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H I G H L I G H T S

! Differentiated cells (DCs) might regulate symmetric stem cell (SC) division.
! This implies that changes in the dynamics of DCs can affect the fitness of SCs.
! Tyrosine kinase inhibitors (TKIs) are used to treat chronic myeloid leukaemia (CML).
! TKIs increase the death rate of DCs, but have most likely no direct effect on SCs.
! TKIs might have an indirect effect on SCs if DCs regulate symmetric SC division.
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a b s t r a c t

We use a mathematical model to show that if symmetric stem cell division is regulated by differentiated
cells, then changes in the population dynamics of the differentiated cells can lead to changes in the
population dynamics of the stem cells. More precisely, the relative fitness of the stem cells can be
affected by modifying the death rate of the differentiated cells. This result is interesting because stem
cells are less sensitive than differentiated cells to environmental factors, such as medical therapy. Our
result implies that stem cells can be manipulated indirectly by medical treatments that target the
differentiated cells.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Most tissues of the body go through continuous cell turnover
du to apoptosis. This cell turnover can also give tissues the ability
to self-repair after injury. In general, tissues are maintained by a
small group of slowly replicating cells with the capacity to both
self-renew and generate differentiated progeny required by a
given tissue (Morrison et al., 1997; Reya et al., 2001). Cells that
have these two capabilities are called stem cells. Differentiated
cells perform their function and eventually die – they go through a
number of divisions, obtaining various stages of differentiation,
until the fully differentiated cells stop dividing (Donohue et al.,
1958; Cronkite and Fliedner, 1964; Ogawa, 1993). Although it
seems reasonable to propose that all tissues arise from tissue-
specific stem cells, rigorous identification and isolation of these

stem cells have only been accomplished in a few instances. For
example, haematopoietic stem cells have been isolated and shown
to be responsible for the generation and regeneration of the blood-
forming system and the immune system, called the haematopoietic
system (Baum et al., 1992; Morrison and Weissman, 1994). The
haematopoietic stem cells are located within the bone marrow and
segregated among different bones throughout the body. Like
several other models (Loeffler and Wichmann, 1980; Agur et al.,
2002; Østby et al., 2003; Østby and Winther, 2004; Coiljn and
Mackey, 2005; Adimy et al., 2006; Dingli and Michor, 2006; Dingli
et al., 2007a,b; Wodarz, 2008; Marciniak-Czochra et al., 2009;
Stiehl and Marciniak-Czochra, 2012; Lenaerts et al., 2010; Manesso
et al., 2013), the model presented in this paper is inspired by the
haematopoietic system. However, it applies to all other tissues that
have similar architecture.

An important aspect, related to self-renewal and generation of
differentiated cells, is the fate of the two daughter cells when a
stem cell divides (Dingli et al., 2007b; Morrison and Kimble, 2006;
Yamashita et al., 2003). Symmetric division is defined as generation
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of daughter cells destined to acquire the same fate. In this paper,
symmetric stem cell division is defined as symmetric self-renewal if
both daughter cells are stem cells and symmetric differentiation if
both daughter cells are differentiated. In the former case the
number of stem cells increases by one, whereas in the latter case
the number of stem cells decreases by one. Stem cells can rely
completely on symmetric division. On the other hand, if one
daughter cell has stem cell identity and the other daughter cell
starts to differentiate, it is called an asymmetric stem cell division.
This type of division is particularly attractive because the stem
cells manage to both self-renew and produce differentiated cells
with a single division (Yamashita et al., 2003). However, a
disadvantage of asymmetric stem cell division is that it leaves
stem cells unable to expand in number. Serial haematopoietic
transplantation supports the existence of all three types of divi-
sions (McKenzie et al., 2006).

1.1. Stem cell niche

Since the number of stem cells is much smaller than the
number of differentiated cells, the stem cells must be protected
and tightly regulated. As discussed by Gentry and Jackson (2013),
the stem cell niche, which is the restricted region in an organ that
supports stem cell behaviour, may be crucial in both aspects
(Fuchs et al., 2004; Nikolova et al., 2006; Yin and Li, 2006;
Simons and Cleavers, 2011). The niche is composed of both
localised signalling cells and an extracellular matrix that control
stem cell fate. However, relatively little is known about the exact
behaviour of most types of stem cells, and one of the reasons for
this is that it is not possible to reconstruct niches scientifically,
which makes it difficult to maintain stem cells in vitro, because
signals from the niche affects stem cell survival, self-renewal, and
differentiation.

Germline stem cells are unique stem cells in that they are solely
dedicated to reproduction and transmission of genetic information
from generation to generation. Through the use of genetic techni-
ques in Drosophila germline stem cells, exciting progress has been
made in understanding molecular mechanisms underlying inter-
actions between stem cells and stem cell niches (Morrison and
Kimble, 2006; Yamashita et al., 2003; Wong et al., 2005). The
knowledge gained from studying Drosophila germline stem cells
has provided an intellectual framework for defining the stem cell
niche and molecular regulatory mechanisms for other adult stem
cells, such as the haematopoietic stem cells.

The number of cells in a given tissue is approximately constant
under normal conditions. It is generally believed that the number
of stem cells is approximately constant under normal conditions,
and that they differentiate and self-renew at relatively constant
rates to replace mature cells and to keep the stem cell number at a
certain normal level (Loeffler et al., 1988; Shortman and Naik,
2009). One strategy which stem cells can accomplish these two
tasks is asymmetric stem cell division. A classical example of
asymmetric division is provided by Drosophila germline stem cells.
The outcome of a Drosophila germline stem cell division depends
on the spindle orientation relative to the Hub cells in the stem cell
niche, and results from the unequal distribution of intracellular
regulators and extracellular (Hub-derived) signals between daugh-
ter cells during mitosis (Morrison and Kimble, 2006; Yamashita et
al., 2003; Wong et al., 2005). The result is that when a Drosophila
germline stem cell divides, one daughter remains in the stem cell
niche and retains stem cell identity, and one daughter is left
outside the stem cell niche and begins to differentiate. Research on
Drosophila germline stem cells has provided a clear-cut example of
how the stem cell niche promotes stem cell maintenance. Simi-
larly, the haematopoietic microenvironment in the bone marrow
also plays an important role in the regulation of haematopoietic

stem cell organisation (Lemischka, 1997; Bertolini et al., 1997; Aiuti
et al., 1998; Thiemann et al., 1998). Self-renewal depends on local
growth conditions, namely, on the direct contact between stem
cells and stroma cells (Wineman et al., 1996; Verfaillie, 1998;
Koller et al., 1999). However, there are no in vivo experiments that
reveal exactly how proliferation of haematopoietic stem cells is
regulated. Thus, it is not clear whether these cells divide asymme-
trically or symmetrically under normal conditions. Serial haema-
topoietic transplantation indicates that both types of divisions
occur under steady state (McKenzie et al., 2006). As discussed later
in Section 1.3, theoretical work by Shahriyari and Komarova (2013)
and McHale and Lander (2014) illustrate that the symmetric stem
cell division can protect against cancer, and this indicates that
stem cells divide symmetrically.

Although the number of haematopoietic stem cells remains
nearly constant under normal conditions, they can expand rapidly
in response to injury to the bone marrow, such as stem cell
transplantation (McKenzie et al., 2006). This means that asym-
metric stem cell division cannot be the complete story, because it
leaves stem cells unable to expand in number. Since the number of
stem cells increases with one after symmetric self-renewal, it is
likely that the rate of such divisions depends on the number of
stem cells, since the haematopoietic stem cells can regenerate
after tissue damage. Indeed, Drosophila germline stem cells, which
normally divide asymmetrically, can be induced to self-renew
symmetrically to regenerate an additional stem cell after an
experimental manipulation in which one stem cell is removed
from the stem cell niche (Morrison and Kimble, 2006; Yamashita
et al., 2003; Wong et al., 2005).

1.2. Extracellular regulation

Extracellular signalling molecules regulate the dynamics of cell
proliferation and differentiation. However, the precise nature of
these processes are in general not known (Layton et al., 1989;
Aglietta et al., 1989; Metcalf, 2008; Fried, 2009). An example of
extracellular signalling molecules is the haematopoietic cytokines
that control the production of haematopoietic cells. Each of these
cytokines has multiple actions mediated by receptors that can
initiate various responses – survival, proliferation, differentiation,
maturation, and functional activation. Individual haematopoietic
cytokines can either regulate one specific lineage or multiple
lineages (Metcalf, 2008). Moreover, for some haematopoietic cell
types, such as stem cells or megakaryocyte progenitors, the
simultaneous action of multiple cytokines is required for prolif-
erative responses. Unlike other extracellular signalling molecules,
like hormones, that have a limited, or single, organ source, the
haematopoietic cytokines have many tissue sources, e.g. kidney,
liver, lung, muscle and membrane-displayed factors on local
stromal cells (Aglietta et al., 1989; Metcalf, 2008). This is one of
the reasons why it is difficult to establish the precise source of a
haematopoietic cytokine in any particular situation and to predict
its ultimate fate. Results from theoretical work regarding the
haematopoietic system (Wodarz, 2008) and crypt cells (Potten
and Loeffler, 1990) indicate that changes in stem cell number and
their cyclic activity are associated with changes in the demand of
the mature cell stages. Marciniak-Czochra et al. (2009) designed a
six-compartment model to test different hypotheses concerning
regulation of self-renewal and differentiation by a feedback
signalling factor. Since the precise nature of how extracellular
signalling molecules such as cytokines control proliferation and
differentiation is still unknown, Marciniak-Czochra et al. assume
that the signal intensity is

s¼
1

1þkC6
; ð1Þ
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where k is a constant and C6 is the number of mature cells.
Marciniak-Czochra et al. compare three different cases:

1. Only proliferation rates are regulated by feedback signals.
2. Only differentiation rates are regulated by feedback.
3. Both proliferation and differentiation rates are regulated by

feedback.

They show that the best results are obtained when both prolifera-
tion and differentiation rates are regulated by feedback.

