

π
arctan(b21t

2)e−α1(x−xo+β1(t−ts))2 ,

ψ̂(x, t) =
2A2

π
arctan(b22t

2)e−α2(x−xo+β2(t−ts))2 ,

ĵ(x, t) = A3e
−

(x−xj)
2

δ21
−

(t−tj)
2

δ22 ,

ρ̂(x, t) = A4e
− (x−xρ)2

δ23
− (t−tρ)2

δ24 .

Our implementation clearly passes the arti�cial source test with �ying colors.
Fig 3.2 shows scattering of a wave generated by an external source calculated
from our numerical implementation of the EOS formulation for model 2. The
source we used is given by

js = Ae−α1(x−xo)2−β1(t−ts)2 .
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Figure 3.2: A numerical solution of the EOS formulation for model 2 generated
by an external source. The parameter values used are a0 = 0.0, a1 = 3.0, N =
1600, α = −1.0, β = 0.3, γ = 8.0, µ = 2.0, ν = 2.0, µ0 = 1.0, ν0 = 1.0, A =
1.0, α1 = 36, β1 = 4, ts = 1.0, xo = 4.0.

A Stability of the numerical schemes for model

1 and model 2

As mentioned in the main text, we do not expect the two 1D models to be
representative for stability issues pertaining to numerical implementation to
EOS formulations in general. However, there is an issue that is worth discussing
here. From the EOS formulation of model 1, one might expect that there would
be severe stability issues associated with any numerical approximation. The
reason is that the basic equation for the �eld inside the domain (a0, a1)

ϕt = c1ϕx, (A.1)

uncoupled for simplicity from the internally generated current density j, can
only satisfy the boundary condition at the right boundary a1 induced by the
external source. This is because equation (A.1) is of order one in space deriva-
tives. Consequently, one cannot impose any additional boundary condition at
a0 that is independent of the one imposed at a1. The EOS formulation evades
this problem in this simpli�ed setting by imposing the boundary condition

ϕ1(a0, t) = θ(a0 − a1 + c1(t− t0))ϕ(a1, t−
a1 − a0

c1
), (A.2)
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which depends on the boundary condition at a1 in exactly the way it needs for
a solution, for the boundary value problem for (A.1) on the interval (a0, a1), to
exist. However, this existence seems precarious. If we miss the right value by
even a small amount in a numerical scheme, are we not then solving a boundary
value problem for (A.1) where the two boundary conditions are not related in
the right way, and is there not a danger that this non-existence will manifest
itself in a numerical instability? In fact, could it be that the restricted domain
of stability of the EOS formulation, as noted in the main text, is a result of
the very particular delay-boundary conditions imposed because of the EOS for-
mulation? If this was true it would be important because such delay boundary
conditions are a general feature of EOS formulations. We will however now show
that the restricted domain of stability for the 1D models are in fact caused by
nonuniformity rather than delayed type boundary conditions.

For this purpose we introduce a family of grids of the interval (a0, a1) that are
parametrized by ε. The grid is uniform for ε = 0 and is equal to the nonuniform
grid we used for our numerical implementations for model 1 and 2 when ε = 1.

xi = a0 + (i+ 1− 0.5ε)∆x, i = 0, 1, · · · , N − 1,

where ε ∈ [0, 1] and

∆ =
N + ε

N(N + 1)
(a1 − a0).

To derive a �nite di�erence scheme for (A.1), using the Lax-Wendro� approach,
as in the main text, we must to impose some boundary conditions. In the
end, these conditions do not in�uence the stability of the scheme. Therefor,
for simplicity, we impose �xed boundary conditions. Given this the numerical
scheme takes the form

Un+1 = M1Un + b, (A.3)

where U = (ϕ) is a N vector, M1 is a matrix of order N ×N given by

M1 =


η1 + c1 η2 γ1 + c1 γ2 0 0 0 . . . 0
κ1 − c1 κ2 χ κ1 + c1 κ2 0 0 . . . 0

0 κ1 − c1 κ2 χ κ1 + c1 κ2 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 0 κ1 − c1 κ2 χ κ1 + c1 κ2

0 . . . 0 0 0 γ3 − c1 γ4 η3 − c1 η4



where the entries of the matrix depend on the discrete grid but not on the
boundary conditions and where b is determined by the boundary values. For
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the numerical schemes in toy model 1,

η1 = 1− ∆2 + ∆1 ∆

δ1
τ2, η2 =

∆2 −∆2
1

δ1
D,

η3 = 1− ∆2 + ∆2 ∆

δ2
τ2, η4 =

∆2 −∆2
2

δ2
D,

γ1 =
∆1 ∆

δ1
τ2, γ2 =

∆2
1

δ1
D,

γ3 =
∆2 ∆

δ2
τ2, γ4 =

∆2
2

δ2
D,

κ1 =
1

2
τ2, κ2 =

1

2
D,

χ = 1− τ2,

where

∆t = τ
∆

c1
, D =

∆t

∆
,

∆1 = (1− 1

2
ε)∆, ∆2 =

N − 1
2Nε+ 1

2ε
2

N + ε
∆,

δ1 = ∆2
1 + ∆1 ∆, δ2 = ∆2

2 + ∆2 ∆.

Let us look for a constant solution to (A.3), U = U∗. For U∗ to be a solution,
we must have

(M1 − I)U∗ = b, (A.4)

where I is identity matrix of order N ×N . In order to have a unique solution
for (A.4), λ = 1 must not be an eigenvalue for M . Thus, the unique solution
will be given by

U∗ = (M1 − I)−1b.

De�ne now yn by
Un = yn + U∗.

yn+1 + U∗ = M1(yn + U∗) + b,

m
yn+1 = M1yn. (A.5)

The matrix M1 is not symmetric, but numerical investigations show that it in
general has N di�erent eigenvalues, λi, i = 1, 2, · · · , N . Then the corresponding
eigenvectors, yi, are then independent and form a basis for IR. Let now y0 ∈ IR
be an initial value for (A.5). Then we have

y0 =
∑
i

diyi,

m

yn = Mn
1 y0 =

∑
i

diλ
n
i yi.
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We can see that if there exists any eigenvalue that is located outside the unit
circle, then ‖yn‖ → ∞. To obtain a stable numerical solution to model (A.1),
the eigenvalues of M1 must satisfy

max
i
|λi | < 1.

Using this result we �nd that the stability domain as a function of ε is of the
form

τ1(ε)
∆x

c1
< ∆t < τ2(ε)

∆x

c1
. (A.6)

Figure A.1: The stability domain for the EOS formulation of (A.1).

It is evident from Fig A.1 that the restriction on the stability domain for
the EOS formulation of (A.1), as compared to the Lax-Wendro� scheme for the
case of free space propagation, is caused by the introduction of a nonuniform
grid for the EOS formulation.

For model 2 we �nd the same stability domain as illustrated in Fig A.1 for
model 1. That there should be some relation between the stability of these
two models is perhaps not very surprising at the level of PDEs. After all, if we
decouple the �elds in model 2 from the current, the resulting system is equivalent
to the wave equation and the solutions of that equation are sums of left and
right going waves of the type described by Model 1. However, at the level of
numerical schemes the coinciding of the stability domains for the two models is
somewhat less obvious. Note that we can write the matrix M1, determining the
stability for model 1, in the form

M1 = m1 + cm1,
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where m1 and m2 are N ×N matrices given by,

m1 =



η1 γ1 0 0 0 . . . 0
κ1 χ κ1 0 0 . . . 0
0 κ1 χ κ1 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 0 κ1 χ κ1

0 . . . 0 0 0 γ3 η3


,

m2 =



η2 γ2 0 0 0 . . . 0
−κ2 0 κ2 0 0 . . . 0

0 −κ2 0 κ2 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 0 −κ2 0 κ2

0 . . . 0 0 0 − γ4 − η4


.

Given this, the 2N × 2N matrix determining the stability of model 2 is given
by

M2 =

[
m1 µ1m2

−ν1m2 m1

]
.

The matrix M2 clearly has a block structure and the same blocks give a linear
decomposition of M1 into a sum of two terms. However, we were not able use
these commonalities between M1 and M2 to explain the fact that model 1 and
model 2 have, not approximately, but exactly the same domain of stability as
far as we can determine. Note that the occurence of a stability domain like
(A.6) might be a universal feature of EOS formulations. We have for example
found a stability domain of this type in the EOS formulation of 3D Maxwell's
equations. There, however, it is clear that the delay boundary conditions is at
least partly responsible for the width of the stability domain.
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Abstract

In this paper we explore the possibility for solving the 3D Maxwell’s
equations in the presence of nonlinear and/or inhomogeneous material
response. We propose using a hybrid approach which combines a bound-
ary integral representation with a domain-based method. This hybrid
approach has previously been successfully applied to 1D linear and non-
linear transient wave scattering problems. The basic idea of the approach
is to propagate the Maxwell’s equations inside the scattering objects for-
ward in time by using a domain-based method, while a boundary integral
representation of the electromagnetic field is used to supply the domain-
based method with the required surface values. Thus no grids outside the
scattering objects are needed and this greatly reduces the computational
cost and complexity.

1 Introduction

Boundary Element method (BEM), as a tool for solving scattering problems, has
several attractive features. First and foremost, BEM is well suited to treating
scattering problems in unbounded domains because the boundary integral equa-
tions are located on the surfaces of the scattering objects and thus one whole
dimension is taken out of the problem. Secondly, the scattering objects are
usually defined by sharp material boundaries and thus a domain-based method
must seek to resolve the fast variation in the corresponding solutions generated
by the boundaries. This is a well known problem in the most popular domain-
based method for electromagnetic scattering, the Finite Difference Time Domain
method(FDTD) [1–3]. This method like all domain-based methods must also
struggle with reducing wave reflection from the boundary of the finite compu-
tational box which is added in order to discretize the outside domain. This
problem has been more or less solved by using perfectly matched layers [4, 5],
but the solution comes with additional cost and complexity. While the BEM
takes this radiation condition into account automatically.

However BEM has some drawbacks too. Firstly, singularities always appear
during the deriving of the boundary equations from the PDEs. How to accu-
rately calculate these integrals with singularities is an issue of the subject espe-
cially for irregular scattering objects. While the domain-based method is much
simpler to implement. Secondly, the derivation of the BEM relies on Green’s
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functions which is only defined for linear systems of PDEs. For some applica-
tions where the nonlinearity dominates, the BEM cannot be derived. However
for the applications where the nonlinearity can be discarded, a computational
approach based on Green’s functions is feasible. Scattering of electromagnetic
waves, where nonlinearities only come into play at very high field intensities,
is such an area. Thirdly, the time-domain integral equations are retarded and
there is large memory requirement. Also the matrix resulted from the BEM is
dense and nonsymmetrical, thus it is usually not easy to solve. However the
major obstacle that has prevented BEM from being popular is the late time
instabilities. Although the sources of these instabilities are not fully recognized,
many remedies have been made to improve the stabilities of BEM schemes for
time dependent electromagnetics [6–12].

Our work has not been aimed at joining in or improving on any of the ef-
forts pursued by these research groups. Our major aim has been to generalize
boundary approaches to electromagnetic scattering for cases where the scatter-
ing objects have an inhomogeneous and/or nonlinear response. Most work in
the area of time dependent BEM has been focused on metallic objects with
linear response whose dimensions are large with respect to the wave length,
antennas is a major example of the kind of structure one has been interested
in. The kind of problem we have in mind is scattering from very small objects,
from micron to nanometer scale, objects who might have engineered inhomo-
geneities in their structure and strong, also engineered, nonlinear response. At
this scale, the standard simplifying assumption of disregarding the inside of the
scattering objects and modeling them using surface charges and currents, is not
applicable. The skin depth at this microscopic scale can easily be as large as the
scattering objects themselves, which is a marked difference to what is true for
macroscopic antenna theory. For this reason, and also because of the complex
inner structure of these microscopic scattering objects, a different approach is
needed. The traditional BEM can not be used here.

Our approach is based on the same integral representation of the electro-
magnetic field [13] as the traditional BEM, however, we use the integral repre-
sentation in a way that is different from what one does in BEM. We solve the
Maxwell’s equations on the inside of each scattering object, as an initial bound-
ary value problem, and use the integral identities to supply the boundary values
needed in order to make the initial boundary value problem for Maxwell, well
posed. This kind of approach for solving electromagnetic scattering problems
was first proposed in 1972 by E. Wolf and D. N. Pattanyak [14] in the context
of stationary linear scattering and was based on the Ewald-Oseen optical ex-
tinction theorem. For this reason we call this particular way of reformulating
the electromagnetic scattering problem for the Ewald Oseen Scattering(EOS)
formulation. This reformulation can be applied to any kind of wave scattering
situation. It has previously been applied to two toy models of 1D linear and
nonlinear transient wave scattering by the authors [15] where the EOS formu-
lations work perfectly well with high accuracy and low computational load and
without any instabilities, even at very late times.

In section 2 we show some of the details of the derivation of our EOS for-
mulation for Maxwell’s equations and in section 3 we discuss some tests we
have run on our numerical implementation of the EOS formulation of Maxwell’s
equations. In this paper we do not describe the numerical implementational de-
tails, like how we handle the singular integrals and issues of numerical stability.
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These, mainly very technical considerations, would cloud the main message of
the current paper, which is that our EOS formulation of scattering problems
works. The technical details pertaining to our choise of implementation, some
of which are probably relevant for most numerical implementations of the EOS
formulation, will be reported elsewhere in a paper soon to appear [16]. Here
we will just note that, just like for the 1D case, the internal numerical scheme,
Lax-Wendroff for our case, determines a stability interval for the time step. The
difference is that, in the 1D case, the stability interval is purely determined by
the internal numerical scheme while in 3D case, there is another lower limit of
the stability interval determined by the integral part of the scheme. We also find
that the late time instability is highly depended on the features of the scattering
materials. Section 4 summarizes what we have achieved and discuss extensions
of our work that could be of interest to pursue.

2 EOS formulations of the 3D Maxwell’s equa-
tions

In this paper, we investigate an electromagnetic scattering problem described
by the 3D Maxwell’s equations

∇×E + ∂tB = 0,

∇×H− ∂tD = J,

∇ ·D = ρ,

∇ ·B = 0,

where J and ρ are the current density and the charge density of free charges.
Bound charges and currents determine D and H as functionals of E and B,

D = D[E,B],

H = H[E,B].

In the simplest situation, where the response from the bound charges and cur-
rents is linear, isotropic, homogeneous and instantaneous, we have

D = εE, H =
1

µ
B,

where
√

1
εµ = c is the speed of light in the material. For this particular situation,

we have

∇×E + ∂tB = 0,

∇×B− 1

c2
∂tE = µJ,

∇ ·E =
1

ε
ρ,

∇ ·B = 0.

(2.1)

We now rewrite the Maxwell’s equations into a form that is a suitable starting
point for our EOS formulation of the elctromagnetic wave scattering problem.
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First, observe that

∂t∇ ·B = 0,

∂t∇ ·E = −1

ε
∇ · J.

(2.2)

Equations (2.1) and (2.2) lead to

∂t(∇ ·E−
1

ε
ρ) = −1

ε
(∂tρ+∇ · J). (2.3)

All fields we consider will be driven by the source that will operate for some
finite time interval. This means that at some time in the past t = t0, we have

∇ ·B(x, t0) = 0,

∇ ·E(x, t0) =
1

ε
ρ(x, t0) = 0,

and this together with (2.2) and (2.3) imply that for any t

∇ ·B(x, t) = 0

holds true. If we now use the equation of charge conservation

∂tρ+∇ · J = 0

then

∇ ·E(x, t) =
1

ε
ρ(x, t)

also holds true at all time. Taking these considerations into account, Maxwell’s
equations can be written in the following equivalent form

∇×E + ∂tB = 0, (2.4a)

∇×B− 1

c2
∂tE = µJ, (2.4b)

∂tρ+∇ · J = 0. (2.4c)

In order to complete the model, we must supply an equation of motion for the
current J

∂tJ = F [J, ρ,E,B].

