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Abstract

In this thesis I explore the stability and the breakdown of stability of biological systems. The

main examples are the blood system and invasion of cancer. However, the models presented in

the thesis apply to several other examples.

Biological systems are characterised by both competition and cooperation. Cooperation is

based on an unsolvable dilemma: Even though mutual cooperation leads to higher payo↵ than

mutual defection, a defector has higher payo↵ than a co-operator when they meet. It is not

possible to represent this dilemma with a linear and deterministic model. Hence, the dilemma

of cooperation must have a nonlinear and/or stochastic representation.

More general, by using a linearised model to describe a biological system, one might lose

dimensions inherent in the complexity of the system. In this thesis I illustrate that a nonlinear

description of a biological system is potentially more accurate and might provide new information.

The thesis is made up of three papers. Paper 3 presents the most general model which consid-

ers a relative stable population that is invaded by an alternative strategy. That is, a new type of

individual is in general not advantageous when it appears in stable population. The newcomers

can grow in number due to stochasticity. However, they can only become advantageous if they

manage to change the environment in such a way that they increase their fitness. The model

presented in paper 3 is an extension of the Moran process that captures this dynamics.

Paper 2 proposes a model that links self-organisation with symmetric and asymmetric cell

division. The model assumes that cell divisions are completely random events, and that the

daughter cells resulting from asymmetric and symmetric divisions are, in general equal, and

still, the tissue has the flexibility to self-renew, produce mature cells and regenerate, due to

self-organisation.

Paper 1 presents a model that illustrates that if symmetric stem cell division is regulated by

di↵erentiated cells, then the fitness of the stem cells can be a↵ected by modifying the death rate

of the mature cells. This result is interesting because stem cells are less sensitive than mature

cells to medical therapy, and our results imply that stem cells can be manipulated indirectly by

medical treatments that target the mature cells.
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Part I

Introduction

The fundamental and defining principles of evolutionary theory are replication, selection and

mutation [1]. Based on these three principles, it is possible to describe a biological system with

mathematical equations. However, since living organisms reproduce, die and change strategy

based on feedback from their environment, it is very hard to derive a mathematical model that

is both general and gives an accurate description of a specific biological system.

An important question, both in this thesis as well as in mathematical modelling in general,

is what level of complexity should be included in a model. For instance, flipping a coin could be

represented by an extremely complex model that includes Newton’s laws, the laws of thermody-

namics and so on. However, a simple stochastic model, with equal probability of head and tail,

is in general better.

For similar reasons, a very simplistic and stochastic model might be the best representation of

blood formation, in general. That is, haematopoiesis is the generation of blood, and at the root of

this process is a small group of slowly replicating cells, called the haematopoietic stem cells [2], [3],
which have the capability to maintain themselves through self-renewal and produce mature

blood cells through di↵erentiation. Under normal conditions, the number of haematopoietic

stem cells is approximately constant, and Lenaerts et al. [4] show that the haematopoietic stem

cells dynamics can be described by the Moran process, which represents the simplest possible

model of stochastic evolutionary dynamics in a finite population. However, the production of

mature blood cells increases after blood loss, and research results by Goko↵ski et al. [5] indicate

that the number of haematopoietic stem cells increases when the number of mature blood cells

decreases. A deterministic model of haematopoietic stem cell dynamics with only one regulation

mechanisme, such as the model presented in paper 1, can give a better description of these

specific data than the Moran process. Nevertheless, as I make a case for in Section 2, because

the regulation of haematopoiesis is an extremely complex process, a model that treats stem cell

behaviour as purely random events fits general data better than a deterministic model with a

single regulation mechanism.

In a nutshell, if a process is “very complex”, it is in general better to use a simple stochastic

model, than a complex deterministic model. However, as discussed more thoroughly in Section 6,

machine learning and neural networks challenge the concept of “very complex”. That is, neural

networks will almost certainly have a transformative impact on modelling high-dimensional com-

plex systems in the years to come. Neural networks have challenged traditional mathematical

models and outperformed competing methods without providing clear evidence why they are

doing so [6].

1 Nonlinearity can generate stochasticity

A human child has 23 chromosomes from each parent and these chromosomes contain basic

genetic rules. However, a child is more than half of each parent, and this illustrates why linear

representation of genetic information is problematic because linear equations cannot produce

something new. On the contrary, nonlinear rules can actually produce something new and

unexpected. That is, even a very simple nonlinear relation can generate complex patterns that

no mathematical tools can penetrate. A good example is the logistic map

Y

T+1 = 4Y

T

(1� Y

T

), (1)
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which is described in more details below.

In a nutshell, a linear mathematical equation is easy to understand and simple to solve,

whereas a nonlinear mathematical equation might be hard or even impossible to understand and

solve, and it can generate new knowledge. Since living organisms reproduce, die, and change

strategy based on feedback from their environment, their behaviour is seldom captured by lin-

ear equations. Even some of the simplest biological systems require nonlinear representations.

This is illustrated below, where it is shown how the behaviour of a system of replicating indi-

viduals changes dramatically when the description changes from linear to nonlinear, when time

is represented by time steps instead of a continuous variable, and when the feedback from the

environment is delated.

1.1 Population growth

When a population is in an isolated environment, only replication can change the population

size. Suppose that the function x(t) describes the size of an isolated population at time t, and

that the derivative of x(t) with respect to t,

dx
dt , exists. Let b and d denote the birth rate and

the death rate, respectively. Since all changes in x(t) are caused by birth or death, we have that

dx

dt

= bx(t)� dx(t) = rx(t), (2)

where r = b� d. If r is a constant, then the di↵erential equation given above is linear and have

solutions on the form

x(t) = x(0) exp(rt), (3)

where x(0) is the population size at time t = 0. Moreover, if r is positive, then x(t) describes

a growing population in an isolated environment where there is no competition for resources.

Nevertheless, a population cannot expand infinitely. Eventually, resources become limited, and

then competition occurs. Ecologists have introduced a variety of modifications to the linear

di↵erential equation given in (2) to take account of saturation e↵ects. The main idea in all of

them is to reduce the growth as x(t) becomes large. One approach is the di↵erential equation

dx

dt

= rx(t)

✓
1� x(t)

C

◆
, (4)

where the constant C is the carrying capacity of the population. As discussed in the beginning

of the introduction, most nonlinear problems are very hard, and sometimes even impossible, to

solve. However, the di↵erential equation in (4) is one of relatively few nonlinear problems that

have neat solutions, namely

x(t) =

Cx(0) exp(rt)

C + x(0)(exp(rt)� 1)

, (5)

where x(0) is the population size at time t = 0.

Some populations nurture their o↵spring before these reach reproductive age, and in this case

it might be better to include di↵erent generations. The following nonlinear recurrence relation

captures this competition dynamics:

X

T+1 = RX

T

✓
1� X

T

C

◆
, (6)
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where T is a non-negative integer denoting time steps, X

T

is the population size at time step T ,

and R is a positive constant less than or equal to 4. Like for the continuous di↵erential equation

given in (4), C is the carrying capacity. But in contrast to the continuous case, if the population

described by the discrete representation reaches the the carrying capacity, the population will

get extinct the next time step. The reason why the behaviour of the discrete description of

the population is very di↵erent from the continuous description, is that the feedback from the

environment is implemented di↵erently in the two cases.

By substituting the function Y

T

= X

T

/C into the recurrence relation given in (6), we obtain

the logistic map

Y

T

+ 1 = RY

T

(1� Y

T

).

The logistic map does not have any neat formula for the solution in terms of T . However, for

R < 4 it is possible to predict the outcome of the logistic map by using advanced mathematical

analysis [7]. On the contrary, for R = 4 we obtain the logistic map given in Equation (1). It

has been proved that the statistical mechanics of this system has exactly the same statistical

properties as a random system. Actually, according to Ian Stewart [7]: “Random means that no

obvious structure exists, but that on average we can say various things, such as how often the

values occur in a given range. Random has carried the connotation of indeterministic, that is, a
system is deterministic if it follows exactly some regular law, random if not”. Nevertheless, the

logistic map given in (1) shows there is no clear distinction between deterministic and random

behaviour, because this map is a deterministic system which behaves randomly.

2 Randomness and self-organisation

The logistic map given in Equation (1) is an example of a deterministic equation which behaves

randomly. And in point of fact, for deterministic, nonlinear, dynamical systems, strange attrac-

tors, chaos and random behaviour are the rule rather than the exception, and as the number of

variables increase, the phenomena become more peculiar [8].

The DNA of cells in a multicellular organism contains deterministic rules. However, complex

and nonlinear interactions between cells can create patterns that not only seem totally random,

but that actually are random. Furthermore, it is possible that the organisms make use of the

randomness, because randomly organised systems can exhibit self-organisation which is a spon-

taneous order that arises from local interactions between parts of an initially disordered system.

This possibility is explored in the next subsection.

2.1 Haematopoiesis and self-organisation

Even though the haematopoietic system in a healthy adult is stable and robust, the behaviour of

each blood cell seems chaotic and random. This indicates that haematopoiesis is a self-organised

process.

A healthy adult contains about five litres blood, which corresponds to about 37⇥ 10

15
blood

cells. Each day, the body produces around 10

15
blood cells. Thus, most of the cells in the

haematopoietic system is replaced each month [9].

At the root of the blood forming process are the haematopoietic stem cells, which are lo-

cated within the bone marrow and segregated among di↵erent bones throughout the body.

The haematopoietic stem cells di↵erentiate into progenitor cells, which di↵erentiate into red

blood cells, white blood cells or platelets, through sequential division. Since the number of

haematopoietic stem cells is much smaller than the number of more di↵erentiated blood cells,
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the haematopoietic stem cells must be tightly regulated and protected. The haematopoietic bone

marrow niches may be crucial in both aspects [10], [11]. Since a niche cannot be reconstructed

experimentally, it is di�cult to study haematopoietic stem cells in vitro, because stem cell sur-

vival, self-renewal and di↵erentiation are regulated by signals from the niche. Hence, relatively

little is known about the exact behaviour of haematopoietic stem cells. For example, when a

haematopoietic stem cell divides, exactly what determines whether a daughter cell becomes a

stem cell or starts to di↵erentiate, is still unclear. This is related to the symmetry of the stem

cell division, which is discussed in the next subsection.

2.2 Symmetric and asymmetric stem cell division

An important concept related to stem cell self-renewal and di↵erentiation, is the symmetry of

the stem cell division. That is, an asymmetric stem cell division results in one daughter cell that

has stem cell identity, and another daughter cell that starts to di↵erentiate, whereas a symmetric

stem cell division generates two daughter cells that are destined to the same fate [12], [13]. There

are two types of symmetric stem cell division, namely symmetric self-renewal, which results in

two stem cells, and symmetric di↵erentiation, where both daughter cells start to di↵erentiate.

Under normal conditions, the number of cells in a given tissue is approximately constant, and

the stem cells di↵erentiate and self-renew at relatively constant rates to replace mature cells and

to keep the stem cell number at a certain normal level [14], [15]. By dividing asymmetrically,

the stem cells manage to both self-renew and produce di↵erentiated cells in a single division.

However, a disadvantage of asymmetric stem cell division is that it leaves stem cells unable

to expand in number. It is, in general, believed that the stem cells can regenerate [12], [13].

For instance, haematopoietic stem cells can expand rapidly in response to injury to the bone

marrow, such as stem cell transplantation [16]. Hence, asymmetric self-renewal cannot be the

complete story, since it leaves stem cells unable to expand in number. The number of stem

cells increases by one after symmetric self-renewal. Since the haematopoietic bone marrow can

regenerate after injury, it is likely that the rate of symmetric self-renewal depends on the number

of haematopoietic stem cells. On the contrary, the number of stem cells decreases by one after

a symmetric commitment. Thus, the two types of symmetric divisions must occur at the same

rate under normal conditions.

As discussed more thoroughly in paper 2, several experiments on Safari cats by Abkowitz et al.

indicate that haematopoietic stem cells divide mostly asymmetrically under normal conditions,

whereas when the haematopoietic bone marrow niche regenerates after injury, the haematopoietic

stem cells start to divide symmetrically [16], [17], [18]. But does this mean that a stem cell

somehow ”knows” that it must divide asymmetrically under normal conditions and self-renew

symmetrically when stem cells need to be replaced? This would also mean that the daughter

cells inherit this ”knowledge”. However, as discussed in paper 2, the assumption that each cell

”knows” how to behave in di↵erent situations is too rigorous and potentially misleading. Thus,

it is more likely that each stem cell behaves completely random. Nevertheless, the stem cells

divide mostly asymmetrically under normal conditions and symmetrically under regeneration,

due to dynamic regulation and self-organisation in the haematopoietic bone marrow niche.

As discussed more thoroughly in paper 2, several experiments on Drosophila germline stem

cells indicate that the stem cell niche can contain up to a certain number of cells, and that

the niche is approximately full under normal conditions. When a stem cell divides, one of the

daughters inherits the mother’s place in the niche and retains stem cell identity. The fate of the

second daughter depends on whether there is a vacant place in the niche or not. In the first case,

the second daughter daughter remains in the niche and retains stem cell identity. If the niche

is full, the second daughter is placed outside the niche, and loses its stem cell identity. Thus,
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research on Drosophila germline stem cells indicates that the stem cells do not ”know” whether

they must divide asymmetrically or symmetrically. That is, the stem cells divide randomly, and

the availability of the niche, and perhaps some other factors, determines whether the division

is asymmetric or symmetric. This implies that an undi↵erentiated cell must be in the niche to

function as a stem cell: Once a cell is placed outside the niche, it is no longer a stem cell.

3 Moran process and the invasion of mutants

As discussed in the previous subsection, under normal conditions, the rate of symmetric self-

renewal must equal the rate at which the stem cells leave the niche, and in this case, the

haematopoietic stem cell dynamics can be described by the Moran process, which assumes that

the population size is constant and that at each time step, a random cell is selected to self-

renew symmetrically and a random cell is selected to leave the growth environment. Dingli et

al. present a version of the Moran process which includes all types of stem cell division [19].

However, for simplicity, we only consider symmetric stem cell division here.

Genetic changes called mutations can occur in any cell that divides [20]. Even though most

mutations are harmless to the body, progressive accumulation of mutations can lead to cancer

[21].

Results from theoretical work indicate that the tissue architecture of the haematopoietic

system, where only a small number of stem cells have the ability to self-renew, has evolved

to minimise the risk of malignant transformations [19]– [22]. That is, if a mutation occurs in a

mature blood cell, it is likely to be washed out of the system before it becomes a cancer phenotype,

because these cells do not self-renew. On the other hand, a mutation in a haematopoietic stem cell

can generate a di↵erent type of stem cell, denoted mutant stem cell. This leads to an evolutionary

process with competition between the mutant stem cells and the normal stem cells [1]. Lenaerts

et al. [4] show that this competition dynamics might be captured by the Moran process. That is,

the Moran process assumes that initially, all the stem cells are normal. When a normal stem cell

self-renews, a mutation that creates a mutant stem cell occurs with probability u. The normal

stem cell self-renews at rate 1 whereas the mutant stem cells self-renew at rate r. All stem cells

are selected to leave the niche at the same rate. Hence, the mutant type is advantageous if r > 1,

neutral if r = 1 and disadvantageous if r < 1. At each time step, the number of mutant stem

cells can either increase by one, remain constant or decrease by one. The probability for these

three events are

P (i+ 1|i) = u(N � i) + ri

N � i+ ir

N � i

N

, (7)

P (i� 1|i) = (1� u)(N � i)

N � i+ ir

i

N

, (8)

P (i|i) = 1� P (i+ 1|i)� P (i� 1|i), (9)

respectively, where N is the number of stem cells in the niche and i is the number of mutants.

If u is su�ciently small, the mutant type typically has time to take over the whole niche or get

extinct before another mutant is created from the normal type. By using the approximation

u ⇡ 0, Wodarz and Komarova [23] show that the probability that i mutant stem cells eventually

invade the whole niche is

⇢

i

=

r

N�i

�
1� r

i

�

1� r

N

(10)
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if r 6= 1 and

⇢

i

=

i

N

(11)

if it is a neutral Moran process, i.e. r = 1.

The reason why the mutant type can invade the whole niche, starting from a single mutant

stem cell, is that the stem cells self-renew symmetrically. Note that if the stem cells only divided

asymmetrically and no new mutation in a normal stem cell occurred, the number of mutants

would remain constant. However, most type of cancers require more than one mutation, and it

is illustrated in the paper by Shahriyari and Komarova [24] that symmetrically dividing cells can

delay a second mutant production compared to an equivalent system with only asymmetrically

dividing stem cells. More precisely, if stem cells only divide asymmetrically, then a mutation

acquired in a stem cell will remain in the system indefinitely, and it is only a matter of time

before the second mutation occurs. On the contrary, a mutant stem cell generated in a symmetric

division has a less certain fate – half of the lineages will di↵erentiate out after the very first

division and only 1/K of all lineages will expand to size K. Thus, that the uncertainty of the

fate of single mutant stem cells can be the reason for the statistically longer time it takes for the

symmetrically dividing stem cell model to produce a double-hit mutant.

Unlike most types of cancers, the first phase of chronic myeloid leukaemia is caused by a single

mutation in a haematopoietic stem cell that creates a leukemic stem cell. Since the mutation

rate from normal cells to leukemic cells is nonzero, it follows from the Moran process that any

person will eventually develop chronic myeloid leukaemia, given that he or she has a su�ciently

long life. This might seem to contradict the phrase the survival of the fittest, that originated

from Darwinian evolutionary theory as a way of describing the mechanism of natural selection.

However, as discussed more thoroughly in the next sections, the cooperation among cells in a

multicellular organism is based on an unsolvable dilemma, and, hence, it will sooner or later

dissolve. So maybe we should rather say: the survival of the one that keeps it together until after
successful reproduction. That is, the one thing that protects us from most types of cancer, is

death.

4 The rise and fall of unconditional co-operators: the prisoner’s dilemma
and evolutionary stable games

There are approximately 5⇥ 10

30
bacteria on Earth, and their biomass exceeds that of all plants

and animals. Bacteria are present in most habitats: soil, water, radioactive waste, acidic hot

springs, the deep portions of Earth’s crust as well as in symbiotic and parasitic relationships

with plants and animals. Furthermore, bacteria were among the first life forms and will most

likely exist longer than multicellular organisms. It might seem like a mystery that multicellular

organisms evolved from bacteria about 1.5 billion years ago, given that bacteria in so many ways

are fitter than multicellular organisms.

The first life forms adopted the most basic strategy, which is to outcompete other individuals

by dividing as fast as possible, when life started to evolve about four billion years ago [1].

Nevertheless, proliferation requires resources such as nutrient molecules and space, and di↵erent

individuals can have access to di↵erent resources. Thus, cooperation can be beneficial in these

situations [25], [26]. A simplified example of cooperation among single-celled organisms is that

one cell has access to enough nutrient molecules for two cell divisions but no space, whereas

another cell has access to enough space for two cell divisions but no nutrient molecules. Hence,

if both cells share their resources, i.e. mutual cooperation, they will both reproduce. On the
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contrary, if both cells do not share their resources, i.e. mutual defection, none of the cells

reproduce. However, if only one cell shares its resources and the other does not share, then the

co-operator does not reproduce and loses its resources whereas the defector reproduces twice.

This simple example illuminates the dilemma of cooperation: even though mutual cooperation

leads to higher payo↵ than mutual defection, a defector has higher payo↵ than a co-operator

when they meet. Indeed, this example is a version of the well-known game called the prisoner’s

dilemma [1]. Moreover, it illustrates why unconditional cooperation is an unstable strategy:

Consider a group of co-operators. If a mutation causes a cell to change strategy to defection, this

cell increases its payo↵. On the contrary, a strategy is a Nash equilibrium if no player, which in

our example are cells, can deviate from this strategy and increase its payo↵ [27]. Defection is a

Nash equilibrium both in our example with cells and in prisoner’s dilemma in general, because

if a defector mutates into a co-operator, it increases its payo↵.

A Nash equilibrium is also an evolutionarily stable strategy if selection opposes the invasion

of an alternative strategy [25]. That is, if a su�ciently large population adopts an evolutionarily

stable strategy, it cannot be invaded by a alternative strategy that is initially rare. For prisoner’s

dilemma, defection is an evolutionarily stable strategy. Hence, co-operators cannot invade a large

population of defectors. However, as illustrated by the Moran process, a relatively small group

of defectors can be invaded by co-operators. Moreover, if the co-operators develop regulation

mechanisms that control the cooperation, for instance by modifying the microenvironment such

that the defectors lose their advantages, then the group can survive in the long term. Indeed, the

evolution of multicellular organism was driven by increasingly advanced regulation mechanisms

among cooperating cells [1].

5 Evolution of multicellular organisms: From randomness to strict reg-
ulation and back

The healthy life and development of an advanced multicellular organism, for instance a human

being, depend upon the cooperation between millions of cells. Nevertheless, as discussed in

Section 4, unconditional cooperation, such as the cooperation given in the prisoner’s dilemma,

is an unstable strategy. Hence, cooperation among cells in an advanced multicellular organism

must be regulated by by a complex network of cellular checkpoints and signals.

Multicellular organisms consists of more than one cell. Similar to single-celled organisms that

belong to a colony, the cells in a multicellular organism must cooperate. Be that as it may, even

the simplest multicellular organisms have cells that depend on each other to survive, whereas

the single-celled organisms that live in colonies, can survive on their own.

Multicellular organisms evolved from colonies of single-celled organisms. As discussed in the

previous section, cooperating cells are vulnerable to mutants that change strategy to defection

since these cells can invade the colony by exploiting the cooperation.

In paper 3, an extension of the Moran process with non-constant fitness is presented. This

model captures the competition between co-operators and defectors, but also how the co-operators

can change their environment such that the fitness of the defectors is reduced.

Advanced multicellular organisms, such as human beings, are maintained by very complex

regulation networks. And, as illustrated in Section 1, as interactions get more complex and

nonlinear, they can generate chaos and random behaviour. Indeed, as discussed in Section 2, it

is possible that advanced multicellular organisms have evolved to make use of the randomness

that is generated by the complexity of the multiple signals.
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5.1 Multicellularity and cancer

The cooperation among cells in a multi-cellular organism is regulated by advanced control mech-

anisms that promote stability for a relatively long time. Nevertheless, multicellular organisms

and all other forms of cooperation will eventually break down because natural selection favours

defection.

Since children need care of for several years, humans must have a long life to reproduce

successfully. As discussed in Section 3, mutations can occur in any cell that divides [20], and

even though most mutations do not harm the body, progressive accumulation of mutations can

lead to cancer. That is, mutations in the genetic code can make a cell ignore signals from other

cells. For example, a mutant cell can divide when it is not needed and fail to undergo apoptosis.

In general, mutant cells that stop cooperating are attacked by the defence system of the body, for

instance killer T-cells. Thus, as discussed more thoroughly in paper 3, mutant cells are in most

cases disadvantageous when they first appear in the body. However, if the mutant type manages

to change the microenvironment such that at least some variants of the mutant cells become

advantageous, the mutant type is likely to spread and cause cancer, which is the breakdown of

cellular cooperation. That is, cancer is really a calculated risk of multicellularity: Cooperation

is not a stable state, and hence, it will eventually break down. Control mechanisms increase the

probability that the cooperation lasts long enough to lead to successful reproduction. However,

there is no guarantee that mutations create defective cells that escape the control network and

destroy the body.

Some cancer cells are programmed to adopt the strategy of primitive single-celled organisms:

divide as fast as possible and outcompete all other cells. Healthy human cells cannot survive on

their own. On the other hand, cancer cells might behave more like single-celled organisms and

in some cases they can survive on their own. An example is the HeLa cell line, which are the

cancer cells of Henrietta Lacks who died of cervical cancer in 1951. The HeLa cell is still used

for scientific pursuits [28].

As discussed more thoroughly in Section 11, even though treatment for cancer and other

genetic diseases are getting better every year, many types of cancer are so complex that we

might never fully understand them. Nevertheless, machine learning and deep neural networks

challenge the concept of “very complex”, and will almost certainly have a transformative impact

on modelling high-dimensional complex systems, such as cancer, in the years to come.

6 Machine learning

Machine learning enables computer systems to learn through progressively improving perfor-

mance on a specific task. That is, the computer system is not explicitly programmed, but uses

statistical techniques on big data. Deep neural networks are a type of machine learning that is

inspired by biological neural networks. Deep neural networks have become the dominant mining

tool for big data applications in the last decade, and it is expected that this type of machine

learning will make their mark in the general area of high-dimensional, complex dynamical sys-

tems [6].

Neural networks are inspired by the work of Hubel and Wiesel on the primary visual cortex

of cats [29], which they won the Nobel prize for. Their experiments demonstrated that neuronal

networks were organised in hierarchical layers of cells that process visual stimulus. The first

mathematical model of a neural network was presented in 1980 by Fukushima et. al [30], but

up until the last decade, the neural networks have not been widely used. The recent success of

deep neural networks has two major reasons [6], namely:

1. The continued growth of computional power.
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2. Exceptionally large labelled data sets which take advantage of the power of multi-layers

(deep) architecture.

Despite the success of deep neural networks, several basic questions remain wide open, for

instance:

1. How many layers are necessary for a given data set?

2. How many nodes at each layer are needed?

3. How big must my data set be to properly train the network?

4. What guarantees exist that the mathematical architecture can produce a good predictor

of the data?

5. What is the uncertainty and/or statistical confidence in deep neural network output?

6. Can I actually predict data well outside my training data?

7. Can I guarantee that I am not overfitting my data with such a large network.

The next decade will most likely witness significant progress in addressing these issues.
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Part II

Results

In this part, the three papers which make up the thesis, are presented and discussed.

Paper 3, which was published in 2018, presents a model that capture the dynamics that occurs

when a relatively stable population is invaded by an alternative strategy. Since this model is

the most general, it is discussed first. Paper 2 was published in 2017 and presents a model of

haematopoiesis that links self-organisation with symmetric and asymmetric cell division. This

model can reproduce several experimental results. In paper 1 from 2015 we use a mathematical

model to show that if symmetric cell division is regulated by di↵erentiated cells, then changes

in the population dynamics of the di↵erentiated cells can lead to changes in the population

dynamics of the stem cells.

7 Paper 3: Extended Moran process that captures the struggle for
fitness

Natural selection can cause evolution if there is enough variation in a population. When a mutant

is generated in a stable population, the ability to create new variants is important for the mutant

type if it is going to have any chance to invade the population. However, as discussed in Section

4, no individual has anything to gain from changing only its strategy in an evolutionary stable

population [27], and this indicates that the mutant type must also change its environment to

become advantageous.

That is, when a mutant is generated in a relatively stable population, it is most likely not

advantageous. However, the number of mutants can grow due to stochasticity, and indeed, the

mutants can invade a relatively small population, as illustrated by the Moran process presented in

Section 3. Nevertheless, the mutants become advantageous only if they change their environment

such that their fitness increases. This dynamics was present in the evolution of cooperation

among bacteria and multicellularity [26], [31], [32], the invasion of cancer [33] and evolution of

ideas that contradict social norms [34], [35]. In paper 3, we propose an extension of the Moran

process with non-constant fitness that captures this dynamics. To be ore specific, individuals

of the population can change the environment in such a way that the fitness landscape of the

population is modified. That is, the model presented in paper 3 captures the struggle for fitness

as well as the competition between di↵erent types of individuals.

Interestingly, the model can capture the invasion of defection as well as invasion of co-

operators. That is, unconditional co-operators are expected to be exploited until they are

extinct if they appear in a large group of defectors. The best possible scenario for this type

of co-operators is that they manage to change their environment such that another type of co-

operators that only cooperate under certain conditions, becomes advantageous. Similarly, when

defectors appear in a regulated cooperation, the first generation of defectors typically dies while

changing the environment such that coming generations become more advantageous.

7.1 Invasion of co-operators

As discussed in Section 4, it might seem like a mystery that multicellular organisms evolved from

bacteria since natural selection favours defection over cooperation. The model presented in paper

3 illustrates that a small group of co-operators can invade a large population of defectors if they

manage to change the environment such that defection becomes a disadvantageous strategy. That
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is, the model presented in paper 3 assumes that initially the population dynamics is captured by

a neutral Moran process, described in Subsection 3, and that all the individuals in the population

are single-celled organisms that defect. A mutation can create a single-celled organism that co-

operate. In this model, cooperation is captured by so-called detain entities that are activated

by the co-operators. If a detain entity and a co-operator located at the same site, then the

co-operator can be selected to die to give room for reproduction. On the other hand, the

defectors ignore the detain entities, but reproduce if there is room for new daughter cells. Thus,

the defectors are initially fitter than the co-operators. However, due to stochasticity, the co-

operators can avoid extinction, and what is more, the model has an additional parameter called

the temperature. In this example, the temperature represents regulation mechanisms. That is,

initially, when there are only defectors in the population, the temperature is zero. However, the

co-operators raise the temperature, and when the temperature reaches a certain limit, ⌥, the

regulation mechanisms start to kill the single-celled organisms that defect, and hence, defection

becomes a disadvantageous strategy in the population.

7.2 Invasion of defectors and the Warburg e↵ect

The model presented in paper 3 can also capture the dynamics of cancer invasion in solid tissues.

As discussed more thoroughly in Subsection 5, mutant cells are in general not advantageous

when they first appear in a human body because these cells are attacked by the defence system

of the body. In this example, the detain entities represent the immune response. However, it is

assumed that the immune cells are activated only if the mutant cells are harming healthy tissue.

Moreover, the body can limit the blood flow to the microenvironment where the mutant cells are

located. Consequently, the mutant cells break down the end product of glycolysis anaerobically,

and this causes an acidic microenvironment. Hence, the temperature represents the acid level in

the model, and it is assumed that the death rate of the healthy cells and the mutant cells that

are not acid-resistant, increase when the acid level reaches the limit ⌥.

To be more concrete, when the first mutant cell is generated, the acid level is zero. The

mutant cells raise the acid level, but as long as the healthy tissue is not harmed, the competition

dynamics between the healthy cells and the mutants cells is captured by the neutral Moran

process. However, when the acid level reaches ⌥, the healthy tissue is damaged, and consequently,

the immune cells are activated. If none of the mutant cells are acid resistant, then the mutant

type becomes disadvantageous, whereas if the mutant cells have generated a type of cells that are

acid-resistant, then these cells are advantageous as long as there are less than N immune cells

in the microenvironment. Hence, there is a race between the resistant mutants and the immune

cells to reach population size N . If the immune cells respond quickly and reach population size

N before the healthy cells in the microenvironment are extinct, the acid-resistant mutants are

neutralised. In this case, the mutant cells are vulnerable to new immune attacks. On the other

hand, the invasion of the resistant mutants represents the onset of a much more aggressive form

of cancer, and in point of fact, in many cases, cancer cells exhibit glucose fermentation even

when there is enough oxygen present. This is called the Warburg e↵ect [33].

7.3 Further work

The model presented in paper 3 could be extended by including the interplay between evolu-

tion and learning, which is an important issue in evolutionary computation [36]. This plays a

significant role in application areas that were used as examples in paper 3, such as biological

modelling, multi-agent systems, economics and politics. All of these studies involve systems of

interacting autonomous individuals in a population, and this raises several questions, like “Is
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there any equilibrium?” and “How can cooperative behaviours evolve?”. It is possible to apply

methods from machine learning to seek an answer to these questions.

In the version of the prisoner’s dilemma given in Subsection 4, single-celled organisms, that

either cooperate or defect, compete in a finite population. Each cell has a fixed strategy, and after

a normal cell division, both daughter cells inherit the strategy of the mother cell. However, when

a cell divides, a mutation that changes the strategy of the daughter cells, can occur. Thus, if the

population is relatively small, the co-operators can invade the population due to stochasticity.

Nevertheless, if the population is su�ciently large, it will, eventually, be dominated by defectors,

since defection is an evolutionarily stable strategy.

In contrast, a mix between cooperation and defection is often observed in several examples

of prisoner’s dilemma, for instance in human society [37]. One explanation is that in human

life, a player often expects to meet the same opponent in the future, and he might remember a

previous defection and take revenge [36]. On the other hand, if all the opponents know that a

player always cooperate, they are likely to exploit him and defect. In a nutshell, the players use

previous knowledge to decide whether to cooperate or defect.

In [36], the authors investigate the challenge of developing intelligent machine learning ap-

plications to address the problems of adaptation that arise in multi-agent systems, like expected

long tem profit optimization. Moreover, the authors propose a learning algorithm for the emphit-

erated prisoner’s dilemma problem and show that it performs strictly better than the tit-for-tat

algorithm and many other adaptive and non-adaptive strategies. It would be interesting to study

how these examples apply to the model presented in paper 3.

8 Paper 2: Dynamic self-organisation of haematopoiesis and (a)symmetric
cell division

As discussed in Section 2, the blood system consists of approximately 37 trillion cells, and most

of the di↵erentiated blood cells are replaced each month. Hence, it is likely that haematopoiesis

is regulated by self-organisation.

The model presented in paper 2 has a flexible and dynamically regulated self-organisation

based on cell–cell and cell–environment interactions and extracellular regulations. What is more,

the model links symmetric and asymmetric cell division with self-organisation, and as far as we

know, our model is the first to make this connection.

The classical definition of a stem cell is an undi↵erentiated cell capable of self-renewal, pro-

duction of a large number of di↵erentiated cells, regenerating tissue after injury and a flexibility

in the use of these options. This definition is fundamentally based on a functional perspective.

As discussed by Loe✏er and Roeder [38], the flexibility criterion attracted little attention when

the definition of stem cells was first introduced. Yet considerable experimental results indicate

that flexibility is a fundamental property of the stem cells [39], [40], [41]. For example, Zhang

et al. [39] managed to bias the degree of lineage commitment by several maneuvers that altered

the growth environment of the haematopoietic system.

Furthermore, many experiments show that haematopoietic stem cells can be manipulated

such that they act as stem cells for another tissue such as neuronal and myogenic [40]. These

experiments indicate that the growth environment is an important factor when tissue specification

of stem cells are redirected.

The bone marrow niche contains both localised signalling cells and an extracellular matrix

that support stem cell behaviour and control the fate of the undi↵erentiated cells [10], [11].

However, since it is not possible to reconstruct a bone marrow niche experimentally, the exact

behaviour of haematopoietic stem cells is unknown. On the other hand, research on Drosophila
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germline stem cells provides a clearcut example of how the niche maintains stem cell behaviour.

That is, experiments on Drosophila germline stem cells support the following conjectures:

1. The stem cell niche promotes stem cell maintenance.

2. The stem cells self-renew at random.

3. When a stem cell self-renews, one of the daughter cells inherits the mother’s place in the

stem cell niche and retains stem cell identity, whereas the fate of the second daughter

depends on the availability of space in the stem cell compartment – it either slips into a

random vacant place in the stem cell compartment and remains a stem cell (symmetric

self-renewal), or the second daughter leaves the stem cell compartment and loses its stem

cell identity (asymmetric self-renewal).

4. Under normal conditions, the stem cell compartment is approximately full, and the stem

cells typically self-renew asymmetrically.

5. When the stem cell compartment is not full, the rate of symmetric self-renewal generally

increases, which leads to an expansion in the number of stem cells. The cells swift back to

asymmetric self-renewal as the stem cell compartment reaches normal conditions.

The model presented in paper 2 assumes that Conjecture 1—6 also hold for the haematopoietic

system. More specifically, the model assumes that all haematopoietic cell divisions occur ran-

domly and that a haematopoietic stem cell is an undi↵erentiated cell located in a niche. That

is, if a stem cell leaves the niche, it loses its stem cell identity. What is more, the daughter

cells resulting from a stem cell division are phenotypically identical regardless of whether the

division was asymmetric or symmetric. Due to self-organisation, the daughter cells remain in the

niche and obtain stem cell identity or are placed outside the niche and commit to di↵erentiation,

depending on the need for self-renewal and di↵erentiation. This is implemented by subdividing

the niche into sites which represent signals and the environment as well as physical space.

8.1 Results from experiments on Safari cats can be explained by a self-organised
model

As discussed above, relatively little is known about the exact behavior of the haematopoietic

stem cells. On the contrary, haematopoietic progenitors have been studied both in vivo and in

vitro. Loosely speaking, progenitors are cells on the first stage of the di↵erentiation process.

Abkowitz et al. designed a set of experiments, using female Safari cats, to predict the contri-

bution of haematopoietic stem cells to progenitor cells [17], [16], [42]. The Safari cat is a hybrid

of the Geo↵roy’s cat (a South American wildcat) and a domestic cat (which is of Eurasian ori-

gin). These two species have evolved independently for twelve million years, and have distinct

phenotypes of the X chromosome-linked enzyme glucose-6-phosphate dehydrogenase (G6PD).

Female Safari cats have some cells that contain Geo↵roy-type G6PD (G G6PD) and other cells

that contain domestic-type G6PD (d G6PD). The G6PD phenotype is retained after replication

and di↵erentiation, and is functionally neutral. Therefore, it provides a binary marker of each

cell and its o↵spring. In particular, this means that a progenitor cell that expresses G G6PD

is the daughter of a stem cell that expresses G G6PD, and likewise, a progenitor cell that is d

G6PD-positive is the daughter of a stem cell that is d G6PD-positive. Abkowitz et al. tracked

the contributions of haematopoietic stem cells to the progenitor cells by observing the G6PD

phenotype of haematopoietic progenitor cells.

