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Abstract 
There has been a growing interest in accurately estimating surface solar radiation at high 

latitude locations. From a Scandinavian perspective, the installed solar photovoltaic share is 

increasing, primarily because of the declining cost of these systems, the introduction of various 

economic incentives and societal push to generate one’s own clean power. In the coming years, 

it is anticipated that the share of photovoltaics in the energy mix of Scandinavia will increase 

substantially.  

One of the main deterrent in an accurate estimation of surface solar radiation is the limited 

coverage of geostationary satellites. These satellites, which are widely used globally to estimate 

solar radiation, do not provide coverage above 65ºN. Alternatively, polar orbiting satellites can 

be used to estimate surface solar radiation but a low sensing frequency and difficulties in 

differentiating clouds from snow-covered surfaces result in a large number of missing values 

in the data. Moreover, reanalyses also provide surface solar radiation estimates and in recent 

years, it is seen that the accuracy of reanalyses with respect surface solar radiation is getting 

better. 

This thesis starts with providing an evaluation and comparative analyses of different solar 

radiation datasets for high latitude locations. First, an empirical model based on intra-day 

temperature differences and relative humidity is proposed. This model can be used at 

meteorological stations that do not have dedicated equipment to estimate surface solar radiation. 

Then, a comparative analysis is performed for Norwegian locations in which four different 

models were evaluated. It was found that satellite databases are more accurate than reanalyses 

and empirical models. However, satellite databases were found to underestimate solar radiation 

while reanalyses were found to overestimate it. After this, a study was performed to evaluate 

the CLARA-A1 and CLARA-A2 polar orbiting satellite based datasets. It was found that the 

CLARA-A2 dataset has less number of missing values but mostly the increase in data is at 

snow-covered surfaces. The data in CLARA-A2 has higher accuracy than CLARA-A1, but at 

these new data points which were previously not available in CLARA-A1, the errors are very 

large. 

Finally, a novel regression-based solar radiation dataset is proposed here that uses one polar 

orbiting satellite dataset (CLARA-A2), one global reanalysis (ERA5), and auxiliary data based 

on Sun-Earth geometric relationships. The proposed dataset has better accuracy and precision 

than CLARA-A2 and ERA5 datasets. 
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1. Introduction 
As the human population is increasing, so is the global energy requirement. The increase in the 

energy requirement has exerted an escalating pressure on the climate in the form of emitted 

greenhouse gases leading to global warming. In the past 200 years, the production of heat and 

electric energy has been mainly from fossil-based systems. Due to the increasing population 

and economic development, the energy consumption is increasing even though the amount of 

energy required to produce one unit of income has decreased because of the advancements in 

technology and innovation. To mitigate the effects of climate change, nowadays there is a global 

drive to move towards cleaner and safer renewable energy systems. In this regard, the solar 

photovoltaic (PV) systems that generate electric energy based on irradiance from the Sun are 

increasing rapidly as well. In 2017, solar PV installations generated over 460 TWh of energy, 

which represents around 2% of global power output. There has been a growing interest in solar 

PV in the Nordic regions, but due to high latitude and frequent snow covers, the estimation of 

surface solar radiation from remote sensing techniques is not straightforward in these regions. 

The motivation behind this thesis lies in assessing the existing methods to estimate surface solar 

radiation in high latitudes and to provide improvement strategies for a better estimation of solar 

radiation in these regions. The lack of published research in this area represents a significant 

knowledge gap; the outcome of this thesis and appended papers is intended to give the scientists 

and policy makers a better understanding of surface solar radiation at high latitudes. This thesis 

starts with the assessment of available solar radiation sources like satellite and reanalysis, and 

concludes by proposing a regression method that significantly improves the estimated surface 

solar radiation. 

1.1 Aim of the thesis 
The central aim of this thesis is to analyze existing models that estimate surface solar radiation 

and to propose methods that can improve the current models for high-latitude locations. 

Estimating surface solar radiation from satellites is a well-developed and widely used method. 

On the other hand, reanalyses also provide surface solar radiation in addition to a number of 

other meteorological variables. A Reanalysis is based on data assimilation of observations and 

model-based forecasts, to estimate weather conditions. Solar radiation estimates from 

reanalyses are not as accurate as those obtained from satellite methods, but some recent studies 

have shown that the solar radiation estimates from reanalysis are improving and these can be 
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used to fill the missing values in satellite databases. This thesis has the following specific aims, 

which are addressed in the appended papers: 

• Developing a mathematical model to estimate surface solar radiation by using 

meteorological variables (Paper I). 

• Analyzing the improvements in the recent polar-orbiting-satellite based datasets (Paper 

II). 

• Analyzing the available solar-radiation databases for high-latitude locations (Paper 

III).  

• Developing a regression model to improve the analyzed datasets (Paper IV). 

1.2 Overview of the thesis and appended papers 
This thesis is structured in the following manner. Section 2 provides a general background of 

solar energy from a global and Norwegian perspective. Then, Section 3 explains basic Earth-

Sun astronomical relationships that were used in the research and gives an overview of available 

solar radiation estimation technologies and resources. Section 4 explains the datasets used in 

the research, quality controls applied and validation metrics used to assess the datasets. Section 

5 gives an overview of the previous research carried out on the estimation of solar radiation and 

presents the available knowledge gaps that this thesis aims to address. Section 6 presents the 

results from the research carried out. Finally, Section 7 provides a discussion on the results and 

future activities. 

This thesis is composed of four papers that deal with the estimated solar radiation at high 

latitude locations. The results of this thesis are drawn from the appended papers, which are 

briefly presented below: 

• Paper I presents a model that is based on the Hargreaves and Samani’s maximum- and 

minimum-temperature difference model. In the proposed model, relative humidity was 

also used. The model was implemented and tested on eight locations in Norway for 10 

years of data. Like other temperature difference models, this model had two distinct 

coefficients; one for coastal regions and another for inland regions. The proposed model 

slightly improved the Hargreaves and Samani model that it is based on. Some 

shortcomings of this model include having a highest temporal resolution of daily 

averages and inaccuracies introduced by having large temperature differences in clears 

sky-days. Importantly, as this model required in-situ measurements of temperatures and 
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relative humidity, its spatial resolution was limited to the locations where these 

meteorological variables are measured. 

• Paper II presents a comparative analysis of CLARA-A1 and CLARA-A2 datasets for 

high latitude regions. The CLARA datasets are published by CM-SAF and these are 

constructed by using AVHRR instruments on-board the polar orbiting satellites. It was 

earlier found by some studies that satellite methods have high errors on snow-covered 

surfaces, which are frequent in high latitude regions. Because of this reason, CLARA 

datasets do not provide coverage on snow-covered regions. In this study, it was found 

that CLARA-A2 has less number of missing points than CLARA-A1. However, the new 

data points that were not available in CLARA-A1 had very high errors. Overall, it was 

found that CLARA-A2 is an improved data set, but it should be properly evaluated 

before using in regions that receive frequent snow cover. 

• Paper III In this study, four dataset are compared and assessed for high latitude 

locations. Two of these datasets, CLARA-A2 and SARAH-2 are based on satellite 

models while the other two are reanalyses; a global reanalysis ERA5 and a regional 

reanalysis ASRv2. In this study, it was found that at location above 65ºN, CLARA-A2 

provided better estimates then other datasets while below 65ºN SARAH-2 provided 

better estimates. It should be noted that SARAH-2 does not provide data above 65ºN. 

However, it was observed that for monthly averages of solar radiation, ERA5 provided 

comparable quality of estimates to CLARA-A2 and SARAH. ASR had the highest 

errors at all locations in this study. Furthermore, the cloud placement accuracy of ERA5 

was analyzed and it was found that these errors are possibly due to overestimation of 

TCWC (total cloud water content) in intermediate-cloudy and overcast categories and 

an underestimation in clear-sky category. Nevertheless, ERA5 reanalysis can be used as 

a substitute to satellite databases for gap-filling procedures as the satellite datasets have 

missing values. 

• Paper IV In this paper the knowledge gained from the previous papers is used to 

construct a novel data set by using an advanced regression method. In the previous 

studies, it was seen that generally satellite datasets underestimate solar radiations while 

reanalyses overestimate it. The hypothesis for this work is that combining two dataset 

with a regression model, where one dataset is having underestimation (Satellite based 

dataset) and other having overestimation (Reanalysis) can improve the estimated 

surface solar radiation. Random forest regression method was used with surface solar 

radiation estimates from ERA5 and CLARA-A2 for 31 locations in Norway and 16 
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years of data. In addition to surface solar radiation, solar azimuth angle, latitude, altitude 

and clear-sky index were used in the regression. The proposed dataset was improved on 

averages of daily, monthly, seasonal, and different-sky conditions. The regression 

model was tested on five locations from Sweden, which were not used in the training of 

the regression model. Almost the same degree of improvements was observed in 

Swedish locations as compared to the Norwegian locations that were used in the 

training. 
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2. Background 

This chapter presents the background of the research undertaken in this thesis. Section 2.1 

presents a historical overview on energy and climate change. In Section 2.2, the global energy 

demand and the available infrastructure are discussed. Then Section 2.3 gives an overview of 

the Norwegian energy infrastructure. Section 2.4 presents a global perspective on solar energy. 

Finally, in Section 2.5, the global solar energy perspective of Norway and current situation 

regarding solar installations are analyzed.  

2.1 Historical overview of energy and climate change 

Energy has played a central role in the evolution and prosperity of human societies. One of the 

first milestones of human evolution was the discovery of fire.  This can be considered as the 

starting point of using energy for converting materials from one form to another, as in cooking 

food, refining metals or making pottery (1). Around 2500 years ago, humans started using 

energy from wind and water by inventing mills that convert energy from these sources to a 

rotary motion. One of the first documented evidences of using windmills was in Persia in the 

tenth century (2). This invention made it possible to grind edibles and produce other valuable 

resources. These pre-industrial advancements required a modest supply of energy, which was 

in turn restricted by the population growth and land availability (3). Apparently, the pre-

industrial era can be considered as a hundred percent renewable based system, in which 

biomass, water and wind sources were the main drivers. This can be seen by observing the 

historical temperature anomalies in Figure 2.1, which shows a gradual increase in global 

temperatures after the industrial revolution.  
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Figure 2.1: Temperature anomalies for 1880 to 2018 with respect to 20th century average. In 

this period, there is a positive trend of 0.07º C per decade. A sharp rise can be observed after 

the industrial revolution* (4). 

This period was followed by the Industrial revolution in Britain from 1760 to 1830. Industrial 

revolution brought major transformation in the socio-economic aspects, which on one hand 

brought an evolution in the living standards, but on the other hand, came with an increase in the 

emitted greenhouse gases (GHG). The turning point of the industrial revolution was the 

invention of steam engine, which unlike the cleaner wind and water mills, used fossil fuels. One 

of the earliest evidences of global warming caused by GHG was pointed out by Prof. Svante 

Arrhenius in 1896 (5). From the start of the 20th century, many scientists believed that carbon 

dioxide is the main cause for the rise in global temperatures but these studies lacked a concrete 

evidence (6). However, in 1985 World Climate Program published a report that pointed out the 

temperature increase by using powerful computers and sophisticated climate models (7). 

Meanwhile in Antarctica, research teams from France and Soviet Union performed ice drills 

and showed that both temperatures and carbon dioxide concentration have increased in the past 

ice ages. These studies developed a relation between temperature rise and carbon dioxide 

concentration in the atmosphere, however, this cause and effect relation between GHG and 

global temperature may be different from today (8). Following these and other researches, in 

*NOAA National Centers for Environmental 
Information – accessed 10.11.2018 
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1988 World Meteorological Organization (WMO) and United Nations (UN) established 

Intergovernmental Panel on Climate Change (IPCC) that was tasked with publishing climate 

change reports. 

2.2 Current energy needs and infrastructures 

In the history of human evolution, energy has played a major role. As humans evolved and 

progressed, there was a tremendous increase in the energy requirements of the world. The 

energy demands are still increasing every year and in 2016, the total primary energy supply 

(TPES) of the world was 13 761.4 Mtoe (million tons of oil equivalent) (9) . TPES is defined 

as the total supply of energy that is consumed locally. Figure 2.2 (a) shows an overview of the 

energy supplies for 2016. Moreover, 2017 saw an enormous increase in the global energy 

consumption, which grew at a rate of 2.2% as compared to 1.1% in 2016. Such an accelerated 

increase in the demands for energy consumption brings an increase in the emitted GHG. In the 

same period, the carbon emissions grew by 1.6% (10). The main sources of GHG emission are 

associated with production of electricity, heating and transport, which accounted for 49% of the 

total emissions in 2017. In the meantime, renewable energy share grew by 17%, higher than the 

last 10 years average (10). Even though there was an increase in the share of renewable energy, 

a decrease in the GHG emission was not observed because of the increase in total energy 

demands, which is illustrated in Figure 2.2 (b). 

 

 (a)* 

*Based on IEA data from Renewables information: overview © 
OECD/IEA [IEA 2018], www.iea.org/statistics, License: 
www.iea.org/t&c 
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(b) 

Figure 2.2: (a) The total primary energy supply (TPES) for 2016. The major portion of the 

energy supply is from fossil-fuel based systems, while there is a constant increase in the 

renewable energy sources. (b) The increase in world consumption in terms of different 

resources from 1992 to 2017* (11). 

2.3 Energy Overview of Norway 

The Norwegian energy supply has one of the highest share of renewable energy in the world. 

Hydropower provides the backbone for the energy infrastructure in Norway, providing 96% of 

the electricity and a large reservoir capacity of 85 TWh (half of the total in Europe). Other 

renewables account for a mere 2% of the generated electricity. Among the IEA member 

countries, Norway has the fifth lowest share of fossil fuels in TPES, although this has increased 

by 10% in the past ten years. Oil is one of the biggest industries in Norway and it has enabled 

Norway not only to be independent from energy imports but also made it one of the major 

exporters of energy. However, Norway has to rely on importing electricity periodically from 

the Nordic market to meet its peak demands. Norway has a unique energy overview; on one 

*IEA/IRENA Global Renewable Energy Policies and Measures 
Database © OECD/IEA and IRENA, [28.11.2018] 
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hand most of the energy generated in the country comes from hydro power, and on the other 

hand Norway is Europe’s largest exporters of Oil (9). Figure 2.3 shows the overview of energy 

production of Norway.  

 

Figure 2.3: Energy production overview of Norway. TPES represent the total primary energy 

supply, which is defined as the total supply of energy that is consumed locally, expressed in 

million tons of oil equivalent. Total final consumption (TFC) represents the final consumption 

by the end user in the form of electricity, heat, gas, oil etc.* (9).  

The total final consumption (TFC), which is defined as the final consumption by the end user 

in the form of electricity, heat, gas, oil etc., has been around 20 Mtoe over the past 15 years. As 

depicted in Figure 2.3, industry is the largest energy-consuming sector with 40% of the TFC 

share. This is followed by transport, which accounts for 24% of TFC. Norway has been very 

progressive towards climate change mitigation and sustainability, and in this regard, the 

government plans to reduce emissions by 30% from 1990 to 2020, and become carbon neutral 

by 2030. By 2050, the state targets include to become a low emission society. Although Norway 

still has large shares of hydropower in the electricity mix, the oil industry and transport sector 

use fossil fuels that contribute the most to the carbon emissions. One of the primary targets to 

become a low emission society would be to use renewable sources in these sectors. The 

transport sector is very progressive where the government has implemented strong incentives 

for electric vehicles (9). 

*IEA/IRENA Global Renewable Energy Policies and Measures 
Database. Energy Policies of IEA Countries: Norway 2017 Review 
© OECD/IEA and IRENA, [28.11.2018] 
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2.4 A Global perspective on Solar Energy 

The Paris Agreement signed on December 2015, limits countries intent to the global warming 

to below 2ºC. To reach this target, solar energy will be one of the most important resources. 