The specific form for the functional F is determined by what kind of material
response we are considering. In order for the system to lead to an efficient
numerical method it is important that the sources ρ,J are confined to some
small region. In this paper, in order to be specific, we look at the case of a small
metallic object interacting with light. We are not seeking to make a detailed
computational investigation of this system, but is rather focused on testing
our computational approach with respect to implementational complexity and
numerical stability. For this reason we choose the following simple nonlinear
model for the metal response of such a system

∂tJ = (α− βρ)E− γJ, (2.5)

where α, β and γ are constants.
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Following the usual approach, it is easy to show that the electric field satisfy
the following equation

1

c2
∂ttE−∇2E = −1

ε
∇ρ− µ∂tJ. (2.6)

Each vector component of equation (2.6) is an inhomogeneous wave equation.
Let’s suppose the scattering object is confined in a compact homogeneous do-
main denoted by V1 while the light source is located in an unbounded domain
outside the object which is denoted by V0. µ, ε are the magnetic permeability
and the electric permittivity with their values µ1, ε1 inside and µ0, ε0 outside
respectively. c represents the speed of light, with value c1 inside and c0 outside
the scattering object V1. The sources J0 and ρ0 are given and J1, ρ1 are the
response sources generated by the metallic object interacting with the light field.

We are now ready to start the construction of the EOS formulations of this
scattering problem.

Applying the integral relation for the wave equation (A.6) derived in Ap-
pendix A on equation (2.6) in domain V0 and V1 respectively, we get

Ej(x, t) = −
ˆ
Vj

dV ′hj(x
′,x){µj∂t′Jj +

1

εj
∇′ρj}(x′, T )

∓
ˆ
S

dS′{hj(x′,x)(∂n′Ej)(x
′, T )− ∂n′hj(x′,x)Ej(x

′, T )

+
1

cj
hj(x

′,x)∂n′ |x′ − x|(∂t′Ej)(x′, T )},

(2.7)

where
hj(x

′,x) =
cj

4π|x′ − x|
,

with j = 0 representing the outside domain V0 and j = 1 representing the inside
domain V1. Here x ∈ Vj and n′ is the unit normal to the boundary, S of V1, at
the point x′ ∈ S, pointing out of the domain V1. The upper sign applies to the
case j = 0 and the lower sign for the case j = 1. The same convention applies
to all the following expressions in this section.

After a series of algebraic manipulations, starting with (2.7), we obtain

Ej(x, t) = −∂t
µj
4π

ˆ
Vj

dV ′
Jj(x

′, T )

|x′ − x|
− ∇ 1

4πεj

ˆ
Vj

dV ′
ρj(x

′, T )

|x′ − x|

∓ ∂t[
1

4π

ˆ
S

dS′{ 1

cj |x′ − x|
(n′ ×Ej(x

′, T ))×∇′|x′ − x|

+
1

cj |x′ − x|
(n′ ·Ej(x′, T ))∇′|x′ − x|+ 1

|x′ − x|
n′ ×Bj(x

′, T )}]

± 1

4π

ˆ
S

dS′{(n′ ×Ej(x
′, T ))×∇′ 1

|x′ − x|

+ (n′ ·Ej(x′, T ))∇′ 1

|x′ − x|
}.

(2.8)

These manipulations are detailed in Appendix B.
Like the electric field, the magnetic field also satisfies a wave equation

1

c2
∂ttB−∇2B = µ∇× J. (2.9)
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After a set of algebraic manipulations, similar to the ones we did for the electric
field, we obtain

Bj(x, t) = ∇× µj
4π

ˆ
Vj

dV ′
Jj(x

′, T )

|x′ − x|

+ ∂t[
1

4π

ˆ
S

dS′{ 1

cj |x′ − x|
(n′ ×Bj(x

′, T ))×∇′|x′ − x|

∓ 1

cj |x′ − x|
(n′ ·Bj(x

′, T ))∇′|x′ − x| − 1

c2j

1

|x′ − x|
n′ ×Ej(x

′, T )}]

± 1

4π

ˆ
S

dS′{(n′ ×Bj(x
′, T ))×∇′ 1

|x′ − x|

+ (n′ ·Bj(x
′, T ))∇′ 1

|x′ − x|
}.

(2.10)

The identities (2.8) and (2.10), for the electric and magnetic field, are our ver-
sion of the general integral identities for the electromagnetic field derived by
D.S.Jones [13]. In addition to these two identities we get, in a very similar way,
two additional integral identities [16],

0 = −∂t
µ1−j

4π

ˆ
V1−j

dV ′
J1−j(x

′, T )

|x′ − x|
− ∇ 1

4πε1−j

ˆ
V1−j

dV ′
ρ1−j(x

′, T )

|x′ − x|

± ∂t[
1

4π

ˆ
S

dS′{ 1

c1−j |x′ − x|
(n′ ×E1−j(x

′, T ))×∇′|x′ − x|

+
1

c1−j |x′ − x|
(n′ ·E1−j(x

′, T ))∇′|x′ − x|+ 1

|x′ − x|
n′ ×B1−j(x

′, T )}]

∓ 1

4π

ˆ
S

dS′{(n′ ×E1−j(x
′, T ))×∇′ 1

|x′ − x|

+ (n′ ·E1−j(x
′, T ))∇′ 1

|x′ − x|
},

(2.11)

and

0 = ∇× µ1−j

4π

ˆ
V1−j

dV ′
J1−j(x

′, T )

|x′ − x|

± ∂t[
1

4π

ˆ
S

dS′{ 1

c1−j |x′ − x|
(n′ ×B1−j(x

′, T ))×∇′|x′ − x|

+
1

c1−j |x′ − x|
(n′ ·B1−j(x

′, T ))∇′|x′ − x| − 1

c21−j

1

|x′ − x|
n′ ×E1−j(x

′, T )}]

∓ 1

4π

ˆ
S

dS′{(n′ ×B1−j(x
′, T ))×∇′ 1

|x′ − x|

+ (n′ ·B1−j(x
′, T ))∇′ 1

|x′ − x|
},

(2.12)

for x ∈ Vj , j = 0, 1. In the above expressions,

Ej(x
′, t) = lim

x→x′
Ej(x, t)
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and
Bj(x

′, t) = lim
x→x′

Bj(x, t),

where x ∈ Vj , j = 0, 1. In the end, we have a full set of the integral identities
of the inside and the outside fields expressed by (2.8), (2.10), (2.11) and (2.12)
which can be written compactly as

E1 = M1(n′ ×E1,n
′ ·E1,n

′ ×B1),

0 = M0(n′ ×E0,n
′ ·E0,n

′ ×B0),

B1 = N1(n′ ×B1,n
′ ·B1,n

′ ×E1),

0 = N0(n′ ×B0,n
′ ·B0,n

′ ×E0),

(2.13)

for x ∈ V1 and

E0 = M0(n′ ×E0,n
′ ·E0,n

′ ×B0),

0 = M1(n′ ×E1,n
′ ·E1,n

′ ×B1),

B0 = N0(n′ ×B0,n
′ ·B0,n

′ ×E0),

0 = N1(n′ ×B1,n
′ ·B1,n

′ ×E1,

(2.14)

for x ∈ V0.
We will now derive the boundary integral identities of (2.4) by letting x

approach the surface from the inside and the outside of the scattering object
V1, separately. We observe that, in this limit, strong singularities only appear
in the last term of the integrals in (2.13) and (2.14). Hence we are faced with a
singular term which takes the form of

I = lim
ε→0

ˆ
Sε

dS′{(n′ ×A(x′, T ))×∇′ 1

|x′ − x|
+ (n′ ·A(x′, T ))∇′ 1

|x′ − x|
}

= lim
ε→0

ˆ
Sε

dS′{( x′ − x

|x′ − x|3
·A)n′ − (

x′ − x

|x′ − x|3
· n′)A− (n′ ·A)

x′ − x

|x′ − x|3
},

(2.15)

where A(x′, T ) is a vector function with x′ located on the surface Sε which is
an small disk of radius ε. If we let x approach a surface point ξ, from the inside
of V1, along a direction

x− ξ = εa = −εαn− εβ,

where n is the unit normal vector pointing out of V1, at the point ξ, and β is a
unit vector along the direction x′ − ξ, tangential to S, at the same point ξ, we
have

lim
ε→0

ˆ
Sε

x′ − x

|x′ − x|3
dS = lim

ε→0

ˆ
Sε

η + εαn

|η + εαn|3
dS, (2.16)

where η = x′ − ξ + εβ. Using spherical coordinates, (2.16) turns into

lim
ε→0

ˆ 2π

0

ˆ ε

0

ρ
(ρ cos θ, ρ sin θ, εα)

(ρ2 + (εα)2)
3
2

dθ dρ = χn,
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where χ = 2πα(1− 1√
α2+1

). Similarly, if x approaches ξ from outside of V1, we

have,

lim
ε→0

ˆ
Sε

x′ − x

|x′ − x|3
dS = −χn.

So in the end,

I+ = χA,

I− = −χA,

where I+ and I− denote the limit of equation (2.15) by letting x approach Sε
from the inside and the outside of V1 respectively. After taking these inside and
outside limits, we get the following set of equations

E+ = M1(n′ ×E+,n
′ ·E+,n

′ ×B+) + χE+,

0 = M0(n′ ×E−,n
′ ·E−,n′ ×B−)− χE−,

E− = M0(n′ ×E−,n
′ ·E−,n′ ×B−) + χE−,

0 = M1(n′ ×E+,n
′ ·E+,n

′ ×B+)− χE+,

(2.17)

where E+ is the limit of E1 with x approaching the surface from the inside of
the object while E− is the limit of E0 with x approaching the surface from the
outside of the object. These equations, because of the limits taken, contains sin-
gular integrals that must be interpreted as Cauchy principal integrals. Adding
the first two equations of (2.17) gives us

E+ = M1(n′ ×E+,n
′ ·E+,n

′ ×B+) +M0(n′ ×E−,n
′ ·E−,n′ ×B−)

+ χE+ − χE−,
(2.18)

and adding the last two equations of (2.17) gives us

E− = M0(n′ ×E−,n
′ ·E−,n′ ×B−) +M1(n′ ×E+,n

′ ·E+,n
′ ×B+)

+ χE− − χE+.
(2.19)

Repeating the derivations we just did for the electric field, give us, in a similar
way, the following set of equations for the magnetic field

B+ = N1(n′ ×B+,n
′ ·B+,n

′ ×E+) +N0(n′ ×B−,n
′ ·B−,n′ ×E−)

+ χB+ − χB−,
(2.20)

B− = N0(n′ ×B−,n
′ ·B−,n′ ×E−) +N1(n′ ×B+,n

′ ·B+,n
′ ×E+)

+ χB− − χB+,
(2.21)

where B+ is the limit of B1 with x approaching the surface from the inside of
the object while B− is the limit of B0 with x approaching the surface from the
outside of the object. Also in these equations the singular integrals that occur
must be interpreted as Cauchy principal value integrals. So far, we have two
outer equations for the outer limit fields E−, B− and two inner equations for
the inner limit fields E+, B+. We also have the usual electromagnetic boundary
conditions at the surface S which separate regions with different susceptibilities
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and permittivities

n′ ×E+ = n′ ×E−,

n′ ×B+ =
u1
u0

n′ ×B−,

n′ ·B+ = n′ ·B−,

n′ ·E+ =
ε0
ε1

n′ ·E−.

It might appear that we have more equations than we need here. The very same
problem was encountered earlier while deriving the EOS formulation for two 1D
toy models [15]. It appears as if we can use the two outer equations to solve
for E− and B− and then use the boundary conditions to find E+ and B+. But
these field values inside the scattering object cannot in general be consistent
with the field values derived directly from the two inner equations for E+ and
B+. For example, if there is a source inside of V1 and no source outside of V1,
the first approach would give vanishing electric and magnetic field whereas the
second approach certainly would not. On the other hand, for a given source,
the Maxwell equations has a unique solution, which by construction also satisfy
all the integral identities.

In order to understand what the problem is, and how to fix it, we must
just realize that, from an abstract point of view, we have the following formal
situation

AX = b,

BX = c,
(2.22)

where A and B are singular but where we know that (2.22) has a unique solution.
In this situation, let us assume that αA+ B is nonsingular for some choice

of α. Any solution of (2.22) is a solution of

(αA+B)X = αb + c, (2.23)

and since αA + B is nonsingular the unique solution of the singular system
(2.22) must in fact be the unique solution of the nonsingular system (2.23). We
know that the solution of Maxwell is unique for a given source, so since the
integral equations are equivalent to Maxwell, our four integral equations for the
two unknown fields on S must have a unique solution. This happens only if
they are singular. Thus in our situation, we can simply add (2.18) and (2.19),
which gives

E+ + E− = 2(M1(n′ ×E+,n
′ ·E+,n

′ ×B+)

+M0(n′ ×E−,n
′ ·E−,n′ ×B−)),

(2.24)

and add (2.20) and (2.21), which gives

B+ + B− = 2(N1(n′ ×B+,n
′ ·B+,n

′ ×E+)

+N0(n′ ×B−,n
′ ·B−,n′ ×E−)).

(2.25)

Observe that for any vector A, the following identities hold true

n× (n×A) = (n ·A)n− (n · n)A,

A = (n ·A)n− n× (n×A).
(2.26)
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Performing (2.26) on (2.24) and (2.25) we obtain the following final boundary
integral identities

(I +
1

2
(
ε1
ε0
− 1)n n)E+(x, t) = Ie + Oe + Be, (2.27a)

(I +
1

2
(1− µ0

µ1
)n n)B+(x, t) = Ib + Ob + Bb, (2.27b)

where x ∈ S, n is the unit normal vector pointing out of V1 at the point x, I is
the identity matrix and

Ie = −∂t
µ1

4π

ˆ
V1

dV ′
J1(x′, T )

|x′ − x|
− 1

4πε1
∇
ˆ
V1

dV ′
ρ1(x′, T )

|x′ − x|
, (2.28)

Oe = −∂t
µ0

4π

ˆ
V0

dV ′
J0(x′, T )

|x′ − x|
− ∇ 1

4πε0

ˆ
V0

dV ′
ρ0(x′, T )

|x′ − x|
, (2.29)

Be =
1

4π
∂t

ˆ
S

dS
′
{( 1

c1
− 1

c0
)

1

|x′ − x|
(n
′
×E+(x′, T ))×∇′|x′ − x|

+ (
1

c1
− ε1
ε0c0

)
1

|x′ − x|
(n
′
·E+(x′, T ))∇′|x′ − x|

+ (1− µ0

µ1
)

1

|x′ − x|
n
′
×B+(x′, T )}

− 1

4π

ˆ
S

dS
′
((1− ε1

ε0
)(n

′
·E+(x′, T ))∇′ 1

|x′ − x|
),

(2.30)

Ib = ∇× µ1

4π

ˆ
V1

dV ′
J1(x′, T )

|x′ − x|
, (2.31)

Ob = ∇× µ0

4π

ˆ
V0

dV ′
J0(x′, T )

|x′ − x|
, (2.32)

Bb =
1

4π
∂t

ˆ
S

dS
′
{( 1

c1
− µ0

µ1c0
)

1

|x′ − x|
(n
′
×B+(x′, T ))×∇′|x′ − x|

+ (
1

c1
− 1

c0
)

1

|x′ − x|
(n
′
·B+(x′, T ))∇′|x′ − x|

+ (
1

c20
− 1

c21
)

1

|x′ − x|
n
′
×E+(x′, T )}

− 1

4π

ˆ
S

dS
′
{(1− u0

u1
)(n

′
×B+(x′, T ))×∇′ 1

|x′ − x|
}.

(2.33)

Note that Oe and Ob are fields on the surfaces generated by the source in the
absence of the scattering objects. Equations (2.4) and (2.5) together with the
boundary integral identities (2.27a) and (2.27b) compose the EOS formulations
of our model.

3 Artificial source test and numerical implemen-
tation

The motivation, for introducing the EOS formulation for Maxwell’s equations,
is a numerical one. The technical issues occuring for the numerical implemen-
tation discussed in this paper, will be part of any numerical implementation of
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our scheme, which in general will involve multiple, arbitrarily shaped, scattering
objects, that include linear and nonlinear optical response. We expect however,
that the general nature of these issues will reveal themselves already in the sim-
plest possible setting, where we have one scattering object of rectangular shape.
The numerical implementation consists of a domain method for the model (2.4)
and (2.5), determining the evolution of the fields inside the scattering object,
and a scheme for updating the boundary values of the fields using the integral
identities (2.27a) and (2.27b). For the internal domain method we choose to
use a combination of Lax-Wendroff on (2.4) and modified Euler’s method on
(2.5), this is similar to what we did for the simple 1D case [15], previously.
For the boundary part of the scheme we use the mid-point rule to the non-
singular integrals appearing in (2.27). The treatment of the singular integrals
is technical and rather lengthy and will therefore be reported elsewhere [17].
Here it is enough to note that we calculate the singular integrals by reducing
them to a singular core, which we calculate exactly, and nonsingular surface and
line integrals, that we calculate numerically. The reductions proceed through a
nontrivial use of well known integral identities.