Abkowitz et al. found that the percentage of progenitor cells expressing d G6PD remained rel-

atively constant in normal female Safari cats. On the contrary, they observed that the percentage
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of progenitor cells expressing d G6PD variated while the cells in the bone marrow regenerated,

and, what is more, they found that the pattern of clonal contribution to haematopoiesis in each

cat was unique. For instance, some of the cats that both had cells expressing d G6PD and cells

expressing D G6PD when the regeneration started, had only cells expressing either d G6PD or D

G6PD when the production of bone marrow cells stabilised after regeneration. Thus, one of the

phenotypes had got extinct during the regeneration. On the contrary, in other cats, the percent-

age of cells expressing d G6PD and D G6PD remained on average relatively constant. Moreover,

in some cats, significant variation in the percentage extended for years after the number of cells

reached normal population levels, whereas in other cats, the percentage remained approximately

constant.

Since the percentage of cells expressing d G6PD remained relatively constant when normal

female Safari cats were observed, the experiments by Abkowitz et al. indicate that haematopoietic

cells divide asymmetrically under normal conditions, because this type of division cannot change

the number of stem cells expressing d G6PD. On the other hand, the number of stem cells

expressing d GPD can increase or decrease by one after a symmetric stem cell division. Hence,

since wide fluctuations in the percentage of cells expressing d G6PD were observed when the bone

marrow regenerated, the experiments by Abkowitz et al. indicate that the rate of symmetric stem

cell division increases during regeneration of the stem cell niche.

Other mathematical models of the haematopoietic system that include symmetric and asym-

metric stem cell division, have been proposed, and they can reproduce several of the results

obtained by Abkowitz et al. For instance, Wodarz and Komarova [23] propose a model where

the haematopoietic stem cells divide asymmetrically under normal conditions and to symmetric

division during regeneration. On the contrary, in the model presented by Abkowitz et al. [18],

the haematopoietic stem cells only divide symmetrically. That is, under normal conditions, the

haematopoietic stem cells undergo symmetric self-renewal and symmetric commitment at the

same, constant rate, and under regeneration, the rate of the former type of division increases.

Even though these models capture important aspects related to stem cell behaviour, it is a draw-

back that stem cell self-renewal and di↵erentiation do not depend on local growth conditions

because this implies that a stem cell somehow “knows” that it must self-renew symmetrically

when stem cells need to be replaced. However, as discussed in Section 2, this assumption is

potentially misleading and too rigorous. On the contrary, since the model presented in paper 2

links self-organisation with symmetric and asymmetric cell division, the rate of symmetric and

asymmetric stem cell division is regulated by the needs of the haematopoietic system.

8.2 Di↵erentiated cells

The model presented in paper 2 also includes the di↵erentiated cells. It is assumed that these cells

go through N stages of di↵erentiation and that the cells that are at stage i in the di↵erentiation

process, are located in the i-th compartment. These compartments represent the sum of signals

in the environment of the cells and not just physical locations. Moreover, it is assumed that the

commited cells can only di↵erentiate symmetrically. That is, if a cell in the i-th compartment

divide, then both daughter cells migrate to the i+1-th compartment. Under normal conditions,

there are approximately 2

i

M cells in the i-th compartment, where M is the number of cells is

stem cell niche when it is full, and the cells commit symmetrically to di↵erentiation at the same,

constant rate. However, the model assumes that there is a feedback from compartment i to

compartment i � 1, such that the system regenerates if there are less cells than under normal

conditions.
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8.3 Further work

The model presented in paper 2 is very simple with two parameters only, M and K, which are

the number of sites in the stem cell niche and the number of compartments of di↵erentiated cells,

respectively.

In an extended version of the model, the committed haematopoietic cells should be divided

into the erythroid lineage, the lymphoid lineage and the myeloid lineage. The first lineage is

composed of red blood cells, the second of immune cells and the third includes granulocytes,

megakaryocytes and macrophages [9]

It is still not clear exactly how di↵erentiation of haematopoietic cells is regulated. In 1957,

Waddington presented an epigenetic landscape that describes the di↵erentiation of cells as the

trajectories of balls rolling at random into branching valleys, where each branch represents a

developmental state [43]. Based on Waddington’s model, Furusawa and Kaneko propose a dy-

namical system model of cells with intracellular protein expression dynamics and interactions

with each other [44]. The model predicts that cells with irregular, or chaotic, oscillations in

gene expression dynamics have the potential to di↵erentiate into other cell types. During de-

velopment, such complex oscillations are lost successively, leading to loss of pluripotency. Their

results are consistent with the view that pluripotency is a statistical property defined at the

cellular population level, correlating with intra-sample heterogeneity, and driven by the degree

of signalling promiscuity in cells.

To extend the model to include di↵erent lineages of the committed haematopoietic cells, it

could be an advantage to use methods from big data analysis, such as machine learning, because

these methods o↵er new ways to study the genome, transcriptome, proteome, and epigenome

at the single-cell level. An increasing number of single-cell sequencing data makes it possible

to carry out statistical inferences of pluripotency regulating genetic networks. In the work by

Lin et. al, the authors develop a framework based on machine learning which explicitly account

for the promoter architectures and gene state-switching dynamics. Their framework is useful

for disentangling the various contributions that gene switching, external signaling, and network

topology make to the global heterogeneity and dynamics of transcription factor populations.

Their findings indicate that the pluripotent state of the network might be a steady state which

is robust to global variations of gene-switching rates.

Di↵erentiation modifies molecular properties of stem and progenitor cells, which leads to

changing shape and movement characteristics. Buggenthin et al. present a method based on

machine learning that predicts lineage choice in di↵erentiating haematopoietic progenitors. Their

method can detect lineage choice up to three generations before conventional molecular markers

are observable. Thus, their approach manages to identify cells with di↵erentially expressed

lineage-specifying genes without molecular labelling.

9 Paper 1: Stem cell regulation: Implications when di↵erentiated cells
regulate symmetric stem cell division

Similar to the model discussed in the previous section, the model presented in paper 1 is used to

study how stem cell division is regulated by other cells. However, the main focus of this paper

is that changes in the population dynamics of the di↵erentiated cells can lead to changes in the

population dynamics of the stem cells if symmetric stem cell division is regulated by di↵erentiated

cells, and this means that the relative fitness of the stem cells can be a↵ected by modifying the

death rate of the di↵erentiated cells. This result is interesting because stem cells are in general

less sensitive to medical therapy than di↵erentiated cells, and our result implies that stem cells
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can be manipulated indirectly by medical treatments that target the di↵erentiated cells.

9.1 Symmetric stem cell division and cancer

As discussed more thoroughly in Subsection 2.2 and Section 8, the number of stem cells increases

by one after a symmetric self-renewal, whereas after a symmetric di↵erentiation, the number of

stem cells decreases by one.

It is assumed that under normal condition the number of stem cells is approximately constant,

and that these cells self-renew and di↵erentiate at relatively constant rates to keep the number

of stem cells at normal level and replace mature cells [45] Moreover, it has been shown that the

haematopoietic stem cells can expand rapidly in response to stem cell transplantation and other

injuries to the bone marrow. This indicates that the rate of symmetric self-renewal depends on

the number of stem cells in the niche, since this is the only type of division that increases the

number of stem cells.

As discussed more thoroughly in Section 2, the production of mature blood cells increases

after blood loss. A symmetric di↵erentiation produces two daughter cells that commit to di↵eren-

tiations, whereas an asymmetric stem cell division produces only one. However, since asymmetric

stem cell division leaves the stem cell number unchanged, the stem cell niche is protected against

fluctuations if only the di↵erentiated regulate asymmetric stem cell division. Indeed, Wodarz

propose a model where the rate of symmetric self-renewal depends only on the number of stem

cells in the niche, whereas the di↵erentiated cells regulate the rate of asymmetric stem cell di-

vision when there are only healthy cells in the system [46]. This means that the population

dynamics of the stem cell niche is not influenced by the di↵erentiated cells. However, as I make

a case for in Section 8, it is likely that tissues, such as the haematopoietic system, is regulated

by self-organisation and that all three types of stem cell divisions depend on both the number of

stem cells and the number of di↵erentiated cells. In particular, it is also possible that the rate

of symmetric self-renewal increases when the number of di↵erentiated cells is less than under

normal conditions, which means that the number of stem cells increases and that more di↵eren-

tiated cells are produced than under normal conditions. Research by Goko↵ski et al. (2011) on

mice indicates that when there are less di↵erentiated cells than under normal conditions, then

the stem cell populations expand [5]. Indeed, this is the case for the model presented by Lander

et. al [47]. Similarly, the model presented in paper 1 assumes that symmetric self-renewal is

regulated by di↵erentiated cells.

A mutant haematopoietic di↵erentiated cell is likely to be washed out of the system before

it becomes a cancer cell because haematopoietic di↵erentiated cells do not in general self-renew.

On the other hand, if a mutation occur in a haematopoietic stem cell, an evolutionary process

with competition between the normal stem cells and the mutant stem cells might take place [1].

A critical aspect is whether the mutation a↵ects how the mutant stem cells divide. That is,

the population size of the mutants remains constant if they only divide asymmetrically. Since

symmetric di↵erentiation decreases the population size, the mutant stem cells have decreased

fitness if the rate of this type of division increases. And finally, an increased rate of symmetric

self-renewal increases the fitness of the mutant stem cells, because this type of division increases

the population size.

9.2 Treatment of chronic myeloid with the tyrosine kinase inhibitors

Treatment of chronic myeloid with the tyrosine kinase inhibitors such as imatinib, represents a

successful application of molecularly targeted anti-cancer therapy [48] (Druker et al., 1996, 2001;

Kantarjian et al., 2002). These inhibitors reduce the fitness of Philadelphia-positive di↵erentiated

20



cells. Nevertheless, the e↵ect on Philadelphia-positive stem cells remain incompletely understood.

For many patients, discontinuation of tyrosine kinase inhibitors results in a relapse of the disease

within a few months [49]. Several explanations have been proposed to explain this phenomenon.

For instance, tyrosine kinase inhibitors might not have any e↵ect on the Philadelphia-positive

stem cells [50], or the Philadelphia-positive stem cells can be susceptible to therapy when they

are in an active state, but they are not be susceptible when they are in quiescent state [51].

Be that as it may, a small study involving 12 patients has shown that in some individuals the

disease has remained undetected for two years after discontinuation of tyrosine kinase inhibitors.

This raises the possibility that tyrosine kinase inhibitors have cured chronic myeloid leukaemia in

these patients [52]. Furthermore, all studies indicate that the e↵ect of tyrosine kinase inhibitors

increases when treatment starts early. The model presented in paper 1 can explain these results:

Tyrosine kinase inhibitors have most likely no direct e↵ect on the Philadelphia-positive stem

cells. Nevertheless, since di↵erentiation regulates the proliferation of the stem cells, the tyrosine

kinase inhibitors can change the population dynamics of the stem cells. More precisely, the

following results observed in studies of chronic myeloid leukaemia patients treated with tyrosine

kinase inhibitors, can be reproduced by the model:

1. The e↵ect of tyrosine kinase inhibitors increases when treatment starts early in disease

progression.

2. In some cases the treatment slows down the disease progression without erasing the Philadelphia-

positive stem cells, which drive the disease.

3. In other cases the treatment reverses the disease progression and seems to erase the

Philadelphia-positive stem cells stem cells.

If a model which assumes that stem cell activity is not regulated by the di↵erentiated cells, is

used, result 1–3 seem contradictory [50]. However, our model implies that these results can be

explained by a negative feedback from the di↵erentiated cells that regulate symmetric stem cell

division [53].

9.3 Further work

The model presented in paper 1 is a simplification of the one presented in paper 2. Hence, the

extensions discussed in Subsection 8.3 apply to both models.
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Part III

Discussion

In 1953, James Watson and Francis Crick discovered that the DNAmolecule exists in the form of a

three-dimensional helix, and this brought new energy to the paradigm of genetic determinism [53],

which claims that any characteristic of a living organism is directly proportional to the genes

expressed in the DNA. This implies that the genetic rules that determine the behaviour of an

organism, can be represented by linear equations, and hence, complex organisms, such as human

beings, should have a much higher number of genes than a less complex organism, such plants.

Another significant milestone in molecular biology was the publication of the complete se-

quence of the human genome in 2003 [54]. The complete human genome is composed of over

three billion bases and contains approximately 20,000 genes that code for proteins. This is much

lower than earlier estimates of 80,000 to 140,000 and astonished the scientific community when

revealed through human genome sequencing. Equally surprising was the finding that genomes

of much simpler organisms contained a higher number of protein-coding genes than humans.

For example, the mustard plant, Arabidopsis thaliana, which used as a model for studying plant

genetics, has a genome size of 125 bases but a higher number of protein-coding genes than hu-

mans [55]. It is now clear that the size of a genome does not correspond with the number of

protein-coding genes, and these do not determine the complexity of an organism.

As I make a case for in Subsection 2, the haematopoietic system is not regulated determin-

istically, but by self-organisation. That is, the body can regenerate blood cells to compensate

for a loss of more than 15 percent of the circulating blood cells, and after a bone marrow trans-

plantation, the haematopoietic stem cells, which are located in the bone marrow, can regenerate.

Moreover, each day the body produces around a billion new blood cells. And since the human

body contains about 37 billion blood cells, this means that most of the circulating blood cells

are replaced each month [9].

Nevertheless, some biological traits are actually determined by a single gene. In contrast to

the haematopoietic system, the fingers only grow out once. The Sonic Hedgehog gene is essential

for normal limb development [56]. When a foetus, lying in the womb, develops fingers, the Sonic

Hedgehog gene sends out a signal to shape the pattern of digits. Normally, five fingers are made.

However, if a mutation occurs in the Sonic Hedgehog gene that turns down the e↵ect of this gene,

then fewer fingers are made, whereas if the mutation increases the e↵ect of the Sonic Hedgehog

gene, then each hand gets an extra finger.

Even though there are some examples where biological traits are determined by a given set of

genes, the publication of the complete sequence of the human genome illuminates that that the

paradigm of genetic determinism does not in general hold true, since complex organisms such as

humans have a lower number of protein-coding genes than much simpler organisms such as the

mustard plant, Arabidopsis thaliana. As illustrated in Subsection 1.1, nonlinear, high-dimensional

and complex interaction between genes and regulation mechanisms can create new phenomena

that cannot be explained by simply analysing the genetic code. Thus, the high complexity of

humans compared to Arabidopsis thaliana might be explained by a higher complexity in the

interaction between genes and regulation mechanisms.

Despite the fact that the paradigm of genetic determinism does not in general hold true, a

new and generally accepted paradigm has not yet been established. There is almost no general

information about nonlinear systems, except that they very often are chaotic and it is quite often

impossible to find an exact solution. Nonlinear systems are often sensitive to starting conditions.

For example, if you were given a list of numbers generated by the logistic map given in Equation

(1) with starting condition Y0 = A, you could not use this list to predict the outcome generated
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by the logistic map with another starting condition, say Y0 = B 6= A. Moreover, nonlinear

systems quite often respond dramatically to changes in the feedback from the environment. For

example, the di↵erential equation in (4) is one of relatively few nonlinear problems that has a

neat solution. Nevertheless, if the feedback from the environment is delayed, then the system

can start to behave chaotically, as described by the logistic map given in (1). This illustrates

that there is no set of mathematical tools that can be used on any nonlinear system. Thus,

each nonlinear system must in general be analysed individually, and this requires more than

basic mathematical knowledge. Moreover, small changes in a nonlinear system can lead to new

behaviour.

10 New methods to analyse complex interactions

Genome editing, such as CRISPR/Cas9, machine learning and big data o↵er new ways to tackle

the problems described above. Machine learning is explored in the previous two parts, whereas

big data and CRISPR/Cas9 are briefly discussed in the following subsections.

10.1 Big data and the impact of the Human Genome Project

“The Human Genome Project led to a paradigm shift in the way science is conducted and

data is shared,” according to researcher in biotechnology, Rehma Chandaria [57]. The Bermuda
Principles are rules for publication of DNA sequence data, and were proposed in 1996 by a group

of international scientists who came together on Bermuda to discuss how sequence data from the

Human Genome Project should be released. Challenging traditional practice in the sciences,

which is to make experimental data available only after publication, the Bermuda Principles

ensures that the data is immediately shared. The original Bermuda Principles were:

1. Automatic release of sequence assemblies larger than 1 kb (preferably within 24 hours).

2. Immediate publication of finished annotated sequences.

3. Aim to make the entire sequence freely available in the public domain for both research

and development in order to maximise benefits to society.

The Bermuda Principles demonstrated how a global community of scientists could collectively

produce and use data far more e�ciently than a small group of scientists could.

The price of the Human Genome Project was 3 billion US dollars and it lasted for 13 years [55].

Today it is possible to sequence a human genome within days and it costs less than 1000 dollars.

This big data requires that researchers from di↵erent specialities co-operate to process, analyse,

store and utilise the vast quantities of data.

10.2 CRISPR/Cas9

CRISPR/Cas9 is one of the most e↵ective gene-editing tools the word have seen, and originates

from the immune system of bacteria [58]. With CRISPR/Cas9 the genome can be edited almost

as easily as the text in a book [59]. CRISPR is an abbreviation of Clustered regularly interspaced
short palindromic repeats, and is a family of DNA sequences in archaea and bacteria [60]. The

sequences contain snippets of DNA from viruses that have attacked the prokaryote. Cas9, which is

short for CRISPR-associated protein 9, is an RNA-guided DNA endonuclease enzyme associated

with CRISPR. Cas9 uses the snippets to detect and destroy viruses with similar DNA [61], [62].

A study published on the 2th of August 2017, describe how a group of American and South

Korean scientists for the first time successfully edited genes in human embryos to repair a common
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and serious disease-causing mutation, producing apparently healthy embryos [63]. These results

potentially open the door to preventing 10.000 disorders that are passed down the generations.

However, the main use of CRISPR/Cas9 is less spectacular. CRISPR/Cas9 is mostly used

as a laboratory tool and is for instance used to study the expression of genes. Even though

the complete sequence of the human genome was published 15 years ago, relatively little is

known about how the genes are turned on and o↵ and which traits they influence. Scientists can

gain valuable knowledge by using CRISPR/Cas9 to switch on and o↵ genes in a laboratory, for

example they can study which genes must be turned o↵ in a haematopoietic stem cell for it to

become an immune cell.

Nevertheless, it is not possible to get the complete picture of how genes are regulated inside

the body by just studying cells in a laboratory. For instance, it is still unclear why immune

therapy can cure some cervical cancer patients but has no e↵ect on others. To make hypotheses

about why a medicine does not cure some patients, the researchers can make use of big data sets

from patients by applying methods from machine learning. With solid hypotheses, the use of

CRISPR/Cas9 becomes more e�cient.

11 New medicines, new dilemmas

In Norway, lung cancer patients did not get the cost of immune therapy covered by the state until

the end of 2016, whereas in Denmark the same patient group has been o↵ered this treatment at

public hospitals since September 2015 [64]. Similarly, patients with cervical cancer get immune

therapy at public hospitals in Denmark, but not in Norway. In both cases, the state argued that

the prize was too high because immune therapy does not cure all patients.

However, the price of each drug is only high in the beginning. When the e↵ect of the medicine

is more thoroughly documented and more patients can use it, the prize decreases. Large data

sets from patients is of great value for scientific purposes, and there is no obvious reasons why

Norway should contribute less to this research than other countries such as Denmark.

It is not only cancer treatment that creates new dilemmas.

R�Spinraza is the first medicine

that has any e↵ect on Spinal Muscular Atrophy (SMA), which is a rare neuromuscular disorder

defined by progressive muscle wasting and loss of motor neurons. Approximately ten children

are born with SMA each year in Norway. About 95 percent of the children with the most severe

form of SMA die before they are two years old, whereas others can have a normal lifespan with

a varying degree of disability. No previous drugs has any proven e↵ect on SMA. Thus, Spinraza

represents a big breakthrough. Moreover, the drug does not only slow down the progression of

the disease – the patients improve motoric function and strengthen the muscles.

In 2017, Biogen, the company that developed Spinraza, let ten Norwegian children with

SMA test the drug for free [65]. One of these children was a 11-month-old baby girl called

Olivia. Olivia has the most severe form of SMA, and after starting the Spinraza treatment,

she manages to sit, eat, hold a toy and turn around. This was impossible for Olivia before the

treatment started. When the free trial ended, the government continued to pay for the Spinraza

treatment for the ten children that had tried the drug for free. However, the government did not

o↵er the remaining 40 children with SMA Spinraza treatment because the prize on the drug was

too high. One of these children is Thea, a two year old girl, and like Olivia, Thea has the most

severe form of SMA. Whereas other toddlers develop control of muscles, which enable walking,

running, jumping and climbing, Thea managed to do less each day. Her parents lived in fear that

she would die while the government negotiated with Biogen, until February 2017, when it was

announced that the government would pay for Spinraza-treatment for all children with SMA.

But the government does not cover this treatment for persons over 18 years of age. The reason
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is that the e↵ect of Spinraza on adults is not documented properly.

However, to evaluate the e↵ect of Spinraza on adults, data from adult patients who actually

use the drug is essential, and it seems reasonable that a rich country such as Norway should be

one of the first to contribute to this research, whereas poorer countries might have no choice but

to wait until the prize decreases and more is known about which patients the drug has any e↵ect

on.

One might argue that Biogen should give a discount on Spinraza-treatment for adult patients

because the company can increase their final reckoning by gaining more information about the

e↵ect of the drug. However, this might increase the prize of the treatment for children.

At the end of the day, Biogen depends on the willingness of the owners to invest in the

company. It is very expensive to develop new medicines. The company Bristol-Myers Squibb,

which developed the immune therapy

R�Opdivo, used 40 billion Norwegian Krones on research

and development only in 2014. It is even more risky and potentially costly to try to develop a drug

against disorders which no other drugs has any e↵ect on, which was the case with SMA. Thus,

it is a reasonable assumption that the owners of Biogen were willing to invest in the research

that lead to the development of Spinraza, because there was a big payo↵ if they succeeded. And

indeed, after the launch of Spinraza in 2016, the revenue of Biogen increased by four percent

within a year. In the period from July to September 2017, the income from Spinraza is estimated

to 2.1 billion Norwegian crones. And what is more, the Government Pension Fund of Norway

owns one percentage of the company.

The fact that the Government Pension Fund of Norway is an owner of Biogen, does not mean

that the Norwegian government should accept any price o↵er. However, to me it seems unethical

if Norway waits until the prices drop to buy the drug, and at the same time earn money because

other countries buy the drug when the price is high.

Moreover, the trust in the Norwegian government decreases when Norwegian patients die

while the government is negotiating prices with the drug company, whereas the same patient

group is o↵ered the treatment at public hospitals in other countries.

Maybe the use of new medicines is an investment, both in research and in the welfare state.
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H I G H L I G H T S

! Differentiated cells (DCs) might regulate symmetric stem cell (SC) division.
! This implies that changes in the dynamics of DCs can affect the fitness of SCs.
! Tyrosine kinase inhibitors (TKIs) are used to treat chronic myeloid leukaemia (CML).
! TKIs increase the death rate of DCs, but have most likely no direct effect on SCs.
! TKIs might have an indirect effect on SCs if DCs regulate symmetric SC division.
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a b s t r a c t

We use a mathematical model to show that if symmetric stem cell division is regulated by differentiated
cells, then changes in the population dynamics of the differentiated cells can lead to changes in the
population dynamics of the stem cells. More precisely, the relative fitness of the stem cells can be
affected by modifying the death rate of the differentiated cells. This result is interesting because stem
cells are less sensitive than differentiated cells to environmental factors, such as medical therapy. Our
result implies that stem cells can be manipulated indirectly by medical treatments that target the
differentiated cells.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Most tissues of the body go through continuous cell turnover
du to apoptosis. This cell turnover can also give tissues the ability
to self-repair after injury. In general, tissues are maintained by a
small group of slowly replicating cells with the capacity to both
self-renew and generate differentiated progeny required by a
given tissue (Morrison et al., 1997; Reya et al., 2001). Cells that
have these two capabilities are called stem cells. Differentiated
cells perform their function and eventually die – they go through a
number of divisions, obtaining various stages of differentiation,
until the fully differentiated cells stop dividing (Donohue et al.,
1958; Cronkite and Fliedner, 1964; Ogawa, 1993). Although it
seems reasonable to propose that all tissues arise from tissue-
specific stem cells, rigorous identification and isolation of these

stem cells have only been accomplished in a few instances. For
example, haematopoietic stem cells have been isolated and shown
to be responsible for the generation and regeneration of the blood-
forming system and the immune system, called the haematopoietic
system (Baum et al., 1992; Morrison and Weissman, 1994). The
haematopoietic stem cells are located within the bone marrow and
segregated among different bones throughout the body. Like
several other models (Loeffler and Wichmann, 1980; Agur et al.,
2002; Østby et al., 2003; Østby and Winther, 2004; Coiljn and
Mackey, 2005; Adimy et al., 2006; Dingli and Michor, 2006; Dingli
et al., 2007a,b; Wodarz, 2008; Marciniak-Czochra et al., 2009;
Stiehl and Marciniak-Czochra, 2012; Lenaerts et al., 2010; Manesso
et al., 2013), the model presented in this paper is inspired by the
haematopoietic system. However, it applies to all other tissues that
have similar architecture.

An important aspect, related to self-renewal and generation of
differentiated cells, is the fate of the two daughter cells when a
stem cell divides (Dingli et al., 2007b; Morrison and Kimble, 2006;
Yamashita et al., 2003). Symmetric division is defined as generation
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of daughter cells destined to acquire the same fate. In this paper,
symmetric stem cell division is defined as symmetric self-renewal if
both daughter cells are stem cells and symmetric differentiation if
both daughter cells are differentiated. In the former case the
number of stem cells increases by one, whereas in the latter case
the number of stem cells decreases by one. Stem cells can rely
completely on symmetric division. On the other hand, if one
daughter cell has stem cell identity and the other daughter cell
starts to differentiate, it is called an asymmetric stem cell division.
This type of division is particularly attractive because the stem
cells manage to both self-renew and produce differentiated cells
with a single division (Yamashita et al., 2003). However, a
disadvantage of asymmetric stem cell division is that it leaves
stem cells unable to expand in number. Serial haematopoietic
transplantation supports the existence of all three types of divi-
sions (McKenzie et al., 2006).

1.1. Stem cell niche

Since the number of stem cells is much smaller than the
number of differentiated cells, the stem cells must be protected
and tightly regulated. As discussed by Gentry and Jackson (2013),
the stem cell niche, which is the restricted region in an organ that
supports stem cell behaviour, may be crucial in both aspects
(Fuchs et al., 2004; Nikolova et al., 2006; Yin and Li, 2006;
Simons and Cleavers, 2011). The niche is composed of both
localised signalling cells and an extracellular matrix that control
stem cell fate. However, relatively little is known about the exact
behaviour of most types of stem cells, and one of the reasons for
this is that it is not possible to reconstruct niches scientifically,
which makes it difficult to maintain stem cells in vitro, because
signals from the niche affects stem cell survival, self-renewal, and
differentiation.

Germline stem cells are unique stem cells in that they are solely
dedicated to reproduction and transmission of genetic information
from generation to generation. Through the use of genetic techni-
ques in Drosophila germline stem cells, exciting progress has been
made in understanding molecular mechanisms underlying inter-
actions between stem cells and stem cell niches (Morrison and
Kimble, 2006; Yamashita et al., 2003; Wong et al., 2005). The
knowledge gained from studying Drosophila germline stem cells
has provided an intellectual framework for defining the stem cell
niche and molecular regulatory mechanisms for other adult stem
cells, such as the haematopoietic stem cells.

The number of cells in a given tissue is approximately constant
under normal conditions. It is generally believed that the number
of stem cells is approximately constant under normal conditions,
and that they differentiate and self-renew at relatively constant
rates to replace mature cells and to keep the stem cell number at a
certain normal level (Loeffler et al., 1988; Shortman and Naik,
2009). One strategy which stem cells can accomplish these two
tasks is asymmetric stem cell division. A classical example of
asymmetric division is provided by Drosophila germline stem cells.
The outcome of a Drosophila germline stem cell division depends
on the spindle orientation relative to the Hub cells in the stem cell
niche, and results from the unequal distribution of intracellular
regulators and extracellular (Hub-derived) signals between daugh-
ter cells during mitosis (Morrison and Kimble, 2006; Yamashita et
al., 2003; Wong et al., 2005). The result is that when a Drosophila
germline stem cell divides, one daughter remains in the stem cell
niche and retains stem cell identity, and one daughter is left
outside the stem cell niche and begins to differentiate. Research on
Drosophila germline stem cells has provided a clear-cut example of
how the stem cell niche promotes stem cell maintenance. Simi-
larly, the haematopoietic microenvironment in the bone marrow
also plays an important role in the regulation of haematopoietic

stem cell organisation (Lemischka, 1997; Bertolini et al., 1997; Aiuti
et al., 1998; Thiemann et al., 1998). Self-renewal depends on local
growth conditions, namely, on the direct contact between stem
cells and stroma cells (Wineman et al., 1996; Verfaillie, 1998;
Koller et al., 1999). However, there are no in vivo experiments that
reveal exactly how proliferation of haematopoietic stem cells is
regulated. Thus, it is not clear whether these cells divide asymme-
trically or symmetrically under normal conditions. Serial haema-
topoietic transplantation indicates that both types of divisions
occur under steady state (McKenzie et al., 2006). As discussed later
in Section 1.3, theoretical work by Shahriyari and Komarova (2013)
and McHale and Lander (2014) illustrate that the symmetric stem
cell division can protect against cancer, and this indicates that
stem cells divide symmetrically.

Although the number of haematopoietic stem cells remains
nearly constant under normal conditions, they can expand rapidly
in response to injury to the bone marrow, such as stem cell
transplantation (McKenzie et al., 2006). This means that asym-
metric stem cell division cannot be the complete story, because it
leaves stem cells unable to expand in number. Since the number of
stem cells increases with one after symmetric self-renewal, it is
likely that the rate of such divisions depends on the number of
stem cells, since the haematopoietic stem cells can regenerate
after tissue damage. Indeed, Drosophila germline stem cells, which
normally divide asymmetrically, can be induced to self-renew
symmetrically to regenerate an additional stem cell after an
experimental manipulation in which one stem cell is removed
from the stem cell niche (Morrison and Kimble, 2006; Yamashita
et al., 2003; Wong et al., 2005).

1.2. Extracellular regulation

Extracellular signalling molecules regulate the dynamics of cell
proliferation and differentiation. However, the precise nature of
these processes are in general not known (Layton et al., 1989;
Aglietta et al., 1989; Metcalf, 2008; Fried, 2009). An example of
extracellular signalling molecules is the haematopoietic cytokines
that control the production of haematopoietic cells. Each of these
cytokines has multiple actions mediated by receptors that can
initiate various responses – survival, proliferation, differentiation,
maturation, and functional activation. Individual haematopoietic
cytokines can either regulate one specific lineage or multiple
lineages (Metcalf, 2008). Moreover, for some haematopoietic cell
types, such as stem cells or megakaryocyte progenitors, the
simultaneous action of multiple cytokines is required for prolif-
erative responses. Unlike other extracellular signalling molecules,
like hormones, that have a limited, or single, organ source, the
haematopoietic cytokines have many tissue sources, e.g. kidney,
liver, lung, muscle and membrane-displayed factors on local
stromal cells (Aglietta et al., 1989; Metcalf, 2008). This is one of
the reasons why it is difficult to establish the precise source of a
haematopoietic cytokine in any particular situation and to predict
its ultimate fate. Results from theoretical work regarding the
haematopoietic system (Wodarz, 2008) and crypt cells (Potten
and Loeffler, 1990) indicate that changes in stem cell number and
their cyclic activity are associated with changes in the demand of
the mature cell stages. Marciniak-Czochra et al. (2009) designed a
six-compartment model to test different hypotheses concerning
regulation of self-renewal and differentiation by a feedback
signalling factor. Since the precise nature of how extracellular
signalling molecules such as cytokines control proliferation and
differentiation is still unknown, Marciniak-Czochra et al. assume
that the signal intensity is

s¼
1

1þkC6
; ð1Þ
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where k is a constant and C6 is the number of mature cells.
Marciniak-Czochra et al. compare three different cases:

1. Only proliferation rates are regulated by feedback signals.
2. Only differentiation rates are regulated by feedback.
3. Both proliferation and differentiation rates are regulated by

feedback.

They show that the best results are obtained when both prolifera-
tion and differentiation rates are regulated by feedback.

Lander et al. (2009) investigate how secreted negative feedback
factors may be used to control the output of multistage cell lineages,
as exemplified by the actions of GDF11 and activin in a self-renewing
neural tissue, the mammalian olfactory epithelium. Similar to
Marciniak-Czochra et al. (2009), Lander et al. find that two feedback
loops are in general better than one. That is, when feedback loops are
added, good control (robustness, stability, low progenitor load, and
fast regeneration from a variety of conditions) is found over an
increasing fraction of the parameter space. Lander et al. discuss
different strategies for how stem cell self-renewal and generation of
differentiated progeny can be regulated by negative feedback from
differentiated cells. The first scenario is that asymmetric stem cell
division is regulated by differentiated cells. In this case, the rate of
asymmetric stem cell division increases when the number of
differentiated cells is less than under normal conditions, which
means that more differentiated cells are produced while the number
of stem cells remains constant. On the other hand, it is also possible
that symmetric stem cell division is regulated by differentiated cells.
In this case, the rate of symmetric self-renewal increases when the
number of differentiated cells is less than under normal conditions,
which means that the number of stem cells increases and that more
differentiated cells are produced than under normal conditions. Since
research by Gokoffski et al. (2011) on mice indicates that stem cell
populations expand when there are less differentiated cells than
under normal conditions, Lander et al. consider the latter case in
their model. Similarly, in the model presented in this paper,
symmetric stem cell division is regulated by differentiated cells.

Manesso et al. (2013) propose a model where mild perturba-
tions of differentiated cells do not influence the stem cell
dynamics – steady state is re-established by increasing the self-
renewal rate of the differentiated cells. After a critical threshold
level is reached in terms of cell numbers, a second response is
activated by increasing the commitment rates from the directly
upstream cell types. The second response can influence the stem
cell dynamics. The model was able to recapitulate the fundamental
steady-state features of haematopoiesis and simulate the re-
establishment of steady-state conditions after haemorrhage and
bone marrow transplantation in adult mice. However, as discussed
in Section 1.3, increasing the self-renewal rate of the differentiated
cells can increase the risk of cancer. This might be one of the
reasons why several other models, like the ones proposed by
Loeffler and Wichmann (1980), Østby andWinther (2004), Wodarz
(2008), Gentry and Jackson (2013) and Rodriguez-Brenes et al.
(2013), assume that stem cell self-renewal and differentiation are
regulated by a negative feedback from more mature cells. In
particular, the models proposed by Gentry et al. and Wodarz
include both extrinsic and intrinsic chemical signalling and inter-
action with the niche to control self-renewal, and this novel
feature is also investigated in this paper. However, unlike our
model, Wodarz' model assumes that when there are only healthy
cells in the system, the rate of symmetric stem cell division
depends only on the number of stem cells and the rate of
asymmetric stem cell division depends only on the number of
differentiated cells. Thus, according to Wordarz' model, changes in
the population dynamics of the differentiated cells do not influ-
ence the dynamics of the stem cell population when there are only

healthy cells in the system. On the contrary, if symmetric stem cell
division is regulated by the differentiated cells, then changes in
population dynamics of the differentiated cells, such as increased
death rate, can influence the dynamics of the stem cell population.
In Section 2, we investigate the implications when the rate of
symmetric self-renewal depends on both the number of stem cells
and the number of differentiated cells.

1.3. Mutations and stem-cell-driven tumours

Genetic changes called mutations can occur in any cell that
divides (Araten et al., 2005). Even though most mutations are
harmless to the body, progressive accumulation of mutations can
lead to cancer (Vogelstein and Kinzler, 2004). Indeed, results from
theoretical work regarding stem cell self-renewal and differentia-
tion indicate that the tissue architecture, where only a small
number of stem cells have the ability to self-renew, has evolved
to minimise the risk of malignant transformations (Dingli et al.,
2007b; Wodarz and Komarova, 2005; Komarova and Cheng, 2006).
That is, if a mutation occurs in a differentiated cell, it is likely to be
washed out of the system before it becomes a cancer phenotype,
because differentiated cells do not self-renew. On the other hand,
mutation in a stem cell can generate a different type of stem cell,
denoted mutant stem cell. This can lead to an evolutionary process
with competition between the mutant stem cells and the normal
stem cells (Nowak, 2006a; Dingli et al., 2010). A critical aspect is
the fate of the daughter cells when the stem cells divide (Morrison
and Kimble, 2006). The model proposed by Dingli et al. (2007b)
shows that if the mutant stem cells divide only asymmetrically,
their population size remains constant. A high probability of
symmetric self-renewal increases the fitness of the stem cells,
because this type of division increases the population size. Sym-
metric differentiation, on the other hand, decreases the population
size. Thus, stem cells that differentiate symmetrically with a high
probability have decreased fitness.

