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“A ship in port is safe; 

But that is not  

what ships are built for. 

Sail out to sea 

and do new things.”  

Grace Hopper 
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Abstract  
 

 

Ships operating in a cold climate face many challenges. There are several associated risks 

such as safety concerns, down time, energy consumption and limited resources. Amongst 

the key challenges, ship ice accretion is significant for cold climate operations. Exposing 

superstructures to the marine icing phenomenon can affect the ship’s operations, risking 

the safety of humans and machines. In this regard, a set of mandatory guidelines, the 

International Code for Ships Operating in Polar Waters (Polar Code), was released in 2015 

by the International Maritime Organization (IMO) and came into effect from 2017. 

Therefore, modern ships require a support system that can provide real-time information 

about the marine icing on different parts of the ship. 

 

This study focuses on identifying, assessing and implementing a technique that could 

provide real-time information about marine ice accretion and its thickness on a surface in 

cold environmental conditions. In this regard, due to its particular advantages, such as non-

contact measurement, area detection and the need for less observation time, infrared 

thermography (IRT) is used to remotely monitor the marine ice samples. Initially, the 

characterization of marine ice samples is performed using IRT, and experimental results 

are verified through numerical simulations, using a finite difference method (FDM). 

Thereafter, IRT is used to measure the thickness of marine ice samples when subjected to 

heating from underneath. The laboratory experiments are performed at controlled 

atmospheric conditions, and marine ice thickness up to 15mm is tested. Furthermore, an 

electrothermal coating material is manufactured for implementing large-scale anti-/de-

icing. This is achieved by using a roll to roll (R2R) coating process of carbon nanotubes 

(CNTs). The coating is manufactured on a meter-scale poly(ethylene terephthalate) (PET) 

sheet. This R2R CNT coating is characterized and demonstrated for anti-/de-icing 

purposes.  

 

The results of this study show that IRT can be used to measure the thermal properties of 

marine and pure ice. The effective values of thermal conductivity and overall heat transfer 

coefficient calculated using IRT for saline and pure ice samples agree with findings in the 

literature. A major finding of this study is that marine ice thickness has a strong correlation 

with the time taken to respond to the change in temperature, subject to heating being 

provided from underneath. It is also shown that marine ice thickness is empirically 

correlated with the rate of change of temperature and time to reach a certain temperature 

difference. Furthermore, a R2R CNT coating is successfully implemented on a meter-scale 

PET sheet, which shows linear current to voltage response. This electrothermal coating 

material can be used for anti-/de-icing of large surfaces. 
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1.Introduction and background   
 

The Arctic region has become a region of interest for many stakeholders. These 

stakeholders involve policy makers, oil and gas enterprises, tourism, fishing merchants, 

the renewable energy industry, the mining sector, researchers and the indigenous 

population. The interest has led to commercial activity, which is continuously on the rise 

inside the region (Jensen, 2008). The Arctic includes Barents Sea, Alaska, northwest and 

east Russia, eastern Canada and the Green shelf (Figure 1). The commercial activity has 

stimulated the maritime and shipping operations. For instance, the statistics from Miller 

and Ruiz (2014) show that northern sea route (NSR) transit had increased by 20% from 

2009 to 2013. However, maritime operations in cold climates are not easy, and there are 

various challenges, compared to the normal weather maritime operations (Marchenko, 

2012). These challenges can be summarized as harsh weather conditions, machine and 

human safety, limited support, inadequate infrastructure and a sensitive ecosystem 

(Makkonen, 1984; Ryerson, 2011; Shellard, 1974; Ayele and Barabadi, 2016). 

 

 
Figure 1: Arctic region  
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Harsh weather conditions constitute the key contributing factor affecting shipping 

operations in cold climate regions. In the Arctic Ocean, various accidents have been 

reported (Marchenko, 2012), the major cause of which has turned out to be the climate, 

along with human factors. Considering climatic factors, marine icing is a well-known 

phenomenon affect maritime operations. It is necessary for the safety of humans and ships 

to be ensured in such severe icing conditions (Figure 2). In this regard, the International 

Maritime Organization (IMO) has taken several steps to improve shipping safety standards 

in polar waters and a guideline was introduced in 2002 (IMO, 2002). In recognition of the 

need to improve the standards, provision for ship ice mitigation was introduced in the 

IMO’s set of guidelines in the International Convention for the Safety of Life at Sea – 

SOLAS (IMO, 2004). The most significant development was made in 2015, in order to 

improve the IMO’s set of guidelines. An improved version of the International Code for 

Ships Operating in Polar Waters (Polar Code) was released in 2015 (IMO, 2015). The aim 

of the Polar Code was to increase ship safety and reduce the social/environmental impact 

due to shipping operations in polar waters (IMO, 2015). The Polar Code addresses a wide 

range of issues, especially ice mitigation and removal. 

 

 
Figure 2: Ice accretion on a ship (Photo credit: Norwegian Coast Guard/Håkon 

Kjøllmoen) 

 

The icing on ships and offshore structures is caused by two factors: namely, atmospheric 

sources and sea spray. The atmospheric sources include freezing rain, supercooled fog and 

snow (Foder, 2001; Fikke et al., 2006). Sea spray is generated by wave collisions, waves 

breaking due to strong winds and bursting bubbles floating on waves (Lozowski E.P, 2000; 

C.D O’Dowd, 2008). Marine ice accretion can be a threat to a ship’s safety by affecting its 

stability and equipment (Wiersema et al., 2014).  

 

The mitigation of ice, particularly that generated from sea spray, becomes significant for 

ensuring safe operations in cold climates. Although it is difficult to predict the level of 

icing on marine platforms, attempts increased after the 1940s, when several ship accidents 

were reported (Sawada, 1968; Shellard, 1974). Samuelsen (2017) has comprehensively 

described the evolution of ship-icing prediction methods, starting from the 1960s, when 
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icing was included in the 1SYNOP code for weather observation (WMO, 1962). 

Thereafter, several icing nomograms were developed (Sawada, 1962; Mertins, 1968). The 

nomograms by (Mertins, 1968), Wise (1980); (Comiskey et al., 1984) and Overland et al. 

(1986) were developed from the data collected from ships operating in the oceans of Japan 

and Canada, the Gulf of Alaska and northeast of the Pacific Ocean. In addition, numerical 

prediction models from wave-ship interactions were developed from the 1970s (Kachurin 

et al., 1974) and, to date, they are being continuously improved (Comiskey et al., 1984; 

Roebber and Mitten, 1987; Zakrzewski et al., 1988; Horjen, 2013; Dehghani et al., 2017; 

Fazelpour et al., 2017; Samuelsen et al., 2017). These available ice prediction models are 

derived from input parameters relating to atmospheric conditions such as wind speed, sea 

surface temperature and air temperature.  

 

Ice prediction models are one of the means to mitigate ship icing. In addition, there are 

several anti-/de-icing methods to reduce ice accretion on ships. Most of these methods 

have evolved from procedures in the aviation, electric and transportation industries that 

are adaptable to the marine environment (Ryerson, 2011). Ship sections can also be 

prioritized in different categories and anti-/de-iced with respect to the implication of the 

safety standards. Det Norske Veritas (DNV) classifies ship equipment and parts into two 

major categories, the first of which includes navigation, propulsion, anchorage, steering 

and life-saving equipment. It is recommended that these items are anti-iced under all 

conditions during operation. The second category includes superstructure, deck, railings, 

helipad and cargo deck area. Equipment in this category can be de-iced within 4–6 hours 

after ice accretion. Almost 15 classes of de-icing and anti-icing technologies have been 

identified for marine platforms (Ryerson, 2009), most of which involve chemical, thermal 

and mechanical methods. Amongst them, some technologies are in the development phase. 

In addition to manual techniques, anti-/de-icing technologies can be active or passive, 

categorized on the basis of being with or without power requirement. For instance, heat is 

a traditional active source of anti-/de-icing. 

 

Overall, there is no single technology that could satisfy the entire anti-/de-icing needs of a 

ship (Ryerson and Tripp, 2014). This is due to the diversity in the ship’s operations, its 

size and shape and the type of ice formed.   

 

1.1. Research motivation  

 

The anti-/de-icing of ships operating in a cold climate is a key challenge for the shipping 

industry. There are several risks associated with the anti-/de-icing such as safety concerns, 

down time, energy consumption and limited resources. This thesis is a part of a 2MAROFF 

programme, entitled “Optimization of Ship Operations in Arctic Waters by Application of 

Sensor Technologies for Ice Detection, De-icing and Weather Data”. This MAROFF 

programme is focused on ice protection for ships and is a co-operation between the 

University of Tromsø and its industrial partners linked to the shipping industry. The thesis 

work is related to the programme’s work package that deals with the development of a 

                                                           
1A numerical code used for reporting weather observations made by manned and automated 

weather stations.  
2 Maritime Activities and Offshore Operations – MAROFF. A programme of Norwegian research 

council 
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decision-support system, with the capability of giving an early warning about the risk of 

icing accretion (MAROFF, 2013). Although the decision support system of a particular 

ship can be supported with better forecasts of icing for days or weeks (Samuelsen, 2017), 

there is also a need for a support system that could give real-time information about the 

marine icing on different parts of the ship. This information on marine icing could assist 

the ship’s officers to take necessary actions in the case of severe ice accretions. At present, 

marine icing on ships is removed through traditional manual methods and/or by applying 

heat to the surface in order to anti-/de-ice. Real-time monitoring of marine icing on ships 

can also help the forecasting methods on the ships, ultimately strengthening the decision-

support system of ships operating in a cold climate.    

 

1.2. Problem statement 

 

Exposing ship superstructures to marine icing phenomenon can affect operations, risking 

human and machine safety. The response time to take appropriate measures in moderate 

to severe ice accretion is critical, in order to minimize the risk. The traditional anti/de-icing 

systems are inadequate to address this issue appropriately. Hence, an efficient support 

system is required for anti/de-icing mechanisms. Furthermore, traditional anti/de-icing 

systems consume a lot of energy in heating the superstructures, as they are powered on 

during the entire operation, irrespective of the presence of ice. 

 

This requires an engineering solution that would give a realistic picture of the marine icing 

phenomenon occurring on a ship. The support system would improve efficiency, if this 

solution were to contribute to providing key information about the presence of ice. To my 

knowledge, no solution exists to date, to remotely monitor marine icing, including the 

marine ice thickness, in real time on ships. Hence, there is need for an engineering solution 

for the shipping industry that is efficient, energy-saving and capable of monitoring the 

real-time picture of the marine icing phenomenon on superstructures.  

 

This study attempts to provide an engineering solution, as it focuses on validating and 

implementing a remote sensing technique infrared thermography (IRT) to monitor the 

marine icing conditions on the superstructures. This study provides the methodology for 

detecting the phenomenon of marine icing, along with the thickness of the icing. It also 

includes the manufacturing and testing of an electrothermal coating material from carbon 

nanotubes (CNTs) for anti-/de-icing purposes.   