Existing fossil-based energy systems can be replaced by more cleaner solar energy systems, 

meanwhile future energy needs can be fulfilled by using solar and other renewables. In 2016, 

renewable energy accounted for 18.2% of global TFC (10.4% of these systems were modern 

renewable, including wind turbine, solar photovoltaic (PV) etc.). A record increase in the 

installed PV capacity was observed in 2017 with 98 GW of PV additions, almost twice of the 

wind power additions and more net capacity than coal, natural gas, and nuclear power 

combined. The total global capacity of solar based energy systems reached 402 GW by the end 

of 2017 (12). These increments in installed capacity are largely due to the subsidies provided 

by the governments and the declining prices of PV. 

  

Figure 2.4: The increase in the installed PV capacity in the world from 2007 to 2017. 2017 saw 

a record addition of 98 GW and total installed capacity reaching 402 GW (12). 

Even though there has been an exponential rise in PV and other renewable sources in the world, 

the demand for energy has also been increasing. To mitigate the effects of increasing energy 

requirements, and the consequent increase in the carbon emissions, renewable sources needs to 

increase at least six times faster if the goals set by the Paris Agreement are to be met (13). 

*REN21. 2018. Global Status Report.  (Paris: REN21) 
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2.5 Solar energy in Norway 

There is a common misconception about the feasibility of harvesting solar energy in the Nordic 

regions. Unlike equatorial regions that have a daily regular variation in received solar radiation, 

high latitude locations have a very different variation; as in these regions, midnight Sun occurs 

in the summer months with 24 hours of sunlight and polar nights occur in the winter when the 

Sun remains below the horizon. Because of these characteristics, the distribution of solar 

radiation is skewed towards the summer months. In high latitude regions, solar energy-based 

systems become viable only in conjunction with other sources that can provide back up in 

winter months. In the summer months, the Sun lie’s above the horizon for a long time but PV 

systems become feasible only with at least one axis tracking. By employing a tracking system, 

the annual solar energy yields in Norway are comparable to that of Germany, which is the 

industry leader in PV installation.  

In Norway, the penetration of solar PV or thermal has not been very large but recent years saw 

an exponential rise in the installed solar PV systems. Figure 2.5 shows the increase in the 

installed PV capacity from 2012 to 2017 in Norway.  

 

Figure 2.5: Installed capacity of solar PV in Norway. The growth in the PV installed capacity 

have been exponential in Norway with 2017 having the highest growth* (14).  

The recent increase in the installed capacities of solar PV systems in Norway is also 

substantially due to the subsidies provided by government and the declining costs of these 

systems. A determining factor for the relative slow growth of solar systems is the price of 

*IEA Photovoltaic Power Systems Programme 



 

12 
 

electricity in Norway, which is considerably lower than in central and southern Europe. A low 

electricity price means that it is harder for solar systems to compete.  
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3. Solar radiation 
The technical and economic performance of solar thermal or solar PV systems depends on the 

total amount of solar radiation received on their exposed surface. Such estimations for specific 

locations give an insight into the pre-feasibility of these energy systems. This section describes 

the Earth-Sun astronomical relationships from the perspective of harnessing solar energy. 

Section 3.1 provides an overview of the potential of solar energy on the surface of Earth and 

different astronomical variables that affects it. Section 3.2 illustrates the path of the Sun for 

high latitude locations and demonstrates the usefulness of optimal angles and tracking strategies 

that increase the energy generation from solar energy systems. In the end, Section 3.3 gives an 

overview on the available solar radiation databases for Norwegian locations. 

3.1 Harnessing energy from the Sun 
The amount of energy from the Sun striking the surface of the Earth is very large. About 1.75 

x 105 TW of solar power constantly strikes the Earth’s surface. Even after considering a 40% 

loss from atmospheric cloud cover at any time, 1.05 x 105 TW is available on Earth’s surface 

at any time. By using only 1% of the surface of Earth and converting it with a 20% efficiency, 

it would provide a resource base of 210 TW. The total global energy needs for 2050 are 

projected to be approximately 25-30 TW (15). These figures show that with a little effort most 

of the future energy demands could be met by using a clean and GHG emission free resource. 

However, there are a few hindrances in achieving such goals. Despite the fact that solar resource 

is abundant, one of its limitations is that it has a low flux density, which requires very large 

areas to be used as collectors. The Earth has a surface area of 510 million km2, 1% of this 

surface is still a gigantic area. The second barrier is that most of the radiation falls on remote 

locations, which are far away from the human settlements. Equatorial regions between 25ºN 

and 25ºS receive large amounts of solar radiation on horizontal planes but most of these areas 

are desert regions (15). High temperatures, dust, lower availability of water and low population 

make these areas unfavorable for large installations. Some form of transmission infrastructure, 

which is expensive, must be developed prior to large installations in these areas (15). A viable 

solution can be achieved by installing medium and large power plants along with residential 

rooftop systems. Extreme northern and southern areas also receive adequate amount of 

radiation, but the average sun light duration is not constant throughout the year, as in equatorial 

regions. In these regions, tracking systems can enhance the generated energy production. The 

third deterrent is the need for storage. Solar energy is intermittent in nature and to be effective, 
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it needs a storage system that can provide backup when the Sun is below the horizon. 

Alternative methods are being developed that propose hybrid systems that employ solar, wind, 

hydro, biomass, and energy storage to flat out the intermittency (15).  

3.1.1 Extraterrestrial radiation 
The Sun emits tremendous amounts of energy while maintaining a surface temperature of 5760 

K. To sustain all kinds of life, the Earth uses this energy in various forms, e.g. photosynthesis, 

wind circulation, water circulation, vitamin D, and so forth. Sun emits its energy in the form of 

electromagnetic radiation mostly in the range of 0.15 μm to 120 μm. This bandwidth covers 

visible spectrum in addition to ultraviolet and a part of infrared spectrums. The solar radiation 

received just outside the Earth’s atmosphere is called extraterrestrial radiation (16). The value 

of extraterrestrial radiation changes throughout the year because of the changing distance 

between Sun and Earth (5.9% variation over a year). The variation in distance occurs because 

the Earth makes an elliptical orbit around the Sun. In solar radiation studies, a constant value 

of extraterrestrial radiation that is averaged over a year, called solar constant, is taken as 1361.1 

Wm-2 (17). Figure 3.1 shows the daily average extraterrestrial irradiance on a horizontal surface 

for Tromsø, Norway over a year (adapted from Paper I). 

 

Figure 3.1: Daily average extraterrestrial radiation for Tromsø. The extraterrestrial radiation is 

zero in winter months because the Sun remains below the horizon (adapted from Paper I).   
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3.1.2 Solar radiation at the surface of Earth 
To reach the surface of the Earth, the extraterrestrial radiation travels through the atmosphere. 

About 30% of the extraterrestrial radiation is reflected back by the atmosphere and 16% is 

absorbed by atmospheric gases (16). While passing through the atmosphere, solar radiation 

interacts with atmospheric gases like carbon dioxide, ozone and water vapors that cause 

absorption and scattering at certain wavelengths. Figure 3.2 depicts the spectral distribution of 

solar radiation outside the atmosphere, on the surface of Earth and the absorption caused by the 

atmospheric gases. Table 3.1 lists the distribution of energy in the solar spectrum on the surface 

of the Earth. It can be seen from Figure 3.2 and Table 3.1 that most of the energy in the terrestrial 

solar radiation lies in the visible and infrared bandwidths. 

Table 3.1: Distribution of spectral contents of the Sun on the surface of Earth (16) 

Type of radiation Range of wavelengths (nm) % of energy carried 
Ultraviolet 150 to 380 7.6 

Visible 380 to 720 48.4 

Infrared 720 to 4000 43 

Other  >4000 1 

 

 

Figure 3.2: The spectral irradiance of the Sun is shown for extraterrestrial and terrestrial 

radiation. The absorption caused by different atmospheric gases is also indicated (18). 

*Creative commons, Solar Spectrum, by Robert A. Rohde as part of the 
Global Warming Art Project 
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When the solar radiation passes through the Earth’s atmosphere or airmass, the direct optical 

path length that sunlight travel through the atmosphere determines the attenuation caused by 

scattering or absorption by the atmosphere (16). Airmass can be calculated by Equation 1: 

𝐴𝐴𝐴𝐴 =
1

cos(𝜃𝜃) , (1) 

where θ is the angle that rays of the Sun make with the vertical at any point on the surface of 

the Earth. The radiation outside the atmosphere (extraterrestrial radiation) is referred to as AM0. 

In equatorial or tropical regions, the Sun is at the highest position at solar-noon and the solar 

radiation has to travel the least amount of distance to reach the surface. This is type of airmass 

is called AM1. However, at high latitude locations, the elevation of the Sun remains very low 

and the solar radiation has to travel relatively longer through the atmosphere when compared 

to equatorial regions. θ, the angle the sunrays make with the vertical can be related to the solar 

elevation or altitude angle. It is the angular height of the Sun in the sky measured from the 

horizontal (19). Solar elevation is expressed by the following equation: 

𝛼𝛼 = 90 + 𝜑𝜑 − 𝛿𝛿, (2) 

where, α is the solar elevation, φ is the latitude of a location and δ is the declination angle 

(explained later). As this angle determines how much the sunlight has to travel in the 

atmosphere before striking the surface of the Earth, it plays a critical role in determining the 

total production from solar collectors and their optimal angles.  

 

 

Figure 3.3: Solar elevations for Tromsø, Norway and Tengger Desert Solar Park, China 
(biggest solar photovoltaic installation in the world). Tromsø lies at 69ºN latitude while Tengger 
Solar Park lies at 38ºN latitude. It can be seen that the highest elevation on summer solstice is 
43º in Tromsø while it is 76º at Tengger Solar Park. X-axis shows the number of hours in a year 
(8760 for non-leap years) 
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Figure 3.3 shows a comparison of solar elevations between Tromsø, Norway and Tengger 

Desert Solar Park (located in Zhongwei, Ningxia, China). Tengger Desert Solar Park is the 

largest solar PV installation in the world with a total peak power output of 1500 MW (20). The 

highest solar elevation occurs in summer solstice (21 June), which in Tromsø is low at 43º while 

at Tengger Desert Solar Park it is 76º. The negative values in Figure 3.3 show that the Sun is 

below the horizon. Another interesting point to note is even though the solar elevation is higher 

in Tengger Desert Solar Park, on 21st of June the sunsets while in Tromsø, even after having a 

low solar elevation, the Sun remains above the horizon. This indicates that despite having low 

solar elevation, the high latitude locations receive more solar radiation in summer months 

mainly because the Sun remains above the horizon for relatively longer periods.  

3.1.3 Declination angle 
The declination angle is defined as the angle between the equator and a line drawn from the 

center of the Earth to the center of the Sun (16, 19). Declination angle is independent of latitude 

and longitude, and it is responsible for changes in seasons. The maximum change in declination 

angle is less than 0.5º, which occurs at the equinoxes and for this reason a constant value is 

usually taken for a day (21). Declination angle is expressed by the following equation. 

𝛿𝛿 = 23.34 × 𝑠𝑠𝑠𝑠𝑠𝑠 �360
365

(284 + 𝑛𝑛)� , (3)

where δ is the declination angle and n is the day number (from 1 to 365). Figure 3.4 illustrates 

a plot of declination over a year. 
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Figure 3.4: The variation in declination angle over a year is shown here. The declination angle 

changes from -23.45º (December solstice) to 23.45º (June solstice), while twice a year the value 

of declination angle becomes zero at equinoxes (16). The x-axis represents the day number of 

the year ranging from 1 to 365 for non-leap years. 

3.1.4 Equation of time 
A solar day, not necessarily 24 hours, is based on one full revolution of the Earth around its 

axis. The solar day varies in length throughout the year because the Earth sweeps unequal areas 

on the elliptic plane as it revolves around the Sun because the Earth’s axis is tilted with respect 

to the elliptic plane (21). The inconsistency caused by such a revolution is called equation of 

time. As much as 16.45 minutes of variation can occur because of the eccentricity of Earth’s 

orbit (19, 22). The equation of time is given by: 

𝐸𝐸𝐸𝐸𝐸𝐸 = 9.87 × sin(2𝐵𝐵) − 7.53 × cos(𝐵𝐵) − 1.5 × sin(𝐵𝐵), (4) 

where B is given by, 

𝐵𝐵 =
360
365

(𝑑𝑑 − 81), (5) 

where d is the day number (from 1 to 365). The equation of time is shown graphically in Figure 

3.5. 
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Figure 3.5: Graphical illustration of equation of time. The change in solar time occurs because 

of the eccentricity of Earth’s orbit. A maximum of 16.45 minutes of variation occurs in a year. 

The x-axis represents the day number of the year ranging from 1 to 365 for non-leap years. 

3.2 Path of the Sun at high latitude locations 
The path of the Sun relative to an observer changes significantly with latitude. Figure 3.6 shows 

the path of the Sun in Tromsø for solstices (when the Sun is farthest away from the Earth on 

June 21 and December 21) and equinoxes (when the Sun is exactly above the equator on March 

21 and September 23). For Tromsø, the path of the Sun for December 21 is not visible because 

the Sun lies below the horizon; however, on June 21 the Sun remains above the horizon for 24 

hours, hence a 360º visibility of the Sun. Nevertheless, comparing this Sun path to the one 

shown for Gavdos (Greece), the southernmost point of Europe (34º50′N 24º05′E) in Figure 3.7, 

it can be seen that at lower latitude, optimally inclined solar collectors can be feasible while at 

higher latitudes, solar collectors with tracking systems can increase the output significantly. 
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Figure 3.6: Path of the Sun motion for Tromsø. The paths are plotted for solstices and 

equinoxes, i.e. 21 June, 22 September, and 20 March. The path for 21 December is not visible 

because the Sun does not rise above the horizon. 

 

Figure 3.7: Path of Sun motion for Gavdos, Greece. The paths are plotted for solstices and 

equinoxes, i.e. 21 June, 22 September, 20 March, and 21 December.  
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3.2.1 Optimal angles for fixed collectors 
The angle of incidence of sunlight on a solar collector changes with time of the day and day of 

the year, as shown in Figures 3.6 and 3.7. A solar collector will harness more energy if its 

surface is oriented towards the Sun at all times. In most cases, primarily due to economic 

reasons, solar collectors are installed with a fixed optimal tilt. A rule of thumb for the optimal 

tilt is shown by equation 6. 

𝛽𝛽 = 𝜙𝜙 − 𝛿𝛿, (6) 

where β is the optimal inclination angle in degrees, 𝜙𝜙 is the latitude and δ is the declination 

angle. Over a year, as the average of declination angle δ is zero, the optimal inclination angle 

for a year at a particular location would be equal to the latitude of that location. It can be seen 

from Figures 3.6 and 3.7 that the optimal surface azimuth angle for the northern hemisphere is 

true south. Although, on the basis of average declination angle, specific optimal tilts could be 

calculated for different months or seasons to optimize solar energy systems (16). By using an 

optimal tilt angle, the received solar radiation at the surface of the solar collector can be 

increased by 10 to 25% when compared to horizontally mounted collectors (22).  

3.2.2 Solar energy systems with tracking 
A solar collector mounted on a tracking system keeps the plane of the collector perpendicular 

to the incoming sunlight at all times. Such a tracking system increases the energy production 

by 30 to 50% when compared with stationary optimally inclined systems (23-26). In a two axis 

tracking system, the surface of the solar collector is always kept perpendicular to the incidence 

angle of the Sun. However, a single axis tracking system has one degree of freedom, which acts 

as axis of rotation. Usually, the axis of rotation in such a system is aligned along the true north 

meridian. 

3.3 Estimation of surface solar radiation 
This section gives an overview on the measurement and estimation of surface solar radiation. 