Shahriyari and Komarova (2013) and McHale and Lander (2014)
illustrate that symmetrically dividing cells might delay double-hit
mutant production compared to an equivalent system with asym-
metrically dividing stem cells. More precisely, if stem cells only
divide asymmetrically, then a mutation acquired in a stem cell will
remain in the system indefinitely, and it is only a matter of time
before the second mutation occurs. On the contrary, a mutant
stem cell generated in a symmetric division has a less certain fate
– half of the lineages will differentiate out after the very first
division and only 1/K of all lineages will expand to size K. Thus,
that the uncertainty of the fate of single mutant stem cells can be
the reason for the statistically longer time it takes for the
symmetrically dividing stem cell model to produce a double-hit
mutant.

Rodriguez-Brenes et al. (2011) propose a model that illustrates
that a key event in the development of cancer is the escape from
feedback loops. In a genetically heterogeneous population, selec-
tion favours cells with advantageous traits (Wodarz and
Komarova, 2005; Nowak, 2006b). Since cancer is a product of
somatic evolution, it is important to investigate how mutants that
originally appear in very small numbers are able to invade a cell
population that is initially at dynamic equilibrium (Mangel and
Bonsall, 2008). Rodriguez-Brenes et al. use computational models
that are applied to experimental data, to study the evolutionary
dynamics of feedback escape. Their model predicts different
patterns of emerging tumour growth that fit previously published
experimental data that describe tumour growth dynamics in vitro
and in vivo (Rozenblum et al., 1997; Massagué, 2000, 2001;
Derynck et al., 2001; Woodford-Richens et al., 2001; Wu et al.,
2008). Of particular interest are non-standard growth patterns,
both predicted by the model and found in published experimental
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data, which indicates that feedback regulatory mechanisms are
still partly at work in growing tumours (Rozenblum et al., 1997;
Massagué, 2000, 2001; Derynck et al., 2001; Woodford-Richens
et al., 2001; Wu et al., 2008). This gives rise to the notion that
tumours not only retain some of the architectural aspects of the
underlying healthy tissue, but also some of the regulatory
mechanisms.

Stiehl and Marciniak-Czochra (2012) present a model of cancer
cell dynamics where it is assumed that the leukemic cell popula-
tion consists of an ordered sequence of cell statuses similar to the
healthy haematopoietic cell lines. Moreover, it is assumed that
leukemic stem cells are stimulated by the same cytokines as
healthy stem cells. Similar to the models presented in this paper,
a negative feedback function regulates self-renewal. However,
unlike our model, the feedback function in the model proposed
by Stiehl et al. only depends on the fully mature cells, namely,

sðtÞ ¼
1

1þkccmþkllm
;

where cm and lm are the number of fully mature healthy cells and
fully mature leukemic cells, respectively, and kc and kl are
constants. Moreover, the feedback that regulates healthy cells
and cancer cells is the same – the difference between leukemic
cells and healthy cells is captured by different constants associated
with rates of self-renewal, differentiation and cell death. On the
contrary, the model investigated in Section 2.1 assumes that the
only difference between healthy cells and leukemic cells is the
strength at which they regulate self-renewal.

2. Mathematical models

In Sections 2.1 and 2.2, we explore a simple model that only
considers two types of cells, namely, stem cells and differentiated
cells. This model provides analytic results and captures the basic
idea of this paper, which is that changes in the population
dynamics of the differentiated cells can lead to changes in the
population dynamics of the stem cells when symmetric stem cell
division is regulated by differentiated cells. An extension of the
model, which includes various stages of differentiation, is pre-
sented in Section 2.3. The extended model is explored numerically,
since it is too complex to analyse analytically. The numerical
analysis shows that the analytic results obtained from the simple
model also apply to the extended model.

2.1. Model with two layers of differentiation

The basic model considers two layers of the differentiation
hierarchy: Stem cells have the potential for indefinite self-renewal
and to give rise to differentiated cells. The differentiated cells are
the cells without stem cell characteristics. Let xs denote the
number of stem cells and xd the number of differentiated cells.
As discussed in the introduction, signalling molecules such as
cytokines and interaction with the stem cell niche control stem
cell behaviour, but the precise nature of this regulation is still
unknown (Fuchs et al., 2004; Nikolova et al., 2006; Yin and Li,
2006; Simons and Cleavers, 2011; Layton et al., 1989; Aglietta et al.,
1989; Metcalf, 2008; Fried, 2009). We assume that the signalling
intensity is approximately

Ψ ¼ exp &θxs&γxd
! "

; ð2Þ

where θ and γ are positive constants. This function captures the
fact that the secretion of cytokines is very fast in comparison to
cell proliferation and differentiation (Metcalf, 2008). Moreover, the
signal intensity reaches its maximum under complete absence of
cells, and it decreases exponentially towards zero as the number of

cells increases. In the simple model presented in this subsection,
only symmetric self-renewal is regulated by the feedback signals.
It is assumed that the stem cells produce immature differentiated
cells by asymmetric division and symmetric differentiation at
constant rates, g and d0, respectively, and die at constant rate,
d1. The differentiated cells go though a number of divisions,
obtaining various stages of differentiation, until the fully mature
cells stop dividing. This differentiation process is investigated in
more details in Section 2.3. Here we simply assume that the
process occurs at constant rate, f, which means that differentiated
cells are generated at rate P ¼ 2d0þgð Þf . The differentiated cells
die at constant rate Q. Hence, the model is given by the following
set of ordinary differential equations:

dxs
dt

¼ rΨ &d
! "

xs; ð3Þ

dxd
dt

¼ Pxs&Qxd; ð4Þ

where d¼ d0þd1 and r is a positive constant. The system has two
equilibrium solutions, namely,

x0ns ; x0nd
! "

¼ 0;0ð Þ; ð5Þ

xns ; x
n
d

! "
¼

1

θþ
P
Q
γ
ln

r
d

# $
;
P
Q

1

θþ
P
Q
γ
ln

r
d

# $
0

BB@

1

CCA: ð6Þ

We only consider the case when r4d, which means that ðxns ; x
n
dÞ is

stable, whereas x0ns ; x0nd
! "

is unstable (Appendix B). The former
equilibrium solution describes the system under normal condi-
tions. Note that the number of differentiated cells is much larger
than the number of stem cells, and that the death rate of the
differentiated cells, Q, is much higher than the rate at which the
stem cells die and differentiate, d. The pseudo-steady state
hypothesis is that the population dynamics of the differentiated
cells occurs at a very high rate compared with the stem cell
population dynamics. Hence, it is assumed that the differentiated
cells are always in equilibrium. Mathematically, we use the
approximation dxd

dt
1
Q ¼ P

Qxs&xd ' 0 to obtain xd ' P
Qxs. Thus, the

population dynamics of the stem cells is approximately described
by the following differential equation:

dxs
dt

¼ rexp & θþγ
P
Q

% &
xs

% &
&d

% &
xs: ð7Þ

Starting with any population size x0s ; x
0
d

! "
, where x0s 40, the

system given in Eqs. (3) and (4), converges towards xns ; x
n
d

! "

(Appendix B). Fig. 1 shows an example where the whole system
is regenerated, starting with a single stem cell. For comparison, the
figure also shows the regeneration in the absence of feedback from
differentiated cells (dashed line). From Fig. 1, we can see that
feedback from differentiated cells enables the system to regener-
ate faster.

Changes in the population dynamics of the differentiated cells
lead to changes in the rate of symmetric stem cell division, since
the function Ψ is dependent on the variable xd. The factors that
influence the population dynamics of the differentiated cells are
included in the model by modifying the death rate to Q̂ aQ . If
Q̂ 4Q , then the number of differentiated cells starts decreasing,
whereas if Q̂ oQ , then the number of differentiated cells starts
increasing. This triggers changes in the function Ψ as follows: Ψ
increases if the number of differentiated cells decreases, and Ψ
decreases if the number of differentiated cells increases. The
number of stem cells converges towards the following steady
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state:

xWn
s ¼

1

θþ
P
Q̂
γ
ln

r
d

# $
: ð8Þ

Note that if Q̂ 4Q , then the number of stem cells increases,
whereas if Q̂ oQ , then the number of stem cells decreases. Thus,
for the former case the number of differentiated cells ultimately
increases, and for the latter case the number of differentiated cells
decreases to the steady state

xWn
d ¼

P

Q̂
xWn
s :

Fig. 2 illustrates the cell dynamics when the death rate of the
differentiated cells is increased. Note that it follows from Eq. (7),
that if the pseudo-steady state hypothesis holds, then two differ-
ent examples of the system given in Eqs. (3) and (4), with
θ0; γ0
! "

a θ1; γ1
! "

, where

θ0þ
P
Q
γ0 ¼ θ1þ

P
Q
γ1; ð9Þ

and all other parameters are the same, behave approximately
identically. Indeed, this is the case in Fig. 2, which shows three
different examples of the system given in Eqs. (3) and (4). Because
the parameters satisfy the relations described in Eq. (9) when time
is less than one, they behave approximately identically in this time
interval. When time equals one, the death rate of the differen-
tiated cells changes from Q to Q̂ , and the parameters do not satisfy
the relations described in Eq. (9) anymore. The blue, dashed line is
an example where stem cells are not regulated by feedback from
differentiated cells. Hence, when the death rate of the differen-
tiated cells changes to Q̂ , the number of stem cell remains
constant, xns given in Eq. (6), and the number of differentiated
cells decreases to P

Q̂
xns . The green line shows an example where

stem cells are regulated by feedback from differentiated cells, and
P
Qγno has the same order as θno. When the death rate of the
differentiated cells changes to Q̂ , the number of stem cells
increases to xWnon

d , given in Eq. (8), and the number of differen-
tiated cells converges towards P

Q̂
xWnon

d . The red, dotted line is an
example where the stem cells are regulated by strong feedback
from the differentiated cells. That is, P

Qγst has a much higher order
than θst . The number of stem cells increases to xWstn

d , given in Eq.

Fig. 1. Regeneration. The whole system is regenerated, starting with a single stem cell. The green line is an example where stem cell self-renewal is regulated by both stem
cells and differentiated cells. The blue, dashed line is the regeneration with the same feedback from the stem cells, but no feedback from the differentiated cells.
Both examples have the following parameter sizes: θ¼ 10&3, d¼ 0:1353, P ¼ 106, Q ¼ 103. In addition, the example with normal feedback has γ ¼ 10&6, r¼ 1, whereas the
example without feedback from differentiated cells has γ ¼ 0 and r¼ exp &10&6 ( yn

d

# $
¼ exp &1ð Þ.

(a) and (b) display the stem cells and the differentiated cells, respectively.

Fig. 2. Increased death rate of the differentiated cells. If the death rate of the differentiated cells increases, then the number of differentiated cells starts decreasing, leading to
an increased self-renewal rate, resulting in an increased number of stem cells, and ultimately the number of differentiated cells increases. The red, dotted line shows an
example where the feedback from the differentiated cells is much stronger than the feedback from the stem cells. In this case, the number of differentiated cells remains
approximately the same as under normal conditions when the death rate of the differentiated cells changes. The blue, dashed line is an example where stem cell self-renewal
is not regulated by feedback from differentiated cells, and the number of stem cells remains constant when the death rate of the differentiated cells changes. Consequently,
the number of differentiated cells decreases sufficiently. The blue line shows an example where the feedback from the stem cells and the differentiated cells have
approximately the same strength.
All examples have the following parameter sizes: r¼ 1, d¼ 0:1353, P ¼ 106 and Q ¼ 103. In addition, the example with strong feedback from the differentiated cells has
θ¼ 10&4 and γ ¼ 1:9( 10&6, whereas the example where the feedback from stem cells and differentiated cells are the same has θ¼ 10&3 and γ ¼ 10&6, and finally, the
example with no feedback from the differentiated cells has θ¼ 2( 10&3 and γ ¼ 0.
(a) and (b) display the stem cells and the differentiated cells, respectively.
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(8), and the number of differentiated cells converges towards
P
Q̂
xWst0n
d when the death rate of the differentiated cells changes to

Q̂ . Note that

P

Q̂
xns o

P

Q̂
xWnon

d o P

Q̂
xWstn

d ' xnd;

where xnd is as given in Eq. (6). Thus, Fig. 2 illustrates that the worst
outcome is obtained in the absence of feedback from differentiated
cells. Moreover, it also shows that if the feedback from the
differentiated cells is strong, i.e. P

Qγ ' θ, then the number of
differentiated cells remains approximately the same as under
normal conditions when the death rate of the differentiated cells
changes. However, the system is less parameter sensitive when
P
Qγ ' θ than when P

Qγcθ, and as discussed by Lander et al. (2009),
robustness, which is the ability to maintain performance when
perturbations and uncertainties occur, is a key property of living
systems (Stelling et al., 2004). How the system responds to
perturbations and uncertainties when P

Qγ ' θ and P
Qcθ is illu-

strated in Fig. 3. The green graph is an example where the former
relation holds, and the red, dotted graph is an example where the
latter relation holds. Even though both examples are robust, Fig. 3
shows that the variance and the mean number of stem cells
increase more when P

Qcθ than when P
Qγ ' θ. This is the reason

why we choose parameters that satisfy the latter relation in all
examples in this paper, and denote it normal feedback. However, as
illustrated in Fig. 2, a system with strong feedback from the
differentiated cells performs much better than a system with
normal feedback when the death rate of the differentiated cells
decreases. One way to compensate for this is to assumethat the
differentiated cells also have the ability to self-renew. This is
investigated by Manesso et al. (2013). However, as discussed in the
introduction, increasing capacity of self-renewal among differen-
tiated cells can lead to increasing probability of cancer (Dingli et
al., 2007b; Wodarz and Komarova, 2005; Komarova and Cheng,
2006). In Section 2.3, where various stages of differentiation are
included, we investigate another strategy to increase the produc-
tion of differentiated cells.

2.2. Competition dynamics

When the stem cells divide, a mutation might occur (Araten
et al., 2005; Vogelstein and Kinzler, 2004). The stem cells that

harbour a mutation are denoted mutant stem cells, whereas the
other stem cells are denoted wild-type stem cells. When a mutant
stem cell divides, both daughter cells also harbour the mutation.
The differentiated cells that harbour the mutation are denoted
mutant differentiated cells, and the other differentiated cells are
denoted wild-type differentiated cells. Like Rodriguez-Brenes et al.
(2011), we want to investigate the case when the mutant cells not
only retain the architectural aspects of the wild-type cells, but also
the regulatory mechanisms. Similar to Stiehl and Marciniak-
Czochra (2012), we assume that the mutant stem cells are
stimulated by the same cytokines as the wild-type stem cells,
but the two cell types respond to these cytokines with different
strength. More precisely, it is assumed that the only difference
between the mutant cells and the wild-type cells is that the
functions that regulate symmetric self-renewal of the wild-type
stem cells and the mutant stem cells, denoted Ψ x and Ψ y,
respectively, are different. Moreover, we neglect continuous pro-
duction of mutant stem cells from wild-type stem cells. Let ys
denote the number of mutant stem cells and yd denote the number
of mutant differentiated cells. The basic model is given by the
following set of ordinary differential equations:

dxs
dt

¼ rΨ x&d
! "

xs; ð10Þ

dxd
dt

¼ Pxs&Qxd; ð11Þ

dys
dt

¼ rΨ y&d
! "

ys; ð12Þ

dyd
dt

¼ Pys&Qyd; ð13Þ

where

Ψ z ¼ exp &θz
xxs&θz

yys&γzxxd&γzyyd
# $

;

and θz
v; γzv40 for z; vAfx; yg. Moreover, it is assumed that

θx
zaθy

z and γxzaγyz :

This means that wild-type cells can either inhibit growth of
mutant stem cells more than they inhibit growth of wild type
stem cells, or they inhibit growth of mutant stem cells less than
they inhibit growth of wild type stem cells. Clearly, the fitness of

Fig. 3. Parameter sensitivity. In the examples displayed in this figure, all six parameters of the system are continuously varying with up to 20 per cent to test the robustness of
the system. More precisely, every time interval ½T ; Tþ1* is subdivided into 30 000 time steps. At each time step, every parameter is given a new random value within the
interval [P(0.9, P(1.1], where P is the mean value of the parameter. The green line shows an example where the feedback from the stem cells and the differentiated cells
are of the same strength on average. The red, dotted line shows an example where the feedback from the differentiated cells is on average stronger than the feedback from
the stem cells. Even though both examples are robust, the former example is less parameter sensitive than the latter.
Both examples have the following average parameter sizes: r ¼ 1, d¼ 0:1353, P ¼ 106 and Q ¼ 103. In addition, the example with strong feedback from the differentiated cells
has average parameter sizes θ¼ 10&4 and γ ¼ 1:9( 10&6, and the example where the feedback from stem cells and differentiated cells are the same has average parameter
sizes θ¼ 10&3 and γ ¼ 10&6.
(a) and (b) display the stem cells and the differentiated cells, respectively.
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the wild-type cells is higher in former case than in the latter case.
Similarly, the mutant cells have higher fitness if they inhibit
growth of the wild-type stem cells more than they inhibit growth
of the mutant stem cells. Thus, the terms Ψ x and Ψ y introduce
competition between mutant stem cells and wild-type stem cells.

The system given in Eqs. (10)–(13) has three equilibrium
solutions where at least one of the populations gets extinct,
namely,

x0ns ; x0nd ; y0ns ; y0nd
! "

¼ 0;0;0;0ð Þ;

ðx1ns ; x1nd ; y1ns ; y1nd Þ ¼
1

θx
xþ

P
Q
γxx
ln

r
d

# $
;
P
Q
x1ns ;0;0

0

BB@

1

CCA;

ðx2ns ; x2nd ; y2ns ; y2nd Þ ¼ 0;0;
1

θy
yþ

P
Q
γyy
ln

r
d

# $
;
P
Q
y2ns

0

BB@

1

CCA;

and one equilibrium solution with coexistence, ðx3ns ; x3nd ; y3ns ; y3nd Þ,
where

x3ns
y3ns

" #

¼
θx
xþ

P
Qγ

x
x θx

yþ
P
Qγ

x
y

θy
xþ

P
Qγ

y
x θy

yþ
P
Qγ

y
y

2

4

3

5
&1

ln r
d

! "

ln r
d

! "
" #

;

x3nd ¼
P
Q
x3ns ; y3nd ¼

P
Q
y3ns : ð14Þ

It is assumed that the matrix is non-degenerate. As discussed in
Section 2.1, the number of differentiated cells is much larger than
the number of stem cells, and we expect the pseudo-steady state
hypothesis

xdC
P
Q
xs; ydC

P
Q
ys;

to hold when the system approaches the given equilibrium
solution. Moreover, it is assumed that r4d. This means that the
equilibrium solution where all types of cells get extinct is unstable.
The stability of the remaining equilibrium solutions depends on
the following four parameter regimes (Appendix C):

(I) θy
yþ

P
Qγ

y
y4θx

yþ
P
Qγ

x
y and θy

xþ
P
Qγ

y
x4θx

xþ
P
Qγ

x
x. For these para-

meter relations both the wild-type cells and the mutant cells
inhibit growth of mutant stem cells more than growth of
wild-type stem cells. The only stable equilibrium solution is
extinction of the mutant cells and survival of the wild-type
cells, x1ns ; x1nd ; y1ns ; y1nd

! "
. Moreover, starting with any popula-

tion size x0s ; x
0
d ; y

0
s ; y

0
d

! "
, where x0s ; y

0
s 40, the system converges

towards x1ns ; x1nd ; y1ns ; y1nd
! "

.
(II) θy

yþ
P
Qγ

y
yoθx

yþ
P
Qγ

x
y and θy

xþ
P
Qγ

y
xoθx

xþ
P
Qγ

x
x. For these para-

meter relations both the wild-type cells and the mutant cells
inhibit growth of wild-type stem cells more than growth of
mutant stem cells. The only stable equilibrium solution is
extinction of the wild-type cells and survival of the mutant
cells, x2ns ; x2nd ; y2ns ; y2nd

! "
. Furthermore, starting with any popu-

lation size x0s ; x
0
d; y

0
s ; y

0
d

! "
, where x0s ; y

0
s 40, the system con-

verges towards x2ns ; x2nd ; y2ns ; y2nd
! "

.
(III) θy

yþ
P
Qγ

y
y4θx

yþ
P
Qγ

x
y and θy

xþ
P
Qγ

y
xoθx

xþ
P
Qγ

x
x. For these para-

meter relations the wild-type cells inhibit reproduction of
wild-type stem cells more than reproduction of mutant stem
cells, and likewise, the mutant cells inhibit reproduction of
mutant stem cells more than reproduction of wild-type stem
cells. In this case the only stable equilibrium solution is
coexistence, x3ns ; x3nd ; y3ns ; y3nd

! "
. Starting with any population

size x0s ; x
0
d; y

0
s ; y

0
d

! "
, where x0s ; y

0
s 40, the system converges

towards x3ns ; x3nd ; y3ns ; y3nd
! "

.
(IV) θy

yþ
P
Qγ

y
yoθx

yþ
P
Qγ

x
y and θy

xþ
P
Qγ

y
x4θx

xþ
P
Qγ

x
x. When the mutant

cells inhibit reproduction of wild-type stem cells more than

reproduction of mutant stem cells, and likewise, the wild-
type cells inhibit reproduction of mutant cells more than
reproduction of wild-type stem cells more both the equili-
brium solutions where only one type of cells survives,
x1ns ; x1nd ; y1ns ; y1nd
! "

and x2ns ; x2nd ; y2ns ; y2nd
! "

, are stable. Starting
with any population size x0s ; x

0
d ; y

0
s ; y

0
d

! "
where y0s ; x

0
s 40, then

if y0s ox0sΥ , the system converges towards x1ns ; x1nd ; y1ns ; y1nd
! "

,
whereas if y0s 4x0sΥ , the system converges towards
x2ns ; x2nd ; y2ns ; y2nd
! "

, and if y0s ¼ xsΥ , the system converges
towards the equilibrium solution x3ns ; x3nd ; y3ns ; y3nd

! "
, where

Υ ¼
θy
xþ

P
Q
γyx& θx

xþ
P
Q
γxx

% &

θx
yþ

P
Q
γxy& θy

yþ
P
Q
γyy

% &:

2.2.1. Changes in the competition dynamics
In this subsection we show how changes in the population

dynamics of the differentiated cells can lead to changes in the
population dynamics of the stem cells. We include changes in the
population dynamics of the differentiated cells by modifying the
death rate of these cells. Clearly, changes in this death rate can
effect the dynamics of the whole system, since the stability of all
the equilibrium solutions depends on the inequality

θv
zþ

P
Q
γvzoθw

z þ
P
Q
γwz ;

for z; v;wAfx; yg, vaw. The stability of the system is changed
when the death rate is modified from Q to Q̂ , such that the
inequality is changed to

θi
kþ

P

Q̂
γik4θj

zþ
P

Q̂
γjk;

for at least one triple i; j; kAfz; v;wg. There are three different
cases:

(I) θv
zoθw

z and γvzoγwz . This inequality cannot be changed for
any Q̂ 40.

(II) θv
zoθw

z and γvz4γwz . This inequality is changed for any
Q̂ o γvz &γwz

θwz &θvz
P.

(III) θv
z4θw

z and γvzoγwz . This inequality is changed for any
Q̂ 4 γwz & γvz

θvz &θw
z
P.

These mathematical results can be summarised as follows:

! The equilibrium solution where the mutant cells survive and
the wild-type cells get extinct is stable when the mutant cells
inhibit growth of wild-type stem cells more than growth of
mutant stem cells. If the death rate of the differentiated cells is
changed such that the mutant cells inhibit the mutant stem
cells more than the wild-type stem cells, then this equilibrium
solution becomes unstable.

! The equilibrium solution where the wild-type cells survive and
the mutant cells get extinct is stable when the wild-type cells
inhibit growth of mutant stem cells more than growth of wild-
type stem cells. If the death rate of the differentiated cells is
changed such that the wild-type cells inhibit the wild-type
stem cells more than the mutant stem cells, then this equili-
brium solution becomes unstable.

! The equilibrium solution with coexistence is stable when the
mutant cells inhibit growth of mutant stem cells more than
growth of wild-type stem cells, and likewise, the wild-type
cells inhibit growth of wild-type stem cells more than growth
of mutant stem cells. This equilibrium solution becomes
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unstable if either the death rate of the differentiated cells is
changed such that the mutant cells inhibit growth of wild-type
stem cells more than growth of mutant stem cells and/or if the
death rate of the differentiated cells is changed such that the
wild-type cells inhibit growth of mutant stem cells more than
growth of wild-type stem cells.

2.2.2. Numerical simulations
We have performed numerical simulations for different para-

meter regimes to illustrate how changes in the population
dynamics of the differentiated cells can affect the competition
dynamics of the stem cells. The goal of this paper is to point out
that the relative fitness of stem cells can be affected by changes in
the population of differentiated cells. Thus, the parameters are not
scaled with respect to a specific tissue. Moreover, since the
feedback mechanism within the stem cell area cannot be mea-
sured directly, it is not possible to give a precise estimate for all
parameters. Just like the examples in Wodarz' (2008) paper, the
time is given in an arbitrary unit.

Note that if

θx
x ¼ θx

y; γxx ¼ γxy and θy
y ¼ θy

x ; γyy ¼ γyx ;

then exactly one of the equilibrium solutions, where one type of
cell gets extinct, is stable. An example of this is shown in Fig. 4.
Initially we have that

θy
zþ

P
Q
γyz oθx

zþ
P
Q
γxz ;

for zAfx; yg. Thus, starting with only one mutant stem cell, the
system converges towards the equilibrium solution where the
mutant cells invade and the wild-type cells get extinct:

x2ns ; x2nd ; y2ns ; y2nd
! "

¼ 0;0;
1

θy
yþ

P
Q
γxx
ln

r
d

# $
;
P
Q
y2n0

0

BB@

1

CCA:

At time 350 the death rate of the differentiated cells is increased to
Q̂ , such that the inequalities

θy
zþ

P

Q̂
γyz 4θx

zþ
P

Q̂
γxz ;

hold, and the system converges towards the equilibrium solution
where the mutant cells get extinct and the wild-type cells survive:

x1ns ; x1nd ; y1ns ; y1nd
! "

¼
1

θx
xþ

P
Q
γxx
ln

r
d

# $
;
P

Q̂
x1n0 ;0;0

0

BB@

1

CCA:

Fig. 5 shows an example where initially the inequalities

θy
z þ

P
Q
γyz oθx

zþ
P
Q
γxz

hold for zAfx; yg. Thus, only ðx2ns ; x2nd ; y2ns ; y2nd Þ is stable, and the
system converges towards this equilibrium solution. By changing
the death rate of the differentiated cells to Q̂ , we obtain that

θy
yþ

P

Q̂
γyyoθx

yþ
P

Q̂
γxy and θy

xþ
P

Q̂
γyx4θx

xþ
P

Q̂
γxx:

This means that both ðx2ns ; x2nd ; y2ns ; y2nd Þ and ðx1ns ; x1nd ; y1ns ; y1nd Þ
become stable. Thus, which of the equilibrium solutions the
system converges towards, depends on the time that the death
rate is modified.

2.3. Multi-compartment model

In this subsection, we present an extension of the simple model
proposed in Section 2.1, which includes various stages of the
differentiation process. As discussed in the introduction, the differ-
entiated cells are produced by the stem cells through asymmetric
division and symmetric differentiation, and they go though a
number of divisions, obtaining various stages of differentiation,
until the fully mature cells stop dividing (Donohue et al., 1958;
Cronkite and Fliedner, 1964; Ogawa, 1993). However, as discussed
by Dingli et al. (2007a), there is no unambiguous determination of
the number of stages connecting stem cells and fully differentiated
cells, let alone how fast cells go through different stages of
maturation (Donohue et al., 1958; Cronkite and Fliedner, 1964).
Similar to Dingli et al., we model differentiation as a multi-step
process where cell replication and differentiation are coupled with
cells moving through successive stages – compartments – of
maturation in a series of steps from the stem cells all the way
down to the fully differentiated cells. More precisely, when differ-
entiated cells are produced by stem cells through asymmetric
division and symmetric differentiation, they move to compartment
1. Furthermore, it is assumed that when a cell in compartment i

Fig. 4. One stable equilibrium solution. Initially, both the wild-type cells and the mutant cells inhibit growth of wild-type stem cells more than growth of mutant stem cells.
Thus, if one mutant stem cell is generated at time zero, the system converges towards the only stable equilibrium solution, which is extinction of the wild-type cells and
survival of the mutant cells. At time 350 the death rate of the differentiated cells is modified such that both the wild-type cells and the mutant cells inhibit growth of mutant
stem cells more than growth of wild-type stem cells. Hence, extinction of the mutant cells and survival of the wild-type cells become the only stable equilibrium solution,
and the system converges towards this solution.
The parameter sizes are: θxx ¼ θxy ¼ 0:0012, γxx ¼ γxy ¼ 1:15( 10&6, θyx ¼ θyy ¼ 1:18( θxx , γ

y
x ¼ γyy ¼ 0:8( γxx, r¼ 1, d¼ exp & θxxþ

P
Qγ

x
x

# $
1010

# $
, P ¼ 106 and Q ¼ 103.

(a) and (b) display the stem cells and the differentiated cells, respectively.
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Fig. 5. Two stable equilibrium solutions. Initially, both the wild-type cells and the mutant cells inhibit growth of wild-type stem cells more than growth of mutant stem cells.
Thus, if one mutant stem cell is generated at time zero, the system converges towards the only stable equilibrium solution, which is extinction of the wild-type cells and
survival of the mutant cells. By modifying the death rate of the differentiated cells, the equilibrium solution, where the wild-type cells survive and the mutant cells get
extinct, also becomes stable. Which of the equilibrium solutions the system converges towards, depends on the time that the death rate is modified.
The parameter sizes are: θxx ¼ θxy ¼ 0:0012, γxx ¼ γxy ¼ 1:15( 10&6, θyx ¼ θyy ¼ 0:8( θxx, γ

y
x ¼ 1:2083( γxx , γ

y
y ¼ 1:2077( γxx r¼ 1, d¼ exp & θxxþ

P
Qγ

x
x

# $
1010

# $
, P ¼ 106 and Q ¼ 103.

(a) and (b) display the stem cells and the differentiated cells, respectively, when the death rate is not modified.
(c) and (d) display the stem cells and the differentiated cells, respectively, when the death rate is modified at time 6000.
(e) and (f) display the stem cells and the differentiated cells, respectively, when the death rate is modified at time 5200.
(g) and (h) display the stem cells and the differentiated cells, respectively, when the death rate is modified at time 5100.
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divide, both daughter cells are placed in compartment iþ1, for
1r ioN where N is the total number of compartments of differ-
entiated cells. When the cells reach compartment N, they stop
dividing and eventually die. Let x0 denote the number of stem cells
and xi denote the number of differentiated cells in compartment i. It
is assumed that when the cells in all compartments are approxi-
mately in normal conditions, then the cells in compartments 1 to
N&1 divide and die at the approximately same, constant rates, c
and s, respectively, where c4s. For simplicity, it is assumed that the
death rate of the cells in compartment N is q¼ cþs, and that
p¼ 2c¼ 2d0þg, where d0 and g are the rates at which the stem
cells differentiate symmetrically and divide asymmetrically, respec-
tively. Hence, if the number of stem cells is in equilibrium, xn0, then
the number of differentiated cells in compartment i is expected to
converge towards

xni ¼
p
q

% &i

xn0 ð15Þ

(approximately). The approximation of the signalling intensity
given in (2) considers the average feedback from all differentiated
cells. Here, an approximation of the signalling intensity that
includes different stages of differentiation is presented:

Ψ ¼ expð&θx0&
X

γxi xiÞ:

It is assumed that for any pair 1r i; jrN, γxi
2p

pþq

# $i
and γxj

2p
pþq

# $j

have the same order and that
PN

i ¼ 1 γxi
2p

pþq

# $i
has the same order as

θ, because our numerical results indicate that the systems with
these parameter relations are most robust.

A second feedback mechanism is considered in this subsection,
namely, that cells in compartment i inhibit cell division in
compartment i&1 for 1o irN, and that cells in compartment
one inhibit asymmetric stem cell division. As discussed in the
introduction and in Section 2.1, molecules such as cytokines
regulate cell behaviour, and the secretion of cytokines is very fast
compared with cell activity such as differentiation. However, the
precise nature of this regulation is still unknown (Layton et al.,
1989; Aglietta et al., 1989; Metcalf, 2008; Fried, 2009). We assume
that the signalling intensity from compartment j is approximately

Γxj ¼ expð&νjxjÞ;

for 1r jrN. Since the rates of differentiated cell division and
asymmetric stem cell division are approximately constant under

normal conditions, νj must be sufficiently large, such that

expð&νjxnj Þoϵ; ð16Þ

for some small number ϵ' 0, where xnj is given in Eq. (15). The
extended model is given by the following set of ordinary differ-
ential equations:

dx0
dt

¼ ðrΨ &dÞx0; ð17Þ

dxi
dt

¼ ðpþ2WΓxi Þxi&1&ðqþWΓxiþ 1 Þxi; ð18Þ

dxN
dt

¼ ðpþ2WΓxN ÞxN&1&qxN ; ð19Þ

for 1r ioN, and where W is a positive constant. The system has
two equilibrium solutions, namely,

ðx0n0 ; x0n1 ;…; x0nN Þ ¼ ð0;0;…;0Þ;

ðx1n0 ; x1n1 ;…; x1nN Þ ' ðxn0; x
n
1;…; xnNÞ;

where xni is given in (15) for 1o irN and

xn0 ¼
1

θþ
PN

j ¼ 1 γxj
p
q

% &jln
r
d

# $
:

For r4d the former equilibrium solution is unstable and the latter
is stable. Moreover, the numerical analysis shows that starting
with any population size ðx00; x

0
1;…; x0NÞ where x0040, the system

converges towards the stable equilibrium solution.
The work by Komarova (2013) indicates that a well-regulated

N-compartment model must have at least Nþ1 control loops, and
that all the Nþ1 different cell populations must control at least
one process. Moreover, the differentiation decision for stem cells
must be controlled by another population, and the control of stem
cell divisions must be negative. The multi-compartment model
presented in this subsection satisfy all these conditions. Fig. 6
illustrates that this model performs better than a model that
contains less control loops. That is, the figure shows an example
where the whole system is regenerated, starting with a single
stem cell. For comparison, the figure also shows the regeneration
in the absence of feedback between the compartments. From
Fig. 6, we can see that feedback between the compartments
enables the system to regenerate faster.

Fig. 6. Regeneration of the multi-compartmental model. The whole system is regenerated, starting with a single stem cell. The stem cells reach their normal population size
first, and the differentiated cells in compartment i reach their normal population size before the differentiated cells in compartment iþ1. The figure displays the following
ratios:

number of cells
normal population size
for the stem cell niche and all compartments of differentiated cells. The regeneration-time depends on the strength of the feedback and on the number of feedback-loops.
The parameter sizes are: θ¼ 0:0012, γxi ¼ 10&4 ( ðqpÞ

ir¼ 1, W ¼ 2, d¼ 0:0907, p¼ 2, q¼ 1:1, νxi ¼
lnð103 Þ

xni
.

(a) displays regeneration with two feedback-loops. (b) displays regeneration with one feedback-loop.
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We will now consider competition dynamics in the multi-
compartment model. Like in Section 2.2, it is assumed that the
wild-type cells and the mutant cells have the same differentiation
hierarchy. However, the mutant cells and the wild-type cells
inhibit symmetric stem cell self-renewal at different strength.
Moreover, in this subsection it is also assumed that the mutant
differentiated cells have a lower death rate than the wild-type
cells. Let y0 denote the number of mutant stem cells and yi denote
the number of differentiated cells in compartment i. The competi-
tion dynamics is given by the following set of ordinary differential
equations:

dx0
dt

¼ ðrΨ x&dÞx0;

dxi
dt

¼ ðpþ2WΓxi þyi Þxi&1&ðqxþWΓxiþ 1 þyiþ 1 Þxi;

dxN
dt

¼ ðpþ2WΓxN þyN ÞxN&1&qxxN ;

dy0
dt

¼ ðrΨ y&dÞy0;

dyi
dt

¼ ðpþ2WΓxi þyi Þyi&1&ðqyþWΓxiþ 1 þyiþ 1 Þyi;

dyN
dt

¼ ðpþ2WΓxN þyN ÞyN&1&qyyN ;

for 1r ioN, where qyoqx,

Γxk þyk ¼ expð&νkðxkþykÞ

where νk satisfies the inequality given in (16) for 1rkrN, and

Ψ z ¼ exp &θz
xx0&θz

yy0&
XN

j ¼ 1

γzxj xjþγzyj yj
# $

0

@

1

A

for zA ðx; yÞ. Note that if the parameters γzyj are of the same order as
γzxj , respectively, then the total number of stem cells decreases if
the mutant population starts to grow. Since we are interested in
investigating the case where the number of mutant differentiated
cells increases beyond the normal level, when the total number of
stem cells remains approximately constant, it is assumed that
γzyj

qy
qx

# $j
is of the same order as γzxj .

The system has three equilibrium solutions where at least one
type of cells gets extinct, namely,

ðx0n0 ;…; x0nN ; y0n0 ;…; y0nN Þ ¼ ð0;…;0Þ; ð20Þ

ðx1n0 ;…; x1nN ; y1n0 ;…; y1nN Þ ¼ ðxn0;…; xnN ;0;…;0Þ; ð21Þ

ðx2n0 ;…; x2nN ; y2n0 ;…; y2nN Þ ¼ ð0;…;0; yn
0;…; yn

NÞ; ð22Þ

where

zn0 '
1

θz
zþ
PN

j ¼ 1 γzzj
p
qz

% &jln
r
d

# $
;

and

znj '
p
qz

% &j

z0;

for zAfx; yg and 1r jrN. The system has also one equilibrium
solution with coexistence, ðx3n0 ;…; x3nN ; y3n0 ;…; y3nN Þ, where

x3n0
y3n0

" #
'

θx
xþ
PN

j ¼ 1 γxxj
p
qx

# $j
θx
yþ

PN
j ¼ 1 γxyj

p
qy

# $j

θy
xþ

PN
j ¼ 1 γ

y
xj

p
qy

# $j
θy
yþ

PN
j ¼ 1 γ

y
yj

p
qy

# $j

2

664

3

775

&1

lnðrdÞ
lnðrdÞ

" #
;

z3nj '
p
qz

% &j

z0:

The equilibrium solution where all cells get extinct is unstable for
r4d. The numerical analysis shows that the analytic results

obtained in Section 2.2 also apply to the extended model. That
is, the equilibrium solution with survival of the wild-type cells and
extinction of the mutant cells given in (21) is stable if the wild-
type cells inhibit reproduction of mutant cells more than repro-
duction of wild-type cells, i.e.