 

1.3. Research questions 

 

The research problem of this study focuses on identifying, assessing and implementing a 

technique that could assist in providing real-time information on marine ice accretion and 

its thickness on a surface in cold environmental conditions. This research problem is 

narrowed down to produce the following research questions:  
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RQ1 How is ship icing generated, and what are the existing anti-/de-icing systems 

to mitigate the marine ice?  

RQ2 Is infrared thermography (IRT) a viable technique to monitor cold objects? 

How is this technique (IRT) used to characterize the thermal properties of 

marine ice? 

RQ3 How can marine ice thickness be remotely detected/measured using IRT? 

RQ4 How can active heating on a large scale be implemented for anti-/de-icing?  

 

1.4. Research objectives 

 

The research questions from the above lead to the following research objectives of this 

study: 

 

1. Understand the marine icing phenomenon and the existing tools, techniques and 

methods used to mitigate icing on ships.  

2. Perform infrared thermography (IRT) and simulation analysis, in order to characterize 

the thermal properties of marine ice, in comparison with fresh water ice.  

3. Perform controlled experimentation, using IRT, to measure the marine ice thickness 

and its correlated parameters. 

4. Manufacture and test a customized electrothermal coating to demonstrate the anti-/de-

icing capability. 

 

1.5. Scope of the research 

 

The scope of this study is to remotely monitor the marine ice thickness using IRT. The 

characterization of marine ice samples is experimentally tested and verified using IRT. 

After the characterization of marine ice, experimentation is performed in controlled climatic 

conditions to measure the marine icing thickness. The methodology of this study is 

developed and implemented, taking into consideration the assumption that marine ice starts 

to accrete, or it has already accreted on a surface. Area-observation of marine ice samples 

is performed, in comparison with point-observation measurements. The methodology is 

developed, keeping in view the ship’s superstructure, such as decks, pathways, stairs etc., 

where it is not feasible to place point sensors.  

 

1.6. Limitations 

 

 The results of this study are only based on laboratory experiments.  

 

 All experiments are performed using IRT with only long wave infrared (LWIR) 

cameras, with a spectral range of 8µm to 13µm.  

 

 The marine ice used is prepared experimentally by freezing the sea water in a freezer. 

 

 Ice properties were determined under natural convection at RTP. Conduction in the ice 

is thermal, in conjunction with convection and radiation to the surrounding 
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environment. Effective values of thermal conductivity and overall heat transfer 

coefficient are used (not the absolute values). 

 

 This study is limited to observing the thermal properties of marine and pure ice 

samples, measuring marine ice thickness up to 15mm. 

 

 The ice samples for measuring thickness are prepared and only observed on a flat 

surface.  

 

 The marine icing thickness parameters are observed inside a simulated cold climate 

environment.  

 

 The marine ice thickness computed from experimentation can slightly vary if the 

method is implemented on a real platform i.e. on a ship’s structure. The calibration 

will then be required on a real platform. This calibration will depend upon certain 

factors such as the salinity of the ice, trapped air within the ice, viewing angle of the 

installed IR camera, and the installation/thermal specifications of the heating elements 

and the insulating materials placed underneath.   

 

 A qualitative anti-/de-icing demonstration of roll to roll (R2R) CNT coating is only 

performed inside the cold room and in atmospheric conditions. 
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2. Research methodology 
 

This study focuses on identifying, assessing and implementing a technique that could 

assist in providing real-time information about marine ice accretion including its thickness 

on a surface in cold environmental conditions. The phenomenon of severe ice accretion 

during marine operations is mainly caused by sea spray and atmospheric factors, with sea 

spray icing being a major contributor to icing on ships/offshore structures. Paper I 

discussed the various theoretical and experimental models for predicting the icing rate 

that deal with the specific set of parameters in a particular environment. In addition, 

various anti-/de-icing technologies have been reviewed and it has been found that no 

single anti-/de-icing technique can satisfy the entire ice protection requirements of a ship 

or an offshore platform. This is because the ice accretion phenomenon in cold regions is 

complex and more localized and reliable ice detection is required to support anti-/de-icing 

systems.  

 

2.1. Introduction to infrared thermography (IRT) 

 

Infrared (IR) radiation lies in the band of the electromagnetic spectrum between the 

wavelengths of 0.7μm to 1mm. The IR band is subdivided into short wave IR (SWIR), 

ranging from 0.9 μm to 1.7μm, medium wave IR (MWIR), ranging from 1μm to 5μm, 

and long wave IR (LWIR), ranging from 8μm to 13μm. The infrared spectrum is shown 

in Figure 3. 

 

Figure 3: IR Spectrum 
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The thermal radiation emitted from many objects exists in the infrared region. This is due 

to the fact that all physical objects above absolute zero (zero kelvin) will emit some 

radiation, regardless of the state of matter, i.e. solids, liquids and gasses. Plank’s law (Eq. 

(1)) gives us the spectral energy (𝐵𝜆) per steradian per square meter of area and per meter 

of wavelength (𝜆). 

𝐵𝜆(𝑊𝑎𝑡𝑡. 𝑠𝑟−1. 𝑚−3) =
2ℎ𝑐2

𝜆5

1

𝑒

ℎ𝑐
𝜆𝑘𝐵𝑇−1

                                (1) 

where ℎ is Planck’s constant (6.6𝑥10−34𝐽/𝑠), 𝑘 is Boltzmann’s constant (1.4𝑥10−23𝐽/

𝐾) and 𝑐 is the velocity of light 2.99𝑥108𝑚/𝑠.  

   

Differentiating Eq. (1) gives us the wavelength at which the spectral energy is at its 

maximum value (𝜆𝑚𝑎𝑥). This is Wien’s law, as given in Eq. (2). 

𝜆𝑚𝑎𝑥(𝜇𝑚) =
2898

𝑇(𝐾)
                                                         (2) 

The total amount of energy (𝑊) radiated from the object can be obtained by integrating 

Eq. (2), which gives us the Stefan–Boltzmann law, as shown in Eq. (3). 

𝑊(𝑊𝑎𝑡𝑡. 𝑚−2) =  𝜖𝜎𝑇(𝐾)4     (3) 

where 𝜀 is the emissivity, i.e. the ratio with respect to black body (dimensionless), 𝜎 is the 

Stefan–Boltzmann constant (𝑊/(𝑚2. 𝐾4) and 𝑇 is the surface temperature (𝐾). 

Infrared cameras are used to detect the emitted radiation from the surface of a target object 

and translate into a visual image. This image contains the information of the surface 

temperature of the target object that can be post processed for further analysis.   

 

2.2. Feasibility of IRT for remotely monitoring marine icing  

 

In marine operations, remote detection of icing can be effective, as it can assist in the 

detection of a larger surface area. In order to remotely monitor the marine icing on a 

surface area, infrared thermography (IRT) is a viable technique. IRT has certain 

advantages such as non-contact measurement, non-destructive testing, area detection and 

less observation time. Remote monitoring of ice upon surfaces has been tested in the 

aviation industry, where icing on aircraft wings was observed using infrared cameras 

(Gregoris et al., 2004). The effectiveness of IRT in marine ice accretion on superstructures 

needs to be investigated. Specific infrared cameras are currently being used in marine 

operations to detect  icebergs floating in the sea; this indicates the possible applicability 

of infrared devices in the marine environment (FLIR®, 2016). 

 

IRT has a common application in observing high-temperature objects. High-temperature 

objects emit more radiation, resulting in a higher photon count that collides with the 

surface of the infrared (IR) sensor. Therefore, it is much easier to detect high-temperature 

objects with IRT.  On the other hand, the colder objects contribute to less infrared 

emissions. In this case, an object’s emissivity and environmental factors become all the 
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more significant. However, ice is a good emitter of IR radiations, with the emissivity lying 

in the range of 0.8 to 0.95 (Figure 4), based on its formation and freshness, with zero 

being a poor emitter and 1 being highly emissive.  

 

 

Figure 4: Emissivity of ice with wavelength (μm) (Zhang, 1999; Khawaja et al., 2016) 

 

In contrast to measuring high-temperature objects, IRT has also been used to observe cold 

objects such as snow, freezing lakes and pure and saline ice (Barber et al., 2014; Rashid et 

al., 2015; Rashid et al., 2016; Hori et al., 2013; Shea and Jamieson, 2011; Fazelpour et al., 

2016). In a controlled experimental setup, marine ice can be identified and its thermal 

gradients can be observed using IRT as reported in the preliminary work of this study 

(Rashid et al., 2015; Rashid et al., 2016). Figure 5 shows an illustration of IRT on the top 

surface of a random marine ice sample, in comparison with a pure ice sample when allowed 

to warm up naturally through natural convection. Figure 5 shows that IRT can be used to 

observe the surface temperature of marine ice in a controlled environmental setup. This is 

demonstrated in Paper II and Paper III. Moreover, the thermal conductivity of marine ice 

can also be computed and verified using IRT (Paper II). 

 

2.3. Salinity of marine icing samples used in the study 

 

Marine ice samples used in the study were prepared from seawater collected from 

Norskhavet (GPS 69°41'07.2"N 19°00'23.3"E). Controlled laboratory tests were 

performed to measure the salinity. The average salinity of five samples is shown in Table 

1. The salinity of seawater sample was calculated as 46.4±0.9 g/l. 
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Figure 5: IRT of marine ice samples’ top surface, in comparison with the pure ice sample 

subjected to similar conditions (adopted from (Rashid et al., 2015)) 

 

Table 1: Salinity of marine icing samples used for experiments 

 

IRT is the focal point of this study, and the author has professional training in 

thermography (Category 1 Thermography ISO18436, Category 2 Thermography 

ISO18436, and Category 3 Thermography ANSI/ASNT CP- 105). 

 

 

 

  

Salinity Calculation 

 

Sample Empty wt. 

container 

(g) 

Seawater + 

container 

(g) 

Dried 

wt (g) 

Salt + 

water 

(ml) 

Water 

only 

(litre) 

Salt 

wt. (g) 

Salinity 

(g/litre) 

1 176.8 245 179.8 68.2 0.0652 3 46.0 

2 180 249 183 69 0.066 3 45.5 

3 178 248 181.2 70 0.0668 3.2 47.9 

4 178.8 247.3 181.8 68.5 0.0655 3 45.8 

5 178.7 249.9 181.9 71.2 0.068 3.2 47.1 

  Average                                      46.4 

Standard Deviation                   0.9 
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3. Discussion of the results  
  

This chapter discusses the results relevant to research questions of this study. These results 

include the numerical simulations and experimental findings. In addition, a qualitative 

demonstration of an electrothermal coating for anti-/de-icing is presented.   