For the inside of the scattering object we will use a rectangular grid. This
grid is however not uniform close to the boundary. This is because the grid
has to support both the discrete approximations to the partial derivatives and
discrete approximations to the integrals, used to update the boundary values
based on the current and previous internal values of the fields. The fact that in
our scheme the boundary values are dynamical variables, enforce some special
difference rules that applies close to the boundary. This is an extra complication
for our scheme, but they are manageable, and will be part of any scheme that
implements the EOS formulation introduced in this paper. Details are given
in [17].

What we do in this section is to report on some tests that we have run on
our scheme. A usual approach to testing of numerical implementations involve
finding exact special solutions corresponding to special source functions. In this
section we do not use this approach, but rather use an artificial source test
to verify the correctness of our EOS formulations. The basic idea behind the
artificial source test, of some numerical scheme designed for a system of PDEs,
Lψ = 0 , is to slightly modify the system by adding an arbitrary source to all
the equations in the system, creating a new modified system Lψ = g . This
modification typically lead to minimal modifications to the numerical scheme,
where most of the effort and complexity are usually spent on the derivatives and
nonlinear terms. For the equations, however, the presence of the sources change
the situation completely. This is because the presence of the added sources
implies that any function is a solution to the equations for some choice of sources.
Thus we can pick a function ψ0 and insert it into the model and calculate the
source function g0 = Lψ0 so that our chosen function is a solution to the
extended equation. Finally we run the numerical scheme with the calculated
source function and compare the numerical solution with the exact solution ψ0.

A modified model of (2.4) and (2.5) with artificial sources is generally con-
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structed by

∂tB +∇×E = ϕ1,

1

c21
∂tE−∇×B = −µ1J +ϕ2,

∇ ·E =
1

ε1
ρ+ ϕ3,

∇ ·B = ϕ4,

∂tJ = (α− βρ)E− γJ +ϕ5,

where ϕ1,ϕ2,ϕ4 and ϕ5 are a set of vector functions and ϕ3 is a scale function.
Observe that

∇ · (∇×E) +∇ · ∂tB = ∇ ·ϕ1,

and this yields
∂tϕ4 = ∇ ·ϕ1.

Based on this we suppose ϕ1 = 0 and ϕ4 = 0 which can simplify the choice of
the exact solutions. We also observe that if ϕ2 and ϕ3 are set to be both 0, then
the continuity equation

∂tρ+∇ · J = 0

is automatically satisfied. So in the end, the source extended model is given by

∂tB +∇×E = 0, (3.1a)

1

c21
∂tE−∇×B = −µ1J, (3.1b)

∇ ·E =
1

ε1
ρ, (3.1c)

∂tJ = (α− βρ)E− γJ +ϕ. (3.1d)

For model (3.1), any choice of Ẽ, B̃ can be a solution if the artificial source is
given by

ϕ = ∂tJ̃− (α− βρ̃)Ẽ− γJ̃,

where J̃ and ρ̃ are given respectively by

J̃ =
1

µ1
(∇× B̃− 1

c21
∂tẼ),

ρ̃ = ε1∇ · Ẽ.

Due to (3.1a), we can simply choose a vector function φ, such that

Ẽ = −∂tφ,
B̃ = ∇× φ.

(3.2)

Figure 3.1 shows the comparison between the numerical implementations and
the exact solutions where we have used

φ = (arctan(b2t2)e−α1(x−xo+y−yo+z−zo+β1(t−ta))2 , 0, 0).
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Values of the parameters are listed below the figure. From figure it is evident
that the agreement between the exact solution and the numerical solution is
excellent.

For a general case where the electromagnetic fields inside the object are
produced by the outside source, we set up the outside source J0 and ρ0 to be a
combination of a bump function in time and a delta function in space which is
easily integrated in space. In order to satisfy the continuity equation

∂tρ0 +∇ · J0 = 0,

we can choose a vector function ϕ such that

J0 = −∂tϕ,
ρ0 = ∇ ·ϕ.

(3.3)

Figure 3.1: Artificial source test: |E(x, t)|. Intensity of electric field at a specific
point at different times. b = 1.0, α1 = 40, β1 = 1.0, xo = 0.0, yo = 0.0, zo =
0.0, ta = 1.0, c0 = 1.0, µ0 = 1.0, ε0 = 1.0, c1 = 0.82, µ1 = 1.0, ε1 = 1.5, τ =
0.45, α = 1.0, β = 0.01, γ = 0.01.

Figure 3.2 shows the intensity of the electric field on a surface in yz plane
at different times. Values of parameters used are shown below the figure. The
figure shows a pulse of light passing through the plane, which is what we would
expect from the nature of our chosen source. For figure 3.2 , we have chosen

ϕ = (ϕ, 0, 0),

where

ϕ(x, t) =

{
δ(x− x0)e

1
(t−t0)2−1 t ∈ [t0 − 1, t0 + 1],

0 t /∈ [t0 − 1, t0 + 1],
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Figure 3.2: The intensity of the electric field on a specific surface in yz plane at
different times. t0 = 1.5, x0 = −0.3, y0 = 0.0, z0 = 0.0, c0 = 1.0, µ0 = 1.0, ε0 =
1.0, c1 = 0.82, µ1 = 1.0, ε1 = 1.5, τ = 0.45, α = 0.1, β = 0.01, γ = 2.

with x0 = (x0, y0, z0).
Our numerical scheme, being explicit, is not unconditionally stable. There

is however a stable range, τ1 < τ < τ2 , for the time step ∆t

∆t =
τ

c1
Min{∆x,∆y,∆z},

where τ1 and τ2 determine the lower and upper boundaries of the stability
range for the sceheme. We have carefully investigated the source of the upper
and lower bound of the range and how the width of the stability range depends
on material parameters. It is not appropriate to include these fairly techincal
numerical investigations here, a full discussion will be presented elsewhere in
[17]. Here it is enough to note that the source of the lower stability bound is
the numerical implementation of the boundary part of the algoritm, and the
source of the upper bound is the numerical implementation of the domain part
of the algorithm, for our case this is a combination of Lax-Wendroff for the
electromagnetic fields, and modified Euler for the current .

4 Conclusions

In this paper we have showed that our EOS formulation of electromagnetic scat-
tering can be accurately and stably implemented using one particular choice of
numerical scheme for the inside of the objects and for the integral representation
of the boundary values required by the inside scheme. For a stable numerical
solution, the time step needs to be confined in some range, where we have found
that this range is not only determined by the internal domain-base method due
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to the non-uniform grids but also determined by the boundary integral represen-
tations. Discussions on how the internal non-uniform grids and the boundary
integral representation effect the time stable range is reported in [15] which will
be published elsewhere. It is worth stressing that the existence of the stability
range and its width depends not only on the material parameters but certainly
on choices made for the numerical implementation of the boundary part and
domain part of the algorithm. In principle, any numerical scheme can be used
for the domain part of the algorithm, also the extremely well established FDTD
method. It would be interesting to see how this method would perform with
respect to stability. There is also the question of going fully implicit, both for
the boundary part and the domain part of the algorithm. One would think that
this would have a chance of producing an unconditionally stable algorithm for
our EOS formulation for Maxwell’s equations.

Appendices

A The integral identity for a 3D wave equation

We will start by considering a wave equation in 3D

1

c2
∂ttϕ(x, t)−∇2ϕ(x, t) = ρ(x, t), (A.1)

where x = (x, y, z), c is the propagation speed and

∇2 = ∂2x + ∂2y + ∂2z .

Let D×T be a given space-time domain. We will assume that the source ρ(x, t)
is entirely contained in D × T . The operator

L =
1

c2
∂tt −∇2

is formally self adjoint. Observe that for any pair of functions defined in D× T
we have

Lϕ(x, t)ψ(x, t)− ϕ(x, t)Lψ(x, t)

=
1

c2
∂t(∂tϕ(x, t)ψ(x, t)− ϕ(x, t)∂tψ(x, t))

−∇ · (∇ϕ(x, t)ψ(x, t)− ϕ(x, t)∇ψ(x, t)),

so ˆ
D×T
{Lϕ(x, t)ψ(x, t)− ϕ(x, t)Lψ(x, t)} dV dt

=
1

c2

ˆ
D2

{∂tϕ(x, t)ψ(x, t)− ϕ(x, t)∂tψ(x, t)} dV

− 1

c2

ˆ
D1

{∂tϕ(x, t)ψ(x, t)− ϕ(x, t)∂tψ(x, t)} dV

−
ˆ
S×T
{∂nϕ(x, t)ψ(x, t)− ϕ(x, t)∂nψ(x, t)}dS dt. (A.2)
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This is the fundamental integral identity for the wave equation in 3D. Next we
will need the advanced Green’s function for L which is given by

G(x, t,x′, t′) = Q(x− x′, t− t′),

where Q(y, s) satisfies

1

c2
∂ssQ(y, s)−∇2Q(y, s) = δ(y)δ(s), s < 0, (A.3)

and
Q(y, s) = 0, s > 0.

Because of translational invariance, we can take the Fourier transform of (A.3)
and get

[−(
ω

c
)2 + ζ2]Q̂(ξ, ω) = 1, ζ = |ξ|,

Q̂(ξ, ω) =
1

D(ξ, ω)
, (A.4)

where
D(ξ, ω) = −(

ω

c
)2 + ζ2.

Applying the inverse Fourier transform on (A.4) gives

Q(y, s) =
1

16π4

ˆ
q(ξ, s)eiξ·y dξ,

where

q(ξ, s) =

ˆ
Cε

e−izs

D(ξ, z)
dz,

and Cε is a contour slightly below the real axis. Observe that the integrand has
simple poles at z = ±cζ, so if s > 0, we must close the contour in the lower
half-plane. By Cauchy,

q(ξ, s) = 0.

If s < 0, we must now close the contour in the upper half plane and Cauchy’s
theorem gives

q(ξ, s) =
cπi

ζ
[eiscζ − e−iscζ ],

and

1

16π4

ˆ
dξ

cπi

ζ
eiscζeiξ·y =

c

8π2r
[

ˆ ∞
0

dζ ei(r+sc)ζ −
ˆ ∞
0

dζ e−i(r−sc)ζ ],

where r = |y|. Similarly,

− 1

16π4

ˆ
dξ
cπi

ζ
e−iscζeiξ·y =

−c
8π2r

[

ˆ ∞
0

dζ ei(r−sc)ζ −
ˆ ∞
0

dζ e−i(r+sc)ζ ].

In the end,

Q(y, s) =
c

4πr
[δ(r + sc)− δ(r − sc)].
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Since if s < 0, δ(r − sc) = 0, finally

Q(y, s) =
1

4πr
δ(s+

r

c
).

Thus our advanced Green’s function is

G(x, t,x′, t′) =

{
0 if t > t′

1
4π|x−x′|δ(t− t

′ + |x−x′|
c ), if t < t′.

(A.5)

We now apply (A.5) to the fundamental integral identity (A.2). Let ϕ(x, t) be
a solution to the wave equation (A.1)

Lϕ(x, t) = ρ(x, t),

then for any (x, t) ∈ D × T , we have

ˆ
D×T

dV ′ dt′{Lϕ(x′, t′)G(x′, t′,x, t)− ϕ(x′, t′)LG(x′, t′,x, t)}

=
1

c2

ˆ
D2

dV ′{∂t′ϕ(x′, t′)G(x′, t′,x, t)− ϕ(x′, t′)∂t′G(x′, t′,x, t)}|t′=t2

− 1

c2

ˆ
D1

dV ′{∂t′ϕ(x′, t′)G(x′, t′,x, t)− ϕ(x′, t′)∂t′G(x′, t′,x, t)}|t′=t1

−
ˆ
S×T

dS′ dt′{∂n′ϕ(x′, t′)G(x′, t′,x, t)− ϕ(x′, t′)∂n′G(x′, t′,x, t)}.

Since t2 > t, for the advance Green’s function

G(x′, t′,x, t)|t′=t2 = 0.

And since the field is entirely driven by the source

ϕ(x, t1) = 0,

we get

ϕ(x, t) =

ˆ
D×T

dV ′ dt′ρ(x′, t′)G(x′, t′,x, t)

+

ˆ
S×T

dS′ dt′{∂n′ϕ(x′, t′)G(x′, t′,x, t)− ϕ(x′, t′)∂n′G(x′, t′,x, t)}.

and
G(x′, t′,x, t) = h(x′,x)θ(t− t′)δ(|x′ − x|+ c(t′ − t)),

where
h(x′,x) =

c

4π|x′ − x|
.

Since

∂n′G(x′, t′,x, t) = θ(t− t′)∂n′h(x′,x)δ(|x′ − x|+ c(t′ − t))
+ θ(t− t′)h(x′,x)∂n′δ(|x′ − x|+ c(t′ − t)),
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and

∂n′δ(|x′ − x|+ c(t′ − t)) =
1

c
∂n′ |x′ − x|∂t′δ(|x′ − x|+ c(t′ − t)),

we thus haveˆ
D×T

dV ′ dt′ρ(x′, t′)G(x′, t′,x, t) =

ˆ
D

dV ′h(x′,x)ρ(x′, T ),

where

T = T (t,x′,x) = t− 1

c
|x′ − x|.

From ˆ
S×T

dS′ dt′∂n′ϕ(x′, t′)G(x′, t′,x, t) =

ˆ
S

dS′h(x′,x)(∂n′ϕ)(x′, T ),

and

−
ˆ
S×T

dS′ dt′ϕ(x′, t′)∂n′G(x′, t′,x, t)

= −
ˆ
S

dS′∂n′h(x′,x)ϕ(x′, T ) +

ˆ
S

dS′
1

c
h(x′,x)∂n′ |x′ − x|(∂t′ϕ)(x′, T ).

finally we get

ϕ(x, t) =

ˆ
D

dV ′h(x′,x)ρ(x′, T ) +

ˆ
S

dS′{h(x′,x)(∂n′ϕ)(x′, T )

− ∂n′h(x′,x)ϕ(x′, T ) +
h(x′,x)

c
∂n′ |x′ − x|(∂t′ϕ)(x′, T )}.

(A.6)

This is the integral identity for an operator defining a 3D wave equation and it
holds for any solution of the scalar 3D wave equation.

B The integral identity of the electric wave equa-
tion

Here we do some calculations to derive (2.8) from (2.7). For the writing in sim-
plicity, we write E,J, ρ, c, µ, ε instead of Ej ,Jj , ρj , cj , µj , εj , j = 0, 1 respectively
here. Observe first that

∂n′(E(x′, T )) = (n′ · ∇′)(E(x′, T )) = ((n′ · ∇′)E)(x′, T )

+ (∂t′E)(x′, T )(−1

c
(n′ · ∇′)|x′ − x|),

18



so,

E(x, t) = −
ˆ
D

dV ′h(x′,x){µ∂t′J +
1

ε
∇′ρ}(x′, T )

+

ˆ
S

dS′{h(x′,x)∂n′(E(x′, T )) +
1

c
h(x′,x)(∂t′E)(x′, T )∂n′ |x′ − x|

− ∂n′h(x′,x)E(x′, T ) +
1

c
h(x′,x)(∂t′E)(x′, T )∂n′ |x′ − x|}

+

ˆ
S

dS′{h(x′,x)∂n′(E(x′, T ))− ∂n′h(x′,x)E(x′, T )

+
2

c
h(x′,x)(∂t′E)(x′, T )∂n′ |x′ − x|}.

(B.1)

We are going to rework the first term in the integral (B.1). Observe that for a
vector field a and a scalar f we have,

(n · ∇)(fa) = (n · ∇f)a + f(n · ∇)a,

∇ · (fa) = ∇f · a + f∇ · a,
∇× (fa) = ∇f × a + f∇× a,

so,

n× (∇× (fa)) = ∇f(n · a)− a(n · ∇f) + fn× (∇× a).

Further,

(n · ∇)(fa) + n× (∇× (fa))− n∇ · (fa)

= f(n · ∇)a + (n×∇f)× a + fn× (∇× a)− fn∇ · a.

so if we let f = h(x′,x) and a = E(x′, T ), we thus haveˆ
S

dS′h(x′,x)∂n′(E(x′, T ))

=

ˆ
S

dS′{−(n′ ×∇′h(x′,x))×E(x′, T )

− h(x′,x)n′ × (∇′ × (E(x′, T )))

+ h(x′,x)n′∇′ · (E(x′, T ))}.

(B.2)

Inserting (B.2) into (B.1) leads to

E(x, t) = −
ˆ
D

dV ′h(x′,x){µ∂t′J +
1

ε
∇′ρ}(x, T )

+

ˆ
S

dS′{h(x′,x)n′∇′ · (E(x′, T ))− (n′ ×∇′h(x′,x))×E(x′, T )

− h(x′,x)n′ × (∇′ × (E(x′, T )))− ∂n′h(x′,x)E(x′, T )

+
2

c
h(x′,x)(∂t′E)(x, T )∂n′ |x′ − x|}.