θx
xþ

XN

j ¼ 1

γxxj
p
qx

% &j

oθx
yþ

XN

j ¼ 1

γxyj
p
qy

 !j

:

On the other hand, if the wild-type cells inhibit reproduction of
wild-type cells more than reproduction of mutant cells, then the
equilibrium solution is unstable. Likewise, the equilibrium solution
with survival of the mutant cells and extinction of the wild-type
cells given in (22) is stable if the mutant cells inhibit reproduction
of wild-type cells more than reproduction of mutant cells, i.e.

θy
xþ

XN

j ¼ 1

γyxj
p
qy

 !j

4θy
yþ

XN

j ¼ 1

γyyj
p
qy

 !j

:

On contrary, if the mutant cells inhibit reproduction of mutant
cells more than reproduction of wild-type cells, then the equili-
brium solution is unstable. If both the equilibrium solutions given
in (21) and (21) are unstable, then the equilibrium solution with
coexistence is stable. Moreover, if there is only one stable equili-
brium solution and both types of stem cells are present, then the
system converges towards this solution. On the other hand, if
there are two stable equilibrium solutions and both types of stem
cells are present, then the system converges towards one of the
equilibrium solutions.

Fig. 7 shows an example where a mutant stem cell is generated
when the wild-type cells are in normal condition. Since both the
wild-type cells and the mutant cells inhibit growth of wild-type
cells more than mutant cells, the only stable equilibrium is
extinction of the wild-type cells and invasion of the mutant cells,
and the system converges towards this solution. The death rate of
the mutant differentiated cells is lower than the death rate of the
wild-type cells. Hence, the number of differentiated cells increases
beyond the normal level. Moreover, since the mutant differen-
tiated cells have weak feedback to the stem cells, the number of
stem cells remains approximately constant. When the death rate
of the differentiated cells is reduced, the equilibrium solution
where the wild-type cells survive and the mutant cells get extinct
also becomes stable. Which of the two stable solutions the system
converges, depends on the time that the death rate is reduced.

3. Discussion

In this paper we use a mathematical model to investigate
implications when the rate of symmetric self-renewal is regulated
by both differentiated cells and stem cells, and show that changes
in the population dynamics of the differentiated cells can lead to
changes in the population dynamics of the stem cells. This result
implies that a medical treatment that targets differentiated cells
can change the competition dynamics of the stem cells, even if the
treatment has no direct effect on the stem cells.

Research suggests that a subset of cancer cells within some
tumours, the so-called cancer stem cells, may drive the growth and
metastasis of these tumours (Reya et al., 2001; Clarke and Fuller,
2006). Understanding the pathways that regulate proliferation,
self-renewal, survival and differentiation of malignant and normal
stem cells may shed light on mechanisms that lead to cancer and
suggest better modes of treatment (Rodriguez-Brenes et al., 2011).
For most types of cancer, the target cell of transforming mutation
is unknown. However, there is considerable evidence that certain
types of leukaemia, such as chronic myeloid leukaemia (CML), arise
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Fig. 7. Two stable equilibrium solutions in the multi-compartmental model. Initially, the mutant differentiated cells have a low death rate and weak feedback to the stem cells.
Moreover, both the wild-type cells and the mutant cells inhibit growth of wild-type stem cells more than growth of mutant stem cells. Consequently, if one mutant stem cell
is generated, the total number of differentiated cells increases and mutants invade the system, whereas the wild-type cells get extinct. If the death rate of the differentiated
cells is decreased enough, the equilibrium solution, where the wild-type cells survive and the mutant cells get extinct, also becomes stable. Which of the equilibrium
solutions the system converges to, depends on the time that the death rate is modified.
The parameters sizes are: θxx ¼ 0:0012, θxy ¼ 0:0024, θyx ¼ 0:0024, θyy ¼ 0:0023 r ¼ 1, d¼ 0:0907, p¼ 2, qx ¼ 1:1, qy ¼ 1:08, Q̂ ¼ 1:11 γxxi ¼ 10&4 ( ðqxp Þ

i , γxyi ¼ 10&7 ( 8:3( ðqyp Þ
i ,

γyxi ¼ 10&7 ( 8:3( ðqxp Þ
i, γyyi ¼ 10&7 ( 8:3( ðqyp Þ

i , W ¼ 1, νxi þyi ¼
lnð103 Þ

xni
.

(a) and (b) display the stem cells and differentiated cells, respectively, when the death rate of the differentiated cells is not modified.
(c) and (d) display the stem cells and the sum of all differentiated cells, respectively, when the death rate of the differentiated cells is modified at time 83.
(e) and (f) display the stem cells and the sum of all differentiated cells, respectively, when the death rate of the differentiated cells is modified at time 52.
(g) and (h) display the stem cells and the sum of all differentiated cells, respectively, when the death rate of the differentiated cells is modified at time 51.5.
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from mutation in haematopoietic stem cells (Reya et al., 2001;
Wang and Dick, 2005; Hope et al., 2004).

Treatment of CML with the tyrosine kinase inhibitors (TKIs)
imatinib and nilotinib represents a successful application of molecu-
larly targeted anti-cancer therapy (Druker et al., 1996, 2001;
Kantarjian et al., 2002). TKIs reduce the fitness of leukemic differ-
entiated cells. However, the effect of TKIs on leukemic stem cells
remains incompletely understood. Several mathematical models of
CML and treatment with TKIs have been proposed (Dingli and
Michor, 2006; Wodarz, 2008; Michor et al., 2005; Rodriguez-Brenes
et al., 2011; Roeder et al., 2006). These models are discussed and
compared by Michor (2008). Discontinuation of TKIs results in a
relapse of the disease in many patients within a few months (Cortes
et al., 2004). Explanations have been put forward for this phenom-
enon. For example, the drug might have no effect on the CML stem
cells (Dingli and Michor, 2006; Michor et al., 2005), or the CML stem
cells can be susceptible to drug therapy when they are in an active
state, but are not be susceptible when they are in quiescent state
(Roeder et al., 2006). In contrast to these arguments a small study
involving 12 patients has shown that in some individuals the disease
has remained undetected for two years after discontinuation of TKIs,
raising the possibility that TKIs have eradicated the disease in these
patients (Rousselot et al., 2006). Moreover, all studies indicate that
the effect of TKIs increases when treatment starts early in disease
progression (Rousselot et al., 2006; Gorre et al., 2001; Houchhause et
al., 2002; Roche-Lestienne et al., 2002). These results can be
explained by the mechanisms described in our model: Suppose that
the treatment with TKIs has no direct effect on the leukemic stem
cells. However, since the treatment changes the population dynamics
of the differentiated cells, and the differentiated cells regulate the
proliferation of the stem cells, treatment indirectly effects the stem
cells and can lead to changes in the competition dynamics of the
stem cells. More precisely, let us revisit the examples illustrated in
Figs. 5 and 7. In both figures the wild-type cells represent the healthy
cells, the mutant cells represent the leukemic cells, and treatment is
represented by modifying the death rate of the differentiated cells.
Subfigures (a) and (b) show the disease progression without any
treatment – the number of leukemic cells expands and the healthy
cells get extinct. In (c) and (d), treatment starts too late to have any
significant effect on the disease progression. In (e) and (f), treatment
starts early enough to slow down the disease progression and the
healthy cells survive a bit longer. However, ultimately, the leukemic
cells invade the population and the healthy cells get extinct. Finally,
in (g) and (h), treatment starts early enough to reverse the competi-
tion dynamics – the healthy cells survive and the leukemic cells get
extinct. Fig. 7 shows an example of the extended model, which
captures the fact that the number of differentiated leukemic cells
increases beyond the normal level, whereas the number of stem cells
remains approximately constant (Wang and Dick, 2005; Hope et al.,
2004). However, the competition dynamics in both examples is
determined by the feedback functions that regulate self-renewal,
and this is best captured by the example of the simple model
illustrated in Fig. 5.

Lenaerts et al. (2010) illustrate that the results from studies of
TKIs treatment (Cortes et al., 2004; Rousselot et al., 2006; Gorre
et al., 2001; Houchhause et al., 2002; Roche-Lestienne et al., 2002)
can also be explained by the stochastic nature of the haemato-
poietic stem cells. A deterministic model does not capture neither
neutral drift nor that a disadvantageous phenotype can outcom-
pete an advantageous phenotype in a finite population. Since stem
cell populations in general are small, their population dynamics
are highly sensitive to stochastic fluctuations. Under steady state,
the number of stem cells is approximately constant, and Lenaerts
et al. show that the stem cell population dynamics can be captured
by the Moran process, which describes the probabilistic dynamics
in a finite population of constant size N. The Moran process

predicts that if there are i mutant stem cells and N& i wild-type
stem cells in the population, while the mutants have relative
fitness r and the wild-types relative fitness 1, then the probability
that the mutant cells eventually invade the whole population is

pi ¼
i
N

ð23Þ

if r¼ 1, and

pi ¼
1&r& i

1&r&N

if ra1. The mutants are advantageous if r41, disadvantageous if
ro1, and neutral if r¼ 1. Moreover, the probability that the
mutant population eventually gets extinct is 1&xi. Hence, the
Moran process predicts that coexistence is only temporary –
ultimately the population consists of only one type of cells.
Lenaerts et al. assume that the competition between the healthy
stem cells and the CML stem cells is captured by a neutral Moran
process and that TKIs treatment has no effect on stem cells. If CML
is discovered early, then the number of CML stem cells, i, is in
general much smaller than the total number of stem cells, N. It
follows from Eq. (23) that the probability that the CML stem cells
get extinct is 1& i

N ' 1. Hence, there is a very good chance of full
recovery, even though the TKIs treatment has no effect on the
stem cells. On the other hand, if CML is discovered relatively late,
then the number of CML stem cells is typically very high, such that
1& i

N ' 0. This means that full recovery is very unlikely.
Lenaerts et al. (2010) illustrate the importance of stochastic

fluctuations in stem cell populations, and the response dynamics
predicted by the model closely matches data from clinical trials.
Since stem cell regulation is an extremely complex process, a
model that treats self-renewal and differentiation as purely ran-
dom events fits general data better than a deterministic model
with a single regulation mechanism. Thus, the model proposed by
Lenarts et al. gives a general picture of how stem cells behave
under steady state. However, Lander et al. (2009) show that linear
models, e.g. the one proposed by Lenarts et. al., are very parameter
sensitive. Since parameter sensitivities tend to be undesirable in
well-regulated biological systems, stochastic behaviour cannot be
the complete story. A deterministic model of stem cell dynamics
with only one regulation mechanism can be designed to describe
more specific data. For instance, research results by Gokoffski et al.
(2011) indicate that the number of stem cells increases when the
number of differentiated cells decreases. This can be explained by
a model of stem cell self-renewal and differentiation, where
symmetric stem cell division is regulated by differentiated cells,
like the model proposed by Rodriguez-Brenes et al. (2013) and the
models presented in this paper.

The model proposed by Lenaerts et al. (2010) and the model
presented in this paper have different explanations for successful
TKIs treatment. However, this does not mean that one of the
conclusions must be false. It is possible that the CML stem cells are
advantageous before TKIs treatment and, because the differen-
tiated cells regulate symmetric stem cell division, the CML stem
cells are disadvantageous during the TKIs treatment. In this case,
the average behaviour of the CML stem cells can be approximately
neutral, as assumed by Lenaerts et al.

The main purpose of the simple model proposed in Section 2.1
is to investigate implications when symmetric stem cell division is
regulated by differentiated cells. Similar results can be obtained by
replacing the signal intensity function given in (2) with another
function that reaches its maximum under complete absence of
cells and decreases towards zero as the number of cells decreases.
For instance

S¼ 1=ðθxsþγxdþ1Þ;
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which is similar to the function proposed by Marciniak-Czochra
et al. (2009) given in (1). Yet, the function in (2) is used in our
model because it makes the stability analysis simple. It would also
be interesting to investigate implications when differentiated cells
also regulate symmetric differentiation. However, in this paper, the
model is kept simple to obtain analytic results. In Sections 2.2 and
2.3 the competition dynamics is investigated. It is possible that the
mutant cells have other properties than the ones investigated in
this paper. For instance, the mutant differentiated cells in com-
partment i could have a much weaker feedback to compartment
i&1 than the wild-type cell in compartment i. This could radically
change the dynamics of the cells. However, investigation of these
types of mutation is beyond the scope of this paper. Finally, the
timescale in all examples are the same. This illustrates that
regeneration of the system in general occurs much faster than
the invasion of a mutation. Moreover, Figs. 4, 5 and 7 indicate that
the timescale of the competition dynamics depends on the ratios

θw
v þ

P
Q
γwv

θz
vþ

P
Q
γzv

where v;w; zAfx; yg, waz. That is, the closer these ratios are to
one, the slower the competition dynamics occurs.

4. Conclusion

In this paper, we use a mathematical models where symmetric
stem cell division is regulated by negative feedback from the
differentiated cells, to show that changes in the population
dynamics of the differentiated cells can lead to changes in the
population dynamics of the stem cells. This result is interesting
because it can explain how medical treatments that have no direct
effect on the stem cells can change the competition dynamics of
these cells. For example, the model can reproduce some of the
results from studies of TKIs treatment of CML patients (Cortes
et al., 2004; Rousselot et al., 2006; Gorre et al., 2001; Houchhause
et al., 2002; Roche-Lestienne et al., 2002):

! The effect of TKIs increases when treatment starts early in
disease progression.

! In some cases the treatment slows down the disease progres-
sion without erasing the CML stem cells, which drive the
disease.

! In other cases the treatment reverses the disease progression
and seems to erase the CML stem cells.

The results from these studies seem contradictory if a classical
deterministic model of stem cells and differentiation is used, where
stem cell activity is not regulated by the differentiated cells (Dingli
and Michor, 2006; Michor et al., 2005). Our model shows that the
results from the different studies can be explained by negative
feedback from differentiated cells that regulate symmetric stem cell
division: TKIs treatment reduces the fitness of the CML differentiated
cells, but has little or no direct effect on the CML stem cells. However,
since the differentiated cells regulate the proliferation of the stem
cells, the treatment indirectly affects the stem cells and can lead to
changes in the competition dynamics of the stem cells, which in
some cases results in the extinction of the CML stem cells.

Appendix A

Proposition 1. Consider the systems of differential equations given
in (3) and (4) and (10)–(13). If Q is sufficiently large, then the pseudo-

state hypothesis (Appendix C)

dzd
dt

1
Q
¼

P
Q
zs&zd

% &
C0 ðA:1Þ

holds for zAfx; yg and tZ1
r , when it is given that the parameters r

and d are of significantly lower order than the parameters P and Q,
r4d and P4Q , and initial values are non-negative.

Proof. By re-scaling the systems of given in (3) and (4) and (10)–
(13) with respect to the constant r, we obtain

dvs
dT

¼ ðΨ v&drÞvs; ðA:2Þ

dvd
dT

¼ Prvs&Qrvd; ðA:3Þ

where dr ¼ d
r, Pr ¼ P

r , Qr ¼ Q
r , and T ¼ r ( t. For the system with only

one type of cells v¼ x, whereas vA x; y
' (

for the system with both
wild-type cells and mutant cells. Note that if vs ¼ 0, then dvs

dT ¼ 0,
and if vd ¼ 0 and vsZ0, then dvd

dT Z0. Consequently, a solution of
the system with non-negative initial values will never obtain
negative values.

We now use the perturbation methods presented by Fowler
(1997) to analyse the system. Given that 0odro1, Qrc1 and
Pr4Qr , the pseudo-state hypothesis states that if Qr is sufficiently
large, then

dvd
dT

1
Qr

¼
Pr

Qr
vs&vd

% &
C0 ðA:4Þ

when TZOð1Þ. However, the approximation given in (A.4) does
not generally hold for the initial values, i.e. when T is close to
zero. This means that the neglect of dvd

dT
1
Qr

is wrong in a region
that contains T ¼ 0. We will now show that if Qr is sufficiently
large, then this is only a thin region, termed the boundary layer.
We bring back the term dvd

dT in the boundary layer by rescaling
the time as

T ¼
1
Qw

τ;

where Qw is OðQrÞ. To obtain variables that are Oð1Þ, we rescale
as follows:

vs ¼ vsð0ÞVs;
vd ¼ vdð0ÞVd;

where vsð0Þ and vdð0Þ are the initial values of vs and vd,
respectively. By substituting this into the system of differential
equations given in (A.2) and (A.3), we obtain

dVs

dτ
¼

1
Qw

ðΨ v&drÞVs;

dVd

dτ
¼

Pr

Qw

vsð0Þ
vdð0Þ

Vs&
Qr

Qw
Vd:

Note that Vs is Oð1Þ when τ is close to zero. Thus, since
0odr ;Ψ vo1 and Prc1, the variable Vs is approximately con-
stant, i.e. dVs

dτ C0 when τ is Oð1Þ. On the other hand, Qr
Qw

is Oð1Þ,
while Pr

Qw
ZOð1Þ. Thus, we obtain the approximate solution

VdðτÞ ¼
Pr

Qr

vsð0Þ
vdð0Þ

VsðτÞþ 1&
Pr

Qr

vsð0Þ
vdð0Þ

% &
exp &

Qr

Qw
τ

% &
:

By substituting the original variables, we obtain

vdðTÞ ¼
Pr

Qr
vsðTÞþ vdð0Þ&

Pr

Qr
vsð0Þ

% &
exp &

Qr

Q2
w

T

 !

:

Hence, outside the boundary layer, i.e. when T ZOð1Þ, we obtain
the approximation

vdðTÞ ¼
Pr

Qr
vsðTÞ;
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which satisfies the pseudo-steady state hypothesis given in
(A.4). Thus, we have proved that for sufficient large Q, any
solution with non-negative initial values of either the system
given in (3) and (4) or the system given in (10)–(13) satisfies the
pseudo-state hypothesis given in (A.1) for tZ1

r .□

Appendix B

Proposition 2. The system of differential equations given in (3) and
(4) has one stable equilibrium solution:

ðxns ; x
n
dÞ ¼

1

θþ
P
Q
γ
ln

r
d

# $
;
P
Q

1

θþ
P
Q
γ
ln

r
d

# $
0

BB@

1

CCA;

and one unstable equilibrium solution:

ðx0ns ; x0nd Þ ¼ ð0;0Þ;

for r4d. The following domain

V ¼ fðxs; xdÞAR2∣xs40; xdZ0g

is in the basin of attraction of ðxns ; x
n
dÞ.

Proof. We prove the proposition for the case when Q is suffi-
ciently large so that Proposition 1 holds. Then the system given in
(3) and (4) is reduced to the following differential equation:

dxs
dt

¼ ðrΨ &dÞxs;

where

Ψ ¼ exp & θþγ
P
Q

% &
xs

% &
:

The Jacobian of the system is

JðxsÞ ¼ ðrΨ &dÞ&xs θþγ
P
Q

% &
rΨ :

We have that

Jðx0ns Þ ¼ ðr&dÞ40

for r4d. Hence, the equilibrium solution ðx0ns ; x0nd Þ is unstable.
Since

Jðxns Þ ¼ &xns θþγ
P
Q

% &
rΨo0;

the equilibrium solution ðxns ; x
n
dÞ is stable.

Note that dxs
dt 40 for 0oxsoxns . Hence, if the initial number of

stem cells is less than xns , then the solution converges towards the
stable equilibrium solution. Likewise, dxs

dt o0 for xs4xns . Hence, if
the initial number of stem cells is greater than xns , then the solution
converges towards the stable equilibrium solution. Consequently,
V is in the basin of attraction of xns ; x

n
d

! "
.□

Appendix C

Proposition 3. The system given in Eqs. (10)–(13) has three equili-
brium solutions where at least one of the populations gets extinct,
namely,

x0ns ; x0nd ; y0ns ; y0nd
! "

¼ 0;0;0;0ð Þ;

x1ns ; x1nd ; y1ns ; y1nd
! "

¼
1

θx
xþ

P
Q
γxx
ln

r
d

# $
;
P
Q
x1ns ;0;0

0

BB@

1

CCA;

x2ns ; x2nd ; y2ns ; y2nd
! "

¼ 0;0;
d

θy
yþ

P
Q
γyy
ln

1
d

% &
;
P
Q
y2ns

0

BB@

1

CCA;

and one equilibrium solution with coexistence, x3ns ; x3nd ; y3ns ; y3nd
! "

,
given in Eq, (14). For r4d, x0ns ; x0nd ; y0ns ; y0nd

! "
is unstable. Moreover,

given that Q is sufficiently large such that Proposition 1 holds, the
behaviour of system depends on the following four parameter
relations:

(a) For θy
yþ

P
Qγ

y
y4θx

yþ
P
Qγ

x
y and θy

xþ
P
Qγ

y
x4θx

xþ
P
Qγ

x
x, the only stable

equilibrium solution is x1ns ; x1nd ; y1ns ; y1nd
! "

. Moreover, the domain

U ¼ xs; xd; ys; yd
! "

AR4 j zs40; zdZ0; zA x; y
' (' (

; ðC:1Þ

is in the basin of attraction of x1ns ; x1nd ; y1ns ; y1nd
! "

.
(b) For θy

yþ
P
Qγ

y
yoθx

yþ
P
Qγ

x
y and θy

xþ
P
Qγ

y
xoθx

xþ
P
Qγ

x
x, the only stable

equilibrium solution is x2ns ; x2nd ; y2ns ; y2nd
! "

, and U is in the basin of
attraction of x2ns ; x2nd ; y2ns ; y2nd

! "
.

(c) For θy
yþ

P
Qγ

y
y4θx

yþ
P
Qγ

x
y and θy

xþ
P
Qγ

y
xoθx

xþ
P
Qγ

x
x, the only stable

equilibrium solution is x3ns ; x3nd ; y3ns ; y3nd
! "

. Moreover, U is in the
basin of attraction of this equilibrium solution.

(d) For θy
yþ

P
Qγ

y
yoθx

yþ
P
Qγ

x
y and θy

xþ
P
Qγ

y
x4θx

xþ
P
Qγ

x
x, both

x1ns ; x1nd ; y1ns ; y1nd
! "

and x2ns ; x2nd ; y2ns ; y2nd
! "

are stable and
x3ns ; x3nd ; y3ns ; y3nd
! "

is unstable. Moreover, the domain

D1 ¼ xs; xd; ys; yd
! "

AU j ysoxs
Θy

x&Θx
x

Θx
y&Θy

y

( )

is in the basin of attraction of x1ns ; x1nd ; y1ns ; y1nd
! "

, and

D2 ¼ xs; xd; ys; yd
! "

AU j ys4xs
Θy

x&Θx
x

Θx
y&Θy

y

( )

is in the basin of attraction of x2ns ; x2nd ; y2ns ; y2nd
! "

. The basin
of attraction of the equilibrium solution x3ns ; x3nd ; y3ns ; y3nd

! "
is the

line

L3 ¼ xs; xd; ys; yd
! "

AU j ys ¼ xd
Θy

x&Θx
x

Θx
y&Θy

y

( )

;

where

Θv
w ¼ θv

wþ
P
Qv
γvw;

for v;wA x; y
' (

.

Proof. Given that Q is sufficiently large, such that Proposition
1 holds, the system given in (10)–(13) is reduced to the following
two differential equations:

dxs
dT

¼ Ψ x&D
! "

xs; ðC:2Þ

dys
dT

¼ Ψ y&D
! "

ys; ðC:3Þ

where D¼ d
r, T ¼ r ( t, and

Ψ v ¼ exp &Θv
xxs&Θv

yys
# $

:

for vA x; y
' (

. We have that dvs
dT ¼ 0 for vs ¼ 0 and Ψ v ¼D. Note that

0oDo1. Thus, there are three equilibrium solutions where at
least one of the variables is zero, namely,

x0ns ; y0ns
! "

¼ 0;0ð Þ;

x1ns ; y1ns
! "

¼
1
Θx

x
ln

1
D

% &
;0

 !

;

x2ns ; y2ns
! "

¼ 0;
1
Θy

y
ln

1
D

% & !

:

The equilibrium solution with coexistence, x3ns ; y3ns
! "

, must satisfy

Ω
x3ns
y3ns

" #

¼ ln
1
D

% & 1
1

) *
;
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where

Ω¼
Θx

x Θx
y

Θy
x Θy

y

2

4

3

5:

If detΩ¼ 0, we have a solution with coexistence if and only if
Θx

x ¼Θy
x and Θx

y ¼Θy
y, which means that there is no difference

between the wild-type cells and mutant cells. Thus, we will only
consider the case when detΩa0, and obtain the following
solution with coexistence:

x3ns
y3ns

" #

¼
ln

1
D

% &

Θx
xΘ

y
y&Θx

yΘ
y
x

Θy
y &Θx

y

&Θy
x Θx

x

" #
1
1

) *
:

Note that x3ns ; y3ns 40 if and only if both Θy
y4Θx

y and Θx
x4Θy

x or
both Θy

yoΘx
y and Θx

xoΘy
x . The Jacobian of the system is

J xs; ys
! "

¼
Ψ x&D
! "

&Θx
xΨ xxs &Θx

yΨ xxs

&Θy
xΨ yys ðΨ y&DÞ&Θy

yΨ yys

2

4

3

5:

We have that

J x0ns ; y0ns
! "

¼
1&Dð Þ 0
0 ð1&DÞ

" #

:

Since Do1, both eigenvalues are positive. Hence, x0ns ; y0ns
! "

is
unstable. Moreover,

J x1ns ; y1ns
! "

¼
&Θx

xΨ xx1ns &Θx
yΨ xx1ns

0 ðΨ y&Ψ xÞ

" #

:

Thus, if Ψ y4Ψ x, i.e. Θ
y
xoΘx

x, then one eigenvalue is positive and
x1ns ; y1ns
! "

is unstable, whereas if Ψ yoΨ x, i.e. Θ
y
x4Θx

x, then both
eigenvalues are negative and x1ns ; y1ns

! "
is stable. Likewise,

J x2ns ; y2ns
! "

¼
Ψ x&Ψ y
! "

0

&Θy
xΨ yy2ns &Θy

yΨ yy2ns

" #

:

Hence, if Ψ yoΨ x, i.e.Θ
y
y4Θx

y, then one eigenvalue is positive and
x2ns ; y2ns
! "

is unstable, whereas if Ψ y4Ψ x, i.e. Θ
y
yoΘx

y, then both
eigenvalues are negative and x1ns ; y1ns

! "
is stable. Finally,

J x3ns ; y3ns
! "

¼
&Θx

xΨ xx3ns &Θx
yΨ xx3ns

&Θy
xΨ yy3ns &Θy

yΨ yy3ns

2

4

3

5:

The characteristic equation is

Θx
xΨ xx3ns þλ

! "
Θy

yΨ yy3ns þλ
# $

&Θx
yΘ

y
xΨ xΨ yx3ns y3ns ¼ 0:

Hence, x3ns ; y3ns
! "

is stable if Θx
xΘ

y
y4 Θx

yΘ
y
x . Thus, the equilibrium

solution with coexistence is both stable and positive if Θx
x4 Θy

x
and Θy

y4 Θx
y.

By analysing the nullclines of the system given in (C.1) and
(C.2), namely,

Θx
xx0þΘx

yy0 ¼ & ln D;

Θy
xx0þΘy

yy0 ¼ & ln D

we can predict the global behaviour. Since these nullclines are the
same as the nullclines of the two-species Lotka–Volterra competi-
tion model (Smith, 1978), the global stability analysis is identical.
Hence, the basins of attraction of the equilibrium solutions are as
described in (a)–(d) (Smith, 1978).□
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A B S T R A C T

Amodel of haematopoiesis that links self-organisation with symmetric and asymmetric cell division is presented
in this paper. It is assumed that all cell divisions are completely random events, and that the daughter cells
resulting from symmetric and asymmetric stem cell divisions are, in general, phenotypically identical, and still,
the haematopoietic system has the flexibility to self-renew, produce mature cells by differentiation, and
regenerate undifferentiated and differentiated cells when necessary, due to self-organisation. As far as we know,
no previous model implements symmetric and asymmetric division as the result of self-organisation. The model
presented in this paper is inspired by experiments on the Drosophila germline stem cell, which imply that under
normal conditions, the stem cells typically divide asymmetrically, whereas during regeneration, the rate of
symmetric division increases. Moreover, the model can reproduce several of the results from experiments on
female Safari cats. In particular, the model can explain why significant fluctuation in the phenotypes of
haematopoietic cells was observed in some cats, when the haematopoietic system had reached normal
population level after regeneration. To our knowledge, no previous model of haematopoiesis in Safari cats
has captured this phenomenon.

1. Introduction

Haematopoiesis is the generation of the blood-forming system. At
the root of this process is a small group of slowly replicating cells, the
haematopoietic stem cells, which are undifferentiated cells with the
capacity to both self-renew and generate all types of blood cells (Baum
et al., 1992; Morrison and Weissman, 1994). The haematopoietic stem
cells are located within the bone marrow and segregated among
different bones throughout the body. Through sequential division, the
haematopoietic stem cells differentiate into progenitor cells, which in
turn differentiate into red blood cells, white blood cells or platelets.
Since the number of haematopoietic stem cells is much smaller than
the number of more differentiated blood cells, the haematopoietic stem
cells must be protected and tightly regulated. Haematopoietic bone
marrow niches, which are restricted regions in the bone marrow that
contain undifferentiated cells and support stem cell behaviour, may be
crucial in both aspects (Wineman et al., 1996; Lemischka, 1997;
Bertolini et al., 1997; Aiuti et al., 1998; Thiemann et al., 1998;
Verfaillie, 1998; Koller et al., 1999; Yin and Li, 2006; Zhang and Li,
2008; Cheng et al., 2014). Since it is not possible to reconstruct a niche
experimentally, it is difficult to maintain haematopoietic stem cells in
vitro, because signals from the niche affect stem cell survival, self-
renewal, and differentiation. This is one of the reasons why relatively

little is known about the exact behaviour of haematopoietic stem cells.
On the other hand, haematopoietic progenitors have been studied both
in vivo and in vitro (Abkowitz et al., 1988, 1990, 1993; Gehling et al.,
2000; Akita et al., 2013; Herrmann et al., 2014). A set of experiments
was designed by Abkowitz et al., using female Safari cats, in order to
get an idea of the contribution of haematopoietic stem cells to
progenitor cells (Abkowitz et al., 1988, 1990, 1993). The Safari cat is
a hybrid of the Geoffroy cat (a South American wildcat) and a domestic
cat (which is of Eurasian origin). These two species have evolved
independently for twelve million years, and have distinct phenotypes of
the X chromosome-linked enzyme glucose-6-phosphate dehydrogenase
(G6PD) (Molecular genetics in the domestic cat and its relatives, 1986).
Female Safari cats have some cells that contain Geoffroy-type G6PD (G
G6PD) and other cells that contain domestic-type G6PD (d G6PD). The
G6PD phenotype is retained after replication and differentiation, and is
functionally neutral. Therefore, it provides a binary marker of each cell
and its offspring. In particular, this means that a progenitor cell that
expresses G G6PD is the daughter of a stem cell that expresses G G6PD,
and likewise, a progenitor cell that is d G6PD-positive is the daughter
of a stem cell that is d G6PD-positive. Abkowitz et al. (1988), Abkowitz
et al. (1990), Abkowitz et al. (1993) tracked the contributions of
haematopoietic stem cells to the progenitor cells by observing the
G6PD phenotype of haematopoietic progenitor cells. In the first trials,
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the percentage of committed progenitor cells expressing d G6PD was
observed over a period of almost six years in normal female Safari cats,
and Abkowitz et al. found that the percentage remained relatively
constant (Abkowitz et al., 1988, 1990). On the contrary, the G6PD
phenotype of haematopoietic progenitors varied extensively when six
Safari cats were lethally irradiated, in order to kill the cells in their
bone marrow, and a small number of bone marrow cells, collected prior
to the radiation, were transplanted back (Abkowitz et al., 1990, 1993).
Abkowitz et al. observed the percentage of progenitor cells expressing d
G6PD while the cells in the bone marrow regenerated, and they found
that the pattern of clonal contribution to haematopoiesis in each cat
was unique. For instance, some of the cats that both had cells
expressing d G6PD and cells expressing D G6PD when the regeneration
started, had only cells expressing either d G6PD or D G6PD when the
production of bone marrow cells stabilised after regeneration. Thus,
one of the phenotypes had got extinct during the regeneration. On the
contrary, in other cats, the percentage of cells expressing d G6PD and D
G6PD remained on average relatively constant. Moreover, in some cats,
significant variation in the percentage extended for years after the
number of cells reached normal population levels, whereas in other
cats, the percentage remained approximately constant. Several math-
ematical models (Guttorp et al., 1990; Newton et al., 1995; Abkowitz
et al., 1996; Golinelli et al., 2006; Fong et al., 2009) have been
proposed to explain the results from the experiments on female
Safari cats (Abkowitz et al., 1988, 1990, 1993). These models are
discussed in Section 1.4.

1.1. Symmetric and asymmetric stem cell division

Stem cells are, in general, undifferentiated cells that can both self-
renew and generate differentiated progeny required by a given tissue
(Morrison et al., 1997; Reya et al., 2001). An important aspect is the
fate of the two daughter cells when a stem cell divides (Yamashita et al.,
2003; Morrison and Kimble, 2006; McKenzie et al., 2006; Dingli et al.,
2007). If one daughter cell has stem cell identity and the other
daughter cell commits to differentiation and loses the stem cell identity,
it is called as an asymmetric stem cell division or asymmetric self-
renewal. Under normal conditions, the number of cells in a given tissue
is approximately constant. It is generally believed that the number of
stem cells is also approximately constant under normal conditions, and
that they differentiate and self-renew at relatively constant rates to
replace mature cells and to keep the stem cell number at a certain
normal level (Wichmann et al., 1988; Shortman and Naik, 2007). By
dividing asymmetrically, the stem cells manage to both self-renew and
produce differentiated cells in a single division. The experiments by
Abkowitz et al. indicate that haematopoietic cells divide asymmetrically
under normal conditions, because the percentage of cells expressing d
G6PD remained relatively constant when normal female Safari cats
were observed over a period of almost six years (Abkowitz et al., 1988,
1990). However, a disadvantage of asymmetric stem cell division is that
it leaves stem cells unable to expand in number. It is, in general,
believed that the stem cells can regenerate (Morrison et al., 1997; Reya
et al., 2001; Yamashita et al., 2003; Morrison and Kimble, 2006;
McKenzie et al., 2006; Dingli et al., 2007). In particular, haematopoie-
tic stem cells can expand rapidly in response to injury to the bone
marrow, such as stem cell transplantation (Abkowitz et al., 1990, 1993;
McKenzie et al., 2006). Hence, asymmetric self-renewal cannot be the
complete story, since it leaves stem cells unable to expand in number.