 

Section 3.1 discusses sea spray icing in marine operations and ongoing/developed methods 

to mitigate icing conditions (Paper I). In Section 3.2, results are discussed in relation to 

marine and pure ice’s thermal conductivity, obtained experimentally using IRT, and its 

verification through numerical simulation (Paper II). In Section 3.3, the results are related 

to measuring the marine ice thickness from IRT, including the correlated parameters 

(Paper III). Section 3.4 presents the electrothermal characterization and anti-/de-icing 

performance of R2R CNT coating (Paper IV). 

 

3.1. Paper I 

 

Review of Marine Icing and Anti-/De-icing Systems  

Rashid, T.; Khawaja, H. A.; Edvardsen, K. Journal of Marine Engineering and Technology 

2016; Vol. 15(2), pp. 79-87 

 

The number of operations in cold regions has increased, due to oil exploration and other 

interests. The phenomenon of severe ice accretion during marine operations is mainly 

caused by sea spray and atmospheric factors, with sea spray icing being a major contributor 

to icing on ships/offshore structures. The main source of sea spray icing is the spray 

generated by collisions between the structure and waves. The phenomenon of sea spray 

ice accretion begins to occur after the generation of sea spray, when the air temperature 

drops below the freezing point of seawater (approximately –2 °C). As shown in Figure 6, 

the airborne liquid water droplets carried by cold air impinge on the structure, creating ice, 

followed by a liquid water film. With the growth of ice thickness, sea salt precipitates, 

creating pure ice and brine pockets. Under gravity, the liquid water film drains as runoff 

water. In such cases, the majority of water upon impact is drained off from the icing 

surface, and only a small amount is entrapped; this process of ice growth on a structure is 

known as wet growth (Makkonen, 1987). 

 

Theoretical and experimental models for predicting the icing rate deal with the specific set 

of parameters in a particular environment, and, hence, they are difficult to generalize for 

all sorts of shipping platforms and sea conditions.  

 

Ice can be detected using a variety of technologies, which sense the presence of ice, based 

on its mass, electrical and thermal properties. These devices are specific to the operational 
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environment and the area of application, e.g. point detection, event occurrence, mass, rate, 

etc. 

 

 

 
 

Figure 6: Sea spray icing accretion phenomenon (Makkonen, 1987) in Figure 1 of    

Paper I 

 

Homola et al. (2006) categorized ice detection using direct and indirect methods and 

reviewed various available ice detectors. Ryerson (2011) discussed four ice detection 

technologies, which include imaging, remote sensing, conformal and probe detection 

methods, and highlighted that remote imaging ice detection could be implemented in areas 

of ships and offshore platforms such as decks, stairs and open working areas. Foder (2001) 

issued a standard for ice accretion on all kinds of structures, except for electric overhead 

line conductors. A comprehensive review of ice detection devices is provided by Fikke et 

al. (2006), as shown in Table 2. This work includes ice detection requirements from the 

perspective of available standards, experience from icing data collection/measurements 

and long-term recommendations for icing measurements. 

 

The key finding of Paper I is that no single anti-/de-icing methodology can satisfy the 

entire ice protection requirements of a ship or an offshore platform (Ryerson and Tripp, 

2014). The ice accretion phenomenon in cold regions is complex and more localized; it 

requires reliable ice monitoring to support anti-/de-icing systems. Ice detection techniques 

work on various physical properties such as mass, liquid water content, electrical and 

thermal properties, etc. Some of these properties are used in commercially available ice 

detectors, while work to develop more reliable ice detectors is ongoing. 
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Table 2: List of available ice detectors (Fikke et al., 2006) in Table 4 of Paper I 

S. No. Instrument Manufacturer Technique 

1.  Rosemount 0872J / 

0871LH1  

Goodrich (USA)  

 

 

Vibrating rods 

2.  Rosemount 872C2 

(ASOS-USA) 

Goodrich (USA) 

3.  SYGIVRE (Icing Rate 

Meter (IRM)) 

Hydro Quebec – 

Transénergie (CA)  

4.  Vibrometer (Prototype)  Boschung (CH) 

5.  Infralytic IR detector 

(Prototype)  

Infralytic (D), 

MeteoSwiss (CH)  

Direct back-

scattering of infrared 

beam 

6.  T21, T23 and T26 HoloOptics (SE) Infrared beam 

reflected on surface 

7.  ICEmeter IAP (CZ)   

 

Weight 

measurement 

8.  METEO device EGU (CZ)  

9.  IceMonitor Combitech (SE) 

10.  ICECylinder (Prototype) FMI (FI)  

11.  EAG 200 No longer manufactured 

12.  Rotating Multicylinder 

(Prototype) 

VTT (FI), STATNETT 

(NO) 

LWC and droplet 

size measurement 

13.  Gerber Gerber Scientific Inc. 

(USA)  

14.  Labko LID-3210C  Wavin-Labko (FIN) Active/passive 

microwave 

15.  Instrumar IM101 V2.4  Instrumar Inc. (CA)  Electrical impedance 

based 

16.  Jokkmokk  Segerström (SE) Light obstruction 

17.  IceMeister www.newavionics.com  
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3.2. Paper II 

 

Determination of Thermal Properties of Fresh Water and Sea Water Ice using 

Multiphysics Analysis 

Rashid, T.; Khawaja, H. A.; Edvardsen, K. The International Journal of Multiphysics 

2016; Vol. 10(3), pp. 277-291 

 

The results presented in Paper II demonstrate the characterization of marine ice samples, 

using IRT and numerical simulations. In this regard, successful experiments were 

performed to measure the variations in the surface temperatures of marine ice samples 

using IRT. Finite difference method (FDM) simulations were performed to compare the 

coefficient of thermal conduction (also known as thermal conductivity) and the overall 

heat transfer coefficient (the amount of heat transfer, based on the temperature difference 

between the two points), using Eq. (7) and Eq. (8) which are shown later. For comparison 

purposes, a pure ice sample was included in the experimentation and the simulation 

process.  

 

Variations in the surface temperatures of marine and pure ice were observed 

experimentally using IRT, and the setup is shown in Figure 7. These variations depend on 

two primary heat transfer parameters: namely, conductivity of ice within the icing block 

and overall heat transfer coefficient. The heat equation is represented in Eq. (4), which can 

be numerically solved using the boundary and initial conditions.   

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝑞̇ +  

𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
)    (4) 

Where 𝜌 is density of the medium (𝑘𝑔 𝑚3⁄ ), 𝑐 is specific heat (𝐽/(𝑘𝑔. 𝐾)), 𝑞̇ is the 

volumetric energy generation term (𝑊 𝑚3)⁄ , 𝑇 is the temperature (𝐾), 𝑥 refers to the 

spatial position (𝑚), 𝑘 is the coefficient of thermal conductivity (𝑊/(𝑚. 𝑘)) and 𝑡 is the 

time (s). 

The convective boundary conditions are applied on each external icing surface of the 

cubical geometry, as shown in Eq. (5).   

−𝑘
𝜕𝑇𝑠

𝜕𝑥
= ℎ(𝑇∞ − 𝑇𝑠)         (5) 

where 𝑇𝑠 is the surface temperature (𝐾), 𝑇∞ is the surrounding temperature (𝐾) and ℎ is 

the convective heat transfer coefficient (𝑊 (𝑚2. 𝐾⁄ )).  
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Figure 7: Testing the feasibility of IRT for observing marine ice thermal gradients, in  

Figure 4 of Paper II 

 

The finite difference method (FDM) is used to numerically solve the heat equation (Eq. 

(4)). This method approximates the differentials with differences by discretizing the 

dependent variables (temperature, in this case) in the independent variable domains (space 

and time, in this case) (Patankar, 1980). The individual discretized value of the dependent 

variable is referred to as a nodal value. In the numerical simulation, the heat equation is 

discretized using a Forward Time Central Space (FTCS) FDM. The discretized equation 

is given in Eq. (6). 

 

 

𝑇𝑖,𝑗,𝑘
𝑡+1 = 𝑇𝑖,𝑗,𝑘

𝑡 + 𝛼
(𝑇𝑖+1,𝑗,𝑘

𝑡 − 2𝑇𝑖,𝑗,𝑘
𝑡 + 𝑇𝑖−1,𝑗,𝑘

𝑡 )

(∆𝑥)2
∆𝑡 

+𝛼
(𝑇𝑖,𝑗+1,𝑘

𝑡 − 2𝑇𝑖,𝑗,𝑘
𝑡 + 𝑇𝑖,𝑗−1,𝑘

𝑡 )

(∆𝑦)2
∆𝑡 

+𝛼
(𝑇𝑖,𝑗,𝑘+1

𝑡 − 2𝑇𝑖,𝑗,𝑘
𝑡 + 𝑇𝑖,𝑗,𝑘−1

𝑡 )

(∆𝑧)2
∆𝑡 

(6) 

where 𝛼 is the thermal diffusivity term (𝑚2 𝑠⁄ ). The superscript 𝑡 and subscripts 𝑖, 𝑗, 𝑘 

refer to time and position for a value of nodal temperature, respectively. ∆𝑡 is a time step 

size (s) and ∆𝑥, ∆𝑦, ∆𝑧 are the differences in the spatial positions of the temperature nodes.  

 

The boundary condition is also discretized using the FDM, but only applied to the outer 

surfaces, as shown in Eq. (7). 

 

 −𝜆
(𝑇𝑖+1,𝑗,𝑘

𝑡  −  𝑇𝑖,𝑗,𝑘
𝑡 )

∆𝑥
= ℎ(𝑇∞ − 𝑇𝑖,𝑗,𝑘

𝑡 ) (7) 

where 𝜆 is the coefficient of thermal conductivity (𝑊/(𝑚. 𝑘)). 
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For the stability and accuracy of FDM, it is necessary to choose the correct time step value. 

The courant-Fredrick’s-Lewis CFL condition (Patankar, 1980; Courant et al., 1928) is used 

to decide the time step size in the simulations. The CFL condition for the heat equation is 

given in Eq. (8). 

 2𝛼∆𝑡 ≤  (∆𝑥)2  (8) 

The thermal properties of marine and pure ice were simulated by solving Eq. (6) and (7) 

and post-processing in MATLAB® (MATLAB®, 2015). The simulated values of thermal 

conductivities of ice and its temperature variations with time are compared with the IR 

images. 

 

3.2.1. Coefficient of thermal conduction 

 

The coefficient of thermal conduction (also known as thermal conductivity) determines 

the amount of heat transfer, based on the temperature difference between the two points. 

Figure 8 and Figure 9 show the variation in the temperature of the fresh water and saline 

water ice cubes, respectively. Table 3 gives the corresponding values of thermal 

conductivity. 

