Faculty of Health Sciences, Department of Community Medicine,
Centre for Sami Health Research

The prevalence and incidence of diabetes mellitus among
Sami and non-Sami inhabitants of Northern Norway

The SAMINOR Study

Ali Naseribafrouei
Table of Contents

Acknowledgements .................................................................................................................. 6

Summary ................................................................................................................................. 8

List of papers .......................................................................................................................... 11

Abbreviations ......................................................................................................................... 12

1 Introduction ........................................................................................................................................... 2

1.1 Background ..................................................................................................................................... 5

1.1.1 Diabetes Mellitus ........................................................................................................... 5

1.1.2 Pathophysiology of diabetes mellitus ......................................................................... 5

1.1.3 Signs, symptoms, and late complications of type 2 diabetes mellitus ..................... 8

1.1.4 Risk factors for type 2 diabetes mellitus ..................................................................... 10

1.2 Pre-diabetes .................................................................................................................................. 13

1.3 Diagnosis of pre-diabetes and diabetes mellitus ............................................................... 14

1.4 Non-fasting plasma glucose measurement ........................................................................ 16

1.5 Glycated haemoglobin ....................................................................................................... 17

1.6 Prevalence of diabetes mellitus ............................................................................................ 18

1.6.1 Global burden of diabetes mellitus and its risk factors ............................................. 18

1.6.2 Prevalence of type 2 diabetes mellitus in Europe .................................................... 18

1.6.3 Prevalence of diabetes mellitus in Norway ................................................................. 19

1.6.4 Diabetes among indigenous peoples ............................................................................... 20

1.7 Ethnicity ..................................................................................................................................... 24

1.8 The Sami people in Norway ................................................................................................. 25
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7.3</td>
<td>Risk factors of type 2 diabetes mellitus</td>
<td>52</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Statistical analysis</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>Summary of the results</td>
<td>54</td>
</tr>
<tr>
<td>3.1</td>
<td>Paper 1</td>
<td>54</td>
</tr>
<tr>
<td>3.2</td>
<td>Paper 2</td>
<td>55</td>
</tr>
<tr>
<td>3.3</td>
<td>Paper 3</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>Discussion</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>Methodological considerations</td>
<td>57</td>
</tr>
<tr>
<td>4.2</td>
<td>Validity</td>
<td>60</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Selection bias</td>
<td>61</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Information bias</td>
<td>67</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Confounding, over-adjustment, and residual confounding</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>Interaction</td>
<td>78</td>
</tr>
<tr>
<td>4.4</td>
<td>External validity</td>
<td>78</td>
</tr>
<tr>
<td>4.5</td>
<td>Statistical associations</td>
<td>79</td>
</tr>
<tr>
<td>4.6</td>
<td>Brief discussion of main results and future research</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>Implications for public health policies</td>
<td>83</td>
</tr>
<tr>
<td>6</td>
<td>Further research</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Literature</td>
<td>85</td>
</tr>
</tbody>
</table>
List of Tables
Table 1. Characteristics of the invited (36–79 years old), participants, sub-groups and the final working sample in paper 1. The SAMINOR 1 Survey ................................................................. 41
Table 2. Characteristics of the invited (40–79 years), participants, sub-groups, and working samples of paper 2, The SAMINOR 2 Clinical Survey ................................................................. 47
Table 3. Characteristics of the invited, participants, sub-groups and the final working sample in paper 3. The SAMINOR 1 and 2 Clinical Surveys ................................................................. 50
Table 4. Characteristics of individuals we were able to follow-up compared to those who were not followed up among those who participated in SAMINOR 1 (2003–2004) and were eligible¹ for SAMINOR 2 (2012–2014), by sex (N=5875)................................................................. 65
List of Figures
Figure 1. Pathophysiology of type 2 diabetes mellitus. ................................................................. 7
Figure 2. Late complications of diabetes mellitus. .......................................................... 9
Figure 3. The map of the included municipalities and the 4 defined geographical regions. The SAMINOR 1 Survey. Published with permission from Centre for Sami Health Research. .... 33
Figure 4. The map of the 10 municipalities included in the SAMINOR 2 Clinical Survey. ... 37
Figure 5. Questions on language and ethnicity from the questionnaire ........................................ 39
Figure 6. The invited in the SAMINOR 1 Survey, the participants, exclusions, and the actual study sample, paper 1 ........................................................................................................... 40
Figure 7. The invited in the SAMINOR 2 Clinical Survey, the participants, exclusions and actual study sample, paper 2 .................................................................................................... 46
Figure 8. Participants in the SAMINOR 1 Survey, exclusions, those we would want to follow up, and, finally, those who were included in the final analysis and those not, paper 3 .......... 51
Acknowledgements

The present thesis is based on the data from the SAMINOR Study. This study was conducted by the Centre for Sami Health Research, Faculty of Health Sciences, UiT The Arctic University of Norway. The project was sponsored by UiT The Arctic University of Norway and lasted from 2014 until 2018.

