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Abstract 6 

There is a growing demand for the estimation of solar energy potential at high latitude locations. This study 7 
compares four datasets; Cloud, Albedo, Radiation dataset Edition 2 (CLARA), Surface Solar Radiation dataset – 8 
Heliosat Edition 2 (SARAH), ECMWF Reanalysis 5 (ERA5) and Arctic System Reanalysis v2 (ASR) on high 9 
latitude locations. Global horizontal irradiance (GHI) from these datasets is compared with in-situ ground-10 
measurements over multiple locations in Norway. The first two datasets are mainly based on satellite estimation 11 
of solar radiation, while the latter two are based on a combination of a weather-prediction model, satellite data, 12 
and other observations. The datasets are evaluated against quality-controlled in-situ measurements of solar 13 
radiation from pyranometers. Overall, CLARA, SARAH, and ERA5 show moderate errors, while those of ASR 14 
are considerably larger. Monthly averages of global horizontal irradiance have mean absolute deviation (MAD) of 15 
6.3 Wm-2, 5.8 Wm-2, 6.4 Wm-2, and 14.5 Wm-2 for CLARA, SARAH, ERA5, and ASR, respectively. Seasonal 16 
error analysis of these datasets reveals that SARAH has the lowest errors in all seasons. The datasets are classified 17 
into clear-sky, intermediate-cloudiness, and overcast categories, by using two thresholds of cloudiness based on 18 
the ratio of radiation at ground to its corresponding clear-sky value (clear-sky index). The categories obtained from 19 
satellite and reanalysis data are then compared against estimates based on corresponding in-situ observations; this 20 
analysis shows that both CLARA and SARAH perform better than ERA5 and ASR for these categories. SARAH 21 
and CLARA perform similarly in all types of conditions, but a gradual increase in errors for an increase of 22 
cloudiness is observed for ERA5 and ASR. Yearly energy analysis shows that CLARA performs better than other 23 
datasets for locations above latitude 65ºN, and SARAH performs better in locations below 65ºN. A further analysis 24 
is performed to assess the cloud sensing abilities of ERA5. On a shorter time scale, there are errors due to inaccurate 25 
representation of clouds, however on longer time scales i.e. months and years, these errors are considerably 26 
reduced. ERA5 is observed to overestimate TCWC (the total cloud water content defined as the mass of water and 27 
ice in a cloud) in clear-sky and intermediate-cloudy categories, while in overcast category it is underestimated. 28 
Generally, an overestimation of solar radiation is observed in reanalysis and an underestimation is observed in 29 
satellite methods. 30 
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1. Introduction 32 

Accurate solar resource measurements at potential photovoltaic (PV)/thermal installation sites are usually not 33 
available. For example, only a few meteorological stations record high-quality measurements in Norway (Øyvind 34 
et al., 2013). The assessment of solar resource at a specific location forms the basis for future installations. 35 
However, solar radiation is intermittent in nature and its variation on longer times scales is important for the 36 
planning of future installations (Crabtree et al., 2011). In addition, such information is also used in the long and 37 
short-term forecasting of power production and in optimizing energy dispatch strategies (Heinemann et al., 2006; 38 
Remund et al., 2008). Long time series of global horizontal irradiance (GHI) is used in the energy sector as well 39 
as in meteorology, agriculture, and climate studies. 40 

The three main components to consider before installing a solar energy system are site selection, annual output 41 
and temporal performance/operating strategy. These components are directly related to the resource potential of 42 
the site, and can be evaluated by analysing long-term historical data series. Often a typical meteorological year 43 
(TMY), which is derived from the historical data e.g. within the past 30 years, is used to assess site locations for 44 
feasibility (Hall et al., 1978). Recent studies like those of Huld et al. (2018) and  Stoffel et al. (2010) have shown 45 
that TMY is not a good indicator for predicting solar radiation for a given year, but rather it represents typical 46 
estimates of the average long-term conditions. Sufficiently long historical records from ground-measurements are 47 
seldom available for a given location for constructing a reliable TMY. Therefore satellite estimations and 48 
reanalyses provide an alternative to the ground-measurements for these estimations (Stoffel et al., 2010).  49 



 
 

Estimating surface solar radiation from the visible spectrum of sensors installed on satellites is a well-developed 50 
procedure (Cano et al., 1986; Gautier et al., 1980; Rigollier et al., 2004; Tarpley, 1979). However, the accuracy of 51 
these methods is lower than ground measurements, but the advantages of the satellite methods include large spatial 52 
and temporal coverage (Noia et al., 1993). Surface solar radiation estimated from geostationary satellites provide 53 
up to sub-hourly values on a few km grid resolution, while polar orbiting satellites provide up to daily average 54 
solar radiation. All geostationary satellites have a limited spatial coverage because these are positioned over the 55 
equator at 0º. In the case of Meteosat First Generation (MFG) and Meteosat Second Generation (MSG) 56 
geostationary satellites, they have a coverage of ±65º in latitude and longitude. At latitudes higher than these, they 57 
encounter a flat angle of view that decreases the spatial resolution and increases errors. Alternatively, polar orbiting 58 
satellites can be used at high-latitude locations, as they provide almost global coverage. The main shortcoming of 59 
polar orbiting satellites is low sensing frequency, which varies from twice daily at the equator to 14 times a day 60 
near poles (Pinker and Laszlo, 1992; Platt, 1983). Satellite-based solar radiation-estimation methods have high 61 
accuracy, but some studies like that of Gueymard (2011) and Ineichen (2014) have shown that large errors may 62 
exist.  For uncertainties and known issues within the satellite-based solar radiation estimation techniques see Suri 63 
and Cebecauer (2014). 64 

In Earth System Models (ESM) or reanalysis, solar radiation is often referred to as down-welling surface shortwave 65 
flux. There are a number of studies where reanalyses have been used to estimate solar radiation and power (Boilley 66 
and Wald, 2015; Juruš et al., 2013; Wild et al., 2015). However, an increase in bias with increasing latitude  was 67 
observed in one of the studies (Yi et al., 2011). The main advantages of reanalyses include multi-decadal time 68 
series, worldwide coverage, and free-of-cost availability. Recently, it has been found that reanalysis-based 69 
irradiance estimates can be a useful supplement when satellite irradiance is not available (Bojanowski et al., 2014; 70 
Urraca et al., 2018), although, many studies have reported overestimations in reanalysis (Boilley and Wald, 2015; 71 
Kennedy et al., 2011; Wild, 2008). 72 

The aim of this paper is to analyse four different datasets regarding their accuracy and provide a comparative 73 
analysis for high-latitude conditions. Two of these are based on satellite methods, a polar orbital Cloud, Albedo, 74 
Radiation dataset Edition 2 (CLARA 2), and a geostationary Surface Solar Radiation dataset – Heliosat Edition 2 75 
(SARAH 2). The other two are based on a combination of a weather-prediction model and various types of 76 
observations; a global reanalysis; ECMWF Reanalysis 5 (ERA5), and a dynamical downscaling of such a 77 
reanalysis (ERA-interim); Arctic System Reanalysis v2 (ASRv2). The analysis is performed for Norway, which 78 
represents a complex topography and a large variation in latitudes ranging from 59º to 70ºN. Previously, CLARA-79 
A1 and CLARA-A2 datasets have been compared for multiple locations in Norway and Sweden (Babar et al., 80 
2018). It was found that the new edition of CLARA has less number of missing data points. However, CLARA-81 
A2’s new data points, which previously were missing in CLARA-A1, have high errors. These points mostly lie in 82 
the high latitude locations where a snow cover is frequent. Because of the difficulties in differentiating snow covers 83 
from clouds, such errors exist. Here we extend this work and the novelty lies in evaluating the above-mentioned 84 
datasets for GHI for high-latitude locations and providing an analysis of these datasets in different conditions. The 85 
datasets are evaluated for daily means, monthly means, yearly means, seasonal analysis, energy analysis, and 86 
performance in different sky categories. Daily and monthly averages are evaluated by dividing the locations in 87 
four groups, including above 65ºN, below 65ºN, coastal and inland regions. In the final section, the effects of 88 
clouds in ERA5 are computed for different sky categories and compared with ground-measured solar radiation, 89 
which gives an insight into the challenges of estimating solar radiation in ERA5. 90 

This paper is formatted as follows: Section 2 gives a description of the datasets analysed in this study. Section 3 91 
provides an overview of the quality control procedures applied on the ground data and validation metrics. Section 92 
4 presents the results and provides a brief discussion. Section 5 concludes the findings of this work. 93 