 

Table 3: Coefficient of Thermal Conduction of Fresh Water and Saline Water Ice in 

Table 1 of Paper II 

Coefficient of Thermal Conduction of Ice (𝝀) Value (W/(m.K)) 

Fresh Water Ice 2.35 

Saline Water Ice 0.8 

 

The coefficient of thermal conductivity of fresh water ice is found to be in agreement with 

the literature (Petrenko and Whitworth, 2002). The coefficient of thermal conductivity of 

saline water ice is found to be less than the values stated in the literature. The reason for 

such behaviour can be explained by the fact that the saline ice started to melt far earlier in 

the experiments. This created a layer of water around the ice cube, hence reducing the 

effective thermal conductivity of the ice cube. The thermal conductivity of saline water is 

in the range of 0.5-0.7 (W/(m.K)) (Ramires et al., 1995). The thermal conductivity varies 

with temperature; however, the experimentation results show the average values over a 

temperature range (-30oC to 0oC). The temperature contours are not symmetric in 

experiments, as can be seen in Figure 8b and Figure 9b. This can be associated with the 

influence of buoyancy. 

 

3.2.2. Coefficient of overall heat transfer 

 

The coefficient of overall heat transfer (also known as the overall heat transfer coefficient) 

determines heat flux from one body to another. In the given case, the overall heat transfer 

coefficient determines the amount of heat energy being transferred from the surroundings 

to the ice cubes. In order to calculate the heat transfer coefficient, the variation in 

temperature is monitored on the ice cube surface. Figure 10 and Figure 11 show the 
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variation in temperature for the fresh water and saline water ice cubes in time. Table 3 

gives the corresponding values of thermal conductivity. 

 

The results indicate that the heat transfer coefficient of fresh water ice is almost twice that 

of saline water ice under the same room conditions. This can further be linked to the 

observation that saline water ice started to melt in the initial stages and, hence, built a coat 

of water on the ice, consequently reducing its heat transfer. The coefficient of overall heat 

transfer varies with temperature; however, this study shows the average values (Table 4). 

 

Table 4: Coefficient of Overall Heat Transfer of Fresh Water and Saline Water Ice in 

Table 2 of Paper II 

Coefficient of Overall Heat Transfer of Ice (𝒉) Value (W/(m2.K)) 

Fresh Water Ice 9.2 

Saline Water Ice 4.2 

 

 
Figure 8: Variation in temperature on the saline water ice cube after 3600s;  

(a) Finite Difference Method (MATLAB®); (b) False Infrared Image (A310 

FLIR®) in Figure 7 of Paper II  
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Figure 9: Variation in temperature on the fresh water ice cube after 2000 s;  

(a) Finite Difference Method (MATLAB®); (b) False Infrared Image (A310 FLIR®)  

in Figure 6 of Paper II 
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Figure 10: Variation in temperature with time for fresh water ice cube  

In Figure 8 of Paper II 

 

 

Figure 11: Variation in temperature with time for saline water ice cube 

in Figure 9 of Paper II 
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3.3. Paper III 

 

Marine Thickness of Marine Ice Using IR Thermography 

Rashid, T.; Khawaja, H. A.; Edvardsen, K., Cold Regions Science and Technology 2019; 

Vol. 158, pp. 221-229 

 

One of the key research objectives of this study is to measure the marine ice thickness. 

Real-time information of marine ice thickness on a ship can assist in mitigating the ice 

accretion. In this study, the marine ice thickness is determined by measuring the surface 

temperature of the marine icing samples using IRT. This is performed by applying a known 

external heat source to an icing sample for a certain period of time. The surface temperature 

of the icing sample is monitored using an IR camera during this period. The heat energy is 

supplied underneath the icing sample, using a heat source that is in direct contact with an 

icing sample.  

A marine icing sample was prepared on a surface in contact with the heating source. Both 

are kept at thermal equilibrium state. However, a thermal non-equilibrium state is created 

as soon as the heat energy is supplied from a heating source. The system tries to attain a 

thermal equilibrium state and, due to the heat transfer phenomenon, heat energy is 

transmitted from the heating source to the icing sample. The heat transfer process in a 

three-dimensional space can be expressed by the heat equation shown in Eq. (9) (Moran, 

2003). 

𝜕𝑇

𝜕𝑡
= 𝛼 (

𝜕2𝑇

𝜕𝑥2 + 
𝜕2𝑇

𝜕𝑦2 +  
𝜕2𝑇

𝜕𝑧2)              (9) 

where 𝑇 is the temperature (𝐾), 𝛼 is the thermal diffusivity term (𝑚2/𝑠), 𝑥, 𝑦, 𝑧 are the 

spatial dimensions and 𝑡 is the time (sec). 

The heat transfer process causes a temperature distribution within the icing sample. The 

temperature distribution within the icing sample is 𝑇 (𝑥, 𝑡), with 𝑥 a spatial coordinate (𝑚) 

and 𝑡, time (sec). The marine icing sample under observation is enclosed inside a container 

with an open top surface, as shown in Figure 12. The heat energy is supplied to the icing 

sample from beneath. As a result, the surface temperature is changed, due to the heat 

transfer occurring from the bottom to the top of the icing surface. The change in surface 

temperature (∆𝑇) of the icing sample is due to the one-dimensional heat flow. The one-

dimensional heat transfer can be expressed by the heat equation shown in Eq. (4): 

 

3.3.1. One-dimensional conductive heat transfer within ice by applying 

external heat  

 

The mode of heat transfer between the two solid mediums (heating source and marine icing 

sample) is conduction. This process can be described in terms of an appropriate rate 

equation, describing the amount of energy being transferred per unit time (heat flux). The 

rate equation for the conduction is known as Fourier’s law, and the heat flux 𝑞𝑥
"  (𝑊/𝑚2) 

in a single dimension with temperature distribution 𝑇(𝑥) can be expressed as Eq. (10). 
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𝑞𝑥
" =  −𝑘 

𝑑𝑇

𝑑𝑥
            (10) 

The temperature distribution (
𝑑𝑇

𝑑𝑥
) within the icing sample is due to the conditions 

occurring at the boundaries; i.e., the point of contact of the icing samples with the metallic 

plate of the heating source, as shown in Figure 12. The conduction process in the icing 

sample is determined by the temperature distribution within the icing samples. Figure 12 

explains the relationship between the heat flux (𝑞𝑥
" ), temperature distribution (

𝑑𝑇

𝑑𝑥
) and a 

single-dimensional coordinate system (x-axis) of an icing sample.  

 

 

 

 

 

 

 

 

 

 

Figure 12: Relationship between heat flux, temperature gradient and coordinate system 

within an icing sample in Figure 2 of Paper III (adapted from (Moran, 2003)) 

 

Provided the boundary conditions are similar, the temperature distribution (
𝑑𝑇

𝑑𝑥
) will change 

within the icing sample for different thicknesses (𝑡h). As a result, the temperature (𝑇2) at 

the surface of the icing sample will vary. The surface temperatures (𝑇2) of marine icing 

samples with different thicknesses (𝑡ℎ1, 𝑡ℎ2 … ) are analysed to address research objective 

3. For comparison purposes, similar temperatures (𝑇1) and environmental conditions are 

provided for the icing samples.  

The thickness (𝑡ℎ) of the marine icing sample was evaluated in a laboratory-scale 

experimentation illustrated in Figure 13. The thickness levels of the marine icing samples 

were analysed as a function of surface temperature gradient ∆𝑇 (℃) and time 𝑡 (𝑠𝑒𝑐), as 

shown in Eq. (11). 

𝑡ℎ = 𝑓(∆𝑇, 𝑡)                     (11) 

The infrared camera was used to measure the surface temperature gradient (∆𝑇) of the 

marine icing samples. The infrared camera measures the changes in surface temperature 

by capturing its radiation intensity, as described in Eq. (3). 

The experimental setup consists of icing containers, a high definition IR camera, cold 

room, a customized hardware control unit, a software interface and a cold box, as             

Ice thickness 

(𝑡h) 

Temperature gradient 

 

𝑞𝑥
" (𝑥) 𝑇(𝑥) 

T1 

T2 

𝑞𝑥
" (𝑥) 

Metal plate of the heating 

source 

 

𝑑𝑇

𝑑𝑥
 

Aluminium wall  

 

Marine icing 

sample 

 

Open top 

Surface 



3    Discussion of the results 

24 
 
 

shown in Figure 13. The sea water was collected from Norskhavet (GPS 69°41'07.2"N 

19°00'23.3"E) in order to prepare the marine icing samples. The marine icing samples of 

different thicknesses, 5mm, 10mm and 15mm, were frozen inside the icing containers in 

the cold room. The icing samples were taken out of the cold room and put inside the cold 

box, along with the hardware control unit, as shown in Figure 13. Inside the cold box, the 

temperature is adjustable down to -55oC. The experimentation was performed at different 

temperatures inside the cold box from -15oC to -30oC. The infrared camera was mounted 

on a stand at an angle of 90° to observe the thermal behaviour of the icing samples in the 

containers when heated from beneath. 

 

 
Figure 13: Experimental data collection to measure marine ice thickness in Figure 4 of 

Paper III 

 

The results presented in Paper III demonstrate the measurement of marine ice thickness 

using IRT where marine ice is subjected to an externally controlled heating source. The 

average surface temperature of the marine ice samples shows a particular response when 

heated inside the cold environment. This particular response (shown in Figure 14) can be 

acquired by plotting the average surface temperature (𝑇) of the ice against time. 

Figure 14 shows three parameters of interest. One is the time (𝑡0) required for the first 

significant change in temperature, with respect to the starting temperature (𝑇𝑜). It is the 

time calculated immediately after the heating was turned on until the surface temperature 

of the ice started to rise. The second parameter is the rate of change in the surface 

temperature (
𝜕𝑇

𝜕𝑡
) of the ice. The third parameter is the time (𝑡𝑓) taken by the ice sample 

to reach ∆𝑇 = 5°𝐶. It was observed that all these parameters represented a distinct 

response for different ice thicknesses (𝑡ℎ). 
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Figure 14: Thermal response of ice surface during heating in Figure 6 of Paper III  

 

The parameters, time to respond (𝑡0), rate of change of temperature (
𝜕𝑇

𝜕𝑡
), and time to reach 

∆𝑇 of 5oC (𝑡𝑓), can be empirically correlated to the initial temperature (𝑇0) and ice 

thickness (𝑡ℎ). It was found that time to respond (𝑡0) had a strong correlation with ice 

thickness (𝑡ℎ). 

 

Three ice samples’ thicknesses were selected for comparison (5mm, 10mm and 15mm), as 

shown in Figure 15. They had a total volume of 2.2cm3, 4.4 cm3, and 7.2 cm3, respectively. 

These samples were tested for thickness at three different initial temperatures (𝑇𝑜): -20°C, 

-25°C and -30°C.   

