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Abstract

When a new type of individual appears in a stable population, the newcomer
is typically not advantageous. Due to stochasticity, the new type can grow in
numbers, but the newcomers can only become advantageous if they manage to
change the environment in such a way that they increase their fitness. This dy-
namics is observed in several situations in which a relatively stable population
is invaded by an alternative strategy, for instance the evolution of cooperation
among bacteria, the invasion of cancer in a multicellular organism and the evo-
lution of ideas that contradict social norms. These examples also show that, by
generating di↵erent versions of itself, the new type increases the probability of
winning the struggle for fitness. Our model captures the imposed cooperation
whereby the first generation of newcomers dies while changing the environment
such that the next generations become more advantageous.

Keywords: Evolutionary dynamics, Nonlinear dynamics, Mathematical

modelling, Game theory, Cooperation

1. Introduction

When unconditional cooperators appear in a large group of defectors, they
are exploited until they become extinct. The best possible scenario for this type
of cooperators is to change the environment such that another type of cooper-
ators that are regulated and only cooperate under certain conditions becomes5

advantageous. Furthermore, when defectors appear in a regulated cooperation,
the first generation of defectors typically dies while changing the environment
such that the next generations become more advantageous; hence, cooperation
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Preprint submitted to Elsevier November 18, 2018



is imposed on the defectors. In this paper, we propose a model that captures
this dynamics. More specifically, we introduce an extension of the Moran pro-10

cess whereby individuals can change the fitness landscape of the population by
modifying the environment.

1.1. The Moran process

The Moran process represents the simplest possible stochastic model that
captures the three basic building blocks of evolution – replication, mutation
and selection – in a finite population [1],[2]. The process assumes that the
population size is constant and that each type of individual has constant fitness.
In each time step, a random individual is selected to reproduce and a random
individual is selected to die. In one implementation of the Moran process, all
individuals are initially of the same type, denoted the wild type. When a wild-
type individual reproduces, a mutation that creates a new type of individuals,
denoted the mutant type, occurs with probability u. It is assumed that no other
mutation can occur. The wild type has reproductive rate 1, whereas the mutant
type has reproductive rate r, where r is a non-negative constant. All individuals
are selected to die at the same rate. Hence, the mutant type is advantageous
if r > 1, neutral if r = 1 and disadvantageous if r < 1. In each time step, the
number of mutants can increase by one, decrease by one or remain constant.
The probabilities for these three events are

P(i+ 1|i) = u(N � i) + ri

N � i+ ir

N � i

N
, (1)

P(i� 1|i) = (1� u)(N � i)

N � i+ ir

i

N
, (2)

P(i|i) = 1� P (i+ 1|i)� P (i� 1|i), (3)

respectively, where N is the population size and i is the number of mutants.
The model is discussed more thoroughly in Appendix A.15

If the timescale of the mutants’ fixation is much shorter than the timescale of
mutation, then a lineage of mutants is likely to take over the whole population
or become extinct before another lineage of mutants is created from the wild
type. In this case, the probability that i mutants will eventually invade the
whole population is

⇢i =
rN�i

�
1� ri

�

1� rN
(4)

if r 6= 1 and

⇢i =
i

N
(5)

if it is a neutral Moran process, that is, r = 1 [3].
The Moran process can also capture the competition dynamics between three

types of individuals [3]–[6]. As discussed more thoroughly in Subsections 1.2
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and 1.3, a mutant created in a stable population has in general low fitness,
because it is attacked by defence mechanisms that protect the stability of the20

population. However, the first type of mutants, denoted intermediate mutants,
typically has a higher mutation rate than the wild type and can produce a
new type of mutants that avoids most of these attacks. This type of mutants is
denoted resistant mutants. The reproductive rates of the wild type, intermediate
mutants and resistant mutants are 1, r and r1, respectively, where r  1 < r1.25

As discussed more thoroughly by Wodarz and Komarova [3], Nowak et al. [7]
and Breivik [8], the ability to create new variants is important when a mutant
type invades a population. However, as discussed more thoroughly in the next
subsection, no individual has anything to gain from changing only its strategy
in an evolutionarily stable population, and this indicates that the mutants must30

also change their environment to become advantageous.
In the extended Moran model presented in this paper, the fitness is not

constant. Similar to the model presented by Wodarz and Komarova [3], the
model presented in this paper considers three types of individuals, namely the
wild type, intermediate mutants and resistant mutants, but, in contrast to the35

previous model, the resistant mutants become advantageous only if the mutants
manage to change the environment. However, changing the environment reduces
the fitness of the intermediate mutants; thus, there is a cost for the mutants.
In particular, there is a chance that the mutants will not produce a resistant
type; in this case, the mutants actually reduce their own fitness. To analyse this40

dynamics, we use the results from evolutionary game theory, which is presented
in the next subsection.

1.2. Evolutionary game theory

Evolutionary game theory is the generic approach to evolutionary dynamics
[9],[10]. In these games, the fitness depends on the frequencies of the di↵erent45

types in the population [2]. In contrast to traditional game theory, evolutionary
game theory does not rely on rationality [11]. Instead it considers a population of
individuals with fixed strategies that interact randomly. When two individuals
interact, each receives a payo↵ that depends on the strategy of both individuals.
The payo↵ is interpreted as fitness [12].50

Table 1 shows the payo↵s in a well-known game called the prisoner’s dilemma

[2]. This game has two strategies: cooperation and defection. A group of
cooperators has higher fitness than a group of defectors. However, if a defector
and a cooperator meet, the defector receives a higher payo↵ than the cooperator,
and, what is more, the defectors are fitter than the cooperators in a mixed group.55

In an evolutionary game, a mutation can change the strategy of an individ-
ual. In some cases, the mutation increases the fitness of the individual. For
instance, consider a group of cooperators with interactions that are captured by
the prisoner’s dilemma. If a mutation causes an individual to change strategy
to defection, the individual increases its payo↵. This means that cooperation60

is an unstable strategy. On the contrary, a strategy is a Nash equilibrium if no
individual can deviate from this strategy and increase its payo↵ [13]. Defection
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in the prisoner’s dilemma is a Nash equilibrium because, if a defector mutates
into a cooperator, it decreases its payo↵.

A Nash equilibrium is also an evolutionarily stable strategy if selection op-65

poses the invasion of an alternative strategy [9]. That is, if a su�ciently large
population adopts an evolutionarily stable strategy, it cannot be invaded by
any alternative strategy that is initially rare. For the prisoner’s dilemma, de-
fection is an evolutionarily stable strategy. Hence, cooperators cannot invade a
large population of defectors of which interaction is captured by the prisoner’s70

dilemma. However, as discussed more thoroughly in Section 4, a relatively small
group of defectors can be invaded by cooperators.

The prisoner’s dilemma illustrates why a well-functioning cooperation, such
as a multicellular organism or society, must have control mechanisms that sta-
bilise the cooperation and protect against defective individuals. Even though75

cooperations are not stable in general [2], the control mechanisms make them
behave similarly to an evolutionarily stable population within relatively short
timescales.

In the next subsection, we discuss some of the mechanisms that regulate
cooperation in a multicellular organism, whereas the regulation of human inter-80

action is examined in Subsection 4.3.

1.3. Regulation of cooperation in a multicellular organism

In a large multicellular organism, such as a human being, millions of cells
must cooperate [3],[14]. This cooperation is maintained by a very complex net-
work of signals and cellular checkpoints, and the immune system is an important85

component of this network. The immune system must detect mutant cells that
have stopped cooperating as well as foreign agents, from viruses to parasitic
worms, and distinguish them from the organism’s own healthy tissue [15].

Mutated cells can be detected and killed by T cells, which are a type of white
blood cells [16]. The exact details of how the T cells are regulated and activated90

are still uncertain [17]. In a nutshell, a type of T cells, called antigen-presenting
cells (APCs), circulates with the blood. If an APC recognises a foreign protein,
called an antigen, on a cell, then it makes a copy of the antigen and transports it
to the lymph nodes. When the lymph nodes receive the antigen, the production
of a type of T cells called cytoxic T lymphocytes (CTLs) is activated. A CTL is95

programmed to find and kill the cells that display the type of antigen brought
to the lymph nodes by the APCs [18].

The body can also prevent the growth of mutated cells by limiting the blood
supply. As discussed more thoroughly in Section 4, this can lead to acidification
of the microenvironment, which increases the death rate of both mutant cells100

and healthy cells. However, a new type of mutant that is resistant to the acidic
environment, might be created [19]–[24]. This competition dynamics is captured
by the extended Moran process, presented in the next section.

4



2. Extended Moran process with non-constant fitness

In this section, we present an extension of the Moran process with non-105

constant fitness. The model assumes that the population has constant size,
N , and that it consists of three types of individuals, namely the wild type,
intermediate mutants and resistant mutants. During reproduction, a wild-type
individual can mutate into an intermediate mutant with probability u and an
intermediate mutant can mutate into a resistant mutant with probability u1. It110

is assumed that no other mutation can occur.
The environment is described by a parameter called the fitness parameter.

As long as the fitness parameter is below the fitness threshold, ⌥, all individuals
have the same fitness. The mutants increase the fitness parameter, and, when
the fitness parameter reaches ⌥, the fitness of the non-resistant individuals115

decreases, whereas the resistant mutants become advantageous.
In each time step, the following four events occur:

1. A random individual is selected to reproduce and a random individual is
selected to die.

2. If the fitness parameter is higher than ⌥, a random individual is selected.120

If the selected individual is not resistant, it dies, and a random individual
reproduces, whereas, if the selected individual is resistant, nothing occurs
in this event.