Since

∇′(E(x′, T )) = (∇′ ·E)(x′, T )− 1

c
(∂t′E)(x′, T ) · ∇′|x′ − x|,

∇′ × (E(x′, T )) = (∇′ ×E)(x′, T ) +
1

c
(∂t′E)(x′, T )×∇′|x′ − x|,
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in the end, (B.1) can be written in the following form

E(x, t) = −
ˆ
D

dV ′h(x′,x){µ∂t′J +
1

ε
∇′ρ}(x′, T )

+

ˆ
S

dS′{h(x′,x)n′(∇′ ·E)(x′, T )

− 1

c
h(x′,x)n′(∂t′E)(x′,T) · ∇′|x′ − x|)

− (n′ ×∇′h(x′,x))×E(x′, T )− h(x′,x)n′ × (∇′ ×E)(x′, T )

− 1

c
h(x′,x)n′ × ((∂t′E)(x′, T )×∇′|x′ − x|)

− ∂n′h(x′,x)E(x′, T ) +
2

c
h(x′,x)(∂t′E)(x′, T )∂n′ |x′ − x|}.

Notice that

(n× a)×∇f − (n×∇f)× a = (n · ∇f)a− (n · a)∇f,

and
−(n×∇f)× a− (n · ∇f)a = −(n× a)×∇f − (n · a)∇f,

and performing them on h and E gives

− (n′ ×∇′h(x′,x))×E(x′, T )− ∂n′h(x′,x)E(x′, T )

= −(n′ ×E(x′, T ))×∇′h(x′,x)− (n′ ·E(x′, T ))∇′h(x′,x).

In addition

(n× a)×∇f + n× (a×∇f)

= 2(n · ∇f)a− (a · ∇f)n− (n · a)∇f,

and

− (a · ∇f)n− n× (a×∇f) + 2(n · ∇f)a

= (n× a)×∇f + (n · a)∇f,

give

− n′((∂t′E)(x′, T ) · ∇′|x′ − x|)− n′ × ((∂t′E)(x, T )×∇′|x′ − x|)
+ 2∂n′ |x′ − x|(∂t′E)(x′, T )

= (n′ × (∂t′E)(x′, T ))×∇′|x′ − x|+ (n′ · (∂t′E)(x′, T ))∇′|x′ − x|.

Thus

E(x, t) = −
ˆ
D

dV ′h(x′,x){µ∂t′J +
1

ε
∇′ρ}(x′, T )

+

ˆ
S

dS′{h(x′,x)n′(∇′ ·E)(x′, T )− (n′ × E(x′, T ))×∇′h(x′,x)

− (n′ · E(x′, T ))∇′h(x′,x) +
1

c
h(x′,x)(n′ × (∂t′E)(x′, T ))×∇′|x′ − x|

+
1

c
h(x′,x)(n′ · (∂t′E)(x′, T ))∇′|x′ − x| − h(x′,x)n′ × (∇′ ×E)(x′, T )}.
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Using the special form of the divergence theorem, we have
ˆ
S

dS′h(x′,x)n′(∇′ ·E)(x′, T )

=

ˆ
D

dV ′h(x′,x)
1

ε
(∇′ρ)(x′, T )−

ˆ
D

,dV ′h(x′,x)
1

ε
∇ρ(x′, T )

+

ˆ
D

dV ′
1

ε
ρ(x′, T )∇′h(x′,x),

where

∇′h(x′,x) =
1

4π
∇′ 1

|x′ − x|
= −∇h(x′,x).

Together with
(∂t′J)(x′, T ) = ∂t(J(x′, T )),

we finally get

E(x, t) = −∂t
µ

4π

ˆ
D

dV ′
J(x′, T )

|x′ − x|
− ∇ 1

4πε

ˆ
D

dV ′
ρ(x′, T )

|x′ − x|

+ ∂t[
1

4π

ˆ
S

dS′{ 1

c|x′ − x|
(n′ ×E(x′, T ))×∇′|x′ − x|

+
1

c|x′ − x|
(n′ ·E(x′, T ))∇′|x′ − x|+ 1

|x′ − x|
n′ ×B(x′, T )}]

− 1

4π

ˆ
S

dS′{(n′ ×E(x′, T ))×∇′ 1

|x′ − x|

+ (n′ ·E(x′, T ))∇′ 1

|x′ − x|
}.

This is the integral identity of the electric wave equation (2.6).

C The first order, the second order and the mixed
space derivatives

Here we illustrate a general rule. Suppose we have a three variable function
f(x, y, z) defined on grids (D.1). In order to get a second order accuracy, we
apply the polynomials in two variables of degree 3 which is expressed by

f(x, y, z) = f(xi, yi, zk) + ζ1δx+ ζ2δx
2 + ζ3δx

3 + ζ4δxδy + ζ5δx
2δy

+ ζ6δxδy
2 + ζ7δy + ζ8δy

2 + ζ9δy
3,

where δx = x− xi, δy = y − yi and

ζ1 =
∂f(xi, yj , zk)

∂x
, ζ2 =

∂2f(xi, yj , zk)

∂x2
, ζ3 =

∂3f(xi, yj , zk)

∂x3
,

ζ4 =
∂2f(xi, yj , zk)

∂x∂y
, ζ5 =

∂3f(xi, yj , zk)

∂x2∂y
, ζ6 =

∂3f(xi, yj , zk)

∂x∂y2
,

ζ7 =
∂f(xi, yj , zk)

∂y
, ζ8 =

∂2f(xi, yj , zk)

∂y2
, ζ9 =

∂3f(xi, yj , zk)

∂y3
.
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(a) i = 0, j = 0 (b) i = 0, j = 1

Figure C.1: Two examples of the involved grid points for calculating the space
derivatives of ep and bp, p = 1, 2, 3.

Except for f(xi, yj , zk), we always need 9 extra grid points that are closest
to (xi, yj , zk) in order to get the expressions of ζ1, ζ2, · · · , ζ9. We’ll see that
these expressions vary depending on the locations of i and j. For example, if
i = 0, j = 0, the involved grid points are fs,0, f0,0, f1,0, f2,0, f0,s, f1,s, fs,1, f0,1,
f1,1 and f0,2 while if i = 0, j = 1, the involved grid points are fs,0, f0,0, f1,0,
f0,s, fs,1, f0,1, f1,1, f2,1, fs,2 and f0,2 where

fs,j =

{
f(xa, yj , zk) i = 0

f(xb, yj , zk) i = Nx − 1

fi,s =

{
f(xi, ya, zk) j = 0

f(xi, yb, zk) j = Ny − 1

fi,j = f(xi, yj , zk),

and so on. Figure C.1 illustrates two examples of the involved grid points.
Finally if i = 0 or i = Nx − 1 we have

∂f(xi, yj , zk)

∂x
= ±(fs,j , fi,j , fi±1,j , fi±2,j ) ·W1,

∂2f(xi, yj , zk)

∂x2
= (fs,j , fi,j , fi±1,j , fi±2,j ) ·W2,

∂2f(xi, yj , zk)

∂x∂y
=

±( fs,j , fs,j+1, fi,s, fi,j , fi,j+1, fi±1,s, fi±1,j , fi±1,j+1 ) ·W3 j = 0

∓( fs,j , fs,j−1, fi,s, fi,j , fi,j−1, fi±1,s, fi±1,j , fi±1,j−1 ) ·W3 j = Ny − 1

±( fs,j−1, fs,j , fs,j+1, fi,j , fi,j+1, fi±1,j−1, fi±1,j ) ·W4 0 < j <
Ny
2

∓( fs,j+1, fs,j , fs,j−1, fi,j , fi,j−1, fi±1,j+1, fi±1,j ) ·W4
Ny
2 <= j < Ny − 1
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It takes the upper sign for i = 0 and the nether sign for i = Nx − 1.
If 0 < i < Nx − 1, we have

∂f(xi, yj , zk)

∂x
= (fi−1,j , fi+1,j ) ·W5,

∂2f(xi, yj , zk)

∂x2
= (fi−1,j , fi,j , fi+1,j ) ·W6,

∂2f(xi, yj , zk)

∂x∂y
=

±( fi∓1,s, fi,s, fi,j , fi±1,s, fi±1,j , fi∓1,j+1, fi,j+1 ) ·W4 j = 0

∓( fi∓1,s, fi,s, fi,j , fi±1,s, fi±1,j , fi∓1,j−1, fi,j−1 ) ·W4 j = Ny − 1

( fi+1,j+1, fi+1,j−1, fi−1,j+1, fi−1,j−1 ) ·W7 0 < j < Ny − 1

It takes the upper sign for 0 < i < Nx − 2 and the nether sign for i = Nx − 2.
In the above expressions, Wi,W2, · · · ,W7 are vectors expressed by

W1 =
1

30 ∆x


−32

15

20

−3

 , W2 =
1

(∆x)2


3.2

−5

2

−0.2

 ,

W3 =
1

3 ∆x∆y



4

−4

4

−9

5

−4

5

−1


, W4 =

1

3 ∆x∆y



1

2

−3

−3

3

−1

1


,

W5 =
1

2 ∆x

(
−1

1

)
, W6 =

1

(∆x)2

 1

−2

1

 ,

W7 =
1

4 ∆x∆y


1

−1

−1

1

 .

These rules apply to all space derivatives of e1, e2, e3, b1, b2, b3.

D Numerical discretizations of the EOS formu-
lations

In this section, we present the numerical discretizations of the EOS formulations
of the model described by the 3D maxwell equations where the scattering object
is confined in V1 = [xa, xb]× [ya, yb]× [za, zb]. Similarly as in the 1D toy models
[15], for a second order accuracy solutions, we perform the Lax-Wendroff method
on (2.4) and the modified Euler’s method on (2.5) and we use the mid-point
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rules to the integrals in (2.27). Based on this, we discretize the space domain
by the following non-uniform grids in V1,

xi = xa + (i+ 0.5)∆x, i = 0, 1, 2, · · ·Nx − 1,

yj = ya + (j + 0.5)∆y, j = 0, 1, 2, · · ·Ny − 1,

zk = za + (k + 0.5)∆z, k = 0, 1, 2, · · ·Nz − 1,

(D.1)

with

∆x =
xb − xa
Nx

,

∆y =
yb − ya
Ny

,

∆z =
zb − za
Nz

,

where Nx, Ny and Nz are positive integer numbers. The time step is designated
to be

tn = n∆t, n = 0, 1, 2 · · · ,

where
∆t =

τ

c1
Min{∆x,∆y,∆z}

and 0 < τ < 1 for an explicit numerical method. If we write the vector fields
using notations

E1 = (e1, e2, e3),

B1 = (b1, b2, b3),

J1 = (j1, j2, j3),

F1 = F (e1, j1),

F2 = F (e2, j2),

F3 = F (e3, j3),

then (2.4) and (2.5) can be expanded into the following formulas

∂te1 = c21(
∂b3
∂y
− ∂b2

∂z
− µ1j1), (D.2)

∂te2 = c21(
∂b1
∂z
− ∂b3
∂x
− µ1j2), (D.3)

∂te3 = c21(
∂b2
∂x
− ∂b1
∂y
− µj3), (D.4)

∂tb1 =
∂e2
∂z
− ∂e3

∂y
, (D.5)

∂tb2 =
∂e3
∂x
− ∂e1

∂z
, (D.6)

∂tb3 =
∂e1
∂y
− ∂e2
∂x

, (D.7)

∂tρ1 = −(
∂j1
∂x

+
∂j2
∂y

+
∂j3
∂z

), (D.8)
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∂tj1 = (α− βρ1)e1 − γj1 = F1, (D.9)

∂tj2 = (α− βρ1)e2 − γj2 = F2, (D.10)

∂tj3 = (α− βρ1)e3 − γj3 = F3. (D.11)

Now we take a look at the solutions at the grid point (xi, yj , zk) at time tn.
From Taylor series we have the following solutions to (D.2) - (D.8),

φn+1
i,j,k = φni,j,k + ∆t(

∂φ

∂t
)ni,j,k +

1

2
(∆t)2(

∂2φ

∂t2
)ni,j,k, (D.12)

where φ represents e1, e2, e3, b1, b2, b3, ρ1 and

(
∂e1
∂t

)ni,j,k = c21[
∂b3
∂y
− ∂b2

∂z
− µ1j1]ni,j,k

(
∂e2
∂t

)ni,j,k = c21[
∂b1
∂z
− ∂b3
∂x
− µ1j2]ni,j,k

(
∂e3
∂t

)ni,j,k = c21[
∂b2
∂x
− ∂b1
∂y
− µ1j3]ni,j,k

(
∂b1
∂t

)ni,j,k = (
∂e2
∂z
− ∂e3

∂y
)ni,j,k,

(
∂b2
∂t

)ni,j,k = (
∂e3
∂x
− ∂e1

∂z
)ni,j,k,

(
∂b3
∂t

)ni,j,k = (
∂e1
∂y
− ∂e2
∂x

)ni,j,k,

(
∂ρ1
∂t

)ni,j,k = −(
∂j1
∂x

+
∂j2
∂y

+
∂j3
∂z

)ni,j,k

and

(
∂2e1
∂t2

)ni,j,k = c21[
∂2e1
∂y2

− ∂

∂y

∂e2
∂x
− ∂

∂z

∂e3
∂x

+
∂2e1
∂z2

− µ1F1]ni,j,k,

(
∂2e2
∂t2

)ni,j,k = c21[
∂2e2
∂z2

− ∂

∂z

∂e3
∂y
− ∂

∂x

∂e1
∂y

+
∂2e2
∂x2

− µ1F2]ni,j,k,

(
∂2e3
∂t2

)ni,j,k = c21[
∂2e3
∂x2

− ∂

∂x

∂e1
∂z
− ∂

∂y

∂e2
∂z

+
∂2e3
∂y2

− µ1F3]ni,j,k,

(
∂2b1
∂t2

)ni,j,k = c21[
∂2b1
∂y2

− ∂

∂y

∂b2
∂x
− ∂

∂z

∂b3
∂x

+
∂2b1
∂z2

+ µ1(
∂j3
∂y
− ∂j2
∂z

)]ni,j,k,

(
∂2b2
∂t2

)ni,j,k = c21[
∂2b2
∂z2

− ∂

∂z

∂b3
∂y
− ∂

∂x

∂b1
∂y

+
∂2b2
∂x2

+ µ1(
∂j1
∂z
− ∂j3
∂x

)]ni,j,k,

(
∂2b3
∂t2

)ni,j,k = c21[
∂2b3
∂x2

− ∂

∂x

∂b1
∂z
− ∂

∂y

∂b2
∂z

+
∂2b3
∂y2

+ µ1(
∂j2
∂x
− ∂j1
∂y

)]ni,j,k,

(
∂2ρ1
∂t2

)ni,j,k = −[
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
]ni,j,k.
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For equations (D.9)-(D.11), the modified Euler’s method is performed which
gives

(j̄p)
n+1
i,j,k = (jp)

n
i,j,k + ∆t · F ((ep)

n
i,j,k, (jp)

n
i,j,k),

(jp)
n+1
i,j,k =

1

2
((jp)

n
i,j,k + (j̄p)

n+1
i,j,k + ∆t · F ((ep)

n+1
i,j,k, (j̄p)

n+1
i,j,k)),

(D.13)

where p = 1, 2, 3. The electric field and the magnetic field inside the object are
aroused by the light sources located outside the scattering object so that the
values of them will be effected by the values on the boundary. While the charge
density and the current density are entirely induced by the changing electric field
and the changing magnetic field inside the object and this generally produces
discontinuity of J1 and ρ1 on the surface of the object. Due to this, the space
derivatives of E1 and B1 near the boundary will involve the inside values and
also the surface value while the space derivatives of ρ1, jp and Fp, p = 1, 2, 3
near the boundary will only involve the inside values. Here we only write down
the space derivatives with respect to x of them and the same rules are applied to
the space derivatives with respect to y and z. Except the internal nodes closest
to the surface, the space derivatives are approximated to second order accuracy
by the following standard finite difference formulas

(
∂φ

∂x
)ni,j,k =

φni+1,j,k − φni−1,j,k
2 ∆x

,

(
∂2φ

∂x2
)ni,j,k =

φni+1,j,k − 2φni,j,k + φni−1,j,k
(∆x)2

, 0 < i < Nx − 1.