Section 3.3.1 explains the equipment used to record solar radiation at ground. This section also 

provides an overview of the available databases of solar radiation. In Section 3.3.2, the 

availability of ground measurements and solar radiation databases in Norway are explored.  
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3.3.1 Global solar resource estimation  
The most accurate way to record solar radiation is by using equipment like pyranometers or 

pyrheliometers as shown in Figure 3.8. Pyranometers are used to measure global irradiance (or 

in most cases, global horizontal irradiance (GHI) as a pyranometer is installed on a horizontal 

plane). To record the direct normal irradiance (DNI), a pyrheliometer is used.  

  

(a) Kipp and Zonen CMP11 pyranometer (b) Kipp and Zonen CHP1 pyrheliometer 

Figure 3.8: Kipp and Zonen’s CMP11 pyranometer and CHP1 pyrheliometer. Pyranometers 

are used to record global horizontal irradiance and pyrheliometers are used to record direct 

normal irradiance (27)*. 

From the publicly available ground measurements of solar radiation in Norway, none of the 

stations provide  DNI. Figure 3.9 depicts the available stations from Norwegian Institute of 

Bioeconomy Research (NIBIO) network that provide ground measured solar radiation data in 

Norway. It can be seen that most of the measurement stations are in the southern part of the 

country. The data from NIBIO is used in all the appended papers.  

*Kipp and Zonen Instruments. Reprinted with permission. 
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Figure 3.9: The NIBIO network provides ground-measured GHI data. Most of the stations in 

this network are in the southern part of Norway*. 

Other indirect methods to estimate solar radiation explored in this thesis include satellites 

models, reanalyses and empirical models. Satellite models that are used to calculate solar 

radiation are well developed and widely used and provide solar radiation estimates with 

reasonable accuracy. Reanalysis, both global and regional, are also used to estimate solar 

radiation. Although these have lower accuracy than satellite models but very recent versions of 

reanalysis are improving and becoming sub-par with satellite estimations (28, 29). Generally, 

it is seen that satellite methods underestimate solar radiation while reanalysis overestimate (29-

31). Empirical models exploit the relation between solar radiation and meteorological variables 

like sunshine duration, cloud cover, precipitation, humidity, temperature and so on. These 

models are considered as the least accurate (32). 

Some specialized products provide solar radiation estimates by using the above-mentioned 

techniques. The PVGIS 4 (33), is one such product that provides solar radiation estimates based 

on CM-SAF Meteosat geostationary satellite images. The extent of the data provided by PVGIS 

Tromsø 

Sortland 

Tjøtta 

Lyngdal 

Tingvoll 

Favang 

Skogmo 

 *Agrometeorology Norway, lmt.nibio.no. Reprinted with 
permission. 
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is approximately 70ºN to 70ºS and 70ºW to 70ºE; however, the uncertainty in data is high at the 

edges of the coverage. The new version of this web database called PVGIS 5 is available for 

testing, for more information refer to Huld, Pascua (34).  

Other products include S@tel-light, which provide solar radiation estimates for central and 

western Europe for the years 1996 to 2000 (35). Figure 3.10 presents an example of the 

coverage of S@tel-light for Norway. Another such database called SoDa (Solar radiation data), 

which is based on Helioclim 3, provides solar radiation estimates from Meteosat geostationary 

satellites. This database is also limited to -66º to +66º both in latitude and longitude (36). The 

data is available cost-free for a short time scale, while for longer time series there is an annual 

subscription. The SolarGIS is another such web application providing solar radiation 

estimations at 250m x 250m spatial resolution but this database is also limited to -60º to +60ºN 

and the data is available from 2004 onwards (37). Meteonorm is another such paid global 

database that is widely used. The data in Meteonorm covers the period from 1986 to 2005, with 

a total number of 1942 ground-measuring stations in the database. Meteonorm uses both ground 

measurements and geostationary satellite data to derive an interpolated global radiation dataset 

(38). Solem (39) is another such kind of a data set based on geostationary satellites (40). Most 

of the data sets based on satellite methods mentioned here are limited to 60º to 70ºN of latitude 

because they mostly use geostationary satellite that do not provide coverage above these limits. 

In addition, their accuracy becomes worse when moving towards high latitude regions. 

 

Figure 3.10: Map from S@tel-light showing the frequency of sunny skies. It can be seen that 

the data is limited to less than 65ºN* (41).  

 *Copyright Satellight 
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Likewise, a reanalysis product by Swedish Meteorological and Hydrological Institute (SMHI) 

called STRÅNG provides surface solar radiation estimates for Nordic regions with a grid of 

size 630 x 779. This product uses Mesan meteorological analysis model to produce the input 

and output fields (42). The input data for the product are derived from AROMIE numerical 

weather prediction system which is maintained at SMHI. This product provides instantaneous 

fields of global radiation, direct radiation and sunshine duration at a horizontal resolution of 

about 2.5 x 2.5 km and a temporal resolution of one hour. The accuracy  of STRÅNG is 

approximately 30% for the global horizontal irradiance and 60% for the direct irradiance. Figure 

3.11 shows a coverage map of STRÅNG for June 2016 (43).  

 

Figure 3.11: Global irradiation for June, 2017 from STRÅNG. This model covers the Nordic 

countries, the extent of the coverage can be observed from the figure (43).  

3.3.2 Solar resource databases for Norway  
Most of the satellite-based databases use geostationary satellites for a few reasons. First, these 

satellites have high spatial/temporal resolutions. Second, because of a large number of these 
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satellites, they provide coverage on almost all of the Earth. Third, a large population resides in 

the equatorial and mid latitude regions. However, these satellites do not provide coverage above 

60º-65ºN. Most commercial and cost-free products of solar radiation use geostationary satellites 

in constructing their databases. Although some of these products provide coverage over 

southern parts of Norway, at region above 65ºN there are high errors in these datasets because 

of the slant viewing angles experienced by geostationary satellites. In addition to high latitudes, 

Norway presents a complex and challenging topography for estimating solar radiation. Figure 

3.12 shows a digital elevation model of Norway (adapted from Paper II). 

 

Figure 3.12: Digital elevation model of Norway, adapted from Paper II. It can be seen that 

there are complex elevations both in the southern and in the northern parts of the country. 

Furthermore, Norway has a very low population density (2nd to Iceland in Europe). Because of 

a low population, there are only a small number of meteorological stations and even fewer of 

them record solar radiation. NIBIO is an agricultural network of pyranometers and it is the main 

agency responsible for maintaining and providing ground-measured solar radiation data for 

Norway. NIBIO has 47 stations in their database and at least 46 of these stations provide long-

term solar radiation data series. The data is free to download as hourly, daily, and monthly 

means (44).  

 

 

NO 
SWE FI 



 

27 
 

4. Methodology and data 
In this chapter, the methodologies and the data used in this thesis and appended papers are 

presented. Section 4.1 gives an overview of the data used and their implications on the quality 

of estimations. Then Section 4.2 gives an overview of the ground-measured data. After this, 

Section 4.3 explains the different modelled data used in this thesis and appended papers. In 

Section 4.4, the quality control measures applied on ground-measured data are explained. 

Section 4.5 gives an overview of the regression method used in Paper IV. Section 4.6 shows 

the validation metrics used to evaluate the models. Finally, Section 4.7 shows the extraction 

methods used in the datasets. 

4.1 Overview of the data 
In this thesis, two types of data are used; ground-measured and modelled data. The ground-

measured data include temperature, relative humidity and incoming shortwave solar radiation 

(temperature and relative humidity are used only in Paper I). The modelled data include solar 

radiation estimation from empirical model, satellite models, and reanalyses.  

The most basic method to model solar radiation is by using empirical models. These models 

develop a relationship between incoming solar radiation and meteorological variables to 

estimate solar radiation. However, these models are site dependent and not as accurate as 

satellite models or reanalyses (32).  

Reanalyses were first proposed in 1988 (45, 46) and are available since the mid-1990s. The 

global and regional reanalyses have been used to study both long- and short-wave down-welling 

solar radiation (47-53). Global reanalyses, as the name suggests, provide global coverage for 

major meteorological variables. Reanalyses are available at multi-decadal time scales and are 

usually cost-free. The data are available for monthly, daily, and sub-daily means (54-60). A 

regional-reanalysis is constructed by either dynamically or statistically downscaling a global-

reanalysis. Weather research and forecast model (WRF) (61) is widely used in meteorology to 

downscale a number of global reanalysis under different configurations. One such example of 

a dataset, which is used in Paper II, is the Arctic System Reanalysis version 2 (ASR). ASR is a 

downscaling of ERA-Interim global reanalysis by using a polar optimized configuration of 

WRF (55). In Paper III and IV, ERA5 a global reanalysis from European Centre for Medium-

Range Weather Forecast (ECMWF) is used. 
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Satellite models provide the most accurate remotely sensed estimates of solar radiation. Fritz, 

Rao (62) provided one of the earliest studies on the possibilities of estimating surface solar 

radiation by using visible sensors installed on satellites. They observed a high correlation 

between the radiance measured by the satellite sensors and ground-measured data. Later, Cano, 

Monget (63) introduced the basic idea that the surface solar radiation is inversely related to the 

top-of-atmosphere reflectance. Mainly, two types of satellites are used in these methods i.e. 

geostationary and polar orbiting satellites. Geostationary satellites are positioned at 35 786 km 

from the surface of the Earth and provide continuous observation on a spatial resolution of 3 - 

5 km. However, geostationary satellites do not provide coverage in the polar regions because 

the apparent pixel size of the observation increases with latitude and longitude (64). For high 

latitude locations polar orbiting satellite are used as they provide coverage on poles. These 

satellites are positioned at around 800 km above the surface of the Earth and provide 

observation on a high resolution of 200 - 1000 m but with a low temporal frequency that varies 

with latitude (twice a day at equator and 14 times a day at the poles). The accuracy of 

geostationary satellite based datasets are better than polar orbiting satellite based datasets 

because of the high sensing frequency which takes into account the intermittent nature of solar 

radiation (32). Satellite methods generally underestimate down-welling shortwave solar 

radiation and reanalysis generally overestimate it (28, 29). 

In the following subsections, the datasets used in this thesis and appended papers are explained 

in detail. 

4.2 Ground-measured data 
The ground-measured data used here was obtained from Norwegian Institute of Bioeconomy 

Research (NIBIO) for Norwegian locations, and Swedish Meteorological and Hydrological 

Institute (SMHI) for Swedish location. Both databases record average hourly measurement by 

Kipp and Zonen CMP11 or CMP13 pyranometers. The equipment is regularly maintained (on 

weekly or monthly basis) and datasets are quality controlled by the respective organizations 

(65, 66).  

To evaluate the remotely sensed solar radiation estimates in different geographical conditions, 

the analyzed locations were divided into inland, coastal, above 65ºN and below 65ºN regions 

(Papers III and IV). The division between inland and coastal regions was established by 

observing the proximity of the stations to the shoreline. Regions within 30 km of the shoreline 

were considered as coastal. From the 31 Norwegian locations studied in Papers III and IV, 14 
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locations were classified as coastal and the rest as inland. The other two groups were made 

based on the latitude of locations where regions lying above 65ºN were grouped together while 

locations lying below 65ºN were put in another group. From the 31 Norwegian locations studied 

in Paper III and IV, 4 locations lie above 65ºN and 27 lie below 65ºN. For details on this 

classification, refer to the Appendix, Table A. 

In Paper II, SMHI and NIBIO data were used and years having more than 10% of missing 

values were discarded. The rest of the years were having missing data and these were filled by 

using linear interpolation. In Paper III and IV, the ground-measured data was used after 

applying Baseline Surface Radiation Network  (BSRN) recommended Long and Dutton quality 

control (67) and a quality control based on comparing the ground deviation with reanalysis and 

satellite model proposed by Urraca, Gracia-Amillo (68). These quality control procedures are 

explained in Section 4.4. 

In addition to ground-measured solar radiation, temperature and relative humidity were used to 

construct a model to estimate solar radiation in Paper I. These data were acquired from NIBIO. 

4.3 Model data 
This section lists the model data used in this thesis and appended papers.  

4.3.1 Empirical model based on maximum temperature difference and 

relative humidity 
Empirical models estimate surface solar radiation by developing a relation between atmospheric 

transmissivity and other meteorological variables. One of the first such model was proposed by 

Ångström (69) in 1924. Ångström observed a high correlation between sunshine duration and 

daily solar radiation. Examples of other such empirical models use cloud cover (70), air 

temperature (71), precipitation and humidity (72, 73). However, the use of temperature and 

sunshine duration have been the most widely used technique in building such models because 

these variables are widely measured at weather stations (74, 75). In Paper I, a model based on 

Hargreaves, Samani (76) was proposed that uses the difference between maximum and 

minimum temperatures, and relative humidity in a day to estimate the average daily solar 

radiation. One of the shortcomings of empirical models is the use of difference between 

maximum and minimum temperatures in case of cloud-free conditions. In these conditions, the 

maximum and minimum temperature differences are relatively large due to low temperatures 

at night. In such cases the estimated solar radiation have high errors (32). However, the key 
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limitation of empirical model is the site-specific coefficient, which varies between coastal and 

inland regions (74), as these coefficients largely determines the accuracy of the estimated solar 

radiation (32). In addition, these types of models are dependent on ground based meteorological 

measurements and hence, these cannot produce a spatial distribution map of solar radiation 

estimates. 

4.3.2 CM-SAF CLARA dataset 
The Cloud, Albedo, Radiation (CLARA) dataset is a set of climate data records published by 

the Satellite Application Facility on Climate Monitoring (CM-SAF). The CM-SAF provides 

two categories of data: operational products and climate data records (CDR). The operational 

products are constructed by validating the data with on-ground stations and these are provided 

in near real time for variability studies in diurnal and seasonal time scales. However, CDRs 

are long-term data series that are used to assess inter-annual variability. CLARA-A1 and 

CLARA-A2 are two of such CDRs that provide long time series historical data. The CLARA 

datasets are based on polar orbiting satellites that provide a global coverage but their sensing 

frequency varies with latitude. These satellites have a sensing frequency of twice each day at 

the equator but with increasing latitude, the sensing frequency increases because of the 

overlap in the satellite swath. At the poles, these satellites have the highest sensing frequency 

of 14 observations each day. A single satellite has too low of a frequency to construct solar 

radiation datasets, hence, a series of satellites are used to obtain the surface solar radiation 

datasets. 
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Figure 4.1: CLARA-A2 monthly mean solar radiation map for 2009 on a horizontal surface. 

From Paper II. 

The first edition of this suite of dataset (CLARA-A1) was published in 2012 and it covers a 27 

years period, from 1982 until 2009. This dataset consists of cloud, surface albedo and radiation 

budget products derived from the Advanced Very High Resolution Radiometer (AVHRR) 

sensors on-board the polar orbiting NOAA and Metop satellites (77). The second edition of this 

dataset, CLARA-A2, was released in December 2016. CLARA-A2 is available from 1 January 

1982 to 31 December 2015, and constitutes an extension of 6 years relative to the CLARA-A1 

dataset. Both of these datasets have global coverage with a spatial resolution of 0.25ºx0.25º on 

a regular latitude-longitude grid and provide daily and monthly averages of surface incoming 

shortwave radiation (SIS). To calculate daily averages, at least 20 observations of incoming 

solar radiation in each grid box are required; similarly, 20 valid daily observations are required 

to generate monthly averages (78). Along with SIS, CLARA also provides longwave up and 

down-welling surface radiation.  

The fundamental method used in calculating surface solar irradiance from satellite observations 

is that the reflectance measured by the satellite instruments is related to the atmospheric 

transmittance. The SIS is calculated from the atmospheric transmittance (T) by the following 

equation. 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐸𝐸0 cos(𝜃𝜃0)𝑇𝑇, (7) 
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where E0 is the extraterrestrial solar radiation and θ0 is the solar zenith angle. The value of E0 

is set as 1368 Wm-2 in CLARA-A1, however, a revision in extraterrestrial radiation was 

performed by Gueymard (17) and the value of E0 is set as 1361 Wm-2 in CLARA-A2. 