 

 
 
 
 

 

 

 

 

 

 

 

 

Figure 15: IR images of the surface areas of the ice samples in Figure 7 of Paper III   
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Table 5 shows a summary of the parameters listed in Figure 14. It presents the numerical 

values for time to respond (𝑡0), the rate of change in surface temperature (
𝜕𝑇

𝜕𝑡
) of ice and 

the time (𝑡𝑓) taken by the ice to reach  ∆𝑇 = 5°𝐶. These parameters can be empirically 

correlated with the ice thickness (𝑡ℎ). For instance, one of the key results indicates that the 

time to respond (𝑡0) for a particular ice thickness has a specific value. This value remains 

unchanged when the specific ice is heated at different initial temperatures (𝑇𝑜). The results 

indicate that the time to respond (𝑡0) gives a significant indication for measuring the 

thickness of the ice.  

 

Table 5: The values of (𝑡0), (𝑡𝑓), (
𝜕𝑇

𝜕𝑡
)  measured inside a cold environment at different 

initial temperatures (𝑇𝑜 = −20°𝐶, −25°𝐶, −30°𝐶) in Table 1 of Paper III 

Initial Temperature 𝑇𝑜 = −20°𝐶 

Ice thickness  

(𝑡ℎ)𝑚𝑚 

Rate of change in 

surface temperature 

(
𝜕𝑇

𝜕𝑡
) °𝐶 sec ⁄  

Time to reach 

∆𝑇 = 5°𝐶 

(𝑡𝑓) 𝑠𝑒𝑐 

Time to respond 

(𝑡0) 𝑠𝑒𝑐 

𝑡𝑜 ≈ 𝑡𝑓 −  
5

(
𝜕𝑇
𝜕𝑡

)
 

5 0.104 58 9.78 ≈ 10 

10 0.068 93 19.82≈ 20 

15 0.062 110 29.85≈ 30 

Initial Temperature 𝑇𝑜 = −25°𝐶 

Ice thickness  

(𝑡ℎ)𝑚𝑚 

Rate of change in 

surface temperature 

(
𝜕𝑇

𝜕𝑡
) °𝐶 sec ⁄  

Time to reach 

∆𝑇 = 5°𝐶 
 

(𝑡𝑓) 𝑠𝑒𝑐 

Time to respond 

(𝑡0) 𝑠𝑒𝑐 

𝑡𝑜 ≈ 𝑡𝑓 −  
5

(
𝜕𝑇
𝜕𝑡

)
 

5 0.156 42 9.91≈ 10 

10 0.109 66 19.87≈ 20 

15 0.1 80 29.78≈ 30 

Initial Temperature 𝑇𝑜 = −30°𝐶 

Ice thickness 

(𝑡ℎ)𝑚𝑚 

Rate of change in 

surface temperature 

(
𝜕𝑇

𝜕𝑡
) °𝐶 sec ⁄  

Time to reach 

∆𝑇 = 5°𝐶 
 

(𝑡𝑓) 𝑠𝑒𝑐 

Time to respond 

(𝑡0) 𝑠𝑒𝑐 

𝑡𝑜 ≈ 𝑡𝑓 −  
5

(
𝜕𝑇
𝜕𝑡

)
 

5 0.185 37 9.95≈ 10 

10 0.113 64 19.85≈ 20 

15 0.106 77 29.77≈ 30 

 

The time required for the sample to respond (𝑡0) increases with its thickness (𝑡ℎ). Table 5 

shows that the time (𝑡0) taken for 15mm is greater (15 seconds), compared to that for 

10mm- and 5mm-thick ice (10 seconds and 5 seconds, respectively). It is also observed 

that 𝑡0 is independent of the starting temperature (𝑇𝑜). 
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The rate of change in the surface temperature of ice (
𝜕𝑇

𝜕𝑡
) decreases with its thickness (𝑡ℎ), 

as shown in Table 5. For instance, there is a rapid rise in surface temperature of 5mm-thick 

ice, compared to that of 10mm- and 15mm-thick ice. Considering a specific ice thickness, 

the rate of change in temperature (
𝜕𝑇

𝜕𝑡
) varies with starting temperature. For instance, 

(
𝜕𝑇

𝜕𝑡
) of 10mm ice at (𝑇𝑜) of −20°𝐶 differs from that when  (𝑇𝑜) is −25°𝐶 and −30°𝐶. 

Similar behaviour can be observed for the 5mm- and 15mm-thick ice. 

 

Table 5 also shows the values of the time (𝑡𝑓) taken by the ice to reach a five-degree rise 

in temperature (∆𝑇 = 5°𝐶). A direct relationship can be observed between 𝑡𝑓 and ice 

thickness (𝑡ℎ) at a specific initial temperature (𝑇𝑜). The time (𝑡𝑓) increases with 

increasing ice thickness (𝑡ℎ). For instance, 𝑡𝑓 calculated for a 5mm-thick ice sample is 58 

seconds (at 𝑇𝑜 =  −20°C). This value (𝑡𝑓) is less than that of the 10mm- and 15mm-thick 

ice (𝑡𝑓 = 93 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 𝑎𝑛𝑑 𝑡𝑓 = 110 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ), respectively. The rest of the (𝑡𝑓) values 

in Table 5 show similar behaviour to that discussed. Considering the variable (𝑇𝑜), we 

observe an increase in time (𝑡𝑓) with a decrease in starting temperature (𝑇𝑜) for a specific 

ice thickness (𝑡ℎ). For instance, the time (𝑡𝑓) taken by 5mm-thick ice is 37 seconds at 

 𝑇𝑜 =  −20°C , while, at -25°C and -30°C, 𝑡𝑓 is greater, i.e. 42 seconds and 58 seconds, 

respectively.    

 

Table 6 summarizes the relationship between the correlated parameters. The time (𝑡0, 𝑡𝑓) 

and rate of temperature change (
𝜕𝑇

𝜕𝑡
) respond to ice thickness in a specific manner, as 

described in the discussion above. We observed that (𝑡0) is the reliable parameter for 

detecting ice thickness.  This is because (𝑡0) is the time when heat transfer is only 

happening through the metal surface, adhesive and ice. Essentially, it is due to conduction 

and is highly predictable, regardless of the environmental conditions. Hence, (𝑡0) could 

be a direct means to measure ice thickness.  However, (𝑡0) would be non-linear if ice 

thickness is considerably large and the initial temperature (𝑇𝑜) is close to freezing 

temperatures. The reason for this is the phase change of the ice surface that is in touch with 

the heating (i.e. ice melts at the heater contact). 

 

The rate of temperature change (
𝜕𝑇

𝜕𝑡
) is not solely dependent on the conduction 

phenomenon. It is also dependent on convection on the ice surface. From the heat transfer 

point of view, (
𝜕𝑇

𝜕𝑡
) would be non-linear to ice thickness, mainly due to convection. In 

addition, it will be dependent on the environmental conditions. 

 

The time (𝑡𝑓)  for a five-degree (Celsius) rise (∆𝑇 = 5°𝐶) is an integral effect of 

conduction and convection. Similar to (
𝜕𝑇

𝜕𝑡
), (𝑡𝑓) would also be non-linear and dependent 

on the environmental conditions. If  (𝑇𝑜) is not low enough then it would record the effect 

of phase change (ice melts at the heater contact).  

 

 

 



3    Discussion of the results 

28 
 
 

Table 6: Correlation matrix of ice thickness (𝑡ℎ) with time to respond (𝑡0), time to reach 

∆𝑇 = 5°𝐶 (𝑡𝑓) and rate of change in surface temperature (
𝜕𝑇

𝜕𝑡
) in Table 2 of Paper III 

 

Variable 

Correlated Parameters 

𝑡0 𝑡𝑓
∗ 𝜕𝑇

𝜕𝑡

∗

 
𝑇0 

𝑡ℎ D D I N x 

𝑇0 (for specific 𝑡ℎ) x I I N - 

 

x  = Independent or Weak Relationship 

I   = Inverse Relationship 

*subject to environmental conditions  

 

D = Direct Relationship           

N= Nonlinear 
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3.4. Paper IV 

 

Roll to Roll CNT Coating for Electro Thermal Heating  

Rashid, T.; Liang, HL.; Chiodarelli, N.;  Khawaja, H. A.; Edvardsen, K.; De Volder, M. 

Manuscript ready. 

 

In this paper, a roll-to-roll (R2R) slot-die coating process for thin film carbon nanotube 

(CNT) heaters is demonstrated. In this process, a continuous CNT suspension is coated on 

a PET film substrate, subsequently dried and packaged. This process allows for continuous 

square-meter-size coating. The electrical resistance and thermal signatures of these 

samples are measured by high definition infrared (IR) thermography. Anti-/de-icing 

demonstrations of R2R CNT coated samples are performed inside a cold room and outdoor 

atmospheric icing conditions. 

 

3.4.1. CNT in thin film preparation 

 

CNT thin films are generally prepared using either solution processing of CNT 

suspensions or dry spinning methods. Solution-processed CNT films are fabricated by dip 

coating (Mirri et al., 2012) , spin coating (LeMieux et al., 2008), spray coating (Ramasamy 

et al., 2008), vacuum filtration (Song et al., 2009), in-jet printing (Kordás et al., 2006) and 

electrophoretic deposition  (Boccaccini et al., 2006). The dry spinning approach relies on 

the processing of CNT vertically aligned forests (Lepró et al., 2010) and direct spinning 

methods from a CVD reactor (Li et al., 2004; Sun et al., 2011; Janas and Koziol, 2014). 

For a more detailed description of these methods, we refer to (Lu et al., 2012). While the 

dry spinning method has resulted in some of the best film properties and can be 

implemented in a continuous manufacturing process (Li et al., 2004), it does not profit 

from the cost benefits of commercial CNTs produced on a large scale. Roll-to-Roll (R2R) 

coating allows for a cost-effective continuous coating of CNT suspensions. Roll-to-Roll 

(R2R) coating refers to a family of manufacturing techniques, in which a flexible substrate 

is coated continuously as it is unwound from a stock roll and transferred to a rewinding 

roll. This process is particularly suited to large-area coating and has previously been used 

for coating CNTs in RFID tags (Jung et al., 2010), active matrices for multi-touch sensors 

(Lee et al., 2015), but, to our knowledge, R2R coating of CNT dispersion has not yet been 

used for CNT heaters.  

 

Large-area, low-cost heaters are particularly interesting for anti-/de-icing of ships entering 

the Arctic region. This is due to ship ice accretion caused by sea spray. Icing can affect the 

ship’s operations, risking human and machine safety (Wiersema et al., 2014; Marchenko, 

2012). At present, ice on ships is removed manually and/or by applying heat (Samuelsen, 

2017), and real-time monitoring of icing parameters (such as ice detection, ice thickness) 

is being developed (Rashid et al., 2018). This paper shows that continuous CNT films can 

be coated on PET substrates, using a standard slot-die R2R coating system. These CNTs 

films have then been used to demonstrate their thermal anti-/de-icing capability. 