2. Datasets 94 

The datasets analysed in this study have different spatial and temporal resolution. Table 1 shows an overview of 95 
the datasets. SARAH and ASR can be considered as high-resolution datasets, while CLARA and ERA5 are coarse 96 
resolution datasets. SARAH is the highest resolution dataset with hourly temporal resolution and a spatial 97 
resolution of 0.05ºx0.05º. ASR contains data with three-hour temporal resolution and a spatial resolution of 15 km 98 
(0.136º). For both of these datasets, the nearest grid point from the site location is selected for data extraction. 99 
However, CLARA and ERA5 provide data on a much coarser grid of 0.25ºx0.25º and 0.28ºx0.28º, respectively. 100 
Data extraction from these datasets is performed by selecting the four surrounding grid points at site locations and 101 
applying inverse weighted-distance interpolation to obtain solar radiation at the coordinates of the site. In case of 102 



 
 

CLARA, there are missing data points, which imply that at some of the periods there are no available data in the 103 
surrounding four points. When the surrounding points have less than three valid values, the interpolation is 104 
replaced by a missing value indicating that no valid values exist at that particular time and place. ASR and ERA5 105 
do not contain missing values.  106 

The datasets used in this study have certain spatial and temporal limitations. SARAH is limited to ±65º in latitude 107 
and longitude due to the shape of the viewing disc of MFG/MSG satellites and because of the flat viewing angle 108 
of geostationary satellites that results in increased errors above 65ºN. The evaluation of SARAH dataset is 109 
performed for locations below 65ºN latitude. CLARA and ERA5 are global datasets, whereas ASR is regional but 110 
covers all locations analysed in this study. SARAH and CLARA are available from 1983 to 2015 and 1982 to 111 
2015, respectively. At the time of writing, ERA5 is available from 2000 to 2017. The years from 2000 to 2015 are 112 
included in this study from these datasets. ASRv2 is available from 2000 to 2012 and its complete available time 113 
series is used.  114 

Table 1 115 

Description of the datasets used in this study. The period analysed, spatial and temporal resolutions are shown for 116 
each dataset. 117 

 Method Years 
analysed 

Spatial resolution Highest 
temporal 
resolution 

Spatial limits 

CLARA
-A2 

Polar-orbiting Satellite  2000-2015 0.25ºx0.25º 24 Hours Global 

SARAH
-2 

Geostationary Satellite 2000-2015 0.05ºx0.05º 0.5 Hour Limited to ±65º latitude 
and ±65º longitude 

ERA5 Reanalysis (Global) 2000-2015 0.281ºx0.281º 1 Hour Global 
ASRv2 Reanalysis (Regional 

renalaysis downscaled from 
ERA-interim) 

2000-2012 0.136ºx0.136º 3 Hours 180W - 180E longitude 
24.643N - 90N latitude 

2.1 CLARA-A2 118 

The CLARA-A2 dataset was released in December 2016 and it is the second edition of CLARA (Cloud, Albedo, 119 
Radiation dataset) by satellite application facility on climate monitoring (CM-SAF). The dataset is available from 120 
1 January 1982 to 31 December 2015, and constitutes an extension of 6 years relative to the previous CLARA-A1 121 
dataset. This dataset has global coverage with a spatial resolution of 0.25ºx0.25º on a regular lat-lon grid and it 122 
provides daily and monthly averages of surface incoming shortwave radiation (SIS). To calculate daily averages, 123 
at least 20 observations of incoming solar radiation in each grid box are required; similarly, 20 valid daily averages 124 
are required to generate monthly averages (Trentmann and Kothe, 2016). Along with SIS, CLARA also provides 125 
longwave up and down-welling surface radiation.  126 

The fundamental method used in calculating surface solar irradiance from satellite observations is based on the 127 
reflectance measured by the satellite instruments, which is related to the atmospheric transmittance. The underlying 128 
algorithm in CLARA uses the Advanced Very High Resolution Radiometer (AVHRR) sensor data to derive the 129 
atmospheric transmittance, which is used in calculating surface incoming solar radiation. The solar radiation is 130 
estimated by using the solar zenith angle, cloud coverage, vertically-integrated water vapour, and aerosol optical 131 
depth. Finding solar zenith angles is straightforward and can be calculated accurately. The vertically-integrated 132 
water vapour and aerosol optical depth are not available in the AVHRR data and for these fields, external sources 133 
are used. For vertically-integrated water vapour, ERA-Interim Reanalysis (Dee et al., 2011) is used and the vertical 134 
ozone column is set to a constant value of 335 DU, as its variability has negligible impact on the estimated solar 135 
radiation. Aerosol information is taken from the modified version of the monthly mean aerosol fields from Global 136 
Aerosol Data Set/ Optical Properties of Aerosols and Cloud (GADS/OPAC) climatology. In the algorithm, 137 
AVHRR data is used to retrieve only the cloud cover information. The first step in estimating surface solar 138 
radiation is the classification of the sky condition. The Nowcasting SAF (SAFNWC) software is used to derive 139 
the information on cloud coverage for each pixel by using the information from the satellite sensors. If no cloud is 140 
detected (cloud free pixel), surface solar radiation is calculated by using the clear-sky Mesoscale Atmospheric 141 
Global Irradiance Code (MAGIC) by using only auxiliary sources. If the pixel is classified as cloudy (cloud 142 
contaminated or fully cloudy), visible channels of AVHRR instrument are used to derive broadband reflectance. 143 
These reflectances are then transferred to broadband fluxes by using a bidirectional reflectance distribution 144 
function (BRDF). In the next step, these broadband top-of-the-atmosphere albedos are used to derive transmissivity 145 
through a look-up table approach. Finally, the transmissivity is used in calculating surface solar radiation. In this 146 



 
 

dataset, all data points with a solar zenith angle larger than 80o are set to missing values and solar zenith angle 147 
larger than 90o is set to zero. However, because a temporally constant surface albedo is used in the algorithm, this 148 
dataset does not provide radiation estimates on snow and sea ice coverage areas because changes in the albedo of 149 
the snow-covered surfaces are not considered (Karlsson et al., 2017). High-latitude locations may have a very 150 
different surface albedo than the temporally constant albedos considered in the algorithm. Such grid points are 151 
identified by calculating the difference between monthly mean CLARA-A2 SAL (surface albedo) data record and 152 
the surface albedo used in the processing of SIS. These critical grid points, which have a difference in surface 153 
albedo exceeding 35%, are masked-out from the final product by setting them as missing values. For more 154 
information on the CLARA dataset and its accuracy refer to Karlsson et al. (2017). 155 

2.2 SARAH-2 156 

The second version of surface solar radiation dataset – Heliosat (SARAH-2) is a climate data record of surface 157 
solar radiation by CMSAF (Pfeifroth et al., 2017a) and covers a period of 32 years from 1983 to 2015 and the 158 
region from 65ºN to 65ºS latitude and 65ºW to 65ºE longitude. The spatial resolution of the data is 0.05ºx0.05º 159 
(approximately 5km) and the data is available for 30 minutes instantaneous, hourly, daily, and monthly averages 160 
of surface incoming shortwave radiation on a horizontal surface, direct normal irradiance (DNI) and effective 161 
cloud albedo (CAL). To calculate daily averages at least three samples per day are required; similarly, 10 existing 162 
daily averages are required to generate monthly averages.  163 

In this dataset, the broadband visible channels from Meteosat Visible Infra-Red Imager (MVIRI) instrument on-164 
board the Meteosat first generation satellites and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) 165 
instruments on-board the Meteosat second generation satellites are used to calculate the shortwave surface 166 
radiation. In the first step, the effective cloud albedo (CAL) is retrieved from the satellite data by using a modified 167 
Heliosat method (Hammer et al., 2003). This modification of the Heliosat method in combination with gnu-168 
MAGIC/SPECMAGIC is called MAGICSOL. The modified Heliosat method provides the broadband effective 169 
CAL, but to consider the spectral effect of clouds, a Radiative Transfer Model (libRadtran) based correction is 170 
applied. The CAL is related to the cloud transmission and, hence, by calculating clear-sky radiation, the all-sky 171 
radiation can be estimated. In this dataset, for calculating clear-sky radiation the SPECMAGIC model is used, 172 
which is based on a so-called hybrid eigenvector look-up table approach (Mueller et al., 2012). The input 173 
parameters for gnu-MAGIC/SPECMAGIC are date, time, solar zenith angle, coordinates, effective cloud albedo 174 
(cloud index), water vapour column density, surface albedo, aerosol optical thickness, and single scatter albedo 175 
for aerosols. Monthly mean values of vertically-integrated water vapour are taken from ERA-interim global 176 
reanalysis record (Dee et al., 2011), and monthly mean aerosol information is taken from Monitoring Atmospheric 177 
Composition and Climate project (MACC) aerosol climatology. Surface solar radiation is derived from combining 178 
the SPECMAGIC algorithm and the effective cloud albedo (Pfeifroth et al., 2017b). One of the limitation of 179 
SARAH is that for solar zenith angles between 88º  and 90º, the corresponding data points are set as missing values, 180 
and above solar zenith angle of 90º, the data points are set to zero. Improvements in the new version of the dataset 181 
includes stability during the change of instrument from MVIRI to SEVIRI in 2006, and correction of the cloud 182 
albedo to account for the slant viewing geometry effects (Pfeifroth et al., 2018). For more information on the 183 
retrieval methods refer to Müller et al. (2015). 184 