3. A random individual is selected. If it is a mutant, then 1/N is added to
the fitness parameter.125

4. The fitness parameter is reduced by F ⇥ 100 per cent, where 0  F  1.

Similar to the original Moran process, it is assumed that all individuals
are selected simultaneously and randomly in events 1–3. Hence, if there are i
mutants at the beginning of the time step, the probability of selecting a mutant
in event 3 is i/N . In events 1 and 2, the probability of selecting a mutant for130

reproduction is also constant. However, the same individual cannot die twice;
hence, if the same individual is selected to die in events 1 and event 2, a new
random individual must be selected to die. Nevertheless, as shown in Subsection
2.2, for su�ciently large population sizes, the probability of selecting a mutant
is approximately i/N in both events 1 and 2.135

Initially, all the cells are the wild type and the fitness parameter equals zero.
Eventually, a mutant is created, and it is assumed that the timescale of the
mutants’ fixation is much shorter than the timescale of mutation. Hence, a
lineage of mutants is likely to take over the whole population or become extinct
before another lineage of mutants is created from the wild type.140

2.1. Event 1

Let i and j denote the numbers of intermediate mutants and resistant mu-
tants, respectively, at the beginning of a given time step. Since the population
size is constant, N , the number of wild-type individuals is N � i� j.

5



All individuals are selected to die and reproduce at the same constant rate.
It is assumed that the same individual can be selected to reproduce and to die
and that a new individual cannot be selected to die in the same time step in
which it is produced. Thus, by ignoring further mutations, the probabilities
that an intermediate mutant, a resistant mutant and a wild-type individual is
selected to reproduce or to die are

Pim =
i

N
, (6)

Prm =
j

N
, (7)

Pw =
N � i� j

N
, (8)

respectively. Hence, we obtain the following transition probabilities for event 1:

P1(i+ 1, j|i, j) = i

N

N � i� j

N
,

P1(i+ 1, j � 1|i, j) = i

N

j

N
,

P1(i, j + 1|i, j) = j

N

N � i� j

N
,

P1(i� 1, j + 1|i, j) = i

N

j

N
,

P1(i� 1, j|i, j) = i

N

N � i� j

N
,

P1(i, j � 1|i, j) = j

N

N � i� j

N
,

P1(i, j|i, j) = 1� 2
i

N

N � i� j

N
� 2

i

N

j

N
� 2

j

N

N � i� j

N
.

2.2. Event 2145

If the fitness parameter is below ⌥, then nothing occurs in event 2. On
the other hand, if the fitness parameter is higher than ⌥, then a non-resistant
individual can be selected to die.

To obtain a simplistic model, we want the probability of selecting a given
type of individual to be constant throughout the time step. As discussed in150

Appendix A, this is the case for the standard Moran process.
By assuming that a new individual cannot be selected to reproduce or die

in the same time step in which it was produced, and that the same individual
can be selected to reproduce several times and to die in the same time step, the
probabilities that an individual selected to reproduce in event 2 is an interme-155

diate mutant, a resistant mutant and a wild type are given in (6), (7) and (8),
respectively.

On the other hand, the same individual cannot die several times. That is,
the probability that an intermediate mutant will be selected to die in event 1
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is i/N , and, in this case, the probability of selecting an intermediate mutant to
die in event 2 is (i� 1)/(N � 1). The probability that the individual selected to
die in event 1 is not an intermediate mutant, is 1 � i/N , and, in this case, the
probability of selecting an intermediate mutant to die in event 2 is i/(N � 1).
Thus, it follows by the rule of total probability that the probability that an
intermediate mutant is selected to die in event 2, given that the fitness parameter
is higher than ⌥, is

P 2
�im =

i

N

i� 1

N � 1
+

✓
1� i

N

◆
i

N � 1
=

i

N � 1
� 1

N(N � 1)
.

For large population sizes, 1/(N � 1) ⇡ 1/N and 1/N >> 1/N2. Hence, P 2
�im

tends to

P 2
�im =

i

N
.

For similar reasons, if the fitness parameter is higher than ⌥, then the proba-
bility that a wild-type individual is selected to die in event 2 tends to

P 2
�w =

N � i� j

N

for large population sizes, and consequently the transition probabilities for event
2 are

P2(i� 1, j|i, j) = i

N

N � i� j

N
, (9)

P2(i, j � 1|i, j) = j

N

N � i� j

N
, (10)

P2(i� 1, j + 1|i, j) = i

N

j

N
, (11)

P2(i+ 1, j � 1|i, j) = i

N

j

N
, (12)

P2(i, j|i, j) = 1� i

N

N � i� j

N
� 2

i

N

j

N
� j

N

N � i� j

N
. (13)

2.3. Events 3 and 4

Event 3 captures the assumption that the mutants raise the fitness parame-
ter. The main reason why the fitness parameter is raised by 1/N in this event160

is that the growth environment is subdivided into N sites in Section 3.
Event 4 captures the di↵usion of the fitness parameter. If F = 0, then the

population is in an isolated growth environment, whereas, if F = 1, the fitness
parameter decreases to zero at the end of every time step.

2.4. Expected functions165

When the fitness parameter is lower than the fitness threshold ⌥, the com-
petition dynamics between the mutants and the wild type is identical to an
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ordinary neutral Moran process. Thus, we are interested in how long it takes
for the mutants to change the competition dynamics by increasing the fitness
parameter to a level higher than ⌥. In this subsection, we derive the expected170

time until the fitness parameter reaches this limit.
We expect that the number of mutants must reach a certain limit, ⌫, before

the fitness parameter approaches ⌥. Since the population dynamics is identical
to a neutral Moran process when the fitness parameter is below ⌥, we can use
the following theorem to find the probability that the number of mutants will175

reach ⌫.

Theorem 2.1. The probability that the neutral Moran process will reach the

state in which there are ⌫ mutants, given that the present number of mutants is

i, is

P(reach ⌫ | i ) = i

⌫
,

where 0  i  ⌫.

Theorem 2.1 is a standard result in Markov chain analysis [25]; hence, the
proof is left to Appendix B.

It follows from Theorem 2.1 that most lineages of mutant cells become ex-180

tinct before they reach the state ⌫ if ⌫ > 2. We are interested in investigating
the lineages that survive long enough for the fitness parameter to reach the
threshold ⌥.

Theorem 2.2. Conditioning on the fact that the neutral Moran process even-

tually reaches the state in which there are ⌫ mutants, the transition probabilities

for 0 < i < ⌫ are

P⌫(i+ 1|i) = i+ 1

N

✓
1� i

N

◆
(14)

P⌫(i� 1|i) = i� 1

N

✓
1� i

N

◆
(15)

P⌫(i|i) = 1� 2
i

N

✓
1� i

N

◆
(16)

where i is the present number of mutants.

Proof. We have four events:185

• A1: the next time step moves to state i+ 1.

• A2: the next time step moves to state i� 1.

• B: the process is currently in state i.

• C: the process will reach state ⌫.
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For k 2 1, 2, we want to determine the conditional probability

P(Ak|B \ C) =
Ak \B \ C

B \ C
.

It follows from Theorem 2.1 that

P(reach ⌫|i) = P(C|B) =
P(B \ C)

P(B)
=

i

⌫
,

P(reach ⌫|i+ 1) = P(C|A1 \B) =
P(A1 \B \ C)

P(A1 \B)
=

i+ 1

⌫
,

P(reach ⌫|i� 1) = P(C|A2 \B) =
P(A2 \B \ C)

P(A2 \B)
=

i� 1

⌫
,

and it follows from the transition probabilities given in (1)–(3), with u = 0 and
r = 1, that

P(i+ 1|i) = P(A1|B) =
P(A1 \B)

P(B)
=

i

N

✓
1� i

N

◆
,

P(i� 1|i) = P(A2|B) =
P(A2 \B)

P(B)
=

i

N

✓
1� i

N

◆
.

Thus, we obtain the following equality:

P(Ak|B \ C) =
P(Ak \B \ C)

P(B \ C)

=
P(Ak \B \ C)

P(B \ C)

✓
P(Ak \B)

P(Ak \B)

◆✓
P(B)

P(B)

◆

=

✓
P(Ak \B \ C)

P(Ak \B)

◆✓
P(Ak \B)

P(B)

◆✓
P(B \ C)

P(B)

◆�1

=
P(C|Ak \B)P(Ak|B)

P(C|B)
.

Hence,

P(A1|B \ C) =
P(C|A1 \B)P(A1|B)

P(C|B)
=

i+1
⌫

i
N

�
1� i

N

�

i
⌫

=
i+ 1

N

✓
1� i

N

◆
,

P(A2|B \ C) =
P(C|A2 \B)P(A2|B)

P(C|B)
=

i�1
⌫

i
N

�
1� i

N

�

i
⌫

=
i� 1

N

✓
1� i

N

◆
.

190

Proposition 2.3. Conditioning on the fact that the neutral Moran process even-

tually reaches the state in which there are ⌫ mutants, the expected number of

mutants before the process reaches ⌫ is approximately

µ(t) = N � (N � 1) exp(�2t/N) (17)

in generation t, where one generation is N time steps and the first mutant is

generated at t = 0.
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Proof. It follows from the transition probabilities given in Equations (14)–(16)
that the expected number of mutant cells, µ(t), must satisfy

µ(t+ 1/N) = µ(t) +
µ(t) + 1

N

✓
1� µ(t)

N

◆
� µ(t)� 1

N

✓
1� µ(t)

N

◆

= µ(t) +
2

N

✓
1� µ(t)

N

◆
.

We use the following approximation:

dµ

dt
(t) ⇡ µ(t+ 1/N)� µ(t)

1/N
= 2

✓
1� µ(t)

N

◆
.

The di↵erential equation has general solutions of the following form:

µ(t) = N + ↵ exp(�2t/N),

where ↵ is a constant. Since the first mutant was generated at t = 0, that is,
µ(0) = 1, we obtain the solution

µ(t) = N � (N � 1) exp(�2t/N).