Lander et al. (2009) investigate how secreted negative feedback
factors may be used to control the output of multistage cell lineages,
as exemplified by the actions of GDF11 and activin in a self-renewing
neural tissue, the mammalian olfactory epithelium. Similar to
Marciniak-Czochra et al. (2009), Lander et al. find that two feedback
loops are in general better than one. That is, when feedback loops are
added, good control (robustness, stability, low progenitor load, and
fast regeneration from a variety of conditions) is found over an
increasing fraction of the parameter space. Lander et al. discuss
different strategies for how stem cell self-renewal and generation of
differentiated progeny can be regulated by negative feedback from
differentiated cells. The first scenario is that asymmetric stem cell
division is regulated by differentiated cells. In this case, the rate of
asymmetric stem cell division increases when the number of
differentiated cells is less than under normal conditions, which
means that more differentiated cells are produced while the number
of stem cells remains constant. On the other hand, it is also possible
that symmetric stem cell division is regulated by differentiated cells.
In this case, the rate of symmetric self-renewal increases when the
number of differentiated cells is less than under normal conditions,
which means that the number of stem cells increases and that more
differentiated cells are produced than under normal conditions. Since
research by Gokoffski et al. (2011) on mice indicates that stem cell
populations expand when there are less differentiated cells than
under normal conditions, Lander et al. consider the latter case in
their model. Similarly, in the model presented in this paper,
symmetric stem cell division is regulated by differentiated cells.

Manesso et al. (2013) propose a model where mild perturba-
tions of differentiated cells do not influence the stem cell
dynamics – steady state is re-established by increasing the self-
renewal rate of the differentiated cells. After a critical threshold
level is reached in terms of cell numbers, a second response is
activated by increasing the commitment rates from the directly
upstream cell types. The second response can influence the stem
cell dynamics. The model was able to recapitulate the fundamental
steady-state features of haematopoiesis and simulate the re-
establishment of steady-state conditions after haemorrhage and
bone marrow transplantation in adult mice. However, as discussed
in Section 1.3, increasing the self-renewal rate of the differentiated
cells can increase the risk of cancer. This might be one of the
reasons why several other models, like the ones proposed by
Loeffler and Wichmann (1980), Østby andWinther (2004), Wodarz
(2008), Gentry and Jackson (2013) and Rodriguez-Brenes et al.
(2013), assume that stem cell self-renewal and differentiation are
regulated by a negative feedback from more mature cells. In
particular, the models proposed by Gentry et al. and Wodarz
include both extrinsic and intrinsic chemical signalling and inter-
action with the niche to control self-renewal, and this novel
feature is also investigated in this paper. However, unlike our
model, Wodarz' model assumes that when there are only healthy
cells in the system, the rate of symmetric stem cell division
depends only on the number of stem cells and the rate of
asymmetric stem cell division depends only on the number of
differentiated cells. Thus, according to Wordarz' model, changes in
the population dynamics of the differentiated cells do not influ-
ence the dynamics of the stem cell population when there are only

healthy cells in the system. On the contrary, if symmetric stem cell
division is regulated by the differentiated cells, then changes in
population dynamics of the differentiated cells, such as increased
death rate, can influence the dynamics of the stem cell population.
In Section 2, we investigate the implications when the rate of
symmetric self-renewal depends on both the number of stem cells
and the number of differentiated cells.

1.3. Mutations and stem-cell-driven tumours

Genetic changes called mutations can occur in any cell that
divides (Araten et al., 2005). Even though most mutations are
harmless to the body, progressive accumulation of mutations can
lead to cancer (Vogelstein and Kinzler, 2004). Indeed, results from
theoretical work regarding stem cell self-renewal and differentia-
tion indicate that the tissue architecture, where only a small
number of stem cells have the ability to self-renew, has evolved
to minimise the risk of malignant transformations (Dingli et al.,
2007b; Wodarz and Komarova, 2005; Komarova and Cheng, 2006).
That is, if a mutation occurs in a differentiated cell, it is likely to be
washed out of the system before it becomes a cancer phenotype,
because differentiated cells do not self-renew. On the other hand,
mutation in a stem cell can generate a different type of stem cell,
denoted mutant stem cell. This can lead to an evolutionary process
with competition between the mutant stem cells and the normal
stem cells (Nowak, 2006a; Dingli et al., 2010). A critical aspect is
the fate of the daughter cells when the stem cells divide (Morrison
and Kimble, 2006). The model proposed by Dingli et al. (2007b)
shows that if the mutant stem cells divide only asymmetrically,
their population size remains constant. A high probability of
symmetric self-renewal increases the fitness of the stem cells,
because this type of division increases the population size. Sym-
metric differentiation, on the other hand, decreases the population
size. Thus, stem cells that differentiate symmetrically with a high
probability have decreased fitness.

Shahriyari and Komarova (2013) and McHale and Lander (2014)
illustrate that symmetrically dividing cells might delay double-hit
mutant production compared to an equivalent system with asym-
metrically dividing stem cells. More precisely, if stem cells only
divide asymmetrically, then a mutation acquired in a stem cell will
remain in the system indefinitely, and it is only a matter of time
before the second mutation occurs. On the contrary, a mutant
stem cell generated in a symmetric division has a less certain fate
– half of the lineages will differentiate out after the very first
division and only 1/K of all lineages will expand to size K. Thus,
that the uncertainty of the fate of single mutant stem cells can be
the reason for the statistically longer time it takes for the
symmetrically dividing stem cell model to produce a double-hit
mutant.

Rodriguez-Brenes et al. (2011) propose a model that illustrates
that a key event in the development of cancer is the escape from
feedback loops. In a genetically heterogeneous population, selec-
tion favours cells with advantageous traits (Wodarz and
Komarova, 2005; Nowak, 2006b). Since cancer is a product of
somatic evolution, it is important to investigate how mutants that
originally appear in very small numbers are able to invade a cell
population that is initially at dynamic equilibrium (Mangel and
Bonsall, 2008). Rodriguez-Brenes et al. use computational models
that are applied to experimental data, to study the evolutionary
dynamics of feedback escape. Their model predicts different
patterns of emerging tumour growth that fit previously published
experimental data that describe tumour growth dynamics in vitro
and in vivo (Rozenblum et al., 1997; Massagué, 2000, 2001;
Derynck et al., 2001; Woodford-Richens et al., 2001; Wu et al.,
2008). Of particular interest are non-standard growth patterns,
both predicted by the model and found in published experimental
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data, which indicates that feedback regulatory mechanisms are
still partly at work in growing tumours (Rozenblum et al., 1997;
Massagué, 2000, 2001; Derynck et al., 2001; Woodford-Richens
et al., 2001; Wu et al., 2008). This gives rise to the notion that
tumours not only retain some of the architectural aspects of the
underlying healthy tissue, but also some of the regulatory
mechanisms.

Stiehl and Marciniak-Czochra (2012) present a model of cancer
cell dynamics where it is assumed that the leukemic cell popula-
tion consists of an ordered sequence of cell statuses similar to the
healthy haematopoietic cell lines. Moreover, it is assumed that
leukemic stem cells are stimulated by the same cytokines as
healthy stem cells. Similar to the models presented in this paper,
a negative feedback function regulates self-renewal. However,
unlike our model, the feedback function in the model proposed
by Stiehl et al. only depends on the fully mature cells, namely,

sðtÞ ¼
1

1þkccmþkllm
;

where cm and lm are the number of fully mature healthy cells and
fully mature leukemic cells, respectively, and kc and kl are
constants. Moreover, the feedback that regulates healthy cells
and cancer cells is the same – the difference between leukemic
cells and healthy cells is captured by different constants associated
with rates of self-renewal, differentiation and cell death. On the
contrary, the model investigated in Section 2.1 assumes that the
only difference between healthy cells and leukemic cells is the
strength at which they regulate self-renewal.

2. Mathematical models

In Sections 2.1 and 2.2, we explore a simple model that only
considers two types of cells, namely, stem cells and differentiated
cells. This model provides analytic results and captures the basic
idea of this paper, which is that changes in the population
dynamics of the differentiated cells can lead to changes in the
population dynamics of the stem cells when symmetric stem cell
division is regulated by differentiated cells. An extension of the
model, which includes various stages of differentiation, is pre-
sented in Section 2.3. The extended model is explored numerically,
since it is too complex to analyse analytically. The numerical
analysis shows that the analytic results obtained from the simple
model also apply to the extended model.

2.1. Model with two layers of differentiation

The basic model considers two layers of the differentiation
hierarchy: Stem cells have the potential for indefinite self-renewal
and to give rise to differentiated cells. The differentiated cells are
the cells without stem cell characteristics. Let xs denote the
number of stem cells and xd the number of differentiated cells.
As discussed in the introduction, signalling molecules such as
cytokines and interaction with the stem cell niche control stem
cell behaviour, but the precise nature of this regulation is still
unknown (Fuchs et al., 2004; Nikolova et al., 2006; Yin and Li,
2006; Simons and Cleavers, 2011; Layton et al., 1989; Aglietta et al.,
1989; Metcalf, 2008; Fried, 2009). We assume that the signalling
intensity is approximately

Ψ ¼ exp &θxs&γxd
! "

; ð2Þ

where θ and γ are positive constants. This function captures the
fact that the secretion of cytokines is very fast in comparison to
cell proliferation and differentiation (Metcalf, 2008). Moreover, the
signal intensity reaches its maximum under complete absence of
cells, and it decreases exponentially towards zero as the number of

cells increases. In the simple model presented in this subsection,
only symmetric self-renewal is regulated by the feedback signals.
It is assumed that the stem cells produce immature differentiated
cells by asymmetric division and symmetric differentiation at
constant rates, g and d0, respectively, and die at constant rate,
d1. The differentiated cells go though a number of divisions,
obtaining various stages of differentiation, until the fully mature
cells stop dividing. This differentiation process is investigated in
more details in Section 2.3. Here we simply assume that the
process occurs at constant rate, f, which means that differentiated
cells are generated at rate P ¼ 2d0þgð Þf . The differentiated cells
die at constant rate Q. Hence, the model is given by the following
set of ordinary differential equations:

dxs
dt

¼ rΨ &d
! "

xs; ð3Þ

dxd
dt

¼ Pxs&Qxd; ð4Þ

where d¼ d0þd1 and r is a positive constant. The system has two
equilibrium solutions, namely,

x0ns ; x0nd
! "

¼ 0;0ð Þ; ð5Þ

xns ; x
n
d

! "
¼

1

θþ
P
Q
γ
ln

r
d

# $
;
P
Q

1

θþ
P
Q
γ
ln

r
d

# $
0

BB@

1

CCA: ð6Þ

We only consider the case when r4d, which means that ðxns ; x
n
dÞ is

stable, whereas x0ns ; x0nd
! "

is unstable (Appendix B). The former
equilibrium solution describes the system under normal condi-
tions. Note that the number of differentiated cells is much larger
than the number of stem cells, and that the death rate of the
differentiated cells, Q, is much higher than the rate at which the
stem cells die and differentiate, d. The pseudo-steady state
hypothesis is that the population dynamics of the differentiated
cells occurs at a very high rate compared with the stem cell
population dynamics. Hence, it is assumed that the differentiated
cells are always in equilibrium. Mathematically, we use the
approximation dxd

dt
1
Q ¼ P

Qxs&xd ' 0 to obtain xd ' P
Qxs. Thus, the

population dynamics of the stem cells is approximately described
by the following differential equation:

dxs
dt

¼ rexp & θþγ
P
Q

% &
xs

% &
&d

% &
xs: ð7Þ

Starting with any population size x0s ; x
0
d

! "
, where x0s 40, the

system given in Eqs. (3) and (4), converges towards xns ; x
n
d

! "

(Appendix B). Fig. 1 shows an example where the whole system
is regenerated, starting with a single stem cell. For comparison, the
figure also shows the regeneration in the absence of feedback from
differentiated cells (dashed line). From Fig. 1, we can see that
feedback from differentiated cells enables the system to regener-
ate faster.