 

 

 



3    Discussion of the results 

30 
 
 

3.4.2. Methods 

 

A MWCNT ink (Electra Colour™ – CNTBlack) provided by Owen Research was used 

with varying CNT concentrations. Prior to use, the CNT suspension was sonicated for two 

hours in a bath sonicator and centrifuged for about 10 min at 8000 rpm. The CNT ink was 

coated on a PET foil, using slot-die coating on a roll-to-roll coater (Easycoater, 

Coatema®). The viscosity of the CNT ink was adjusted by varying the surfactant 

composition, in order to make it suitable for R2R coating. To perform a single coating run 

on an R2R coater, 250ml of CNT ink was prepared. 

 

The coater was used to coat lengths of to 2 meters at a time, which were then dried at room 

temperature. A removable protective film was then laminated on the R2R coating for safe 

handling of the CNT films. For coating, the ink was pumped at a rate of 1.9 ml/min into 

the slot-die head. The head was fixed at a gap of 1.4 mm from the substrate. The width of 

the coating was 10 cm. The coating setup is shown in Figure 16a and 16b and a coated 

sample is shown in Figure 16c. Finally, electrical connections were applied on the CNT 

films, using RS Pro® silver conductive adhesive paint. Silver tracks were drawn in the 

CNT coating direction (Figure 16d). Figure 2 shows the complete method of R2R coating 

and characterization of CNTs on a PET substrate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: (a) Pumping CNT ink into slot die coating;  (b) coating onto PET substrate, 

(c) CNT coated roll;  (d) drawing conductive Ag ink on the CNT coating in in Figure 1 

of Paper IV 

 

After coating and connecting the CNT film, a DC electrical power supply (TENMA® 75-

8695) was used for joule heating the films. The infrared thermography (IRT) of CNT 

samples was observed using a high definition infrared camera, FLIR® (T1030Sc). The IR 

image post processing and analysis was performed using FLIR® ResearchIR software. 

 

Qualitative anti-/de-icing tests were performed on the R2R coated CNT films inside a cold 

room and outdoors in atmospheric icing conditions. Ice was frozen on the reverse side of 

the CNT coated film, while the surrounding temperature was -2oC.  Similarly, an anti-/de-

a) b) 

c) d) 
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icing experiment was performed outdoors. The atmospheric temperature was -1.5oC with 

a humidity of 88% (source: www.yr.no).  

 

 
Figure 17: Roll to roll coating and characterization of CNTs on a PET substrate in Figure 

2 of Paper IV 

3.4.3. Results and Discussion 

 

Four different CNT suspensions (1wt.% to 4wt.%) were processed to obtain coatings, 

named S1 to S4, respectively. The electrical and thermal response was measured for these 

samples. Of these samples, only S2 and S3 gave satisfactory results and are presented here. 

The current and voltage characteristics of samples S2 and S3 are shown in Figure 18. A 

linear I-V response was obtained for both samples. The electrical resistance values at the 

terminals of S2 and S3 are found to be 806Ω and 23.2KΩ, respectively.  

 

Figure 19 shows the surface IRT of S2 and S3 at 25V, 30V, and 35V. An average surface 

temperature of up to 50.3oC ± 3.8oC was observed on S2, compared to the 22.8oC ± 0.7oC 

on sample S3 at 35V. A summary of the samples’ average surface temperatures, observed 

at the particular voltages applied, is given in Table 7. 

Figure 18: I-V characteristics of R2R CNT coated samples (S2 and S3) in Figure 3 of 

Paper IV 
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Table 7: Current and temperature parameters of samples S2 and S3 at different 

voltages (dc) in Table 1 of Paper IV 

Current (I) Average surface temperature of R2R 

CNT coated sheet (8.5cm x 3cm) 

Voltage 

(dc) 

Sample Voltage 

(dc) 

Sample 

S2  S3 S2 S3 

 

10 V 

12.44 mA 0.41 mA 

25 V 35.32V±2.7 

V 

22.10±0.4 

V 

20 V 24.94 mA 0.83 mA 30 V 42.57±3.6 V 22.72±0.6 

V 

30 V 37.30 mA 1.27 mA 35 V 50.0±3.8 V 22.84±0.7 

V 

40 V - 1.71 mA 40 V - 23.15±1.0 

V 

 

 
Figure 19: Surface infrared thermography (IRT) of S2 and S3 at 

a) V=25V dc   b) V=30 V dc   c) V=35V dc in Figure 4 of Paper IV 

 

A qualitative de-icing demonstration, using the R2R CNT coated sample S2 (area 25.5 

cm2), was performed inside the cold room, as shown in Figure 20. Time-elapsed photos 

and IR images were taken at 60-second intervals to show the process of de-icing over the 
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CNT film surface (Figure 20). The IR image of Figure 20a shows the ice and PET sheet at 

a surrounding temperature of -2oC. Similarly, Figure 21 shows an outdoor de-icing 

experiment in Tromsø, Norway (25-11-2018, GMT18:20). The coating sample kept the 

heated area ice-free and prevented further ice accretion (Figure 21 a-c). 

 

 
Figure 20: De-icing demonstration of R2R CNT coated sheet (IR and colour images), 

when ice is frozen inside cold room at steady state temperature of -2oC in Figure 5 of 

Paper IV 

 

 

 

 
Figure 21: Anti-/de-icing demonstration of R2R CNT coated sheet (IR and colour 

images) in atmospheric icing conditions (Tromsø, Norway, 25-11-2018, GMT: 18:20) in 

Figure 6 of Paper IV 
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3.5. Summary of appended papers 

 

The relationship between the appended papers and the research questions formulated (in 

this study) can be shown in Table 8, with +++ denoting the strongest and + the weakest 

relationship. This relationship is also presented in Figure 22.  

 

Table 8. The appended papers addressing the research questions 

Paper Research 

Question 1 

Research 

Question 2 

Research 

Question 3 

Research 

Question 4 

Paper I +++ + + + 

Paper II ++ +++ + - 

Paper III ++ ++ +++ ++ 

Paper IV + ++ ++ +++ 

 

 

Paper I 

 

This paper mainly contributes to Research Question 1 of this study. The paper’s aim is to 

review the phenomenon of icing in marine operations. In this regard, sea spray icing is 

discussed, and an overview of the ice accretion prediction models and their fundamental 

parameters is provided. This paper also reviews the anti-/de-icing technologies that can be 

implemented in cold climate regions. A brief review of the ice detection technologies is 

also presented in this paper, in order to understand the various methods to mitigate the 

icing conditions.  

 

Paper II 

 

Addressing Research Questions 1 and 2 of this study, this paper provides a foundation for 

adopting infrared thermography (IRT) as a remote monitoring tool to characterize marine 

ice in comparison with pure ice. The paper has two major parts: experimental results and 

simulation analysis. The experimental results prove the feasibility of employing IRT to 

observe marine ice by monitoring thermal gradients on its surface. For comparison 

purposes, fresh water ice is also observed in similar conditions. The second part of this 

paper provides the simulation analysis, based on the finite difference method. The 

simulation analysis validates the experimental results of IRT by confirming the marine and 

pure ice thermal conductivity and overall heat transfer coefficient.   

 

Paper III 

 

This paper addresses Research Questions 1 to 4 of this study. This paper successfully 

demonstrates the measurement of marine icing thickness using IRT when icing samples 

are subjected to control heating from beneath. The marine ice thickness is calculated using 

laboratory-scale experiment, and the key parameters associated with the marine ice 

thickness are identified and empirically correlated. The experimentation results show that 
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time to respond (𝑡0), rate of change of temperature (
𝜕𝑇

𝜕𝑡
), and time to reach ∆𝑇 of 5oC (𝑡𝑓) 

can be empirically correlated with initial temperature (𝑇0) and ice thickness (𝑡ℎ). It was 

also demonstrated that time to respond (𝑡0) had a strong correlation with ice thickness (𝑡ℎ) 

and the methodology can be implemented on larger ships that will require setup calibration.  

 

Paper IV 

 

This paper addresses Research Question 1, 2 and 4 of this study. It is demonstrated that 

the R2R coating of CNT ink on a PET substrate allows for the continuous fabrication of 

heaters, which show promising properties for this application. CNT suspensions with 

different viscosities were coated and tested electrically and thermally. In addition, 

qualitative anti-/de-icing demonstrations are presented, both in a climate chamber and 

outdoors using natural snow. These heaters, therefore, show promise for the anti-/de-icing 

of ships in arctic waters.  

 

 
 

Figure 22: Relationship between the appended papers and research questions 
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4. Research contributions and 

suggestions for future work 
 

4.1. Research contribution 

 

This study can be seen as contributing in two major areas: the validation of IRT to remotely 

monitor marine ice thickness, and the manufacturing of a thermoelectric material that can 

be used in ships’ anti-/de-icing systems. In light of these, the study makes the following 

scientific contributions: 

 

 The study has demonstrated the potential of infrared thermography (IRT) to observe 

marine ice in a cold climate environment. The possibility of remotely monitoring 

marine ice in a controlled environment has been investigated. 

 

 The study has provided a method to measure the thickness of marine icing, using an 

external heating source. This method can be implemented in any existing and/or 

modified anti-icing/de-icing system with setup calibration. 

 

 The study has demonstrated the possibility of deploying a customized electrothermal 

anti-icing/de-icing coating material, manufactured from carbon nanotubes (CNTs). 

The excellent electrothermal properties of CNT are utilized, and PET sheets are coated 

with CNTs, using an industrial R2R coater.  

 

4.2. Suggestions for future work 

 

Based on the research presented in this thesis, the following points for future research are 

suggested:  

 

 The laboratory-scaled prototype to measure marine ice thickness can be scaled up to 

be tested on a ship. Further work can be done by devising a method to calibrate the 

setup on a large scale. For instance, the calibration setup will involve further 

investigation of the thermal distribution of the heating elements used for anti-/de-icing 

elements, optimal distribution of the target areas, optimal height and distance the 

infrared camera is placed from the target, and the safety and protection of equipment 

exposed to the cold climate.  

 

 The electrothermal CNT ink can be further improved to achieve uniform heating over 

the entire coated area. Thereafter, the coating material can be applied to different areas 
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of the ship, and real-time marine icing can be observed through IRT combined with 

active heating.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



References 

39 
 
 

 

 

 

 

References  
 

Ayele YZ and Barabadi A. (2016) Risk based inspection of offshore topsides static 

mechanical equipment in Arctic conditions. 2016 IEEE International Conference 

on Industrial Engineering and Engineering Management (IEEM). 501-506. 