For the internal nodes closest to the surface, the following second order accuracy
difference rules are applied

(
∂φ

∂x
)n0,j,k =

1

2 ·∆x
(4φn1,j,k − 3φn0,j,k − φn2,j,k),

(
∂φ

∂x
)nNx−1,j,k = − 1

2 ·∆x
(4φnNx−2,j,k − 3φnNx−1,j,k − φ

n
Nx−3,j,k)

where φ = ρ1, jp, Fp, p = 1, 2, 3. For the electric fields E1 and the magnetic field
B1, we need the space derivatives of both the first order and the second order
including the mixed derivatives.

Next step, we need to discretize the boundary integral identities (2.27a) and
(2.27b). We take a look at the field values at grid point xp, p = 0, 1, 2, · · · , Ns
where

Ns = 2(NxNy +NxNz +NyNz).

The discretized form of (2.28) can be written as

(Ie)
n
p = − 1

4π

Nx∑
i=0

Ny∑
j=0

Nz∑
k=0

(µ1f1∂tJ1(xi,j,k, T1) +
1

ε1
f3ρ1(xi,j,k, T1)

+
1

ε1c1
f2∂tρ1(xi,j,k, T1)),

where

T1 = tn −
|xi,j,k − xp|

c1
,
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and

f1 =

˚
Vi,j,k

1

|x′ − xp|
dV,

f2 =

˚
Vi,j,k

x′ − x

|x′ − xp|2
dV,

f3 =

˚
Vi,j,k

x′ − x

|x′ − xp|3
dV,

(D.14)

with

Vi,j,k = [xi −
∆x

2
, xi +

∆x

2
]× [yj −

∆y

2
, yj +

∆y

2
]× [zk −

∆z

2
, zk +

∆z

2
].

Notice that expressions (D.14) are singular when xp is located on one of the
surfaces of Vi,j,k. All calculations of the singular integrals, both the singular
volume integrals and the singular surface integrals in this paper will be discussed
in [16]. It is observed that for vectors A and C, we have the following identity

A×ϕ×C = (C ·A)ϕ− (AC) ·ϕ,

and due to

∇′|x′ − x| = x′ − x

|x′ − x|
,

∇′ 1

|x′ − x|
= − x′ − x

|x′ − x|3
,

we get the following relationships

1

|x′ − x|
(n′ ×E+(x′, T ))×∇′|x′ − x|

= (
x′ − x

|x′ − x|2
· n′)E+(x′, T )− (n′

x′ − x

|x′ − x|2
) ·E+(x′, T ),

(n′ ·E+(x′, T ))∇′|x′ − x| = (
x′ − x

|x′ − x|
n′) ·E+(x′, T ),

(n′ ×E+(x′, T ))×∇′ 1

|x′ − x|

= (n′
x′ − x

|x′ − x|3
) ·E+(x′, T )− (

x′ − x

|x′ − x|3
· n′)E+(x′, T ),

(n′ ·E+(x′, T ))∇′ 1

|x′ − x|
= −(

x′ − x

|x′ − x|3
n′) ·E+(x′, T ).

Inserting the above relationships in (2.30), we obtain

(Be)
n
p =

1

4π

Ns∑
q=0

(K1(nq ·E+(xq, T2))g3 +K2(nq × ∂tE+(xq, T2))× g2

+K3(nq · ∂tE+(xq, T2))g2 +K4(nq × ∂tB+(xq, T2))),

(D.15)

where

T2 = tn −
|xq − xp|

c1
,
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and

K1 = 1− ε1
ε0
,

K2 =
1

c1
− 1

c0
,

K3 =
1

c1
− ε1
c0ε0

,

K4 = (1− µ0

µ1
)g1,

with

g1 =

ˆ
Sq

1

|x′ − xp|
dS′,

g2 =

ˆ
Sq

x′ − xp
|x′ − xp|2

dS′,

g3 =

ˆ
Sq

x′ − xp
|x′ − xp|3

dS′.

(D.16)

Similarly, in (2.27b) we obtain

(Ib)
n
p =

u1
4π

Nx∑
i=0

Ny∑
j=0

Nz∑
k=0

(
1

c1
f2 × ∂tJ1(xi,j,k, T1)− J1(xi,j,k, T1)× f3)),

and

(Bb)
n
p =

1

4π

Ns∑
q=0

(K5(nq ×B+(xq, T2))× g3 +K5(nq × ∂tB+(xq, T2))× g2

+K2(nq · ∂tB+(xq, T2))g2 +K6(nq × ∂tE+(xq, T2))),

(D.17)

with

K5 =
1

c1
− µ0

c0µ1
,

K6 = (
1

c20
− 1

c21
)g1.

It is clear that when the integrating point x′ and the observing point x are
in the same integral grid Sq, which indicates q = p, expressions in (D.16) are
singular. The calculations of this type of sigular integrals can also be found
in [16]. There are so far unknown terms on the right side of the equations of
(D.15) and (D.17) due to the time derivatives ∂tE(xq, T2) and ∂tB(xq, T2) when
p = q. Moving these unknown terms out of the summation, (D.15) and (D.17)
can be compactly written as

(Be)
n
p =

∑
q 6=p

(Er)q + (Er)p,

(Bb)
n
p =

∑
q 6=p

(Br)q + (Br)p
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where Er and Br are respectively the short notations of the right terms of (D.15)
and (D.17) that are going to be summed up. For p = q, due to symmetric of
x′ − x on Sq, there are

g2 = 0,

and
g3 = 0.

And this yields

(Er)p =
1

4π
K4 np × ∂tBn

p

=
1

4π
K4 np ×

1

∆t
(
3

2
Bn
p − 2Bn−1

p +
1

2
Bn−2
p ).

(Br)p =
1

4π
K6 np × ∂tEnp

=
1

4π
K6 np ×

1

∆t
(
3

2
Enp − 2En−1p +

1

2
En−2p ),

where we have used the second order polynomial approximation on the time
derivatives. After moving unknowns Enp and Bn

p from the right of the equation
to the left, we finally get a solving system(

M11 M12

M21 M22

)(
Enp
Bn
p

)
=

(
ER
BR

)
, (D.18)

where

ER = (Ie)
n
p + (Oe)

n
p +

∑
q 6=p

(Er)q +
1

4π
K4 np ×

1

∆t
(−2Bn−1

p +
1

2
Bn−2
p ),

BR = (Ib)
n
p + (Ob)

n
p +

∑
q 6=p

(Br)q +
1

4π
K6 np ×

1

∆t
(−2En−1p +

1

2
En−2p ),

and (Oe)
n
p and (Ob)

n
p are respectively the effect on the surface point xp at time

tn induced by the outside source which are calculated directly from the sources,
and

M11 = I +
1

2
(
ε1
ε0
− 1)nn

M12 = − 3

8π∆t
K4m

M21 = − 3

8π∆t
K6m

M22 = I +
1

2
(1− µ0

µ1
)nn

with

m =

 0 −n2 n1
n2 0 −n0
−n1 n0 0

 ,

where n0, n1 and n2 are the three components of the normal field n at the
surface point xp and I is a 3× 3 identity matrix. Equations (D.12) and (D.13)
together with (D.18) are the final discretized form of the EOS formulations of
model (2.4) and (2.5).
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Abstract

In this paper we discuss some of the mathematical and numerical issues that
have to be addressed when calculating wave scattering using the EOS approach.
The discussion is framed in context of light scattering by objects whose optical
response can be of a nonlinear and/or inhomogeneous nature. The discussions
address two issues that, more likely than not, will be part of any investigation
of wave scattering using the EOS approach.

1 Introduction

A new hybrid numerical approach for solving linear and nonlinear scattering
problems, the Ewald Oseen Scattering(EOS) formulation, has recently been
introduced and applied to the cases of 1D transient wave scattering [1] and
3D light scattering [2]. The approach combines a domain-based method and a
boundary integral representation in such a way that the wave fields inside the
scattering objects are updated in time using the domain-based method, while
the integral representation is used to update the boundary values of the fields,
which are required by the inside domain-based method. In such a way, for the
numerical implementations, no numerical grids outside the scattering objects are
needed. This greatly reduces the computational complexity and cost compared
to fully domain based methods like the Finite Difference Time Domain(FDTD)
method or the Finite Element Methods. The method can handle inhomogeneous
and/or nonlinear optical response, and include the time dependent Boundary
Element Method(TBEM), as a special case.

For the case of 1D transient wave scattering [1], the method solves the model
equations accurately and efficiently, but we don’t expect the 1D case to be fully
representative for the problems and issues that need to be resolved, while using
the EOS formulation to calculate wave scattering. We do, however, expect the
case of 3D light scattering [2] to be fairly representative with respect to which
problems arise, and also the computational and mathematical severity of these
problems. We have seen three types of mathematical and computational issues
arise for the case of light scattering which we believe are to be found in any
nontrivial application of the EOS formulation to wave scattering.
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Firstly, we have the issue of numerical stability. Instabilities in numerical
implementations of the EOS formulation can arise from discretization of the do-
main part of the algorithm but also from discretization of the boundary update
part of the algorithm. The numerical instability arising from the boundary part
of the algorithm has been noted earlier in the context of transient light scat-
tering from objects that has a linear homogeneous optical response. For this
situation, realized for example in antenna theory, the boundary part of the EOS
algorithm can be disconnected from the domain part of the algorithm, which
in this case can be discarded. The EOS formulation becomes a pure boundary
update algorithm which is solving a set integro-differential equations located
on the boundary of the scattering objects. These integro-differential equations,
which are the defining equations for TBEM, are subject to an instability that,
in many common situations, strikes at late times. This late time instability is a
major nuisance, and has prevented TBEM from being more widely applied than
it is today. The sources of these instabilities are not yet fully understood, but
we believe that our investigation of light scattering using the EOS approach,
gives some new insight into the origin of these instabilities.

Even without a true understanding of the underlying causes of the late time
instability, efforts have been made and several techniques have, over the last
several decades, been developed with the goal of improving the stabilities of the
numerical schemes designed to solve the integro-differential equations underlying
TBEM.

Broadly speaking, there are two different directions that has been pursued.
One direction is to delay or remove the late time instability by applying in-
creasing accurate spatial integration schemes [3–9]. For instance Danile. S.
Weiler and his co-authors have published a series of articles focused on illus-
trating the dependence of the stability on the different numerical integration
schemes [3–6]. The other direction is aimed at designing more stable time dis-
cretization schemes. M. J. Bluck and his co-authors developed a stable, but
implicit numerical method, [8, 9] for the integro-differential equations underly-
ing TBEM, for the case when the magnetic response is the dominating one.
These are the so called magnetic field integral equations. Some authors have
reported some success in mitigating the instability by both making better ap-
proximations to the integrals and also applying improved algorithms for the
time derivatives [10,11].

Our work has not been directly aimed at contributing to this discussion, but,
as already noted above, the integro-differential equations discussed by these au-
thors can be seen as a special case of our general EOS approach, and we therefore
believe that the insights we have gained on how this long time instability depend
on the different pieces of the EOS algorithm, in particular how it depends on
the material parameters describing the optical response of the scattering object,
do have some relevance to the discussion described above.

Secondly, there is the issue of the singular integrals that appear when the in-
tegral part of the EOS algorithm is discretized. This issue is very much present
in BEM and in TBEM [12–15], but they are more prevalent and severe for the
EOS formulation, where we have to tackle both surface integrals and volume
integrals. We believe that the type of singular integrals, and how to treat them
for the case of light scattering, are fairly representative for the level of com-
plexity one will encounter, while applying the EOS approach to wave scattering
problems. For this reason we find it appropriate to include a section in this
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paper, where we discuss relevant types of integrals, and how to treat them.
Thirdly, the fundamental equations underlying both the TBEM and our

more general EOS approach to transient wave scattering, are retarded in time.
This retardation is unavoidable since their underlying equations can only be de-
rived using space-time Green’s functions. Thus the solutions at a certain time
depend on a values of the solutions from a potentially very long previous interval
of time. Computationally this means that the method can be very demanding
with respect to memory, and it also means that the updating of the boundary
values of the fields, which is done by the boundary part of the EOS algorithm,
can be very costly. Parallel processing, either using a computational cluster or
a shared memory machine can take on these computational tasks. However,
whenever large scale parallel processing is needed, the issue of appropriate par-
titioning of the problem and load balancing inevitably comes into play. In our
work the EOS algorithm was implemented on a large cluster, but we will not in
this paper report on any of the parallel issues that our EOS approach for light
scattering gave rise to. These kind of considerations, which are important in
practical terms, but typically have fairly low generality, are somewhat distinct
from the mathematical and numerical issues that are the focus of the current
paper, and will therefore be reported elsewhere at a later time.

However, the high memory requirement of the EOS approach to light scat-
tering, is something that should be addressed at this point. On the one hand,
the EOS approach represents a large, potentially very large, reduction in mem-
ory use, as compared to fully domain based methods, since only the surface
and inside of the scattering objects has to be discretized. On the other hand,
because of the retardation, there is a large, potentially very large increase in
memory use compared to the memory usage needed by the domain part of the
algorithm. It is appropriate to ask if anything has been gained with respect
to memory usage compared to a fully domain based method like the FDTD
method? We don’t, as of yet, know the answer to this question, and the answer
is almost certainly not going to be a simple one. It will probably depend on the
detailed structure of the problems like the nature of the source, the number,
shape and distribution of scattering objects etc. However, even if the memory
usage for purely domain based methods and our EOS approach are roughly the
same for many problems of interest, our approach avoid many of the sources of
problems that need to be taken into account while using purely domain based
methods. These are problems like stair-casing at sharp interfaces defining the
scattering objects, issues of accuracy, stability and complexity associated with
the use of multiple grids in order to accommodate the possibly different geo-
metric shapes of the scattering objects and the need to minimize the reflection
from the boundary of the finite computational box. The EOS approach is not
subject to any of these problems.

In this paper our effort are aimed towards testing the EOS formulations
of light scattering with respect to implementation complexity and numerical
stability. Thus we illustrate the method by the simplest situation where we
have single scattering object in the form of a rectangular box.

In section 2 we analyze the numerical stability of our EOS scheme for light
scattering by using eigenvalues of the matrix defining the linearized version
of the scheme exactly like for the case of 1D wave scattering [1]. We find,
just like for the 1D case, that the internal numerical scheme, Lax-Wendroff for
our case determines a stability interval for the time step. In the 1D case, the
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stability interval of the EOS formulation is purely determined by the internal
numerical scheme. However for the 3D case, there is another lower limit of the
stability interval determined by the integral part of the scheme which leads to
the situation where the lower limit of the stability interval is determined by the
integral equations, and the upper limit is determined by the internal numerical
scheme. We find that the late time instability is highly depended on the features
of the scattering materials and specifically, it is directly related to the values
of the relative magnetic permeability µ1 and the relative electric permittivity
ε1. Using this we prove that, for the relative permeability and permittivity in a
certain range, the numerical scheme for our EOS formulation of light scattering,
works well and is without any late time instabilities. The late time instability
is only observed for high relative electric permittivity or high relative magnetic
permeability. We also observe that the lower limit of the stability interval for
the time step is more sensitive to relative differences in magnetic permeability
µ1 than electric permittivity ε1 between the inside and outside of the scattering
objects.

In section 3 we present the singular integrals that appear in our EOS formu-
lation for light scattering and the techniques we use to reduce their calculation
to a singular core, which we calculate exactly, and a regular part which we
calculate numerically.

2 Stability
In this section we discuss instabilities showing up at late times when we dis-
cretize the EOS formulation for light scattering. Whether or not the late time
instability show up, depends on the values of the material parameters defining
the problem. The overall method is far to complex for an analytical investigation
of the stability to be feasible, but using numerical calculation of the eigenvalues
of a linearization of the system of difference equations defining the numerical
implementation of the EOS formulation, supplemented by running of the full
algorithm, we find that the domain part and the boundary part of the algorithm
contribute to the instability separately and in different ways. The focus of this
section is to disentangle these two contributions to the instability. For the do-
main part of the algorithm we use Lax-Wendroff, which is an explicit method.
The discrete grid inside the scattering object must, for the EOS formulation of
light scattering, support both discrete versions of the partial derivatives, and
also discretizations of the integrals defining the boundary update part of the
algorithm. For this reason the grid is nonuniform close to the boundary. The
discretization of the domain part of the algorithm takes the form of a vector
iteration

Qn+1 = MQn, (2.1)

where Q is a vector containing the components of the electric field and the
magnetic field at all points of the grid with a size 6×Nx×Ny ×Nz, where Nx,
Ny and Nz are the number of grid points in the x, y and z directions. The entries
of the matrixM are presented in Appendix A. In order to get a stable numerical
solution, as discussed in [1], the largest eigenvalues of the matrix M must have
a norm smaller than 1. For the non-uniform grids and the discretizations in [2],
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we find that the vector iteration (2.1) is stable if

0.005 < τ < 0.48,

where τ = c1∆t/∆x.