Symmetric division is defined as generation of daughter cells
destined to acquire the same fate. In this paper, symmetric stem cell
division is defined as symmetric self-renewal if both daughter cells are
stem cells and symmetric commitment if none of the daughters are
stem cells. The number of stem cells increases by one after symmetric
self-renewal. Hence, since the haematopoietic bone marrow can
regenerate after injury (Abkowitz et al., 1990, 1993; McKenzie et al.,
2006), it is likely that the rate of symmetric self-renewal depends on

the number of haematopoietic stem cells. On the contrary, the number
of stem cells decreases by one after a symmetric commitment. Thus,
this type of division can cause the extinction of a stem cell phenotype.
The experiments on female Safari cats indicate that both types of
symmetric stem cell division occur when the haematopoietic bone
marrow niche regenerates after injury (Abkowitz et al., 1990, 1993).
Wide fluctuation in the percentage of progenitors with d G6PD was
observed for one to four years, before the percentage stabilised and
became relatively constant. This indicates that when there are sig-
nificantly less haematopoietic stem cells in the niche than under
normal conditions, the rate of symmetric self-renewal increases such
that the number of haematopoietic stem cells also increases. When the
number of haematopoietic stem cells reaches its normal population
level, the rate of symmetric self-renewal decreases, and proliferation in
the haematopoietic niche stabilises. Moreover, some of the cats that
both had cells expressing d G6PD and D G6PD when the regeneration
started, only had cells expressing either d G6PD or D G6PD when the
production of bone marrow cell stabilised after regeneration. This
indicates that the haematopoietic stem cells commit symmetrically to
differentiation under regeneration, since this type of division can cause
the extinction of a phenotype. Clearly, the rate of symmetric self-
renewal must, on average, be higher than the rate of symmetric
commitment when the haematopoietic niche regenerates, such that
the number of stem cells increases. On the other hand, under normal
conditions, the number of stem cells remains constant, and hence, the
two types of symmetric division must occur at the same rate. Thus, the
experiments by Abkowitz et al. indicate that haematopoietic stem cells
divide mostly asymmetrically under normal conditions, whereas when
the haematopoietic bone marrow niche regenerates after injury, the
haematopoietic stem cells start to divide symmetrically (Abkowitz
et al., 1988, 1990, 1993; McKenzie et al., 2006). Does this mean that
a stem cell “knows” that it must divide asymmetrically under normal
conditions and self-renew symmetrically when stem cells need to be
replaced? This would also imply that the daughter cells inherit this
“knowledge”. As discussed by Loeffler and Roeder (2002), the assump-
tion that each cell “knows” how to behave in different situations is too
rigorous and potentially misleading. In the next subsection, it is argued
that each stem cell behaves completely random. However, the stem
cells divide mostly asymmetrically under normal conditions and
symmetrically under regeneration due to dynamic regulation and
self-organisation in the haematopoietic bone marrow niche.

Several mathematical models that include symmetric and asym-
metric stem cell division have been proposed (Abkowitz et al., 1988,
1990, 1993; Dingli et al., 2007; Wodarz and Komarova, 2005). Wodarz
and Komarova (2005) present a model where the haematopoietic stem
cells only divide asymmetrically under normal conditions, whereas
during regeneration, the stem cells switch to symmetric division. On
the contrary, in the model proposed by Abkowitz et al. (1996), the
haematopoietic stem cells can only divide symmetrically: Under
normal condition, the stem cells undergo symmetric self-renewal and
symmetric commitment at the same, constant rate, and under regen-
eration, the rate of the former type of division increases. Even though
all the models presented in Abkowitz et al. (1988), Abkowitz et al.
(1990), Abkowitz et al. (1993), Dingli et al. (2007), Wodarz and
Komarova (2005) capture important aspects related to stem cell
behaviour, it is a drawback that stem cell self-renewal and differentia-
tion do not depend on local growth conditions. The model proposed by
Roeder and Loffler in Loeffler and Roeder (2002) and Roeder and
Loeffler (2002) considers the dependence of proliferation control on
the local growth conditions. However, no implications about symmetric
or asymmetric stem cell division are included in this model.

1.2. Haematopoietic bone marrow niche

The haematopoietic bone marrow niche is composed of both
localised signalling cells and an extracellular matrix that control the
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Fig. 1. The population dynamics in the compartments of undifferentiated cells The bone marrow niche is represented as the compartment of stem cells and the compartment of
undifferentiated cells committed to differentiation. In this figure, the former compartment is green, whereas the latter compartment is blue. Both the compartments have M sites. In this
figure, M = 100, and each site is represented by a square. Each site can either be full, i.e. contain one cell, or be vacant, i.e. contain no cell. In this figure, the full sites are the squares that
contain a circle, and the vacant sites are the squares that do not contain a circle. At each elementary event, a random site and a random stem cell are selected. In this figure, the selected
stem cell is in the red box and the selected site is in the yellow box, in the two compartments to the left. (a) Asymmetric stem cell division: a site in the compartment of stem cells is
selected, and hence, the selected stem cell, in the red box, divides. One of the daughter cells inherits the mother's site. Since the selected site, in the yellow box, is full, the second
daughter cell migrates to the compartment of committed undifferentiated cells and is placed in a random vacant site. (b) Symmetric self-renewal: a site in the compartment of stem cells
is selected, and hence, the selected stem cell, in the red box, divides. One of the daughter cells inherits the mother's site. Since the selected site, in the yellow box, is vacant, the second
daughter cell is placed in this site. (c) Symmetric commitment: a vacant site in the compartment of undifferentiated cells committed to differentiation, in the yellow box, is selected, and
hence, the selected stem cell, in the red box, divides. Both daughter cell migrate to the compartment of undifferentiated cells committed to differentiation. One of the daughter cells is
placed in the selected site, and the other daughter cell is placed in a random vacant site. (d) Symmetric differentiation a full site in the compartment of undifferentiated cells committed
to differentiation, in the yellow box, is selected. The cell in the selected site divides, and both daughter cells leave the compartment of undifferentiated cells committed to differentiation,
and begin to differentiate.
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fate of the undifferentiated cells. Not all undifferentiated cells can self-
renew. Research indicates that stem cells are located in a restricted
region of the bone marrow niche (Wineman et al., 1996; Lemischka,
1997; Bertolini et al., 1997; Aiuti et al., 1998; Thiemann et al., 1998;
Verfaillie, 1998; Koller et al., 1999; Yin and Li, 2006; Zhang and Li,
2008; Cheng et al., 2014). In this paper, this region is referred to as the
compartment of stem cells, whereas the compartment of committed
undifferentiated cells refers to the region of the bone marrow niche
which contains undifferentiated cells that can not self-renew. However,
it is still unknown whether this representation gives an accurate
description of the bone marrow niche in vivo: As discussed in the
introduction, it is not possible to reconstruct a niche experimentally,
and hence, relatively little is known about the exact behaviour of most
types of undifferentiated cells, including the haematopoietic stem cells
(Wineman et al., 1996; Lemischka, 1997; Bertolini et al., 1997; Aiuti
et al., 1998; Thiemann et al., 1998; Verfaillie, 1998; Koller et al., 1999;
Yin and Li, 2006; Zhang and Li, 2008; Cheng et al., 2014; Fuchs et al.,
2004; Nikolova et al., 2007; Simons and Clevers, 2011). On the other
hand, research on Drosophila germline stem cells provides a clear-cut
example of how the stem cell compartment promotes stem cell
maintenance (Yamashita et al., 2003; Morrison and Kimble, 2006;
Wong et al., 2005). Germline stem cells are unique because they are
solely dedicated to reproduction and transmission of genetic informa-
tion. Exciting progress has been made in understanding molecular
mechanisms underlying interactions between stem cells and stem cell
compartments through the use of genetic techniques in Drosophila
germline stem cells. The knowledge gained from studying the
Drosophila germline stem cells has provided an intellectual framework
for defining the niche and molecular regulatory mechanisms for other
adult stem cells. The results on Drosophila germline stem cells have
previously been used to describe systems and construct models of other
types of stem cells, including the haematopoietic stem cells
(Lemischka, 1997; Cinquin, 2009; He et al., 2009; Xia et al., 2012;
Sada and Tumbar, 2013). The outcome of a Drosophila germline stem
cell division depends on the spindle orientation relative to the Hub cells
in the stem cell compartment, and the results from the unequal
distribution of intracellular regulators and extracellular (Hub-derived)
signals between daughter cells during mitosis. The result is that when a
Drosophila germline stem cell divides under normal conditions, one
daughter remains in the stem cell compartment and retains stem cell
identity, and the other daughter is left outside the stem cell compart-
ment and commits to differentiation. Yamashita et al. (2003), Morrison
and Kimble (2006), Wong et al. (2005). This is a classical example of
asymmetric stem cell division. Even though Drosophila germline stem
cells normally divide asymmetrically, they can be induced to self-renew
symmetrically to regenerate an additional stem cell after an experi-
mental manipulation in which one stem cell is removed from the stem
cell compartment. Thus, the experiments on Drosophila germline stem
cells indicate that the stem cell compartment can contain up to a
certain number of cells, and that the stem cell compartment is full
under normal conditions. When a stem cell divides, one of the
daughters inherits the mother's place in the stem cell compartment
and retains stem cell identity. The fate of the other daughter depends
on whether there is a vacant place in the stem cell compartment or not.
If there is a vacant place in the stem cell compartment, the latter
daughter remains in the stem cell compartment and retains stem cell
identity. If the stem cell compartment is full, it is placed outside, and
loses its stem cell identity. Hence, research on Drosophila germline
stem cells implies that the stem cells do not “know” that they must
divide asymmetrically or symmetrically, as discussed in Section 1.1. On
the contrary, the stem cells divide at random, and the availability of the
stem cell compartment, and perhaps other regulatory factors, deter-
mines whether the division is symmetric or asymmetric. This indicates
that there are, in general, no phenotypic differences between daughter
cells resulting from a symmetric and asymmetric stem cell division,
which means that a cell must be in the stem cell compartment to

function as a stem cell: Once a cell is placed outside, it is no longer a
stem cell.

Similar to the Drosophila germline stem cell compartment, the
stem cell compartment in the haematopoietic bone marrow niche plays
an important role in the regulation of haematopoietic stem cell
organisation (Wineman et al., 1996; Lemischka, 1997; Bertolini
et al., 1997; Aiuti et al., 1998; Thiemann et al., 1998; Verfaillie,
1998; Koller et al., 1999; Yin and Li, 2006; Zhang and Li, 2008; Cheng
et al., 2014). Even though there are no in vivo experiments that reveal
exactly how proliferation of the haematopoietic stem cells is regulated,
it is known that self-renewal depends on local growth conditions,
namely, on the direct contact between stem cells and stroma cells
(Wineman et al., 1996; Verfaillie, 1998; Koller et al., 1999). The model
presented in this paper assumes that the results obtained from the
experiments on Drosophila germline stem cell compartment and the
implications that follow from these results, also hold true for the bone
marrow niche. The main idea is illustrated in Fig. 1 and explained more
thoroughly in Section 2.

1.3. Haematopoietic cytokines and extracellular regulation

It is commonly accepted that all types of blood cells are generated
by haematopoietic stem cells (Baum et al., 1992; Morrison and
Weissman, 1994), and that these cells go through a number of
divisions, obtaining various stages of differentiation, until the fully
mature haematopoietic cells stop dividing. However, as discussed by
Dingli et al. (2007) and Furusawa and Kaneko (2009), Furusawa and
Kaneko (2012), there is no unambiguous determination of the number
of stages connecting haematopoietic stem cells and fully mature cells,
let alone how fast cells go through different stages of maturation and
exactly how these processes are regulated (Donohue et al., 1958;
Cronkite and Fliedner, 1964; Ogawa, 1993). Haematopoietic cytokines
are extracellular signalling molecules that regulate the generation of
haematopoietic cells (Aglietta et al., 1989; Layton et al., 1989; Metcalf,
2008; Fried, 2009). Each of these cytokines can regulate one specific
lineage or multiple lineages. Individual haematopoietic cytokines have
multiple actions mediated by receptors that can initiate various
responses – differentiation, maturation, functional activation, survival
and proliferation (Metcalf, 2008). Furthermore, for some cell types,
such as haematopoietic stem cells and megakaryocyte progenitors, the
simultaneous action of multiple cytokines are required for proliferative
responses. One of the reasons why it is very challenging to establish the
precise source of cytokines and predict their ultimate fate, is that the
haematopoietic cytokines have many tissue sources, for instance lung,
kidney, muscle, liver and membrane-displayed factors on local stromal
cells (Aglietta et al., 1989; Metcalf, 2008). Several models have been
proposed to investigate different feedback mechanisms (Roeder and
Loeffler, 2002; Fuchs et al., 2004; Nikolova et al., 2007; Simons and
Clevers, 2011; Wong et al., 2005; Cinquin, 2009; He et al., 2009; Xia
et al., 2012; Sada and Tumbar, 2013; Furusawa and Kaneko, 2009,
2012; Donohue et al., 1958; Cronkite and Fliedner, 1964; Ogawa,
1993; Aglietta et al., 1989; Layton et al., 1989; Metcalf, 2008; Fried,
2009; Potten and Loeffler, 1990; Wodarz, 2008; Lander et al., 2009;
Høyem et al., 2015; Larsen, 2016; Mangel et al., 2016; Rompolas et al.,
2016). Results from theoretical work modelling the haematopoietic
system (Wodarz, 2008) and crypt cells (Potten and Loeffler, 1990)
imply that changes in stem cell number and their cyclic activity are
associated with changes in the demand of the mature cell stages.
Lander et al. (2009) explore how secreted negative feedback factors
may be used to control the output of multistage cell lineages, as
exemplified by the actions of GDF11 and activin in a self-renewing
neural tissue, the mammalian olfactory epithelium. The results by
Lander et al. indicate that two feedback loops are in general better than
one. That is, good control (robustness, stability, low progenitor load,
and fast regeneration from a variety of conditions) is found over an
increasing fraction of the parameter space when feedback loops are
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added. These results might also apply to the haematopoietic system.
Similar to the models presented in Dingli et al. (2007) and Høyem et al.
(2015), we model differentiation as a multi-step process where cell
replication and differentiation are coupled with cells moving through
successive stages – compartments – of maturation in a series of steps
from the haematopoietic stem cells all the way down to the fully
differentiated haematopoietic cells.

1.4. Models for haematopoiesis in female Safari cats

The experiments on female Safari cats (Abkowitz et al., 1988, 1990,
1993) have inspired several mathematical models (Guttorp et al., 1990;
Newton et al., 1995; Abkowitz et al., 1996; Golinelli et al., 2006; Fong
et al., 2009). In 1990, Guttorp et al. proposed a state-space Markov
model for haematopoiesis in Safari cats (Guttorp et al., 1990). It is
assumed that in each cat there is a large pool of haematopoietic stem
cells, and that a proportion p of these stem cells express d G6PD. The
proportion p may vary between cats, but remains constant within each
cat. The authors suppose that most haematopoietic stem cells are not
involved in the production of mature blood cells, but are members of a
primary pool of slowly self-replicating cells. A relatively small number
of haematopoietic stem cells produce mature blood cells through
asymmetric division and differentiation, and are referred to as active
stem cells. It is assumed that the number of active stem cells is
constant, N, and that the active stem cells do not have the ability to
self-renew symmetrically. Consequently, when an active stem cell dies,
a member of the primary pool of slowly self-replicating stem cells must
become an active stem cell, in order to keep the number of active stem
cells constant. Since N is much smaller than the total number of
haematopoietic stem cells, the number of active stem cells that express
d G6PD can be between 0 and N, even though the proportion of
haematopoietic stem cell expressing d G6PD is constant. Indeed, the
probability that i of the active stem cells express d G6PD is given by the
probability mass function of the binomial distribution:

⎛
⎝⎜

⎞
⎠⎟P N

i p p= (1 − ) .i i N i−

Moreover, suppose that there are i active stem cells expressing d G6PD.
When an active stem cell dies, the number of active stem cells
expressing d G6PD can either increase by one, decrease by one or
remain constant. The conditional probabilities for these three events
are

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

P i i i
N p P i i i

N p P

i i i
N p i

N p

( + 1, ) = 1 − , ( − 1, ) = (1 − ),

( , ) = 1 − 1 − − (1 − ),

respectively. Although the model proposed by Guttorp et al. can explain
some of the results from the experiments on female Safari cats
(Abkowitz et al., 1988, 1990, 1993), for instance that the proportion
of cells expressing d G6PD remained relatively constant under normal
conditions, the model cannot explain the results that indicate that the
proportion of cells expressing d G6PD can change during regeneration.
The reason for this is that Guttorp et. al. assume that stem cell self-
replication is a deterministic process such that the proportion of d
G6PD remains constant. The models presented in Abkowitz et al.
(1996), Golinelli et al. (2006), Fong et al. (2009) and the model
presented in this paper assume that self-replication is a stochastic
process.

In 1995, Newton et al. (1995) used a simple stochastic model,
similar to the model presented by Guttorp et al. (1990), to quantify the
relationship between observed proportions of progenitors expressing d
G6PD and unobserved haematopoietic stem cell populations.

Abkowitz et al. stimulated haematopoiesis by assuming that all
stem cell decisions, that is, replication, apoptosis and initiation of

differentiation, are determined by chance (Abkowitz et al., 1996). The
paper was published in 1996. They show that stochastic stem cell
behaviour can result in a wide spectrum of discrete outcomes observed
in vivo (Abkowitz et al., 1988, 1990, 1993), and that clonal dominance
can occur by chance. More precisely, each haematopoietic stem cell is
randomly selected for replication, apoptosis (cell death) and differ-
entiation at constant rates λ, α and μ, respectively. Furthermore, the
probability that a stem cell is selected for replication is much higher
than the probability that a stem cell is selected for apoptosis or
differentiation, i.e.

λ α μ> + .

This means that the number of stem cells increases when the
haematopoietic system regenerates after injury. When the number of
stem cells reaches a certain limit, the stem cells ignore the signals that
tell them to reproduce. This means that each stem cell must keep track
of the total number of stem cells. In our paper, an alternative strategy is
investigated, where the rates of replication and differentiation depend
on the number of stem cells and undifferentiated committed cells. That
is, when cells need to be replaced, the rate of symmetric stem cell
division increases, whereas under normal conditions, the stem cells
divide mostly asymmetrically.

In 2006, Golinelli et al. published a paper (Golinelli et al., 2006)
that describe a stochastic process used to model early haematopoiesis
in continuous time. The haematopoietic stem cells follow a simple
linear birth-death process where each stem cell can either self-renew
symmetrically or differentiate into a progenitor cell at constant rates λ
and ν, respectively. Similar to the model presented in Abkowitz et al.
(1988), the rates satisfy

λ ν> ,
so the stem cells can regenerate after injury. Moreover, if the stem cell
compartment is full and a stem cell self-renews symmetrically, then a
random stem cell dies.

Fong et al. (2009) performed Bayesian statistical inference on
extensions of the model proposed by Golinelli et al. (2006), in order
to determine if haematopoietic stem cell decisions are linked to cell
divisions or occur independently. This paper was published in 2009.
Their results show that haematopoietic stem cells must divide symme-
trically in order to maintain haematopoiesis. They also demonstrate
that a model that adds asymmetric division events provides a better fit
to the competitive transplantation data. The conclusions drawn by
Fong et al. correspond well with the results of this paper. However,
unlike the model investigated by Fong et al., stemness is not treated as
an explicit cellular property in this paper, but as the result of a dynamic
process of regulation and self-organisation similar to the models
presented by Loeffler and Roeder (2002), Roeder and Loeffler (2002).

2. Model of haematopoiesis with self-organisation

In this section, we present a compartmental model of the haema-
topoietic system with self-organisation. The model can reproduce
several of the results from the experiments with female Safari cats
(Abkowitz et al., 1988, 1990, 1993). At the root of the model are the
stem cells, located in the SC-compartment. It is assumed that the
committed cells go through K stages of differentiation. A committed
cell at stage i is denoted DCi and is located in the DCi-compartment for

i K0 ⩽ ⩽ . The dynamics of the compartments of undifferentiated cells
are described in Section 2.1, whereas in Section 2.4, the differentiated
cells are also included.

The results from the experiments on Drosophila germline stem cells
(Yamashita et al., 2003; Morrison and Kimble, 2006; Wong et al., 2005)
and female Safari cats (Abkowitz et al., 1988, 1990, 1993) which can be
reproduced by our model, are discussed in Section 3, and the biological
processes that the model are based on are examined in Section 4, whereas
in this section we mainly focus on describing the model.
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2.1. Compartments of undifferentiated cells

As discussed in Section 1, undifferentiated haematopoietic cells are,
in general, located in the bone marrow. The model presented in this
paper subdivides these cells into two groups: the undifferentiated cells
located in the SC-compartment and the undifferentiated cells located in
the DC0-compartment. It is assumed that these two groups of cells are
phenotypically identical. However, the cells located in the former
compartment are stem cells because they self-renew and produce
differentiated cells, whereas the cells in the DC0-compartment are
committed to differentiation and cannot self-renew, and hence, they
are not stem cells. The compartments of undifferentiated cells regulate
symmetric and asymmetric stem cell division. The main idea is that
under steady-state the stem cells divide mostly asymmetrically,
whereas when cells need to be replaced due to tissue damage, the
stem cells start to divide symmetrically. Both compartments contain M
sites. Each of the M2 sites can either contain exactly one cell or no cell,
denoted full sites and vacant sites, respectively. Thus, M2 represents
the carrying capacity of the bone marrow niche. Under steady-state
there are approximately M cells in both compartments, and the stem
cells typically divide asymmetrically – one daughter cell inherits the
mother's site and the other daughter is placed in a vacant site in the
DC0-compartment. The DC0s migrate to the DC1-compartment when
they divide and obtain the first stage of differentiation.

It is known that the number of undifferentiated cells can increase
markedly when they are regenerated after injury to the bone marrow
(Abkowitz et al., 1990, 1993; Morrison et al., 1997; Reya et al., 2001;
Yamashita et al., 2003; Morrison and Kimble, 2006; McKenzie et al.,
2006; Dingli et al., 2007). This type of injury is modelled by decreasing
the number of cells in the SC-compartment and DC0-compartment well
below M. The stem cells start to divide symmetrically after injury to the
compartments of undifferentiated cells. It is symmetric self-renewal if
one daughter cell inherits the mother's site while the other daughter is
placed in a vacant site in the SC-compartment, and symmetric
commitment if both daughter cells are placed in vacant sites in the
DC0-compartment.

2.2. Markov process

The population dynamics in the compartments of undifferentiated
cells, described in Section 2.1, are implemented by the following
Markov process: At each elementary event, a random site and a
random stem cell are selected. If a site in the SC-compartment is
selected, the selected stem cell divides. One of the daughter cells
inherits the mother's site. If the selected site is full, then the second
daughter cell migrates to the DC0-compartment, and is placed in a
random vacant site, i.e. the division is asymmetric (see Fig. 1 (a)). If the
selected site is vacant, the second daughter is placed in this site,
resulting in symmetric self-renewal (see Fig. 1 (b)). On the other hand,
suppose that a random site in the DC0-compartment is selected. If the
selected site is vacant, the selected stem cell commits symmetrically to
differentiation, and both daughter cells are placed in random vacant
sites in the DC0-compartment (see Fig. 1 (c)). If the selected site is full,
this cell leaves the DC0-compartment (see Fig. 1 (d)). For boundary
conditions, it is assumed that when all the sites in the SC-compartment
are vacant, a cell from another SC-compartment migrates to the empty
SC-compartment, so that symmetric division is possible. Moreover, it is
assumed that when all the sites in the DC0-compartment are full, then
any cell that enters the DC0-compartment undergoes apoptosis, i.e.
programmed cell death. Thus, given that there are I stem cells and J
DC0s, we obtain the following transition probabilities:

P I J J
M( , − 1) = 1

2 ,I J, (1)

P I J I
M( , + 1) = 1

2 ,I J, (2)

⎛
⎝⎜

⎞
⎠⎟P I J I

M( + 1, ) = 1
2 1 − ,I J,

(3)

⎛
⎝⎜

⎞
⎠⎟P I J J

M( − 1, + 2) = 1
2 1 − .I J,

(4)

That is, the conditional probability that a cell leaves the DC 0-
compartment is given in (1), a stem cell divides asymmetrically is
given in (2), a stem cell self-renews symmetrically is given in (3), and a
stem cell commits symmetrically to differentiation in given in (4). Let
X Γ( ) and Y Γ( ) be the expected number of cells in the SC-compartment
and DC0-compartment, respectively, at elementary event Γ. It follows
from Eqs. (1)–(4) that

X Γ X Γ M M X Γ M Y Γ

X Γ M Y Γ X Γ

( + 1) = ( ) + 1
2 (( − ( )) − ( − ( )))

= ( ) + 1
2 ( ( ) − ( )),

(5)

Y Γ Y Γ M X Γ M Y Γ Y Γ

X Γ M X Γ M Y Γ

( + 1) = ( ) + 1
2 ( ( ) + 2( − ( )) − ( ))

= ( ) + 1
2 ( ( ) + 2 − 3 ( )),

(6)

for X Γ0 < ( ) and Y Γ M( ) ⩽ − 2. When the SC-compartment is empty,
the number of stem cells increases by two after symmetric self-renewal.
Moreover, when there is only one vacant site in the DC0-compartment,
one of the daughters undergoes apoptosis when a stem cell commits
symmetrically to differentiation, whereas if there are no vacant sites,
both daughters undergo apoptosis. For simplicity, these boundary
conditions are neglected in the following approximation of the mean
functions: First, the system of linear difference equations given in (5)–
(6) has exactly one equilibrium solution, namely

X Y M M( *, *) = ( , ),
which means that all sites in both compartments are full. The
corresponding transition matrix is

⎡
⎣⎢

⎤
⎦⎥M

1
2

− 1 1
1 − 3

and the eigenvalues are

λ λ= −2 + 2 , = −2 − 2 .1 2

An eigenvector corresponding to λi is

⎡
⎣⎢

⎤
⎦⎥λv = 1

1 − ,i
i

for i ∈ {1, 2}. One time step is defined as 2M elementary events. It
follows that the expected number of stem cells and DC0s at time step t
are approximately
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respectively, where
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and X (0) and Y (0) are the initial number of stem cells and DC0s,
respectively. It follows from (7) and (8) that it is expected that the
system converges towards the steady state where both compartments
are (approximately) full. However, given that the process runs long
enough, stochastic realisation will lead to extinction of one of the
phenotypes with probability one. As illustrated in the next subsection,
for small populations, one phenotype gets extinct after a relative short
time period, whereas for sufficiently large populations, both compart-
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ments of undifferentiated cells remain approximately full under normal
conditions for any time interval corresponding to the lifetime of a
mammal.

2.3. Numerical simulations

Fig. 2 shows the regeneration of the population of undifferentiated
cells, starting with a single stem cell. The red and purple smooth curves
illustrate the approximation of the expected number of stem cells and
DC0s, given in Eqs. (7) and (8), respectively, whereas the jagged curves
are simulations of the population dynamics described in Section 2.2.
The figure illustrates that when the compartment size is sufficiently
large, the simulations fit the expected numbers of undifferentiated cells
well: The number of cells in both compartments grow steadily until the
compartments are approximately full. The DC0s grow significantly
faster than the stem cells. Under stable, normal conditions, the number
of cells in both compartments remain close to M.

The approximations of the expected number of undifferentiated
cells, given in Eqs. (7) and (8), indicate that under steady-state, both
compartments remain approximately full. In general, the simulations
become more similar to the expected functions as the number of sites
increases. In Fig. 3, different compartment sizes are tested. Figs. 3 (a)–
(b) and (c)–(d), with compartment size M=10 and M=20, respectively,
illustrate that the model works poorly with relatively small compart-
ment sizes. In Figs. 3 (a)–(b), the number of stem cells is zero 24 times
during 104 time steps. When the compartment size is M=20, as
illustrated in Figs. 3 (c)–(d), extinction of stem cells has not been
observed during simulations when both compartments were initially
full. However, the number of cells in both compartments vary too much
to be a realistic representation of the bone marrow niche. Figs. 3 (e)–(f)
show that when M = 50, the number of cells in each compartment
remains relatively close to 50. Moreover, several results from experi-
ments by Abkowitz et al. (1988, 1990, 1993) can be reproduced by the
model when M = 50. This corresponds well with the model by Abkowitz
et al. (1996) – 50 is the minimum size of the stem cell compartment in
their model. However, in the remaining examples, the compartment
sizes are larger than M=50. Figs. 3 (g)–(h), (i)–(j) and (k)–(l), where
the compartment sizes are 100, 500 and 1000, respectively, illustrate
that the number of undifferentiated cells varies less as the compart-
ment size increases.

In all remaining examples, we use compartment size M = 500,
which makes it easy to compare the results obtained in the different
examples. Moreover, we want to compare our results with the results
obtained from the previous models (Guttorp et al., 1990; Newton et al.,
1995; Abkowitz et al., 1996; Golinelli et al., 2006; Fong et al., 2009)
based on the experiments on Safari cats, and in particular, with the
results obtained by Abkowitz et al. (1996). In the model by Abkowitz
et al., all undifferentiated cells are stem cells, and in their numerical
simulations, the stem cell compartment can contain up to 750
undifferentiated cells, whereas there can be up to 500 stem cells and

1000 undifferentiated cells in the continuing examples of this paper.
In the remaining examples, the value μ s− will be referred to as the

lower limit for normal population level, where μ is the estimated mean
number of cells in a given compartment and s is the estimated standard
deviation. When the mean numbers of cells in all compartments are
approximately the same as the estimated mean, and, at the same time,
the standard deviations are approximately equal to the estimated
standard deviations, the system is said be in stable, normal state.

When the cells are subdivided into two neutral phenotypes, such as
cells expressing G G6PD and d G6PD for the Safari cats, the percentage
of cells that express one type is expected to remain constant. Indeed,
Figs. 4 (a)–(b) show a numerical example where the percentage of d
G6PD-positive cells varies relatively little during stable, normal condi-
tions. Fig. 4 (b) displays the percentage of self-renewal divisions that
are symmetric and illustrates that under stable, normal conditions, the
stem cells generally divide asymmetrically. Indeed, on average, 2.34%
of the self-renewals are symmetric. On the other hand, Figs. 4 (c)–(d)
show a numerical example where the percentage of cells expressing d
G6PD varies extensively during regeneration. Initially, 5% of the sites
in both compartments are full. After 4 time steps, the DC0s reach the
normal population level, whereas the stem cells reach the normal
population level at time step t = 5.7. The percentage of self-renewals
that are symmetric during regeneration is shown in Fig. 4 (d), and
illustrates that when a large proportion of the sites are vacant, the stem
cells divide symmetrically at a high rate, and as the number of cells in
both compartment gradually increase, the rate of symmetric division
steadily decreases. Fig. 5 shows twelve numerical examples of regen-
eration, where the initial conditions are the same as in the example
illustrated in Figs. 4 (c)–(d). The curves in each of these examples are
unique, which corresponds well with the experimental and theoretical
work by Abkowitz et al. (1988), Abkowitz et al. (1990), Abkowitz et al.
(1993), Abkowitz et al. (1996). Moreover, the time the cell population
uses to reach normal population levels also varies – in Fig. 5 (d), the
stem cells reach normal population level at time step t = 7.5, whereas in
Fig. 5 (f), normal population level is reached after 5 time steps.

As illustrated in Figs. 5 and 6, the system has not, in general, gained
stable, normal state when it reaches normal population level after
regeneration – the DC0s reach normal level before the stem cells, and
this causes an intermediate time interval with relatively high variance
in the cell number. For instance, consider Figs. 6 (a)–(b): In the time
interval 6.5–50, where both compartments have reached normal level,
the mean percentage of cells expressing the d G6PD phenotype is 62%
and the standard deviation is 1.9%. On the contrary, the standard
deviation is 0.8% in the numerical example plotted in Figs. 6 (c)–(d),
where the system is in stable, normal state with mean percentage of
cells expressing the d G6PD phenotype equal to 62%. Since symmetric
stem cell division causes variation in the cell number, it is reasonable to
expect that the stem cells self-renew symmetrically at a higher rate in
the intermediate time interval with high variance than under stable,
normal conditions, and, indeed, it follows from Fig. 6 (b) that at time
step t = 6 and t = 7, the percentage of symmetric self-renewal is above
9% and 5%, respectively, which is rarely observed under stable, normal
state. Moreover, the mean percentage of symmetric self-renewal is
2.7% during the time interval 6.5–50 in Fig. 6 (b), whereas the
estimated mean during stable, normal state is 2.3%. The intermediate
time interval with high variance has more apparent effect on the
population dynamics when compartments of differentiated cells are
included, and is investigated more thoroughly in Section 2.6.

In our simulations of regeneration, illustrated in Figs. 5 and 6, the
average time the population of cells uses to reach normal population
level is 6.2 time steps. There are no in vivo data for the undifferentiated
cells in the bone marrow niche. However, experiments on Safari cats
showed that bone marrow BFU-E and CFU-GM, as well as progenitor
cell-cycle kinetics, returned to baseline values a hundred weeks after
transplantation, on average (Abkowitz et al., 1988, 1990, 1993).
Moreover, the pattern of clonal contribution to haematopoiesis in each

Fig. 2. Regeneration of the undifferentiated cells The compartments of undifferentiated
cells are regenerated, starting with a single stem cell, with compartment size M = 500.
The red and the purple smooth curves show the expected numbers of stem cells and
DC0s, respectively, and the jagged blue and green curves are simulations of stem cells and
DC0s, respectively.
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Fig. 3. Different compartment sizes Initially, all sites contain one cell. Different compartment sizes are tested, and it is verified that the simulations become increasingly more similar to
the expected functions as the number of sites increases. (a) and (b) display the stem cells and DC0, respectively, for M = 10. The system is highly unstable. (c) and (d) display the stem
cells and DC0, respectively, for M = 20. The system is unstable. (e) and (f) display the stem cells and DC0, respectively, for M = 50. The system is quite stable. (g) and (h) display the stem
cells and DC0, respectively, for M = 100. The system is stable. (i) and (j) display the stem cells and DC0, respectively, for M = 500. The system is stable. (k) and (l) display the stem cells
and DC0, respectively, for M = 1000. The system is stable.

M. Måløy et al. Journal of Theoretical Biology 414 (2017) 147–164

154



cat was unique, and, in some cats, significant variation in the
percentage of cells expressing d G6PD and D G6PD was observed for
years after the number of cells reached normal population levels,
whereas in other cats, the percentage remained approximately con-
stant. The uniqueness and variation observed in vivo are, to some
extension, captured by our model: In our simulations, the minimum
number of time steps until normal population is reached, is five, and
the maximum number of time steps is fifty percent greater, and, as
discussed above, the system has not, in general, gained normal state
when it reaches normal population level after regeneration – the
system enters an intermediate time interval with high variance. On
the contrary, for the model of haematopoiesis in Safari cats by
Abkowitz et al. (1996), the time the system uses to regenerate varies
little – less than five percent, and once the system reaches normal
population size, it behaves exactly as under normal conditions.

2.4. Multi-compartmental model

In this subsection, the differentiated cells are also included in the
model. That is, it is assumed that the committed cells go through K
stages of differentiation, and that a cell at stage i in the differentiation
process, denoted DCi, is located in the DCi-compartment for i K0 ⩽ ⩽ .
All the cells in these compartments are committed to differentiation.
However, the DC0s are still undifferentiated whereas the DCjs, for

j0 < , are actual differentiated cells. Moreover, when a cell in the DCj-
compartment divides, for j K0 ⩽ < , both daughter cells migrate to the
DCj+1-compartment. The cells in the DCK-compartment are fully
differentiated and stop dividing. The DCi-compartment contains M2i

sites. The sites in the compartments of differentiated cells are not just
concrete, physical locations, but more abstract, representing the sum of
signals in the environment of the cells. Similar to the compartments of
undifferentiated cells, the sites in the compartments of differentiated
cells are called vacant when they contain no cell, and unlike the
compartments of undifferentiated cells, the full sites in a compartment
of differentiated cells can contain more than one cell if all the other
sites in this compartment are full. Under stable, normal conditions,
there are approximately M2i cells in the DCi-compartment for

i K0 ⩽ ⩽ , and the cells commit symmetrically to differentiation at
the same, constant rate. On the other hand, when the number of cells in

the DCi+1-compartment is significantly less than under normal condi-
tions, the rate of symmetric commitment in the DCi-compartment
increases.

2.5. Extended markov process

The population dynamics of the multi-compartmental model are
implemented by the following Markov process: At each elementary
event, a random site is selected. Each site in the K + 2 compartments
has the same probability of being selected. If a site in a compartment of
undifferentiated cells is selected, the elementary event is as described
in Section 2.2, whereas if a site in the DCi-compartment is selected, for

i K1 ⩽ ⩽ , and the site is full, then, for i K< , a DCi divides symme-
trically and both daughter cells migrate to the DCi+1-compartment, i.e.
symmetric commitment, while for i K= , a cell in this compartment
dies. On the other hand, if the selected site is vacant, then a random cell
from the DCi−1-compartment commits symmetrically to differentiation.
For boundary conditions, it is assumed that if a vacant site in the
DCi+1-compartment is selected and the DCi-compartment is empty,
then the process finds the highest integer j, where j i0 ⩽ < , such that
the DCj-compartment is not empty, and a random DCj commits
symmetrically to differentiation. If all DCj-compartments are empty
for j i< , then a random stem cell commits symmetrically to differ-
entiation.