We finally arrive at an expression for the expected fitness parameter given
that the mutants survive long enough to change the competition dynamics.195

Proposition 2.4. Conditioning on the fact that the extended Moran process

with non-constant fitness eventually reaches the state in which there are ⌫ mu-

tants, given that the fitness parameter is below ⌥, the expected fitness parameter

in generation t is approximately

�(t) =
1� F

FN
� exp(�2t/N)

✓
(1� F )(N � 1)

N2F � 2

◆

+ exp(�NFt)

✓
�(0) +

1� F

FN
� (1� F )(N � 1)

N2F � 2

◆

for F 6= 0 and

�(t) = t+
N � 1

2
(exp(�2t/N)� 1) + �(0)

for F ⇡ 0, where the first mutant is generated at t = 0 and �(0) is the fitness

parameter when the first mutant in the lineage is generated.

Proof. It follows from events 3 and 4, given at the beginning of Section 2, that
the fitness parameter, �(t), must satisfy

�(t+ 1/N) = (�(t) + µ(t)/N2)(1� F ),
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where µ(t) is the expected number of mutant cells given in Equation (17). By
using the approximation

d�

dt
(t) ⇡ �(t+ 1/N)� �(t)

1/N
,

we obtain the di↵erential equation

d�

dt
+NF� =

1� F

N
µ.

For F = 0, we have general solutions of the form

�(t) = 1/N

Z
µ(t)dt

= 1/N

Z
N � (N � 1) exp(�2t/N)dt

= t+
N � 1

2
exp(�2t/N) + ↵,

where ↵ is a constant. Thus, we obtain

�(t) = t+
N � 1

2
(exp(�2t/N)� 1) + �(0),

where �(0) is the fitness parameter when the first mutant is generated. For
F 6= 0, we have

�(t) = exp(�NFt)

✓
�(0) +

1� F

N

Z t

0
exp(NFy)µ(y)dy

◆
.

Since Z t

0
exp(NFy)(N � (N � 1) exp(�2y/N))dy

=
exp

�
� 2t

N

� ���
FN2 � 2

�
exp

�
2t
N

�
� FN2 + FN

�
exp (FNt) + (2� FN) exp

�
2t
N

��

F (FN2 � 2)
,

we obtain

�(t) =
1� F

FN
� exp(�2t/N)

✓
(1� F )(N � 1)

N2F � 2

◆

+ exp(�NFt)

✓
�(0) +

1� F

FN
� (1� F )(N � 1)

N2F � 2

◆
.

11



2.4.1. Expected functions and numerical simulations

Figure 1 displays the expected functions and numerical simulations of the200

extended Moran process. In all cases, the fitness parameter remains below the
fitness threshold; hence, the growth of the mutant population is only driven
by stochasticity. Consequently, the population dynamics is characterised by
great variation. Figures 1(a)–(f) display the expected functions and simulations
of mutant populations that reach population size ⌫ = 103, starting with a205

single mutant. It follows from Theorem 2.1 that the probability that a single
mutant will generate a lineage of mutants that reaches population size ⌫ =
103 is ⇢ = 10�3, regardless of the total population size. Indeed, for all three
population sizes, N = 103, N = 104 and N = 106, we performed on average a
thousand simulations to obtain one simulation in which the mutant population210

size reached ⌫ = 103, starting with a single mutant.
Note that the transition probabilities given in (14)–(16) and the expected

number of mutants given in (17) do not contain the term ⌫. It is shown in the
respective proofs that the terms with ⌫ cancel out. However, a more intuitive
explanation is as follows. The expected functions plotted in Figure 1 condition215

on the fact that the mutant populations reach the size ⌫ = 103. However,
suppose that we stopped the simulations when the mutant populations reached
the size ⌫0 = 102. Should this change the expected function? Clearly not. This
is also compatible with the fact that neither the transition probabilities given
in (14)–(16) nor the expected number of mutants depend on the size of ⌫.220

In Figures 1(a)–(d), the di↵usion rate of the fitness parameter, F , equals
the inverse of the total population size, 1/N . On these terms, it is expected
that the fitness parameter is approximately F times the number of mutants. In
point of fact, the simulations of the fitness parameter are close to F times the
simulations of the number of mutants. In Figures 1(e)–(h), the di↵usion rate of225

the fitness parameter, F , equals zero. In this case, the fitness parameter cannot
decrease but is expected to increase as long as there are mutant individuals in the
population. Figures 1(e) and 1(f) display the expected function and simulation
of a mutant population that reaches the population size ⌫ = 1500, starting
with a single mutant, and the corresponding fitness parameter, respectively.230

As illustrated in Figure 1(e), the mutant population size decreases in some
time intervals for the simulation. However, as displayed in Figure 1(f), the
fitness parameter does not decrease. In the simulation displayed in Figure 1(g),
the mutant population size fluctuates before the mutant type becomes extinct
around generation t = 1600. Even though the number of mutants remains below235

⌫ = 750, the fitness parameter reaches 54. On the other hand, in the simulation
displayed in Figures 1(e) and 1(f), the population size is close to ⌫ = 1500 when
the fitness parameter is approximately 54. Thus, the simulation displayed in
Figures 1(g) and 1(h) illustrates that, when F is equal to or relatively close to
zero, then the mutant population can raise the fitness parameter to relatively240

high levels by delaying extinction.
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2.5. The fitness parameter reaches the fitness threshold

In this subsection, we consider the case in which the fitness parameter reaches
the fitness threshold, ⌥, which means that the death rate of both the inter-
mediate mutants and the wild-type individuals decrease whereas the resistant245

mutants become advantageous.
Let ⌫ be the number of mutants. If no resistant mutant has been gener-

ated, the competition between the wild-type individuals and the intermediate
mutants can be captured by a neutral Moran process; hence, it follows from
Equation (5) that the probability that the intermediate mutants will invade the250

whole population is ⌫/N , given that no resistant mutant is generated before the
intermediate mutants reach fixation.

On the other hand, if at least one resistant mutant has been generated,
this lineage has a great advantage, because these cells survive when the fitness
parameter is high. Thus, when the fitness parameter is higher than ⌥, the255

resistant mutants are expected to invade the whole population.
If the timescale of fixation of the resistant mutants is much shorter than

the timescale of mutation from the intermediate to the resistant type, then a
lineage of resistant mutants is likely to take over the whole population or become
extinct before another resistant mutant is created from the intermediate type.
In this case, the expected number of resistant mutants in generation t, denoted
�(t), can be approximated as follows. In event 1 of the time step described at
the beginning of Section 2, all the cells are expected to reproduce and die at
the same rate; thus, �(t) remains constant. On the other hand, if a cell that is
not resistant is selected in event 2, then the selected cell dies, and a random cell
is selected to reproduce. As derived in Subsection 2.2, the number of resistant
mutants can either increase by one with probability ⇡(j) = j

N

�
1� j

N

�
or remain

constant with probability 1� ⇡(j), where j is the number of resistant mutants.
Consequently, the expected number of resistant mutants in generation t must
satisfy the equality

�(t+ 1/N) = �(t) + ⇡(�(t)).

We use the approximation

d�

dt
(t) ⇡ �(t+ 1/N)� �(t)

1/N

and obtain the di↵erential equation

d�

dt
= �

⇣
1� �

N

⌘

which has the solution

�(t) =
N�(0) exp(t)

�(0)(exp(t)� 1) +N
, (18)

where �(0) is the number of resistant mutants when the fitness parameter
reaches the threshold ⌥. Clearly �(t) converges to N , which means that the
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resistant mutants are expected to invade the whole population. The expected
number of individuals that are not resistant is N � �(t). Since intermediate
mutants and wild-type individuals are neutral variants, the relation

expected number of intermediate mutants

expected number of wild-type individuals

remains constant. Thus, the expected number of intermediate mutants is ap-
proximately

�(t) =
⌫ � �(0)

N � �(0)
(N � �(t))

and the expected number of wild-type individuals is approximately

⇣(t) =
N � ⌫

N � �(0)
(N � �(t)),

where ⌫ is the total number of mutants when the fitness parameter reaches
the threshold, ⌥. Clearly, both the wild-type individuals and the intermediate
mutants are expected to become extinct.

2.5.1. Expected functions and numerical simulations260

Figures 2–4 display the expected functions and numerical simulations of the
extended Moran process. In all cases, a mutant is generated in generation t = 0,
and, since the mutants and the wild type are neutral variants as long as the
fitness parameter is below ⌥, the mutant population grows due to stochasticity
and the population dynamics is characterised by great variation.265

For the simulation illustrated in Figures 2 and 4, the fitness parameter
reaches the fitness threshold, ⌥. This means that the death rate of both the
intermediate mutants and the wild-type individuals increases, whereas the re-
sistant mutants become advantageous. If there is no resistant mutant in the
population when the fitness parameter is above ⌥, the probability that the270

intermediate mutants will invade the whole population is i/N , where i is the
number of mutants and N is the total population size. For the simulation illus-
trated in Figure 3, the number of intermediate mutants is approximately i = 103

when the fitness parameter reaches the fitness threshold ⌥ = 0.1. The muta-
tion rate, µ1, is relatively low; hence, no resistant mutant has been generated.275

Since the total population size is N = 105, the probability that the intermedi-
ate mutants will invade the whole population, given that no resistant mutant
is generated, is Pinv = 10�2. Due to stochasticity, the mutant population size
nearly doubles before it starts decreasing. Since the di↵usion rate of the fitness
parameter, F , is relatively high, the fitness parameter decreases to a level below280

⌥ soon after the number of mutants decreases to i = 103, and ultimately the
mutant population becomes extinct.

The simulation illustrated in Figure 2 has the same low mutation rate as
the simulation illustrated in Figure 3, and therefore there is no resistant mu-
tant in the population when the fitness parameter reaches ⌥. However, due to285

stochasticity, the fitness parameter remains above the fitness threshold ⌥, and,
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after approximately t = 200 generations, a resistant mutant is generated. This
type is expected to invade the population, because it survives when the fitness
parameter is high, and this makes it a very advantageous type. In point of fact,
the growth of resistant mutants lies close to the expected function given in (18),290

as illustrated in Figure 2d.
The simulation displayed in Figure 4 has a relatively high mutation rate,

and thus there are resistant mutants present in the population when the fitness
parameter reaches the fitness threshold, ⌥. The resistant type invades the
population, but, as illustrated in Figures 2d and 4d, for the simulations with295

high mutation rates, the growth of the mutants does not lie as close to the
expected function as the simulations with a low mutation rate. The reason for
this is that the expected function given in (18) assumes that µ1 ⇡ 0, and this
assumption does not hold when µ1 is high.