Figure 2.1: Numerical solutions from different values of τ. µ1 = 1.0, ε1 =
1.5, µ0 = 1.0, ε0 = 1.0.

Figure 2.1 illustrates the intensity of the electric field at a specific point inside
the object, as a function of time, for different values of τ . The instability, which
in the TBEM literature is called the late time instability, is illustrated in the
second panel of figure 2.1. As we mentioned in the introduction in the paper,
the term late time instability has been much used in the community that is
focused on time dependent boundary element method. We believe that in their
domain of application, like antenna theory, the physical parameters are such
that the largest eigenvalue for the iteration is always only slightly bigger than
1, like it is in panel two of figure 2.1 . That’s why the instability always shows
up at late times. In panel three of the figure we are deeper into the unstable
domain for τ , and the larges eigenvalue is now so large that it destroys the whole
calculation. The late time instability has thus been transformed into an early
time instability. Note that the outside source in figure 2.1 is the same as in [2].

In our numerical experiments, we found that the stable range of the EOS
formulations is not only restricted by the eigenvalues of the matrix M , but is
also restricted by the boundary integral identities through the relative electric
permittivity ε1 and the relative magnetic permeability µ1. Figure 2.2 shows how
the stability depends on the values of ε1, and figure 2.3 shows how it depends on
the values of µ1. Together, they tell us that increasing the electric permittivity
or the magnetic permeability narrows the stable range. Figure 2.3 also tells us
that µ1 and ε1 don’t affect the stability of the full scheme in the same way. It
seems that the method is more sensitive to µ1 than ε1. After a series of numerical
experiments, our conclusion is that, for an explicit numerical method like the
one we are using, the lower limit of the stable range of the EOS formulation is
restricted by the electric permittivity ε1 and the magnetic permeability µ1 while
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Figure 2.2: Numerical solutions from different values of ε1. τ = 0.45, µ1 =
1.0, µ0 = 1.0, ε0 = 1.0.

Figure 2.3: Numerical solutions from different values of µ1. τ = 0.45, µ0 =
1.0, ε0 = 1.0.

the upper limit of the stable range is determined by the inside domain-based
method. This conjecture is verified by the following two tests.

2.1 Instabilities coming from the domain-based method
For the first test we consider a homogeneous model without current and charge
inside the object which implies µ1 = µ0, ε1 = ε0, J1 = 0 and ρ1 = 0. Under
these assumptions, the electric field and the magnetic field are continuous across
the surfaces,

E− = E+,

B− = B+,
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where E±and B± are the integral representations of the solutions on the surface
by taking the limit from the inside and the outside of the object respectively.
The electric field inside the object can be calculated by the outside sources
directly

E1(x, t) = −∂t
µ0

4π

ˆ
V0

dV ′J0(x′, T )
|x′ − x| − ∇

1
4πε0

ˆ
V0

dV ′ ρ0(x′, T )
|x′ − x| , (2.2)

where x ∈ V1. (2.2) expresses the exact solution for the inside fields. Also
from [2] we have the boundary integral identity

E+(x, t) = −∂t
µ0

4π

ˆ
V0

dV ′J0(x′, T )
|x′ − x| − ∇

1
4πε0

ˆ
V0

dV ′ ρ0(x′, T )
|x′ − x| , (2.3)

and
B+(x, t) = ∇× µ0

4π

ˆ
V0

dV ′J0(x′, T )
|x′ − x| , (2.4)

for x ∈ S, E+(x, t) and B+(x, t) represent the limits by letting x approach the
surface from the inside of the scattering object. On the other hand, [2] gives
the integral representations for the inside domain by

E1(x, t) = ∂t[
1

4π

ˆ
S

dS
′
{ 1
c1|x′ − x| (n

′ ×E+(x′, T ))×∇′|x′ − x|

+ 1
c1|x′ − x| (n

′ ·E+(x′, T ))∇′|x′ − x|+ 1
|x′ − x|n

′ ×B+(x′, T )}]

− 1
4π

ˆ
S

dS
′
{(n′ ×E+(x′, T ))×∇′ 1

|x′ − x|

+ (n′ ·E+(x′, T ))∇′ 1
|x′ − x| }.

(2.5)

Thus the solution for the domain inside the scattering object can now be cal-
culated in three ways. The first is the exact solution expressed by (2.2), the
second, Method 2, is the Lax-Wendroff method supplied by the exact boundary
values (2.3) and (2.4) , and the third, Method 3, is to calculate the solution us-
ing formula (2.5) which expresses the field values inside the scattering object in
terms of the values of the fields on the boundary. Note that Method 3 uses the
same surface integral expressions as the one that form the boundary part of the
full implementation of our EOS formulation of light scattering. Thus, instabili-
ties in the full algorithm originating from the boundary part of the algorithm,
should appear as instability in Method 3.

Figure 2.4 compare the solutions calculated in these three ways, where µ1, ν1
and τ have been fixed in the stable range. Both Method 2 and Method 3 are
stable and give solutions that agree with the exact solution to high accuracy.
In Figure 2.5, τ has been set to be 0.49, and is thus is larger than the upper
limit of the stable range. The figure shows that Method 2 is now unstable but
Method 3 is still stable and equal to the exact solution to high accuracy. The
outside source in figure 2.4 and figure 2.5 is as same as in [2] and the values of
the parameters are shown under the figure.
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Figure 2.4: Comparison of the intensity of the electric field inside the object at
a specific point calculated by three methods. t0 = 1.5, x0 = −2.0, y0 = 0.0,
z0 = 0.0, τ = 0.45, µ1 = 1.0, ε1 = 1.0, µ0 = 1.0, ε0 = 1.0.

Figure 2.5: Comparison of the intensity of the electric field inside the object at
a specific point calculated by three methods. t0 = 1.5, x0 = −2.0, y0 = 0.0,
z0 = 0.0, τ = 0.49, µ1 = 1.0, ε1 = 1.0, µ0 = 1.0, ε0 = 1.0.

2.2 Instabilities coming from the boundary integral iden-
tities

In order to investigate the dependence of the stability on µ1 and ε1, we set up a
test based on the use of artificial sources as in [2]. The idea is to chose functional
forms for an electromagnetic field, and then calculate the sources, charge density
and current density, needed for making the chosen fields solutions to Maxwell’s
equations driven by the calculated sources

We now calculate the electromagnetic field inside the scattering object in two
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different ways. In Method 1 we use the discretization of the EOS formulation
developed in [2], which combines the Lax-Wendroff method for the domain part
of the algorithm and our discretization of the integral representations of the
boundary fields for the boundary part of the algorithm. Method 2 is to calculate
the inside field values by only using the Lax-Wendroff method supplemented by
the exact boundary values of the electromagnetic field which are the ones we
chose while setting up the artificial sources. Figure 2.6 is the numerical result

Figure 2.6: Comparison of the intensity of the electric field inside the object at
a specific point between the exact solution and the numerical results calculated
by two methods. τ = 0.45, µ1 = 1.0, ε1 = 2.5, µ0 = 1.0, ε0 = 1.0.

where the upper limit of the stable range is kept while the values of µ1 and
ε1 have been chosen to break the lower limit of the stable range of the EOS
formulations. It shows that even though the lower limit of the stable range has
been broken, Method 2, which only involves the Lax-Wendroff method works
perfectly. 2.5 and 2.6 tell us that the changing of the lower limit does not effect
the stability of the Lax-Wendroff method and the changing of upper limit does
not effect the stability of the surface integrals. For a general application where
the source is located outside the object and there are current density and electric
density inside the scattering object, the EOS formulations does have a range for
a stable numerical implementation. The upper limit of the range is determined
by the Lax-Wendroff method due to the non-uniform grids and the lower limit
is determined by the changing µ1 and ε1. The setting up of the artificial sources
and the values of the parameters in figure 2.6 are the same as the artificial
sources in [2]. From figure 2.5 and figure 2.6, we can also see that before the
instabilities show up, both the EOS formulations and the Lax-Wendroff method
solve the equations accurately.

3 Calculations of the singular integrals
In this section we introduce a technique to accurately calculate integrals with
singularities which can be applied for both the singular volume integrals and the
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singular surface integrals occurring in the EOS formulations of the 3D Maxwell’s
equations. Here we illustrate the technique by calculating one type of singular
volume integral

f1 =
˚

Vi,j,k

1
|x′ − xp|

dV =
˚

Vi,j,k

1
r

dV, (3.1)

where the integral domain Vi,j,k is adjacent to the surfaces of the scattering
object and given by

Vi,j,k = [xa, xa + ∆x]× [yj −
∆y
2 , yj + ∆y

2 ]× [zk −
∆z
2 , zk + ∆z

2 ],

with surfaces Sm, m = 1, 2, · · · , 6. Here, ∆x, ∆y and ∆z are the grid parameters
in x, y and z directions respectively.

The point xp
xp = (xa, yj , zk),

is centered on one of the surfaces of the scattering object. The geometry is
illustrated in figure 3.1, where nm is the unit normal vector on surface Sm
pointing out of Vi,j,k.

Figure 3.1: The integral domain of the singular integral

The components of the integration variable in (3.1) are given by

x′ = (x′, y′, z′),

and let us introduce the quantity

r = x′ − xp,

with r = |r|.
We want to apply the divergence theorem on (3.1), and therefore need to

find a function ϕ(r) that satisfies

∇ · (rϕ(r)) = 1
r
,

or equivalently
3ϕ(r) + rϕ′(r) = 1

r
.

10



Solving the above equation, we get

ϕ(r) = 1
2r .

Because of the singularity on S1, we can not apply the divergence theorem
directly, however we can write f1 as

f1 = 1
2(

6∑
m=2

¨
Sm

1
r

r · nm dS + lim
ε→0

¨
Sε

1
r

r · nε dS +
¨
SΩ

1
r

r · n1 dS),

where Sε is a hemispherical surface of radius ε centered at xp and SΩ is the rest
of the surface S1 with a disk of radius ε around xp has been removed. nε is the
unit normal vector on Sε, pointing out of Vi,j,k. nm is the unit normal vector
on Sm, pointing out of Vi,j,k.

For the integral over SΩ, we have

r = (0, y′ − yj , z′ − zk)

and
n1 = (−1, 0, 0),

thus we get ¨
SΩ

1
r

r · n1 dS = 0.

For the integral over Sε, we use the spherical coordinate system,

r = ε(cos θ sinϕ, sin θ sinϕ, cosϕ),

and
nε = (cos θ sinϕ, sin θ sinϕ, cosϕ),

where ε, ϕ, θ are respectively the radial distance, polar angle and azimuthal
angle, so that

lim
ε→0

¨
Sε

1
r

r · nε dS = lim
ε→0

1
ε

ˆ 2π

0

ˆ π
2

−π2
ε(cos θ sinϕ, sin θ sinϕ, cosϕ)

· (cos θ sinϕ, sin θ sinϕ, cosϕ)ε2 sinϕdθ dϕ
= 0.

Defining
sm =

¨
Sm

1
r

r · nm dS,

f1 can be written as

f1 = 1
2

6∑
m=2

sm. (3.2)

(3.2) is not singular any more and can be calculated by 2D Gaussian quadrature.
However we will compute f1 by reducing the surface integral into a line integral,
which is also the approach we use to calculate the singular surface integrals
appearing in the implementation discussed in this paper.

11



We first consider the integral over S2. The geometry is shown in figure 3.2.

Figure 3.2: Surface S2

As shown in figure 3.2, the surface S2 is bounded by the union of four straight
lines L2n, n = 1, 2, 3, 4. On this surface we have

r = (x′ − xa,
1
2∆y, z′ − zk)

and the unit normal is
n2 = (0,−1, 0),

so that
s2 = 1

2∆y
¨
S2

1√
(x′ − xa)2 + 1

4∆y2 + (z′ − zk)2
dS.

The goal is to use the divergence theorem on this surface integral and thereby
reduce it to line integrals over the four lines that forms the boundary of S2. We
therefore seek a function ϕ(r̄) that satisfies

∇ · (r̄ϕ(r̄)) = 1√
r̄2 + 1

4∆y2
,

where r̄ = (x′ − xa, z′ − zk) and r̄ = |r̄|. This equation can be rewritten in the
form

2ϕ(r̄) + rϕ′(r̄) = 1√
r̄2 + 1

4∆y2
.

Solving the above equation we get

ϕ(r̄) =

√
r̄2 + 1

4∆y2

r̄2 .

Using the divergence theorem and taking into account of the singularity at

x̄ = (xa, zk)

on L21, we get

s2 = 1
2∆y(

4∑
n=2

ˆ
L2n

ϕ(r̄)r̄ · n̄n dL+ lim
ε→0

ˆ
Lε

ϕ(r̄)r̄ · n̄ε dL+
ˆ
LΩ

ϕ(r̄)r̄ · n̄1 dL)
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where Lε is a semicircle with radius ε centered at point x̄ and LΩ is the rest of
L21. Here n̄n is the unit normal of L2n, pointing out of S2, and n̄ε is the unit
normal of Lε, pointing out of S2.

For the integral over LΩ, we have

r̄ = (0, z′ − zk),

and
n̄1 = (−1, 0),

so that ˆ
LΩ

√
r̄2 + 1

4∆y2

r̄2 (0, z′ − zk) · (−1, 0) dL = 0. (3.3)

For the integral over Lε, using the polar coordinates, we have

r̄ = ε(cos θ, sin θ),

and
n̄ε = −(cos θ, sin θ),

so that

lim
ε→0

ˆ
Lε

√
r̄2 + 1

4∆y2

r̄2 r̄ · n̄ε dL

= − lim
ε→0

ˆ π
2

−π2
ε(cos θ, sin θ) · (cos θ, sin θ)

√
ε2 + 1

4∆y2

ε2
εdθ

= −1
2∆yπ.

(3.4)

Summing up (3.3) and (3.4) gives

l21 = −1
2∆yπ.

Thus s2 is expressed by

s2 = 1
2∆y

4∑
n=1

l2n,

where

l22 = 1
2∆z

ˆ xa+∆x

xa

√
(x′ − xa)2 + 1

4∆y2 + 1
4∆z2

(x′ − xa)2 + 1
4∆z2 dx′,

l23 = ∆x
ˆ zk+ 1

2 ∆z

zk− 1
2 ∆z

√
∆x2 + 1

4∆y2 + (z′ − zk)2

∆x2 + (z′ − zk)2 dz′,

and due to the symmetry of the integrand r̄ϕ(r̄) on xz plane

l24 = l22.
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So finally we have
s2 = 1

2∆y(l21 + 2l22 + l23).

Due to the symmetry of r in Vi,j,k along y direction, we have

s5 = s2.

The calculation of s3 is similar to the one of s2 with the final result

s3 = 1
2∆z(l31 + 2l32 + l33),

where

l31 = −1
2∆zπ,

l32 = 1
2∆y

ˆ xa+∆x

xa

√
(x′ − xa)2 + 1

4∆z2 + 1
4∆y2

(x′ − xa)2 + 1
4∆y2 dx′,

l33 = ∆x
ˆ yj+ 1

2 ∆y

yj− 1
2 ∆y

√
∆x2 + 1

4∆z2 + (y′ − yj)2

∆x2 + (y′ − yj)2 dy′.

Also due to the symmetry of r in Vi,j,k along z direction, we have

s6 = s3.

The only surface integral remaining to be calculated is the one over S4. On this
surface we have

r = (∆x, y′ − yj , z′ − zk),

and
n4 = (1, 0, 0),

so that
s4 = ∆x

¨
S4

1√
∆x2 + (y′ − yj)2 + (z′ − zk)2

dS.

Defining
r̄ = (y′ − yj , z′ − zk)

and
r̄ = |r̄|,

we seek a function ϕ(r̄) that satisfies

∇ · (r̄ϕ(r̄)) = 1√
r̄2 + ∆x2

.

This equation can be written in the form

2ϕ(r̄) + r̄ϕ′(r̄) = 1√
r̄2 + ∆x2

.

Solving the above equation gives

ϕ(r̄) =
√
r̄2 + ∆x2

r̄2 .
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Figure 3.3: Surface S4

Applying the divergence theorem, we have

s4 = ∆x lim
ε→0

ˆ
Lε

√
r̄2 + ∆x2

r̄2 r̄ · n̄ε dL+ ∆x
ˆ
LΩ

√
r̄2 + ∆x2

r̄2 r̄ · n̄Ω dL,

where Lε is a circle with radius ε centered at point x̄ = (yj , zk), and LΩ is the
four edges of surface S4. n̄ε is the unit normal vector of Lε and n̄Ω is the unit
normal vector of LΩ, as shown in figure 3.3.