Changes in the population dynamics of the differentiated cells
lead to changes in the rate of symmetric stem cell division, since
the function Ψ is dependent on the variable xd. The factors that
influence the population dynamics of the differentiated cells are
included in the model by modifying the death rate to Q̂ aQ . If
Q̂ 4Q , then the number of differentiated cells starts decreasing,
whereas if Q̂ oQ , then the number of differentiated cells starts
increasing. This triggers changes in the function Ψ as follows: Ψ
increases if the number of differentiated cells decreases, and Ψ
decreases if the number of differentiated cells increases. The
number of stem cells converges towards the following steady
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state:

xWn
s ¼

1

θþ
P
Q̂
γ
ln

r
d

# $
: ð8Þ

Note that if Q̂ 4Q , then the number of stem cells increases,
whereas if Q̂ oQ , then the number of stem cells decreases. Thus,
for the former case the number of differentiated cells ultimately
increases, and for the latter case the number of differentiated cells
decreases to the steady state

xWn
d ¼

P

Q̂
xWn
s :

Fig. 2 illustrates the cell dynamics when the death rate of the
differentiated cells is increased. Note that it follows from Eq. (7),
that if the pseudo-steady state hypothesis holds, then two differ-
ent examples of the system given in Eqs. (3) and (4), with
θ0; γ0
! "

a θ1; γ1
! "

, where

θ0þ
P
Q
γ0 ¼ θ1þ

P
Q
γ1; ð9Þ

and all other parameters are the same, behave approximately
identically. Indeed, this is the case in Fig. 2, which shows three
different examples of the system given in Eqs. (3) and (4). Because
the parameters satisfy the relations described in Eq. (9) when time
is less than one, they behave approximately identically in this time
interval. When time equals one, the death rate of the differen-
tiated cells changes from Q to Q̂ , and the parameters do not satisfy
the relations described in Eq. (9) anymore. The blue, dashed line is
an example where stem cells are not regulated by feedback from
differentiated cells. Hence, when the death rate of the differen-
tiated cells changes to Q̂ , the number of stem cell remains
constant, xns given in Eq. (6), and the number of differentiated
cells decreases to P

Q̂
xns . The green line shows an example where

stem cells are regulated by feedback from differentiated cells, and
P
Qγno has the same order as θno. When the death rate of the
differentiated cells changes to Q̂ , the number of stem cells
increases to xWnon

d , given in Eq. (8), and the number of differen-
tiated cells converges towards P

Q̂
xWnon

d . The red, dotted line is an
example where the stem cells are regulated by strong feedback
from the differentiated cells. That is, P

Qγst has a much higher order
than θst . The number of stem cells increases to xWstn

d , given in Eq.

Fig. 1. Regeneration. The whole system is regenerated, starting with a single stem cell. The green line is an example where stem cell self-renewal is regulated by both stem
cells and differentiated cells. The blue, dashed line is the regeneration with the same feedback from the stem cells, but no feedback from the differentiated cells.
Both examples have the following parameter sizes: θ¼ 10&3, d¼ 0:1353, P ¼ 106, Q ¼ 103. In addition, the example with normal feedback has γ ¼ 10&6, r¼ 1, whereas the
example without feedback from differentiated cells has γ ¼ 0 and r¼ exp &10&6 ( yn

d

# $
¼ exp &1ð Þ.

(a) and (b) display the stem cells and the differentiated cells, respectively.

Fig. 2. Increased death rate of the differentiated cells. If the death rate of the differentiated cells increases, then the number of differentiated cells starts decreasing, leading to
an increased self-renewal rate, resulting in an increased number of stem cells, and ultimately the number of differentiated cells increases. The red, dotted line shows an
example where the feedback from the differentiated cells is much stronger than the feedback from the stem cells. In this case, the number of differentiated cells remains
approximately the same as under normal conditions when the death rate of the differentiated cells changes. The blue, dashed line is an example where stem cell self-renewal
is not regulated by feedback from differentiated cells, and the number of stem cells remains constant when the death rate of the differentiated cells changes. Consequently,
the number of differentiated cells decreases sufficiently. The blue line shows an example where the feedback from the stem cells and the differentiated cells have
approximately the same strength.
All examples have the following parameter sizes: r¼ 1, d¼ 0:1353, P ¼ 106 and Q ¼ 103. In addition, the example with strong feedback from the differentiated cells has
θ¼ 10&4 and γ ¼ 1:9( 10&6, whereas the example where the feedback from stem cells and differentiated cells are the same has θ¼ 10&3 and γ ¼ 10&6, and finally, the
example with no feedback from the differentiated cells has θ¼ 2( 10&3 and γ ¼ 0.
(a) and (b) display the stem cells and the differentiated cells, respectively.
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(8), and the number of differentiated cells converges towards
P
Q̂
xWst0n
d when the death rate of the differentiated cells changes to

Q̂ . Note that

P

Q̂
xns o

P

Q̂
xWnon

d o P

Q̂
xWstn

d ' xnd;

where xnd is as given in Eq. (6). Thus, Fig. 2 illustrates that the worst
outcome is obtained in the absence of feedback from differentiated
cells. Moreover, it also shows that if the feedback from the
differentiated cells is strong, i.e. P

Qγ ' θ, then the number of
differentiated cells remains approximately the same as under
normal conditions when the death rate of the differentiated cells
changes. However, the system is less parameter sensitive when
P
Qγ ' θ than when P

Qγcθ, and as discussed by Lander et al. (2009),
robustness, which is the ability to maintain performance when
perturbations and uncertainties occur, is a key property of living
systems (Stelling et al., 2004). How the system responds to
perturbations and uncertainties when P

Qγ ' θ and P
Qcθ is illu-

strated in Fig. 3. The green graph is an example where the former
relation holds, and the red, dotted graph is an example where the
latter relation holds. Even though both examples are robust, Fig. 3
shows that the variance and the mean number of stem cells
increase more when P

Qcθ than when P
Qγ ' θ. This is the reason

why we choose parameters that satisfy the latter relation in all
examples in this paper, and denote it normal feedback. However, as
illustrated in Fig. 2, a system with strong feedback from the
differentiated cells performs much better than a system with
normal feedback when the death rate of the differentiated cells
decreases. One way to compensate for this is to assumethat the
differentiated cells also have the ability to self-renew. This is
investigated by Manesso et al. (2013). However, as discussed in the
introduction, increasing capacity of self-renewal among differen-
tiated cells can lead to increasing probability of cancer (Dingli et
al., 2007b; Wodarz and Komarova, 2005; Komarova and Cheng,
2006). In Section 2.3, where various stages of differentiation are
included, we investigate another strategy to increase the produc-
tion of differentiated cells.

2.2. Competition dynamics

When the stem cells divide, a mutation might occur (Araten
et al., 2005; Vogelstein and Kinzler, 2004). The stem cells that

harbour a mutation are denoted mutant stem cells, whereas the
other stem cells are denoted wild-type stem cells. When a mutant
stem cell divides, both daughter cells also harbour the mutation.
The differentiated cells that harbour the mutation are denoted
mutant differentiated cells, and the other differentiated cells are
denoted wild-type differentiated cells. Like Rodriguez-Brenes et al.
(2011), we want to investigate the case when the mutant cells not
only retain the architectural aspects of the wild-type cells, but also
the regulatory mechanisms. Similar to Stiehl and Marciniak-
Czochra (2012), we assume that the mutant stem cells are
stimulated by the same cytokines as the wild-type stem cells,
but the two cell types respond to these cytokines with different
strength. More precisely, it is assumed that the only difference
between the mutant cells and the wild-type cells is that the
functions that regulate symmetric self-renewal of the wild-type
stem cells and the mutant stem cells, denoted Ψ x and Ψ y,
respectively, are different. Moreover, we neglect continuous pro-
duction of mutant stem cells from wild-type stem cells. Let ys
denote the number of mutant stem cells and yd denote the number
of mutant differentiated cells. The basic model is given by the
following set of ordinary differential equations:

dxs
dt

¼ rΨ x&d
! "

xs; ð10Þ

dxd
dt

¼ Pxs&Qxd; ð11Þ

dys
dt

¼ rΨ y&d
! "

ys; ð12Þ

dyd
dt

¼ Pys&Qyd; ð13Þ

where

Ψ z ¼ exp &θz
xxs&θz

yys&γzxxd&γzyyd
# $

;

and θz
v; γzv40 for z; vAfx; yg. Moreover, it is assumed that

θx
zaθy

z and γxzaγyz :

This means that wild-type cells can either inhibit growth of
mutant stem cells more than they inhibit growth of wild type
stem cells, or they inhibit growth of mutant stem cells less than
they inhibit growth of wild type stem cells. Clearly, the fitness of

Fig. 3. Parameter sensitivity. In the examples displayed in this figure, all six parameters of the system are continuously varying with up to 20 per cent to test the robustness of
the system. More precisely, every time interval ½T ; Tþ1* is subdivided into 30 000 time steps. At each time step, every parameter is given a new random value within the
interval [P(0.9, P(1.1], where P is the mean value of the parameter. The green line shows an example where the feedback from the stem cells and the differentiated cells
are of the same strength on average. The red, dotted line shows an example where the feedback from the differentiated cells is on average stronger than the feedback from
the stem cells. Even though both examples are robust, the former example is less parameter sensitive than the latter.
Both examples have the following average parameter sizes: r ¼ 1, d¼ 0:1353, P ¼ 106 and Q ¼ 103. In addition, the example with strong feedback from the differentiated cells
has average parameter sizes θ¼ 10&4 and γ ¼ 1:9( 10&6, and the example where the feedback from stem cells and differentiated cells are the same has average parameter
sizes θ¼ 10&3 and γ ¼ 10&6.
(a) and (b) display the stem cells and the differentiated cells, respectively.
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the wild-type cells is higher in former case than in the latter case.
Similarly, the mutant cells have higher fitness if they inhibit
growth of the wild-type stem cells more than they inhibit growth
of the mutant stem cells. Thus, the terms Ψ x and Ψ y introduce
competition between mutant stem cells and wild-type stem cells.