3. Extended Moran process with cooperation entities300

In this section, cooperation entities that can kill mutants, are included in the
extended Moran process. Cooperation entities can represent regulation mecha-
nisms that defend a cooperation, for instance T-cells in a multicellular organism.
This is discussed in greater detail in Subsection 4.2. However, cooperation en-
tities can also represent the cost of cooperation, for instance when cooperators305

invade a group of defectors, as discussed in Subsection 4.1.
The population still consists of N individuals, which are subdivided into

three types, namely the wild type, intermediate mutants and resistant mutants.
However, in events 5–8, the intermediate mutants and the resistant mutants
behave identically; consequently, we simply refer to them as mutants.310

In addition, there are up to N cooperation entities. The growth environment
in which the population is located is subdivided into N sites. Each site contains
exactly one individual; furthermore, each site can contain exactly one cooper-
ation entity or no cooperation entity. At the beginning of each time step, the
process passes through events 1–4, which are described in Section 2. Afterwards,315

the following events occur:

5. A random site is selected. If the site contains both a mutant and a co-
operation entity, the mutant dies and a random individual is selected to
reproduce.

6. A random site is selected, and, if this site contains a cooperation entity,320

it reproduces. The new cooperation entity is placed in a random site that
does not already contain a cooperation entity at the end of the time step.

7. A random site is selected, and, if the site contains a cooperation entity, it
dies.

8. A random site is selected. If the site contains a mutant and no cooperation325

entity, then, with probability Pd, a cooperation entity is activated and
placed in the selected site.
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At the end of each time step, all the individuals of the population are mixed
and placed in random sites. As discussed in Section 2, it is assumed that, in
all the events for each time step, the individuals are selected simultaneously.330

This assumption also holds for the cooperation entities. That is, if there are k
cooperation entities at the beginning of a time step, then the probability that
the selected site will contain a cooperation entity is k/N in both event 6 and
event 7.

3.1. Event 5335

If the selected site contains a wild-type individual, then nothing occurs at
event 5. On the other hand, if the selected site contains both a cooperation
entity and a mutant, then the mutant dies.

Since the population is mixed at the end of each time step, the probability
that the selected site will contain both a mutant and a cooperation entity is

Pde m =
k

N

i

N
,

where k is the number of cooperation entities and i is the number of mutants.
As discussed in Subsections 2.1 and 2.2 and in Appendix A, we want the

probability of selecting a given type of individual to be constant throughout
the time step to keep the model as simplistic as possible. In Subsection 2.2,
we show that the probability of selecting an individual to reproduce or die is
approximately constant in events 1 and 2 for large population sizes. Since the
same argument holds for event 5, the probabilities that the number of mutants
decrease by one and remain constant in event 5 are

P5(i� 1|i) = k

N

i

N

✓
1� i

N

◆
, (19)

P5(i|i) = 1� k

N

i

N

✓
1� i

N

◆
, (20)

respectively, where k and i are the number of cooperation entities and the340

number of mutants at the beginning of the time step, respectively.

3.2. Events 6–8

The cooperation entities are activated by the mutants. In addition, the co-
operation entities can reproduce and die. We assume that the same cooperation
entity can be selected to reproduce and die in the same time step and that a345

new cooperation entity cannot be selected to die in the time step in which it
is produced. These are similar to the assumptions made in the Moran process,
discussed in Appendix A.

Let k and i denote the numbers of cooperation entities and mutants at the
beginning of the time step, respectively. The probability that a cooperation
entity will be selected to reproduce and to die in events 6 and 7, respectively, is

Pce =
k

N
,
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whereas the probability that a cooperation entity will be activated by a mutant
in event 8 is

Pac ce = Pd
i

N

✓
1� k

N

◆
. (21)

3.3. Implications of cooperation entities

As discussed more thoroughly in Subsection 4.1, cooperation entities can350

represent cooperation. Moreover, they can represent T cells. As discussed in
Subsection 1.3, if an APC recognises an antigen on a mutated cell, the produc-
tion of CTLs is activated. This activation is captured by event 8. The CTLs
are programmed to find and kill mutated cells, which is captured by event 5.
The exact details of how the T cells are regulated and activated are uncertain.355

For instance, it is still unknown why APCs do not always recognise antigens
on mutated cells. One hypothesis is that APCs only activate CTLs if healthy
tissue is being injured [26]. In our model, healthy tissue, which is represented
by the wild type, is not injured as long as the fitness parameter is below ⌥.
Hence, in some examples, the cooperation entities are not activated until the360

fitness parameter reaches this limit, whereas, in other examples, the cooperation
entities are activated earlier.

In Section 2, the intermediate mutants and the wild type are neutral vari-
ants. However, when the cooperation entities are included, there is much more
at stake for the mutants. If the activation of cooperation entities only depends365

on the presence of mutated cells, the mutants are disadvantageous when the
fitness parameter is below ⌥. Hence, the survival of the mutants depends on
how fast they raise the fitness parameter, because resistant mutants become ad-
vantageous when the fitness parameter is higher than ⌥. On the other hand, if
the cooperation entities are not activated until the fitness parameter reaches ⌥,370

the mutants and the wild type are neutral variants when the fitness parameter
is below ⌥, whereas the fitness of the mutants depends on whether a resistant
mutant has been generated when the fitness parameter reaches ⌥. That is, if
all the mutants are of the intermediate type, then these cells are disadvanta-
geous, whereas, if resistant mutants have been generated, these cells become375

advantageous. Hence, the probability of mutant invasion increases if the fitness
parameter remains below ⌥ until a resistant mutant has been generated.

3.4. The cooperation entities are activated before the fitness parameter reaches

the fitness threshold

When the activation of cooperation entities only depends on the presence380

of mutant cells, the mutants are disadvantageous when the fitness parameter is
below ⌥. That is, all individuals have the same probability of being selected
to die and reproduce in event 1. However, in event 5, mutants can be selected
to die if they are located in a site with a cooperation entity, whereas wild-type
individuals can only be selected to reproduce in this event.385
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In event 5, the number of mutants either decreases by one or remains con-
stant with probabilities given in (19) and (20), respectively. Hence, the expected
number of mutants in generation t, �(t), must satisfy

�(t+ 1/N) = �(t)� (t)

N

�(t)

N

✓
1� �(t)

N

◆
,

where (t) is the expected number of cooperation entities in generation t. By
using the approximation

d�

dt
(t) ⇡ �(t+ 1/N)� �(t)

1/N
,

we obtain the following di↵erential equation:

d�

dt
= �

�

N

✓
1� �

N

◆
. (22)

As discussed in Subsection 3.2, the probability that a cooperation entity will
reproduce equals the probability that a cooperation entity will die in events
6 and 7, respectively; hence, the number of cooperation entities is expected
to remain constant after these two events. In event 8, a cooperation entity is
activated by a mutant with probability Pac ce, given in (21). Otherwise, the
number of cooperation entities remains constant. Hence, the expected number
of cooperation entities must satisfy the di↵erence equation

(t+ 1/N) = (t) + Pd
�(t)

N

✓
1� (t)

N

◆
.

By using the approximation

d

dt
(t) ⇡ (t+ 1/N),�(t)

1/N

we obtain the following di↵erential equation:

d

dt
= Pd�

⇣
1� 

N

⌘
. (23)

3.4.1. Numerical simulations

Figures 5–7 display numerical simulations of the extended Moran process
with cooperation entities. In all the cases, the activation of cooperation entities
depends only on the presence of the mutant cells. Hence, the mutants are
disadvantageous when the fitness parameter is below ⌥. On the other hand,390

the resistant mutants become advantageous if the fitness parameter reaches the
fitness threshold ⌥. Thus, the survival of the mutants depends on how fast they
raise the fitness parameter.

When the fitness parameter is below ⌥, it follows from the di↵erential equa-
tion given in (22) that, if there is at least one cooperation entity in the system,395
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it is expected that the number of mutants will decrease until the mutants are
extinct. However, the extinction can be delayed due to stochasticity, and, given
that the di↵usion rates of both the fitness parameter, F , and the fitness thresh-
old, ⌥, are relatively low, it is possible that the mutants will survive long enough
to raise the fitness parameter above ⌥. Due to stochasticity, the mutants be-400

come extinct before the fitness parameter reaches the fitness threshold, ⌥ = 2.5,
in the simulation illustrated in Figure 5, whereas, in the simulation displayed
in Figure 6, the mutants survive long enough for the fitness parameter to reach
the fitness threshold. Furthermore, if the mutant population produces at least
one resistant mutant, this type of cells becomes advantageous when the fitness405

parameter is above ⌥ and is expected to invade the whole population.
It follows from the di↵erential equation given in (23) that, if there is at least

one mutant in the system, the number of cooperation entities is expected to grow
until it reaches N . However, if the activation rate, Pd, is relatively low, then
the activation of the cooperation entities can be delayed due to stochasticity. In410

this case, the mutants and the wild type are initially neutral variants, and the
mutants can grow in number due to stochasticity. On these terms, the fitness
parameter can reach the fitness threshold, ⌥, even when it is relatively high.
Moreover, the probability that the mutant population will produce a resistant
type increases as the number of mutants increases. This scenario is illustrated415

in Figure 7.

3.5. The fitness parameter reaches the fitness threshold

When the fitness parameter reaches the fitness threshold, ⌥, the intermedi-
ate mutants and the wild-type individuals have the same probability of being
selected to die and reproduce in events 1 and 2. However, in event 5, the in-420

termediate mutants can be selected to die if they are located in a site with a
cooperation entity, whereas the wild-type individuals can only be selected to re-
produce in this event. Hence, the wild-type individuals are more advantageous
than the intermediate mutants.