I am sincerely grateful to my main supervisor Dr. Med. Ann Ragnhild Broderstad, MD. Thank you for your excellent supervision and the precious time and effort that you used to make me familiar with Sami people’s history and culture and the concepts of epidemiology. You are not only my supervisor but also my role model throughout the life. In spite of the sad and serious disease of your beloved daughter and all other cumbersome duties, you did not let it adversely affect my progress in the project. You always trusted me and encouraged me into experiencing new ideas. You let me try and fail to learn and I enormously appreciate it.

I am also extremely thankful to my co-supervisor Bent-Martin Eliassen, PhD. Your comments on the drafts of the article manuscripts were always precise and educational. You were always available even outside the working hours. You were so humble in the discussions around the epidemiological and statistical matters. Each time I had a question you tried to answer and explain the subject with extreme patience and precision. You always emphasised that the job should be done as thoroughly as possible.

I should also thank Marita Melhus who helped me throughout the entire project. Marita, you are not only a knowledgeable and experienced statistician, but you have also an invaluable insight into the SAMINOR Study and Sami people’s history and culture. You helped me not only in drafting the articles, but also in preparing tables in this dissertation. I deeply appreciate your help and guidance.
I am greatly indebted to Professor Johan Svartberg, MD, PhD. You was a trustable source of knowledge regarding diabetes and medical issues. I benefited a great deal from your clinical knowledge and expertise.

I would like to express my gratitude towards all my colleagues at the Centre for Sami Health Research. You always conveyed a sense of welcoming and friendliness. I am also especially grateful for the administrative support at the Centre for Sami Health Research and Department of Community Medicine. Special thanks to Siw Jespersen and Daria Efimkina for your administrative and practical helps.

Above all, I should express my deep respect and appreciation to everybody who participated in the SAMINOR Study and generously and trustfully contributed to this great study.

Finally, I have an incredible family I would like to thank: My dear wife, Fatemeh who always encouraged me and believed in me. My beautiful daughter, Sudabeh, you are my hope and inspiration in the life. Fatemeh and Sudabeh, you patiently endured three years in Iran, while I was here in Norway and studied. I owe you a great deal.
Summary

Several studies have reported poorer health outcomes especially lifestyle related diseases (e.g. cardiovascular diseases and type 2 diabetes mellitus [T2DM]) among indigenous peoples throughout the world. Rapid industrialisation of the societies with a more sedentary lifestyle and increased calorie intake, which have taken place to varying degrees among both indigenous and benchmark populations have been implicated in this regard. As well as the lifestyle related changes, the indigenous Sami people in Norway, like many other indigenous peoples throughout the world, experienced centuries of stigmatisation and assimilation policies. Both the lifestyle changes and experienced assimilation policies might give rise to increased vulnerability to somatic and psychological disorders.

The present thesis aims to measure the prevalence and incidence of diabetes mellitus (DM) among Sami and non-Sami inhabitants of Northern Norway in order to explore ethnic difference and to elucidate any explanatory factor, which can account for the possible disparities.

Paper 1 was based on data from a cross-sectional population-based survey, the SAMINOR 1 Survey (2003–2004). A total of 27,151 individuals aged 36–79 years were invited and 15,208 were included in the analysis. Self-report (questionnaire) and/or non-fasting/random plasma glucose (RPG) ≥11.1 mmol/L were used to define DM and 7.8 mmol/L ≤ RPG <11.1 mmol/L was used to define pre-diabetes. Age-standardised prevalence of pre-diabetes and DM among Sami men was respectively 3.4% and 5.5%. Corresponding values for non-Sami men were 3.3% and 4.6%. Age-standardised prevalence of pre-diabetes and DM for Sami women was 2.7% and 4.8%, respectively, while corresponding values for non-Sami women were 2.3% and 4.5%. However, no statistical significant ethnic difference was observed in the overall age-adjusted prevalence of pre-diabetes and DM. Nevertheless, the prevalence of DM was
higher among Sami in southern regions and lower in northern regions compared with their non-Sami counterparts.