Given that there are I and Ji full sites in the SC-compartment and
DCi-compartment, respectively, for i K0 ⩽ ⩽ and J M0 < ⩽ 2i i for

i0 < , we obtain the following transition probabilities:

P J J
M( − 1) = 2 ,J

K
K

K+1K
(9)

P J J M J J
M( − 1, + 2) = 2 + −

2 ,J J
i i

i i i

K,
+1

+1 +1

+1i i+1
(10)

P I J I
M( , + 1) = 2 ,I J K,

0
+10

(11)

P I J M I
M( + 1, ) = −

2 ,I J K,
0

+10
(12)

Fig. 4. Stable, normal conditions versus regeneration This figure illustrates that when the system is in stable, normal conditions, the percentage of cells expressing d G6PD is
approximately constant and the stem cells typically divide asymmetrically, whereas when the system regenerates, the percentage of cells expressing d G6PD varies extensively, and the
rate of symmetric division is relatively high. In both simulations, the compartment size is M = 500. (a) displays the percentage of stem cells and DC0s expressing d G6PD when the
system is in stable, normal state. (b) displays the percentage of self-renewals that is symmetric when the system is in stable, normal state. (c) displays the percentage of stem cells and
DC0s expressing d G6PD when the system regenerates and, initially, 20 (d) displays the percentage of self-renewals that are symmetric when the system regenerates.
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Fig. 5. Unique traits of regeneration This figure displays twelve simulations of regeneration where, initially, 20% of the sites are full, and illustrates that every regeneration is unique. In
all simulations, the compartment size is M = 500.
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P I J M J
M( − 1, + 2) = −

2 .I J K,
0

0

+10
(13)

That is, the conditional probability that a DCK is selected to die is given
in (9), a DCi commits symmetrically to differentiation is given in (10), a
stem cell divides asymmetrically is given in (11), a stem cell self-renews
symmetrically is given in (12), and a stem cell commits symmetrically
to differentiation is given in (13). Let X Γ( ) and Y Γ( )i be the expected
number of cells in the SC-compartment and DCi-compartment, re-
spectively, at elementary event Γ. It follows from Eqs. (9)–(13), given
that X Γ0 < ( ), Y Γ M( ) ⩽ − 20 and Y M⩽ 2j j , for j0 < , we have that

X Γ X Γ M Y Γ X Γ( + 1) = ( ) + 1
2 ( ( ) − ( )),K+1

0
(14)

Y Γ Y Γ M X Γ Y Γ Y Γ( + 1) = ( ) + 1
2 ( ( ) + ( ) − 3 ( )),K

0 0
+1

1 0
(15)

Y Γ Y Γ M Y Γ Y Γ Y Γ( + 1) = ( ) + 1
2 (2 ( ) + ( ) − 3 ( )),j j

K
j j j

+1
−1 +1

(16)

Y Γ Y Γ M Y Γ M Y Γ( + 1) = ( ) + 1
2 (2 ( ) + 2 − 3 ( )),K K

K
K j

+1
2−1

(17)

where j K0 < < . Because of the boundary conditions when the
compartments of differentiated cells are empty, it is not possible to
derive a simple approximation of the mean function, as it was for the
model of undifferentiated cells illustrated in Fig. 2. Hence, we simply
inspect the stability of the system of linear difference equations given in
(14)–(17). The system has exactly one equilibrium solution, namely

X Y Y Y M M M M( *, *,…, *, … *) = ( , ,…,2 ,…,2 ).i K j K0

The corresponding transition matrix is:

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

− 1 1 0 0 0 ⋯ 0
1 − 3 1 0 0 ⋯ 0
0 2 − 3 1 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 2 − 3 1 0
0 ⋯ 0 0 2 − 3 1
0 ⋯ 0 0 0 2 − 3

,

(18)

It follows from the work by Kulkarni et al. (1999) that the correspond-

ing eigenvalues are negative (see Appendix A). Hence, if all sites are
initially vacant or contain exactly one cell, it is expected that the
number of cells increases until approximately all sites are full.

2.6. Numerical simulations

Since there are M sites in the SC-compartment and M2i sites in the
DCi-compartment, for i K0 ⩽ ⩽ , it follows that the total number of
sites in the multi-compartmental model is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟∑M M M1 + 2 = 1 + 1 − 2

1 − 2 = 2 .
i

K
i

K
K

=0

+1
+1

In the numerical examples in this subsection, one time step consists of
M2K+1 elementary events. Since each site has the same probability of

being selected at any elementary event, it follows that, on average, each
site is selected once during a time step.

Fig. 7 shows the multi-compartmental model in stable, normal
state. In Figs. 7 (a)–(b), the ratio

number of cells in compartment
number of sites in the compartment

is plotted for cells of all stages in the multi-compartmental model. The
figures verify that under stable, normal state, all sites contain approxi-
mately one cell. Since the number of cells in the compartments of
undifferentiated cells cannot exceed M, the corresponding ratios
remain under one. On the other hand, the sites in the compartments
of differentiated cells may contain more than one cell. Consequently,
the corresponding ratios fluctuate over one. Fig. 7 (c) shows the
percentage of self-renewal divisions that are symmetric. The estimated
mean is 2.46%. This verifies that during normal conditions the stem
cells divide mainly asymmetrically. Consequently, the number of stem
cells fluctuate less than the number of DC0s and the number of
differentiated cells with compartments sizes that are relatively small.
Indeed, Fig. 7 (d) displays the intervals μ s μ s( − , + ) for all compart-
ments, where μ is the estimated mean in a given compartment and s is
the estimated standard deviation. It can be verified that the estimated
coefficient of variation, s μ/ , is significantly larger for the DCi-compart-

Fig. 6. Stable, normal conditions versus intermediate time interval with high variance This figure illustrates that when the system reaches normal population levels, the stem cells
continue to divide symmetrically at a slightly higher rate than under stable, normal conditions, and consequently, the percentage of cells expressing d G6PD might vary more in the
intermediate time interval with high variance than under stable, normal conditions. The compartment size is M = 500. (a) The percentage of stem cells and DC0s expressing d G6PD
under regeneration and the intermediate time interval with high variance. (b) The percentage of self-renewals that are symmetric in the intermediate time interval with high variance. (c)
The percentage of stem cells and DC0s expressing d G6PD under stable, normal conditions. (d) The percentage of self-renewals that are symmetric under stable, normal conditions.
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ment than for the SC-compartment for i ⩽ 4, whereas for i4 < , the
DCi-compartment has smaller or approximately the same estimated
coefficient of variation as the SC-compartment. We will use the values
μ s− , given in Fig. 7 (d), as lower limits for normal population levels in
the examples where the multi-compartmental model is regenerated.

Fig. 8 shows the regeneration of the whole system, starting with a
single stem cell, and verifies that the number of cells converges towards
the steady-state where all compartments are approximately full. It
follows from Fig. 8 (a) that the DCi+1 s grow, in general, faster towards
the normal population level than the DCis, for i0 ⩽ < 10, and that the
stem cells typically grow slowest. Fig. 8 (b), which displays the
percentage of self-renewal divisions that are symmetric, verifies that
during regeneration, the rate of symmetric self-renewal increases. I.e.
in the beginning of the regeneration, the percentage of symmetric self-
renewal is close to 100%, and it decreases steadily down to approxi-
mately 2.5%. All the differentiated cells have reached normal popula-
tion levels at time step t = 19. However, the stem cells continue to self-
renew symmetrically at a higher rate than what is observed under
stable, normal state. This illustrates the phenomenon, denoted inter-
mediate time interval with high variance, which occurs in all of our
numerical trials: When the cells reach normal population level, the
stem cells continue to self-renew symmetrically at a relative high rate
for some period of time, before the rate stabilises at normal level, and
the whole system enters stable, normal state. The time-laps from the
moment the cells reach normal population level to the system reaches

stable, normal state, varies both in length and in how much it affects
the population dynamics of the multi-compartmental model. In
particular, when the cells are subdivided into two neutral phenotypes,
such as G G6PD-positive and d G6PD-positive cells for the Safari cat,
the percentage of cells that expresses each type might change radically
during the intermediate time interval with high variance. When the
system is in stable, normal state, the percentage of each phenotype
remains approximately constant. This is illustrated in Figs. 9 and 10.
The blue and green curves plotted in Fig. 9 are, respectively, the ratio of
full sites in the SC-compartment and the ratio of stem cells expressing
d G6PD when the multi-compartmental model regenerates. The initial
conditions are that 70% of the sites in all compartments are vacant and
that 40% of the cells in the SC-compartment express d G6PD. It follows
from Fig. 9 (a) that the ratio of d G6PD-positive stem cells fluctuates
most intensely during the first ten time steps. At time step t = 22, when
all the compartments of committed cells have reached their normal
population level, 26.12% of the stem cells express d G6PD. The stem
cells reach their normal population level at time step t = 26, followed
by a relatively long period with high fluctuation in the population size.
When the system stabilises at stable, normal state at time step t = 60,
the percentage of stem cells that express d G6PD is on average 14.69%.
However, in other numerical trials the percentage of d G6PD-positive
cells does not change significantly after the committed cells reach
normal population level. For instance, in the example displayed in
Fig. 10, where the multi-compartmental model is regenerated, starting

Fig. 7. The multi-compartmental model under stable, normal conditions This figure illustrates the multi-compartmental model under stable, normal conditions. The compartment size
is M = 500. The ratio (number of cells in compartment)/(number of sites in compartment) is plotted for all compartments. (a) The ratio of cells in the SC-compartment and DCi-
compartment, for i0 ⩽ ⩽ 4. (b) The ratio of cells in the SC-compartment and DCi-compartment, for i4 ⩽ ⩽ 10. (c) The percentage of self-renewal divisions that are symmetric. (d) The
intervals μ s μ s( − , + ) for all compartments, where μ is the estimated mean in a given compartment and s is the estimated standard deviation.

Fig. 8. Regeneration of the multi-compartmental model The whole system regenerates, starting with a single stem cell. The compartment size is M = 500. (a) displays the ratio (number
of cells in compartment)/(number of sites in compartment) for all compartments. (b) displays the percentage of self-renewals that are symmetric.
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with 80% vacant sites in all compartments and 50% of the cells
expressing d G6PD, the stem cells expressing d G6PD get extinct at
time step t = 3, and eventually all the cells express G G6PD. As
illustrated by Fig. 10 (b), the percentage of mature cells expressing d
G6PD does not follow the fluctuation of d G6PD-positive stem cells
during regeneration. In particular, the d G6PD-positive stem cells get
extinct at time step t = 3 in the example illustrated in Fig. 10, though
there are still mature cells expressing d G6PD at time step 13.
However, at time step t = 14, all cells in the system are G G6PD-
positive. Under stable, normal state, all the compartments have
approximately the same percentage of d G6PD-positive cells as the
SC-compartment. Hence, it is possible to estimate the percentage of d
G6PD-positive stem cells by measuring the percentage of mature cells
expressing d G6PD, under stable normal conditions.

In all examples each site is, on average, selected once during a time
step. However, in 2.3, it is only the two compartments of undiffer-
entiated cells that regenerate, whereas in this subsection, both the
compartments of undifferentiated cells and the compartments of
differentiated cells regenerate, and this is the reason why the average
time the population of cells uses to reach normal population level is 6.2
time steps in the former subsection, whereas in this subsection, the
average number of time steps is 27.6. As illustrated by Figs. 5, 6, 9 and

10, the intermediate time interval with high variance has more
apparent effect on the population dynamics when compartments of
differentiated cells are included. However, as discussed in Sections 4
and 5, none of our simulations could reproduce all the results from the
experiments on Safari cats (Abkowitz et al., 1988, 1990, 1993).

3. Results

The compartmental model of haematopoiesis presented in this
paper is inspired by the results from the experiments on the Drosophila
germline stem cell compartment (Yamashita et al., 2003; Morrison and
Kimble, 2006; Wong et al., 2005). As discussed in Section 1.2, these
results support the following conjectures:

Conjectures.

I. The stem cell compartment promotes stem cell maintenance.
II. The stem cell compartment can contain up to a certain number of

cells.
III. The stem cells self-renew at random.
IV. When a stem cell self-renews, one of the daughter cells inherits the

mother's place in the stem cell compartment and retains stem cell
identity, whereas the fate of the second daughter depends on the

Fig. 9. The intermediate time interval with high variance This figure illustrates that the intermediate time interval with high variance can cause a significant fluctuation in the number of
stem cells and the percentage of stem cells expressing d G6PD. Initially, 70% of the sites in all compartments are vacant and 40% of the stem cells express d G6PD. (a) displays the ratios
(number of stem cell)/(number of sites) and (number of stem cell expressing d G6PD)/(number of stem cells) as blue and green curves, respectively, during regeneration, the
intermediate time interval with high variance, and when the system reaches stable, normal conditions. (b) displays the ratio of stem cells expressing d G6PD during the intermediate time
interval with high variance and when the system reaches stable, normal state. (c) displays the ratio of full sites in the SC-compartment during the intermediate time interval with high
variance and when the system reaches stable, normal state. The horizontal, turquoise line is the estimated lower limit for stem cell level. During the intermediate time interval, the ratio
of full sites in the SC-compartment is frequently below this limit, whereas under stable, normal conditions, the ratio is in general above this limit.

Fig. 10. The cells expressing d G6PD get extinct Initially, 80% of the sites in all compartments are vacant and 50% of the cells express d G6PD. At time step t = 3, the stem cells
expressing d G6PD get extinct, and at time step t = 14, all the d G6PD-positive cells are extinct. The compartment size is M = 500. (a) displays the percentage of d G6PD-positive cells in
the SC-compartment and DCi- compartment, for i0 ⩽ ⩽ 4. (b) displays the percentage of d G6PD-positive cells in the SC-compartment and DCi-compartment, for i5 ⩽ ⩽ 10.
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availability of space in the stem cell compartment – it either slips
into a random vacant place in the stem cell compartment and
remains a stem cell (symmetric self-renewal), or the second
daughter leaves the stem cell compartment and loses its stem cell
identity (asymmetric self-renewal).

V. Under normal conditions, the stem cell compartment is approxi-
mately full, and the stem cells typically self-renew asymmetrically.

VI. When the stem cell compartment is not full, the rate of symmetric
self-renewal generally increases, which leads to an expansion
in the number of stem cells. The cells swift back to asymmetric
self-renewal as the stem cell compartment reaches normal condi-
tions.

As illustrated in Figs. 3 (a)–(d), if the number of sites in the SC-
compartment is rather small, Conjectures IV–IV do not hold: The stem
cells divide symmetrically at a relatively high rate when the SC-
compartment is approximately full, causing a high variation in the
number of cells, and more than not, the stem cell population continues
to decrease when the number of cells in the SC-compartment is
significantly less than the number of sites. In particular, when there
are ten sites in the SC-compartment, the stem cell population
frequently goes extinct. These results indicate that if the bone marrow
niche can contain only a few active cells, then self-renewal is not a
random process, but regulated deterministic. On the other hand, when
there are fifty or more sites in the SC-compartment, all the conjectures
hold (see Figs. 2, 3 (e)–(l), 4–10). This demonstrates that dynamic self-
organisation of self-renewal and differentiation requires that the
number of stem cells is sufficiently large.

The model can reproduce the following results from experiments
with female Safari cats (Abkowitz et al., 1988, 1990, 1993):

Results from experiments.

I. The percentage of cells expressing d G6PD is approximately
constant in healthy cats.

II. The pattern of clonal contribution to haematopoiesis is unique
when the bone marrow regenerates. For instance, one of the G6PD
phenotypes might get extinct during regeneration, but it is also
possible that the percentage of each phenotype remains constant.

III. Significant variation in the percentage of cells expressing d G6PD
might occur in a period after the cells have reached normal
population level.

As shown in Figs. 4 (a)–(b), the percentage of cells expressing d
G6PD varies relatively little under stable, normal conditions: The stem
cells typically divide asymmetrically, and the daughter that inherits the
mother's site has the same G6PD-phenotype as the mother. Figs. 5, 8–
10 illustrate that each pattern during regeneration is unique: The rate
of symmetric division increases, causing great fluctuation in the
percentage of cells expressing d G6PD, and in some of the simulations,
one of the G6PD phenotypes gets extinct. As demonstrated in Figs. 5, 6,
8–10, the system does not, in general, gain stable, normal condition
when it reaches normal population levels after regeneration. Typically,
the DCi+1 s grow faster towards normal population level than the DCis,
for i K0 ⩽ < , whereas the stem cells grow slowest. This causes an
intermediate time interval where the number of cells varies more than
under stable, normal condition. The time-laps from the moment the
cells reach normal population level to the system reach stable, normal
condition varies both in length and in how much it affects the
population dynamics. In Fig. 9, the percentage of cells expressing d
G6PD changes considerably during the intermediate interval with high
variance, whereas in Figure 10, there is no significant change in the
percentage after the cells reach normal population level. Hence, the
model can reproduce Results I–III. As discussed in Section 1.4, several
other models recreate Results I-II. However, to our knowledge, none of
the previous models describing haematopoiesis in female Safari cats
can explain Result III.

Results from simulations.

I. For sufficiently large population sizes, the percentage of each
phenotype remained approximately constant under stable, normal
conditions.

II. Each regeneration was unique, both with respect to the number of
time steps until normal population was reached and with respect to
the percentage of each phenotype.

III. The system did not, in general, gain stable, normal condition when
it reached normal population levels after regeneration, and in some
simulations, variation in the percentage of each phenotype oc-
curred in a period after the system reached normal population
level.

4. Discussion

The model of haematopoiesis presented in this paper, includes
flexible and dynamically regulated self-organisation based on extra-
cellular regulations and cell–cell and cell–environment interactions.
The classical definition of stem cells – an undifferentiated cell capable
of self-renewal, production of a large number of differentiated cells,
regenerating tissue after injury and a flexibility in the use of these
options – is fundamentally based on a functional perspective. As
discussed by Loeffler and Roeder (2002), when the definition of stem
cells was first introduced, the flexibility criterion attracted little
attention. However, several experimental results indicate that flexibil-
ity is a fundamental property of the stem cells. For instance, a level of
flexibility was found for lineage specifications within the haematopoie-
tic system (Zhang et al., 1999): Zhang et al. managed to bias the degree
of lineage commitment by several maneuvers that altered the growth
environment. The present explanation of the fluctuations observed in
lineage specification is based on a dynamic network of interacting
transcription factors involving the PU-1 and GATA molecules. Cross
and Enver introduced the concept of fluctuating levels of transcription
factors within the haematopoietic system with threshold-dependent
commitment (Cross and Enver, 1997). Moreover, several experiments
indicate that stem cells specified for one type of tissue (e.g. haemato-
poiesis) can be manipulated in such a way that they can act as stem
cells for another tissue (e.g. neuronal, myogenic) (Bjornson et al., 1999;
Brazelton et al., 2000; Seale and Rudnicki, 2000; Goodell et al., 2001).
The growth environment seems to be an important factor when tissue
specification of stem cells are redirected. These results might support to
our assumption that self-renewal is a property of undifferentiated cells
located in the stem cell compartment, and that once a cell leaves the
stem cell compartment, it loses the ability to self-renew. This implies
that the cells located in the stem cell compartment and the compart-
ment of undifferentiated cells committed to differentiation are pheno-
typically identical and cannot be distinguished in a laboratory.

Theoretical work also implies that flexibility is one of the most
fundamental properties of the stem cells, because models without self-
organisation must, in general, require that the cells somehow know
how to behave under different circumstances (Loeffler and Roeder,
2002). For instance, as discussed in Section 1.4, the model presented
by Abkowitz et al. in Abkowitz et al. (1996) has no self-organisation,
and assumes that the stem cells ignore the signals that tell them to self-
renew symmetrically when the number of stem cells reaches a certain
limit. This means that each stem cell must keep track of the total
number of stem cells, in order to make the right decision. Moreover,
Loeffler and Roeder argue that a number of models include assump-
tions about symmetric and asymmetric stem cell division that in one
way or another requires that the cells somehow explicitly “know” how
to behave (Vogel et al., 1968; A comprehensive mathematical model,
1980; Loeffler and Grossmann, 1991; Loeffler et al., 1993, 1997).
Loeffler and Roeder conclude that such concepts are too rigorous and
potentially misleading, and hence, no implications about symmetric or
asymmetric stem cell division are included in the definition of tissue
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stem cells in Loeffler and Roeder (2002). The model presented in this
paper includes symmetric and asymmetric stem cell division.
Moreover, even though the stem cells have the flexibility to undergo
self-renewal, produce mature cells by differentiation, and regenerate
undifferentiated cells and differentiated cells when necessary, each cell
in the system behaves completely random. This is implemented by
subdividing the compartments into sites which represent physical
space as well as signals and the environment (Wineman et al., 1996;
Lemischka, 1997; Bertolini et al., 1997; Aiuti et al., 1998; Thiemann
et al., 1998; Verfaillie, 1998; Koller et al., 1999; Yin and Li, 2006;
Zhang and Li, 2008; Cheng et al., 2014; Fuchs et al., 2004; Nikolova
et al., 2007; Simons and Clevers, 2011; Aglietta et al., 1989; Layton
et al., 1989; Metcalf, 2008; Fried, 2009). Moreover, it is assumed that
when a cell in the SC-compartment divides, both daughter cells remain
undifferentiated, whereas when a cell in any of the DC-compartments
divides, both daughter cells are more differentiated than the mother
cell. This means that when a cell migrates from the SC-compartment to
the DC0-compartment, no change occurs in the phenotype. However,
the cell is no longer a stem cell, because when the cell divides in the
DC0-compartment, none of the daughter cells remain undifferentiated,
which means that the cell can no longer self-renew (Yamashita et al.,
2003; Morrison and Kimble, 2006; Wong et al., 2005). Furthermore, it
is assumed that the cells in the DC0-compartment release signals that
inhibit migration from the SC-compartment to the DC0-compartment.
If a cell in the SC-compartment does not receive these signals when it
divides, then both daughter cells migrate to the DC0-compartment,
which means that the cell commits symmetrically to differentiation.
This is implemented by selecting a random site in the compartments of
undifferentiated cells and a random stem cell. The absence of signals
that inhibit migration from the SC-compartment to the DC0-compart-
ment is represented by selecting a vacant site in the DC0-compartment,
in which case the selected stem cell commits symmetrically to
differentiation. Hence, symmetric commitment is a random event,
and the probability that this type of division occurs increases when the
number of cells in the DC0-compartment decreases. On the other hand,
if a cell in the SC-compartment receives the signals that inhibit
migration when it divides, then one of the daughter cells inherits the
site of the mother, whereas the other daughter cell is placed by a
random site in the SC-compartment. If this site is vacant, then the
second daughter cell inhabits the site, which means that the division is
symmetric self-renewal. On the contrary, if the site is occupied by
another cell, then the second daughter cell migrates to the DC0-
compartment. That is, the division is asymmetric. Thus, both sym-
metric self-renewal and asymmetric division are random events, and
the probability that each of these divisions occurs increases and
decreases, respectively, when the number of cells in the SC-compart-
ment decreases. The model presented in this paper also assumes that
the cells in the DCi-compartment are regulated by negative feedback
from the cells in the DCi+1-compartment, for i K0 ⩽ < (Aglietta et al.,
1989; Layton et al., 1989; Metcalf, 2008; Fried, 2009). More precisely,
the cells in the DCi+1-compartment release signals that inhibit sym-
metric commitment in the DCi-compartment, such that under normal
conditions, the cells in the latter compartment differentiate symme-
trically at approximately constant rate. However, if the concentration of
the signals that inhibit symmetric commitment to differentiation
decreases, the rate of this type of division increases. This is imple-
mented by selecting a random site in the compartments of differen-
tiated cells. The absence of signals that inhibit symmetric commitment
in the DCi-compartment is represented by selecting a vacant site in the
DCi+1-compartment, in which case a random DCi commits symmetri-
cally to differentiation. On the other hand, if the selected site is full, a
DCi+1 commits symmetrically to differentiation if i K< − 1 or dies if
i K= − 1. Consequently, the K feedback loops from the DCi+1-compart-
ment to the DCi-compartment, for i K0 ⩽ < , ensure that the system of
cells regenerates the differentiated cells after injury, even though each
cell in the system behaves completely random.

The model presented in this paper is very simplistic and has only
two parameters, M and K – the number of sites in the SC-compartment
and the number of compartments of differentiated cells, respectively. It
is possible to add more parameters to the model, for instance letting
the SC-compartment and DC0-compartment have different number of
sites, or selecting random cells to undergo apoptosis. However, the
scope of this model is to link self-organisation with symmetric and
asymmetric cell division, and these parameters do not lead to the
revealing of new structures or any other relevant information. Hence,
we choose to keep the model simple and comprehensible with two
parameters only. If we want to extend the model such that it becomes
more realistic and sophisticated, several aspects should be addressed.
For one thing, the extended model should divide the committed
haematopoietic cells into the erythroid lineage, the lymphoid lineage
and the myeloid lineage. The first lineage is composed of red blood
cells, the second of immune cells and the third includes granulocytes,
megakaryocytes and macrophages (Morrison and Weissman, 1994;
Verfaillie, 1998; Gehling et al., 2000). As discussed in Section 1.3, it is
still unclear exactly how differentiation of haematopoietic cells is
regulated. More than half a century ago, Waddington (1957) presented
an epigenetic landscape to describe the differentiation of cells as the
trajectories of balls rolling at random into branching valleys, each of
which represents a developmental state. Based on Waddington's
model, Furusawa and Kaneko (2009) propose a dynamical system
model of cells with intracellular protein expression dynamics and
interactions with each other. The model predicts that cells with
irregular, or chaotic, oscillations in gene expression dynamics have
the potential to differentiate into other cell types. During development,
such complex oscillations are lost successively, leading to loss of
pluripotency. Their results are consistent with the view that pluripo-
tency is a statistical property defined at the cellular population level,
correlating with intra-sample heterogeneity, and driven by the degree
of signalling promiscuity in cells.

Another aspect that should be addressed in a more realistic and
sophisticated version of the model, is that the cells in the SC-
compartment are homogeneous with respect to functionality in the
model presented in this paper. Nevertheless, phenotypic heterogeneity
has been observed in haematopoietic stem cells with regards to various
markers (e.g. CD34, CD38, c-kit, Sca 1) (Uchida et al., 1993; Lord,
1997). Moreover, experiments by Sato et al. indicate that both CD34-
positive and CD34-negative cells can be effective stem cells and that the
cells can even alter the CD34 property (Sato et al., 1999). As discussed
by Huss (2000), CD34-negative stem cells are considered to be
predominantly part of the quiescent stem cell pool of the haemato-
poietic system, and it is possible that haematopoietic stem cells alter
the CD34 property from positive to negative when they go from active
to quiescent state, and vice versa. Roeder and Loeffler propose a single-
based stochastic model of haematopoietic stem cells that includes
quiescence (Roeder and Loeffler, 2002). This model does not incorpo-
rate regulation of asymmetric and symmetric stem cell division.
However, similar to the model presented in this paper, the model by
Roeder and Loeffler introduces a perspective on stem cell organisation
where stemness is not treated as an explicit cellular property but as the
result of a dynamic process of self-organisation. That is, the model
makes the novel concept of within-tissue plasticity operational – within
a range of potential options, individual cells may reversibly change
their actual set of properties, like going from active to quiescent state
and vice versa, depending on the influence of the local growth
environment. Stochastic switching between the growth environments
introduces fluctuations that eventually generate heterogeneity.

5. Conclusion

In this paper, a simplistic model of haematopoiesis that links self-
organisation with symmetric and asymmetric cell division is proposed.
Each cell in the system behaves randomly and the daughter cells
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resulting from symmetric and asymmetric stem cell divisions are, in
general, phenotypically identical, and still, the haematopoietic system
has the flexibility to self-renew, produce mature cells by differentiation,
and regenerate undifferentiated cells and differentiated cells when
necessary, due to self-organisation. Moreover, the compartments of
committed cells are regulated by feedback loops, so that the system of
cells regenerates the differentiated cells after injury. To our best
knowledge, no previous model implements symmetric and asymmetric
division as the result of self-organisation. Different models of self-
organisation are discussed and compared by Osborne et al. in Osborn
et al. (2016). The model of self-organisation proposed by Loeffler and
Roeder (2002), Roeder and Loeffler (2002) and the potential impact of
the stem cell niche on asymmetry of stem cell fate are discussed by
Roeder and Lorenz in Roeder and Lorenz (2006). The authors state
that since no implications about symmetric or asymmetric stem cell
division are included in the definition of tissue stem cells in Loeffler
and Roeder (2002) and Roeder and Loeffler (2002), this perspective of
stem cell organisation does explicitly preclude asymmetric cell division.
However, Roeder and Lorenz suggest that symmetric cell fates might be
indirectly linked to self-organisation. On the contrary, our model
implements symmetric and asymmetric division as the direct result
of self-organisation.

The model can reproduce several of the results from experiments
with female Safari cats (Abkowitz et al., 1988, 1990, 1993). Similar to
previous models of haematopoiesis in female Safari cats (Guttorp et al.,
1990; Newton et al., 1995; Abkowitz et al., 1996; Golinelli et al., 2006;
Fong et al., 2009), the model presented in this paper can explain why
the percentage of d G6PD-positive cells is approximately constant in
healthy cats, whereas the pattern of clonal contributions to haemato-
poiesis is unique when the bone marrow regenerates. In addition, the
model indicates that self-organisation of haematopoiesis might cause
significant variation in the percentage of d G6PD-positive cells after the
number of cells has reached normal population level. In general, the
DCi+1 s reach normal population level before the DCis, for i K0 ⩽ ⩽ ,
whereas the stem cells grow slowest, and this generates an intermedi-
ate time interval with relative high rate of symmetric stem cell division
and corresponding high variance in the cell number. Eventually, the
system self-regulates such that the rate of symmetric stem cell division
decreases and the system enters stable, normal state.

Several of the results from experiments with female Safari cats
(Abkowitz et al., 1988, 1990, 1993) cannot be reproduced by the
model. For instance, for the first 10–12 weeks after transplantation, the
percent of progenitors with d-G6PD was unchanged from that observed
prior to transplantation in each cat (Abkowitz et al., 1990). This might
indicate that when the number of stem cells is very small, self-renewal
is strictly regulated. It may also be the case that a relative large number
of quiescent stem cells are activated. However, after 10–12 weeks, the
percents of progenitors with d-G6PD fluctuated widely, which indicates
that self-renewal occurs more randomly. The model presented in this
paper does not capture the difference between before and after 10–12
weeks because the model is very simplistic. For instance, it assumes
that self-renewal always occurs at random, and quiescent stem cells are
not included in the model. Moreover, Abkowitz et al. (1988) found that
when the peripheral blood counts and the number of marrow progeni-
tors detected in culture had reached normal level, the percentages of
erythroid burst-forming cells and granulocyte/macrophage colony-
forming cells in DNA synthesis increased. The main reason that the
model presented in this paper does not capture this result, is that the
committed haematopoietic cells are not divided into different lineages.

It is possible to extend the model such that it becomes more
realistic and sophisticated by including quiescence for the stem cells
and subdividing the committed cells into different lineages, similar to
the models presented by Roeder and Loeffler (2002) and Furusawa and
Kaneko (2009), respectively. As discussed in Section 4, these two
models are based on similar assumptions as the model presented in
this paper, namely that everything is totally random at single cell level.
However, self-organisation of the system of cells ensures that self-
renewal, production of mature cells, and regeneration of undifferen-
tiated cells and differentiated cells are well orchestrated. The inter-
mediate time interval with high variance has an apparent effect on the
population dynamics when the differentiated cells are included.
However, none of our simulations could reproduce all the results
obtained by Abkowitz et al. (1988), Abkowitz et al. (1990), Abkowitz
et al. (1993). By including quiescence for the stem cells and subdividing
the committed cells into different lineages, the model would become
more complex and richer, and it might capture a broader spectre of the
results from experiment on female Safari cats.

Appendix A. Appendix

The transition matrix given in (18) might be the most the most natural representation of the system given in (14)–(17). However, the number of
cells at elementary event Γ may be given by the vector

Y Γ Y Γ Y Γ X Γ( ( ),…, ( ),…, ( ), ( )),K i 0

and in this case the corresponding transition matrix is

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

− 3 2 0 0 0 ⋯ 0
1 − 3 2 0 0 ⋯ 0
0 1 − 3 2 0 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 1 − 3 2 0
0 ⋯ 0 0 1 − 3 1
0 ⋯ 0 0 0 1 − 1

,

(A.1)

Clearly, the stability of the system given in Eqs. (14)–(17) does not depend on the representation of the transition matrix.
Kulkarni et al. (1999) present the general n n× tridiagonal Toeplitz matrix, denoted T a b c( , , )n , in Section 2. By letting a = −3, b = 1 and c = 2,

we obtain the following tridiagonal Toeplitz matrix:

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
T (−3, 2, 1) =

− 3 2 0 ⋯ 0
1 − 3 2 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ 1 − 3 2
0 ⋯ 0 1 − 3

.n
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It from Theorem 2.2 given in Kulkarni et al. (1999), that the eigenvalues of T (−3, 1, 2)n are

λ i kπ n= −3 − 2 6 cos( /( + 1))k

for k n∈ {1, 2,…, }.
Kulkarni et al. study the eigenvalues of those tridiagonal matrices with upper left blocks which are Toeplitz matrices. If we let a = −3, b = 1,

c = 2, a = −11 and b c= = 11 1 in the matrix presented in the first example, where k=1, given in Section 4 of Kulkarni et al. (1999), the pseudo-
Toeplitz matrix, denoted T (−3, 1, 2)n

1 , is the transition matrix given in (A.1). By examining the roots of the characteristic polynomial of
T(1/ 6 ) (−3, 1, 2)n

1 and using the substitution λ x−3/ 6 − = 2 , Kulkarni et al. show that the roots must satisfy the equation

x U x U x4(1/ 2 + ) ( ) − ( ) = 0,n n−1

where U x( )n denotes the nth degree Chebyshev polynomial of the second kind. By studying intersections of graphs in the xy-plane, Kulkarni et al.
show that if b c > 01 1 and bc > 0, then the n n( + 1) × ( + 1)-matrix T a b c( , , )n

1 has n + 1 real distinct eigenvalues. It can be verified by these graphs
that for a = −3, b = 1, c = 2, a = −11 and b c= = 11 1 , all eigenvalues are negative.
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Abstract

When a new type of individual appears in a stable population, the newcomer
is typically not advantageous. Due to stochasticity, the new type can grow in
numbers, but the newcomers can only become advantageous if they manage to
change the environment in such a way that they increase their fitness. This dy-
namics is observed in several situations in which a relatively stable population
is invaded by an alternative strategy, for instance the evolution of cooperation
among bacteria, the invasion of cancer in a multicellular organism and the evo-
lution of ideas that contradict social norms. These examples also show that, by
generating di↵erent versions of itself, the new type increases the probability of
winning the struggle for fitness. Our model captures the imposed cooperation
whereby the first generation of newcomers dies while changing the environment
such that the next generations become more advantageous.

Keywords: Evolutionary dynamics, Nonlinear dynamics, Mathematical

modelling, Game theory, Cooperation

1. Introduction

When unconditional cooperators appear in a large group of defectors, they
are exploited until they become extinct. The best possible scenario for this type
of cooperators is to change the environment such that another type of cooper-
ators that are regulated and only cooperate under certain conditions becomes5

advantageous. Furthermore, when defectors appear in a regulated cooperation,
the first generation of defectors typically dies while changing the environment
such that the next generations become more advantageous; hence, cooperation
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is imposed on the defectors. In this paper, we propose a model that captures
this dynamics. More specifically, we introduce an extension of the Moran pro-10

cess whereby individuals can change the fitness landscape of the population by
modifying the environment.

1.1. The Moran process

The Moran process represents the simplest possible stochastic model that
captures the three basic building blocks of evolution – replication, mutation
and selection – in a finite population [1],[2]. The process assumes that the
population size is constant and that each type of individual has constant fitness.
In each time step, a random individual is selected to reproduce and a random
individual is selected to die. In one implementation of the Moran process, all
individuals are initially of the same type, denoted the wild type. When a wild-
type individual reproduces, a mutation that creates a new type of individuals,
denoted the mutant type, occurs with probability u. It is assumed that no other
mutation can occur. The wild type has reproductive rate 1, whereas the mutant
type has reproductive rate r, where r is a non-negative constant. All individuals
are selected to die at the same rate. Hence, the mutant type is advantageous
if r > 1, neutral if r = 1 and disadvantageous if r < 1. In each time step, the
number of mutants can increase by one, decrease by one or remain constant.
The probabilities for these three events are

P(i+ 1|i) = u(N � i) + ri

N � i+ ir

N � i

N
, (1)

P(i� 1|i) = (1� u)(N � i)

N � i+ ir

i

N
, (2)

P(i|i) = 1� P (i+ 1|i)� P (i� 1|i), (3)

respectively, where N is the population size and i is the number of mutants.
The model is discussed more thoroughly in Appendix A.15

If the timescale of the mutants’ fixation is much shorter than the timescale of
mutation, then a lineage of mutants is likely to take over the whole population
or become extinct before another lineage of mutants is created from the wild
type. In this case, the probability that i mutants will eventually invade the
whole population is

⇢i =
rN�i

�
1� ri

�

1� rN
(4)

if r 6= 1 and

⇢i =
i

N
(5)

if it is a neutral Moran process, that is, r = 1 [3].
The Moran process can also capture the competition dynamics between three

types of individuals [3]–[6]. As discussed more thoroughly in Subsections 1.2
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and 1.3, a mutant created in a stable population has in general low fitness,
because it is attacked by defence mechanisms that protect the stability of the20

population. However, the first type of mutants, denoted intermediate mutants,
typically has a higher mutation rate than the wild type and can produce a
new type of mutants that avoids most of these attacks. This type of mutants is
denoted resistant mutants. The reproductive rates of the wild type, intermediate
mutants and resistant mutants are 1, r and r1, respectively, where r  1 < r1.25

As discussed more thoroughly by Wodarz and Komarova [3], Nowak et al. [7]
and Breivik [8], the ability to create new variants is important when a mutant
type invades a population. However, as discussed more thoroughly in the next
subsection, no individual has anything to gain from changing only its strategy
in an evolutionarily stable population, and this indicates that the mutants must30

also change their environment to become advantageous.
In the extended Moran model presented in this paper, the fitness is not

constant. Similar to the model presented by Wodarz and Komarova [3], the
model presented in this paper considers three types of individuals, namely the
wild type, intermediate mutants and resistant mutants, but, in contrast to the35

previous model, the resistant mutants become advantageous only if the mutants
manage to change the environment. However, changing the environment reduces
the fitness of the intermediate mutants; thus, there is a cost for the mutants.
In particular, there is a chance that the mutants will not produce a resistant
type; in this case, the mutants actually reduce their own fitness. To analyse this40

dynamics, we use the results from evolutionary game theory, which is presented
in the next subsection.