If the mutants produce a resistant lineage, these mutants will be more ad-425

vantageous than the wild-type individuals when the fitness parameter is higher
than ⌥ and there are relatively few cooperation entities. That is, in event 1,
the resistant mutants and the wild-type individuals have the same probability
of being selected to die and to reproduce, whereas each wild-type individual
has a probability 1/N of being selected to die in event 2, and each resistant430

mutant has a probability k/N2 of being selected to die in event 5, where k is
the number of cooperation entities. Thus, if each site contains a cooperation en-
tity, the competition dynamics between the resistant mutants and the wild-type
individuals is neutral, and the resistant mutants are increasingly advantageous
with a decreasing number of cooperation entities.435

Let i, j and k denote the number of intermediate mutants, resistant mutants
and cooperation entities, respectively. Since the total number of individuals in
the population is constant, N , the number of wild-type individuals is N � i� j.

It follows from the transition probabilities given in (9)–(13) that the prob-
abilities that the number of intermediate mutants will decrease by one, remain
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constant and increase by one in event 2 are

q2�1(j, i, k) = ⇡(i), (24)

q20(j, i, k) = 1� 2⇡(i)� ij

N2
, (25)

q21(j, i, k) = ⇡(i)� ij

N2
, (26)

respectively, where ⇡(i) = i/N(1 � i/N). Moreover, since the intermediate
mutants and the resistant mutants are neutral variants in event 5, it follows from
Subsection 3.1 that the probabilities that the number of intermediate mutants
will decrease by one, remain constant and increase by one in event 5 are

q5�1(j, i, k) =
k

N
⇡(i),

q50(j, i, k) = 1� k

N

✓
⇡(i) +

ij

N2

◆
,

q61(j, i, k) =
k

N

ij

N2
,

respectively. Thus, the probabilities that the number of intermediate mutants
will decrease by two, decrease by one, increase by one and increase by two after
events 2 and 5 are

Q2,5
�2(j, i, k) =

k

N
⇡(i)2,

Q2,5
�1(j, i, k) = ⇡(i)

✓
1 +

k

N
(1� 3⇡(i)

◆
,

Q2,5
1 (j, i, k) = ⇡(i)

✓
1� k

N

✓
⇡(i) +

ij

N2

◆◆
+

ij

N2

✓
�1 +

k

N

✓
1� ⇡(i) + 2

ij

N2

◆◆
,

Q2,5
2 (j, i, k) =

k

N

ij

N2

✓
⇡(i)� ij

N2

◆
,

respectively; hence, the expected number of intermediate mutants in generation
t, �(t), must satisfy

�(t+ 1/N) = �(t)� 2Q2,5
�2(�(t),�(t),(t))�Q2,5

�1(�(t),�(t),(t))

+Q2,5
1 (�(t),�(t),(t)) + 2Q2,5

2 (�(t),�(t),(t)),

where �(t) and (t) are the expected numbers of resistant mutants and cooper-
ation entities, respectively, in generation t. By using the approximation

d�

dt
(t) ⇡ �(t+ 1/N)� �(t)

1/N
,

we obtain the following di↵erential equation:

d�

dt
= ��

✓✓
1� �

N

◆


N
+

�

N

⇣
1� 

N

⌘◆
. (27)
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Since �,  N , it follows that the expected number of intermediate mutants
decreases towards zero.440

We will now derive an approximation for the expected number of resistant
mutants. It follows from the transition probabilities given in (9)–(13) that the
probabilities that the number of resistant mutants will remain constant and
increase by one in event 2 are

p20(j, i, k) = 1� ⇡(j),

p21(j, i, k) = ⇡(j),

respectively, where ⇡(j) = j/N(1�j/N). Since the mutants are neutral variants
in event 5, it follows from Subsection 3.1 that the probabilities that the number
of resistant mutants will decrease by one, remain constant and increase by one
in event 5 are

p5�1(j, i, k) =
k

N
⇡(j),

p50(j, i, k) = 1� k

N

✓
⇡(j) +

ij

N2

◆
,

p51(j, i, k) =
k

N

ij

N2
,

respectively. Thus, the probabilities that the number of resistant mutants will
decrease by one, increase by one and increase by two after events 2 and 5 are

P 2,5
�1 (j, i, k) =

k

N
⇡(j)(1� ⇡(j)),

P 2,5
1 (j, i, k) = ⇡(j)

✓
1� k

N

✓
⇡(j) +

ij

N2

◆◆
+

k

N

ij

N2
(1� ⇡(j)),

P 2,5
2 (j, i, k) =

k

N

ij

N2
⇡(j),

respectively; hence, the expected number of resistant mutants must satisfy

�(t+ 1/N) = �(t)� P 2,5
�1 (�(t),�(t),(t))

+ P 2,5
1 (�(t),�(t),(t)) + 2P 2,5

2 (�(t),�(t),(t)).

By using the approximation

d�

dt
(t) ⇡ �(t+ 1/N)� �(t)

1/N
,

we obtain the di↵erential equation

d�

dt
= �

✓⇣
1� �

N

⌘⇣
1� 

N

⌘
+

�

N



N

◆
.
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Since
N = �(t) + �(t) + ⇣(t),

where ⇣(t) is the expected number of healthy cells, it follows that

d⇣

dt
= �d�

dt
� d�

dt
= ⇣

✓✓
1� ⇣

N

◆


N
� �

N

◆
.

The expected number of cooperation entities is described by the di↵erential
equation given in (23). Hence, the expected numbers of resistant mutants, wild-
type individuals and cooperation entities are described by the following system
of di↵erential equations:

d�

dt
= �

✓
1� �

N
� ⇣

N



N

◆
, (28)

d⇣

dt
= ⇣

✓✓
1� ⇣

N

◆


N
� �

N

◆
, (29)

d

dt
= PdN

✓
1� ⇣

N

◆⇣
1� 

N

⌘
, (30)

respectively. The system is in equilibrium on the line

L⇤ = { = N, ⇣ + � = N} ,

and the point

(�⇤, ⇣⇤,⇤) = (0, 0, N).

The domain

D = {0  , ⇣ + �  N |0  ⇣,�}

is bounded by the following five planes:

P1 = { = N |0  �, ⇣ ; ⇣ + �  N} ,
P2 = {�+ ⇣ = N |0  �, ⇣ ; 0    N} ,
P3 = {� = 0|0  , ⇣  N} ,
P4 = {⇣ = 0|0  ,�  N} ,
P5 = { = 0|0 < �, ⇣ ; ⇣ + � < N} .

Clearly, a solution of the system of di↵erential equations given in (28)–(30)
cannot leave the domain D. Moreover, it follows from the di↵erential equations
given in (28) and (30) that both � and  grow in the interior of D, denoted D⇤.
Hence, any solution with initial values in D⇤ will grow towards the equilibrium
line, L⇤.445
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3.6. P1 : N cooperation entities

When all the sites contain a cooperation entity, the resistant mutants and
the wild-type individuals are neutral variants, whereas the intermediate mutants
are disadvantageous. Substituting  = N into the di↵erential equation given in
(27), we obtain

d�

dt
= ��

✓
1� �

N

◆
.

By scaling the generations such that t = 0 is the generation when the number
of cooperation entities reaches N , we obtain

�(t) =
N�(0) exp(�t)

�(0)(exp(�t)� 1) +N
.

Clearly, �(t) converges to zero. Since the resistant mutants and the wild-type
individuals are neutral variants, the expected number of resistant mutants is

�(t) =
�(0)

N � �(0)
(N � �(t))

and the expected number of wild-type individuals is

⇣(t) =
⇣(0)

N � �(0)
(N � �(t)) .

Thus, �(t) converges to �(0)N
N��(0) , whereas ⇣(t) converges to

⇣(0)N
N��(0) = N� �(0)N

N��(0) .
Figure 9 displays a numerical simulation of the extended Moran process with

N cooperation entities. In this case, the resistant mutants and the wild type
are neutral variants, whereas the intermediate mutants are disadvantageous.450

Hence, the ratio of resistant mutants and wild-type individuals is expected to
remain constant, whereas the intermediate mutants are expected to become
extinct. Since the resistant mutants and the wild type are neutral variants,
their competition dynamics is characterised by great variation, whereas the
simulation of the intermediate mutants lies close to the expected function, as455

illustrated by Figure 9.

3.7. P2 : The intermediate mutants become extinct

In this subsection, we consider the case in which all the intermediate mutants
become extinct. By substituting ⇣ = N �� into the di↵erential equations given
in (28) and (30), we obtain

d�

dt
= �

⇣
1� �

N

⌘⇣
1� 

N

⌘
(31)

d

dt
= Pd�

⇣
1� 

N

⌘
. (32)
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It follows from the di↵erential equations above that  grows until  = N ,
whereas � grows as longs as � < N and  < N . Since d⇣

dt = �d�
dt , it follows that

⇣ decreases as long as � < N and  < N . The case in which � reaches N before460

 corresponds to the invasion of resistant mutants and the extinction of wild-
type individuals, whereas the case in which  reaches N before  corresponds
to the survival of both the wild type and the resistant type, as described in
Subsection 3.6

It follows from the di↵erential equations given in (31) and (32) that

d
dt
d�
dt

=
d

d�
=

PAPC

1� �
N

for 0 < � < N and  < N . Thus,
Z

d = NPd

Z
d�

(N � �)
.

Hence, a solution of the system given in 31 and 32, ⌦(t) = (�(t), N��(t),(t)) 2
P1, with initial value ⌦(0) = (�(0), N � �(0),(0)) 2 P1, where 0 < �(0) < N
and (0) < N , must satisfy

(t) = (0) +NPd ln

✓
N � �(0)

N � �(t)

◆

⇣(t) = N � �(t),

as long as �(t) < N and (t) < N . We are interested in investigating whether
the cooperation entities or the resistant mutants reach the population size N
first. To achieve this, we make use of the fact that the process is discrete and
investigate which population is expected to reach the population size N�1 first.
For su�ciently large population sizes, this is equivalent to reaching N . We have

(t) = (0) +NPd ln

✓
N � �(0)

N � �(t)

◆
= N � 1

for

�(t) = N � N � �(0)

exp
⇣

N�((0)+1)
NPd

⌘ .