In CLARA dataset, the transmittance is calculated from solar zenith angle, vertically-integrated 

water vapor, aerosol information and the cloud cover (obtained from AVHRR sensors). Finding 

solar zenith angle is straightforward and can be calculated accurately. The vertically-integrated 

water vapor and aerosol optical depth are not available in the AVHRR data and for these fields, 

external sources are used. For vertically-integrated water vapor, ERA-Interim Reanalysis (55) 

is used and the vertical ozone column is set to a constant value of 335 DU, as its variability has 

negligible impact on the estimated solar radiation. Aerosol information is taken from the 

modified version of the monthly mean aerosol fields from Global Aerosol Data Set/Optical 

Properties of Aerosols and Cloud (GADS/OPAC) climatology. In addition to this, the algorithm 

in CLARA also requires the surface albedo information. This is calculated based on spatial 

distribution of 20 surface types, which is obtained from the (SARB) Surface and Atmospheric 

Radiation Budget (part of the Cloud and Earth’s Radiant Energy System (CERES)). In the 

algorithm, the cloud coverage is determined by using the visible channels of the AVHRR 

instrument. The first step in estimating surface solar radiation is the classification of the sky 

conditions. The Nowcasting SAF (SAFNWC) software is used to derive the information on 

cloud coverage for each pixel by using the information from the satellite sensors. If no cloud is 

detected (cloud free pixel), surface solar radiation is calculated by using only the auxiliary 

sources and clear-sky Mesoscale Atmospheric Global Irradiance Code (MAGIC) described in 

Haase, Calais (79) . If the pixel is classified as cloudy (cloud contaminated or fully cloudy), 

visible channels of the AVHRR instrument are used to derive broadband reflectance. This 

reflectance for each pixel is then transferred to broadband fluxes by using a bidirectional 

reflectance distribution function (BRDF). In the next step, these broadband top-of-the-

atmosphere albedos are used to derive transmissivity through a look-up table approach. Finally, 

the transmissivity is used in calculating surface solar radiation, as shown in Equation 7 (80). In 

this dataset, all data points with solar zenith angles larger than 80º are set to missing values and 

solar zenith angles larger than 90º are set to zero. Because a temporally constant surface albedo 

is used in the algorithm, this dataset does not provide radiation estimates on snow and sea ice 

coverage areas because changes in the albedo of the snow-covered surfaces are not considered 

(81). For more information on the CLARA datasets and their accuracy, refer to Karlsson, 

Riihelä (77) and Karlsson, Anttila (81). 
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High-latitude locations like those studied here, may have a very different surface albedo than 

the temporally constant albedos considered in the algorithm. These critical points are identified 

by using the monthly mean CLARA-SAL (surface albedo) data record and the surface albedo 

used in the processing of SIS. All grid points with a difference in surface albedo exceeding 35% 

are masked out and set to missing data in final SIS record. This process introduces large number 

of missing data points in high latitude locations. Furthermore, the accuracy is reduced because 

at the available data points, a constant surface albedo is used which can vary from the real 

conditions. For this reason, the accuracy of the CLARA datasets in snow-covered areas is 

outside the target accuracy of CM-SAF. Further inaccuracies may be introduced by the miss-

classification of SAFNWC software used in cloud detection. It was observed in Paper III that 

the aerosol information used in the CLARA dataset can introduce errors in clear-sky and 

intermediate-cloudy conditions because average monthly aerosol information can vary from the 

inter-annual and sub-monthly aerosol variability of a particular location (80). 

In Paper II, CLARA A1 and A2 datasets are compared for Norwegian and Swedish locations. 

It was found that CLARA-A2, thanks to a new snow-detecting algorithm, has less number of 

missing values as compared to CLARA-A1. However, the new values that were not available 

in CLARA-A1 have large errors because these points mostly lie on the snow-covered surfaces. 

In Paper III, CLARA-A2 data set was evaluated and compared with SARAH, ERA5, and ASR. 

In this study, it was found that CLARA provides good estimates of surface solar radiation at 

location above 65ºN, where SARAH has no coverage. In Paper IV, this knowledge was used to 

construct a new dataset by using CLARA-A2 and ERA5 (explained in Section 4.3.4). The new 

dataset, which was constructed by using a random forest regression method (explained in 

Section 4.5), provides substantially more accurate results than CLARA-A2 and ERA5. 

4.3.3 CM-SAF SARAH dataset 
The second version of surface solar radiation dataset – Heliosat (SARAH-2) is a CDR of surface 

solar radiation by CM-SAF (82). The SARAH dataset covers a period of 31 years from 1983 to 

2015 and the region from +65º to -65º in latitude and longitude. The spatial resolution of the 

data is 0.05ºx0.05º (approximately 5 km) and the data is available for 30 minutes instantaneous, 

hourly, daily, and monthly averages of surface incoming shortwave radiation on a horizontal 

surface (SIS), surface direct irradiance (SDI), sunshine duration (SDU) and effective cloud 

albedo (CAL), while spectrally resolved irradiance (SRI) is available as monthly means (83). 

To calculate daily averages at least three samples per day are required; similarly, 10 calculated 

daily observations are required to generate monthly averages. 
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Figure 4.2: Mean surface solar radiation for 1983–2013 in June over Scandinavia from 

SARAH. The spatial limits for the dataset can be seen in the figure (84). 

To obtain sufficiently large time series of data (spanning multiple decades), SARAH uses two 

generation of Meteosat satellites. The broadband visible channels from Meteosat Visible Infra-

Red Imager (MVIRI) instrument on-board the Meteosat first-generation satellites (Meteosat-2 

to Meteosat-7) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument 

on-board the Meteosat second-generation satellites (Meteosat-8 to currently Meteosat-10) are 

used to calculate the shortwave surface irradiance.  

The basic method of calculating surface solar radiation in SARAH is similar to that of CLARA. 

In SARAH, effective cloud albedo (CAL) and a clear-sky model are used to calculate surface 

solar radiation. The CAL is defined as the amount of reflected irradiance for all sky relative to 

the amount of reflected irradiance for clear-sky, and it is a measure of the cloud transmission 

and hence by calculating clear-sky radiation, the all sky radiation can be estimated. To calculate 

CAL, satellite data and a modified Heliosat method are used (85). This modification of the 

Heliosat method in combination with gnu-MAGIC/SPECMAGIC is called MAGICSOL. The 

Heliosat method uses reflection measurement given as normalized digital count to calculate the 

CAL. The effective cloud albedo from the Heliosat method is given by the following equation. 



 

35 
 

𝑛𝑛 =
𝜌𝜌 − 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠
, (8) 

where, ρ is the observed reflection for each pixel, ρsrf is the clear-sky reflection and ρmax is the 

estimated maximum reflectivity observed by the satellite sensor. The modifications made in 

this algorithm include a self-calibration algorithm that is based on an operational and automatic 

determination of the maximum reflectivity ρmax. 

In the next step, the clear-sky model and effective cloud albedo are used to calculate the surface 

solar radiation. The modified Heliosat method provides the broad band effective CAL but to 

consider the spectral effect of clouds a Radiative Transfer Model (libRadtran) based correction 

is applied. To calculate clear-sky radiation, SPECMAGIC model is used which is based on a so 

called hybrid eigenvector look-up table approach (86). The input parameters for gnu-

MAGIC/SPECMAGIC are date, time, solar zenith angle, coordinates, effective cloud albedo 

(cloud index), water vapor column density, surface albedo, aerosol optical thickness, and single 

scatter albedo for aerosols. Monthly mean values of vertically integrated water vapor are taken 

from ERA-Interim global reanalysis record (55), and monthly mean aerosol information is 

taken from Monitoring Atmospheric Composition and Climate project (MACC) aerosol 

climatology. Surface solar radiation is derived from combining SPECMAGIC algorithm and 

effective cloud albedo (82). Improvements in the new version of the dataset (SARAH-2)  

includes the stability in the early years of dataset and during the change of instrument from 

MVIRI to SEVIRI in 2006 and correction of viewing geometry for slant viewing angles (87). 

For more information on the retrieval methods refer to Müller, Pfeifroth (88). SARAH-2 was 

used in Paper III to evaluate the solar radiation estimates in location below 65ºN. 

4.3.4 ECMWF Reanalysis 5 (ERA5) 
ECMWF Reanalysis 5 (ERA5), is the fifth generation of European Centre for Medium-Range 

Weather Forecasts (ECMWF) atmospheric reanalysis of the global climate and span a period 

of 1950 to near real time (39). At the time of writing, data from 2000 to 2017 is available. 

Further data back in time will be released in 2019-20 and will continue to update forward in 

real-time. In ERA5, the solar radiation variable has a spatial resolution of 31 km 

(0.28125ºx0.28125º) and an hourly temporal frequency. ERA5 uses the Integrated Forecasting 

System (IFS) cycle 41r2 with a state-of-the-art four-dimensional variational analysis (4DVAR) 

assimilation system. ERA5 has more pressure levels than ERA-Interim (the previous edition of 

ECMWF reanalysis) and more variables are made available for this reanalysis than for those of 

earlier generation. For more information on ERA5, refer to ECMWF (89).  
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In this study, shortwave surface downward radiation, shortwave surface downward radiation 

clear-sky, and total cloud water content (the vertically-integrated cloud water concentration) 

are used from this dataset. In ERA5, the incoming short wave radiation is obtained from a 

Radiative Transfer Model (RTM). This model simulates the attenuation in solar radiation 

caused by the atmosphere, therefore, the quality of estimated radiation depends on the RTM 

used. Reanalysis generally do not assimilate aerosol, clouds, or water vapor data, which 

increases the uncertainty in the estimated surface irradiance (49, 90). ERA5 was used in Papers 

III and IV. 

4.3.5 Arctic System Reanalysis v2    
In polar regions, it is difficult to determine current weather and climate trends from a long-term 

climatology perspective when compared to the rest of the globe, primarily because of limited 

number of meteorological stations (91). In these areas, reanalysis can be used as an alternative 

to provide such climatologies. To provide a long-term climatological data, the Arctic system 

Reanalysis was made available in 2010 (92). The second edition of this dataset was proposed 

in 2017 (93) called the Arctic system reanalysis version 2 (93).  These are a set of regional 

reanalysis that are based on high-resolution regional assimilation of model output, observations 

and satellite data for the mid- and high-latitude regions of the northern hemisphere (94). In its 

core, ASR is a polar-optimized dynamic downscaling of ERA-Interim reanalysis by using 

Weather Research and Forecast Model (WRF) version 3.6.0 (95). The data set is available for 

the period of 2000 to 2012. The grid resolution is 15 km, which is finer than most global models 

and the previous release of ASR (ASRv01), whereas the time resolution of the dataset is 3 

hours. The downscaling is optimized for Polar Regions, and polar physics is used where 

possible, including heat transfer through snow and ice, the fractional sea ice cover, the ability 

to specify variable sea ice thickness, snow depth on sea ice and sea ice albedo, as well as other 

optimizations including the Noah Land Surface Model. The area covered by this dataset is 1.2 

x 108 km2, which is about 50% of Northern hemisphere. Spectral nudging from ERA-Interim is 

applied on geopotential height, temperature, and wind components above 100 hPa on the inner 

domain. ASR uses three-dimensional variational analysis (3DVAR) for observations, including 

radiance data, from a number of satellites (93). Figure 4.3 shows the inner and outer domains 

used in ASR. 
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Figure 4.3: The inner and outer domains of the Arctic System Reanalysis (ASR). The outer 

domain has a resolution of 90 km and inner domain has a resolution of 30 km. Colors refer to 

the terrain height*. 

4.4 Quality Control 
Ground measurement of solar radiation is generally more prone to recording errors than other 

meteorological variables (96). For long time series assessment of estimating datasets, the 

quality of the ground measurement is very important. A close examination of the ground-

measured solar radiation reveals that there are errors for extended periods of time (97). Younes, 

Claywell (97) identified two major types of errors in the ground measurements from 

pyranometers. The first type of error is called the uncertainty of equipment error, which is 

introduced because of the construction and calibration of the equipment. The second type of 

error is the operational error, which is related to the maintenance of the sensor. Because of the 

existence of such errors and their effects on the validation or feasibility studies, it is crucial to 

perform quality-control (QC) procedures on the solar radiation data (98). The ground-measured 

data used in this thesis is quality controlled by the respective organizations. In case of SMHI, 

Baseline Surface Radiation Network (BSRN) routines by Long and Dutton (67) are used for 

quality assurance. Missing or erroneous data is corrected by using meteorological variables 

described by Davies and McKay (99). The SMHI network was upgraded in 2006-2007 and the 

average correlation ratio between old and new measurements was found to be 0.997. More 

 *National Center for Atmospheric Research Staff (Eds). Last modified 09 Nov 2017. "The Climate Data Guide: Arctic System 
Reanalysis (ASR)." Retrieved from https://climatedataguide.ucar.edu/climate-data/arctic-system-reanalysis-asr.  

https://climatedataguide.ucar.edu/climate-data/arctic-system-reanalysis-asr
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detail on the upgrade is given by Carlund (65). SMHI provides data with quality flags and 

before using the data, these quality flags can be analyzed. In the case of NIBIO, the ground-

measured data is quality controlled and the equipment is regularly maintained on a daily or 

weekly basis (66). 

Although the data used here is quality controlled, Urraca, Gracia-Amillo (68) observed that 

operational and equipment errors exist especially in NIBIO stations. The first check performed 

in this regard is to look at the percentage of missing data. In Paper I and II, any year having 

more than 10% of missing data was discarded, however extra quality checks were not 

performed. In Paper III and IV, years having more than 5% of missing data were discarded. 

Moreover, the QC procedures described in the following sub-sections were performed in Papers 

III and IV. 

4.4.1 BSRN Global Network recommended Quality Control test V2 
The Baseline Surface radiation Network (BSRN) and its central archive – the World Radiation 

Monitoring Center (WRMC) provides the best possible quality controlled data for long- and 

short-wave surface solar radiation. To assure the quality, data received by WRMC/BSRN from 

ground-measuring stations runs through an inspection that includes the BSRN recommended 

quality checks V2.0 (67). The quality of the data is then represented in the form of flags (100). 

For global shortwave radiation, two tests are applied that check the physically possible limits 

and the extremely rare limits. The physically possible limits are shown in Equation 9 and the 

extremely rare limits are shown in Equation 10. 

𝑀𝑀𝑀𝑀𝑀𝑀: − 4 𝑊𝑊𝑚𝑚−2 

𝑀𝑀𝑎𝑎𝑎𝑎: 𝑆𝑆𝑎𝑎 × 1.5 × 𝜇𝜇𝑜𝑜1.2 + 100 𝑊𝑊𝑚𝑚−2 (9) 

𝑀𝑀𝑀𝑀𝑀𝑀: − 2 𝑊𝑊𝑚𝑚−2 

𝑀𝑀𝑀𝑀𝑀𝑀: 𝑆𝑆𝑎𝑎 × 1.2 × 𝜇𝜇𝑜𝑜1.2 + 50 𝑊𝑊𝑚𝑚−2 (10) 

 

𝜇𝜇𝑜𝑜 = cos(𝑆𝑆𝑆𝑆𝑆𝑆) (11) 

𝑆𝑆𝑎𝑎 = 𝑆𝑆𝑜𝑜
𝐴𝐴𝐴𝐴2� (12) 

Where, SZA is the solar zenith angle, So is the solar constant at mean Earth-Sun distance and 

AU is the Earth-Sun distance in Astronomical units. After performing these quality control 
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tests, years having more than 1% of the flags were discarded from the analyses. The BSRN and 

similar tests are designed to detect only large deviations in ground-measured records; however, 

small errors introduced by shading, soiling, frost, snow or calibration of the equipment are not 

detected by these procedures (68). 