The system given in Eqs. (10)–(13) has three equilibrium
solutions where at least one of the populations gets extinct,
namely,

x0ns ; x0nd ; y0ns ; y0nd
! "

¼ 0;0;0;0ð Þ;

ðx1ns ; x1nd ; y1ns ; y1nd Þ ¼
1

θx
xþ

P
Q
γxx
ln

r
d

# $
;
P
Q
x1ns ;0;0

0

BB@

1

CCA;

ðx2ns ; x2nd ; y2ns ; y2nd Þ ¼ 0;0;
1

θy
yþ

P
Q
γyy
ln

r
d

# $
;
P
Q
y2ns

0

BB@

1

CCA;

and one equilibrium solution with coexistence, ðx3ns ; x3nd ; y3ns ; y3nd Þ,
where

x3ns
y3ns

" #

¼
θx
xþ

P
Qγ

x
x θx

yþ
P
Qγ

x
y

θy
xþ

P
Qγ

y
x θy

yþ
P
Qγ

y
y

2

4

3

5
&1

ln r
d

! "

ln r
d

! "
" #

;

x3nd ¼
P
Q
x3ns ; y3nd ¼

P
Q
y3ns : ð14Þ

It is assumed that the matrix is non-degenerate. As discussed in
Section 2.1, the number of differentiated cells is much larger than
the number of stem cells, and we expect the pseudo-steady state
hypothesis

xdC
P
Q
xs; ydC

P
Q
ys;

to hold when the system approaches the given equilibrium
solution. Moreover, it is assumed that r4d. This means that the
equilibrium solution where all types of cells get extinct is unstable.
The stability of the remaining equilibrium solutions depends on
the following four parameter regimes (Appendix C):

(I) θy
yþ

P
Qγ

y
y4θx

yþ
P
Qγ

x
y and θy

xþ
P
Qγ

y
x4θx

xþ
P
Qγ

x
x. For these para-

meter relations both the wild-type cells and the mutant cells
inhibit growth of mutant stem cells more than growth of
wild-type stem cells. The only stable equilibrium solution is
extinction of the mutant cells and survival of the wild-type
cells, x1ns ; x1nd ; y1ns ; y1nd

! "
. Moreover, starting with any popula-

tion size x0s ; x
0
d ; y

0
s ; y

0
d

! "
, where x0s ; y

0
s 40, the system converges

towards x1ns ; x1nd ; y1ns ; y1nd
! "

.
(II) θy

yþ
P
Qγ

y
yoθx

yþ
P
Qγ

x
y and θy

xþ
P
Qγ

y
xoθx

xþ
P
Qγ

x
x. For these para-

meter relations both the wild-type cells and the mutant cells
inhibit growth of wild-type stem cells more than growth of
mutant stem cells. The only stable equilibrium solution is
extinction of the wild-type cells and survival of the mutant
cells, x2ns ; x2nd ; y2ns ; y2nd

! "
. Furthermore, starting with any popu-

lation size x0s ; x
0
d; y

0
s ; y

0
d

! "
, where x0s ; y

0
s 40, the system con-

verges towards x2ns ; x2nd ; y2ns ; y2nd
! "

.
(III) θy

yþ
P
Qγ

y
y4θx

yþ
P
Qγ

x
y and θy

xþ
P
Qγ

y
xoθx

xþ
P
Qγ

x
x. For these para-

meter relations the wild-type cells inhibit reproduction of
wild-type stem cells more than reproduction of mutant stem
cells, and likewise, the mutant cells inhibit reproduction of
mutant stem cells more than reproduction of wild-type stem
cells. In this case the only stable equilibrium solution is
coexistence, x3ns ; x3nd ; y3ns ; y3nd

! "
. Starting with any population

size x0s ; x
0
d; y

0
s ; y

0
d

! "
, where x0s ; y

0
s 40, the system converges

towards x3ns ; x3nd ; y3ns ; y3nd
! "

.
(IV) θy

yþ
P
Qγ

y
yoθx

yþ
P
Qγ

x
y and θy

xþ
P
Qγ

y
x4θx

xþ
P
Qγ

x
x. When the mutant

cells inhibit reproduction of wild-type stem cells more than

reproduction of mutant stem cells, and likewise, the wild-
type cells inhibit reproduction of mutant cells more than
reproduction of wild-type stem cells more both the equili-
brium solutions where only one type of cells survives,
x1ns ; x1nd ; y1ns ; y1nd
! "

and x2ns ; x2nd ; y2ns ; y2nd
! "

, are stable. Starting
with any population size x0s ; x

0
d ; y

0
s ; y

0
d

! "
where y0s ; x

0
s 40, then

if y0s ox0sΥ , the system converges towards x1ns ; x1nd ; y1ns ; y1nd
! "

,
whereas if y0s 4x0sΥ , the system converges towards
x2ns ; x2nd ; y2ns ; y2nd
! "

, and if y0s ¼ xsΥ , the system converges
towards the equilibrium solution x3ns ; x3nd ; y3ns ; y3nd

! "
, where

Υ ¼
θy
xþ

P
Q
γyx& θx

xþ
P
Q
γxx

% &

θx
yþ

P
Q
γxy& θy

yþ
P
Q
γyy

% &:

2.2.1. Changes in the competition dynamics
In this subsection we show how changes in the population

dynamics of the differentiated cells can lead to changes in the
population dynamics of the stem cells. We include changes in the
population dynamics of the differentiated cells by modifying the
death rate of these cells. Clearly, changes in this death rate can
effect the dynamics of the whole system, since the stability of all
the equilibrium solutions depends on the inequality

θv
zþ

P
Q
γvzoθw

z þ
P
Q
γwz ;

for z; v;wAfx; yg, vaw. The stability of the system is changed
when the death rate is modified from Q to Q̂ , such that the
inequality is changed to

θi
kþ

P

Q̂
γik4θj

zþ
P

Q̂
γjk;

for at least one triple i; j; kAfz; v;wg. There are three different
cases:

(I) θv
zoθw

z and γvzoγwz . This inequality cannot be changed for
any Q̂ 40.

(II) θv
zoθw

z and γvz4γwz . This inequality is changed for any
Q̂ o γvz &γwz

θwz &θvz
P.

(III) θv
z4θw

z and γvzoγwz . This inequality is changed for any
Q̂ 4 γwz & γvz

θvz &θw
z
P.

These mathematical results can be summarised as follows:

! The equilibrium solution where the mutant cells survive and
the wild-type cells get extinct is stable when the mutant cells
inhibit growth of wild-type stem cells more than growth of
mutant stem cells. If the death rate of the differentiated cells is
changed such that the mutant cells inhibit the mutant stem
cells more than the wild-type stem cells, then this equilibrium
solution becomes unstable.

! The equilibrium solution where the wild-type cells survive and
the mutant cells get extinct is stable when the wild-type cells
inhibit growth of mutant stem cells more than growth of wild-
type stem cells. If the death rate of the differentiated cells is
changed such that the wild-type cells inhibit the wild-type
stem cells more than the mutant stem cells, then this equili-
brium solution becomes unstable.

! The equilibrium solution with coexistence is stable when the
mutant cells inhibit growth of mutant stem cells more than
growth of wild-type stem cells, and likewise, the wild-type
cells inhibit growth of wild-type stem cells more than growth
of mutant stem cells. This equilibrium solution becomes
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unstable if either the death rate of the differentiated cells is
changed such that the mutant cells inhibit growth of wild-type
stem cells more than growth of mutant stem cells and/or if the
death rate of the differentiated cells is changed such that the
wild-type cells inhibit growth of mutant stem cells more than
growth of wild-type stem cells.

2.2.2. Numerical simulations
We have performed numerical simulations for different para-

meter regimes to illustrate how changes in the population
dynamics of the differentiated cells can affect the competition
dynamics of the stem cells. The goal of this paper is to point out
that the relative fitness of stem cells can be affected by changes in
the population of differentiated cells. Thus, the parameters are not
scaled with respect to a specific tissue. Moreover, since the
feedback mechanism within the stem cell area cannot be mea-
sured directly, it is not possible to give a precise estimate for all
parameters. Just like the examples in Wodarz' (2008) paper, the
time is given in an arbitrary unit.