1.2. Evolutionary game theory

Evolutionary game theory is the generic approach to evolutionary dynamics
[9],[10]. In these games, the fitness depends on the frequencies of the di↵erent45

types in the population [2]. In contrast to traditional game theory, evolutionary
game theory does not rely on rationality [11]. Instead it considers a population of
individuals with fixed strategies that interact randomly. When two individuals
interact, each receives a payo↵ that depends on the strategy of both individuals.
The payo↵ is interpreted as fitness [12].50

Table 1 shows the payo↵s in a well-known game called the prisoner’s dilemma

[2]. This game has two strategies: cooperation and defection. A group of
cooperators has higher fitness than a group of defectors. However, if a defector
and a cooperator meet, the defector receives a higher payo↵ than the cooperator,
and, what is more, the defectors are fitter than the cooperators in a mixed group.55

In an evolutionary game, a mutation can change the strategy of an individ-
ual. In some cases, the mutation increases the fitness of the individual. For
instance, consider a group of cooperators with interactions that are captured by
the prisoner’s dilemma. If a mutation causes an individual to change strategy
to defection, the individual increases its payo↵. This means that cooperation60

is an unstable strategy. On the contrary, a strategy is a Nash equilibrium if no
individual can deviate from this strategy and increase its payo↵ [13]. Defection

3



in the prisoner’s dilemma is a Nash equilibrium because, if a defector mutates
into a cooperator, it decreases its payo↵.

A Nash equilibrium is also an evolutionarily stable strategy if selection op-65

poses the invasion of an alternative strategy [9]. That is, if a su�ciently large
population adopts an evolutionarily stable strategy, it cannot be invaded by
any alternative strategy that is initially rare. For the prisoner’s dilemma, de-
fection is an evolutionarily stable strategy. Hence, cooperators cannot invade a
large population of defectors of which interaction is captured by the prisoner’s70

dilemma. However, as discussed more thoroughly in Section 4, a relatively small
group of defectors can be invaded by cooperators.

The prisoner’s dilemma illustrates why a well-functioning cooperation, such
as a multicellular organism or society, must have control mechanisms that sta-
bilise the cooperation and protect against defective individuals. Even though75

cooperations are not stable in general [2], the control mechanisms make them
behave similarly to an evolutionarily stable population within relatively short
timescales.

In the next subsection, we discuss some of the mechanisms that regulate
cooperation in a multicellular organism, whereas the regulation of human inter-80

action is examined in Subsection 4.3.

1.3. Regulation of cooperation in a multicellular organism

In a large multicellular organism, such as a human being, millions of cells
must cooperate [3],[14]. This cooperation is maintained by a very complex net-
work of signals and cellular checkpoints, and the immune system is an important85

component of this network. The immune system must detect mutant cells that
have stopped cooperating as well as foreign agents, from viruses to parasitic
worms, and distinguish them from the organism’s own healthy tissue [15].

Mutated cells can be detected and killed by T cells, which are a type of white
blood cells [16]. The exact details of how the T cells are regulated and activated90

are still uncertain [17]. In a nutshell, a type of T cells, called antigen-presenting
cells (APCs), circulates with the blood. If an APC recognises a foreign protein,
called an antigen, on a cell, then it makes a copy of the antigen and transports it
to the lymph nodes. When the lymph nodes receive the antigen, the production
of a type of T cells called cytoxic T lymphocytes (CTLs) is activated. A CTL is95

programmed to find and kill the cells that display the type of antigen brought
to the lymph nodes by the APCs [18].

The body can also prevent the growth of mutated cells by limiting the blood
supply. As discussed more thoroughly in Section 4, this can lead to acidification
of the microenvironment, which increases the death rate of both mutant cells100

and healthy cells. However, a new type of mutant that is resistant to the acidic
environment, might be created [19]–[24]. This competition dynamics is captured
by the extended Moran process, presented in the next section.
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2. Extended Moran process with non-constant fitness

In this section, we present an extension of the Moran process with non-105

constant fitness. The model assumes that the population has constant size,
N , and that it consists of three types of individuals, namely the wild type,
intermediate mutants and resistant mutants. During reproduction, a wild-type
individual can mutate into an intermediate mutant with probability u and an
intermediate mutant can mutate into a resistant mutant with probability u1. It110

is assumed that no other mutation can occur.
The environment is described by a parameter called the fitness parameter.

As long as the fitness parameter is below the fitness threshold, ⌥, all individuals
have the same fitness. The mutants increase the fitness parameter, and, when
the fitness parameter reaches ⌥, the fitness of the non-resistant individuals115

decreases, whereas the resistant mutants become advantageous.
In each time step, the following four events occur:

1. A random individual is selected to reproduce and a random individual is
selected to die.

2. If the fitness parameter is higher than ⌥, a random individual is selected.120

If the selected individual is not resistant, it dies, and a random individual
reproduces, whereas, if the selected individual is resistant, nothing occurs
in this event.

3. A random individual is selected. If it is a mutant, then 1/N is added to
the fitness parameter.125

4. The fitness parameter is reduced by F ⇥ 100 per cent, where 0  F  1.

Similar to the original Moran process, it is assumed that all individuals
are selected simultaneously and randomly in events 1–3. Hence, if there are i
mutants at the beginning of the time step, the probability of selecting a mutant
in event 3 is i/N . In events 1 and 2, the probability of selecting a mutant for130

reproduction is also constant. However, the same individual cannot die twice;
hence, if the same individual is selected to die in events 1 and event 2, a new
random individual must be selected to die. Nevertheless, as shown in Subsection
2.2, for su�ciently large population sizes, the probability of selecting a mutant
is approximately i/N in both events 1 and 2.135

Initially, all the cells are the wild type and the fitness parameter equals zero.
Eventually, a mutant is created, and it is assumed that the timescale of the
mutants’ fixation is much shorter than the timescale of mutation. Hence, a
lineage of mutants is likely to take over the whole population or become extinct
before another lineage of mutants is created from the wild type.140

2.1. Event 1

Let i and j denote the numbers of intermediate mutants and resistant mu-
tants, respectively, at the beginning of a given time step. Since the population
size is constant, N , the number of wild-type individuals is N � i� j.

5



All individuals are selected to die and reproduce at the same constant rate.
It is assumed that the same individual can be selected to reproduce and to die
and that a new individual cannot be selected to die in the same time step in
which it is produced. Thus, by ignoring further mutations, the probabilities
that an intermediate mutant, a resistant mutant and a wild-type individual is
selected to reproduce or to die are

Pim =
i

N
, (6)

Prm =
j

N
, (7)

Pw =
N � i� j

N
, (8)

respectively. Hence, we obtain the following transition probabilities for event 1:

P1(i+ 1, j|i, j) = i

N

N � i� j

N
,

P1(i+ 1, j � 1|i, j) = i

N

j

N
,

P1(i, j + 1|i, j) = j

N

N � i� j

N
,

P1(i� 1, j + 1|i, j) = i

N

j

N
,

P1(i� 1, j|i, j) = i

N

N � i� j

N
,

P1(i, j � 1|i, j) = j

N

N � i� j

N
,

P1(i, j|i, j) = 1� 2
i

N

N � i� j

N
� 2

i

N

j

N
� 2

j

N

N � i� j

N
.

2.2. Event 2145

If the fitness parameter is below ⌥, then nothing occurs in event 2. On
the other hand, if the fitness parameter is higher than ⌥, then a non-resistant
individual can be selected to die.

To obtain a simplistic model, we want the probability of selecting a given
type of individual to be constant throughout the time step. As discussed in150

Appendix A, this is the case for the standard Moran process.
By assuming that a new individual cannot be selected to reproduce or die

in the same time step in which it was produced, and that the same individual
can be selected to reproduce several times and to die in the same time step, the
probabilities that an individual selected to reproduce in event 2 is an interme-155

diate mutant, a resistant mutant and a wild type are given in (6), (7) and (8),
respectively.

On the other hand, the same individual cannot die several times. That is,
the probability that an intermediate mutant will be selected to die in event 1

6



is i/N , and, in this case, the probability of selecting an intermediate mutant to
die in event 2 is (i� 1)/(N � 1). The probability that the individual selected to
die in event 1 is not an intermediate mutant, is 1 � i/N , and, in this case, the
probability of selecting an intermediate mutant to die in event 2 is i/(N � 1).
Thus, it follows by the rule of total probability that the probability that an
intermediate mutant is selected to die in event 2, given that the fitness parameter
is higher than ⌥, is

P 2
�im =

i

N

i� 1

N � 1
+

✓
1� i

N

◆
i

N � 1
=

i

N � 1
� 1

N(N � 1)
.

For large population sizes, 1/(N � 1) ⇡ 1/N and 1/N >> 1/N2. Hence, P 2
�im

tends to

P 2
�im =

i

N
.

For similar reasons, if the fitness parameter is higher than ⌥, then the proba-
bility that a wild-type individual is selected to die in event 2 tends to

P 2
�w =

N � i� j

N

for large population sizes, and consequently the transition probabilities for event
2 are

P2(i� 1, j|i, j) = i

N

N � i� j

N
, (9)

P2(i, j � 1|i, j) = j

N

N � i� j

N
, (10)

P2(i� 1, j + 1|i, j) = i

N

j

N
, (11)

P2(i+ 1, j � 1|i, j) = i

N

j

N
, (12)

P2(i, j|i, j) = 1� i

N

N � i� j

N
� 2

i

N

j

N
� j

N

N � i� j

N
. (13)

2.3. Events 3 and 4

Event 3 captures the assumption that the mutants raise the fitness parame-
ter. The main reason why the fitness parameter is raised by 1/N in this event160

is that the growth environment is subdivided into N sites in Section 3.
Event 4 captures the di↵usion of the fitness parameter. If F = 0, then the

population is in an isolated growth environment, whereas, if F = 1, the fitness
parameter decreases to zero at the end of every time step.

2.4. Expected functions165

When the fitness parameter is lower than the fitness threshold ⌥, the com-
petition dynamics between the mutants and the wild type is identical to an
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ordinary neutral Moran process. Thus, we are interested in how long it takes
for the mutants to change the competition dynamics by increasing the fitness
parameter to a level higher than ⌥. In this subsection, we derive the expected170

time until the fitness parameter reaches this limit.
We expect that the number of mutants must reach a certain limit, ⌫, before

the fitness parameter approaches ⌥. Since the population dynamics is identical
to a neutral Moran process when the fitness parameter is below ⌥, we can use
the following theorem to find the probability that the number of mutants will175

reach ⌫.

Theorem 2.1. The probability that the neutral Moran process will reach the

state in which there are ⌫ mutants, given that the present number of mutants is

i, is

P(reach ⌫ | i ) = i

⌫
,

where 0  i  ⌫.

Theorem 2.1 is a standard result in Markov chain analysis [25]; hence, the
proof is left to Appendix B.

It follows from Theorem 2.1 that most lineages of mutant cells become ex-180

tinct before they reach the state ⌫ if ⌫ > 2. We are interested in investigating
the lineages that survive long enough for the fitness parameter to reach the
threshold ⌥.

Theorem 2.2. Conditioning on the fact that the neutral Moran process even-

tually reaches the state in which there are ⌫ mutants, the transition probabilities

for 0 < i < ⌫ are

P⌫(i+ 1|i) = i+ 1

N

✓
1� i

N

◆
(14)

P⌫(i� 1|i) = i� 1

N

✓
1� i

N

◆
(15)

P⌫(i|i) = 1� 2
i

N

✓
1� i

N

◆
(16)

where i is the present number of mutants.

Proof. We have four events:185

• A1: the next time step moves to state i+ 1.

• A2: the next time step moves to state i� 1.

• B: the process is currently in state i.

• C: the process will reach state ⌫.

8



For k 2 1, 2, we want to determine the conditional probability

P(Ak|B \ C) =
Ak \B \ C

B \ C
.

It follows from Theorem 2.1 that

P(reach ⌫|i) = P(C|B) =
P(B \ C)

P(B)
=

i

⌫
,

P(reach ⌫|i+ 1) = P(C|A1 \B) =
P(A1 \B \ C)

P(A1 \B)
=

i+ 1

⌫
,

P(reach ⌫|i� 1) = P(C|A2 \B) =
P(A2 \B \ C)

P(A2 \B)
=

i� 1

⌫
,

and it follows from the transition probabilities given in (1)–(3), with u = 0 and
r = 1, that

P(i+ 1|i) = P(A1|B) =
P(A1 \B)

P(B)
=

i

N

✓
1� i

N

◆
,

P(i� 1|i) = P(A2|B) =
P(A2 \B)

P(B)
=

i

N

✓
1� i

N

◆
.

Thus, we obtain the following equality:

P(Ak|B \ C) =
P(Ak \B \ C)

P(B \ C)

=
P(Ak \B \ C)

P(B \ C)

✓
P(Ak \B)

P(Ak \B)

◆✓
P(B)

P(B)

◆

=

✓
P(Ak \B \ C)

P(Ak \B)

◆✓
P(Ak \B)

P(B)

◆✓
P(B \ C)

P(B)

◆�1

=
P(C|Ak \B)P(Ak|B)

P(C|B)
.

Hence,

P(A1|B \ C) =
P(C|A1 \B)P(A1|B)

P(C|B)
=

i+1
⌫

i
N

�
1� i

N

�

i
⌫

=
i+ 1

N

✓
1� i

N

◆
,

P(A2|B \ C) =
P(C|A2 \B)P(A2|B)

P(C|B)
=

i�1
⌫

i
N

�
1� i

N

�

i
⌫

=
i� 1

N

✓
1� i

N

◆
.

190

Proposition 2.3. Conditioning on the fact that the neutral Moran process even-

tually reaches the state in which there are ⌫ mutants, the expected number of

mutants before the process reaches ⌫ is approximately

µ(t) = N � (N � 1) exp(�2t/N) (17)

in generation t, where one generation is N time steps and the first mutant is

generated at t = 0.
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Proof. It follows from the transition probabilities given in Equations (14)–(16)
that the expected number of mutant cells, µ(t), must satisfy

µ(t+ 1/N) = µ(t) +
µ(t) + 1

N

✓
1� µ(t)

N

◆
� µ(t)� 1

N

✓
1� µ(t)

N

◆

= µ(t) +
2

N

✓
1� µ(t)

N

◆
.

We use the following approximation:

dµ

dt
(t) ⇡ µ(t+ 1/N)� µ(t)

1/N
= 2

✓
1� µ(t)

N

◆
.

The di↵erential equation has general solutions of the following form:

µ(t) = N + ↵ exp(�2t/N),

where ↵ is a constant. Since the first mutant was generated at t = 0, that is,
µ(0) = 1, we obtain the solution

µ(t) = N � (N � 1) exp(�2t/N).

We finally arrive at an expression for the expected fitness parameter given
that the mutants survive long enough to change the competition dynamics.195

Proposition 2.4. Conditioning on the fact that the extended Moran process

with non-constant fitness eventually reaches the state in which there are ⌫ mu-

tants, given that the fitness parameter is below ⌥, the expected fitness parameter

in generation t is approximately

�(t) =
1� F

FN
� exp(�2t/N)

✓
(1� F )(N � 1)

N2F � 2

◆

+ exp(�NFt)

✓
�(0) +

1� F

FN
� (1� F )(N � 1)

N2F � 2

◆

for F 6= 0 and

�(t) = t+
N � 1

2
(exp(�2t/N)� 1) + �(0)

for F ⇡ 0, where the first mutant is generated at t = 0 and �(0) is the fitness

parameter when the first mutant in the lineage is generated.

Proof. It follows from events 3 and 4, given at the beginning of Section 2, that
the fitness parameter, �(t), must satisfy

�(t+ 1/N) = (�(t) + µ(t)/N2)(1� F ),

10



where µ(t) is the expected number of mutant cells given in Equation (17). By
using the approximation

d�

dt
(t) ⇡ �(t+ 1/N)� �(t)

1/N
,

we obtain the di↵erential equation

d�

dt
+NF� =

1� F

N
µ.

For F = 0, we have general solutions of the form

�(t) = 1/N

Z
µ(t)dt

= 1/N

Z
N � (N � 1) exp(�2t/N)dt

= t+
N � 1

2
exp(�2t/N) + ↵,

where ↵ is a constant. Thus, we obtain

�(t) = t+
N � 1

2
(exp(�2t/N)� 1) + �(0),

where �(0) is the fitness parameter when the first mutant is generated. For
F 6= 0, we have

�(t) = exp(�NFt)

✓
�(0) +

1� F

N

Z t

0
exp(NFy)µ(y)dy

◆
.

Since Z t

0
exp(NFy)(N � (N � 1) exp(�2y/N))dy

=
exp

�
� 2t

N

� ���
FN2 � 2

�
exp

�
2t
N

�
� FN2 + FN

�
exp (FNt) + (2� FN) exp

�
2t
N

��

F (FN2 � 2)
,

we obtain

�(t) =
1� F

FN
� exp(�2t/N)

✓
(1� F )(N � 1)

N2F � 2

◆

+ exp(�NFt)

✓
�(0) +

1� F

FN
� (1� F )(N � 1)

N2F � 2

◆
.
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2.4.1. Expected functions and numerical simulations

Figure 1 displays the expected functions and numerical simulations of the200

extended Moran process. In all cases, the fitness parameter remains below the
fitness threshold; hence, the growth of the mutant population is only driven
by stochasticity. Consequently, the population dynamics is characterised by
great variation. Figures 1(a)–(f) display the expected functions and simulations
of mutant populations that reach population size ⌫ = 103, starting with a205

single mutant. It follows from Theorem 2.1 that the probability that a single
mutant will generate a lineage of mutants that reaches population size ⌫ =
103 is ⇢ = 10�3, regardless of the total population size. Indeed, for all three
population sizes, N = 103, N = 104 and N = 106, we performed on average a
thousand simulations to obtain one simulation in which the mutant population210

size reached ⌫ = 103, starting with a single mutant.
Note that the transition probabilities given in (14)–(16) and the expected

number of mutants given in (17) do not contain the term ⌫. It is shown in the
respective proofs that the terms with ⌫ cancel out. However, a more intuitive
explanation is as follows. The expected functions plotted in Figure 1 condition215

on the fact that the mutant populations reach the size ⌫ = 103. However,
suppose that we stopped the simulations when the mutant populations reached
the size ⌫0 = 102. Should this change the expected function? Clearly not. This
is also compatible with the fact that neither the transition probabilities given
in (14)–(16) nor the expected number of mutants depend on the size of ⌫.220

In Figures 1(a)–(d), the di↵usion rate of the fitness parameter, F , equals
the inverse of the total population size, 1/N . On these terms, it is expected
that the fitness parameter is approximately F times the number of mutants. In
point of fact, the simulations of the fitness parameter are close to F times the
simulations of the number of mutants. In Figures 1(e)–(h), the di↵usion rate of225

the fitness parameter, F , equals zero. In this case, the fitness parameter cannot
decrease but is expected to increase as long as there are mutant individuals in the
population. Figures 1(e) and 1(f) display the expected function and simulation
of a mutant population that reaches the population size ⌫ = 1500, starting
with a single mutant, and the corresponding fitness parameter, respectively.230

As illustrated in Figure 1(e), the mutant population size decreases in some
time intervals for the simulation. However, as displayed in Figure 1(f), the
fitness parameter does not decrease. In the simulation displayed in Figure 1(g),
the mutant population size fluctuates before the mutant type becomes extinct
around generation t = 1600. Even though the number of mutants remains below235

⌫ = 750, the fitness parameter reaches 54. On the other hand, in the simulation
displayed in Figures 1(e) and 1(f), the population size is close to ⌫ = 1500 when
the fitness parameter is approximately 54. Thus, the simulation displayed in
Figures 1(g) and 1(h) illustrates that, when F is equal to or relatively close to
zero, then the mutant population can raise the fitness parameter to relatively240

high levels by delaying extinction.
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2.5. The fitness parameter reaches the fitness threshold

In this subsection, we consider the case in which the fitness parameter reaches
the fitness threshold, ⌥, which means that the death rate of both the inter-
mediate mutants and the wild-type individuals decrease whereas the resistant245

mutants become advantageous.
Let ⌫ be the number of mutants. If no resistant mutant has been gener-

ated, the competition between the wild-type individuals and the intermediate
mutants can be captured by a neutral Moran process; hence, it follows from
Equation (5) that the probability that the intermediate mutants will invade the250

whole population is ⌫/N , given that no resistant mutant is generated before the
intermediate mutants reach fixation.

On the other hand, if at least one resistant mutant has been generated,
this lineage has a great advantage, because these cells survive when the fitness
parameter is high. Thus, when the fitness parameter is higher than ⌥, the255

resistant mutants are expected to invade the whole population.
If the timescale of fixation of the resistant mutants is much shorter than

the timescale of mutation from the intermediate to the resistant type, then a
lineage of resistant mutants is likely to take over the whole population or become
extinct before another resistant mutant is created from the intermediate type.
In this case, the expected number of resistant mutants in generation t, denoted
�(t), can be approximated as follows. In event 1 of the time step described at
the beginning of Section 2, all the cells are expected to reproduce and die at
the same rate; thus, �(t) remains constant. On the other hand, if a cell that is
not resistant is selected in event 2, then the selected cell dies, and a random cell
is selected to reproduce. As derived in Subsection 2.2, the number of resistant
mutants can either increase by one with probability ⇡(j) = j

N

�
1� j

N

�
or remain

constant with probability 1� ⇡(j), where j is the number of resistant mutants.
Consequently, the expected number of resistant mutants in generation t must
satisfy the equality

�(t+ 1/N) = �(t) + ⇡(�(t)).

We use the approximation

d�

dt
(t) ⇡ �(t+ 1/N)� �(t)

1/N

and obtain the di↵erential equation

d�

dt
= �

⇣
1� �

N

⌘

which has the solution

�(t) =
N�(0) exp(t)

�(0)(exp(t)� 1) +N
, (18)

where �(0) is the number of resistant mutants when the fitness parameter
reaches the threshold ⌥. Clearly �(t) converges to N , which means that the
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resistant mutants are expected to invade the whole population. The expected
number of individuals that are not resistant is N � �(t). Since intermediate
mutants and wild-type individuals are neutral variants, the relation

expected number of intermediate mutants

expected number of wild-type individuals

remains constant. Thus, the expected number of intermediate mutants is ap-
proximately

�(t) =
⌫ � �(0)

N � �(0)
(N � �(t))

and the expected number of wild-type individuals is approximately

⇣(t) =
N � ⌫

N � �(0)
(N � �(t)),

where ⌫ is the total number of mutants when the fitness parameter reaches
the threshold, ⌥. Clearly, both the wild-type individuals and the intermediate
mutants are expected to become extinct.

2.5.1. Expected functions and numerical simulations260

Figures 2–4 display the expected functions and numerical simulations of the
extended Moran process. In all cases, a mutant is generated in generation t = 0,
and, since the mutants and the wild type are neutral variants as long as the
fitness parameter is below ⌥, the mutant population grows due to stochasticity
and the population dynamics is characterised by great variation.265

For the simulation illustrated in Figures 2 and 4, the fitness parameter
reaches the fitness threshold, ⌥. This means that the death rate of both the
intermediate mutants and the wild-type individuals increases, whereas the re-
sistant mutants become advantageous. If there is no resistant mutant in the
population when the fitness parameter is above ⌥, the probability that the270

intermediate mutants will invade the whole population is i/N , where i is the
number of mutants and N is the total population size. For the simulation illus-
trated in Figure 3, the number of intermediate mutants is approximately i = 103

when the fitness parameter reaches the fitness threshold ⌥ = 0.1. The muta-
tion rate, µ1, is relatively low; hence, no resistant mutant has been generated.275

Since the total population size is N = 105, the probability that the intermedi-
ate mutants will invade the whole population, given that no resistant mutant
is generated, is Pinv = 10�2. Due to stochasticity, the mutant population size
nearly doubles before it starts decreasing. Since the di↵usion rate of the fitness
parameter, F , is relatively high, the fitness parameter decreases to a level below280

⌥ soon after the number of mutants decreases to i = 103, and ultimately the
mutant population becomes extinct.

The simulation illustrated in Figure 2 has the same low mutation rate as
the simulation illustrated in Figure 3, and therefore there is no resistant mu-
tant in the population when the fitness parameter reaches ⌥. However, due to285

stochasticity, the fitness parameter remains above the fitness threshold ⌥, and,
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after approximately t = 200 generations, a resistant mutant is generated. This
type is expected to invade the population, because it survives when the fitness
parameter is high, and this makes it a very advantageous type. In point of fact,
the growth of resistant mutants lies close to the expected function given in (18),290

as illustrated in Figure 2d.
The simulation displayed in Figure 4 has a relatively high mutation rate,

and thus there are resistant mutants present in the population when the fitness
parameter reaches the fitness threshold, ⌥. The resistant type invades the
population, but, as illustrated in Figures 2d and 4d, for the simulations with295

high mutation rates, the growth of the mutants does not lie as close to the
expected function as the simulations with a low mutation rate. The reason for
this is that the expected function given in (18) assumes that µ1 ⇡ 0, and this
assumption does not hold when µ1 is high.

3. Extended Moran process with cooperation entities300

In this section, cooperation entities that can kill mutants, are included in the
extended Moran process. Cooperation entities can represent regulation mecha-
nisms that defend a cooperation, for instance T-cells in a multicellular organism.
This is discussed in greater detail in Subsection 4.2. However, cooperation en-
tities can also represent the cost of cooperation, for instance when cooperators305

invade a group of defectors, as discussed in Subsection 4.1.
The population still consists of N individuals, which are subdivided into

three types, namely the wild type, intermediate mutants and resistant mutants.
However, in events 5–8, the intermediate mutants and the resistant mutants
behave identically; consequently, we simply refer to them as mutants.310

In addition, there are up to N cooperation entities. The growth environment
in which the population is located is subdivided into N sites. Each site contains
exactly one individual; furthermore, each site can contain exactly one cooper-
ation entity or no cooperation entity. At the beginning of each time step, the
process passes through events 1–4, which are described in Section 2. Afterwards,315

the following events occur:

5. A random site is selected. If the site contains both a mutant and a co-
operation entity, the mutant dies and a random individual is selected to
reproduce.

6. A random site is selected, and, if this site contains a cooperation entity,320

it reproduces. The new cooperation entity is placed in a random site that
does not already contain a cooperation entity at the end of the time step.

7. A random site is selected, and, if the site contains a cooperation entity, it
dies.

8. A random site is selected. If the site contains a mutant and no cooperation325

entity, then, with probability Pd, a cooperation entity is activated and
placed in the selected site.
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At the end of each time step, all the individuals of the population are mixed
and placed in random sites. As discussed in Section 2, it is assumed that, in
all the events for each time step, the individuals are selected simultaneously.330

This assumption also holds for the cooperation entities. That is, if there are k
cooperation entities at the beginning of a time step, then the probability that
the selected site will contain a cooperation entity is k/N in both event 6 and
event 7.

3.1. Event 5335

If the selected site contains a wild-type individual, then nothing occurs at
event 5. On the other hand, if the selected site contains both a cooperation
entity and a mutant, then the mutant dies.

Since the population is mixed at the end of each time step, the probability
that the selected site will contain both a mutant and a cooperation entity is

Pde m =
k

N

i

N
,

where k is the number of cooperation entities and i is the number of mutants.
As discussed in Subsections 2.1 and 2.2 and in Appendix A, we want the

probability of selecting a given type of individual to be constant throughout
the time step to keep the model as simplistic as possible. In Subsection 2.2,
we show that the probability of selecting an individual to reproduce or die is
approximately constant in events 1 and 2 for large population sizes. Since the
same argument holds for event 5, the probabilities that the number of mutants
decrease by one and remain constant in event 5 are

P5(i� 1|i) = k

N

i

N

✓
1� i

N

◆
, (19)

P5(i|i) = 1� k

N

i

N

✓
1� i

N

◆
, (20)

respectively, where k and i are the number of cooperation entities and the340

number of mutants at the beginning of the time step, respectively.

3.2. Events 6–8

The cooperation entities are activated by the mutants. In addition, the co-
operation entities can reproduce and die. We assume that the same cooperation
entity can be selected to reproduce and die in the same time step and that a345

new cooperation entity cannot be selected to die in the time step in which it
is produced. These are similar to the assumptions made in the Moran process,
discussed in Appendix A.

Let k and i denote the numbers of cooperation entities and mutants at the
beginning of the time step, respectively. The probability that a cooperation
entity will be selected to reproduce and to die in events 6 and 7, respectively, is

Pce =
k

N
,
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whereas the probability that a cooperation entity will be activated by a mutant
in event 8 is

Pac ce = Pd
i

N

✓
1� k

N

◆
. (21)

3.3. Implications of cooperation entities

As discussed more thoroughly in Subsection 4.1, cooperation entities can350

represent cooperation. Moreover, they can represent T cells. As discussed in
Subsection 1.3, if an APC recognises an antigen on a mutated cell, the produc-
tion of CTLs is activated. This activation is captured by event 8. The CTLs
are programmed to find and kill mutated cells, which is captured by event 5.
The exact details of how the T cells are regulated and activated are uncertain.355

For instance, it is still unknown why APCs do not always recognise antigens
on mutated cells. One hypothesis is that APCs only activate CTLs if healthy
tissue is being injured [26]. In our model, healthy tissue, which is represented
by the wild type, is not injured as long as the fitness parameter is below ⌥.
Hence, in some examples, the cooperation entities are not activated until the360

fitness parameter reaches this limit, whereas, in other examples, the cooperation
entities are activated earlier.

In Section 2, the intermediate mutants and the wild type are neutral vari-
ants. However, when the cooperation entities are included, there is much more
at stake for the mutants. If the activation of cooperation entities only depends365

on the presence of mutated cells, the mutants are disadvantageous when the
fitness parameter is below ⌥. Hence, the survival of the mutants depends on
how fast they raise the fitness parameter, because resistant mutants become ad-
vantageous when the fitness parameter is higher than ⌥. On the other hand, if
the cooperation entities are not activated until the fitness parameter reaches ⌥,370

the mutants and the wild type are neutral variants when the fitness parameter
is below ⌥, whereas the fitness of the mutants depends on whether a resistant
mutant has been generated when the fitness parameter reaches ⌥. That is, if
all the mutants are of the intermediate type, then these cells are disadvanta-
geous, whereas, if resistant mutants have been generated, these cells become375

advantageous. Hence, the probability of mutant invasion increases if the fitness
parameter remains below ⌥ until a resistant mutant has been generated.

3.4. The cooperation entities are activated before the fitness parameter reaches

the fitness threshold

When the activation of cooperation entities only depends on the presence380

of mutant cells, the mutants are disadvantageous when the fitness parameter is
below ⌥. That is, all individuals have the same probability of being selected
to die and reproduce in event 1. However, in event 5, mutants can be selected
to die if they are located in a site with a cooperation entity, whereas wild-type
individuals can only be selected to reproduce in this event.385
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In event 5, the number of mutants either decreases by one or remains con-
stant with probabilities given in (19) and (20), respectively. Hence, the expected
number of mutants in generation t, �(t), must satisfy

�(t+ 1/N) = �(t)� (t)

N

�(t)

N

✓
1� �(t)

N

◆
,

where (t) is the expected number of cooperation entities in generation t. By
using the approximation

d�

dt
(t) ⇡ �(t+ 1/N)� �(t)

1/N
,

we obtain the following di↵erential equation:

d�

dt
= �

�

N

✓
1� �

N

◆
. (22)

As discussed in Subsection 3.2, the probability that a cooperation entity will
reproduce equals the probability that a cooperation entity will die in events
6 and 7, respectively; hence, the number of cooperation entities is expected
to remain constant after these two events. In event 8, a cooperation entity is
activated by a mutant with probability Pac ce, given in (21). Otherwise, the
number of cooperation entities remains constant. Hence, the expected number
of cooperation entities must satisfy the di↵erence equation

(t+ 1/N) = (t) + Pd
�(t)

N

✓
1� (t)

N

◆
.

By using the approximation

d

dt
(t) ⇡ (t+ 1/N),�(t)

1/N

we obtain the following di↵erential equation:

d

dt
= Pd�

⇣
1� 

N

⌘
. (23)

3.4.1. Numerical simulations

Figures 5–7 display numerical simulations of the extended Moran process
with cooperation entities. In all the cases, the activation of cooperation entities
depends only on the presence of the mutant cells. Hence, the mutants are
disadvantageous when the fitness parameter is below ⌥. On the other hand,390

the resistant mutants become advantageous if the fitness parameter reaches the
fitness threshold ⌥. Thus, the survival of the mutants depends on how fast they
raise the fitness parameter.

When the fitness parameter is below ⌥, it follows from the di↵erential equa-
tion given in (22) that, if there is at least one cooperation entity in the system,395
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it is expected that the number of mutants will decrease until the mutants are
extinct. However, the extinction can be delayed due to stochasticity, and, given
that the di↵usion rates of both the fitness parameter, F , and the fitness thresh-
old, ⌥, are relatively low, it is possible that the mutants will survive long enough
to raise the fitness parameter above ⌥. Due to stochasticity, the mutants be-400

come extinct before the fitness parameter reaches the fitness threshold, ⌥ = 2.5,
in the simulation illustrated in Figure 5, whereas, in the simulation displayed
in Figure 6, the mutants survive long enough for the fitness parameter to reach
the fitness threshold. Furthermore, if the mutant population produces at least
one resistant mutant, this type of cells becomes advantageous when the fitness405

parameter is above ⌥ and is expected to invade the whole population.
It follows from the di↵erential equation given in (23) that, if there is at least

one mutant in the system, the number of cooperation entities is expected to grow
until it reaches N . However, if the activation rate, Pd, is relatively low, then
the activation of the cooperation entities can be delayed due to stochasticity. In410

this case, the mutants and the wild type are initially neutral variants, and the
mutants can grow in number due to stochasticity. On these terms, the fitness
parameter can reach the fitness threshold, ⌥, even when it is relatively high.
Moreover, the probability that the mutant population will produce a resistant
type increases as the number of mutants increases. This scenario is illustrated415

in Figure 7.

3.5. The fitness parameter reaches the fitness threshold

When the fitness parameter reaches the fitness threshold, ⌥, the intermedi-
ate mutants and the wild-type individuals have the same probability of being
selected to die and reproduce in events 1 and 2. However, in event 5, the in-420

termediate mutants can be selected to die if they are located in a site with a
cooperation entity, whereas the wild-type individuals can only be selected to re-
produce in this event. Hence, the wild-type individuals are more advantageous
than the intermediate mutants.

If the mutants produce a resistant lineage, these mutants will be more ad-425

vantageous than the wild-type individuals when the fitness parameter is higher
than ⌥ and there are relatively few cooperation entities. That is, in event 1,
the resistant mutants and the wild-type individuals have the same probability
of being selected to die and to reproduce, whereas each wild-type individual
has a probability 1/N of being selected to die in event 2, and each resistant430

mutant has a probability k/N2 of being selected to die in event 5, where k is
the number of cooperation entities. Thus, if each site contains a cooperation en-
tity, the competition dynamics between the resistant mutants and the wild-type
individuals is neutral, and the resistant mutants are increasingly advantageous
with a decreasing number of cooperation entities.435

Let i, j and k denote the number of intermediate mutants, resistant mutants
and cooperation entities, respectively. Since the total number of individuals in
the population is constant, N , the number of wild-type individuals is N � i� j.