4.4.2 Quality Control with Reanalysis and Satellite-based Products 
As described in the previous section, general quality control (QC) procedures that principally 

test the range, model comparison, and graphical analysis are not effective in detecting small but 

persistent errors. Keeping this in view a more sophisticated QC procedure by Urraca, Gracia-

Amillo (68) is presented here. This semi-automatic procedure is based on the statistical analysis 

of ground-measured solar radiation and radiation from reanalyses or satellite products. These 

products generally have larger errors than ground-measured data but operation and equipment 

errors are not as common in these as in ground-measured data. In the first step of this QC 

procedure, a confidence interval is constructed by calculating daily deviations (∂t) of the 

products as shown in Equation 13. 

𝜕𝜕𝑡𝑡 = 𝑌𝑌𝑡𝑡 − 𝑂𝑂𝑡𝑡, (13) 

where, Yt are the estimations, Ot are the observed values and t is the temporal resolution. The 

confidence interval is then calculated for monthly values (temporal averaging) and for groups 

of stations with similar characteristic (spatial averaging).  The averaging for the time and space 

is performed in two steps to increase the robustness of the confidence intervals. First, the bias 

with respect to median of daily deviations is calculated for each months and location as shown 

by Equation 14. 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵� = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝜕𝜕) (14) 

The Bias obtained from Equation 14 is again averaged on months of the year and stations within 

the same spatial group, resulting in a unique set of twelve values per group per product. To 

include the measure of dispersion, mean absolute deviation (MAD) is calculated by the 

following equation. 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1.4286 × 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚��𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵��� (15) 

The MAD includes a constant scale factor of 1.4286 to ensure the consistency of estimates for 

different sample sizes. Finally, the confidence interval (CI) is calculated by the following 

equation. 
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𝐶𝐶𝐶𝐶 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵� ± 𝑛𝑛 × 𝑀𝑀𝑀𝑀𝑀𝑀 (16) 

Where n is a coefficient that weighs the MAD in order to adjust the level of QC procedure. The 

value of n is set to respectively, 2.4 or 0.4 for flagging operational errors and equipment errors. 

Figure 4.4 illustrates the confidence intervals developed in Papers III and IV.  

 

 

(a) Above 65ºN locations in Norway 

  

(b) Below 65ºN locations in Norway 

Figure 4.4: The confidence intervals constructed for the quality control from ERA5 and 

CLARA. The locations in Norway were divided into two categories based on the latitude. 

Locations above 65ºN were placed in one group (a), and locations below 65ºN were placed in 

the second group (b). Based on the quality control procedures presented by Urraca, Gracia-

Amillo (68) and adapted from Papers III and IV. 

After constructing the confidence intervals, a window width parameter (w) is defined. As with 

the value of n, the window width can be set to either 20 for operational errors or 90 for 

equipment errors. The window starts increasing with a step of five days (fast moving filter), 
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and for each group of days it flags the data which is above or below the confidence interval. 

Days with an absolute relative deviation of 5% or absolute deviation of 5 Wm-2 are not 

accounted in flagging. The products that are more accurate provide a stricter confidence interval 

as can be seen in Figure 4.4. In the case here, as CLARA is a more accurate dataset, it has a 

much narrower confidence interval when compared with ERA5. Hence, CLARA will flag more 

data points than ERA5 because of the higher accuracy.  

In the final step of this QC procedure, two graphical plots are generated for visual analysis. The 

first graph is generated for the daily deviations between the product and the ground data and a 

second graph is generated for comparing the hourly irradiance of ground measurements and 

product. For information on these graphs, refer to Urraca, Gracia-Amillo (68). Both of these 

graphical plots are examined visually to detect any false alarms. As the graphical comparison 

is performed for hourly averaged values, it is convenient to include at least one product that has 

hourly resolution (68). Initially, the locations Pasvik, Mære, Ullensvang, and Njøs were 

included in Paper III but after performing this QC test, large numbers of errors were found. 

These locations were discarded from this thesis and from Papers III and IV. 

4.5 Random Forest Classification and Regression 
Recently, there has been a growing interest in ensemble learning techniques. Ensemble methods 

are based on generating many classifiers and the results of these are aggregated which increases 

the learning ability for the entire inputs and target (101). Random forest regression (RFR) is a 

regression tree method, which has become very popular in recent years due to its strong 

performance, ease of implementation and low computational cost. It is an ensemble learning 

technique developed by Leo Breiman (102), which is based on the construction of a multitude 

of decision trees, where branches of the trees represent a particular path for the input data and 

leaves represent the output values. In RFR, a particular tree is grown in accordance with the 

realization of a random vector. The final prediction is based on aggregation over the ensemble 

of trees, referred to as the forest (103). On each of the trees, branches or nodes are made which 

are based on comparing a randomly selected feature to a random threshold. The randomness 

introduced in both variable selection and threshold determination has been shown to results in 

attractive properties such as a controlled variance, resistance to overtraining, and robustness to 

outliers as well as irrelevant variables. Moreover, RFR inherently provides estimates of 

generalization error and measures of variable importance (104, 105). The process of dividing 

the input data over branches are repeated until one or a pre-set number of data points are 

contained in each branch. This final node of the tree is referred to as a leaf, and it represents the 
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final-outcome of that particular regression in the whole model. The structure of the forest and 

hence the RFR behavior can be controlled by three main parameters, namely the number of 

trees (with a default value of 500), the number of variables considered in each node (generally 

set to m=P/3 following common practice in RFR), and the final number of data points that can 

make a leaf (our default value is 1). Having very low number of leaves in the model can cause 

overfitting, which can be overcome by pruning, i.e. limiting the number of data points in each 

leaf. With an increase in the number of trees, the computation load increases. An initial increase 

in the accuracy of the regression will also be observed, before reaching a saturation point (106), 

after which improvements are limited by a strong correlation between the trees (102). The RFR 

is used in Paper IV to construct a multi variate regression data set based on CLARA-A2 and 

ERA5 datasets.  

4.6 Statistical Evaluation of Estimations 
In order to evaluate the performance of the datasets, some common statistical measures were 

used. The most widely used measure is the Root Mean Squared Deviation (RMSD), which is 

given by Equation 17. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁
��𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 − 𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖�
𝑁𝑁

𝑖𝑖=1

(17) 

Where, GHIestimated,i is the estimated global horizontal irradiance, GHIobserved,i is the ground-

measured global horizontal irradiance and N is the number of data points in time. As an 

additional measure, the MBD (Mean Bias Deviation) or bias was also used in the evaluation as 

shown in Equation 18. MBD gives an insight in the general trends of under or over estimations. 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
��𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 − 𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖�
𝑁𝑁

𝑖𝑖=1

(18) 

Mean absolute bias deviation (MABD) was also used for the evaluations of datasets. Because 

of the absolute values used in this measure, the negative and positive errors do not cancel out 

each other as in MBD. This is a good measure to compare different models, as the one with 

smaller MABD will be the more reliable for estimations.  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
��𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 − 𝐺𝐺𝐺𝐺𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖�
𝑁𝑁

𝑖𝑖=1

(19) 

The standard deviation of the error (STD) is used to evaluate the data set presented in Paper 4. The 

sample STD is computed as 
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𝑆𝑆𝑆𝑆𝑆𝑆 = �
1

𝑁𝑁 − 1
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(20) 

 

In addition, a bias-variance decomposition was used to obtain the optimal configuration of the 

random forest regression model used in Paper 4, with respect to the number of trees and the 

number of leaves. Moreover, R2 and scatter plots were used to indicate the spread and overall 

correlation of the datasets with ground measurements. 

4.7 Data extraction 
The data extraction from the gridded datasets was performed in two ways. For high-resolution 

datasets like SARAH and ASR, the nearest grid point to the coordinates of the location was 

selected for data extraction. However, for coarse resolution datasets like ERA5 and CLARA, 

inverse distance weighting (IDW) interpolation was used. The IDW interpolation is given by 

the following equation. 

𝑉𝑉� =
∑ 1

𝑑𝑑𝑖𝑖
𝑉𝑉𝑖𝑖𝑛𝑛

𝑖𝑖=1

∑ 1
𝑑𝑑𝑖𝑖

𝑛𝑛
𝑖𝑖=1

(21) 

Where, 𝑉𝑉𝑖𝑖 are the known values, 𝑑𝑑𝑖𝑖 are the distance from the data point and estimated point, 

and 𝑉𝑉�  is the value to be estimated. The four nearest surrounding grid points to the location were 

selected from ERA5 and CLARA as inputs to the IDW interpolation. Missing values exist in 

the CLARA dataset and if two or more of the surrounding four grid points were not available; 

the interpolation was replaced by a missing value. 

4.7.1 Gap filling procedure 
Gaps are often available in the ground-measurement and estimated surface solar radiation 

databases. Gaps in the ground measurement may occur due to power loss, misalignment, failure 

of instrument, insufficient cleaning or other reasons (107). In the satellite databases used here, 

the gaps in the data exist generally because of low number of observations and snow covers. In 

most of the analysis made here, gap-filling procedures were not used except in energy 

calculations in Paper III. In Paper III, nearest-neighbor interpolation was used to fill the gaps 

in SARAH, CLARA and ground-measured data. In addition, linear interpolation was used in 

filling gaps in Paper I. 
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5. Previous research and current knowledge gaps 
In this section, an overview of the previous research done on estimating surface solar radiation 

is presented. In the last part of this section, the knowledge gaps are discussed from the 

perspective of estimating solar radiation in high latitude locations.  

5.1 Previous research 
Most of the research on remotely estimating solar radiation has been performed for mid- and 

low-latitude locations by using geostationary satellites. One of the earliest validation of these 

estimations was carried out by Hollmann, Mueller (108). In this research, the authors used the 

data from AVHRR sensor on-board polar orbiting satellites and showed that the average mean 

biases were small and were within the targeted accuracy of 10 Wm-2 on monthly mean time 

scales. In Posselt, Mueller (109), authors used geostationary Meteosat second generation 

satellites and evaluated the estimated radiation at 10 locations from the BSRN network. The 

highest latitude location analyzed in this study was Lerwick (UK) and this location had the 

highest mean absolute deviation (MABD). In a subsequent study (110), particular 

improvements were found at Lerwick because of the advancements in retrieval methods. The 

bias and MABD were remarkably low with 1.27 Wm-2 and 5.46 Wm-2, respectively. In total, 

about 94% of the monthly mean values showed an accuracy of 10 Wm-2 or better. In 

Bojanowski, Vrieling (111), authors showed that the solar radiation estimation from Meteosat 

first and second generation satellites had a similar accuracy, however the authors suggest that 

ERA-Interim can be used as an effective backdrop to satellite products. In Sanchez-Lorenzo, 

Enriquez-Alonso (112), authors studied the trends in surface solar radiation over Europe from 

CM-SAF geostationary satellite products but high altitude locations were excluded from the 

study, because such locations are known to have problems in deriving surface solar radiation 

as shown in some other previous studies (113, 114). Similarly in Cristóbal and Anderson (115), 

the authors used Meteosat second generation satellites to estimate solar radiation over the 

northeastern Iberian Peninsula. In this study, it was observed that the errors were small in flat 

areas while an increase in errors was observed in mountainous regions. Another such study 

outlined the difficulties of satellites in estimating solar radiation in mountainous regions (116). 

In this study, three different algorithms were used to estimate surface incoming solar radiation 

in Belgium. Although, all the algorithms underestimated solar radiation when compared to 

ground measurements, the authors of this study expected the sensitivity to increase in regions 

with strong influence of mesoscale meteorology such as coastlines and highlands as compared 
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to mid latitude regions with a rather flat orography. The reason for this shortcoming is explained 

in Amillo, Huld (117), which showed that the  accuracy of estimating effective cloud albedo 

(CAL) decreases towards the edge of the field of view of satellite, mainly because of very 

shallow angles. This slant-viewing angle introduces biases that tend to be larger near the edge 

of the satellite images, which start affecting the accuracy around ±65º latitude. 

In Alexandri, Georgoulias (118), authors compared CM-SAF SARAH dataset with CERES 

(Cloud and the Earth's Radiant Energy System), GEWEX (Global Energy and Water Cycle 

Experiment), ISCCP (International Satellite Cloud Climatology Project) and ERA-Interim for 

Eastern Mediterranean. Overall, SARAH performed better than other datasets. Similarly in 

Urraca, Martinez-de-Pison (119), authors analyzed global horizontal irradiance from SARAH, 

ERA-Interim, interpolated ground-measurements (Ordinary kriging) and a statistical model 

called XGBOOST. In this study, 38 ground stations in central Spain were evaluated and it was 

found that SARAH provides better solar radiation estimates with low variability. Both of these 

studies showed that satellite products underestimate solar radiation. In another study it was 

shown that intermediate-sky conditions are overestimated while these overestimations increase 

further in overcast conditions, however areas affected by snow may have larger uncertainties 

(117). In some studies, around 5-10 Wm-2 of mean absolute deviations for monthly means was 

observed in geostationary satellite databases (77, 109, 110, 114, 120, 121). Most of the studies 

reported satellite methods to underestimate incoming solar radiation, besides some studies like 

Žák, Mikšovský (120) and Hakuba, Folini (122)  that reported overestimation. 

One of the more relevant studies to this thesis was done by Riihelä, Carlund (84). In this study, 

authors validated the first editions of SARAH and CLARA datasets over multiple locations in 

Sweden and Finland, spanning from 55º to 70ºN. Both datasets were found to have monthly 

mean accuracy better than 10 Wm-2 and a daily mean accuracy of 15 Wm-2. SARAH was only 

able to provide coverage in southern Nordic regions because of its limited coverage. However, 

unlike CLARA, SARAH provide coverage on snow covered surfaces, although the 2nd edition 

of CLARA now provides more coverage on snow covers (30, 31). SARAH error characteristics 

were seen to have latitude dependence and errors increase with increasing latitude.  

Another very recent and relevant study was done by Urraca, Gracia-Amillo (30), in which  

authors made an extensive evaluation of CM-SAF products including SARAH-2 and CLARA-

A2 datasets. In this study, 313 ground stations were evaluated from several European countries, 

which included 29 stations from Norway. Satellite datasets underestimated at high latitudes 

while a slight overestimation was observed in southern regions. CLARA showed very good 
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temporal stability while keeping a small constant underestimation in majority of locations, 

however, the MABD in CLARA was larger than SARAH by 1-2 Wm-2. ERA-Interim was found 

to have a constant positive overestimation and absolute errors almost double that of the satellite 

datasets. In this study, although CLARA underestimated solar radiation, a significant decrease 

in the bias is found when compared to the first edition of CLARA dataset (81). Locations with 

seasonal snow covers, which are abundant at high latitude locations, were observed to have 

large underestimation. In a similar way, SARAH was seen to be underestimating as well but 

the underestimation was again larger for regions with snow covers. This is because the satellite 

algorithms only use the visible channel to detect the presence of clouds, hence these cannot 

differentiate if a bright pixel corresponds to a cloud or to a surface covered with snow. 

Moreover, satellite models fail on mountainous regions because the spatial and temporal 

resolutions are not high enough to account for the sharp terrain and changing weather conditions 

(30). 

On the contrary, reanalysis overestimate incoming solar radiation as reported in multiple studies 

(30, 111, 119, 123). Although, not as many studies have been performed on the evaluation of 

reanalyses for incoming solar radiation as there are on satellite estimations, some studies like 

Urraca, Huld (28), Bojanowski, Vrieling (111) suggest that reanalysis have been improving and 

these can be used where the satellite data is missing or inaccurate. 

5.2 Thesis work in relation to knowledge gaps 
The previous section highlighted a number of interesting topics that were chosen for further 

research in this thesis. The knowledge gaps associated with these research areas are summarized 

and linked to the appended papers in the following: 

• The number of meteorological stations recording shortwave incoming solar radiation is 

very low in Northern Norway. Even though there are many meteorological stations 

recording other atmospheric variables like temperature, precipitation, and humidity, the 

number of station recording solar radiation remains low. The model proposed in Paper 

I can be used to construct estimated solar radiation by using temperature and humidity 

at these stations. 