2.3 ERA5 185 

ECMWF Reanalysis 5 (ERA5), is the fifth generation of European Centre for Medium-Range Weather Forecasts 186 
(ECMWF) atmospheric reanalysis of the global climate and span a period of 1950 to near real time (Hans and 187 
Dick, 2016). At the time of this study, data from 2000 to 2017 are available. Further data back in time will be 188 
released in 2019-20 and will continue to update forward in real-time. In ERA5, the solar radiation variable has a 189 
spatial resolution of 31km (0.28125ºx0.28125º) and an hourly temporal frequency. ERA5 uses the Integrated 190 
Forecasting System (IFS) cycle 41r2 with a state-of-the-art four-dimensional variational analysis (4DVAR) 191 
assimilation system. ERA5 has more pressure levels than ERA-Interim (the previous edition of ECMWF 192 
reanalysis) and more variables are made available for this reanalysis than for those of earlier generation. For more 193 
information on ERA5 refer to ECMWF (2018).  194 

In this study, shortwave surface downward radiation, shortwave surface downward radiation clear-sky, and total 195 
cloud water content (the vertically-integrated cloud water concentration) are used from this dataset. In ERA5, the 196 
incoming short wave radiation is obtained from a Radiative Transfer Model (RTM). This model simulates the 197 
attenuation in solar radiation caused by the atmosphere, therefore, the quality of estimated radiation depends on 198 



 
 

the RTM used. Reanalysis generally do not assimilate aerosol, clouds or water vapour data, which increases the 199 
uncertainty in the estimated surface irradiance (You et al., 2013; Zhao et al., 2013). 200 

2.4 Arctic System Reanalysis v2    201 

Arctic system reanalysis version 2 (ASRv2) is a polar-optimized dynamic downscaling of ERA-Interim reanalysis 202 
by using Weather Research and Forecast Model (WRF) version 3.6.0. The data set is available for the period of 203 
2000 to 2012. The grid resolution is 15km, which is finer than most global models and the previous release of ASR 204 
(ASRv01), whereas the time resolution of the dataset is 3 hours. The downscaling is optimized for Polar Regions, 205 
and polar physics is used where possible, including heat transfer through snow and ice, the fractional sea ice cover, 206 
the ability to specify variable sea ice thickness, snow depth on sea ice and sea ice albedo, as well as other 207 
optimizations included in the Noah Land Surface Model. The area covered by this dataset is 1.2 x 108 km2, which 208 
is about 50% of Northern hemisphere. Spectral nudging from ERA-Interim is applied on geopotential height, 209 
temperature, and wind components above 100 hPa on the inner domain. ASR uses three-dimensional variational 210 
analysis (3DVAR) for observations, including radiance data, from a number of satellites (Bromwich et al., 2017).  211 

3. Ground data 212 

In this study, 31 locations from Norway are analysed for the four mentioned datasets. The coordinates of the 213 
locations, altitudes, and land type are indicated in appendix A and an overview of site locations is shown in Figure 214 
1. The ground-measured data is acquired from the Norwegian Institute of Bioeconomy Research (NIBIO). NIBIO 215 
registers hourly-average GHI by using Kipp and Zonen CMP11 or CMP13 pyranometers. The data is quality 216 
controlled and the equipment is maintained regularly on a daily or weekly basis (http://lmt.bioforsk.no/about). The 217 
daily averages of ground data were calculated by following Urraca et al. (2017b), where these were calculated for 218 
those days when at least 20 valid hourly means were available, however when this criteria was not met the daily 219 
average was replaced by a missing value. Similarly, the monthly averages were calculated for those months when 220 
all the hourly values were available. If this condition was not met, the monthly average was replaced by a missing 221 
value (Roesch et al., 2011). The amount of missing data in the ground measurement was largely reduced because 222 
of the application of quality control procedures (explained in the next section). 223 

In this study, the numbers of years used from each data set are different. For ASR, 12 years of data is used and 16 224 
years of data is used for ERA5, CLARA, and SARAH. Furthermore, the sites are divided four groups; above 65ºN, 225 
below 65ºN, inland and coastal regions. The studied locations are divided into coastal and inland regions are 226 
grouped by observing the proximity to the shoreline. Regions within 30 km of the shoreline are considered as 227 
coastal. From the 31 locations studied here, 14 sites are classified as coastal and 17 sites as inland, while 4 sites 228 
lie above 65ºN and 27 lie below 65ºN latitude. For details on the land-type classification, refer to appendix A. 229 

http://lmt.bioforsk.no/about


 
 

 230 

Figure 1: Locations of the sites included in the study. To avoid overlapping of names some locations are shown 231 
with only white dots. 232 

3.1 Quality Control 233 

Although the data provided by NIBIO is quality controlled, Urraca et al. (2017a) observed that operational and 234 
equipment errors exist in NIBIO stations. The first quality-control check performed in this study is to look at the 235 
percentage of missing data. Any year having more than 5% of missing values is discarded from the analysis. The 236 
second check is performed by using BSRN Global Network recommended Quality Control tests, V2.0 (Long and 237 
Dutton, 2010). These quality checks test values that are extremely rare and physically impossible. From this test, 238 
years having more than 1% of flagged values are removed from the ground data. The third quality control 239 
procedure is applied by using the Urraca et al. (2017a) quality control technique. In this test, CLARA and ERA5 240 
datasets are used to check the quality of ground measurements by constructing confidence intervals to detect the 241 
operational and equipment errors. Following Urraca et al. (2017a), the locations in Norway are divided into two 242 
sections by grouping locations above 65ºN and locations below 65ºN. Separate confidence intervals are 243 
constructed for these groups of locations. After constructing these confidence intervals, the ground data is passed 244 
through an algorithm to check the data with errors, which appear in the form of flags. Following Urraca et al. 245 
(2017a) two checks are performed, one to see the operational errors and the other to see the equipment errors. After 246 
these checks, the years having large number of flags are visually inspected and removed from the analysis. Initially 247 
Pasvik, Mære, Njøs, and Ullensvang were included in the study but due to a large number of flags from the third 248 
quality control test, these were discarded. Pasvik and Ullensvang were found to have equipment errors and frosting, 249 
while Mære and Njøs were found to have shading errors. For more information on this quality control procedure 250 
refer to Urraca et al. (2017a). 2006 and 2007 were found to have a large number of missing data points; these were 251 
discarded from all locations. Gap filling methods are only used in calculating yearly energy averages by using 252 
nearest-neighbour interpolation. See appendix B for details about the years not included in the study. After 253 
performing quality control on the ground data, errors might still exist but in addition to validating the datasets, this 254 
study provides a comparative analysis of these datasets for high latitude locations. From a comparative point of 255 
view, the errors in the ground data will have a similar effect on all datasets. 256 

3.2 Validation 257 

In order to evaluate the performance of the datasets, some common statistical measures are used. The most widely 258 
used measure is the root mean square deviation (RMSD). As an addition, the BIAS or mean bias deviation (MBD) 259 
is used in the evaluation. MBD gives an insight in under or over estimations. Mean absolute deviation (MAD) is 260 



 
 

also used for the evaluations. Because of the absolute values used in this measure, the negative and positive errors 261 
do not cancel out as in the BIAS. MAD is a good measure for comparing different models. Moreover, Pearson 262 
correlation and scatter plots are used to indicate the spread and overall correlation of the datasets with ground 263 
measurements.  264 

4. Results and discussion 265 

Table 2 lists the RMSD, MAD, and MBD of the datasets for the locations included in the study. The error indicators 266 
in table 2 are expressed in Wm-2 and values in parentheses are daily averages. Night-time values are included in 267 
calculating daily and monthly averages. Along with all sites included in the study, table 2 also shows error metrics 268 
for above 65ºN, below 65ºN, inland and coastal regions. 269 

Table 2  270 
Error metrics expressed in Wm-2, for the datasets analysed in this study. Numbers without parentheses are monthly 271 
averaged errors while those in parentheses are daily averaged errors. Numbers are averaged over all stations. Error 272 
metrics for different geographical groups are also shown. 273 

 RMSD(Wm-2) MAD(Wm-2) MBD(Wm-2) 
CLARA SARAH ERA5 ASR CLARA SARAH ERA5 ASR CLARA SARAH ERA5 ASR 

All Sites 
9.5 

(18.3) 
8.7  

(18.0) 
9.9 

(26.4) 
21.7 

(42.6) 
6.3 

(12.8) 
5.8 

(11.8) 
6.4 

(16.7) 
14.5 

(27.1) 
-3.0 

(-1.7) 
-3.6 

 (-2.5) 
2.1 

(4.0) 
13.1 

(16.9) 
Above 
65ºN 

10.1 
(16.0) - 

10.9 
(26.3) 