Note that if

θx
x ¼ θx

y; γxx ¼ γxy and θy
y ¼ θy

x ; γyy ¼ γyx ;

then exactly one of the equilibrium solutions, where one type of
cell gets extinct, is stable. An example of this is shown in Fig. 4.
Initially we have that

θy
zþ

P
Q
γyz oθx

zþ
P
Q
γxz ;

for zAfx; yg. Thus, starting with only one mutant stem cell, the
system converges towards the equilibrium solution where the
mutant cells invade and the wild-type cells get extinct:

x2ns ; x2nd ; y2ns ; y2nd
! "

¼ 0;0;
1

θy
yþ

P
Q
γxx
ln

r
d

# $
;
P
Q
y2n0

0

BB@

1

CCA:

At time 350 the death rate of the differentiated cells is increased to
Q̂ , such that the inequalities

θy
zþ

P

Q̂
γyz 4θx

zþ
P

Q̂
γxz ;

hold, and the system converges towards the equilibrium solution
where the mutant cells get extinct and the wild-type cells survive:

x1ns ; x1nd ; y1ns ; y1nd
! "

¼
1

θx
xþ

P
Q
γxx
ln

r
d

# $
;
P

Q̂
x1n0 ;0;0

0

BB@

1

CCA:

Fig. 5 shows an example where initially the inequalities

θy
z þ

P
Q
γyz oθx

zþ
P
Q
γxz

hold for zAfx; yg. Thus, only ðx2ns ; x2nd ; y2ns ; y2nd Þ is stable, and the
system converges towards this equilibrium solution. By changing
the death rate of the differentiated cells to Q̂ , we obtain that

θy
yþ

P

Q̂
γyyoθx

yþ
P

Q̂
γxy and θy

xþ
P

Q̂
γyx4θx

xþ
P

Q̂
γxx:

This means that both ðx2ns ; x2nd ; y2ns ; y2nd Þ and ðx1ns ; x1nd ; y1ns ; y1nd Þ
become stable. Thus, which of the equilibrium solutions the
system converges towards, depends on the time that the death
rate is modified.

2.3. Multi-compartment model

In this subsection, we present an extension of the simple model
proposed in Section 2.1, which includes various stages of the
differentiation process. As discussed in the introduction, the differ-
entiated cells are produced by the stem cells through asymmetric
division and symmetric differentiation, and they go though a
number of divisions, obtaining various stages of differentiation,
until the fully mature cells stop dividing (Donohue et al., 1958;
Cronkite and Fliedner, 1964; Ogawa, 1993). However, as discussed
by Dingli et al. (2007a), there is no unambiguous determination of
the number of stages connecting stem cells and fully differentiated
cells, let alone how fast cells go through different stages of
maturation (Donohue et al., 1958; Cronkite and Fliedner, 1964).
Similar to Dingli et al., we model differentiation as a multi-step
process where cell replication and differentiation are coupled with
cells moving through successive stages – compartments – of
maturation in a series of steps from the stem cells all the way
down to the fully differentiated cells. More precisely, when differ-
entiated cells are produced by stem cells through asymmetric
division and symmetric differentiation, they move to compartment
1. Furthermore, it is assumed that when a cell in compartment i

Fig. 4. One stable equilibrium solution. Initially, both the wild-type cells and the mutant cells inhibit growth of wild-type stem cells more than growth of mutant stem cells.
Thus, if one mutant stem cell is generated at time zero, the system converges towards the only stable equilibrium solution, which is extinction of the wild-type cells and
survival of the mutant cells. At time 350 the death rate of the differentiated cells is modified such that both the wild-type cells and the mutant cells inhibit growth of mutant
stem cells more than growth of wild-type stem cells. Hence, extinction of the mutant cells and survival of the wild-type cells become the only stable equilibrium solution,
and the system converges towards this solution.
The parameter sizes are: θxx ¼ θxy ¼ 0:0012, γxx ¼ γxy ¼ 1:15( 10&6, θyx ¼ θyy ¼ 1:18( θxx , γ

y
x ¼ γyy ¼ 0:8( γxx, r¼ 1, d¼ exp & θxxþ

P
Qγ

x
x

# $
1010

# $
, P ¼ 106 and Q ¼ 103.

(a) and (b) display the stem cells and the differentiated cells, respectively.
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Fig. 5. Two stable equilibrium solutions. Initially, both the wild-type cells and the mutant cells inhibit growth of wild-type stem cells more than growth of mutant stem cells.
Thus, if one mutant stem cell is generated at time zero, the system converges towards the only stable equilibrium solution, which is extinction of the wild-type cells and
survival of the mutant cells. By modifying the death rate of the differentiated cells, the equilibrium solution, where the wild-type cells survive and the mutant cells get
extinct, also becomes stable. Which of the equilibrium solutions the system converges towards, depends on the time that the death rate is modified.
The parameter sizes are: θxx ¼ θxy ¼ 0:0012, γxx ¼ γxy ¼ 1:15( 10&6, θyx ¼ θyy ¼ 0:8( θxx, γ

y
x ¼ 1:2083( γxx , γ

y
y ¼ 1:2077( γxx r¼ 1, d¼ exp & θxxþ

P
Qγ

x
x

# $
1010

# $
, P ¼ 106 and Q ¼ 103.

(a) and (b) display the stem cells and the differentiated cells, respectively, when the death rate is not modified.
(c) and (d) display the stem cells and the differentiated cells, respectively, when the death rate is modified at time 6000.
(e) and (f) display the stem cells and the differentiated cells, respectively, when the death rate is modified at time 5200.
(g) and (h) display the stem cells and the differentiated cells, respectively, when the death rate is modified at time 5100.
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divide, both daughter cells are placed in compartment iþ1, for
1r ioN where N is the total number of compartments of differ-
entiated cells. When the cells reach compartment N, they stop
dividing and eventually die. Let x0 denote the number of stem cells
and xi denote the number of differentiated cells in compartment i. It
is assumed that when the cells in all compartments are approxi-
mately in normal conditions, then the cells in compartments 1 to
N&1 divide and die at the approximately same, constant rates, c
and s, respectively, where c4s. For simplicity, it is assumed that the
death rate of the cells in compartment N is q¼ cþs, and that
p¼ 2c¼ 2d0þg, where d0 and g are the rates at which the stem
cells differentiate symmetrically and divide asymmetrically, respec-
tively. Hence, if the number of stem cells is in equilibrium, xn0, then
the number of differentiated cells in compartment i is expected to
converge towards

xni ¼
p
q

% &i

xn0 ð15Þ

(approximately). The approximation of the signalling intensity
given in (2) considers the average feedback from all differentiated
cells. Here, an approximation of the signalling intensity that
includes different stages of differentiation is presented:

Ψ ¼ expð&θx0&
X

γxi xiÞ:

It is assumed that for any pair 1r i; jrN, γxi
2p

pþq

# $i
and γxj

2p
pþq

# $j

have the same order and that
PN

i ¼ 1 γxi
2p

pþq

# $i
has the same order as

θ, because our numerical results indicate that the systems with
these parameter relations are most robust.

A second feedback mechanism is considered in this subsection,
namely, that cells in compartment i inhibit cell division in
compartment i&1 for 1o irN, and that cells in compartment
one inhibit asymmetric stem cell division. As discussed in the
introduction and in Section 2.1, molecules such as cytokines
regulate cell behaviour, and the secretion of cytokines is very fast
compared with cell activity such as differentiation. However, the
precise nature of this regulation is still unknown (Layton et al.,
1989; Aglietta et al., 1989; Metcalf, 2008; Fried, 2009). We assume
that the signalling intensity from compartment j is approximately

Γxj ¼ expð&νjxjÞ;

for 1r jrN. Since the rates of differentiated cell division and
asymmetric stem cell division are approximately constant under

normal conditions, νj must be sufficiently large, such that

expð&νjxnj Þoϵ; ð16Þ

for some small number ϵ' 0, where xnj is given in Eq. (15). The
extended model is given by the following set of ordinary differ-
ential equations:

dx0
dt

¼ ðrΨ &dÞx0; ð17Þ

dxi
dt

¼ ðpþ2WΓxi Þxi&1&ðqþWΓxiþ 1 Þxi; ð18Þ

dxN
dt

¼ ðpþ2WΓxN ÞxN&1&qxN ; ð19Þ

for 1r ioN, and where W is a positive constant. The system has
two equilibrium solutions, namely,

ðx0n0 ; x0n1 ;…; x0nN Þ ¼ ð0;0;…;0Þ;

ðx1n0 ; x1n1 ;…; x1nN Þ ' ðxn0; x
n
1;…; xnNÞ;

where xni is given in (15) for 1o irN and

xn0 ¼
1

θþ
PN

j ¼ 1 γxj
p
q

% &jln
r
d

# $
:

For r4d the former equilibrium solution is unstable and the latter
is stable. Moreover, the numerical analysis shows that starting
with any population size ðx00; x

0
1;…; x0NÞ where x0040, the system

converges towards the stable equilibrium solution.
The work by Komarova (2013) indicates that a well-regulated

N-compartment model must have at least Nþ1 control loops, and
that all the Nþ1 different cell populations must control at least
one process. Moreover, the differentiation decision for stem cells
must be controlled by another population, and the control of stem
cell divisions must be negative. The multi-compartment model
presented in this subsection satisfy all these conditions. Fig. 6
illustrates that this model performs better than a model that
contains less control loops. That is, the figure shows an example
where the whole system is regenerated, starting with a single
stem cell. For comparison, the figure also shows the regeneration
in the absence of feedback between the compartments. From
Fig. 6, we can see that feedback between the compartments
enables the system to regenerate faster.

Fig. 6. Regeneration of the multi-compartmental model. The whole system is regenerated, starting with a single stem cell. The stem cells reach their normal population size
first, and the differentiated cells in compartment i reach their normal population size before the differentiated cells in compartment iþ1. The figure displays the following
ratios:

number of cells
normal population size
for the stem cell niche and all compartments of differentiated cells. The regeneration-time depends on the strength of the feedback and on the number of feedback-loops.
The parameter sizes are: θ¼ 0:0012, γxi ¼ 10&4 ( ðqpÞ

ir¼ 1, W ¼ 2, d¼ 0:0907, p¼ 2, q¼ 1:1, νxi ¼
lnð103 Þ

xni
.