Hence, (t) reaches N � 1 before �(t) if

1 <
N � �(0)

exp
⇣

N�((0)+1)
NPd

⌘ .

The above inequality can be expressed as

N � ((0) + 1)

N ln(N � �(0)
< Pd. (33)
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3.7.1. Numerical simulations465

Figures 10–13 display simulations in which the fitness parameter reaches the
fitness threshold, ⌥, and there is a race between the resistant mutants and the
cooperation entities to reach population size N . The inequality given in (33) is
derived under the assumption that the intermediate mutants are extinct, and
this is not the case when the first resistant mutant appears in the simulations470

illustrated in Figures 10–13. However, since the intermediate mutants become
very disadvantageous, their population size decreases rapidly, and therefore the
inequality in (33) gives a good indication of whether the cooperation entities
win the race to reach population size N .

The activation rate of the cooperation entities is very high in the example475

illustrated in Figure 11. Consequently, the left side, which equals 0.1, is less
than the right side, which equals 1, in the inequality given in (33), and this
indicates that the cooperation entities will win the race. In point of fact, the
number of cooperation entities reaches N when the number of resistant mutants
is approximately 4⇥ 104. The example illustrated in Figure 10 has a moderate480

activation rate of the cooperation entities, and both sides of the inequality given
in (33) are approximately 0.1. Indeed, the number of cooperation entities grows
more slowly towards N than the number of resistant mutants.

If there are no resistant mutants in the population when the fitness parameter
reaches ⌥, it is possible that the cooperation entities will win the race towards485

N even though the cooperation entities are activated at a moderate rate. That
is, the examples given in Figures 10 and 13 have the same activation rate.
However, in the example illustrated in Figure 13, there are approximately 7⇥103

cooperation entities in the system when the first resistant mutant is produced.
Thus, the left side, which equals 0.08, is less than the right side, which equals490

0.1, in the inequality given in (33). In fact, the number of cooperation entities
reaches N when the number of resistant mutants is approximately 8⇥ 104.

However, if the activation rate of the cooperation entities is su�ciently low,
the resistant mutants can invade the system even though the production of the
first resistant mutant is delayed. In the example given in Figure 12, there are495

approximately 7⇥103 cooperation entities in the system when the first resistant
mutant is produced. However, the left side, which equals 0.08, is higher than
the right side, which equals 0.01, in the inequality given in (33). Indeed, the
resistant mutants reach the population size N first.

4. Discussion500

Several other models and texts describe situations in which relatively stable
populations are invaded by an alternative strategy. Examples are the evolution
of cooperation among bacteria and multicellularity [14],[27]–[29], the invasion of
cancer [19]–[24] and the evolution of ideas that contradict social norms [30],[31].
These models and texts are more detailed and sophisticated than the model505

described in this paper. However, by keeping our model simplistic, it applies to
di↵erent situations, as illustrated by the examples below. Hence, our model gives
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a more general description of the dynamics that occur when a stable population
is invaded by an alternative strategy.

4.1. Evolution of cooperation among bacteria and multicellularity510

When life started to evolve about four billion years ago, the first life forms
adopted the most basic strategy, which is to outcompete other individuals by
dividing as fast as possible [2]. However, proliferation requires resources, such as
space and nutrient molecules, and di↵erent individuals can have access to some
resources and no access to other resources. In these situations, cooperation can515

be beneficial [10],[14],[27].
A simplified example of cooperation among single-celled organisms is that

one cell has access to enough nutrient molecules for two cell divisions but no
space, whereas another cell has access to enough space for two cell divisions
but no nutrient molecules. Thus, if the two cells share their resources, that is,520

mutual cooperation, they will both reproduce. On the contrary, if the two cells
do not share their resources, that is, mutual defection, neither of the cells will
reproduce. However, if only one cell shares its resources and the other does not
share, then the cooperator does not reproduce and loses its resources whereas
the defector reproduces twice.525

This simple example illustrates the dilemma of cooperation: even though
mutual cooperation leads to a higher payo↵ than mutual defection, a defector
has a higher payo↵ than a cooperator when they meet. Indeed, it is a version
of the prisoner’s dilemma, which is discussed in Subsection 1.2.

Moreover, a group of cooperating cells is vulnerable to intruders and mutants530

that stop cooperating, because these cells can invade the colony by exploiting
the cooperating cells [32]. Hence, a group of cooperators can only survive in
the long term if it develops regulation mechanisms that control the cooperation,
for instance by modifying the microenvironment such that the defectors lose
their advantages. Indeed, the evolution of multicellular organisms was driven535

by increasingly advanced regulation mechanisms among cooperating cells [14].
A small group of cooperators can invade a large population of defectors if

they manage to change the environment such that defection becomes a disadvan-
tageous strategy. This is illustrated by Figure 6. In the context of the evolution
of cooperation among cells, the wild-type individuals represent defectors and540

the intermediate mutants represent unconditional cooperators. Cooperation is
captured by the cooperation entities.

The fitness parameter represents the evolution of regulation mechanisms,
whereas the resistant mutants represents conditional cooperators. In a nutshell,
the conditional cooperators cooperate with cells that are of the same type and545

create a microenvironment that kills cells that are of a di↵erent type. As illus-
trated by Figure 5 and 6, the cooperators are disadvantageous when the fitness
parameter is below ⌥. Indeed, in the example given in Figure 5, the coopera-
tors become extinct. On the other hand, due to stochasticity, the cooperators
survive long enough to raise the fitness parameter above ⌥ in the example il-550

lustrated by Figure 5, and then the conditional cooperators invade the whole
population.
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4.2. The invasion of cancer

As discussed in Subsections 1.3 and 4.1, the human body has an advanced
defence system that attacks mutant cells that have stopped cooperating. Hence,555

mutant cells are in general disadvantageous when they first appear in the body,
and, what is more, mutant cells that progress into cancer typically change their
microenvironment and create new variants that are advantageous in the new
microenvironment [19]–[24]. This dynamics is captured by the model presented
in this paper. In this context, the cooperation entities represent the immune560

response, such as T cells, whereas the wild type and the mutant type represent
the healthy cells and the mutant cells, respectively.

Figures 5–7 illustrate the case in which T cells detect and kill mutant cells
before they cause any harm, whereas Figures 8 and 10–13 illustrate the case
in which T cells are only activated if they harm healthy tissue. In the first565

case, the healthy cells are initially advantageous, whereas, in the latter case, the
competition dynamics is neutral. Given that mutants can evolve into cancer
cells, it might seem that the best strategy is to kill them once they appear in
the body. However, too aggressive an immune system poses a greater risk to
the body than mutant cells with minor genetic errors [26],[33].570

The body can limit the blood flow to mutant cells. Hence, these cells must
break down the end product of glycolysis anaerobically, and this leads to an
acidic microenvironment [20]. In the model, the acid level is represented by the
fitness parameter. When the acid level reaches the limit ⌥, the death rate of
the cells that are not acid resistant increases. Moreover, since the mutants are575

harming the healthy cells, the T cells are activated. Thus, the non-resistant
mutants become less advantageous than the healthy cells, and, as illustrated in
Figure 8, they are expected to become extinct if they do not produce an acid-
resistant variant. On the other hand, if the mutant cells survive long enough
such that they produce a variant that is acid resistant, this cell type has a580

great advantage, because they can kill other cells by increasing the acid level,
as illustrated in Figures 10–13.

As illustrated by the examples given in Figures 10–13, there is a race between
the acid-resistant mutants and the T cells. If the T cells respond quickly, such
that there is a T cell at every site in the microenvironment before the normal585

cells become extinct, the acid-resistant mutants are neutralised. In this case, the
mutant cells are vulnerable to new attacks from the body’s defence mechanisms.

On the other hand, if the normal cells become extinct before there is a T cell
at every site, the resistant mutants are expected to take over the microenviron-
ment. This represents the onset of a more aggressive form of cancer. Indeed,590

many observations reveal that cancer cells exhibit glucose fermentation even
when there is enough oxygen present. This is called the Warburg e↵ect and has
been described in several other papers.

The model by Robertson-Tessi et al. includes several other mechanisms of
immune evasion that tumours use, including immunosuppressive surface mark-595

ers such as PD-L1, the down-regulation of antigen presentation machinery, the
recruitment of immunosuppressive immune cells and the secretion of immuno-
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suppressive factors such as TGF-beta [22]. Moreover, several other models in-
dicate that tissue architecture and signals between di↵erent microenvironments
play major roles in population dynamics and the progression of cancer [34]–[36].600

It is possible to include these mechanisms in our model. However, the main
scope of this paper is to give a general characterisation of the dynamics that
occur when a stable population is invaded; therefore, we keep the model as
simple as possible.

4.3. Evolution of ideas that contradict social norms605

Game and evolutionary theory can also be used to study human behaviour
and society [37]. For instance, the founders of Marxism, Karl Marx and Friedrich
Engels, were inspired by Charles Darwin [38].

The model can also capture the dynamics of political changes that are less
dramatic than revolutions and dictatorships, for instance when politicians use610

populist rhetoric or, depending on who has the power of definition, speak freely.
Sylvi Listhaug is a Norwegian politician for the Progress Party who was Minister
of Migration from December 2015 to March 2018. Listhaug has been called the
Trump of Norway, both as a compliment and as a criticism [39],[40].