20.3 
(39.4) 

5.3 
(9.7) - 

6.1 
(14.5) 

11.1 
(21.5) 

-3.4 
(-2.8) - 

3.8 
(5.6) 

8.0 
(11.0) 

Below 
65ºN 

9.4 
(18.6) 

8.7  
(18.0) 

9.9 
(26.8) 

21.9 
(43.0) 

6.5 
(13.2) 

5.8 
(11.8) 

6.5 
(17.3) 

15.0 
(27.9) 

-3.0 
(-1.5) 

-3.6 
 (-2.5) 

2.0 
(4.0) 

13.8 
(17.8) 

Coastal 9.1 
(17.5) 

8.5 
(17.1) 

10.0 
(26.5) 

21.8 
(41.9) 

5.9 
(12.1) 

5.6 
 (11.2) 

6.2 
(16.3) 

13.9 
(25.6) 

-2.7 
(-3.1) 

-3.4 
(-2.2) 

2.3 
(4.3) 

11.9 
(15.7) 

Inland 9.3 
(23.4) 

8.8 
 (18.4) 

10.0 
(26.9) 

21.7 
(43.1) 

6.2 
(14.5) 

5.9 
 (12.1) 

6.7 
(17.6) 

15.0 
(28.3) 

-3.0 
(-5.0) 

-3.7 
 (-2.7) 

2.2 
(4.1) 

14.0 
(18.0) 

 274 

From the table it can be seen that for all locations, SARAH provides the best estimation in terms of RMSD, while 275 
ASR performs the worst. The same pattern follows on the MAD errors where SARAH performs better than other 276 
datasets, while ASR has the highest errors. ERA5 and ASR (reanalysis models) are observed to be overestimating, 277 
similar to previous studies (Boilley and Wald, 2015; Kennedy et al., 2011; Wild, 2008). Both CLARA and SARAH 278 
(satellite databases) underestimate solar radiation (Posselt et al., 2012; Riihelä et al., 2015). At slant angles of 279 
view, such as those experienced by geostationary satellites at high latitudes, solar radiation is often underestimated 280 
by satellite methods because of an overestimation in cloud. The highest bias is seen in ASR while biases of 281 
CLARA, SARAH, and ERA5 are very similar in magnitude. 282 

The table also shows RMSD, MAD, and MBD for location categories above 65ºN, below 65ºN, coastal and inland. 283 
Above 65ºN latitude, CLARA has the lowest errors and ASR has the highest errors while ERA5 provides moderate 284 
errors. SARAH does not provide coverage above 65ºN latitude. At locations below 65ºN, SARAH and CLARA 285 
have low errors as compared to other datasets. The ASR has the highest errors at such locations as well. SARAH 286 
and CLARA have lower errors in coastal regions than inland, mainly due to less snow covers in coastal regions 287 
(Babar et al., 2018). Note that CLARA and ERA provide data at a similar spatial resolution, i.e. 0.25º and 0.28º, 288 
however the surface radiation in CLARA is calculated at much finer resolution (around 4km) than in ERA5, 289 
therefore, CLARA performs better at coastal regions. On the contrary, in inland locations SARAH provides better 290 
estimates than other datasets. CLARA comes second in terms of both daily and monthly means, while ASR 291 
performs the worst. In this analysis, ERA5 is seen to perform better at locations below 65ºN than above 65ºN 292 
latitude.   293 

Figure 2 (a-h) illustrates the scatter plots of the monthly and daily averages of the datasets. The black coloured 294 
line represents the x=y line for reference. Evidently, CLARA and SARAH have a very similar spread on both 295 
monthly and daily averages. A correlation of 0.98 for daily means and 0.99 for monthly means are observed for 296 
both of these datasets. ASR has a wider spread in scatter plots with correlation coefficients of 0.99 and 0.92 for 297 
monthly and daily means respectively. In addition, a positive bias in ASR monthly averages can be observed. 298 
ERA5 has an intermediate spread with a correlation of 0.99 for monthly averages and 0.95 for daily averages. 299 
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Figure 2: Monthly mean and daily mean GHI scatter plots of the datasets. Ground in-situ observations and 300 
estimated values of solar radiation are given in Wm-2. The legend bar shows the density of data points on a coloured 301 
scale. Satellite data show narrow spread and underestimation while reanalyses show wider spread and 302 
overestimation. 303 

Table 3 304 
Statistical errors of the yearly average energy estimates for the datasets in kWh per square meter and year on a 305 
horizontal surface. Energy statistics for different geographical groups are also shown.  306 

 
Energy (KWh.m-2.year-1/percentage error) 

CLARA SARAH ERA5 ASR 
Est. Obs. %Err. Est. Obs. %Err. Est. Obs. %Err. Est. Obs. %Err. 

All Sites 838.4 862.9 -2.8 861.2  880.5 -2.2 908.1  862.9 +5.2 1017.1  865.5 +17.5 
Above 65ºN 711.7 715.5 -0.5 - - - 806.0 715.5 +12.6 870.4  751.3 +15.9 
Below 65ºN 853.5 880.5 -3.1 861.2  881.2 -2.3 920.3  881.2 +4.4 1034.8  879.3 +17.7 

Coastal 845.4 857.6 -1.4 882.2  899.9 -1.9 904.9 857.6 +5.5 1009.4  862.6 +17.0 
Inland 832.3 867.5 -4.1 847.1  867.5 -2.4 911.0 867.5 +5.0 1023.2  867.9 +17.9 

 307 

In addition to daily and monthly errors, energy stakeholders use the yearly solar radiation energy averages to 308 
evaluate the existing energy systems and plan new projects. Estimated yearly radiation gives an insight into the 309 
total production of such systems and can be compared with the yearly consumption to increase efficiency of such 310 
systems. Table 3 shows yearly average energy outputs in terms of estimated, observed and percentage error. The 311 
yearly energy averages were calculated by integrating the daily averages of the datasets. The gaps in CLARA, 312 
SARAH and ground-measured data are filled by using nearest-neighbour interpolation. The SARAH performs 313 
better than other datasets, but with CLARA following just behind. Above 65ºN, CLARA gives much lower 314 
deviations than ERA5 and ASR, while SARAH has no coverage. It can be observed from the table that ERA5 315 
performs better at inland locations while other datasets perform better at coastal regions. It has been documented 316 
that satellite estimation methods deteriorate over snow-covered surfaces. In Norway, usually inland locations have 317 
a higher snow-depth than the coastal regions. Because of the shortcoming of satellite estimation algorithm in the 318 
differentiation of clouds from snow covers, satellite-based data do not perform as well in snow-covered areas as 319 
on snow-free areas. However, both satellite-based datasets underestimated the energy as shown by a previous study 320 
(Babar et al., 2018), while the reanalyses are observed to be overestimating. ERA5 overestimates the energy 321 
production much more at locations above 65ºN than below; other datasets give very similar deviations in energy 322 
averages at different locations. The results of this analysis shows that below 65ºN latitude, the SARAH 323 
performance is better than that of the other data sets. In addition to higher spatial and temporal resolution, the 324 
errors in this dataset are low. Above 65ºN, only CLARA gives reasonable errors.  325 

Analysis of yearly averaged GHI in terms of RMSD, MAD and MBD is shown in appendix D. For the yearly 326 
averages, high errors are observed in ASR when all locations are taken into account, while CLARA, SARAH, and 327 
ERA5 give considerably lower errors. CLARA is observed to perform better at coastal locations than in the inland 328 
regions, while the errors increase at locations above 65ºN. SARAH has no coverage above 65ºN, and the deviations 329 
are larger at inland regions than at the coast. ERA5 provides similar errors as those of CLARA in inland, above 330 



 
 

65ºN and below 65ºN, but shows high errors in coastal regions. CLARA performs better than ERA5 at coastal 331 
regions, because the surface radiation calculation in CLARA is made at a much finer resolution (0.05º) than in 332 
ERA5, and therefore, takes into account the changing surface conditions of the coastal regions to a larger degree. 333 
ASR on the other hand gives the highest errors among the datasets for all locations.  334 