Paper 2 was based on data from another cross-sectional population-based survey, the SAMINOR 2 Clinical Survey (2012–2014). A total of 12,455 Sami and non-Sami inhabitants aged 40–79 years were invited to participate and 5878 were included in the analyses. Self-reported T2DM and/or HbA1c ≥ 6.5% were applied to define T2DM and 5.7% ≤ HbA1c <6.5% to define pre-diabetes. In men, the total age-standardised prevalence of pre-diabetes (37.9% vs 31.4%) and T2DM (10.8% vs 9.5%) were higher in Sami compared with non-Sami; the age-adjusted ethnic differences were statistically significant for both pre-diabetes (OR 1.42, 95% CI: 1.20–1.68) and T2DM (OR 1.31, 95% CI: 1.01–1.70). In women, pre-diabetes (36.4% vs 33.5%) and T2DM (8.6% vs 7.0%) were also more prevalent in Sami than non-Sami; the age-adjusted differences in both pre-diabetes (OR 1.20, 95% CI: 1.02–1.41) and T2DM (OR 1.38, 95% CI: 1.05–1.82) were also statistically significant. The observed ethnic difference in the waist-to-height ratio (WHtR) was a plausible explanation for the ethnic difference in the prevalence of pre-diabetes and T2DM.

The overall prevalence of pre-diabetes and DM was high among both Sami and non-Sami participants in both surveys. Although no ethnic difference was observed in the prevalence of pre-diabetes or DM in the SAMINOR 1 Survey (based on self-report and/or RPG ≥ 11.1 mmol/L), the prevalence values were higher among Sami participants relative to their non-Sami counterparts in the SAMINOR 2 Clinical Survey (based on self-report and/or HbA1c ≥6.5%). Higher obesity indices (BMI, WHtR) could be plausible explanatory factors for the observed differences.

Paper 3 was a longitudinal study, which followed participants in the SAMINOR 1 Survey to the SAMINOR 2 Clinical Survey. DM was defined based on self-report and/or HbA1c ≥6.5%.
The 8-year cumulative incidence of DM was calculated by dividing the number of incident DM cases by the number of DM-free participants in the SAMINOR 1 Survey. The 8-year cumulative incidence of DM was 6.1% (201 incident cases) with no statistically significant ethnic difference.
List of papers


3. Naseribafrouei, Ali; Eliassen, Bent-Martin; Melhus, Marita; Svartberg, Johan; Broderstad, Ann Ragnhild. The 8-year cumulative incidence of diabetes mellitus among Sami and non-Sami inhabitants of Northern Norway - The SAMINOR Study. (Submitted to BMC Endocrine Disorders)
Abbreviations

2hpp: 2 hour postprandial
ADA: American Diabetes Association
AI/AN: American Indian and Alaska Native
BMI: body mass index
CI: confidence interval
CM: centimeter
DM: diabetes mellitus
FPG: fasting plasma glucose
HbA1c: glycated haemoglobin
HDL cholesterol: high-density lipoprotein cholesterol
IFG: impaired fasting glucose
IGT: impaired glucose tolerance

2hpp: 2 hour postprandial
ADA: American Diabetes Association
AI/AN: American Indian and Alaska Native
BMI: body mass index
CI: confidence interval
CM: centimeter
DM: diabetes mellitus
FPG: fasting plasma glucose
HbA1c: glycated haemoglobin
HDL cholesterol: high-density lipoprotein cholesterol
IFG: impaired fasting glucose
IGT: impaired glucose tolerance

LADA: Latent Autoimmune Diabetes of Adults
OGTT: oral glucose tolerance test
OR: Odds ratio
PPV: positive predictive value
RPG: random (non-fasting) plasma glucose
SCL-10: Hopkins symptom checklist, 10 items version
T1DM: type 1 diabetes mellitus
T2DM: type 2 diabetes mellitus
WHO: World Health Organisation
WC: waist circumference
WHtR: waist-to-height ratio
1 Introduction

Type 2 diabetes mellitus (T2DM) has evolved into an ever-increasing epidemic worldwide [1]. The disease is prevalent in both developed and developing countries, but the prevalence of the disease has been rising more rapidly in middle- and low-income countries [2]. T2DM is the major cause of blindness, renal failure, heart attacks, stroke and lower limb amputation in the world [2] and if no concerted efforts are made to address the risk factors, early diagnosis and treatment of the disease, the harmful microvascular and macrovascular complications of it will remain a major burden for decades to come [1]. Deficient action of insulin either due to inadequate insulin secretion or diminished tissue responses to insulin at one or more points in the complex pathway of hormone actions comprises the basis of T2DM [3]. Although genetic predisposition is a known risk factor for T2DM [4], many cases of T2DM can be prevented through lifestyle changes like increasing physical activity and restriction of calorie intake [2]. Adiposity is the most important risk factor for development of T2DM [5-7]. The protective effect of physical activity goes primarily through improved insulin sensitivity and glucose metabolism [8]. Although physical activity can play an important role in maintaining body weight and composition within normal ranges, a reduction in body weight is not necessary for the beneficial effect on glucose homeostasis [9].