• There are very few studies carried out on evaluating solar radiation datasets from polar 

orbiting satellites. Paper II and III provide an evaluative analysis for polar orbiting 

CLARA dataset for high latitude locations. 
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• Arctic system reanalysis (ASR), which is a polar optimized dynamic downscaling of 

ERA-Interim, was not evaluated any further for solar radiation in high latitude regions. 

An assessment was provided in Paper III on ASR version 2. It was found that this dataset 

provides very large uncertainties in estimating solar radiation.  

• Because of the low coverage provided by geostationary satellites, they do not provide 

coverage in northern Norway. Moreover, the errors in geostationary datasets increase 

with increasing latitudes. Databases from polar orbiting satellites (CLARA-A1) can be 

used at high latitudes but because of snow covers, they have a large number of missing 

data as shown in Paper II. 

• New datasets based on polar orbiting satellites (CLARA-A2) provide less missing 

values but these improvements are mainly on high latitudes and snow cover periods. 

When analyzed, these new data points were seen to have large errors as shown in Paper 

II. 

• ERA5, a recently published reanalysis, is evaluated in Paper III. The results show that 

ERA5 provides reasonable errors and can be used as a supporting dataset when satellite 

datasets do not provide coverage, have missing values or large uncertainties.  

• Reanalyses are reported to overestimate solar radiation while satellite databases 

underestimate solar radiation. A new dataset is presented here which is constructed by 

using a Random forest regression on reanalysis and satellite dataset. This model 

improves the solar radiation estimations in a number of ways. In the proposed model, 

there are no missing values, and the accuracy is better than both the reanalysis and 

satellite datasets.  
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6. Results 
This chapter summarizes the results from the appended papers in two sections. In the first 

section, available resources of solar radiation estimation are analyzed and discussed. In the 

second section, the results from the evaluations of the datasets together with the use of a 

regression algorithm are used to create a novel and improved solar radiation dataset. 

6.1 Evaluation of available datasets of surface solar radiation at 

high latitudes 
This section summarizes the results from Papers I, II and III. In Section 6.1.1, a model based 

on the difference between maximum and minimum temperatures and relative humidity is 

presented from Paper I. In Section 6.1.2, the results from Paper II are presented which are based 

on a comparative analysis of CLARA-A1 and CLARA-A2. In Section 6.1.3, an analysis is 

presented on the estimation accuracies of CLARA-A2, SARAH-2, ERA5, and ASR from Paper 

III.  

6.1.1 A model to estimate surface solar radiation by using temperature 

and humidity 

This section provides an overview of the model developed in Paper I. The proposed model is 

based on the Hargreaves, Samani (76), in which authors have used the maximum temperature 

difference and extraterrestrial radiation in a day to estimate surface solar radiation, and 

eventually the evapotranspiration. The model presented by the same authors is shown in 

Equation 22. 

𝑅𝑅𝑠𝑠 = 𝐾𝐾𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑇𝑇𝑇𝑇0.50 (22) 

Where, KRS is an empirical coefficient fitted to Rs/Ra versus TR data, TR is the diurnal 

temperature difference between the maximum recording and the minimum recording, Ra is the 

extraterrestrial radiation, and Rs is the surface solar radiation. The value of KRS in Equation 21 

can take two different values, one for interior, and one for coastal regions. A value of 0.162 is 

recommended for interior regions and a value of 0.19 is recommended for coastal regions. The 

extraterrestrial radiation is calculated by the following equation. 

𝑅𝑅𝑎𝑎 =
24
𝜋𝜋
𝑅𝑅𝑠𝑠𝑠𝑠 �1 + 0.33 × 𝑐𝑐𝑐𝑐𝑐𝑐

360 × 𝑃𝑃
365

� × 𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) × 𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿) × 𝑠𝑠𝑠𝑠𝑠𝑠(ℎ𝑠𝑠)

+
(2 × 𝜋𝜋 × ℎ𝑠𝑠)

360
× 𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑) × 𝑠𝑠𝑠𝑠𝑠𝑠(𝛿𝛿) (23)
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Where, Ra is the extraterrestrial radiation, Rsc is the solar constant with a value of 1366 Wm-2, 

P is the day number (ranging from 1 for the first day of the year and 365 for the last day of the 

year), 𝜑𝜑 is the latitude, 𝛿𝛿 is the declination angle and hs is the hour angles of sunrise and sunset. 

The model developed in Paper I is based on the model shown in Equation 22, but in addition to 

the temperature difference, relative humidity was taken into account. The proposed model is 

shown in the following equation. 

𝑅𝑅𝑠𝑠 = 0.04 × 𝑅𝑅𝑎𝑎 × 𝑇𝑇𝑇𝑇 + 𝐾𝐾𝑅𝑅𝑅𝑅 × 𝑅𝑅𝑎𝑎 × (𝑅𝑅𝑅𝑅)0.27 (24) 

Where RH is the relative humidity in Equation 24. The empirical constant KRS in Equation 24 

can take two values, like the model presented in Equation 22 (76). A KRS value of 0.01 is 

suggested for inland regions and a value of 0.04 is suggested for coastal regions. Figure 6.1 

depicts the model estimated, observed, and extraterrestrial radiation for Tromsø, Norway in 

2014. 

 

Figure 6.1: The model estimated GHI, observed GHI, and extraterrestrial radiation for Tromsø 

in 2014. The radiation is expressed in Wh.m-2 (energy). 

The model in Equation 24 was tested at eight locations in Norway. Compared to the original 

method proposed by Hargreaves and Samani, the daily average percentage error was improved 

by 0.2%, and yearly average percentage error was improved by 10.8%. 
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6.1.2 A comparison of CLARA datasets and an analysis of improvements 

in CLARA-A2 

Most solar radiation datasets do not provide coverage above 65ºN (or below 65ºS) because 

majority of these datasets are based on geostationary satellites (an example of which is the 

SARAH dataset, discussed in the next section). For areas above 65ºN, the CLARA datasets, 

published and managed by CM-SAF, provide precise surface solar radiation estimations. At the 

time of writing, CM-SAF has published two editions of CLARA datasets. For further 

information on these datasets please refer to Section 4.3.2 or Karlsson, Anttila (81) and 

Karlsson, Riihelä (77).  

In Paper II, a comparative analysis was presented for CLARA-A1 and CLARA-A2 datasets 

with an emphasis on the improvements of CLARA-A2. The study was performed for eight 

locations in Norway and seven locations in Sweden for 14 years between 1995 and 2009. The 

ground data for the analysis was acquired from NIBIO and SMHI, but unlike in Papers III and 

IV, quality control procedures were not applied except discarding years with more than 10% of 

missing values. 

In this analysis, it was observed that the new dataset (CLARA-A2) had less missing data points; 

however, the errors and biases were found to be reduced in the previously existing data points 

when compared to CLARA-A1. Figure 6.2 shows the Hovmöller plots for CLARA-A1 and A2 

datasets, which highlights the quantity of missing data points in each dataset. 
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Figure 6.2: Hovmöller plots for CLARA-A1 and A2 datasets for 1995 to 2009. These plots are 

centered at 10º longitude and span from 40ºN to 70ºN latitude.  

As seen from Figure 6.2, both the datasets have increasing number of missing values with 

increasing latitudes (latitudes increase from left to right in Figure 6.2). CLARA-A2 had less 

number of missing data points than the previous edition CLARA-A1. However, as can be seen 

from Figure 6.3, the improvement in the data availability is mostly on the high latitude areas 

that have more snow depth than the low latitude areas. 
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But 

  

(A1)           (A2) 

 

 

(B1)          (B2) 

Figure 6.3: Missing data in CLARA-A1 and A2 datasets is illustrated. From (A1) and (A2) it 

can be seen that the number of missing data is reduced in CLARA-A2, however the decrease 

in missing data is mostly on high latitude locations with high snow depths, as shown in (B1) 

and (B2). From Paper II. 

The increase in the availability in CLARA-A2 was mostly in snow-covered regions. As 

explained in Section 4.3.2, satellite estimation methods particularly those used in CLARA 

datasets have difficulties in differentiating between clouds and snow-covered surfaces because 

IR channels are not used in the radiation estimation algorithm. These new data points had very 

large errors especially at the locations studied in Paper II. Norwegian locations had a 12% 

increase in the availability of data and Swedish locations had a 9.6% increase, and as can be 
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seen from Figure 6.3 (B1), Norwegian locations receive more snow than Swedish location. 

Figure 6.4 depicts the increase in availability in CLARA-A2 dataset in quarter-yearly monthly 

averages. In the period from February to April, coastal regions in Norway and central parts of 

Sweden had the most increase in data availability. While in the period from May to July, the 

inland and southwestern parts of Norway and northern parts of Sweden had the largest increase. 

 

Figure 6.4: Percentage increase in the availability of CLARA-A2 dataset in each quarter. The 

highest increase is in the areas that have complex topography in addition to snow covers. 

For Norwegian locations, the new data points had a mean absolute bias deviation (MABD) of 

17.7 Wm-2 while for Swedish locations, an MABD of 15.2 Wm-2 was found. In comparison to 

the errors in new data points, other data points had an MABD of 8.3 Wm-2 for both Norwegian 

and Swedish locations. This showed that the new data points had large errors because these are 

primarily estimated on snow covers. 

Overall, CLARA-A1 had an MABD of 8.0 Wm-2 and CLARA-A2 had an MABD of 8.9 Wm-2 

for Norwegian location. For Swedish locations, CLARA-A1 had an MABD of 8.1 Wm-2 and 

CLARA-A2 had an MABD of 8.7 Wm-2. However, for all location including sites from Norway 

and Sweden, CLARA-A1 had an MABD of 8.0 Wm-2 and CLARA-A2 had an MABD of 8.8 
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Wm-2. The MABD was observed to be larger in the new edition of CLARA because as 

previously explained, this dataset had less number of missing values, and the new values were 

mostly on the snow-covered regions, which increased the overall errors in the dataset.  

In Paper II an energy analysis for CLARA-A1 and A2 was performed. The energy is expressed 

in kWh on a meter square in a year and it was calculated by integrating the daily average values. 

In this particular analysis, gap filling was not applied. Evidently, as CLARA-A2 had less 

missing values than CLARA-A1, it was found that CLARA-A2 estimated yearly energy values 

more accurately than CLARA-A1. The conclusion drawn from this study was that CLARA-A2 

brings improvements but at the cost of high errors on the new data points which were previously 

not available in CLARA-A1.  

6.1.3 Investigating solar radiation datasets for high latitude locations – A 

comparative analysis of CLARA-A2, SARAH-2, ERA5 and 

ASRv2 

In Paper III, CLARA-A2, SARAH-2, ERA5, and ASRv2 datasets were analyzed for their 

accuracy at 31 locations in Norway. The coordinates and land type of locations included in the 

study can be found in the Appendix, Table A. In addition to accounting for the accuracy, this 

study also gives a comparative analysis for the surface solar radiation datasets for high latitude 

locations. In Paper III, three quality-control procedures were applied as described in Section 

4.4. In the first control, years having more than 5% of missing data were removed from the 

analysis. A second quality control was applied by using BSRN Global Network recommended 

Quality Control test, V2.0 (67) as explained in Section 4.4.1. A final quality control procedure 

is applied based on Urraca, Gracia-Amillo (68), which is explained in Section 4.4.2. For a list 

of year not included in the study, refer to the Appendix, Table B. Table 6.1 shows the properties 

of the datasets used in this study. 
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Table 6.1: Description of the datasets used in this study. The period analyzed, spatial, and 

temporal resolutions are shown for each dataset. 

Datasets Method Years 
analyzed 

Spatial 
resolution 

Highest 
temporal 
resolution 

Spatial limits 

CLARA Polar-orbiting 
Satellite 

2000-2015 0.25ºx0.25º Daily Global 

SARAH Geostationary 
Satellite 

2000-2015 0.05ºx0.05º 30 min Limited to ±65º 
latitude and ±65º 

longitude 
ERA5 Reanalysis 

(Global) 
2000-2015 0.281ºx0.281º Hourly Global 

ASRv2 Reanalysis 
(Regional 
renalaysis 

downscaled 
from ERA-

Interim) 

2000-2012 0.136ºx0.136º 3 Hours 180W - 180E 
longitude 

24.643N - 90N 
latitude 

The datasets were assessed based on RMSD, MABD, and MBD for daily, monthly, and yearly 

averages of GHI. In addition, a yearly energy analysis was performed. To assess the accuracy 

for different geographical regions, the locations were divided into four categories, as explained 

in Section 4.2. Moreover, a sky stratification analysis was performed to assess the performance 

of these datasets in different sky conditions. In the end, ERA5 was analyzed in-depth for cloud 

placement by investigating the total column of water content and agreement on sky 

classification by comparing it to ground-measured data and CLARA-A2 dataset. 

Table 6.2: Error metrics expressed in Wm-2, for the datasets analyzed in Paper II. Numbers 

without parentheses are monthly averaged errors while those in parentheses are daily averaged 

errors. Numbers are averaged over all stations. Error metrics for different geographical groups 

are also shown. 

 RMSD (Wm-2) MABD (Wm-2) MBD (Wm-2) 
CLARA SARAH ERA5 ASR CLARA SARAH ERA5 ASR CLARA SARAH ERA5 ASR 

All Sites 
9.5 

(18.2) 
8.7  

(17.9) 
9.9 

(26.4) 
21.7 

(42.6) 
6.3  

(12.6) 
5.8 

(11.6) 
6.4 

(16.7) 
14.5 

(27.1) 
-3.1 

(-1.7) 
-3.6 

 (-2.6) 
2.1 
(4) 

13.1 
(16.9) 

Above 
65ºN 

10.1 
(16.0) - 

10.9 
(26.3) 

20.3 
(39.4) 

5.4 
(9.7) - 

6.1 
(14.5) 

11.1 
(21.5) 

-3.4 
(-2.9) - 

3.7 
(5.6) 

8.0 
(11.0) 

Below 
65ºN 

9.3 
(18.4) 

8.7  
(17.9) 

9.8 
(26.5) 

21.9 
(43.0) 

6.4 
(13.0) 

5.8 
(11.6) 

6.4 
(17.0) 

15.0 
(27.9) 

-3.0 
(-1.5) 

-3.6 
 (-2.6) 

1.9 
(3.8) 

13.8 
(17.8) 

Coastal 
9.1 

(16.9) 
8.6 

(17.1) 
10.0 

(26.4) 
21.8 

(41.9) 
5.8 

(11.6) 
5.7 

 (11.2) 
6.2 

(16.3) 
13.9 

(25.6) 
-2.8 

(-1.4) 
-3.5 

(-2.3) 
2.2 

(4.2) 
11.9 

(15.7) 

Inland 
9.8 

(19.1) 
8.8 

 (18.1) 
9.9 

(26.4) 
21.7 

(43.1) 
6.7 

(13.4) 
5.8 

 (11.9) 
6.5 

(17.1) 
15.0 

(28.3) 
-3.3 

(-1.2) 
-3.7 

 (-2.8) 
2.1 

(4.0) 
14.0 

(18.0) 
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From Table 6.2, it can be seen that CLARA and SARAH are more accurate than ERA5 and 

ASR. ASR was observed to have very low accuracy when compared to other datasets, partly 

because it is a downscaling of ERA-Interim, which is a predecessor of ERA5. On location above 

65ºN, CLARA had smallest errors among all datasets. On monthly averages, CLARA provided 

an MABD of 5.4 Wm-2, whereas ERA5 had a MABD of 6.1 Wm-2. ASR had a large MABD of 

11.1 Wm-2. SARAH being a dataset based on geostationary satellites does not provide coverage 

above 65ºN. However, at location below 65ºN, SARAH had the smallest MABD of 8.7 Wm-2, 

followed by CLARA with an MABD of 9.3 Wm-2 and ERA5 with an MABD of 9.8 Wm-2. ASR 

again had the largest MABD among the datasets with 15.0 Wm-2. In coastal and inland 

locations, a very similar pattern was observed where SARAH performed better than other 

datasets. However, in inland regions, ERA5 had slightly smaller error than CLARA; because 

most of the inland regions of Norway receive more snow cover when compared to coastal 

regions (see Figure 6.3 (B1)). In agreement with many previous studies, this analysis found 

satellites databases to underestimate solar radiation and reanlyses to overestimate solar 

radiation.  