A seasonal analysis of the datasets is performed by dividing a typical year into 4 parts, where February to April 335 
are grouped in FMA, May to July are grouped in MJJ, August to October are grouped in ASO and November to 336 
January are grouped in NDJ. This division into seasons is made so that summer solstice is approximately in the 337 
middle of the summer season. Table E1 in appendix E illustrates the seasonal error analysis of the datasets and it 338 
shows that the RMSD values are high in FMA, and decreases as the year progresses. ASR is observed to have high 339 
monthly and daily RMSD. MAD values in the table show that monthly mean values are similar for CLARA, 340 
SARAH, and ERA5 while ASR gives considerably larger MAD. MBD shows that both reanalyses overestimate 341 
solar radiation and satellite methods mostly underestimate it. In this analysis, SARAH, CLARA, and ERA5 342 
perform similarly and better than ASR. Moreover, there are larger errors in satellite methods than reanalyses in 343 
FMA and MJJ, mostly because of the presence of snow covers, which are difficult to differentiate from clouds in 344 
such methods (Babar et al., 2018). Low solar elevation angles at high latitude locations make this differentiation 345 
further challenging. On the contrary, ERA5 performs better than satellite datasets in FMA and NDJ at high 346 
latitudes. However, the performance of satellite methods improves in summer and autumn months. 347 

4.1 Evaluation of different sky conditions 348 

To evaluate the datasets for their performances in different sky conditions, the datasets were divided into clear-349 
sky, intermediate-cloudiness, and overcast categories. This division is established based on the clear-sky index 350 
(Kc), which is defined as the ratio of GHI recorded on the ground to the clear-sky GHI. The BIRD clear-sky model 351 
is used to calculate the clear-sky values at the ground measurement locations (Bird and Hulstrom, 1981). After 352 
calculating clear-sky index, Kc, following Smith et al. (2017) and Widén et al. (2017), values higher than 0.8 are 353 
considered indicating a clear-sky day, values of Kc between 0.4 and 0.8 are considered as intermediate-cloudy and 354 
values below 0.4 are considered as overcast.  355 

 

 

 

 

 

 
(a) (b) (c) 

CLARA RMSD (Wm-2) MAD (Wm-2) MBD (Wm-2) 
Clear-sky 21.5 13.8 -4.0 

 Intermediate-cloudiness 22.1 16.0 -3.3 
Overcast 12.8 8.7 -0.2 

Figure 3: CLARA daily averaged errors under clear-sky, intermediate-cloudiness, and overcast categories. Scatter 356 
plots for the different sky-categories are shown. The coloured legend bar shows the density of points in the scatter 357 
plot. 358 
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(a) (b) (c) 

SARAH RMSD (Wm-2) MAD (Wm-2) MBD (Wm-2) 
Clear-sky 20.4 12.8 -5.5 

 Intermediate-cloudiness 20.2 13.5 -3.0 
Overcast 13.2 8.7 4.4 

Figure 4: As Figure 3, but for SARAH. 360 

   
(a) (b) (c) 

ERA5 RMSD (Wm-2) MAD (Wm-2) MBD (Wm-2) 
Clear-sky 25.5 16.8 -10.0 

 Intermediate-cloudiness 28.5 19.9 8.7 
Overcast 29.6 18.6 15.2 

Figure 5: As Figure 3, but for ERA5. 361 

    
(a) (b) (c) 

ASR RMSD (Wm-2) MAD (Wm-2) MBD (Wm-2) 
Clear-sky 29.2 21.1 11.6 

 Intermediate-cloudiness 51.3 37.2 23.3 
Overcast 49.0 30.8 25.0 

Figure 6: As Figure 3, but for ASR. 362 

Figure 3-6 show the results of cloudiness classification of the datasets. Overall in the three categories, SARAH 363 
performs better than other datasets while ASR performs the worst. In clear-sky category, an underestimation is 364 
observed in SARAH, CLARA, and ERA5, while ASR overestimates radiation. CLARA performs slightly worse 365 
than SARAH in this category, but both have the same correlation coefficients of 0.98, while ERA5 and ASR both 366 
have a correlation of 0.97. Similarly, in the intermediate-cloudy category, both satellite databases underestimate, 367 
while reanalyses overestimate. Finally, in the overcast category, CLARA slightly underestimates solar radiation 368 
while other datasets overestimate. In this category, SARAH and CLARA are found to perform very similar with 369 
correlation coefficients of 0.95 and 0.94, respectively. It should be noted that the sky cloudiness differentiation is 370 



 
 

performed on the basis of a clear-sky model and ground observed GHI. In conclusion, all the models have 371 
discrepancies in presenting clouds in all types of sky conditions.  372 

As explained in Section 2, under clear-sky conditions CLARA uses aerosol information from Global Aerosol Data 373 
Set/Optical Properties of Aerosols and Clouds (GADS/OPAC) climatology and integrated water-vapour 374 
information from ERA-interim, and SARAH uses both Monitoring Atmospheric Composition and Climate 375 
(MACC climatology) and integrated water-vapour from ERA-Interim. Aerosol information from MACC 376 
climatology is observed to have higher accuracy than GADS/OPAC climatology (Mueller and Träger-Chatterjee, 377 
2014). The maximum aerosol optical depth (AOD) is reduced in GADS/OPAC climatology for the CLARA 378 
dataset, but the results show that the climatology used in SARAH performs better than in CLARA even after the 379 
modifications. The negative biases observed in the clear-sky and intermediate-cloudy categories are possibly due 380 
to incorrect prediction of clouds and the aerosol climatology being too thick, which results in an underestimation 381 
of solar radiation. As reported in Mueller and Träger-Chatterjee (2014) and Polo et al. (2014), both MACC and 382 
GADS/OPAC climatologies result in underestimation of surface solar radiation because of the apparent 383 
overestimation in AOD thickness. In addition to aerosol optical depth, vertically-integrated water vapour values 384 
taken from ERA-Interim are shown to be too large (Kishore et al., 2011), which can further attenuate the surface 385 
solar radiation. Moreover, monthly mean values of aerosol optical depths are used which might also cause errors 386 
for daily resolutions. In ERA5, the radiative transfer model RTTOV11 (Radiative Transfer for TOVS) has a 387 
tendency to underestimate reflectance of high cumulus cloud tops while the reflectance of lower water clouds is 388 
overestimated. These cloud top reflectance errors possibly result in an underestimation in clear-sky conditions and 389 
overestimation in intermediate-cloudy and overcast conditions. In ASR, all the conditions are overestimated which 390 
shows that there is an underestimation in aerosol optical depth and cloudiness in the atmosphere. 391 

After analysing different sky conditions, it can be concluded that estimations based solely on satellite retrievals 392 
generally provide a much better result. However, SARAH is limited to 60-65ºN (in Scandinavia) and CLARA is 393 
limited to daily and monthly means. For high latitude and high recording frequency, ERA5 can still provide an 394 
alternative, especially for clear-sky and intermediate-cloudy conditions in cases where satellite coverage is not 395 
available or have missing data. 396 

4.2 Analysis of daily average TCWC and daily sky-condition classification in ERA5  397 

To analyse the cloud placement of ERA5, the total cloud water content (TCWC) and short wave solar radiation 398 
downward, clear-sky (SWSDC) from ERA5 are used here. To obtain TCWC, total column liquid condensate and 399 
total column ice condensate from ERA5 were added together. ERA5 and other reanalyses have an overestimation 400 
or a positive bias in solar radiation as documented here and in accordance with Urraca et al. (2017b) and Urraca 401 
et al. (2018). On the contrary, satellite methods have a negative bias but higher accuracy (Riihelä et al., 2015). 402 
Reanalyses are based on weather-prediction models, and although assimilation of observations to some extent 403 
constrains these models, the weather patterns of the reanalysis may still be out of phase with reality. A small 404 
misrepresentation of clouds in space and time may have a large impact on the high-frequency correlation between 405 
model and in-situ observations, with regard to radiative fluxes such as solar radiation, and hereby large RMSD are 406 
induced. However at longer time scales, i.e. monthly or yearly time scales, the reanalysis may represent cloud 407 
frequency to a satisfactory degree because large errors in daily averages are compensated for in the seasonal mean, 408 
implying that reanalysis becomes a valuable alternative for estimating local solar resources. This can be observed 409 
by comparing the daily and monthly RMSD of ERA5 with satellite based datasets in table 2. For all the locations, 410 
the RMSD of monthly values for ERA5 is similar to that of CLARA and SARAH, but the RMSD of daily values 411 
(in parentheses) is considerably larger in ERA5 as compared to the satellite databases. On even longer time scales 412 
the difference decreases further, which can be observed by analysing yearly averages from table D1 in appendix 413 
D. In this section, the cloud representation in ERA5 on daily averages is explored (for years 2000 to 2015) and an 414 
analysis is given on the random errors in the presence of clouds at lower time scales. Clear-sky indices for all 415 
datasets are obtained by using SWSDC from ERA5 because the clear-sky values from ERA5 have the aerosol and 416 
water content information, which is used in calculating the surface solar radiation. The approach used in Section 417 
4.1 is used here to classify days into the three categories by using clear-sky index, Kc. The analysis in this section 418 
is performed for days when the solar zenith angle is lower than 90º. 419 

 420 

 421 



 
 