The consensus of the Norwegian political elite is to address problems related615

to immigration and integration in a polite and indirect way. Hence, Listhaug’s
direct and confrontational style has created waves of reactions. Her critics claim
that her aggressive style creates conflicts with people who could become allies
and that she should rather focus on building a broad and inclusive alliance. A
paper by Pinker et al. [41], in which the authors apply ideas from evolutionary620

biology and game theory to illuminate possible advantages of indirect speech,
lend some support to Listhaug’s critics. Pinker et al. argue that most human
communication involves a mixture of cooperation and conflict and that indirect
speech is used to negotiate the type of relationship holding between the speaker
and the hearer. Moreover, indirectness in speech appears to be nearly universal625

[42].
However, when it comes to integration, indirect speech might promote par-

allel societies, because it can create misunderstandings about what is socially
acceptable and make the majority society seem very complex and unmanage-
able.630

Regardless of whether indirect speech is an advantage, breaking an unwrit-
ten law is associated with social stigmatisation. Thus, Listhaug must pay a cost
for bringing up unpleasant issues related to migration and integration in a direct
and, perhaps, populistic way [31]. Listhaug’s statements are almost automati-
cally considered to be controversial, as philosopher Lars Kolbeinstveit, from the635

liberal think tank Civita, writes in a text about Listhaug and the media [43].
In point of fact, after Listhaug claimed that the Labour Party puts the rights

of terrorists above the security of the nation in a Facebook post, the reactions
were so strong that Listhaug announced her resignation from the Government
to avoid a vote of confidence [44].640

Even though Listhaug reduced her political influence, at least on the short
term, after she resigned as Minister of Immigration, her political party, the
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Progress Party, gained support after her fall [45]. Moreover, there has been an
increased use of words regarding anti-elitism as well as a more heated immigra-
tion debate on the Internet [46].645

5. Conclusion

In this paper, an extension of the Moran process with non-constant fitness is
presented. The model captures not only the competition between di↵erent types
of individuals but also the struggle for fitness. That is, the type of individuals
that manage to change the environment such that they become advantageous is650

expected to outcompete other types of individuals.
The model captures the dynamics that occurs when a relatively stable pop-

ulation is invaded by a new type of individuals and can reproduce the following
events:

1. When a new type of individual appears in a relatively stable population,655

the newcomer is not advantageous.

2. Due to stochasticity, the new type grows in number and generates di↵erent
versions of itself.

3. The new type becomes advantageous if it manages to change the environ-
ment such that at least one of its variants increases its fitness.660

These events occur in di↵erent examples in which a relatively stable population
is invaded by a new type of individuals, for instance the evolution of cooperation
among bacteria and multicellularity, the invasion of cancer and the evolution
of ideas that contradict existing social norms. Several models have already
been proposed to describe these situations; however, none of them generalise665

the phenomena. Indeed, to our knowledge, the model presented in this paper is
the first general model of competition dynamics in relatively stable populations
that captures events 1–3.

Appendix A.

In this subsection, we summarise the way in which Wodarz and Komarova670

[3] obtain the transition probabilities for the Moran process given in (1)–(3).
The Moran process assumes that the population has A constant size, N , and

consists of two types of individuals, denoted the wild type and the mutant type.
The individuals can reproduce, mutate and die.

When a wild-type individual reproduces, the probability that it will produce675

a wild-type individual is 1�u, and the probability that it will produce a mutant
is u, where 0  u  1. It is assumed that when a mutant individual reproduces,
it always produces a new mutant. Moreover, the wild-type individuals have
reproductive rate 1 and the mutants have reproductive rate r, where r > 0.
Both types are selected to die at the same rate. In each time step, one individual680
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reproduces and one individual dies. It is assumed that the same individual can
be selected both to reproduce and to die.

Let i denote the number of mutants at the beginning of a given time step.
Thus, the number of wild-type individuals at the beginning of the time step is
N�i. The probability that a wild-type individual will reproduce is proportional
to its frequency and the reproductive rate and is given by (N � i)/(N � i+ ri).
Similarly, the probability that a mutant will reproduce is ri/(N � i+ ri). Thus,
the probabilities that the new individual will be a wild type and a mutant type
are

P+w = (1� u)
N � i

N � i+ ri
,

P+m = u
N � i

N � i+ ri
+

ri

N � i+ ri
,

respectively.
The Moran process assumes that the new individual cannot be selected to

die in the time step in which it was produced. Hence, the probability that a type
of individual will be selected to die depends on its abundance at the beginning
of the time step. That is, the probabilities that the individual selected to die is
a wild-type individual and a mutant are

P�w =
N � i

N
, (A.1)

P�m =
i

N
, (A.2)

respectively.
Note that, if the new individual could be selected to die in the same time step

in which it was produced, then the probability that an individual of a certain
type will be selected to die would depend on which type the new individual is.
Moreover, the population size would be N + 1 before the selected individual
dies. Thus, the conditional probabilities that the individual selected to die is of
a certain type would be

P(A|B) =
N + 1� i

N + 1
, (A.3)

P(A|C) =
N � i

N + 1
, (A.4)

P(D|B) =
i

N + 1
, (A.5)

P(D|C) =
i+ 1

N + 1
, (A.6)

where the events A–D are as follows:685

• A: a wild-type individual is selected to die.

• B: the new individual is wild type.
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• C: the new individual is a mutant.

• D: a mutant is selected to die.

Hence, if the new individual could be selected to die in the same time step in
which it was produced, the probabilities associated with each time step would
be more complex; consequently, it would become more complicated to compute
the absorption time and the probabilities of being absorbed. Furthermore, for a
su�ciently large population size, N , the probability given in (A.1) is a reason-
able approximation of the probabilities given in (A.3) and (A.4); likewise, (A.2)
is a tolerable approximation of (A.5) and (A.6). These approximations are very
good when i is close to N/2. However, for i = 1

P(D|C) = 2P(D|B),

and for i = N � 1

P(A|B) = 2P(A|C).

Even though the approximations are not very precise when i is either very small690

or close to N , the request for simplicity weighs more in the Moran model.
In each time step of the Moran process, the number of mutants can increase

by one, decrease by one or remain constant. By assuming that the new indi-
vidual cannot be selected to die in the time step in which it was produced, the
probabilities of these three events are given by

P(i+ 1|i) = P+mP�w =
u(N � i) + ri

N � i+ ir

N � i

N
,

P(i� 1|i) = P+wP�m =
(1� u)(N � i)

N � i+ ir

i

N
,

P(i|i) = 1� P (i+ 1|i)� P (i� 1|i),

respectively.

Appendix B.

Given that the present number of mutants is i, there are i � 1, i or i + 1
mutants after the next time step. The probabilities for these events are given
in Equations (1)–(3), respectively, with r = 1 and u = 0. Thus, the conditional
probability of reaching state ⌫, P(reach ⌫ | i ), must satisfy

P(reach ⌫ | i ) = P(reach ⌫ | i� 1 )
i

N

✓
1� i

N

◆
+ P(reach ⌫ | i )

✓
1� 2

i

N

◆

+ P(reach ⌫ | i+ 1 )
i

N

✓
1� i

N

◆
.

This equation can be reduced to the following second-order di↵erence equation
with constant coe�cients:

P(reach ⌫ | i� 1 ) = 2P(reach ⌫ | i )� P(reach ⌫ | i+ 1 ).
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Since the corresponding quadratic equation

r2 � 2r + 1 = 0

has only one root, namely r = 1, the solutions of the di↵erence equation have
the form

P(reach ⌫ | i ) = ↵i+ �

where ↵ and � are constants. Note that the system has exactly two absorb-
ing states, namely i = 0 and i = ⌫, with corresponding transition probabilities
P(reach ⌫ | 0 ) = 0 and P(reach ⌫ | ⌫ ) = 1. Thus, we have the following bound-
ary conditions:

0 = 2P(absorbed in ⌫ | 1 )� P(absorbed in ⌫ | 2 )

P(absorbed in ⌫ | ⌫ � 2 ) = 2P(absorbed in ⌫ | ⌫ � 1 )� 1.

We obtain ↵ = 1/⌫ and � = 0. Hence, the conditional probability for reaching
⌫ is

P(reach ⌫ | i ) = i

⌫
.

Appendix C.
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Table 1 Payo↵ matrix for prisoner’s dilemma
This Table display the payo↵ matrix for a 2⇥2 game with two strategies, namely cooperation
and defection. If the following inequalities T > C > D > R hold, then the game is a version
of the prisoner’s dilemma.
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Figure 1a displays the number of mutants for N = 103 and F = 10�3

Figure 1 Population dynamics when the fitness parameter is below ⌥
When the fitness parameter is below ⌥, the population dynamics is identical to a neutral
Moran process. Moreover, starting with one mutant at generation t = 0, the probability that
this lineage reaches population size i = 103 is 10�3. The growth of the fitness parameter,
depends on the di↵usion rate, F . In Figure 1(a)(d), F equals the inverse of the total
population size. On these terms, it is expected that the fitness parameter is approximately F
times the number of mutants. And in point of fact, the fitness parameter is close to F times
the number of mutants in the simulations displayed in (a)(d). On the other hand, in Figure
1(e)(h), F equals zero. In this case, the fitness parameter cannot decrease, but is expected to
increase as long as there are mutants in the population. And indeed, the simulation displayed
in Figure 1(e) and (f) illustrates that given that the number of mutants reaches i = 1.5⇥ 103,
it follows that the fitness parameter grows exponentially, whereas the simulation displayed
in Figure 1(g) and (h) illuminates that the fitness parameter grows until the mutants are
extinct.

Figure 1b displays the fitness parameter for N = 103 and F = 10�3.
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Figure 1c displays the number of mutants for N = 106 and F = 10�6

Figure 1d displays the fitness parameter for N = 106 and F = 10�6

Figure 1e displays the number of mutants for N = 104 and F = 0
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Figure 1f displays the fitness parameter for N = 104 and F = 0

Figure 1g displays the number of mutants for N = 104 and F = 0

Figure 1h displays the fitness parameter for N = 104 and F = 0
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Figure 2a displays the number of intermediate mutants

Figure 2 Low mutation rate and high di↵usion rate: Invasion of mutants
The first mutant is generated at generation t = 0, and due to stochasticity, the mutant
population grows in number and the fitness parameter reaches the limit ⌥ at generation
t = 854. Since both the mutant population size and the mutation rate, µ1, are relatively
small, no resistant individual is present in the population when the fitness parameter reaches
the limit. However, at generation t = 1058, a resistant mutant is generated, and since this
type of individual is very advantageous, it is expected to invade the whole population. And
indeed, as illustrated in Figure 2(d), the growth of resistant mutants lies close to the expected
function.
The parameter sizes are: N = 105, ⌥ = 0.1, µ = 10�5 and F = 10�6.