(a) displays regeneration with two feedback-loops. (b) displays regeneration with one feedback-loop.
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We will now consider competition dynamics in the multi-
compartment model. Like in Section 2.2, it is assumed that the
wild-type cells and the mutant cells have the same differentiation
hierarchy. However, the mutant cells and the wild-type cells
inhibit symmetric stem cell self-renewal at different strength.
Moreover, in this subsection it is also assumed that the mutant
differentiated cells have a lower death rate than the wild-type
cells. Let y0 denote the number of mutant stem cells and yi denote
the number of differentiated cells in compartment i. The competi-
tion dynamics is given by the following set of ordinary differential
equations:

dx0
dt

¼ ðrΨ x&dÞx0;

dxi
dt

¼ ðpþ2WΓxi þyi Þxi&1&ðqxþWΓxiþ 1 þyiþ 1 Þxi;

dxN
dt

¼ ðpþ2WΓxN þyN ÞxN&1&qxxN ;

dy0
dt

¼ ðrΨ y&dÞy0;

dyi
dt

¼ ðpþ2WΓxi þyi Þyi&1&ðqyþWΓxiþ 1 þyiþ 1 Þyi;

dyN
dt

¼ ðpþ2WΓxN þyN ÞyN&1&qyyN ;

for 1r ioN, where qyoqx,

Γxk þyk ¼ expð&νkðxkþykÞ

where νk satisfies the inequality given in (16) for 1rkrN, and

Ψ z ¼ exp &θz
xx0&θz

yy0&
XN

j ¼ 1

γzxj xjþγzyj yj
# $

0

@

1

A

for zA ðx; yÞ. Note that if the parameters γzyj are of the same order as
γzxj , respectively, then the total number of stem cells decreases if
the mutant population starts to grow. Since we are interested in
investigating the case where the number of mutant differentiated
cells increases beyond the normal level, when the total number of
stem cells remains approximately constant, it is assumed that
γzyj

qy
qx

# $j
is of the same order as γzxj .

The system has three equilibrium solutions where at least one
type of cells gets extinct, namely,

ðx0n0 ;…; x0nN ; y0n0 ;…; y0nN Þ ¼ ð0;…;0Þ; ð20Þ

ðx1n0 ;…; x1nN ; y1n0 ;…; y1nN Þ ¼ ðxn0;…; xnN ;0;…;0Þ; ð21Þ

ðx2n0 ;…; x2nN ; y2n0 ;…; y2nN Þ ¼ ð0;…;0; yn
0;…; yn

NÞ; ð22Þ

where

zn0 '
1

θz
zþ
PN

j ¼ 1 γzzj
p
qz

% &jln
r
d

# $
;

and

znj '
p
qz

% &j

z0;

for zAfx; yg and 1r jrN. The system has also one equilibrium
solution with coexistence, ðx3n0 ;…; x3nN ; y3n0 ;…; y3nN Þ, where

x3n0
y3n0

" #
'

θx
xþ
PN

j ¼ 1 γxxj
p
qx

# $j
θx
yþ

PN
j ¼ 1 γxyj

p
qy

# $j

θy
xþ

PN
j ¼ 1 γ

y
xj

p
qy

# $j
θy
yþ

PN
j ¼ 1 γ

y
yj

p
qy

# $j

2

664

3

775

&1

lnðrdÞ
lnðrdÞ

" #
;

z3nj '
p
qz

% &j

z0:

The equilibrium solution where all cells get extinct is unstable for
r4d. The numerical analysis shows that the analytic results

obtained in Section 2.2 also apply to the extended model. That
is, the equilibrium solution with survival of the wild-type cells and
extinction of the mutant cells given in (21) is stable if the wild-
type cells inhibit reproduction of mutant cells more than repro-
duction of wild-type cells, i.e.

θx
xþ

XN

j ¼ 1

γxxj
p
qx

% &j

oθx
yþ

XN

j ¼ 1

γxyj
p
qy

 !j

:

On the other hand, if the wild-type cells inhibit reproduction of
wild-type cells more than reproduction of mutant cells, then the
equilibrium solution is unstable. Likewise, the equilibrium solution
with survival of the mutant cells and extinction of the wild-type
cells given in (22) is stable if the mutant cells inhibit reproduction
of wild-type cells more than reproduction of mutant cells, i.e.

θy
xþ

XN

j ¼ 1

γyxj
p
qy

 !j

4θy
yþ

XN

j ¼ 1

γyyj
p
qy

 !j

:

On contrary, if the mutant cells inhibit reproduction of mutant
cells more than reproduction of wild-type cells, then the equili-
brium solution is unstable. If both the equilibrium solutions given
in (21) and (21) are unstable, then the equilibrium solution with
coexistence is stable. Moreover, if there is only one stable equili-
brium solution and both types of stem cells are present, then the
system converges towards this solution. On the other hand, if
there are two stable equilibrium solutions and both types of stem
cells are present, then the system converges towards one of the
equilibrium solutions.

Fig. 7 shows an example where a mutant stem cell is generated
when the wild-type cells are in normal condition. Since both the
wild-type cells and the mutant cells inhibit growth of wild-type
cells more than mutant cells, the only stable equilibrium is
extinction of the wild-type cells and invasion of the mutant cells,
and the system converges towards this solution. The death rate of
the mutant differentiated cells is lower than the death rate of the
wild-type cells. Hence, the number of differentiated cells increases
beyond the normal level. Moreover, since the mutant differen-
tiated cells have weak feedback to the stem cells, the number of
stem cells remains approximately constant. When the death rate
of the differentiated cells is reduced, the equilibrium solution
where the wild-type cells survive and the mutant cells get extinct
also becomes stable. Which of the two stable solutions the system
converges, depends on the time that the death rate is reduced.

3. Discussion

In this paper we use a mathematical model to investigate
implications when the rate of symmetric self-renewal is regulated
by both differentiated cells and stem cells, and show that changes
in the population dynamics of the differentiated cells can lead to
changes in the population dynamics of the stem cells. This result
implies that a medical treatment that targets differentiated cells
can change the competition dynamics of the stem cells, even if the
treatment has no direct effect on the stem cells.

Research suggests that a subset of cancer cells within some
tumours, the so-called cancer stem cells, may drive the growth and
metastasis of these tumours (Reya et al., 2001; Clarke and Fuller,
2006). Understanding the pathways that regulate proliferation,
self-renewal, survival and differentiation of malignant and normal
stem cells may shed light on mechanisms that lead to cancer and
suggest better modes of treatment (Rodriguez-Brenes et al., 2011).
For most types of cancer, the target cell of transforming mutation
is unknown. However, there is considerable evidence that certain
types of leukaemia, such as chronic myeloid leukaemia (CML), arise
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Fig. 7. Two stable equilibrium solutions in the multi-compartmental model. Initially, the mutant differentiated cells have a low death rate and weak feedback to the stem cells.
Moreover, both the wild-type cells and the mutant cells inhibit growth of wild-type stem cells more than growth of mutant stem cells. Consequently, if one mutant stem cell
is generated, the total number of differentiated cells increases and mutants invade the system, whereas the wild-type cells get extinct. If the death rate of the differentiated
cells is decreased enough, the equilibrium solution, where the wild-type cells survive and the mutant cells get extinct, also becomes stable. Which of the equilibrium
solutions the system converges to, depends on the time that the death rate is modified.
The parameters sizes are: θxx ¼ 0:0012, θxy ¼ 0:0024, θyx ¼ 0:0024, θyy ¼ 0:0023 r ¼ 1, d¼ 0:0907, p¼ 2, qx ¼ 1:1, qy ¼ 1:08, Q̂ ¼ 1:11 γxxi ¼ 10&4 ( ðqxp Þ

i , γxyi ¼ 10&7 ( 8:3( ðqyp Þ
i ,

γyxi ¼ 10&7 ( 8:3( ðqxp Þ
i, γyyi ¼ 10&7 ( 8:3( ðqyp Þ

i , W ¼ 1, νxi þyi ¼
lnð103 Þ

xni
.

(a) and (b) display the stem cells and differentiated cells, respectively, when the death rate of the differentiated cells is not modified.
(c) and (d) display the stem cells and the sum of all differentiated cells, respectively, when the death rate of the differentiated cells is modified at time 83.
(e) and (f) display the stem cells and the sum of all differentiated cells, respectively, when the death rate of the differentiated cells is modified at time 52.
(g) and (h) display the stem cells and the sum of all differentiated cells, respectively, when the death rate of the differentiated cells is modified at time 51.5.
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from mutation in haematopoietic stem cells (Reya et al., 2001;
Wang and Dick, 2005; Hope et al., 2004).

Treatment of CML with the tyrosine kinase inhibitors (TKIs)
imatinib and nilotinib represents a successful application of molecu-
larly targeted anti-cancer therapy (Druker et al., 1996, 2001;
Kantarjian et al., 2002). TKIs reduce the fitness of leukemic differ-
entiated cells. However, the effect of TKIs on leukemic stem cells
remains incompletely understood. Several mathematical models of
CML and treatment with TKIs have been proposed (Dingli and
Michor, 2006; Wodarz, 2008; Michor et al., 2005; Rodriguez-Brenes
et al., 2011; Roeder et al., 2006). These models are discussed and
compared by Michor (2008). Discontinuation of TKIs results in a
relapse of the disease in many patients within a few months (Cortes
et al., 2004). Explanations have been put forward for this phenom-
enon. For example, the drug might have no effect on the CML stem
cells (Dingli and Michor, 2006; Michor et al., 2005), or the CML stem
cells can be susceptible to drug therapy when they are in an active
state, but are not be susceptible when they are in quiescent state
(Roeder et al., 2006). In contrast to these arguments a small study
involving 12 patients has shown that in some individuals the disease
has remained undetected for two years after discontinuation of TKIs,
raising the possibility that TKIs have eradicated the disease in these
patients (Rousselot et al., 2006). Moreover, all studies indicate that
the effect of TKIs increases when treatment starts early in disease
progression (Rousselot et al., 2006; Gorre et al., 2001; Houchhause et
al., 2002; Roche-Lestienne et al., 2002). These results can be
explained by the mechanisms described in our model: Suppose that
the treatment with TKIs has no direct effect on the leukemic stem
cells. However, since the treatment changes the population dynamics
of the differentiated cells, and the differentiated cells regulate the
proliferation of the stem cells, treatment indirectly effects the stem
cells and can lead to changes in the competition dynamics of the
stem cells. More precisely, let us revisit the examples illustrated in
Figs. 5 and 7. In both figures the wild-type cells represent the healthy
cells, the mutant cells represent the leukemic cells, and treatment is
represented by modifying the death rate of the differentiated cells.
Subfigures (a) and (b) show the disease progression without any
treatment – the number of leukemic cells expands and the healthy
cells get extinct. In (c) and (d), treatment starts too late to have any
significant effect on the disease progression. In (e) and (f), treatment
starts early enough to slow down the disease progression and the
healthy cells survive a bit longer. However, ultimately, the leukemic
cells invade the population and the healthy cells get extinct. Finally,
in (g) and (h), treatment starts early enough to reverse the competi-
tion dynamics – the healthy cells survive and the leukemic cells get
extinct. Fig. 7 shows an example of the extended model, which
captures the fact that the number of differentiated leukemic cells
increases beyond the normal level, whereas the number of stem cells
remains approximately constant (Wang and Dick, 2005; Hope et al.,
2004). However, the competition dynamics in both examples is
determined by the feedback functions that regulate self-renewal,
and this is best captured by the example of the simple model
illustrated in Fig. 5.