For the integral over Lε, we write

r̄ = ε(cos θ, sin θ),

and
n̄ε = −(cos θ, sin θ),

then

lim
ε→0

ˆ
Lε

√
r̄2 + ∆x2

r̄2 r̄ · n̄ε dL

= − lim
ε→0

ˆ 2π

0
ε(cos θ, sin θ) · (cos θ, sin θ)

√
ε2 + ∆x2

ε2
εdθ

= −2∆xπ.

(3.5)

For the integral over LΩ, there is no singularity anymore and this leads to
ˆ
lΩ

√
r̄2 + ∆x2

r̄2 r̄ · n̄Ω dL

= 2l41 + 2l42,

(3.6)

with

l41 = 1
2∆y

ˆ zk+∆z

zk−∆z

√
∆x2 + 1

4∆y2 + (z′ − zk)2

1
4∆y2 + (z′ − zk)2 dz′,

and

l42 = ∆z
ˆ yj+∆y

yj−∆y

√
∆x2 + 1

4∆z2 + (y′ − yj)2

1
4∆z2 + (y′ − yj)2 dy′.
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Summing up (3.5) and (3.6), we obtain,

s4 = 2∆x(l41 + l42 − π∆x).

We then finally get the following expression for f1

f1 = ∆y
2 (l21 + 2l22 + l23) + ∆z

2 (l31 + 2l32 + l33)

+ ∆x(l41 + l42 − π∆x).

All the line integrals l21 etc are non-singular and can be calculated accurately
using numerical integration.

4 Summary
In this paper we have, by considering 3D light scattering, discussed some im-
portant issues that we believe will be generic for numerical implementations of
the EOS formulation for wave scattering. We have shown that the numerical
instabilities can be thought as arising separately from the domain part and the
boundary update part of the algorithm. We have argued that the instability
arising from the boundary part of the algorithm is strongly related to the late
time instability noted earlier while solving antenna problems using TBEM. We
find that our version of the late time instability can be completely removed by
suitably chosen material values, in particular the jump in material values at the
boundary of the scattering object should not be too severe. In the limit where
the material parameters simulate the properties of highly conductive metal-
lic surfaces, we observe that our version of the late time instability is always
present. Thus the instability interval vanishes in this limit. We take this as
an indicator that for situations like in antenna theory, the late time instability
should always be present, which it is. We are now aware of work where it has
been noted that the instability can be removed by manipulating the material
parameters defining the scattering objects. The EOS formulation gives thus
different window into the late time instability that might be useful.

We have in our discretization used explicit methods. It would not be easy,
but we believe that it is possible to do a fully implicit method for the EOS for-
mulation, such an approach might remove all instabilities, which is the ultimate
goal both for TBEM and for our EOS formulation.

In this paper we have also discussed how to calculate singular volume and
surface integrals for light scattering. The reason for including this discussion
is that we think the type of singular integrals we discuss are generic for the
singular integrals that will arise while calculating wave scattering using the
EOS approach.

Appendices
A Matrix elements
In this section we detail the entries of the updating matrix M in (2.1) where
Q is a vector containing the components of the electric field and the magnetic
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field at all points of the grid with a size 6×Nx ×Ny ×Nz, where Nx, Ny and
Nz are the number of grid points in the x, y and z directions. To simplify the
writing, we denote

Λ1 = Nx ×Ny ×Nz,

Λ2 = Ny ×Nz,

Λ3 = 6Λ1,

Γ1 = Λ2i+Nzj + k,

Γ2 = Λ1 + Γ1,

Γ3 = 2Λ1 + Γ1,

Γ4 = 3Λ1 + Γ1,

Γ5 = 4Λ1 + Γ1,

Γ6 = 5Λ1 + Γ1.

Thus Q is expressed by

Q =



[e1,i,j,k]Λ1

[e2,i,j,k]Λ1

[e3,i,j,k]Λ1

[b1,i,j,k]Λ1

[b2,i,j,k]Λ1

[b3,i,j,k]Λ1



n+1

=



[QΓ1 ]Λ1

[QΓ2 ]Λ1

[QΓ3 ]Λ1

[QΓ4 ]Λ1

[QΓ5 ]Λ1

[QΓ6 ]Λ1



n+1

,

where [e1,i,j,k]Λ1
represents the vector containing the components of the electric

field e1 at all points of the grid indexing in k, j, i order. [e2,i,j,k]Λ1
and so

on follow the same rule. Due to the complexity of the matrix, here we only
illustrate the entries of the rows of M corresponding to the components Qn+1

Γ1
.

Other entries of the matrix can be expressed in the same way.
After applying the Lax-Wendroff method, we have

en+1
1,i,j,k = en1,i,j,k + w1(en1,i,j,k)yy + w1(en1,i,j,k)zz − w1(en2,i,j,k)xy

− w1(en3,i,j,k)xz + w2(bn3,i,j,k)y − w2(bn2,i,j,k)z,

⇓

Qn+1
Γ1

= QΓ1 + w1(QΓ1)yy + w1(QΓ1)zz − w1(QΓ2)xy
− w1(QΓ3)xz + w2(QΓ6)y − w2(QΓ5)z,

(A.1)

where

w1 = c2∆t2

2 ,

w2 = c2∆t.
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The coefficients of the right side of the equation (A.1) are corresponding to the
Γ1-th row of the matrix M and the values of them are depended on the values
of i, j and k. In order to have a compact and uniform expressions, we write

(QΓ6)y = 1
∆y (ξ−2Qκ−2 + ξ−1Qκ−1 + ξQκ + ξ1Qκ1 + ξ2Qκ2),

(QΓ1)yy = 1
(∆y)2 (δ−2Qχ−2 + δ−1Qχ−1 + δQΓ1 + δ1Qχ1 + δ2Qχ2),

(QΓ2)xy = 1
3∆x∆y (ω−4QΥ−4 + ω−3QΥ−3 + ω−2QΥ−2 + ω−1QΥ−1 + ωQΥ

+ ω1QΥ1 + ω2QΥ2 + ω3QΥ3 + ω4QΥ4),

where

χ1 = Γ1 +Nz, χ2 = Γ1 + 2Nz, χ−1 = Γ1 −Nz,
χ−2 = Γ1 − 2Nz, κ = Γ6, κ1 = Γ6 +Nz,

κ2 = Γ6 + 2Nz, κ−1 = Γ6 −Nz, κ−2 = Γ6 − 2Nz,
η = Ny, Υ = Γ2, Υ−4 = Γ2 − Λ2 −Nz,
Υ−3 = Γ2 − Λ2, Υ−2 = Γ2 − Λ2 +Nz, Υ−1 = Γ2 −Nz,
Υ1 = Γ2 +Nz, Υ2 = Γ2 + Λ2 −Nz, Υ3 = Γ2 + Λ2,

Υ4 = Γ2 + Λ2 +Nz.

The expressions for (QΓ5)z, (QΓ1)zz and (QΓ3)xz have the same forms as (QΓ6)y,
(QΓ1)yy and (QΓ2)xy respectively, but with

χ1 = Γ1 + 1, χ2 = Γ1 + 2, χ−1 = Γ1 − 1,
χ−2 = Γ1 − 2, κ = Γ5, κ1 = Γ5 + 1,
κ2 = Γ5 + 2, κ−1 = Γ5 − 1, κ−2 = Γ5 − 2,
η = Nz, Υ = Γ3, Υ−4 = Γ3 − Λ2 − 1,
Υ−3 = Γ3 − Λ2, Υ−2 = Γ3 − Λ2 + 1, Υ−1 = Γ3 − 1,
Υ1 = Γ3 + 1, Υ2 = Γ3 + Λ2 − 1, Υ3 = Γ3 + Λ2,

Υ4 = Γ3 + Λ2 + 1.

After discussing the locations of i, j and k, the values of the coefficients are
listed in table 1 and table 2.

Table 1: ( ∂∂y ,
∂2

∂y2 ) or ( ∂∂z ,
∂2

∂z2 ) related coefficients
j or k δ−2 δ−1 δ δ1 δ2 ξ−2 ξ−1 ξ ξ1 ξ2
0 0 0 -5 2 -1/5 0 0 1/2 2/3 -1/10
η-1 -1/5 2 -5 0 0 1/10 -2/3 -1/2 0 0
[1,η-2] 0 1 -2 1 0 0 -1/2 0 1/2 0

For example, if i = 0, j = 0 and k = 0, the entries of the Γ1-th row of the
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Table 2: ∂2

∂x∂y or ∂2

∂x∂z related coefficients

i j or k ω−4 ω−3 ω−2 ω−1 ω ω1 ω2 ω3 ω4

0

0 0 0 0 0 9 -5 0 -5 1
η-1 0 0 0 5 -9 0 -1 5 0
[1,η2 ) 0 0 0 0 3 -3 1 -1 0
[ η2 , η − 2] 0 0 0 3 -3 0 0 1 -1

Nx-1

0 0 5 -1 0 - 9 5 0 0 0
η-1 1 -5 0 -5 9 0 0 0 0
[1,η2 ) -1 1 0 0 - 3 3 0 0 0
[ η2 , η − 2] 0 -1 1 -3 3 0 0 0 0

[1,Nx-3]
0 0 0 1 0 3 -1 0 -3 0
η-1 -1 0 0 1 -3 0 0 3 0
[1, η − 2] -3/4 0 3/4 0 0 0 3/4 0 -3/4

Nx-2
0 0 3 0 0 -3 1 0 0 -1
η-1 0 -3 0 -1 3 0 1 0 0
[1,η-2] -3/4 0 3/4 0 0 0 3/4 0 -3/4

matrix M are the following

MΓ1,Γ1 = 1− 5u1 − 5v1, MΓ1,Γ1+Nz = 2u1, MΓ1,Γ1+2Nz = −1
5u1,

MΓ1,Γ6 = 1
2u2, MΓ1,Γ6+Nz = 2

3u2, MΓ1,Γ6+2Nz = − 1
10u2,

MΓ1,Γ2 = 9u3, MΓ1,Γ2+Nz = −5u3, MΓ1,Γ2+Λ2 = −5u3,

MΓ1,Γ2+Λ2+Nz = u3, MΓ1,Γ1+1 = 2v1, MΓ1,Γ1+2 = −1
5v1,

MΓ1,Γ5 = 1
2v2, MΓ1,Γ5+1 = 2

3v2, MΓ1,Γ5+2 = − 1
10v2,

MΓ1,Γ3 = 9v3, MΓ1,Γ3+1 = −5v3, MΓ1,Γ3+Λ2 = −5v3,

MΓ1,Γ3+Λ2+1 = v3,

otherwise MΓ1,∗ = 0 and where

u1 = w1

(∆y)2 , u2 = w2

∆y , u3 = w1

3∆x∆y ,

v1 = w1

(∆z)2 , v2 = w2

∆z , v3 = w1

3∆x∆z .

B Singular integrals
In this section, we detail the calculations of other types of singular integrals
involved in the EOS formulations of 3D Maxwell’s equations, denoted by f2, f3,
g1, g2, g3 in [2]. The techniques are similar with the calculating of f1 in section
3. The geometry is illustrated in figure 3.1.
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B.1 Calculation of f2

f2 =
˚

Vi,j,k

x′ − xp
|x′ − xp|2

dV. (B.1)

The components of the integration variable in (B.1) are given by

x′ = (x′, y′, z′),

and let us introduce the quantity

r = x′ − xp,

with r = |r|.
We want to apply the divergence theorem on (B.1), and therefore need to

find a function ϕ(r) that satisfies

∇ · (rrϕ(r)) = r
r2 ,

or equivalently
∇ · (rr)ϕ(r) + rr · ∇ϕ(r) = r

r2 .

Solving the above equation, we get

ϕ(r) = 1
2r2 .

Because of the singularity on surface S1, we can not apply the divergence theo-
rem directly. However we can write

f2 = 1
2(

6∑
m=2

¨
Sm

rr
r2 · nm dS + lim

ε→0

¨
Sε

rr
r2 · nε dS +

¨
SΩ

rr
r2 · n1 dS),

where Sε is a hemispherical surface of radius ε centered at xp and SΩ is the rest
of the surface S1 with a disk of radius ε around xp has been removed. nε is the
unit normal vector on Sε, pointing out of Vi,j,k. nm is the unit normal vector
on Sm, pointing out of Vi,j,k.

For the integral over SΩ, we have

r = (0, y′ − yj , z′ − zk),

and
n1 = (−1, 0, 0),

thus we get
¨
SΩ

rr
r2 · n dS = (0, 0, 0).

For the integral over surface Sε, we use the spherical coordinate system,

r = ε(cos θ sinϕ, sin θ sinϕ, cosϕ),

and
nε = (cos θ sinϕ, sin θ sinϕ, cosϕ),
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where ε, ϕ, θ are respectively the radial distance, polar angle and azimuthal
angle, so that

¨
Sε

1
r2 rr · nε dS = lim

ε→0

1
ε2

ˆ 2π

0

ˆ π
2

−π2
ε(cos θ sinϕ, sin θ sinϕ, cosϕ)

ε(cos θ sinϕ, sin θ sinϕ, cosϕ)
· (cos θ sinϕ, sin θ sinϕ, cosϕ)
ε2 sinϕdθ dϕ = (0, 0, 0).

Defining

sm =
¨
Sm

rr
r2 · nm dS,

f2 can be written as

f2 = 1
2

6∑
m=2

sm.

Due to the symmetry of r along y and z directions in Vi,j,k, we have

s5 = s2

and
s6 = s3.

Thus f2 can be written as,

f2 = 1
2(
¨
S2

∆y (x′ − xa, 0, z′ − zk)
(x′ − xa)2 + (z′ − zk)2 + 1

4∆y2 dx′ dz′

+
¨
S3

∆z (x′ − xa, y′ − yj , 0)
(x′ − xa)2 + (y′ − yj)2 + 1

4∆z2 dx′ dy′

+
¨
S4

∆x2 (1, 0, 0)
∆x2 + (y′ − yj)2 + (z′ − zk)2 dy′ dz′).

For computation simplicity, we define

s̄2 =
¨
S2

(x′ − xa, z′ − zk)
(x′ − x)2 + (z′ − zk)2 + 1

4∆y2 dx′ dz′,

s̄3 =
¨
S3

(x′ − xa, y′ − yj)
(x′ − xa)2 + (y′ − yj)2 + 1

4∆z2 dx′ dy′,

s̄4 =
¨
S4

x2 1
∆x2 + (y′ − yj)2 + (z′ − zk)2 dy′ dz′.

Thus for the calculations of s̄2 and s̄3, we consider a general form
¨
S

r̄
r̄2 +A2 dS, (B.2)
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where A is a constant, r̄ is a 2-component vector on surface S, and r̄ = |r̄|.
We want to apply the divergence theorem on (B.2), therefore we need to find a
function ϕ(r̄) that satisfies

∇ · (r̄r̄ϕ(r̄)) = r̄
r̄2 +A2 .

Solving the above equation, we get

ϕ(r̄) = −
A tan−1( r̄A )

r̄3 + 1
r̄2 .

For s̄2,
S = S2,

A = 1
2∆y,

and
r̄ = (x′ − xa, z′ − zk),

and because of the singularity on S2, we can not use the divergence theorem
directly, however we can write

s̄2 =
4∑

n=2

ˆ
L2n

ϕ(r̄)r̄r̄ · n̄n dL+ lim
ε→0

ˆ
Lε

ϕ(r̄)r̄r̄ · n̄ε dL+
ˆ
LΩ

ϕ(r̄)r̄r̄ · n̄1 dL,

where L2n are edges of S2. Lε is a semicircle with radius ε centered at point x̄
and LΩ is the rest of L21. n̄ε is the unit normal of Lε, pointing out of S2. n̄n
is the unit normal of L2n, pointing out of S2. Geometry is illustrated in figure
3.2.

For the integral over LΩ, we have

r̄ = (0, z′ − zk)

and
n̄1 = (−1, 0),

so that ˆ
LΩ

ϕ(r̄)r̄r̄ · n̄1 dL = (0, 0).

For the integral over Lε, using the polar coordinates, we have

r = ε(cos θ, sin θ),

and
nε = −(cos θ, sin θ),

so that
ˆ
Lε

ϕ(r̄)r̄r̄ · n̄ε dL = − lim
ε→0

ˆ π
2

−π2
−ε3(cos θ, sin θ)(cos θ, sin θ)

(−
1
2∆y tan−1( ε

1
2 ∆y )

ε3
+ 1
ε2

) · (cos θ, sin θ) dθ

= (0, 0).
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There is no singularity on L22, L23 and L24, finally,

s̄2 = (I1, 0),

where

I1 =
ˆ xa+∆x

xa

∆z(x′ − xa)ϕ(r1) dx′ +
ˆ zk+∆z

zk−∆z
∆x2ϕ(r2) dz′,

with

r1 =
√

(x′ − xa)2 + 1
4∆z2,

and
r2 =

√
∆x2 + (z′ − zk)2.