One of the main challenges of estimating surface solar radiation from any method is the accurate 

placement of clouds in time and space. However, even the most accurate and sophisticated 

methods fail to accurately estimate clouds in clear-sky and cloudy conditions. To assess the sky 

stratification accuracy of the datasets studied, a clear-sky index was used. The clear-sky index 

is defined as the ratio of clear-sky GHI to the GHI recorded on the ground, given by the 

following equation. 

𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑠𝑠𝑠𝑠𝑠𝑠

(25) 

Where, CSI is the clear-sky index, GHIground is the global horizontal irradiance observed on 

ground and GHIclear-sky is the global horizontal irradiance from a clear sky model. For sky 

classification of these datasets, the Bird clear-sky model was used (124). After calculating clear-

sky indices, following Smith, Bright (125) and Widén, Shepero (126), values larger than 0.8 

were considered indicating a clear-sky day, values of CSI between 0.4 and 0.8 were considered 

as intermediate-cloudy and values below 0.4 were considered as overcast. This type of 

categorization is quite arbitrary in the sense that the actual conditions can vary to some degree, 

e.g. CSI values larger than 0.8 are categorized as clear-sky but a small amount of clouds may 

be present in any of the days in this category. Similarly, values below 0.4 are categorized as 
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overcast conditions but some days may have intermediate clouds. The main aim of making such 

a grouping was to separate the days into different types to assess the model performances. This 

can be seen in Figures 6.5 to 6.8 that the days categorized as clear-sky have larger maximum 

solar irradiance while days categorized as overcast have much smaller maximum solar 

irradiance. 

Figures 6.5 to 6.8 show the scatter plots of CLARA, SARAH, ERA5, and ASR datasets. These 

figures also list the RMSD, MABD, and MBD of these datasets in different sky categories. 

Overall, in the three categories, SARAH performed better than other datasets while ASR 

performed the worst. In clear-sky category, an underestimation was observed in SARAH, 

CLARA, and ERA5, while ASR overestimated radiation. Similarly, in the intermediate-cloudy 

category, both satellite databases underestimated, while reanalysis overestimated. Finally, in 

the overcast category, CLARA slightly underestimated solar radiation while other datasets 

overestimated. In conclusion, all the models were found to have discrepancies in presenting 

clouds in all types of sky conditions. 

   

(a) (b) (c) 

CLARA RMSD (Wm-2) MABD (Wm-2) MBD (Wm-2) 
Clear-sky 21.6 13.8 -4.1 

 Intermediate-cloudiness 22.2 16.0 -3.4 
Overcast 13.8 8.7 -0.2 

Figure 6.5: CLARA daily errors under clear-sky, intermediate-cloudiness, and overcast 

conditions. Scatter plots for different sky-conditions are shown. The colored legend bar shows 

the density of points in the scatter plot. From Paper III. 
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(a) (b) (c) 

SARAH RMSD (Wm-2) MABD (Wm-2) MBD (Wm-2) 
Clear-sky 20.5 12.8 -5.6 

 Intermediate-cloudiness 20.2 13.5 -3.1 
Overcast 13.3 8.7 4.4 

Figure 6.6: As in Figure 6.5 but for SARAH. 

   

(a) (b) (c) 

ERA5 RMSD (Wm-2) MABD (Wm-2) MBD (Wm-2) 
Clear-sky 25.5 16.8 -10.0 

 Intermediate-cloudiness 28.4 19.8 8.7 
Overcast 29.7 18.7 15.3 

Figure 6.7: As in Figure 6.5 but for ERA5. 

   

(a) (b) (c) 

ASR RMSD (Wm-2) MABD (Wm-2) MBD (Wm-2) 
Clear-sky 29.2 21.1 11.6 

Intermediate-cloudiness 51.3 37.2 23.3 
Overcast 49.0 30.8 25.0 

Figure 6.8: As in Figure 6.5 but for ASR. 

Some shortcomings of satellite models in underestimating clear-sky and intermediate-cloudy 

conditions are explained here. Under clear-sky conditions, CLARA uses aerosol information 
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from Global Aerosol Data Set/Optical Properties of Aerosols and Clouds (GADS/OPAC) 

climatology and SARAH uses aerosol information from Monitoring Atmospheric Composition 

and Climate (MACC climatology). Both the datasets use integrated water-vapor information 

from ERA-Interim. Aerosol information from MACC climatology is observed to have higher 

accuracy than GADS/OPAC climatology (126). The maximum aerosol optical depth (AOD) is 

reduced in GADS/OPAC climatology for the CLARA dataset, but the results show that the 

climatology used in SARAH performs better than in CLARA even after the modifications. The 

negative biases observed in the clear-sky and intermediate-cloudy categories are possibly due 

to the aerosol climatology being too thick, which results in an underestimation of solar 

radiation. As reported in Mueller and Träger-Chatterjee (127) and Polo, Antonanzas-Torres 

(128), both MACC and GADS/OPAC climatologies cause an underestimation in surface solar 

radiation because of the apparent overestimation in AOD thickness. In addition to aerosol 

optical depth, vertically-integrated water vapor values taken from ERA-Interim are shown to 

be too large (129), which can further attenuate the surface solar radiation. In ERA5, the radiative 

transfer model RTTOV11 (Radiative Transfer for TOVS) has a tendency to underestimate 

reflectance of high cumulus cloud tops while the reflectance of lower water clouds is 

overestimated which can cause an underestimation in clear-sky conditions and overestimation 

in intermediate-cloudy and overcast conditions. In ASR, all the conditions are overestimated 

which shows that there is an underestimation in aerosol optical depth and cloudiness in the 

atmosphere. 

In the final analysis of this study, the cloud estimation accuracy of ERA5 was explored, as it is 

proposed as a complimenting alternative to satellite datasets. For all the locations, the RMSD 

of monthly values for ERA5 is similar to that of CLARA and SARAH, but the RMSD of daily 

values (in parentheses) was considerably larger in ERA5 when compared with the satellite 

databases. On even larger time scales (see Paper III), the difference decreased further. In this 

analysis, the total cloud water content (TCWC) and short wave solar radiation downward, clear-

sky (SWSDC) from ERA5 were used here. Clear-sky indices for ground-measured data, ERA5, 

and CLARA-A2 were calculated by using SWSDC from ERA5 because the clear-sky values 

from ERA5 have the aerosol and water content information, which is used in calculating the 

surface solar radiation. This analysis was performed for days when the solar zenith angle is 

lower than 90º. Times when the solar zenith angle is higher than 90º was not considered in this 

analysis, as the intent here is to analyze solar radiation and TCWC, however, when the solar 
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radiation is not available, the TCWC is present. Including nighttime values in this analysis 

would have influenced these results. 

Table 6.3: The number of days and mean TCWC from in-situ ground measurements, ERA5 

and CLARA are shown in the table for different sky categories. The number of days and mean 

TCWC in each cloudiness category for ERA5 is shown separately for cases when ERA5 and 

ground measurements agree on classification and for cases when there is a disagreement. Years 

from 2000 to 2015 were used in this analysis over all locations included in the study. 

 

In this analysis, it was found that ground measurement and CLARA classify almost the same 

percentage of days into each category, however, ERA5 was observed to classify a large number 

of days as intermediate-cloudy and a small number of days as overcast than in-situ observations, 

hence showing that it had a negative bias towards classifying a day as overcast. CLARA had 

very similar mean TCWC values as ground measurements but ERA5 slightly underestimated 

TCWC in the clear-sky category but largely overestimated it in overcast category, as shown in 

Table 6.3. Moreover, in ERA5 the mean TCWC was slightly underestimated in the clear-sky 

category but largely overestimated in overcast category. The agreement on sky conditions was 

also analyzed and it can be seen from Table 6.3 that the mean TCWC of days with agreement 

is the same as that of ERA5, but on the days of disagreement, there is an overestimation in mean 

TCWC in clear-sky days and an underestimation in overcast days. These results showed that 

on clear-sky days, ERA5 had more clouds than in-situ observations, which was seen by higher 

levels of TCWC, while on the overcast days there was a lower amount of clouds, which was 

seen by lower levels of TCWC. Figure 6.9 shows the scatter plot of ground measurements and 

ERA5 for both of these conditions, i.e. when there is an agreement on classification and when 

there is a disagreement. It can be seen that the spread is large when there is a disagreement. A 

correlation coefficient of 0.98 is found for agreement data points while a correlation coefficient 

of 0.90 is found for disagreement points. 

 Ground data CLARA data ERA5 data ERA and ground 
agree 

ERA and ground 
disagree 

No. of 
days 

Mean 
TCWC 

(Kg.m-2) 

No. of 
days 

Mean 
TCWC 

(Kg.m-2) 

No. of 
days 

Mean 
TCWC 

(Kg.m-2) 

No. 
of 

days 

Mean 
TCWC 

(Kg.m-2) 

No. of 
days 

Mean 
TCWC 

(Kg.m-2) 
Clear-sky 38265 

(30.2%) 
0.03 39516 

(31.3%) 
0.03 53211 

(33.4%) 
0.02 2950

0 
0.02 8765 0.07 

Intermediate-
cloudiness 

49207 
(38.8%) 

0.09 45244 
(35.8%) 

0.10 75268 
(47.4%) 

0.10 3470
0 

0.10 14507 0.07 

Overcast 39181 
(30.9%) 

0.22 41417 
(32.8%) 

0.22 30389 
(19.1%) 

0.29 2091
4 

0.30 18004 0.12 
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(a) (b) 

Figure 6.9: Scatter plots for the days when ERA5 and ground measurement agree on 

classification and when there is a disagreement. A correlation coefficient of 0.98 is found for 

agreement points and 0.90 for disagreement points. 

The RMSD, MABD, and MBD were calculated for different sky conditions and when ERA5 

and ground measurements agreed on sky conditions and for when there was a disagreement. 

This error analysis showed that the highest increase in errors was seen in clear-sky and overcast 

categories with MABD of 42.6 Wm-2 and 30.6 Wm-2, respectively. The MBD was positive in 

clear-sky category and negative in intermediate-cloudiness and overcast categories, which 

further showed that there was less amount of clouds in the clears-sky category and more amount 

of clouds in intermediate-cloudiness and overcast categories. From a solar energy-harvesting 

point of view, the clear-sky days produce more energy than intermediate-cloudy or overcast 

days. It can be observed that ground-measurement and ERA5 predicts almost the same 

percentage of clear-sky days, which further shows that on daily averages, reanalyses may not 

predict clouds accurately but on longer time scales, the solar radiation estimation improves. 

In conclusion, both CLARA and SARAH provided good estimates but both of these datasets 

had some shortcomings, including the spatial limits of SARAH and the low temporal frequency 

of CLARA. On the other hand, ERA5 provided advantages in the form of historical data series 

and global coverage. Based on these results, it was suggested that CLARA and SARAH provide 

better estimates for solar radiation, but ERA5 can be used to fill the missing data in these 

datasets. 
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6.2 A Random Forest regression based model  

As presented in previous section, satellite based models are more accurate than reanalyses, 

however the accuracy of satellite models deteriorate with increasing latitude. Moreover, unlike 

reanalyses, satellite models have missing values and a negative bias. In Paper IV, a novel 

method was presented which is based on taking advantage of these over and underestimation 

of ERA5 and CLARA datasets. A regression-based method was used to construct a new datasets 

by using CLARA and ERA5. The new dataset provided more accurate estimations of surface 

solar radiation than the input datasets.  

The regression model used in Paper IV is called Random Forest Regression (RFR), explained 

in Section 4.5. Initially in this study, Gaussian process regression was used to improve the solar 

radiation estimates, but experimenting with RFR provided better results. In this study, 31 

locations from NIBIO solar radiation-measuring network were used (refer to the Appendix, 

Table A for information on the locations and Table B for information on rejected years). In 

addition, five stations from SMHI solar radiation measuring network from Sweden were used 

to evaluate the performance of the proposed dataset (Appendix, Table C). To train the model, 

20% of the data from Norwegian ground-measuring stations was used. In addition to solar 

radiation measurements and estimates, latitude of locations, altitude, solar zenith angle, and 

clear-sky index was used as inputs to the regression model. To evaluate the robustness of the 

proposed model, locations from Sweden were used to check the accuracy of the proposed 

model. The data from Swedish locations were not used in the training of the model. The RFR 

was trained on a workstation with 16 cores and 64 GB of RAM. 

Table 6.4: RMSD, MABD, and MBD of the input data sets and the presented model are shown. 

The metrics are shown for different geographical locations, including below 65ºN, above 65ºN, 

coastal, and inland regions. Numbers without parentheses are monthly averaged errors while 

those in parentheses are daily averaged errors. 

 RMSD (Wm-2) MABD (Wm-2) MBD (Wm-2) 
CLARA ERA5 Model CLARA ERA5 Model CLARA ERA5 Model 

All sites 9.6 
(19.1) 

10.2 
(26.7) 

6.6 
(15.7) 

6.3 
(13.1) 

7.0 
(16.7) 

4.3 
(10.2) 

-1.6 
(-2.0) 

3.9 
(3.9) 

-0.2 
(-0.2) 

Above 65ºN 9.6 
(16.0) 

10.1 
(26.3) 

6.5 
(13.7) 

6.3 
(9.7) 

6.9 
(14.5) 

4.2 
(8.2) 

-1.6 
(-2.9) 

3.8 
(5.6) 

-0.2 
(-0.1) 

Below 65ºN 9.7 
(19.5) 

12.7 
(26.8) 

8.0 
(15.9) 

6.5 
(13.6) 

9.4 
(17.3) 

5.4 
(10.5) 

-1.8 
(-1.8) 

5.7 
(3.9) 

0.1 
(-0.1) 

Coastal 9.7 
(16.7) 

10.1 
(26.7) 

6.6 
(14.8) 

6.4 
(11.4) 

7.0 
(16.3) 

4.3 
(9.4) 

-1.7 
(-1.1) 

3.8 
(4.9) 

-0.2 
(0.4) 

Inland 8.2 
(20.8) 

11.2 
(26.7) 

6.6 
(16.4) 

5.7 
(14.4) 

7.9 
(17.5) 

4.6 
(10.8) 

-0.6 
(-2.6) 

4.5 
(3.4) 

0.1 
(-0.4) 
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Table 6.4 shows the errors in CLARA, ERA5 and the proposed model for Norwegian locations. 

The model improves the MABD by more than 20%. On monthly averages for all sites, CLARA 

had an MABD of 6.3 Wm-2, ERA5 had an MABD of 7.0 Wm-2, and the proposed regression 

model had an MABD of 4.3 Wm-2, which shows a relative improvement of 32% and 39% with 

respect to CLARA and ERA5. The RMSD of the proposed model was also smaller than 

CLARA and ERA5, with improvements of 31% and 35%, respectively. However, the bias or 

MBD was negative for the proposed model as in the case of CLARA. The reason for the 

negative bias is that CLARA is a more accurate dataset than ERA5; hence, in the regression, 

more weightage is given to CLARA than ERA5. However, the magnitude of bias in the 

proposed model is smaller than CLARA. From the bias-variance decomposition of mean 

squared error (MSE=RMSD2), the variance can be computed as:    Var=RMSD2-Bias2. We can 

use this to use that the variances of CLARA and ERA5 are very similar, and the variance of the 

RFR model is less half of these. This proves that the RFR model also provides a large 

improvement in precision. 