Table 4 422 
The number of days and mean TCWC from in-situ ground measurements, ERA5 and CLARA are shown in the 423 
table for different sky categories. The number of days and mean TCWC in each cloudiness category for ERA5 is 424 
shown separately for cases when ERA5 and ground measurements agree on classification and for cases when there 425 
is a disagreement. Years from 2000 to 2015 are used in the analysis over all locations included in the study (see 426 
appendix B). 427 

 428 

Table 4 shows the number of days and mean TCWC for each of the sky categories. In table 4, daily averages of 429 
solar radiation from CLARA are used to make a comparison with ERA5 in sky classification. It can be seen that 430 
ground measurement and CLARA classify almost the same percentage of days into each category even though the 431 
number of days available for these are not the same because of the missing values. CLARA also gives very similar 432 
mean TCWC values as ground measurements. On the contrary, ERA5 is observed to classify a higher number of 433 
days as intermediate-cloudy and a lower number of days as overcast than in-situ observations, hence showing that 434 
it has a negative bias towards classifying a day as overcast. Moreover, in ERA5 the mean TCWC is slightly 435 
underestimated in the clear-sky category but largely overestimated in overcast category. Table 4 further shows the 436 
number of days and mean TCWC for conditions when ERA5 and ground measurements agree on classification 437 
and for when there is a disagreement. Here it can be seen that the mean TCWC of days with agreement is the same 438 
as that of ERA5, but on the days of disagreement, there is an overestimation in mean TCWC in clear-sky days and 439 
an underestimation in overcast days. These results show that on clear-sky days, ERA5 has more clouds than in-440 
situ observations, which is seen by higher levels of TCWC, while on the overcast days there are a lower amount 441 
of clouds, which is seen by lower levels of TCWC. However, it can be seen from the table that in clear-sky 442 
category, ERA5 and ground-measurements agree 77% of the time. The agreement on sky-condition is smaller in 443 
intermediate-cloudy category where 41% of the time ERA5 predicts the same conditions as in-situ observations, 444 
while the agreement in overcast category is 53%. Overall, 67.3% of the times it is seen that ERA5 and ground 445 
measurements classify the same conditions. Figure 7 shows the scatter plot of ground measurements and ERA5 446 
for both of these conditions, when there is an agreement on classification and when there is a disagreement. It can 447 
be seen that the spread is large when there is a disagreement. A correlation coefficient of 0.98 is found for 448 
agreement data points while a correlation coefficient of 0.90 is found for disagreement point.  449 

(a) (b) 
Figure 7: Scatter plots for the days when ERA5 and ground measurement agree in classification and when there 450 
is a disagreement. A correlation coefficient of 0.98 is found for agreement points and 0.90 for disagreement points. 451 

 Ground data CLARA data ERA5 data ERA and ground agree ERA and ground 
disagree 

No. 
of 

days 

Mean 
TCWC 

(Kg.m-2) 

No. of 
days 

Mean 
TCWC 

(Kg.m-2) 

No. of 
days 

Mean 
TCWC 

(Kg.m-2) 

No. of 
days 

Mean 
TCWC 

(Kg.m-2) 

No. of 
days 

Mean 
TCWC 
(Kg.m-2) 

Clear-sky 38265 
(30.2
%) 

0.03 39516 
(31.3%) 

0.03 53211 
(33.4%) 

0.02 29500 0.02 8765 0.07 

Intermediate
-cloudiness 

49207 
(38.8
%) 

0.09 45244 
(35.8%) 

0.10 75268 
(47.4%) 

0.10 34700 0.10 14507 0.07 

Overcast 39181 
(30.9
%) 

0.22 41417 
(32.8%) 

0.22 30389 
(19.1%) 

0.29 20914 0.30 18004 0.12 



 
 

Table 5 illustrates RMSD, MAD, and MBD of ERA5 in different sky categories. It shows the error metrics for the 452 
days when ERA5 and ground measurements agree on a category and for when there is a disagreement. The days 453 
of agreement on sky categories in table 5 can be compared to the deviations presented in Section 4.1, Figure 3. It 454 
can be seen that on the days of agreement ERA5 performs very similar to CLARA. However, large errors are 455 
observed when ERA5 does not agree with ground measurements in sky categorization. In terms of RMSD and 456 
MAD, the highest increase is seen in clear-sky and overcast categories. The MBD is positive in clear-sky category 457 
and negative in intermediate-cloudiness and overcast categories, which again shows that there are less amount of 458 
clouds in the clear-sky category and more clouds in intermediate-cloudiness and overcast categories. From a solar 459 
energy-harvesting point of view, the clear-sky days produce more energy than intermediate-cloudy or overcast 460 
days. It can be observed that ground-measurement and ERA5 predicts almost the same percentage of clear-sky 461 
days, which further shows that on daily averages reanalyses may not predict clouds accurately but on longer time 462 
scales, the solar radiation estimation improves.  463 

Table 5 464 
RMSD, MAD, and MBD for ERA5 daily averages in different sky categories. The errors are shown for the days 465 
when ERA5 and ground measurements agree on classification and for when they do not agree. Years from 2000 466 
to 2015 are used in the analysis over all locations included in the study (see appendix B). 467 

 Agreement on sky conditions Disagree on sky conditions 
RMSD (Wm-2) MAD (Wm-2) MBD (Wm-2) RMSD (Wm-2) MAD (Wm-2) MBD (Wm-2) 

Clear-sky 16.9 11.8 5.6 42.9 31.2 31.2 
Intermediate-

cloudiness 
25.7 17.7 -7.4 33.8 24.2 -15.1 

Overcast 15.3 9.6 -4.5 38.4 26.3 -26.3 
5. Conclusion 468 

This study provides a comprehensive evaluation of different GHI estimating datasets for high-latitude 469 
locations. Overall, SARAH provides lower errors than other datasets but is limited to 60-65ºN latitudes in 470 
Scandinavia; hence, it cannot provide complete coverage on the northern Scandinavian locations. For monthly 471 
averages of GHI, MAD of 5.8 Wm-2 is found for SARAH. Nevertheless, it provides very high quality solar-472 
radiation estimates for the area it covers. The second best dataset found in this study is CLARA that has a 473 
global coverage and provides multi-decadal time series. For monthly mean estimates of GHI, CLARA gives 474 
a MAD of 6.3 Wm-2. One of the challenges for estimating GHI at high latitude locations is the ability of the 475 
satellite estimation algorithms to differentiate between clouds and snow covers. ERA5 being a coarse-476 
resolution global dataset is observed to perform nearly as well as CLARA with a MAD of 6.4 Wm-2 for 477 
monthly averages of GHI. ERA5 has similar spatial resolution as CLARA but it provides data on higher 478 
temporal resolutions and unlike CLARA, it has no missing values. ASR is found to have the highest errors in 479 
this analysis. MAD of 14.5 Wm-2 is found for ASR monthly means. In a similar study performed by Urraca et 480 
al. (2017b), MAD of 8 – 13 Wm-2 was reported for CM-SAF daily means datasets.   481 
Both satellite estimation and reanalyses have problems in estimating solar radiation in intermediate-cloudiness 482 
and overcast conditions. To evaluate the strength of the datasets, the ground-measured data is divided into 483 
clear-sky, intermediate-cloudiness, and overcast categories and error statistics are calculated. In this test, 484 
satellite based estimations perform better than reanalyses. However, ERA5 has larger errors than CLARA and 485 
SARAH, but still considerably smaller errors than ASR. At high latitude locations, the seasonal variation in 486 
the length of the day is extreme. Taking this into consideration, an analysis is performed for different seasons. 487 
In this analysis, CLARA, SARAH and ERA5 have similar errors in the range of 6-13 Wm-2 in the summer 488 
months; however, ASR has relatively high errors in all seasons. On yearly GHI averages, SARAH provides 489 
the lowest MAD of 3.9 Wm-2, followed by 4.8 Wm-2 for CLARA, 5.6 Wm-2 for ERA5, and 17.8 Wm-2 for 490 
ASR. SARAH and CLARA also provide better yearly energy estimates than ERA5 and ASR. CLARA and 491 
ERA5 are observed to provide lower errors below 65ºN than above, while CLARA and SARAH perform 492 
better at coastal regions, and ERA5 performs better in inland locations that have more snow covers.  493 
Finally, an in-depth analysis is performed on ERA5 for its compatibility in sky stratification. It is found that 494 
in clear-sky conditions, the TCWC is overestimated, while in intermediate-cloudiness and overcast conditions 495 
it is underestimated. It is also observed that ERA5 has a positive bias on estimating clear-sky and intermediate-496 
cloudy conditions, while a negative bias is seen in estimating overcast conditions. In conclusion, both CLARA 497 
and SARAH provide good estimates but both of these datasets have disadvantages, including the spatial limits 498 
of SARAH and the low temporal frequency of CLARA. On the other hand, ERA5 provides advantages in the 499 
form of historical data series and global coverage. On the basis of these results it is suggested that CLARA 500 
and SARAH provides better estimates for solar radiation, but ERA5 can be used to fill the missing data in 501 
these datasets. 502 
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Appendix A 539 