Lenaerts et al. (2010) illustrate that the results from studies of
TKIs treatment (Cortes et al., 2004; Rousselot et al., 2006; Gorre
et al., 2001; Houchhause et al., 2002; Roche-Lestienne et al., 2002)
can also be explained by the stochastic nature of the haemato-
poietic stem cells. A deterministic model does not capture neither
neutral drift nor that a disadvantageous phenotype can outcom-
pete an advantageous phenotype in a finite population. Since stem
cell populations in general are small, their population dynamics
are highly sensitive to stochastic fluctuations. Under steady state,
the number of stem cells is approximately constant, and Lenaerts
et al. show that the stem cell population dynamics can be captured
by the Moran process, which describes the probabilistic dynamics
in a finite population of constant size N. The Moran process

predicts that if there are i mutant stem cells and N& i wild-type
stem cells in the population, while the mutants have relative
fitness r and the wild-types relative fitness 1, then the probability
that the mutant cells eventually invade the whole population is

pi ¼
i
N

ð23Þ

if r¼ 1, and

pi ¼
1&r& i

1&r&N

if ra1. The mutants are advantageous if r41, disadvantageous if
ro1, and neutral if r¼ 1. Moreover, the probability that the
mutant population eventually gets extinct is 1&xi. Hence, the
Moran process predicts that coexistence is only temporary –
ultimately the population consists of only one type of cells.
Lenaerts et al. assume that the competition between the healthy
stem cells and the CML stem cells is captured by a neutral Moran
process and that TKIs treatment has no effect on stem cells. If CML
is discovered early, then the number of CML stem cells, i, is in
general much smaller than the total number of stem cells, N. It
follows from Eq. (23) that the probability that the CML stem cells
get extinct is 1& i

N ' 1. Hence, there is a very good chance of full
recovery, even though the TKIs treatment has no effect on the
stem cells. On the other hand, if CML is discovered relatively late,
then the number of CML stem cells is typically very high, such that
1& i

N ' 0. This means that full recovery is very unlikely.
Lenaerts et al. (2010) illustrate the importance of stochastic

fluctuations in stem cell populations, and the response dynamics
predicted by the model closely matches data from clinical trials.
Since stem cell regulation is an extremely complex process, a
model that treats self-renewal and differentiation as purely ran-
dom events fits general data better than a deterministic model
with a single regulation mechanism. Thus, the model proposed by
Lenarts et al. gives a general picture of how stem cells behave
under steady state. However, Lander et al. (2009) show that linear
models, e.g. the one proposed by Lenarts et. al., are very parameter
sensitive. Since parameter sensitivities tend to be undesirable in
well-regulated biological systems, stochastic behaviour cannot be
the complete story. A deterministic model of stem cell dynamics
with only one regulation mechanism can be designed to describe
more specific data. For instance, research results by Gokoffski et al.
(2011) indicate that the number of stem cells increases when the
number of differentiated cells decreases. This can be explained by
a model of stem cell self-renewal and differentiation, where
symmetric stem cell division is regulated by differentiated cells,
like the model proposed by Rodriguez-Brenes et al. (2013) and the
models presented in this paper.

The model proposed by Lenaerts et al. (2010) and the model
presented in this paper have different explanations for successful
TKIs treatment. However, this does not mean that one of the
conclusions must be false. It is possible that the CML stem cells are
advantageous before TKIs treatment and, because the differen-
tiated cells regulate symmetric stem cell division, the CML stem
cells are disadvantageous during the TKIs treatment. In this case,
the average behaviour of the CML stem cells can be approximately
neutral, as assumed by Lenaerts et al.

The main purpose of the simple model proposed in Section 2.1
is to investigate implications when symmetric stem cell division is
regulated by differentiated cells. Similar results can be obtained by
replacing the signal intensity function given in (2) with another
function that reaches its maximum under complete absence of
cells and decreases towards zero as the number of cells decreases.
For instance

S¼ 1=ðθxsþγxdþ1Þ;
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which is similar to the function proposed by Marciniak-Czochra
et al. (2009) given in (1). Yet, the function in (2) is used in our
model because it makes the stability analysis simple. It would also
be interesting to investigate implications when differentiated cells
also regulate symmetric differentiation. However, in this paper, the
model is kept simple to obtain analytic results. In Sections 2.2 and
2.3 the competition dynamics is investigated. It is possible that the
mutant cells have other properties than the ones investigated in
this paper. For instance, the mutant differentiated cells in com-
partment i could have a much weaker feedback to compartment
i&1 than the wild-type cell in compartment i. This could radically
change the dynamics of the cells. However, investigation of these
types of mutation is beyond the scope of this paper. Finally, the
timescale in all examples are the same. This illustrates that
regeneration of the system in general occurs much faster than
the invasion of a mutation. Moreover, Figs. 4, 5 and 7 indicate that
the timescale of the competition dynamics depends on the ratios

θw
v þ

P
Q
γwv

θz
vþ

P
Q
γzv

where v;w; zAfx; yg, waz. That is, the closer these ratios are to
one, the slower the competition dynamics occurs.

4. Conclusion

In this paper, we use a mathematical models where symmetric
stem cell division is regulated by negative feedback from the
differentiated cells, to show that changes in the population
dynamics of the differentiated cells can lead to changes in the
population dynamics of the stem cells. This result is interesting
because it can explain how medical treatments that have no direct
effect on the stem cells can change the competition dynamics of
these cells. For example, the model can reproduce some of the
results from studies of TKIs treatment of CML patients (Cortes
et al., 2004; Rousselot et al., 2006; Gorre et al., 2001; Houchhause
et al., 2002; Roche-Lestienne et al., 2002):

! The effect of TKIs increases when treatment starts early in
disease progression.

! In some cases the treatment slows down the disease progres-
sion without erasing the CML stem cells, which drive the
disease.

! In other cases the treatment reverses the disease progression
and seems to erase the CML stem cells.

The results from these studies seem contradictory if a classical
deterministic model of stem cells and differentiation is used, where
stem cell activity is not regulated by the differentiated cells (Dingli
and Michor, 2006; Michor et al., 2005). Our model shows that the
results from the different studies can be explained by negative
feedback from differentiated cells that regulate symmetric stem cell
division: TKIs treatment reduces the fitness of the CML differentiated
cells, but has little or no direct effect on the CML stem cells. However,
since the differentiated cells regulate the proliferation of the stem
cells, the treatment indirectly affects the stem cells and can lead to
changes in the competition dynamics of the stem cells, which in
some cases results in the extinction of the CML stem cells.

Appendix A

Proposition 1. Consider the systems of differential equations given
in (3) and (4) and (10)–(13). If Q is sufficiently large, then the pseudo-

state hypothesis (Appendix C)

dzd
dt

1
Q
¼

P
Q
zs&zd

% &
C0 ðA:1Þ

holds for zAfx; yg and tZ1
r , when it is given that the parameters r

and d are of significantly lower order than the parameters P and Q,
r4d and P4Q , and initial values are non-negative.

Proof. By re-scaling the systems of given in (3) and (4) and (10)–
(13) with respect to the constant r, we obtain

dvs
dT

¼ ðΨ v&drÞvs; ðA:2Þ

dvd
dT

¼ Prvs&Qrvd; ðA:3Þ

where dr ¼ d
r, Pr ¼ P

r , Qr ¼ Q
r , and T ¼ r ( t. For the system with only

one type of cells v¼ x, whereas vA x; y
' (

for the system with both
wild-type cells and mutant cells. Note that if vs ¼ 0, then dvs

dT ¼ 0,
and if vd ¼ 0 and vsZ0, then dvd

dT Z0. Consequently, a solution of
the system with non-negative initial values will never obtain
negative values.

We now use the perturbation methods presented by Fowler
(1997) to analyse the system. Given that 0odro1, Qrc1 and
Pr4Qr , the pseudo-state hypothesis states that if Qr is sufficiently
large, then

dvd
dT

1
Qr

¼
Pr

Qr
vs&vd

% &
C0 ðA:4Þ

when TZOð1Þ. However, the approximation given in (A.4) does
not generally hold for the initial values, i.e. when T is close to
zero. This means that the neglect of dvd

dT
1
Qr

is wrong in a region
that contains T ¼ 0. We will now show that if Qr is sufficiently
large, then this is only a thin region, termed the boundary layer.
We bring back the term dvd

dT in the boundary layer by rescaling
the time as

T ¼
1
Qw

τ;

where Qw is OðQrÞ. To obtain variables that are Oð1Þ, we rescale
as follows:

vs ¼ vsð0ÞVs;
vd ¼ vdð0ÞVd;

where vsð0Þ and vdð0Þ are the initial values of vs and vd,
respectively. By substituting this into the system of differential
equations given in (A.2) and (A.3), we obtain

dVs

dτ
¼

1
Qw

ðΨ v&drÞVs;

dVd

dτ
¼

Pr

Qw

vsð0Þ
vdð0Þ

Vs&
Qr

Qw
Vd:

Note that Vs is Oð1Þ when τ is close to zero. Thus, since
0odr ;Ψ vo1 and Prc1, the variable Vs is approximately con-
stant, i.e. dVs

dτ C0 when τ is Oð1Þ. On the other hand, Qr
Qw

is Oð1Þ,
while Pr

Qw
ZOð1Þ. Thus, we obtain the approximate solution

VdðτÞ ¼
Pr

Qr

vsð0Þ
vdð0Þ

VsðτÞþ 1&
Pr

Qr

vsð0Þ
vdð0Þ

% &
exp &

Qr

Qw
τ

% &
:

By substituting the original variables, we obtain

vdðTÞ ¼
Pr

Qr
vsðTÞþ vdð0Þ&

Pr

Qr
vsð0Þ

% &
exp &

Qr

Q2
w

T

 !