Figure 2b displays the fitness parameter and the pink dashed line marks the limit ⌥
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Figure 2c displays the number of resistant mutants before the invasion

Figure 2d displays the invasion of resistant mutants, both the simulation and the expected
function
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Figure 3a displays the number of intermediate mutants

Figure 3 Low mutation rate and high di↵usion rate: Extinction of mu-
tants
The first mutant is generated at generation t = 0, and due to stochasticity, the mutant
population grows in number and the fitness parameter reaches the limit ⌥ at generation
t = 630. Since both the mutant population size and the mutation rate, µ1, are relatively
small, no resistant individual is present in the population when the fitness parameter reaches
the limit. Moreover, since the di↵usion rate of the fitness parameter, F , is relatively high,
the fitness parameter starts to decrease when the number of mutants decreases. Hence, the
mutant population goes extinct.

Figure 3b displays the fitness parameter and the pink dashed line marks the limit ⌥
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Figure 3c displays the number of resistant mutants

Figure 4a displays the number of intermediate mutants

High mutation rate: Invasion of mutants
The first mutant is generated at generation t = 0, and due to stochasticity, the mutant
population grows in number and the fitness parameter reaches the limit ⌥ at generation
t = 662. Since the mutation rate, µ1, is relatively large, resistant individuals are present
in the population when the fitness parameter reaches ⌥. Moreover, since this type of
individual is very advantageous, it is expected to invade the whole population. And indeed,
as illustrated in Figure 3(d), the resistant mutants invade the population.
The parameter sizes are: N = 105, ⌥ = 0.1, µ = 10�4 and F = 10�6
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Figure 4b displays the fitness parameter and the pink dashed line marks the limit ⌥

Figure 4b displays the number of resistant mutants before the invasion

Figure 4c displays the invasion of resistant mutants, both the simulation and the expected
function
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Figure 5a displays the number of mutants and the number of cooperation entities

The cooperation entities make the mutants disadvantageous
The first mutant is generated at generation t = 0, and almost immediately after, a cooperation
entity is activated. The population of cooperation entities grows in number, whereas the
mutant population gets extinct before the fitness parameter reaches the limit ⌥.
The parameter sizes are: N = 103, ⌥ = 2.5, µ = 10�3, P = 0.01, F = 10�5.

Figure 5b displays the fitness parameter and the pink dashed line marks the limit ⌥
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Figure 6a displays the number of intermediate mutants and the number of cooperation
entities before the resistant mutants invade the whole population

Figure 6 The mutants lay low before they invade
The first mutant is generated at generation t = 0, and immediately after, a cooperaion entity
is activated. The population of cooperation entities grows in number and prevent the mutant
population from expansion. However, the mutants avoid extinction, and survive long enough
to raise the fitness parameter above ⌥. Since both the mutation rate, µ, and the mutant
population size are relatively small, the mutant population contains no resistant when the
fitness parameter reaches ⌥. However, after 75 generations, a resistant mutant is generated,
and since the resistant mutants are advantageous when the number of cooperation entities
is less N and the fitness parameter is above ⌥, the resistant mutants invade the whole
population.
The parameter sizes are: N = 103, ⌥ = 2.5, µ = 10�3, P = 0.01, F = 10�5.

Figure 6b displays the fitness parameter and the pink dashed line marks the limit ⌥
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Figure 6c displays the number of resistant mutants and the number of cooperation entities as
the resistant mutants invade the whole population

Figure 7a displays the number of intermediate mutants and the number of cooperation
entities before the resistant mutants invade the whole population

Figure 7 The mutants grow faster than the cooperation entities and in-
vade the whole population
The first mutant is generated at generation t = 0, and due to stochasticity, the mutant
population grows fast whereas the growth of the cooperation entities is delayed. Consequently,
the fitness parameter reaches the limit ⌥. Since the population size is relatively large,
there have already been generated resistant mutants, and since the resistant mutants are
advantageous when the number of cooperation entities is less N and the fitness parameter is
above ⌥, the resistant mutants invade the whole population.
The parameter sizes are: N = 103, ⌥ = 20, µ = 10�3, P = 0.01 and F = 10�5.
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Figure 7b displays the fitness parameter and the pink dashed line marks the limit ⌥.

Figure 7c displays the number of resistant mutants and the number of cooperation entities as
the resistant mutants invade the whole population
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Figure 8a display the number of intermediate mutants

Figure 8 High activation rate of the cooperation entities: The mutants get
extinct
A mutant appears in the population at generation t = 0 and generates a lineage of mutants
that survives long enough such that the fitness parameter reaches the limit ⌥ at generation
t = 1092. The mutation rate, µ1 is relatively low and when the fitness parameter reaches
⌥, there are no resistant mutants in the population. Moreover, the activation rate of the
cooperation entities is very high, and hence, the number of cooperation entities grows rapidly,
whereas the mutants become increasingly disadvantageous and decrease fast towards zero.
The parameter sizes are: N = 105, ⌥ = 5, µ = 10( � 5), P = 1 and F = 10( � 8).

Figure 8b displays the fitness and the pink dotted line marks the limit ⌥
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Figure 8c displays the number of resistant mutants

Figure 8d displays the number of cooperation entities
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Figure 9 N cooperation entities
This Figure shows the case when the initial number of cooperation entities isN = 104, whereas
the initial number of wild-type individuals, resistant mutants and intermediate mutants are
10, 10 and N � 20, respectively. Since the intermediate mutants are disadvantageous whereas
the wild-type individuals and the resistant mutants are neutral variants, it is expected that
the intermediate mutants get extinct while the wild-type individuals and the resistant mutants
both grow towards N/2. The competition dynamics between the wild type and the resistant
mutants is characterised by great variance whereas the number of intermediate mutants follows
the expected function closely.

Figure 10a displays the number of intermediate mutants

Figure 10 Moderate activation rate of cooperation entities and invasion of
resistant mutants
A mutant appears in the population at generation t = 0 and generates a lineage of mutants
that survive long enough such that the fitness parameter reaches the limit ⌥. When the
fitness parameter reaches this limit, the population of mutants has already generated four
resistant individuals, which are advantageous as long as the number of cooperation entities
are lower than the population size, N . Even though the number of cooperation entities grows
quit quickly, the number of resistant mutants reaches N first.
The parameter sizes are: N = 105, ⌥ = 0.1, µ = 10�5, P = 0.1 and F = 10�6.
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Figure 10b displays the fitness parameter and the pink dashed line marks the limit ⌥

Figure 10c displays the number of resistant mutants and the number of cooperation entities
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Figure 11a displays the number of intermediate mutants

Figure 11 High activation rate of cooperation entities and coexistence of
resistant mutants and wild-type individuals
A mutant appears in the population at generation t = 0 and generates a lineage of mutants
that survive long enough such that the fitness parameter reaches the limit ⌥. When the
fitness parameter reaches this limit, the population of mutants has already generated four
resistant individuals, which are advantageous as long as the number of cooperation entities
are lower than the population size, N . However, since the activation rate of the cooperation
entities is very high, the number of cooperation entities reaches N when the number of
resistant mutants is approximately 4 ⇥ 104. Since the wild-type individuals and resistant
mutants become neutral variants, the number of each type is expected to remain constant.
The parameter sizes are: N = 105, ⌥ = 1, µ = 10�5, P = 1 and F = 10�8.

Figure 11b displays the fitness parameter and the pink dashed line marks the limit ⌥
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Figure 11c displays the number of resistant mutants and the number of cooperation entities

Figure 12a displays the number of intermediate mutants and the number of cooperation
entities before the resistant mutants invade the population

Figure 12 Low activation rate of cooperation entities and delayed invasion
of resistant mutants
The fitness parameter reaches the limit ⌥ at generation t = 0, and all the mutants are
non-resistant from generation t = 0 to generation t = 432. Thus, these mutants become
increasingly disadvantageous as the number of cooperation entities grows. Since the di↵usion
rate, F , equals zero, the fitness parameter remains above ⌥ even though the number of
mutants decreases towards zero. A resistant mutant is generated at generation t = 433, and
as long as the number cooperation entities is less than the population size, N , the resistant
mutants are advantageous and grow exponentially. Since the activation rate is relatively
low, the population of resistant mutants beats the cooperation entities in the race towards
N . The initial number of intermediate mutants is i = 558. The other parameter sizes are:
N = 105, µ = 10�5, P = 0.01 and F = 0.
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Figure 12b displays the number of resistant mutants and the number of cooperation entities
as the resistant mutants invade the whole population

Figure 13a displays the number of intermediate mutants and the number of cooperation
entities before the first resistant mutant is generated

Figure 13 Moderate activation rate of cooperation entities and co-existence of
resistant mutants and wild-type individuals
The fitness parameter reaches the limit ⌥ at generation t = 0, and all the mutants are
non-resistant from generation t = 0 to generation t = 101. Thus, these mutants become
increasingly disadvantageous as the number of cooperation entities grows. Since the di↵usion
rate, F , equals zero, the fitness parameter remains above ⌥ even though the number of
mutants decreases towards zero. A resistant mutant is generated at generation t = 101, and
as long as the number cooperation entities is less than the population size, N , the resistant
mutants are advantageous and grow exponentially. However, since the activation rate of the
cooperation entities is su�ciently high, the number of cooperation entities reaches N when
the number of resistant mutants is approximately 8⇥104. Since the wild-type individuals and
resistant mutants become neutral variants, the number of each type is expected to remain
constant. The initial number of intermediate mutants is i = 1107. The other parameter sizes
are: N = 105, ⌥ = 0.1, µ = 10�4, P = 0.25 and F = 0.
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Figure 13 b displays the number of resistant mutants and the number of cooperation entities
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