Moreover, the R2 values and the standard deviation (STD) of the Norwegian locations were 

analyzed as well. Values of the coefficient of determination, R2, are computed from the ground-

measured and model data. The standard deviation is a measure of the spread of the prediction 

errors around their mean value. Table 6.5 shows the R2 values and standard deviation for all 

Norwegian locations, in addition to below 65°N, above 65°N, coastal and inland regions. The 

standard deviation in Table 6.5 has units of Wm-2, whereas R2 has no units. For standard 

deviation, the smaller the value, the better the model estimates and for R2, the larger the value, 

the better are the estimates. 

Table 6.5: The R2 and error standard deviation analysis of CLARA, ERA5, and the proposed 

RFR model for Norwegian locations is shown here. The RFR model improves the estimates in 

all types of geographical categories. The unit of the standard deviation (STD) is Wm-2 and R2 

is unit-less. Best results are indicated in bold. 

 NIBIO sites Above 65ºN Below 65ºN Coastal Inland 
R2 STD R2 STD R2 STD R2 STD R2 STD 

CLARA 0.96 23.8 0.96 18.4 0.95 25.0 0.97 21.1 0.95 25.9 
ERA 0.92 26.9 0.89 28.5 0.92 26.7 0.91 27.1 0.92 26.7 
RFR 

(proposed) 
0.97 16.0 0.97 15.3 0.97 16.1 0.97 15.3 0.97 16.5 

The proposed regression model improves the solar radiation estimates at all Norwegian 

locations. The largest improvements were observed in location above 65°N, although the 
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differences are small. The proposed model had lower standard deviation than CLARA and 

ERA5 in all geographical groups. 

The error analysis was also performed for locations above 65ºN, below 65ºN, coastal and inland 

regions. Although the model improved the estimated solar radiation, most of the improvements 

were seen in coastal regions and regions lying above 65ºN. In addition, a seasonal analysis was 

also performed on the accuracy of the proposed dataset (see Paper IV). Major improvements 

were observed in the period of February to July, which evidently are the months that receive 

largest portion of solar radiation in a year at high latitude locations. One of the shortcomings of 

the CLARA dataset is the high errors when the solar elevations angles are very low, as in the 

case of early winter period and late summer period. On the contrary, in these periods ERA5 

provides better estimates than CLARA does. The proposed model takes advantage of ERA5 

capabilities of improved surface solar radiation estimates at low solar elevation angles and 

improves the estimates by weighing ERA5 more at these times.  

   

   
Model RMSD (Wm-2) MABD (Wm-2) MBD (Wm-2) 

Clear-sky 17.4 11.3 -6.6 
Intermediate cloudy 16.8 11.8 1.7 

Overcast 12.8 8.2 5.3 
Figure 6.10: Proposed regression model errors under clear-sky, intermediate cloudy and 

overcast skies. The scatter plots for different sky conditions are also shown. The colored legend 

bar shows the density of points. 

In this study, the sky stratification capability of the proposed data set was studied to assess its 

performance in different sky conditions. Figure 6.10 show the scatter plots of proposed model 

in different sky conditions. The method used in sky stratifications used here is the same as 

shown in the previous section and Paper III. 
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The proposed model improved the surface solar radiation accuracies in all three sky-categories. 

Large improvements were observed in clear-sky and intermediate-cloudy categories, while a 

somewhat small improvement was observed in overcast category. 

In the final analysis, solar radiation estimates from the model were evaluated against five 

Swedish ground-measuring stations. For information on these station refer to Appendix Table 

C (stations marked with *). As previously explained, the data from Swedish locations was not 

used in training the regression model. The analysis is shown in Table 6.6, and it can be seen 

that the model improves the solar radiation estimates in Swedish locations. This robustness test 

shows that this model can be used to improve solar radiation estimates at high latitude locations. 

Table 6.6: The RMSD, MABD, and MBD of the input data sets and the regression model for 

Swedish locations are listed. These locations were not used in the training of the regression 

model. Numbers without parentheses are monthly averaged errors while those in parentheses 

are daily averaged errors. 

 RMSD (Wm-2) MABD (Wm-2) MBD (Wm-2) 
CLARA ERA5 Model CLARA ERA5 Model CLARA ERA5 Model 

Kiruna 17.2 
(26.6) 

7.6 
(24.0) 

11.0 
(18.7) 

10.1 
(16.6) 

4.9 
(14.4) 

6.8 
(11.7) 

-7.0 
(-8.2) 

-2.3 
(-2.5) 

-5.9 
(-6.0) 

Luleå 10.6 
(24.4) 

10.4 
(25.1) 

5.6 
(17.5) 

6.9 
(14.9) 

6.6 
(15.3) 

3.8 
(11.0) 

-4.4 
(-4.2) 

5.1 
(4.9) 

-2.1 
(-2.1) 

Umeå 8.3 
(16.4) 

7.1 
(23.0) 

5.5 
(13.5) 

6.1 
(11.5) 

4.4 
(14.2) 

3.8 
(9.1) 

-3.2 
(-3.5) 

2.0 
(2.1) 

-2.6 
(-2.5) 

Stockholm 6.8 
(16.4) 

7.0 
(23.6) 

5.9 
(14.6) 

5.1 
(11.5) 

4.8 
(15.7) 

4.5 
(10.0) 

2.6 
(2.5) 

3.1 
(3.1) 

3.9 
(4.0) 

Göteborg 4.7 
(14.9) 

9.5 
(26.1) 

4.8 
(14.4) 

3.5 
(10.5) 

7.3 
(17.0) 

3.7 
(9.9) 

1.6 
(1.8) 

6.9 
(6.8) 

3.0 
(2.9) 

SMHI 
locations 

10.4 
(20.3) 

8.4 
(24.4) 

6.9 
(15.9) 

6.3 
(13.0) 

5.6 
(15.3) 

4.5 
(10.3) 

-2.1 
(-2.3) 

2.9 
(2.9) 

-0.8 
(-0.7) 
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7. Discussion and future work 
This chapter presents a discussion on the topics covered in this thesis, appended paper, and 

provides an overview of the future work. 

7.1 Discussion 

This research provides an in-depth evaluation of surface solar radiation estimation datasets for 

high-latitude locations. The solar energy penetration in Norway has been very low when 

compared to the neighboring countries. One of the hindrances in having higher penetration is 

the available data and maps for a feasible decision making process. Ground measuring stations 

are sparse and there are a handful of these stations recording surface solar radiation at high 

latitude locations. The quality control of the ground-measured data is another important issue 

as it was observed in this work.  

Remotely sensed solar radiation data by satellites provides accurate estimation in mid latitude 

and equatorial regions, however, at high latitude regions these dataset deteriorate because of 

the complex viewing angles between terrain, satellites and the Sun. This thesis provides an 

overview of these available resources for high latitudes along with their accuracies.  

Recent studies have shown that the solar radiation estimation from reanalyses has been 

improving. These dataset provide a valuable support to the satellite datasets, which are currently 

more accurate than reanalyses. As the ground measuring stations in Norway are located at large 

distances from each other, reanalyses provide the most reliable and feasible solar radiation 

estimates for filling gaps in ground-measured and satellite data.  

In this thesis, advanced regression method was used to improve the surface solar radiation 

estimates from satellite and reanalyses datasets. With increasing computing power and 

sophisticated machine learning algorithms, large datasets are now easier to model. These 

methods show that with low computing power, large improvements can be made in the available 

data. In addition to solar radiation, these methods can be used on other renewable energy 

sources. 
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7.2 Future work 
This thesis provides models and research regarding solar radiation estimation in high-latitude 

locations. There could be a number of extensions to this works. Some planned research targets 

are as follows: 

• The main solar radiation measurement provider in Norway is NIBIO. This research has 

found quality control issues in the in-situ measurements in the NIBIO data. This data 

can be quality controlled by using advanced and sophisticated methods. Flags can be 

introduced for erroneous data, in addition to replacing the erroneous data with the model 

datasets analyzed in this thesis. 

• The regression model presented in Paper IV is more accurate than other available 

dataset. However, the highest temporal resolution of the proposed data set is limited to 

daily averages. A future extension of this work includes increasing the temporal and 

spatial resolution of this data set by using statistical methods. 

• The evaluation of the regression model was limited to Scandinavia in this thesis. The 

data used to train the model was also limited to Norwegian locations. An interesting 

research extension could be to include data from northern American and Russian 

regions, so as to have a larger training and testing datasets. 

• The datasets analyzed here and the proposed model will be used in performing multiple 

rooftop solar potential studies by using ArcGIS. 

• The new regression based dataset should be used to compute and present a complete 

solar radiation resource map over the entire Scandinavia and other high latitude regions. 

• As shown in this thesis, satellite estimation of solar radiation deteriorates on snow-

covered surfaces. A possible research extension is to investigate snow-covered areas 

through auxiliary data, e.g. IR data from satellites, snow depth data from ERA5 and 

improve the surface solar radiation on snow-covered surfaces. 
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8. Summary of conclusions 

This chapter summarizes the main conclusions of the research presented in this thesis. These 

concluding remarks are related to the aims of the thesis presented in Section 1.1 and the 

knowledge gaps indicated in Section 5. 

Modelling surface solar radiation by using meteorological variables (Paper I) 

• It was shown that meteorological variables could be used to estimate surface solar 

radiations in high latitude locations. Moreover, when compared to other such models, 

the inclusion of relative humidity improves the results. These kind of models can be 

used at meteorological stations that do not record surface solar radiations. 

Comparative analysis of CLARA-A1 and CLARA-A2 (Paper II) 

• The CLARA datasets provide surface solar radiation estimates in the Polar Regions. In 

2017, the latest version of this dataset called CLARA-A2 was published. A study was 

performed to assess the improvement of the new edition. It was found that the new 

edition is more accurate than the CLARA-A1 along with having reduction in the number 

of missing values. However, the new data points in CLARA-A2 mostly lie on the snow-

covered surfaces that have large errors.  

• As the northern Scandinavian regions have frequent snow covers in winter, the CLARA-

A2 dataset should be used after a proper analysis of land surface properties and biases 

in solar radiation estimation. 

Assessment of satellite and reanalyses datasets for high latitude regions (Paper 

III) 

• A number of satellite and reanalyses provide surface solar radiation estimates at high 

latitude regions. This analysis showed that surface solar radiation datasets based on 

satellites provide better estimates than reanalyses. 

• Above 65ºN, CLARA delivers the best estimates and below 65ºN, SARAH gives the 

best estimates. However, the solar radiation estimates from these datasets deteriorate on 

snow-covered surfaces.  
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• The newly published reanalysis by ECMWF called the ERA5 provides surface solar 

radiation estimates on a high temporal resolution. Even though this dataset is not as 

accurate as satellite dataset, the solar radiation estimates from ERA5 can be used to fill 

the missing gaps in the monthly mean values of the CLARA datasets. 

• Arctic System Reanalysis, which is a polar optimized downscaling of ERA-Interim, was 

found to have very large errors. 

A random forest regression based solar radiation dataset (Paper IV) 

• The knowledge gained from preceding studies was used in proposing a dataset based on 

a random forest regression by using CLARA-A2, ERA5 and auxiliary data. It was found 

that the proposed model has a considerably improved accuracy compared to CLARA-

A2 and ERA5. 

• The proposed regression model was trained on 20% data from Norwegian locations. On 

the Norwegian testing data, substantial improvements were observed. In addition, the 

same regression model that was trained on Norwegian data was also tested on five 

Swedish locations with very similar improvements. 
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Appendix 

Table A: Information about the site locations from Norway used in the thesis and appended 

papers. The table shows the coordinates of ground measuring stations along with their altitudes, 

and land type. Paper III and IV. 

 Station Latitude Longitude Altitude Land type 
1 Holt 69.65 18.91 12 Coastal 
2 Sortland 68.65 15.28 14 Coastal 
3 Vågønes 67.28 14.45 26 Coastal 
4 Tjøtta 65.83 12.43 10 Coastal 
5 Skogmo 64.51 12.02 32 Inland 
6 Rissa 63.59 9.97 23 Coastal 
7 Kvithamar 63.49 10.88 28 Inland 
8 Skjetlein 63.34 10.3 44 Coastal 
9 Surnadal 62.98 8.69 5 Inland 

10 Tingvoll 62.91 8.19 23 Coastal 
11 Fåvgang 61.46 10.19 184 Inland 
12 Fureneset 61.29 5.04 12 Coastal 
13 Gausdal 61.22 10.26 375 Inland 
14 Løken 61.12 9.06 527 Inland 
15 Ilseng 60.8 11.2 182 Inland 
16 Kise 60.77 10.81 129 Inland 
17 Apelsvoll 60.7 10.87 262 Inland 
18 Hønefoss 60.14 10.27 126 Inland 
19 Årnes 60.13 11.39 162 Inland 
20 Etne 59.66 5.95 8 Inland 
21 Ås 59.66 10.78 94 Inland 
22 Bø 59.42 9.03 105 Inland 
23 Rakkestad 59.39 11.39 102 Inland 
24 Ramnes 59.38 10.24 39 Coastal 
25 Tomb 59.32 10.81 12 Coastal 
26 Gjerpen 59.23 9.58 41 Coastal 
27 Hjelmeland 59.23 6.15 43 Inland 
28 Tjølling 59.05 10.13 19 Coastal 
29 Særheim 58.76 5.65 90 Coastal 
30 Landvik 58.34 8.52 10 Coastal 
31 Lyngdal 58.13 7.05 4 Inland 
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Table B: List of years not included in Paper III and IV. 

 

Station 
Years having more than 5% 

missing data 

Years 
failing 

Long and 
Dutton test 

Years having 
operational error 

(snow/frost/ 
shading/soiling) 

Years having 
equipment 

error 

1 Holt 2001,2002,2006,2007,2008,2010 2013  2000 
2 Sortland 2000,2006,2007,2010,2013    
3 Vågønes 2006,2007  2002  
4 Tjøtta 2006,2007   2008, 2012 
5 Skogmo 2006,2007,2008,2015  2011 2013, 2014 
6 Rissa 2006,2007 2000   
7 Kvithamar 2006,2007,2013    
8 Skjetlein 2006,2007 2000   
9 Surnadal 2006,2007,2014    
10 Tingvoll 2006,2007,2012    
11 Fåvang 2006,2007   2001 
12 Fureneset 2006,2007,2011,2012    
13 Gausdal 2006,2007,2009   2015 
14 Løken 2006,2007    
15 Ilseng 2006,2007,2004 2000 2009  
16 Kise 2002,2006,2007,2015  2013  
17 Apelsvoll 2006,2007  2002,2003,2004 2009 
18 Hønefoss 2006,2007 2000   
19 Årnes 2006,2007    
20 Etne 2006,2007  2004,2012  
21 Ås 2006,2007    
22 Bø 2000,2006,2007    
23 Rakkestad 2006,2007    
24 Ramnes 2006,2007  2009  
25 Tomb 2006,2007 2009   
26 Gjerpen 2006,2007,2015    
27 Hjelmeland 2006,2007   2002, 2015 
28 Tjølling 2006,2007,2008,2014  2012,2015 2009, 2010 
29 Særheim 2000,2006,2007    
30 Landvik 2006,2007  2005,2010,2014,2015  
31 Lyngdal 2006,2007 2001   
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Table C: Information about the site locations from Sweden used in the Paper II and IV. Location 

marked with (*) were used in Paper IV. The table shows the coordinates of ground measuring 

stations along with their altitudes, land type, and years not included in the study. 

 Sweden Latitude Longitude Altitude Land Cover Years not 
included 

1 Kiruna* 67.83 20.43 408 Sparse forest N.A 
2 Luleå* 65.55 22.13 17 Coastal/archipelago N.A 
3 Umeå* 63.82 20.25 10 rural N.A 
4 Borlange 60.48 15.43 140 Urban/forest N.A 
5 Stockholm* 59.35 18.07 30 Coastal/archipelago 1998 
6 Goteborg* 57.70 12.00 5 Coastal N.A 
7 Lund 55.71 13.21 73 Urban N.A 
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