Barber D, Ehn J, Pućko M, et al. (2014) Frost flowers on young Arctic sea ice: The 

climatic, chemical, and microbial significance of an emerging ice type. Journal of 

Geophysical Research: Atmospheres 119. 

Boccaccini AR, Cho J, Roether JA, et al. (2006) Electrophoretic deposition of carbon 

nanotubes. Carbon 44: 3149-3160. 

Comiskey A, Leslie L and Wise J. (1984) Superstructure icing and forecasting in Alaskan 

waters. Arctic Environmental information and Data Center. Seattle: University of 

Alaska. 

Courant R, Friedrichs K and Lewy H. (1928) Über die partiellen Differenzengleichungen 

der mathematischen Physik. Mathematische Annalen 100: 32-74. 

Dehghani S, Naterer G and Muzychka Y. (2017) Transient heat conduction through a 

substrate of brine-spongy ice. Heat and Mass Transfer 53: 2719-2729. 

Fazelpour A, Dehghani SR, Masek V, et al. (2016) Infrared image analysis for estimation 

of ice load on structures. Arctic technology conference. Offshore Technology 

Conference. 

Fazelpour A, Dehghani SR, Masek V, et al. (2017) Ice load measurements on known 

Ssructures using image processing methods. World Academy of Science, 

Engineering and Technology, International Journal of Electrical, Computer, 

Energetic, Electronic and Communication Engineering 11: 907-910. 

Fikke S, Ronsten G, Heimo A, et al. (2006) Cost 727: atmospheric icing on structures. 

Measurements and Data Collection on Icing: State of the Art, Publication of 

MeteoSwiss 75: 1422-1381. 

FLIR®. (2016) Iceberg ahead! Available at: http://www.flir.eu/marine/display/?id= 

52805. 

Foder MH. (2001) ISO 12494" Atmospheric Icing of Structures" and How to Use It. 

Proceedings of the llth International Offshore and Polar Engineering Conference. 

Stavanger, Norway, 1-880653. 

Gregoris D, Yu S and Teti F. (2004) Multispectral imaging of ice. Electrical and Computer 

Engineering, 2004. Canadian Conference on. IEEE, 2051-2056. 

Homola MC, Nicklasson PJ and Sundsbø PA. (2006) Ice sensors for wind turbines. Cold 

Regions Science and Technology 46: 125-131. 

Hori M, Aoki T, Tanikawa T, et al. (2013) Modeling angular-dependent spectral emissivity 

of snow and ice in the thermal infrared atmospheric window. Applied optics 52: 

7243-7255. 



References 

40 
 
 

Horjen I. (2013) Numerical modeling of two-dimensional sea spray icing on vessel-

mounted cylinders. Cold Regions Science and Technology 93: 20-35. 

IMO. (2002) Guidelines for ships operating in Arctic ice-covered waters. IMO Marine 

Safety Committee Circular 1056 and Marine Environmental Protection 

Committee Circular 399. International Maritime Organization. 

IMO. (2004) SOLAS, consolidated edition, 2004: consolidated text of the International 

Convention for the Safety of Life at Sea, 1974, and its Protocol of 1988 : articles, 

annexes and certificates: International Maritime Organization. 

IMO. (2015) International Code of Safety for Ships Operating in Polar Waters (Polar 

Code). International Maritime Organization. 

Janas D and Koziol K. (2014) A review of production methods of carbon nanotube and 

graphene thin films for electrothermal applications. Nanoscale 6: 3037-3045. 

Jensen Ø. (2008) Arctic shipping guidelines: towards a legal regime for navigation safety 

and environmental protection? Polar Record 44: 107-114. 

Jung M, Kim J, Noh J, et al. (2010) All-Printed and Roll-to-Roll-Printable 13.56-MHz-

Operated 1-bit RF Tag on Plastic Foils. IEEE Transactions on Electron Devices 

57: 571-580. 

Kachurin L, Gashin L and Smirnov I. (1974) Icing rate of small displacement fishing boats 

under various hydrometeorological conditions. Translation into english from 

Meteorol. Gidrol. (Moscow). 

Khawaja H, Rashid T, Eiksund O, et al. (2016) Multiphysics simulation of infrared 

signature of an ice cube. The International Journal of Multiphysics 10. 

Kordás K, Mustonen T, Tóth G, et al. (2006) Inkjet Printing of Electrically Conductive 

Patterns of Carbon Nanotubes. Small 2: 1021-1025. 

Lee W, Koo H, Sun J, et al. (2015) A fully roll-to-roll gravure-printed carbon nanotube-

based active matrix for multi-touch sensors. Scientific Reports 5: 17707. 

LeMieux MC, Roberts M, Barman S, et al. (2008) Self-sorted, aligned nanotube networks 

for thin-film transistors. Science 321: 101-104. 

Lepró X, Lima MD and Baughman RH. (2010) Spinnable carbon nanotube forests grown 

on thin, flexible metallic substrates. Carbon 48: 3621-3627. 

Li Y-L, Kinloch IA and Windle AH. (2004) Direct spinning of carbon nanotube fibers 

from chemical vapor deposition synthesis. Science 304: 276-278. 

Lozowski EP, Szilder K and Makkonen L. (2000) Computer simulation of marine ice 

accretion. Philosophical Transactions of the Royal Soc A: 811–2845. 

Lu W, Zu M, Byun J-H, et al. (2012) State of the Art of Carbon Nanotube Fibers: 

Opportunities and Challenges. Advanced Materials 24: 1805-1833. 

Makkonen L. (1984) Atmospheric icing on sea structures. Hanover, (NH): US Army Cold 

Regions Research and Engineering Laboratory, 102. 

Makkonen L. (1987) Salinity and growth rate of ice formed by sea spray. Cold Regions 

Science and Technology 14: 163-171. 

Marchenko N. (2012) Russian Arctic Seas: Navigational conditions and accidents: 

Springer Berlin Heidelberg. 

MAROFF. (2013) Optimization of ship operations in Arctic waters by application of 

sensor technologies for ice detection, de-icing and weather data. Project 

description.  

MATLAB®. (2015) version 8.5.0.197613. Natick, Massachusetts: The MathWorks Inc. 

Mertins HO. (1968) Icing on fishing vessels due to spray. Marine Observer 38: 128-130. 



References 

41 
 
 

Miller AW and Ruiz GM. (2014) Arctic shipping and marine invaders. Nature Clim. 

Change 4: 413-416. 

Mirri F, Ma AW, Hsu TT, et al. (2012) High-performance carbon nanotube transparent 

conductive films by scalable dip coating. ACS nano 6: 9737-9744. 

Moran MJ. (2003) Introduction to Thermal Systems Engineering: Thermodynamics, fluid 

mechanics, and heat transfer: Wiley. 

O’Dowd CD, Varghese S., Scannell C., Ceburnis D., Facchini M.C. (2008) A combined 

organic‐inorganic sea‐spray source function. Geophys Res Lett. 35. Article 

Number:L01801 

Overland J, Pease C, Preisendorfer R, et al. (1986) Prediction of vessel icing. Journal of 

Climate and Applied Meteorology 25: 1793-1806. 

Patankar S. (1980) Numerical Heat Transfer and Fluid Flow: Taylor & Francis. 

Petrenko V and Whitworth R. (2002) Physics of Ice. Oxford Univ. Press. 

Ramasamy E, Lee WJ, Lee DY, et al. (2008) Spray coated multi-wall carbon nanotube 

counter electrode for tri-iodide (I3-) reduction in dye-sensitized solar cells. 

Electrochemistry Communications 10: 1087-1089. 

Ramires ML, Nieto de Castro CA, Nagasaka Y, et al. (1995) Standard reference data for 

the thermal conductivity of water. Journal of Physical and Chemical Reference 

Data 24: 1377-1381. 

Rashid T, Khawaja HA and Edvardsen K. (2016) Ice detection of pure and saline ice using 

infrared signature. Sensors & Transducers 206: 82. 

Rashid T, Khawaja HA and Edvardsen K. (2018) Measuring thickness of marine ice using 

IR thermography. Cold Regions Science and Technology. 

Rashid T, Khawaja HA, Edvardsen K, et al. (2015) Infrared thermal signature evaluation 

of a pure and saline ice for marine operations in cold climate. Sensors & 

Transducers 194: 62. 

Roebber P and Mitten P. (1987) Modelling and measurement of icing in Canadian waters. 

Downsview, Ontario: Canadian Climate Centre. 

Ryerson CC. (2009) Assessment of superstructure ice protection as applied to offshore oil 

operations safety. Hanover (NH): US Army Corps of Engineers. 

Ryerson CC. (2011) Ice protection of offshore platforms. Cold Regions Science and 

Technology 65: 97-110. 

Ryerson CC and Tripp ST. (2014) Managing Offshore Superstructure Icing. OTC Arctic 

Technology Conference. Houston, Texas: Offshore Technology Conference, 16. 

Samuelsen EM. (2017) Prediction of ship icing in Arctic waters-Observations and 

modelling for application in operational weather forecasting. Doctoral Thesis. 

UiT- The Arctic University of Norway. 

Samuelsen EM, Edvardsen K and Graversen RG. (2017) Modelled and observed sea-spray 

icing in Arctic-Norwegian waters. Cold Regions Science and Technology 134: 54-

81. 

Sawada T. (1962) Icing on ships and its forecasting. Journal of Japanese Society of Snow 

and Ice, Tokyo 24: 12-14. 

Sawada T. (1968) Ice accretion on ships in northern seas of Japan. Journal of the 

Meteorological Society of Japan. Ser. II 46: 250-254. 

Shea C and Jamieson B. (2011) Some fundamentals of handheld snow surface 

thermography. The Cryosphere 5: 55. 

Shellard HC. (1974) The Meteorological Aspects of Ice Accretion on Ships. Marine 

Science Affairs Geneva: World Meteorological Organization, 34. 



References 

42 
 
 

Song X, Liu S, Gan Z, et al. (2009) Controllable fabrication of carbon nanotube-polymer 

hybrid thin film for strain sensing. Microelectronic Engineering 86: 2330-2333. 

Sun D-m, Timmermans MY, Tian Y, et al. (2011) Flexible high-performance carbon 

nanotube integrated circuits. Nature Nanotechnology 6: 156. 

Wiersema E, Lange F, Cammaert G, et al. (2014) Arctic Operations Handbook JIP. OTC 

Arctic Technology Conference. Offshore Technology Conference. 

Wise JAC, A. L. (1980) Superstructure icing in Alaskan waters. NOAA Special Report. 

Seattle, WA: Pacific Marine Environmental Laboratory. 

WMO. (1962) Precipitation Measurements at Sea. Geneva: World Meteorological 

Organization. 

Zakrzewski WP, Lozowski EP and Muggeridge D. (1988) Estimating the extent of the 

spraying zone on a sea-going ship. Ocean Engineering 15: 413-429. 