It follows from the transition probabilities given in (9)–(13) that the prob-
abilities that the number of intermediate mutants will decrease by one, remain
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constant and increase by one in event 2 are

q2�1(j, i, k) = ⇡(i), (24)

q20(j, i, k) = 1� 2⇡(i)� ij

N2
, (25)

q21(j, i, k) = ⇡(i)� ij

N2
, (26)

respectively, where ⇡(i) = i/N(1 � i/N). Moreover, since the intermediate
mutants and the resistant mutants are neutral variants in event 5, it follows from
Subsection 3.1 that the probabilities that the number of intermediate mutants
will decrease by one, remain constant and increase by one in event 5 are

q5�1(j, i, k) =
k

N
⇡(i),

q50(j, i, k) = 1� k

N

✓
⇡(i) +

ij

N2

◆
,

q61(j, i, k) =
k

N

ij

N2
,

respectively. Thus, the probabilities that the number of intermediate mutants
will decrease by two, decrease by one, increase by one and increase by two after
events 2 and 5 are

Q2,5
�2(j, i, k) =

k

N
⇡(i)2,

Q2,5
�1(j, i, k) = ⇡(i)

✓
1 +

k

N
(1� 3⇡(i)

◆
,

Q2,5
1 (j, i, k) = ⇡(i)

✓
1� k

N

✓
⇡(i) +

ij

N2

◆◆
+

ij

N2

✓
�1 +

k

N

✓
1� ⇡(i) + 2

ij

N2

◆◆
,

Q2,5
2 (j, i, k) =

k

N

ij

N2

✓
⇡(i)� ij

N2

◆
,

respectively; hence, the expected number of intermediate mutants in generation
t, �(t), must satisfy

�(t+ 1/N) = �(t)� 2Q2,5
�2(�(t),�(t),(t))�Q2,5

�1(�(t),�(t),(t))

+Q2,5
1 (�(t),�(t),(t)) + 2Q2,5

2 (�(t),�(t),(t)),

where �(t) and (t) are the expected numbers of resistant mutants and cooper-
ation entities, respectively, in generation t. By using the approximation

d�

dt
(t) ⇡ �(t+ 1/N)� �(t)

1/N
,

we obtain the following di↵erential equation:

d�

dt
= ��

✓✓
1� �

N

◆


N
+

�

N

⇣
1� 

N

⌘◆
. (27)
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Since �,  N , it follows that the expected number of intermediate mutants
decreases towards zero.440

We will now derive an approximation for the expected number of resistant
mutants. It follows from the transition probabilities given in (9)–(13) that the
probabilities that the number of resistant mutants will remain constant and
increase by one in event 2 are

p20(j, i, k) = 1� ⇡(j),

p21(j, i, k) = ⇡(j),

respectively, where ⇡(j) = j/N(1�j/N). Since the mutants are neutral variants
in event 5, it follows from Subsection 3.1 that the probabilities that the number
of resistant mutants will decrease by one, remain constant and increase by one
in event 5 are

p5�1(j, i, k) =
k

N
⇡(j),

p50(j, i, k) = 1� k

N

✓
⇡(j) +

ij

N2

◆
,

p51(j, i, k) =
k

N

ij

N2
,

respectively. Thus, the probabilities that the number of resistant mutants will
decrease by one, increase by one and increase by two after events 2 and 5 are

P 2,5
�1 (j, i, k) =

k

N
⇡(j)(1� ⇡(j)),

P 2,5
1 (j, i, k) = ⇡(j)

✓
1� k

N

✓
⇡(j) +

ij

N2

◆◆
+

k

N

ij

N2
(1� ⇡(j)),

P 2,5
2 (j, i, k) =

k

N

ij

N2
⇡(j),

respectively; hence, the expected number of resistant mutants must satisfy

�(t+ 1/N) = �(t)� P 2,5
�1 (�(t),�(t),(t))

+ P 2,5
1 (�(t),�(t),(t)) + 2P 2,5

2 (�(t),�(t),(t)).

By using the approximation

d�

dt
(t) ⇡ �(t+ 1/N)� �(t)

1/N
,

we obtain the di↵erential equation

d�

dt
= �

✓⇣
1� �

N

⌘⇣
1� 

N

⌘
+

�

N



N

◆
.
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Since
N = �(t) + �(t) + ⇣(t),

where ⇣(t) is the expected number of healthy cells, it follows that

d⇣

dt
= �d�

dt
� d�

dt
= ⇣

✓✓
1� ⇣

N

◆


N
� �

N

◆
.

The expected number of cooperation entities is described by the di↵erential
equation given in (23). Hence, the expected numbers of resistant mutants, wild-
type individuals and cooperation entities are described by the following system
of di↵erential equations:

d�

dt
= �

✓
1� �

N
� ⇣

N



N

◆
, (28)

d⇣

dt
= ⇣

✓✓
1� ⇣

N

◆


N
� �

N

◆
, (29)

d

dt
= PdN

✓
1� ⇣

N

◆⇣
1� 

N

⌘
, (30)

respectively. The system is in equilibrium on the line

L⇤ = { = N, ⇣ + � = N} ,

and the point

(�⇤, ⇣⇤,⇤) = (0, 0, N).

The domain

D = {0  , ⇣ + �  N |0  ⇣,�}

is bounded by the following five planes:

P1 = { = N |0  �, ⇣ ; ⇣ + �  N} ,
P2 = {�+ ⇣ = N |0  �, ⇣ ; 0    N} ,
P3 = {� = 0|0  , ⇣  N} ,
P4 = {⇣ = 0|0  ,�  N} ,
P5 = { = 0|0 < �, ⇣ ; ⇣ + � < N} .

Clearly, a solution of the system of di↵erential equations given in (28)–(30)
cannot leave the domain D. Moreover, it follows from the di↵erential equations
given in (28) and (30) that both � and  grow in the interior of D, denoted D⇤.
Hence, any solution with initial values in D⇤ will grow towards the equilibrium
line, L⇤.445
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3.6. P1 : N cooperation entities

When all the sites contain a cooperation entity, the resistant mutants and
the wild-type individuals are neutral variants, whereas the intermediate mutants
are disadvantageous. Substituting  = N into the di↵erential equation given in
(27), we obtain

d�

dt
= ��

✓
1� �

N

◆
.

By scaling the generations such that t = 0 is the generation when the number
of cooperation entities reaches N , we obtain

�(t) =
N�(0) exp(�t)

�(0)(exp(�t)� 1) +N
.

Clearly, �(t) converges to zero. Since the resistant mutants and the wild-type
individuals are neutral variants, the expected number of resistant mutants is

�(t) =
�(0)

N � �(0)
(N � �(t))

and the expected number of wild-type individuals is

⇣(t) =
⇣(0)

N � �(0)
(N � �(t)) .

Thus, �(t) converges to �(0)N
N��(0) , whereas ⇣(t) converges to

⇣(0)N
N��(0) = N� �(0)N

N��(0) .
Figure 9 displays a numerical simulation of the extended Moran process with

N cooperation entities. In this case, the resistant mutants and the wild type
are neutral variants, whereas the intermediate mutants are disadvantageous.450

Hence, the ratio of resistant mutants and wild-type individuals is expected to
remain constant, whereas the intermediate mutants are expected to become
extinct. Since the resistant mutants and the wild type are neutral variants,
their competition dynamics is characterised by great variation, whereas the
simulation of the intermediate mutants lies close to the expected function, as455

illustrated by Figure 9.

3.7. P2 : The intermediate mutants become extinct

In this subsection, we consider the case in which all the intermediate mutants
become extinct. By substituting ⇣ = N �� into the di↵erential equations given
in (28) and (30), we obtain

d�

dt
= �

⇣
1� �

N

⌘⇣
1� 

N

⌘
(31)

d

dt
= Pd�

⇣
1� 

N

⌘
. (32)
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It follows from the di↵erential equations above that  grows until  = N ,
whereas � grows as longs as � < N and  < N . Since d⇣

dt = �d�
dt , it follows that

⇣ decreases as long as � < N and  < N . The case in which � reaches N before460

 corresponds to the invasion of resistant mutants and the extinction of wild-
type individuals, whereas the case in which  reaches N before  corresponds
to the survival of both the wild type and the resistant type, as described in
Subsection 3.6

It follows from the di↵erential equations given in (31) and (32) that

d
dt
d�
dt

=
d

d�
=

PAPC

1� �
N

for 0 < � < N and  < N . Thus,
Z

d = NPd

Z
d�

(N � �)
.

Hence, a solution of the system given in 31 and 32, ⌦(t) = (�(t), N��(t),(t)) 2
P1, with initial value ⌦(0) = (�(0), N � �(0),(0)) 2 P1, where 0 < �(0) < N
and (0) < N , must satisfy

(t) = (0) +NPd ln

✓
N � �(0)

N � �(t)

◆

⇣(t) = N � �(t),

as long as �(t) < N and (t) < N . We are interested in investigating whether
the cooperation entities or the resistant mutants reach the population size N
first. To achieve this, we make use of the fact that the process is discrete and
investigate which population is expected to reach the population size N�1 first.
For su�ciently large population sizes, this is equivalent to reaching N . We have

(t) = (0) +NPd ln

✓
N � �(0)

N � �(t)

◆
= N � 1

for

�(t) = N � N � �(0)

exp
⇣

N�((0)+1)
NPd

⌘ .

Hence, (t) reaches N � 1 before �(t) if

1 <
N � �(0)

exp
⇣

N�((0)+1)
NPd

⌘ .

The above inequality can be expressed as

N � ((0) + 1)

N ln(N � �(0)
< Pd. (33)
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3.7.1. Numerical simulations465

Figures 10–13 display simulations in which the fitness parameter reaches the
fitness threshold, ⌥, and there is a race between the resistant mutants and the
cooperation entities to reach population size N . The inequality given in (33) is
derived under the assumption that the intermediate mutants are extinct, and
this is not the case when the first resistant mutant appears in the simulations470

illustrated in Figures 10–13. However, since the intermediate mutants become
very disadvantageous, their population size decreases rapidly, and therefore the
inequality in (33) gives a good indication of whether the cooperation entities
win the race to reach population size N .

The activation rate of the cooperation entities is very high in the example475

illustrated in Figure 11. Consequently, the left side, which equals 0.1, is less
than the right side, which equals 1, in the inequality given in (33), and this
indicates that the cooperation entities will win the race. In point of fact, the
number of cooperation entities reaches N when the number of resistant mutants
is approximately 4⇥ 104. The example illustrated in Figure 10 has a moderate480

activation rate of the cooperation entities, and both sides of the inequality given
in (33) are approximately 0.1. Indeed, the number of cooperation entities grows
more slowly towards N than the number of resistant mutants.

If there are no resistant mutants in the population when the fitness parameter
reaches ⌥, it is possible that the cooperation entities will win the race towards485

N even though the cooperation entities are activated at a moderate rate. That
is, the examples given in Figures 10 and 13 have the same activation rate.
However, in the example illustrated in Figure 13, there are approximately 7⇥103

cooperation entities in the system when the first resistant mutant is produced.
Thus, the left side, which equals 0.08, is less than the right side, which equals490

0.1, in the inequality given in (33). In fact, the number of cooperation entities
reaches N when the number of resistant mutants is approximately 8⇥ 104.

However, if the activation rate of the cooperation entities is su�ciently low,
the resistant mutants can invade the system even though the production of the
first resistant mutant is delayed. In the example given in Figure 12, there are495

approximately 7⇥103 cooperation entities in the system when the first resistant
mutant is produced. However, the left side, which equals 0.08, is higher than
the right side, which equals 0.01, in the inequality given in (33). Indeed, the
resistant mutants reach the population size N first.

4. Discussion500

Several other models and texts describe situations in which relatively stable
populations are invaded by an alternative strategy. Examples are the evolution
of cooperation among bacteria and multicellularity [14],[27]–[29], the invasion of
cancer [19]–[24] and the evolution of ideas that contradict social norms [30],[31].
These models and texts are more detailed and sophisticated than the model505

described in this paper. However, by keeping our model simplistic, it applies to
di↵erent situations, as illustrated by the examples below. Hence, our model gives
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a more general description of the dynamics that occur when a stable population
is invaded by an alternative strategy.

4.1. Evolution of cooperation among bacteria and multicellularity510

When life started to evolve about four billion years ago, the first life forms
adopted the most basic strategy, which is to outcompete other individuals by
dividing as fast as possible [2]. However, proliferation requires resources, such as
space and nutrient molecules, and di↵erent individuals can have access to some
resources and no access to other resources. In these situations, cooperation can515

be beneficial [10],[14],[27].
A simplified example of cooperation among single-celled organisms is that

one cell has access to enough nutrient molecules for two cell divisions but no
space, whereas another cell has access to enough space for two cell divisions
but no nutrient molecules. Thus, if the two cells share their resources, that is,520

mutual cooperation, they will both reproduce. On the contrary, if the two cells
do not share their resources, that is, mutual defection, neither of the cells will
reproduce. However, if only one cell shares its resources and the other does not
share, then the cooperator does not reproduce and loses its resources whereas
the defector reproduces twice.525

This simple example illustrates the dilemma of cooperation: even though
mutual cooperation leads to a higher payo↵ than mutual defection, a defector
has a higher payo↵ than a cooperator when they meet. Indeed, it is a version
of the prisoner’s dilemma, which is discussed in Subsection 1.2.

Moreover, a group of cooperating cells is vulnerable to intruders and mutants530

that stop cooperating, because these cells can invade the colony by exploiting
the cooperating cells [32]. Hence, a group of cooperators can only survive in
the long term if it develops regulation mechanisms that control the cooperation,
for instance by modifying the microenvironment such that the defectors lose
their advantages. Indeed, the evolution of multicellular organisms was driven535

by increasingly advanced regulation mechanisms among cooperating cells [14].
A small group of cooperators can invade a large population of defectors if

they manage to change the environment such that defection becomes a disadvan-
tageous strategy. This is illustrated by Figure 6. In the context of the evolution
of cooperation among cells, the wild-type individuals represent defectors and540

the intermediate mutants represent unconditional cooperators. Cooperation is
captured by the cooperation entities.

The fitness parameter represents the evolution of regulation mechanisms,
whereas the resistant mutants represents conditional cooperators. In a nutshell,
the conditional cooperators cooperate with cells that are of the same type and545

create a microenvironment that kills cells that are of a di↵erent type. As illus-
trated by Figure 5 and 6, the cooperators are disadvantageous when the fitness
parameter is below ⌥. Indeed, in the example given in Figure 5, the coopera-
tors become extinct. On the other hand, due to stochasticity, the cooperators
survive long enough to raise the fitness parameter above ⌥ in the example il-550

lustrated by Figure 5, and then the conditional cooperators invade the whole
population.
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4.2. The invasion of cancer

As discussed in Subsections 1.3 and 4.1, the human body has an advanced
defence system that attacks mutant cells that have stopped cooperating. Hence,555

mutant cells are in general disadvantageous when they first appear in the body,
and, what is more, mutant cells that progress into cancer typically change their
microenvironment and create new variants that are advantageous in the new
microenvironment [19]–[24]. This dynamics is captured by the model presented
in this paper. In this context, the cooperation entities represent the immune560

response, such as T cells, whereas the wild type and the mutant type represent
the healthy cells and the mutant cells, respectively.

Figures 5–7 illustrate the case in which T cells detect and kill mutant cells
before they cause any harm, whereas Figures 8 and 10–13 illustrate the case
in which T cells are only activated if they harm healthy tissue. In the first565

case, the healthy cells are initially advantageous, whereas, in the latter case, the
competition dynamics is neutral. Given that mutants can evolve into cancer
cells, it might seem that the best strategy is to kill them once they appear in
the body. However, too aggressive an immune system poses a greater risk to
the body than mutant cells with minor genetic errors [26],[33].570

The body can limit the blood flow to mutant cells. Hence, these cells must
break down the end product of glycolysis anaerobically, and this leads to an
acidic microenvironment [20]. In the model, the acid level is represented by the
fitness parameter. When the acid level reaches the limit ⌥, the death rate of
the cells that are not acid resistant increases. Moreover, since the mutants are575

harming the healthy cells, the T cells are activated. Thus, the non-resistant
mutants become less advantageous than the healthy cells, and, as illustrated in
Figure 8, they are expected to become extinct if they do not produce an acid-
resistant variant. On the other hand, if the mutant cells survive long enough
such that they produce a variant that is acid resistant, this cell type has a580

great advantage, because they can kill other cells by increasing the acid level,
as illustrated in Figures 10–13.

As illustrated by the examples given in Figures 10–13, there is a race between
the acid-resistant mutants and the T cells. If the T cells respond quickly, such
that there is a T cell at every site in the microenvironment before the normal585

cells become extinct, the acid-resistant mutants are neutralised. In this case, the
mutant cells are vulnerable to new attacks from the body’s defence mechanisms.

On the other hand, if the normal cells become extinct before there is a T cell
at every site, the resistant mutants are expected to take over the microenviron-
ment. This represents the onset of a more aggressive form of cancer. Indeed,590

many observations reveal that cancer cells exhibit glucose fermentation even
when there is enough oxygen present. This is called the Warburg e↵ect and has
been described in several other papers.

The model by Robertson-Tessi et al. includes several other mechanisms of
immune evasion that tumours use, including immunosuppressive surface mark-595

ers such as PD-L1, the down-regulation of antigen presentation machinery, the
recruitment of immunosuppressive immune cells and the secretion of immuno-
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suppressive factors such as TGF-beta [22]. Moreover, several other models in-
dicate that tissue architecture and signals between di↵erent microenvironments
play major roles in population dynamics and the progression of cancer [34]–[36].600

It is possible to include these mechanisms in our model. However, the main
scope of this paper is to give a general characterisation of the dynamics that
occur when a stable population is invaded; therefore, we keep the model as
simple as possible.

4.3. Evolution of ideas that contradict social norms605

Game and evolutionary theory can also be used to study human behaviour
and society [37]. For instance, the founders of Marxism, Karl Marx and Friedrich
Engels, were inspired by Charles Darwin [38].

The model can also capture the dynamics of political changes that are less
dramatic than revolutions and dictatorships, for instance when politicians use610

populist rhetoric or, depending on who has the power of definition, speak freely.
Sylvi Listhaug is a Norwegian politician for the Progress Party who was Minister
of Migration from December 2015 to March 2018. Listhaug has been called the
Trump of Norway, both as a compliment and as a criticism [39],[40].

The consensus of the Norwegian political elite is to address problems related615

to immigration and integration in a polite and indirect way. Hence, Listhaug’s
direct and confrontational style has created waves of reactions. Her critics claim
that her aggressive style creates conflicts with people who could become allies
and that she should rather focus on building a broad and inclusive alliance. A
paper by Pinker et al. [41], in which the authors apply ideas from evolutionary620

biology and game theory to illuminate possible advantages of indirect speech,
lend some support to Listhaug’s critics. Pinker et al. argue that most human
communication involves a mixture of cooperation and conflict and that indirect
speech is used to negotiate the type of relationship holding between the speaker
and the hearer. Moreover, indirectness in speech appears to be nearly universal625

[42].
However, when it comes to integration, indirect speech might promote par-

allel societies, because it can create misunderstandings about what is socially
acceptable and make the majority society seem very complex and unmanage-
able.630

Regardless of whether indirect speech is an advantage, breaking an unwrit-
ten law is associated with social stigmatisation. Thus, Listhaug must pay a cost
for bringing up unpleasant issues related to migration and integration in a direct
and, perhaps, populistic way [31]. Listhaug’s statements are almost automati-
cally considered to be controversial, as philosopher Lars Kolbeinstveit, from the635

liberal think tank Civita, writes in a text about Listhaug and the media [43].
In point of fact, after Listhaug claimed that the Labour Party puts the rights

of terrorists above the security of the nation in a Facebook post, the reactions
were so strong that Listhaug announced her resignation from the Government
to avoid a vote of confidence [44].640

Even though Listhaug reduced her political influence, at least on the short
term, after she resigned as Minister of Immigration, her political party, the
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Progress Party, gained support after her fall [45]. Moreover, there has been an
increased use of words regarding anti-elitism as well as a more heated immigra-
tion debate on the Internet [46].645

5. Conclusion

In this paper, an extension of the Moran process with non-constant fitness is
presented. The model captures not only the competition between di↵erent types
of individuals but also the struggle for fitness. That is, the type of individuals
that manage to change the environment such that they become advantageous is650

expected to outcompete other types of individuals.
The model captures the dynamics that occurs when a relatively stable pop-

ulation is invaded by a new type of individuals and can reproduce the following
events:

1. When a new type of individual appears in a relatively stable population,655

the newcomer is not advantageous.

2. Due to stochasticity, the new type grows in number and generates di↵erent
versions of itself.

3. The new type becomes advantageous if it manages to change the environ-
ment such that at least one of its variants increases its fitness.660

These events occur in di↵erent examples in which a relatively stable population
is invaded by a new type of individuals, for instance the evolution of cooperation
among bacteria and multicellularity, the invasion of cancer and the evolution
of ideas that contradict existing social norms. Several models have already
been proposed to describe these situations; however, none of them generalise665

the phenomena. Indeed, to our knowledge, the model presented in this paper is
the first general model of competition dynamics in relatively stable populations
that captures events 1–3.

Appendix A.

In this subsection, we summarise the way in which Wodarz and Komarova670

[3] obtain the transition probabilities for the Moran process given in (1)–(3).
The Moran process assumes that the population has A constant size, N , and

consists of two types of individuals, denoted the wild type and the mutant type.
The individuals can reproduce, mutate and die.

When a wild-type individual reproduces, the probability that it will produce675

a wild-type individual is 1�u, and the probability that it will produce a mutant
is u, where 0  u  1. It is assumed that when a mutant individual reproduces,
it always produces a new mutant. Moreover, the wild-type individuals have
reproductive rate 1 and the mutants have reproductive rate r, where r > 0.
Both types are selected to die at the same rate. In each time step, one individual680
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reproduces and one individual dies. It is assumed that the same individual can
be selected both to reproduce and to die.

Let i denote the number of mutants at the beginning of a given time step.
Thus, the number of wild-type individuals at the beginning of the time step is
N�i. The probability that a wild-type individual will reproduce is proportional
to its frequency and the reproductive rate and is given by (N � i)/(N � i+ ri).
Similarly, the probability that a mutant will reproduce is ri/(N � i+ ri). Thus,
the probabilities that the new individual will be a wild type and a mutant type
are

P+w = (1� u)
N � i

N � i+ ri
,

P+m = u
N � i

N � i+ ri
+

ri

N � i+ ri
,

respectively.
The Moran process assumes that the new individual cannot be selected to

die in the time step in which it was produced. Hence, the probability that a type
of individual will be selected to die depends on its abundance at the beginning
of the time step. That is, the probabilities that the individual selected to die is
a wild-type individual and a mutant are

P�w =
N � i

N
, (A.1)

P�m =
i

N
, (A.2)

respectively.
Note that, if the new individual could be selected to die in the same time step

in which it was produced, then the probability that an individual of a certain
type will be selected to die would depend on which type the new individual is.
Moreover, the population size would be N + 1 before the selected individual
dies. Thus, the conditional probabilities that the individual selected to die is of
a certain type would be

P(A|B) =
N + 1� i

N + 1
, (A.3)

P(A|C) =
N � i

N + 1
, (A.4)

P(D|B) =
i

N + 1
, (A.5)

P(D|C) =
i+ 1

N + 1
, (A.6)

where the events A–D are as follows:685

• A: a wild-type individual is selected to die.

• B: the new individual is wild type.
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• C: the new individual is a mutant.

• D: a mutant is selected to die.

Hence, if the new individual could be selected to die in the same time step in
which it was produced, the probabilities associated with each time step would
be more complex; consequently, it would become more complicated to compute
the absorption time and the probabilities of being absorbed. Furthermore, for a
su�ciently large population size, N , the probability given in (A.1) is a reason-
able approximation of the probabilities given in (A.3) and (A.4); likewise, (A.2)
is a tolerable approximation of (A.5) and (A.6). These approximations are very
good when i is close to N/2. However, for i = 1

P(D|C) = 2P(D|B),

and for i = N � 1

P(A|B) = 2P(A|C).

Even though the approximations are not very precise when i is either very small690

or close to N , the request for simplicity weighs more in the Moran model.
In each time step of the Moran process, the number of mutants can increase

by one, decrease by one or remain constant. By assuming that the new indi-
vidual cannot be selected to die in the time step in which it was produced, the
probabilities of these three events are given by

P(i+ 1|i) = P+mP�w =
u(N � i) + ri

N � i+ ir

N � i

N
,

P(i� 1|i) = P+wP�m =
(1� u)(N � i)

N � i+ ir

i

N
,

P(i|i) = 1� P (i+ 1|i)� P (i� 1|i),

respectively.

Appendix B.

Given that the present number of mutants is i, there are i � 1, i or i + 1
mutants after the next time step. The probabilities for these events are given
in Equations (1)–(3), respectively, with r = 1 and u = 0. Thus, the conditional
probability of reaching state ⌫, P(reach ⌫ | i ), must satisfy

P(reach ⌫ | i ) = P(reach ⌫ | i� 1 )
i

N

✓
1� i

N

◆
+ P(reach ⌫ | i )

✓
1� 2

i

N

◆

+ P(reach ⌫ | i+ 1 )
i

N

✓
1� i

N

◆
.

This equation can be reduced to the following second-order di↵erence equation
with constant coe�cients:

P(reach ⌫ | i� 1 ) = 2P(reach ⌫ | i )� P(reach ⌫ | i+ 1 ).
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Since the corresponding quadratic equation

r2 � 2r + 1 = 0

has only one root, namely r = 1, the solutions of the di↵erence equation have
the form

P(reach ⌫ | i ) = ↵i+ �

where ↵ and � are constants. Note that the system has exactly two absorb-
ing states, namely i = 0 and i = ⌫, with corresponding transition probabilities
P(reach ⌫ | 0 ) = 0 and P(reach ⌫ | ⌫ ) = 1. Thus, we have the following bound-
ary conditions:

0 = 2P(absorbed in ⌫ | 1 )� P(absorbed in ⌫ | 2 )

P(absorbed in ⌫ | ⌫ � 2 ) = 2P(absorbed in ⌫ | ⌫ � 1 )� 1.

We obtain ↵ = 1/⌫ and � = 0. Hence, the conditional probability for reaching
⌫ is

P(reach ⌫ | i ) = i

⌫
.

Appendix C.
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Table 1 Payo↵ matrix for prisoner’s dilemma
This Table display the payo↵ matrix for a 2⇥2 game with two strategies, namely cooperation
and defection. If the following inequalities T > C > D > R hold, then the game is a version
of the prisoner’s dilemma.
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Figure 1a displays the number of mutants for N = 103 and F = 10�3

Figure 1 Population dynamics when the fitness parameter is below ⌥
When the fitness parameter is below ⌥, the population dynamics is identical to a neutral
Moran process. Moreover, starting with one mutant at generation t = 0, the probability that
this lineage reaches population size i = 103 is 10�3. The growth of the fitness parameter,
depends on the di↵usion rate, F . In Figure 1(a)(d), F equals the inverse of the total
population size. On these terms, it is expected that the fitness parameter is approximately F
times the number of mutants. And in point of fact, the fitness parameter is close to F times
the number of mutants in the simulations displayed in (a)(d). On the other hand, in Figure
1(e)(h), F equals zero. In this case, the fitness parameter cannot decrease, but is expected to
increase as long as there are mutants in the population. And indeed, the simulation displayed
in Figure 1(e) and (f) illustrates that given that the number of mutants reaches i = 1.5⇥ 103,
it follows that the fitness parameter grows exponentially, whereas the simulation displayed
in Figure 1(g) and (h) illuminates that the fitness parameter grows until the mutants are
extinct.

Figure 1b displays the fitness parameter for N = 103 and F = 10�3.
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Figure 1c displays the number of mutants for N = 106 and F = 10�6

Figure 1d displays the fitness parameter for N = 106 and F = 10�6

Figure 1e displays the number of mutants for N = 104 and F = 0
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Figure 1f displays the fitness parameter for N = 104 and F = 0

Figure 1g displays the number of mutants for N = 104 and F = 0

Figure 1h displays the fitness parameter for N = 104 and F = 0
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Figure 2a displays the number of intermediate mutants

Figure 2 Low mutation rate and high di↵usion rate: Invasion of mutants
The first mutant is generated at generation t = 0, and due to stochasticity, the mutant
population grows in number and the fitness parameter reaches the limit ⌥ at generation
t = 854. Since both the mutant population size and the mutation rate, µ1, are relatively
small, no resistant individual is present in the population when the fitness parameter reaches
the limit. However, at generation t = 1058, a resistant mutant is generated, and since this
type of individual is very advantageous, it is expected to invade the whole population. And
indeed, as illustrated in Figure 2(d), the growth of resistant mutants lies close to the expected
function.
The parameter sizes are: N = 105, ⌥ = 0.1, µ = 10�5 and F = 10�6.

Figure 2b displays the fitness parameter and the pink dashed line marks the limit ⌥
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Figure 2c displays the number of resistant mutants before the invasion

Figure 2d displays the invasion of resistant mutants, both the simulation and the expected
function
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Figure 3a displays the number of intermediate mutants

Figure 3 Low mutation rate and high di↵usion rate: Extinction of mu-
tants
The first mutant is generated at generation t = 0, and due to stochasticity, the mutant
population grows in number and the fitness parameter reaches the limit ⌥ at generation
t = 630. Since both the mutant population size and the mutation rate, µ1, are relatively
small, no resistant individual is present in the population when the fitness parameter reaches
the limit. Moreover, since the di↵usion rate of the fitness parameter, F , is relatively high,
the fitness parameter starts to decrease when the number of mutants decreases. Hence, the
mutant population goes extinct.

Figure 3b displays the fitness parameter and the pink dashed line marks the limit ⌥
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Figure 3c displays the number of resistant mutants

Figure 4a displays the number of intermediate mutants

High mutation rate: Invasion of mutants
The first mutant is generated at generation t = 0, and due to stochasticity, the mutant
population grows in number and the fitness parameter reaches the limit ⌥ at generation
t = 662. Since the mutation rate, µ1, is relatively large, resistant individuals are present
in the population when the fitness parameter reaches ⌥. Moreover, since this type of
individual is very advantageous, it is expected to invade the whole population. And indeed,
as illustrated in Figure 3(d), the resistant mutants invade the population.
The parameter sizes are: N = 105, ⌥ = 0.1, µ = 10�4 and F = 10�6
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Figure 4b displays the fitness parameter and the pink dashed line marks the limit ⌥

Figure 4b displays the number of resistant mutants before the invasion

Figure 4c displays the invasion of resistant mutants, both the simulation and the expected
function
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Figure 5a displays the number of mutants and the number of cooperation entities

The cooperation entities make the mutants disadvantageous
The first mutant is generated at generation t = 0, and almost immediately after, a cooperation
entity is activated. The population of cooperation entities grows in number, whereas the
mutant population gets extinct before the fitness parameter reaches the limit ⌥.
The parameter sizes are: N = 103, ⌥ = 2.5, µ = 10�3, P = 0.01, F = 10�5.

Figure 5b displays the fitness parameter and the pink dashed line marks the limit ⌥
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Figure 6a displays the number of intermediate mutants and the number of cooperation
entities before the resistant mutants invade the whole population

Figure 6 The mutants lay low before they invade
The first mutant is generated at generation t = 0, and immediately after, a cooperaion entity
is activated. The population of cooperation entities grows in number and prevent the mutant
population from expansion. However, the mutants avoid extinction, and survive long enough
to raise the fitness parameter above ⌥. Since both the mutation rate, µ, and the mutant
population size are relatively small, the mutant population contains no resistant when the
fitness parameter reaches ⌥. However, after 75 generations, a resistant mutant is generated,
and since the resistant mutants are advantageous when the number of cooperation entities
is less N and the fitness parameter is above ⌥, the resistant mutants invade the whole
population.
The parameter sizes are: N = 103, ⌥ = 2.5, µ = 10�3, P = 0.01, F = 10�5.

Figure 6b displays the fitness parameter and the pink dashed line marks the limit ⌥
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Figure 6c displays the number of resistant mutants and the number of cooperation entities as
the resistant mutants invade the whole population

Figure 7a displays the number of intermediate mutants and the number of cooperation
entities before the resistant mutants invade the whole population

Figure 7 The mutants grow faster than the cooperation entities and in-
vade the whole population
The first mutant is generated at generation t = 0, and due to stochasticity, the mutant
population grows fast whereas the growth of the cooperation entities is delayed. Consequently,
the fitness parameter reaches the limit ⌥. Since the population size is relatively large,
there have already been generated resistant mutants, and since the resistant mutants are
advantageous when the number of cooperation entities is less N and the fitness parameter is
above ⌥, the resistant mutants invade the whole population.
The parameter sizes are: N = 103, ⌥ = 20, µ = 10�3, P = 0.01 and F = 10�5.
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Figure 7b displays the fitness parameter and the pink dashed line marks the limit ⌥.

Figure 7c displays the number of resistant mutants and the number of cooperation entities as
the resistant mutants invade the whole population
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Figure 8a display the number of intermediate mutants

Figure 8 High activation rate of the cooperation entities: The mutants get
extinct
A mutant appears in the population at generation t = 0 and generates a lineage of mutants
that survives long enough such that the fitness parameter reaches the limit ⌥ at generation
t = 1092. The mutation rate, µ1 is relatively low and when the fitness parameter reaches
⌥, there are no resistant mutants in the population. Moreover, the activation rate of the
cooperation entities is very high, and hence, the number of cooperation entities grows rapidly,
whereas the mutants become increasingly disadvantageous and decrease fast towards zero.
The parameter sizes are: N = 105, ⌥ = 5, µ = 10( � 5), P = 1 and F = 10( � 8).

Figure 8b displays the fitness and the pink dotted line marks the limit ⌥
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Figure 8c displays the number of resistant mutants

Figure 8d displays the number of cooperation entities
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Figure 9 N cooperation entities
This Figure shows the case when the initial number of cooperation entities isN = 104, whereas
the initial number of wild-type individuals, resistant mutants and intermediate mutants are
10, 10 and N � 20, respectively. Since the intermediate mutants are disadvantageous whereas
the wild-type individuals and the resistant mutants are neutral variants, it is expected that
the intermediate mutants get extinct while the wild-type individuals and the resistant mutants
both grow towards N/2. The competition dynamics between the wild type and the resistant
mutants is characterised by great variance whereas the number of intermediate mutants follows
the expected function closely.

Figure 10a displays the number of intermediate mutants

Figure 10 Moderate activation rate of cooperation entities and invasion of
resistant mutants
A mutant appears in the population at generation t = 0 and generates a lineage of mutants
that survive long enough such that the fitness parameter reaches the limit ⌥. When the
fitness parameter reaches this limit, the population of mutants has already generated four
resistant individuals, which are advantageous as long as the number of cooperation entities
are lower than the population size, N . Even though the number of cooperation entities grows
quit quickly, the number of resistant mutants reaches N first.
The parameter sizes are: N = 105, ⌥ = 0.1, µ = 10�5, P = 0.1 and F = 10�6.
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Figure 10b displays the fitness parameter and the pink dashed line marks the limit ⌥

Figure 10c displays the number of resistant mutants and the number of cooperation entities
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Figure 11a displays the number of intermediate mutants

Figure 11 High activation rate of cooperation entities and coexistence of
resistant mutants and wild-type individuals
A mutant appears in the population at generation t = 0 and generates a lineage of mutants
that survive long enough such that the fitness parameter reaches the limit ⌥. When the
fitness parameter reaches this limit, the population of mutants has already generated four
resistant individuals, which are advantageous as long as the number of cooperation entities
are lower than the population size, N . However, since the activation rate of the cooperation
entities is very high, the number of cooperation entities reaches N when the number of
resistant mutants is approximately 4 ⇥ 104. Since the wild-type individuals and resistant
mutants become neutral variants, the number of each type is expected to remain constant.
The parameter sizes are: N = 105, ⌥ = 1, µ = 10�5, P = 1 and F = 10�8.

Figure 11b displays the fitness parameter and the pink dashed line marks the limit ⌥
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Figure 11c displays the number of resistant mutants and the number of cooperation entities

Figure 12a displays the number of intermediate mutants and the number of cooperation
entities before the resistant mutants invade the population

Figure 12 Low activation rate of cooperation entities and delayed invasion
of resistant mutants
The fitness parameter reaches the limit ⌥ at generation t = 0, and all the mutants are
non-resistant from generation t = 0 to generation t = 432. Thus, these mutants become
increasingly disadvantageous as the number of cooperation entities grows. Since the di↵usion
rate, F , equals zero, the fitness parameter remains above ⌥ even though the number of
mutants decreases towards zero. A resistant mutant is generated at generation t = 433, and
as long as the number cooperation entities is less than the population size, N , the resistant
mutants are advantageous and grow exponentially. Since the activation rate is relatively
low, the population of resistant mutants beats the cooperation entities in the race towards
N . The initial number of intermediate mutants is i = 558. The other parameter sizes are:
N = 105, µ = 10�5, P = 0.01 and F = 0.
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Figure 12b displays the number of resistant mutants and the number of cooperation entities
as the resistant mutants invade the whole population

Figure 13a displays the number of intermediate mutants and the number of cooperation
entities before the first resistant mutant is generated

Figure 13 Moderate activation rate of cooperation entities and co-existence of
resistant mutants and wild-type individuals
The fitness parameter reaches the limit ⌥ at generation t = 0, and all the mutants are
non-resistant from generation t = 0 to generation t = 101. Thus, these mutants become
increasingly disadvantageous as the number of cooperation entities grows. Since the di↵usion
rate, F , equals zero, the fitness parameter remains above ⌥ even though the number of
mutants decreases towards zero. A resistant mutant is generated at generation t = 101, and
as long as the number cooperation entities is less than the population size, N , the resistant
mutants are advantageous and grow exponentially. However, since the activation rate of the
cooperation entities is su�ciently high, the number of cooperation entities reaches N when
the number of resistant mutants is approximately 8⇥104. Since the wild-type individuals and
resistant mutants become neutral variants, the number of each type is expected to remain
constant. The initial number of intermediate mutants is i = 1107. The other parameter sizes
are: N = 105, ⌥ = 0.1, µ = 10�4, P = 0.25 and F = 0.
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Figure 13 b displays the number of resistant mutants and the number of cooperation entities
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etter mistillitsforslaget mot Listhaug. Dagbladet (16.03.2018) Retrieved
from: https://www.vg.no/nyheter/innenriks/i/qn79Kz/fersk-maaling-frp-
fosser-frem-etter-mistillitsforslaget-mot-listhaug.

[46] Dønvold-Myhre, L. Innvandringsdebatten p̊a internett økte
under Listhaug-saken. NRK (22.03.2018) Retrieved from:805

https://www.nrk.no/norge/innvandringsdebatten-pa-internett-okte-under-
Listhaug-saken.

56