The calculation of s̄3 is similar to the one of s̄2 with the final result

s̄3 = (I2, 0),

where

I2 =
ˆ xa+∆x

xa

∆y(x′ − xa)ϕ(r3) dx′ +
ˆ yj+∆y

yj−∆y
∆x2ϕ(r4) dy′,

with

r3 =
√

(x′ − xa)2 + 1
4∆y2,

and
r4 =

√
∆x2 + (y′ − yj)2.

For the integral s̄4, defining

r̄ = (y′ − yj , z′ − zk),

and
r̄ = |r̄|,

we need to find a function ϕ(r̄) that satisfies

∇ · (r̄ϕ(r̄)) = 1
r̄2 + ∆x2 .

Solving the above equation gives

ϕ(r̄) = ln(r̄2 + ∆x2)
2r̄2 .

Because of the singularity at point x̄ = (yj , zk), we write

s̄4 = lim
ε→0

ˆ
Lε

ϕ(r̄)r̄ · n̄ε dL+
ˆ
LΩ

ϕ(r̄)r̄ · n̄Ω dL,

where Lε is a circle with radius ε centered at x̄ and LΩ is the four edges of
surface S4. n̄ε is the unit normal vector of Lε, n̄Ω is the unit normal vector of
LΩ, as shown in figure 3.3.
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For the integral over Lε, we use the polar coordinates,

r̄ = ε(cos θ, sin θ),

and
nε = −(cos θ, sin θ),

then

lim
ε→0

ˆ
Lε

ϕ(r̄)r̄ · n̄ε dL = lim
ε→0

ˆ 2π

0
−ε2(cos θ, sin θ) ln(ε2 + ∆x2)

2ε2 (cos θ, sin θ) dθ

= −π ln(∆x2).

For the integral over LΩ, there is no singularity any more and this leads to
ˆ
lΩ

ϕ(r̄)r̄ · n̄Ω dL = 1
2∆y

ˆ zk+∆z

zk−∆z

ln( 1
4∆y2 + ∆x2 + (z′ − zk)2)

1
4∆y2 + (z′ − zk)2 dz′

+ 1
2∆z

ˆ yj+∆y

yj−∆y

ln( 1
4∆z2 + ∆x2 + (y′ − yj)2)

1
4∆z2 + (y′ − yj)2 dy′

= I3.

Combining all the above calculations, we finally get,

f2 = 1
2(∆yI1 + ∆zI2 + ∆x2(I3 − π ln(∆x2)), 0, 0).

All the line integrals I1, I2, I3 are non-singular and can be calculated using
numerical integration.

B.2 Calculation of f3

f3 =
˚

Vi,j,k

x′ − xp
|x′ − xp|3

dV. (B.3)

The components of the integration variable in (B.3) are given by

x′ = (x′, y′, z′),

and let us introduce the quantity

r = x′ − xp,

with r = |r|.
We want to apply the divergence theorem on (B.3), and therefore need to

find a function ϕ(r) that satisfies

∇ · (rrϕ(r)) = r
r3 ,

thus we have

∇ · (rr)ϕ(r) + rr · ∇ϕ(r) = 4rϕ(r) + rrϕ′(r) = r
r3 .
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Solving the above equation gives

ϕ(r) = 1
r3 .

Because of the singularity on surface S1, we can not apply the divergence theo-
rem directly, however we can write

f3 =
6∑

m=2

¨
Sm

rr
r3 · nm dS + lim

ε→0

¨
Sε

rr
r3 · nε dS +

¨
SΩ

rr
r3 · n1 dS,

where Sε is a hemispherical surface of radius ε centered at xp and SΩ is the rest
of the surface S1 with a disk of radius ε around xp has been removed. nε is the
unit normal vector on Sε, pointing out of Vi,j,k. nm is the unit normal vector
on Sm, pointing out of Vi,j,k.

For the integral over SΩ, we have

r = (0, y′ − yj , z′ − zk),

and
n1 = (−1, 0, 0),

thus we get
¨
SΩ

rr
r3 · n dS = (0, 0, 0).

For the integral over surface Sε, we use the spherical coordinate system,

r = ε(cos θ sinϕ, sin θ sinϕ, cosϕ),

and
nε = (cos θ sinϕ, sin θ sinϕ, cosϕ),

where ε, ϕ, θ are respectively the radial distance, polar angle and azimuthal
angle, so that

¨
Sε

1
2r2 rr · nε dS = lim

ε→0

ˆ 2π

0

ˆ π
2

−π2

1
2r2 rr · nεε2 sinϕdθ dϕ = (0, 0, 0).

Defining

sm =
¨
Sm

rr
r3 · nm dS,

f3 can be written as

f3 =
6∑

m=2
sm.

Due to the symmetry of r in Vi,j,k along y and z direction , we have

s2 = s5
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and
s3 = s6.

So we have the following,

f3 =
¨
S2

∆y (x′ − xa, 0, z′ − zk)
((x′ − xa)2 + (z′ − zk)2 + 1

4∆y2) 3
2

dx′ dz′

+
¨
S3

∆z (x′ − xa, y′ − yj , 0)
((x′ − xa)2 + (y′ − yj)2 + 1

4∆z2) 3
2

dx′ dy′

+
¨
S4

∆x (∆x, 0, 0)
(∆x2 + (y′ − yj)2 + (z′ − zk)2) 3

2
dy′ dz′,

For computation simplicity, we define

s̄2 =
¨
S2

(x′ − xa, z′ − zk)
((x′ − xa)2 + (z′ − zk)2 + 1

4∆y2)3/2 dx′ dz′,

s̄3 =
¨
S3

(x′ − xa, y′ − yj)
((x′ − xa)2 + (y′ − yj)2 + 1

4∆z2)3/2 dx′ dy′,

and
s̄4 =

¨
S4

∆x
(∆x2 + (y′ − yj)2 + (z′ − zk)2)3/2 dy′ dz′.

Thus for the calculations of s̄2 and s̄3, we consider a general form
¨
S

r̄
(r̄2 +A2)3/2 dS, (B.4)

where r̄ is a 2-component vector, A is a constant and r̄ = r̄. We want to apply
the divergence theorem on (B.4), thus we need to find a function ϕ(r̄) that
satisfies

∇ · (r̄r̄ϕ(r̄)) = r̄
(r̄2 +A2)3/2 .

Solving the above equation, we get

ϕ(r̄) = log(
√
r̄2 +A2 + r̄)
r̄3 − 1

r̄2
√
r̄2 +A2

.

For s̄2,
S = S2,

A = 1
2∆y,

and
x̄ = (x′ − xa, z′ − zk),

because of the singularity on S2, we write

s̄2 =
4∑

n=2

ˆ
L2n

ϕ(r̄)rr̄ · n̄n dL+ lim
ε→0

ˆ
Lε

ϕ(r̄)r̄r̄ · n̄ε dL+
ˆ
LΩ

ϕ(r̄)r̄r̄ · n̄1 dL,

where L2n are edges of S2. Lε is a semicircle with radius ε centered at point x̄
and LΩ is the rest of L21. n̄ε is the unit normal of Lε, pointing out of S2. n̄n
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is the unit normal of L2n, pointing out of S2. Geometry is illustrated in figure
3.2.

For the integral over LΩ, we have

r̄ = (0, z′ − zk)

and
n̄ = (−1, 0),

so that ˆ
LΩ

ϕ(r̄)r̄r̄ · n̄1 dL = (0, 0).

For the integral over Lε, using the polar coordinates, we have

r̄ = ε(cos θ, sin θ),

and
n̄ε = −(cos θ, sin θ),

thenˆ
Lε

ϕ(r̄)r̄r̄ · n̄1 dL

= lim
ε→0

ˆ π
2

−π2
−ε2(cos θ, sin θ)3(− 1

ε2(ε2 + 1
4∆y2) 1

2
+

log(
√
ε2 + 1

4∆y2 + ε)
ε3

) dθ

= (−2 log(1
2∆y), 0),

There is no singularity on L22, L23 and L24 any more, finally,

s̄2 = (I1 − 2 log(1
2∆y), 0),

where

I1 =
ˆ xa+∆x

xa

∆z(x′ − xa)ϕ(r1) dx′ +
ˆ zk+∆z

zk−∆z
∆x2ϕ(r2) dz′,

with

r1 =
√

(x′ − xa)2 + 1
4∆z2,

and
r2 =

√
∆x2 + (z′ − zk)2.

The calculation of s̄3 is similar to the one of s̄2 with the final result

s̄3 = (I2 − 2 log(1
2∆z), 0),

where

I2 =
ˆ xa+∆x

xa

∆y(x′ − xa)ϕ(r3) dx′ +
ˆ yj+∆y

yj−∆y
∆x2ϕ(r4) dy′,
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with

r3 =
√

(x′ − xa)2 + 1
4∆y2,

and
r4 =

√
∆x2 + (y′ − yj)2.

For the integral s̄4, defining

r̄ = (y′ − yj , z′ − zk)

and
r̄ = |r̄|,

we seek a function that satisfies

∇ · (r̄ϕ(r̄)) = 1
(r̄2 + ∆x2)3/2 .

Solving this equation gives

ϕ(r̄) = − 1
r̄2
√
r̄2 + ∆x2

.

Because of the singularity at point x̄ = (yj , zk), we write

s̄4 =
ˆ
Lε

ϕ(r̄)r̄ · n̄ε dL+
ˆ
LΩ

ϕ(r̄)r̄ · n̄Ω dL,

where Lε is a circle with radius ε centered at x̄ and LΩ is the four edges of
surface S4. n̄ε is the unit normal vector of Lε, n̄Ω is the unit normal vector of
LΩ, as shown in figure 3.3.

For the integral over Lε, we use the polar coordinates,

r̄ = ε(cos θ, sin θ),

and
nε = −(cos θ, sin θ),

then
lim
ε→0

ˆ
Lε

ϕ(r̄)r̄ · n̄ε dL = 2π
∆x.

For the integral on LΩ, there is no singularity any more and this gives
ˆ
LΩ

ϕ(r̄)r̄ · n̄Ω dL

= −∆y
ˆ zk+∆z

zk−∆z

1

( 1
4∆y2 + (z′ − zk)2)

√
∆x2 + 1

4∆y2 + (z′ − zk)2
dz′

−∆z
ˆ yj+∆y

yj−∆y

1

( 1
4∆z2 + (y′ − yj)2)

√
∆x2 + 1

4∆z2 + (y′ − yj)2
dy′

= I3.
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Combining all the calculations above, we finally get

f3 = (∆yI1 + ∆zI2 − 2∆y log(1
2∆y)− 2∆z log(1

2∆z)

+ ∆x2I3 + 2π∆x, 0, 0).

All the line integrals I1, I2, I3 are non-singular and can be calculated using
numerical integration.

B.3 Calculations of singular surface integrals
When the observing point xp and the integrating point are both located on
the same integral surface, for instance S1, as shown in figure 3.1, the surface
integrals

g1 =
¨
S1

1
|x′ − xp|

dS, (B.5)

g2 =
¨
S1

x′ − xp
|x′ − xp|2

dS, (B.6)

g3 =
¨
S1

x′ − xp
|x′ − xp|3

dS, (B.7)

are singular where
x′ − xp = (0, y − y′, z − z′).

Defining
r̄ = (y′ − yj , z′ − zk),

and
r̄ = |r̄|,

we apply the divergence theorem on (B.5), thus we need to find a function ϕ(r̄)
that satisfies

∇r̄ϕ(r̄)) = 1
r̄
,

or equivalently
2ϕ(r̄) + r̄ϕ′(r̄) = 1

r̄
.

Solving the above equation, we get

ϕ(r̄) = 1
r̄
.

Thus g1 is turned into

g1 =
4∑

n=1

ˆ
Ln

x′ − x̄
|x′ − x̄| · nn dL,

where x̄ = (yj , zk), nn is the unit normal of Ln. There is no singularity any
more and g1 can be calculated using numerical integration.

For (B.6) and (B.7), due to the symmetry of vector x′ − xp on S1, we have

g2 = (0, 0, 0),

and
g3 = (0, 0, 0).
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C Parallelization
This paper closely follows [2] and we therefore directly address the final numer-
ical solving system of the EOS formulations of the 3D Maxwell’s equations. For
the inside domain, the updating rule follows (2.1). For the boundary part, the
discretized boundary integral identities are represented by

M1

(
En
p

Bn
p

)
=
(

ER

BR

)
, (C.1)

where
(

En
p

Bn
p

)
are the solution at the surface point xp at time tn and

(
ER

BR

)
are the summations of the integrals in the boundary integral representations
after moving the unknowns to the left of the equations. From equation (2.1),
it is easy to see that the updating for the inside domain at time now will only
involve the values that are one time step before. While the solutions on the
surface point xp in (C.1) require both the historical values of the current density
and the charge density and the historical field values of all the surface points due
to the retarded integrals involved. Therefore the part of the code calculating
the surface solution dominates both the memory usage and the processor usage.
The calculations are therefore parallelized based on partitioning the surface into
pieces and distributing each piece to separate processors, whereas the inside of
the scattering object is residing on each processor. The updating processes are
illustrated by the following C code where

p : index of surface point
n : index of time level
es, bs : fields solutions on surface up to time tn−1

e, b : fields solutions of inside domain at time tn

el, bl : fields solutions of inside domain at time tn−1

J, P : current density and electric density up to time tn−1

UpdateS(p,n,J,P,es,bs) : update surface solutions at xp at time tn

UpdateV(e,b,el,bl,es,bs,J,P,n) : update inside solutions at time tn

1

2 i n t rank , s i z e ; // p r o c e s s o r id and number o f p r o c e s s o r s
3

4 MPI_Init(&argc ,& argv ) ;
5 MPI_Comm_size(MPI_COMM_WORLD,& s i z e ) ;
6 MPI_Comm_rank(MPI_COMM_WORLD,& rank ) ;
7

8 i n t Nt , Ns , Nss , lp , l s i z e ;
9 i n t p , index , indexeb ;

10

11 lp=Ns/ s i z e ;
12 l s i z e =3∗ lp ;
13 double l s e [ l s i z e ] , l s b [ l s i z e ] ;
14

15 double ∗ e s u r f ac e , ∗ b s u r f a c e ;
16 e s u r f a c e = ( double ∗) mal loc ( Nss∗ s i z e o f ( double ) ) ;
17 b s u r f a c e = ( double ∗) mal loc ( Nss∗ s i z e o f ( double ) ) ;
18
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19 f o r (n=0;n<Nt ; n++){
20 f o r (p=rank ∗ lp ; p<(rank+1)∗ lp ; p++){
21 gs l_vector ∗ l r e s u l t=gs l_vec to r_a l l o c (6 ) ;
22 // update the s u r f a c e va lue s at each g r i d po int in p a r a l l e l
23 l r e s u l t=UpdateS (p , n , J , P, es , bs ) ;
24 index=(p%lp ) ∗3 ;
25 f o r ( i =0; i <3; i++){
26 indexeb=index+i ;
27 l s e [ indexeb ]= gs l_vector_get ( l r e s u l t , i ) ;
28 l s b [ indexeb ]= gs l_vector_get ( l r e s u l t , i +3) ;
29

30 }
31 gs l_vector_f ree ( l r e s u l t ) ;
32 }
33 // c o l l e c t data from a l l p r o c e s s e s
34 MPI_Allgather ( l s e , l s i z e , MPI_DOUBLE, e su r f ace , l s i z e ,

MPI_DOUBLE, MPI_COMM_WORLD) ;
35 MPI_Allgather ( l sb , l s i z e , MPI_DOUBLE, bsur face , l s i z e ,

MPI_DOUBLE, MPI_COMM_WORLD) ;
36

37 // updating the whole s u r f a c e
38 f o r (p=0;p<Nss ; p++){
39 gsl_matrix_set ( es , p , n , ∗ ( e s u r f a c e+p) ) ;
40 gsl_matrix_set ( bs , p , n , ∗ ( b s u r f a c e+p) ) ;
41 }
42

43 // update the i n s i d e domain by the domain based method supported
by the s u r f a c e va lue s

44 UpdateV ( e , b , e l , bl , es , bs , J , P, n) ;
45

46 }
47

48 MPI_Finalize ( ) ;
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