Table A1 540 

Locations of the Norwegian measurement stations analysed in this study. 541 
 Station Latitude Longitude Altitude Land type 

1 Holt 69.65 18.91 12 Coastal 
2 Sortland 68.65 15.28 14 Coastal 
3 Vågønes 67.28 14.45 26 Coastal 
4 Tjøtta 65.83 12.43 10 Coastal 
5 Skogmo 64.51 12.02 32 Inland 
6 Rissa 63.59 9.97 23 Coastal 
7 Kvithamar 63.49 10.88 28 Inland 
8 Skjetlein 63.34 10.3 44 Coastal 
9 Surnadal 62.98 8.69 5 Inland 
10 Tingvoll 62.91 8.19 23 Coastal 
11 Fåvgang 61.46 10.19 184 Inland 
12 Fureneset 61.29 5.04 12 Coastal 
13 Gausdal 61.22 10.26 375 Inland 
14 Løken 61.12 9.06 527 Inland 
15 Ilseng 60.8 11.2 182 Inland 
16 Kise 60.77 10.81 129 Inland 
17 Apelsvoll 60.7 10.87 262 Inland 
18 Hønefoss 60.14 10.27 126 Inland 
19 Årnes 60.13 11.39 162 Inland 
20 Etne 59.66 5.95 8 Inland 
21 Ås 59.66 10.78 94 Inland 
22 Bø 59.42 9.03 105 Inland 
23 Rakkestad 59.39 11.39 102 Inland 
24 Ramnes 59.38 10.24 39 Coastal 
25 Tomb 59.32 10.81 12 Coastal 
26 Gjerpen 59.23 9.58 41 Coastal 
27 Hjelmeland 59.23 6.15 43 Inland 
28 Tjølling 59.05 10.13 19 Coastal 
29 Særheim 58.76 5.65 90 Coastal 
30 Landvik 58.34 8.52 10 Coastal 
31 Lyngdal 58.13 7.05 4 Inland 
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Appendix B 548 

Table B1 549 

List of years not included in the study. 550 

 

 
Station 

Years having more than 5% missing 
data 

Years failing 
Long and Dutton 
test 

Years having 
operational error 
(snow/frost/ 
shading/soiling) 

Years 
having 
equipment 
error 

1 Holt 2001,2002,2006,2007,2008,2010 2013  2000 
2 Sortland 2000,2006,2007,2010,2013    
3 Vågønes 2006,2007  2002  
4 

Tjøtta 2006,2007 
  2008, 

2012 
5 

Skogmo 2006,2007,2008,2015 
 2011 2013, 

2014 
6 Rissa 2006,2007 2000   
7 Kvithamar 2006,2007,2013    
8 Skjetlein 2006,2007 2000   
9 Surnadal 2006,2007,2014    
10 Tingvoll 2006,2007,2012    
11 Fåvang 2006,2007   2001 
12 Fureneset 2006,2007,2011,2012    
13 Gausdal 2006,2007,2009   2015 
14 Løken 2006,2007    
15 Ilseng 2006,2007,2004 2000 2009  
16 Kise 2002,2006,2007,2015  2013  
17 Apelsvoll 2006,2007  2002,2003,2004 2009 
18 Hønefoss 2006,2007 2000   
19 Årnes 2006,2007    
20 Etne 2006,2007  2004,2012  
21 Ås 2006,2007    
22 Bø 2000,2006,2007    
23 Rakkestad 2006,2007    
24 Ramnes 2006,2007  2009  
25 Tomb 2006,2007 2009   
26 Gjerpen 2006,2007,2015    
27 

Hjelmeland 2006,2007 
  2002, 

2015 
28 

Tjølling 2006,2007,2008,2014 
 2012,2015 2009, 

2010 
29 Særheim 2000,2006,2007    
30 

Landvik 2006,2007 
 2005,2010,2014,

2015 
 

31 Lyngdal 2006,2007 2001   
 551 
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Appendix C  553 

Table C1 554 

Error metrics expressed in Wm-2, for the datasets analysed in this study. Number without parentheses are monthly 555 
averaged errors while in parentheses are daily averaged errors.  556 

Station RMSD(Wm-2) MAD(Wm-2) MBD(Wm-2) 
CLARA SARAH ERA5 ASR CLARA SARAH ERA5 ASR CLARA SARAH ERA5 ASR 

Holt 
5.5 

(9.1) - 
4.7 

(12.0) 
9.6 

(18.8) 
1.5 

(2.9) - 
1.1 

(3.5) 
2.8 

(4.8) 
-1.5 

(-1.4) - 
1.1 

(1.4) 
2.5 

(3.4) 

Sortland 
17.5 

(23.0) - 
12.5 

(29.9) 
15.1 

(38.2) 
11.4 

(16.0) - 
7.7 

(18.9) 
9.7 

(24.4) 
-11.0 

(-12.0) - 
1.1 

(2.4) 
0.6 

(2.2) 

Vågønes 
5.1 

(13.8) - 
10.4 

(26.7) 
20.9 

(42.1) 
3.2 

(8.7) - 
5.7 

(15.0) 
12.8 

(24.8) 
-0.7 
(0.3) - 

3.9 
(6.3) 

11.8 
(16.2) 

Tjøtta 
6.1 

(13.8) - 
12.8 

(29.2) 
27.8 

(47.9) 
4.6 

(9.5) - 
8.4 

(17.4) 
16.9 

(28.0) 
-0.3 
(1.3) - 

7.9 
(10.7) 

15.2 
(19.4) 

Skogmo 
12.4 

(20.0) 
11.8 

(20.8) 
8.2 

(23.6) 
20.2 

(41.6) 
7.8 

(13.3) 
8.2 

(13.4) 
5.3 

(14.2) 
12.5 

(25.8) 
-3.7 

(-2.4) 
-6.3 

(-5.6) 
1.0 

(2.5) 
11.4 

(15.3) 

Rissa 
8.2 

(17.3) 
7.2 

(17.6) 
8.2 

(27.1) 
24.1 

(45.4) 
5.5 

(12.3) 
4.9 

(11.5) 
5.1 

(17.1) 
14.8 

(27.7) 
-2.7 

(-1.5) 
-3.3 

(-2.4) 
2.1 

(4.2) 
13.6 

(19.5) 

Kvithamar 
7.3 

(16.0) 
7.8 

(16.8) 
7.7 

(26.4) 
31.6 

(47.7) 
5.1 

(11.4) 
1.0 

(10.6) 
5.2 

(16.4) 
20.3 

(29.5) 
-2.4 

(-1.2) 
-0.2 

(-4.4) 
-0.1 
(1.4) 

19.2 
(23.1) 

Skjetlein 
7.9 

(17.4) 
8.8 

(17.6) 
7.2 

(25.9) 
29.9 

(46.5) 
6.0 

(12.7) 
6.4 

(11.6) 
5.1 

(16.5) 
19.7 

(28.6) 
-1.0 
(0.8) 

-6.0 
(-4.8) 

0.4 
(2.0) 

18.9 
(22.6) 

Surnadal 
9.7 

(20.8) 
11.1 

(23.5) 
10.9 

(28.4) 
19.0 

(41.2) 
7.0 

(14.1) 
7.7 

(14.5) 
7.5 

(17.9) 
12.9 

(25.2) 
-4.1 

(-2.7) 
-6.0 

(-5.1) 
6.5 

(8.3) 
11.9 

(14.8) 

Tingvoll 
8.3 

(18.0) 
9.3 

(20.0) 
10.4 

(27.1) 
16.9 

(40.0) 
6.4 

(13.4) 
6.4 

(12.6) 
6.5 

(16.9) 
10.7 

(24.5) 
-1.7 

(-0.1) 
-4.8 

(-4.0) 
5.1 

(7.0) 
8.4 

(11.1) 

Fåvang 
13.1 

(22.3) 
10.0 

(18.8) 
10.4 

(27.3) 
21.2 

(43.9) 
9.5 

(16.3) 
7.3 

(12.8) 
6.8 

(18.0) 
14.6 

(29.2) 
-8.4 

(-7.6) 
-6.8 

(-6.6) 
1.8 

(2.8) 
14.1 

(19.5) 

Fureneset 
4.7 

(14.9) 
5.7 

(16.8) 
10.7 

(28.3) 
18.5 

(42.0) 
3.5 

(10.4) 
3.8 

(9.2) 
6.9 

(17.0) 
12.6 

(26.3) 
-1.1 
(0.6) 

-2.8 
(-1.8) 

6.4 
(8.6) 