Zhang Y. (1999) MODIS (Moderate Resolution Imaging Spectrometer), USCB Emissivity 

Library Available at: https://icess.eri.ucsb.edu/modis/EMIS/html/em.html. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

43 
 
 

 

 

 

 

 

 

 

 

 

 

Part II – Appended Papers 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

44 
 
 

 

 

 

 



45 
 

 

 

 

 

 

 

Paper I 

 

Rashid, T.; Khawaja, H. A.; Edvardsen, K. “Review of marine icing and anti-

/de-icing systems”. Journal of Marine Engineering and Technology 2016 ;Vol. 

15.(2) s. 79-87; DOI: 10.1080/20464177.2016.1216734 

  

Author contributions: The literature review was conducted by Taimur Rashid. 

Several meetings with Hassan A. Khawaja were carried out in order to establish 

the focus of the paper, discuss its contents and structure. Thereafter, the first 

manuscript was prepared by Taimur Rashid, which was improved by Hassan 

A. Khawaja and Kåre Edvardsen. 

 

 

 

 

 

 

 

 

 

 

 

  



57 
 

 

 

 

 

 

 

Paper II 

 

Rashid, T.; Khawaja, H. A.; Edvardsen, K. “Determination of Thermal 

Properties of Fresh Water and Sea Water Ice using Multiphysics Analysis”. The 

International Journal of Multiphysics 2016 ;Vol. 10.(3) s. 277-291; DOI: 
10.21152/1750-9548.10.3.277 

  

Author contributions: The experimentations were conducted by Taimur 

Rashid and improvements were suggested by Hassan A. Khawaja. The 

numerical simulation model was provided by Hassan Abbas Khawaja and 

Taimur Rashid performed further experimentations. The manuscript was 

written by Taimur Rashid and Hassan A. Khawaja. Kåre Edvardsen provided 

his comments to improve the manuscript. 

 

 

 

 

 

 

 

 

 

 

 

 



73 
 

 

 

 

 

 

 

 

Errata: Correct figure numbers referred in the text are given below 

Journal CRST, Vol. 158 (2019), pp. 221-229. 
 

Incorrect figure 

no. referred in the 

text 

Journal 

Page no. 

Section Correct 

figure no. 

Fig. 5 222 2. Methodology Fig. 3 

Fig. 2 223 2.1.1. LWIR camera Fig. 3 

Fig. 5 223 2.1.3. Environmental test 

chamber 

Fig. 3 

Fig. 2 223 2.1.4. Ice containers Fig. 3 

Fig. 4 226 2.2. Operating cycle Fig. 5 

Fig. 8, Figure and 

Fig. 10 

227 3. Results and Discussion Figs. 8, 9, 

and 10 

Fig. 1 228 3. Results and Discussion Fig. 5 

 

Paper III 

 

Rashid, T.; Khawaja, H. A.; Edvardsen, K. “Marine thickness of marine ice 

using IR thermography”. Cold Regions Science and Technology 2019; Vol. 158, 

pp. 221-229; DOI: 10.1016/j.coldregions. 2018.08.025.   

  

Author contributions: Taimur Rashid initiated the main idea and performed 

initial experiments. The idea was further discussed with Hassan A. Khawaja. 

The detailed experimentation, data collection and analysis were conducted by 

Taimur Rashid. The results of this study were discussed with Hassan A. 

Khawaja and Kåre Edvardsen who contributed by suggesting some 

improvements. The initial manuscript was written by Taimur Rashid. Hassan 

A. Khawaja and Kåre Edvardsen provided feedback regarding further 

improvements in the manuscript.  



85 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Paper IV 

 

Rashid, T.; Liang, HL.; Chiodarelli, N.;  Khawaja, H. A.; Edvardsen, K.; De 

Volder, M. “ Roll to Roll coating of carbon nanotube films for electro thermal 

heating”.; Manuscript ready 

  

Author contributions: The main idea of this paper is developed is close 

cooperation with Michael De Volder (IFM, University of Cambridge, UK). 

Taimur Rashid performed initial experimentation to validate the idea. The 

initial results were discussed with Michael De Volder and Hassan A. Khawaja. 

The material preparation and characterization was done by Taimur Rashid. Dr. 

Hsin-ling Liang and Dr. Nicolò Chiodarelli provided feedback on the 

characterization results.  Michael De Volder suggested improvements in the 

characterization. Improvements were performed by Taimur Rashid. The initial 

manuscript was written by Taimur Rashid which was later modified by Michael 

De Volder.   Improvements in the manuscript were suggested by Hassan A. 

Khawaja, Kåre Edvardsen and Dr. Nicolò Chiodarelli. The manuscript was 

finalised by Taimur Rashid and proof read by Michael De Volder. 


	Electronic Copy Phd Thesis
	Title Page
	Complete Thesis _2
	Complete Thesis _1
	Final Thesis_new_2
	Final Thesis_new
	Title Page
	Phd Thesis_V10
	Author Contributions_new
	Paper I
	Author Contributions_new
	Paper II
	Author Contributions_new
	Paper III_new
	Measuring thickness of marine ice using IR thermography
	Introduction
	Cold climate operations
	Significance of ice mitigation
	Infrared thermography

	Methodology
	Experimental setup
	LWIR camera
	Cold room chamber
	Environmental test chamber
	Ice containers
	Hardware control unit

	Operating cycle

	Results and discussion
	Conclusion
	Acknowledgement
	Funding
	References


	Author Contributions_new
	Paper IV


	Author Contributions_new
	Paper I
	Author Contributions_new
	Paper II
	Author Contributions_new
	Paper III_new
	Measuring thickness of marine ice using IR thermography
	Introduction
	Cold climate operations
	Significance of ice mitigation
	Infrared thermography

	Methodology
	Experimental setup
	LWIR camera
	Cold room chamber
	Environmental test chamber
	Ice containers
	Hardware control unit

	Operating cycle

	Results and discussion
	Conclusion
	Acknowledgement
	Funding
	References


	Author Contributions_new
	Paper IV

	Page 17
	Complete Thesis _1
	Final Thesis_new_2
	Final Thesis_new
	Title Page
	Phd Thesis_V10
	Author Contributions_new
	Paper I
	Author Contributions_new
	Paper II
	Author Contributions_new
	Paper III_new
	Measuring thickness of marine ice using IR thermography
	Introduction
	Cold climate operations
	Significance of ice mitigation
	Infrared thermography

	Methodology
	Experimental setup
	LWIR camera
	Cold room chamber
	Environmental test chamber
	Ice containers
	Hardware control unit

	Operating cycle

	Results and discussion
	Conclusion
	Acknowledgement
	Funding
	References


	Author Contributions_new
	Paper IV


	Author Contributions_new
	Paper I
	Author Contributions_new
	Paper II
	Author Contributions_new
	Paper III_new
	Measuring thickness of marine ice using IR thermography
	Introduction
	Cold climate operations
	Significance of ice mitigation
	Infrared thermography

	Methodology
	Experimental setup
	LWIR camera
	Cold room chamber
	Environmental test chamber
	Ice containers
	Hardware control unit

	Operating cycle

	Results and discussion
	Conclusion
	Acknowledgement
	Funding
	References


	Author Contributions_new
	Paper IV


	Author Contributions_new
	Paper I
	Author Contributions_new
	Paper II
	Author Contributions_new
	Paper III_new
	Measuring thickness of marine ice using IR thermography
	Introduction
	Cold climate operations
	Significance of ice mitigation
	Infrared thermography

	Methodology
	Experimental setup
	LWIR camera
	Cold room chamber
	Environmental test chamber
	Ice containers
	Hardware control unit

	Operating cycle

	Results and discussion
	Conclusion
	Acknowledgement
	Funding
	References


	Author Contributions_new
	Paper IV

	Author Contributions_new
	Electronic Copy Phd Thesis
	Title Page
	Complete Thesis _2
	Complete Thesis _1
	Final Thesis_new_2
	Final Thesis_new
	Title Page
	Phd Thesis_V10
	Author Contributions_new
	Paper I
	Author Contributions_new
	Paper II
	Author Contributions_new
	Paper III_new
	Measuring thickness of marine ice using IR thermography
	Introduction
	Cold climate operations
	Significance of ice mitigation
	Infrared thermography

	Methodology
	Experimental setup
	LWIR camera
	Cold room chamber
	Environmental test chamber
	Ice containers
	Hardware control unit

	Operating cycle

	Results and discussion
	Conclusion
	Acknowledgement
	Funding
	References


	Author Contributions_new
	Paper IV


	Author Contributions_new
	Paper I
	Author Contributions_new
	Paper II
	Author Contributions_new
	Paper III_new
	Measuring thickness of marine ice using IR thermography
	Introduction
	Cold climate operations
	Significance of ice mitigation
	Infrared thermography

	Methodology
	Experimental setup
	LWIR camera
	Cold room chamber
	Environmental test chamber
	Ice containers
	Hardware control unit

	Operating cycle

	Results and discussion
	Conclusion
	Acknowledgement
	Funding
	References


	Author Contributions_new
	Paper IV

	Page 17
	Complete Thesis _1
	Final Thesis_new_2
	Final Thesis_new
	Title Page
	Phd Thesis_V10
	Author Contributions_new
	Paper I
	Author Contributions_new
	Paper II
	Author Contributions_new
	Paper III_new
	Measuring thickness of marine ice using IR thermography
	Introduction
	Cold climate operations
	Significance of ice mitigation
	Infrared thermography

	Methodology
	Experimental setup
	LWIR camera
	Cold room chamber
	Environmental test chamber
	Ice containers
	Hardware control unit

	Operating cycle

	Results and discussion
	Conclusion
	Acknowledgement
	Funding
	References


	Author Contributions_new
	Paper IV


	Author Contributions_new
	Paper I
	Author Contributions_new
	Paper II
	Author Contributions_new
	Paper III_new
	Measuring thickness of marine ice using IR thermography
	Introduction
	Cold climate operations
	Significance of ice mitigation
	Infrared thermography

	Methodology
	Experimental setup
	LWIR camera
	Cold room chamber
	Environmental test chamber
	Ice containers
	Hardware control unit

	Operating cycle

	Results and discussion
	Conclusion
	Acknowledgement
	Funding
	References


	Author Contributions_new
	Paper IV


	Author Contributions_new
	Paper I
	Author Contributions_new
	Paper II
	Author Contributions_new
	Paper III_new
	Measuring thickness of marine ice using IR thermography
	Introduction
	Cold climate operations
	Significance of ice mitigation
	Infrared thermography

	Methodology
	Experimental setup
	LWIR camera
	Cold room chamber
	Environmental test chamber
	Ice containers
	Hardware control unit

	Operating cycle

	Results and discussion
	Conclusion
	Acknowledgement
	Funding
	References


	Author Contributions_new
	Paper IV