:

Hence, outside the boundary layer, i.e. when T ZOð1Þ, we obtain
the approximation

vdðTÞ ¼
Pr

Qr
vsðTÞ;
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which satisfies the pseudo-steady state hypothesis given in
(A.4). Thus, we have proved that for sufficient large Q, any
solution with non-negative initial values of either the system
given in (3) and (4) or the system given in (10)–(13) satisfies the
pseudo-state hypothesis given in (A.1) for tZ1

r .□

Appendix B

Proposition 2. The system of differential equations given in (3) and
(4) has one stable equilibrium solution:

ðxns ; x
n
dÞ ¼

1

θþ
P
Q
γ
ln

r
d

# $
;
P
Q

1

θþ
P
Q
γ
ln

r
d

# $
0

BB@

1

CCA;

and one unstable equilibrium solution:

ðx0ns ; x0nd Þ ¼ ð0;0Þ;

for r4d. The following domain

V ¼ fðxs; xdÞAR2∣xs40; xdZ0g

is in the basin of attraction of ðxns ; x
n
dÞ.

Proof. We prove the proposition for the case when Q is suffi-
ciently large so that Proposition 1 holds. Then the system given in
(3) and (4) is reduced to the following differential equation:

dxs
dt

¼ ðrΨ &dÞxs;

where

Ψ ¼ exp & θþγ
P
Q

% &
xs

% &
:

The Jacobian of the system is

JðxsÞ ¼ ðrΨ &dÞ&xs θþγ
P
Q

% &
rΨ :

We have that

Jðx0ns Þ ¼ ðr&dÞ40

for r4d. Hence, the equilibrium solution ðx0ns ; x0nd Þ is unstable.
Since

Jðxns Þ ¼ &xns θþγ
P
Q

% &
rΨo0;

the equilibrium solution ðxns ; x
n
dÞ is stable.

Note that dxs
dt 40 for 0oxsoxns . Hence, if the initial number of

stem cells is less than xns , then the solution converges towards the
stable equilibrium solution. Likewise, dxs

dt o0 for xs4xns . Hence, if
the initial number of stem cells is greater than xns , then the solution
converges towards the stable equilibrium solution. Consequently,
V is in the basin of attraction of xns ; x

n
d

! "
.□

Appendix C

Proposition 3. The system given in Eqs. (10)–(13) has three equili-
brium solutions where at least one of the populations gets extinct,
namely,

x0ns ; x0nd ; y0ns ; y0nd
! "

¼ 0;0;0;0ð Þ;

x1ns ; x1nd ; y1ns ; y1nd
! "

¼
1

θx
xþ

P
Q
γxx
ln

r
d

# $
;
P
Q
x1ns ;0;0

0

BB@

1

CCA;

x2ns ; x2nd ; y2ns ; y2nd
! "

¼ 0;0;
d

θy
yþ

P
Q
γyy
ln

1
d

% &
;
P
Q
y2ns

0

BB@

1

CCA;

and one equilibrium solution with coexistence, x3ns ; x3nd ; y3ns ; y3nd
! "

,
given in Eq, (14). For r4d, x0ns ; x0nd ; y0ns ; y0nd

! "
is unstable. Moreover,

given that Q is sufficiently large such that Proposition 1 holds, the
behaviour of system depends on the following four parameter
relations:

(a) For θy
yþ

P
Qγ

y
y4θx

yþ
P
Qγ

x
y and θy

xþ
P
Qγ

y
x4θx

xþ
P
Qγ

x
x, the only stable

equilibrium solution is x1ns ; x1nd ; y1ns ; y1nd
! "

. Moreover, the domain

U ¼ xs; xd; ys; yd
! "

AR4 j zs40; zdZ0; zA x; y
' (' (

; ðC:1Þ

is in the basin of attraction of x1ns ; x1nd ; y1ns ; y1nd
! "

.
(b) For θy

yþ
P
Qγ

y
yoθx

yþ
P
Qγ

x
y and θy

xþ
P
Qγ

y
xoθx

xþ
P
Qγ

x
x, the only stable

equilibrium solution is x2ns ; x2nd ; y2ns ; y2nd
! "

, and U is in the basin of
attraction of x2ns ; x2nd ; y2ns ; y2nd

! "
.

(c) For θy
yþ

P
Qγ

y
y4θx

yþ
P
Qγ

x
y and θy

xþ
P
Qγ

y
xoθx

xþ
P
Qγ

x
x, the only stable

equilibrium solution is x3ns ; x3nd ; y3ns ; y3nd
! "

. Moreover, U is in the
basin of attraction of this equilibrium solution.

(d) For θy
yþ

P
Qγ

y
yoθx

yþ
P
Qγ

x
y and θy

xþ
P
Qγ

y
x4θx

xþ
P
Qγ

x
x, both

x1ns ; x1nd ; y1ns ; y1nd
! "

and x2ns ; x2nd ; y2ns ; y2nd
! "

are stable and
x3ns ; x3nd ; y3ns ; y3nd
! "

is unstable. Moreover, the domain

D1 ¼ xs; xd; ys; yd
! "

AU j ysoxs
Θy

x&Θx
x

Θx
y&Θy

y

( )

is in the basin of attraction of x1ns ; x1nd ; y1ns ; y1nd
! "

, and

D2 ¼ xs; xd; ys; yd
! "

AU j ys4xs
Θy

x&Θx
x

Θx
y&Θy

y

( )

is in the basin of attraction of x2ns ; x2nd ; y2ns ; y2nd
! "

. The basin
of attraction of the equilibrium solution x3ns ; x3nd ; y3ns ; y3nd

! "
is the

line

L3 ¼ xs; xd; ys; yd
! "

AU j ys ¼ xd
Θy

x&Θx
x

Θx
y&Θy

y

( )

;

where

Θv
w ¼ θv

wþ
P
Qv
γvw;

for v;wA x; y
' (

.

Proof. Given that Q is sufficiently large, such that Proposition
1 holds, the system given in (10)–(13) is reduced to the following
two differential equations:

dxs
dT

¼ Ψ x&D
! "

xs; ðC:2Þ

dys
dT

¼ Ψ y&D
! "

ys; ðC:3Þ

where D¼ d
r, T ¼ r ( t, and

Ψ v ¼ exp &Θv
xxs&Θv

yys
# $

:

for vA x; y
' (

. We have that dvs
dT ¼ 0 for vs ¼ 0 and Ψ v ¼D. Note that

0oDo1. Thus, there are three equilibrium solutions where at
least one of the variables is zero, namely,

x0ns ; y0ns
! "

¼ 0;0ð Þ;

x1ns ; y1ns
! "

¼
1
Θx

x
ln

1
D

% &
;0

 !

;

x2ns ; y2ns
! "

¼ 0;
1
Θy

y
ln

1
D

% & !

:

The equilibrium solution with coexistence, x3ns ; y3ns
! "

, must satisfy

Ω
x3ns
y3ns

" #

¼ ln
1
D

% & 1
1

) *
;
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where

Ω¼
Θx

x Θx
y

Θy
x Θy

y

2

4

3

5:

If detΩ¼ 0, we have a solution with coexistence if and only if
Θx

x ¼Θy
x and Θx

y ¼Θy
y, which means that there is no difference

between the wild-type cells and mutant cells. Thus, we will only
consider the case when detΩa0, and obtain the following
solution with coexistence:

x3ns
y3ns

" #

¼
ln

1
D

% &

Θx
xΘ

y
y&Θx

yΘ
y
x

Θy
y &Θx

y

&Θy
x Θx

x

" #
1
1

) *
:

Note that x3ns ; y3ns 40 if and only if both Θy
y4Θx

y and Θx
x4Θy

x or
both Θy

yoΘx
y and Θx

xoΘy
x . The Jacobian of the system is

J xs; ys
! "

¼
Ψ x&D
! "

&Θx
xΨ xxs &Θx

yΨ xxs

&Θy
xΨ yys ðΨ y&DÞ&Θy

yΨ yys

2

4

3

5:

We have that

J x0ns ; y0ns
! "

¼
1&Dð Þ 0
0 ð1&DÞ

" #

:

Since Do1, both eigenvalues are positive. Hence, x0ns ; y0ns
! "

is
unstable. Moreover,

J x1ns ; y1ns
! "

¼
&Θx

xΨ xx1ns &Θx
yΨ xx1ns

0 ðΨ y&Ψ xÞ

" #

:

Thus, if Ψ y4Ψ x, i.e. Θ
y
xoΘx

x, then one eigenvalue is positive and
x1ns ; y1ns
! "

is unstable, whereas if Ψ yoΨ x, i.e. Θ
y
x4Θx

x, then both
eigenvalues are negative and x1ns ; y1ns

! "
is stable. Likewise,

J x2ns ; y2ns
! "

¼
Ψ x&Ψ y
! "

0

&Θy
xΨ yy2ns &Θy

yΨ yy2ns

" #

:

Hence, if Ψ yoΨ x, i.e.Θ
y
y4Θx

y, then one eigenvalue is positive and
x2ns ; y2ns
! "

is unstable, whereas if Ψ y4Ψ x, i.e. Θ
y
yoΘx

y, then both
eigenvalues are negative and x1ns ; y1ns

! "
is stable. Finally,

J x3ns ; y3ns
! "

¼
&Θx

xΨ xx3ns &Θx
yΨ xx3ns

&Θy
xΨ yy3ns &Θy

yΨ yy3ns

2

4

3

5:

The characteristic equation is

Θx
xΨ xx3ns þλ

! "
Θy

yΨ yy3ns þλ
# $

&Θx
yΘ

y
xΨ xΨ yx3ns y3ns ¼ 0:

Hence, x3ns ; y3ns
! "

is stable if Θx
xΘ

y
y4 Θx

yΘ
y
x . Thus, the equilibrium

solution with coexistence is both stable and positive if Θx
x4 Θy

x
and Θy

y4 Θx
y.

By analysing the nullclines of the system given in (C.1) and
(C.2), namely,

Θx
xx0þΘx

yy0 ¼ & ln D;

Θy
xx0þΘy

yy0 ¼ & ln D

we can predict the global behaviour. Since these nullclines are the
same as the nullclines of the two-species Lotka–Volterra competi-
tion model (Smith, 1978), the global stability analysis is identical.
Hence, the basins of attraction of the equilibrium solutions are as
described in (a)–(d) (Smith, 1978).□
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