11.3 
(14.1) 

Gausdal 
11.4 

(20.6) 
7.0 

(17.4) 
13.2 

(27.7) 
20.9 

(42.6) 
8.8 

(15.3) 
5.2 

(12.1) 
8.8 

(18.3) 
14.8 

(29.0) 
-1.2 
(0.4) 

-1.9 
(-0.6) 

5.1 
(7.1) 

14.6 
(17.9) 

Løken 
14.3 

(24.3) 
10.7 

(21.0) 
9.2 

(28.3) 
12.7 

(40.5) 
9.5 

(17.6) 
7.4 

(14.5) 
5.9 

(18.6) 
8.2 

(26.6) 
-8.4 

(-7.2) 
-6.7 

(-6.1) 
1.8 

(4.0) 
3.7 

(6.1) 

Ilseng 
11.8 

(23.4) 
9.3 

(19.2) 
11.0 

(28.0) 
21.4 

(43.9) 
8.8 

(16.8) 
5.8 

(12.9) 
7.6 

(18.7) 
16.7 

(29.7) 
-5.9 

(-4.1) 
-2.2 

(-1.0) 
-1.1 
(1.0) 

16.7 
(19.8) 

Kise 
9.9 

(20.6) 
8.3 

(18.2) 
8.9 

(25.9) 
22.6 

(42.7) 
6.8 

(15.1) 
5.5 

(12.4) 
6.0 

(17.0) 
16.1 

(28.6) 
-1.0 
(0.9) 

-1.5 
(0.4) 

2.3 
(4.3) 

16.1 
(20.8) 

Apelsvoll 
10.2 

(19.6) 
8.4 

(17.4) 
9.1 

(25.8) 
31.8 

(48.2) 
7.7 

(14.7) 
5.0 

(11.9) 
6.3 

(17.3) 
25.0 

(34.0) 
1.6 

(4.2) 
-0.2 
(1.5) 

2.8 
(5.1) 

25.0 
(29.0) 

Hønefoss 
7.0 

(16.6) 
7.1 

(15.8) 
8.9 

(25.7) 
20.8 

(41.6) 
5.3 

(12.2) 
4.8 

(10.8) 
6.1 

(17.0) 
15.2 

(28.0) 
-3.3 

(-1.3) 
-3.5 

(-2.2) 
-0.1 
(2.0) 

15.1 
(20.3) 

Årnes 
9.0 

(17.3) 
7.8 

(16.2) 
7.9 

(24.6) 
19.8 

(40.0) 
6.2 

(12.7) 
5.1 

(11.0) 
5.2 

(16.3) 
14.9 

(26.6) 
-4.0 

(-2.8) 
-3.8 

(-3.0) 
-1.3 
(0.1) 

13.3 
(18.4) 

Etne 
9.3 

(20.0) 
9.7 

(22.0) 
12.8 

(29.4) 
23.1 

(48.6) 
6.9 

(14.5) 
7.0 

(14.8) 
8.9 

(19.6) 
15.0 

(31.0) 
-4.4 

(-2.9) 
-5.4 

(-4.6) 
6.4 

(8.9) 
14.5 

(19.4) 

Ås 
7.3 

(13.6) 
7.1 

(14.6) 
8.0 

(24.5) 
21.1 

(41.0) 
4.8 

(8.7) 
5.1 

(10.0) 
5.3 

(16.1) 
15.1 

(26.7) 
-3.5 

(-1.9) 
-4.0 

(-2.8) 
-2.1 

(-0.5) 
14.4 

(19.2) 

Bø 
7.9 

(17.8) 
6.5 

(16.6) 
10.3 

(25.4) 
21.5 

(43.2) 
5.7 

(13.0) 
4.6 

(11.6) 
7.1 

(17.1) 
16.4 

(29.4) 
1.4 

(3.0) 
1.5 

(3.0) 
4.9 
7.5) 

16.2 
(20.3) 

Rakkestad 
7.2 

(15.9) 
7.8 

(17.8) 
8.2 

(26.1) 
21.0 

(40.6) 
5.5 

(11.5) 
5.5 

(10.3) 
5.8 

(16.4) 
16.1 

(27.2) 
-2.9 

(-1.4) 
-4.3 

(-3.6) 
0.6 

(2.5) 
15.2 

(18.3) 

Ramnes 
8.9 

(16.7) 
7.5 

(15.4) 
8.2 

(24.0) 
22.1 

(40.8) 
7.1 

(12.3) 
5.5 

(10.6) 
5.8 

(15.8) 
16.4 

(26.5) 
-5.6 

(-4.1) 
-3.4 

(-2.0) 
-1.3 
(0.3) 

15.8 
(18.7) 

Tomb 
11.5 

(19.0) 
12.7 

(19.0) 
11.2 

(28.0) 
20.3 

(40.9) 
7.0 

(12.8) 
8.9 

(14.0) 
6.9 

(17.7) 
14.4 

(25.6) 
-5.9 

(-4.5) 
-5.0 

(-3.9) 
-3.3 

(-2.1) 
12.5 

(16.9) 

Gjerpen 
11.5 

(19.1) 
8.8 

(19.9) 
11.6 

(25.8) 
20.4 

(40.8) 
8.3 

(14.5) 
1.1 

(14.3) 
8.4 

(18.1) 
14.8 

(27.9) 
-4.3 

(-3.0) 
-0.2 

(-4.1) 
-1.3 
(0.3) 

10.7 
(15.4) 

Hjelmeland 
4.7 

(16.6) 
5.5 

(16.1) 
10.9 

(29.5) 
19.7 

(46.0) 
3.4 

(12.1) 
3.6 

(10.9) 
7.5 

(19.6) 
13.9 

(31.1) 
-0.1 
(1.6) 

-0.9 
(0.2) 

6.6 
(9.8) 

13.5 
(18.1) 

Tjølling 
8.2 

(18.0) 
7.5 

(13.8) 
11.4 

(26.5) 
28.5 

(45.1) 
6.0 

(12.8) 
5.2 

(9.6) 
7.5 

(16.8) 
19.7 

(29.6) 
-0.1 
(1.9) 

-1.9 
(-0.6) 

4.4 
(7.2) 

19.1 
(25.1) 

Særheim 
5.9 

(15.2) 
6.2 

(16.0) 
7.4 

(26.4) 
17.0 

(43.5) 
4.4 

(10.8) 
4.3 

(10.8) 
4.9 

(16.7) 
11.6 

(28.0) 
-1.2 
(0.3) 

-1.9 
(-0.7) 

2.2 
(4.1) 

9.7 
(12.8) 

Landvik 
7.3 

(16.5) 
6.3 

(14.3) 
10.2 

(25.7) 
23.0 

(42.2) 
5.2 

(11.6) 
4.6 

(9.7) 
6.5 

(16.7) 
15.8 

(28.1) 
1.2 

(3.9) 
-0.4 
(1.8) 

5.5 
(8.8) 

15.5 
(21.3) 

Lyngdal 
11.3 

(21.8) 
9.6 

(22.8) 
12.1 

(29.9) 
15.8 

(41.5) 
7.4 

(13.7) 
1.2 

(13.5) 
8.3 

(19.5) 
10.9 

(25.9) 
-6.0 

(-6.1) 
-0.4 

(-1.8) 
2.9 

(3.6) 
5.9 

(7.0) 
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APPENDIX D 560 
Table D1 561 
Statistical errors of the yearly average solar radiation for the datasets included in the study. This table shows the 562 
deviations for inland, coastal, above 65 º N, and below 65ºN latitude regions. RMSD, MAD, and MBD are 563 
expressed in Wm-2.  564 

 RMSD (Wm-2year-1) MAD (Wm-2year-1) MBD (Wm-2year-1) 
CLARA SARAH ERA5 ASR CLARA SARAH ERA5 ASR CLARA SARAH ERA5 ASR 

All Sites 7.4 5.2 6.8 18.7 4.8 3.9 5.6 17.8 -4.2 -2.8 4.4 17.5 
Above 
65ºN 8.9 - 9.6 16.6 5.2 - 8.8 15.6 -4.4 - 7.1 13.4 

Below 
65ºN 7.2 5.2 6.4 18.9 4.8 3.9 5.2 18.1 -4.1 -2.9 4.1 18.0 

Coastal 6.2 4.9 7.4 18.1 3.8 3.5 6.2 17.1 -3.1 -2.4 4.6 16.6 
Inland 8.2 5.4 6.4 19.2 5.6 4.0 5.0 18.4 -5.0 -3.0 4.2 18.2 

 565 

Appendix E 566 
Table E1 567 
Seasonal analysis of the datasets showing the variations in terms of RMSD, MAD, and MBD and expressed in 568 
Wm-2. CLARA and SARAH performs similarly and better than other datasets, while ERA5 gives median values 569 
and ASR performs the worst 570 
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