A newly conducted Norwegian nationwide cohort study linked data from national registries with prospectively collected data on DM medication and diagnoses for all Norwegian residents aged 30 to 89 years (>3.2 million people) [10]. According to this study, while the prevalence of T2DM increased from 4.9% in 2009 to 6.1% in 2014, during the same period, the incidence of the disease decreased significantly from 609 cases per 100,000 person-years to 398 cases per 100,000 (an annual reduction of 10.1%). This decline was seen for both pharmacologically and non-pharmacologically treated T2DM and was present in all sex, age,
education level and place of birth subgroups [10]. The authors concluded that the observed rise in the prevalence of T2DM despite decreasing incidence of the disease might be due to diagnosis at a younger age and increased longevity. In 2004, the prevalence of known cases of any type of DM in the age group ≥30 years in all Norway was estimated to 3.4% [11]. Nystad reported the prevalence of known cases of any type of DM in selected municipalities of Northern and Mid-Norway to be 4.0% in men and 4.1% in women in 2003–2004 [12]. At the same time, the prevalence of metabolic syndrome was quite high yet not significantly different between the Sami and non-Sami inhabitants of Northern and Mid-Norway [13]. In the period 1959–1975, mortality due to ischemic heart disease in Norway was highest in Finnmark county [14]. This prompted several cardiovascular surveys in this county. As cardiovascular disease and DM are risk factors for each other and share many risk factors [15], it can be expected that if the prevalence of cardiovascular disease is high in a region, the prevalence of DM might be high as well.

The Sami people is an indigenous population who traditionally inhabited northern parts of Norway, Sweden, Finland and Kola Peninsula in Russia. They, in combination with other ethnic groups, comprise the heterogeneous population of Northern Norway with a large and longstanding interaction between the ethnic groups. The Sami people have experienced colonialism and have been victims of a state- and church-driven assimilation policy [16]. The pervasive assimilation policy brought about loss or extensive changes in traditional practices, languages, norms, and believes of the Sami people [17]. These changes in tandem with lifestyle changes due to rapid modernisation and industrialisation ensuing the Second World War, which affected all ethnic groups in the region, made the Sami people vulnerable and prone to lifestyle-related and chronic diseases like T2DM. Several studies have reported similar lifestyle trends with resultant higher incidence and prevalence of related diseases among other indigenous peoples throughout the world [18-26].
The scarcity of knowledge about health and living conditions of the Sami people in Norway prompted the Centre for Sami Health Research to conduct the SAMINOR Study (the SAMINOR 1 Survey in 2003–2004 and the SAMINOR 2 Survey in 2012–2014). The study provided invaluable insight into various social, psychological, and somatic aspects of health and living of the inhabitants in the included municipalities. The main aim of the present thesis was to promote more knowledge about the incidence and prevalence of DM among Sami and non-Sami inhabitants of the included municipalities, some risk factors for T2DM and any ethnic disparities in this regard.
1.1 Background

1.1.1 Diabetes Mellitus

Diabetes mellitus (DM) is a chronic progressive disease resulting from either insufficient insulin secretion or impairment in insulin action [2]. Incident cases of Type 1 diabetes mellitus (T1DM) are seen mainly in children and adolescents, but it can occur virtually at any age [3]. T2DM occurs predominantly in adults, but it affects increasingly adolescents and young adults [27].

1.1.2 Pathophysiology of diabetes mellitus

T1DM, which accounts for approximately 5–10% of DM cases [3], arises due to destruction of β-cells of the pancreas predominantly through an autoimmune process in over 95% of cases (type 1A) or idiopathic in less than 5% of cases (type 1B) [15]. If T1DM is left untreated it usually manifests itself as ketoacidosis [15]. The disease is a catabolic disorder with virtually absent circulating insulin, elevated plasma glucagon, and lack of pancreatic β-cells response to all insulinogenic stimuli, necessitating use of exogenous insulin [15]. In immune-mediated T1DM, approximately one-third of the disease susceptibility is gene-mediated and two-thirds is due to environmental factors [15]. In a mild form of autoimmune-mediated T1DM, patients initially retain enough β-cells function to avoid ketosis, but as the disease progresses later in life, they also become dependent on exogenous insulin. It is been reported that in Northern European countries, up to 15% of T2DM cases may actually have this mild form of T1DM (latent autoimmune diabetes of adults; LADA) [15]. The fact that the prevalence of T1DM is higher in Scandinavian countries and increases by migration to Northern Hemisphere supports the involvement of environmental factors in the development of T1DM [15].
T2DM represents a heterogeneous group of conditions, where circulating endogenous insulin is usually adequate to prevent ketoacidosis, but insufficient to prevent hyperglycaemia in the presence of increased needs due to tissue insensitivity (insulin resistance) [15]. Insulin resistance may occur in tissues like skeletal muscles, adipose tissue and liver [28]. This, in turn, leads to compensatory increased secretion of insulin to overcome insulin resistance [29]. At first, compensatory hyperinsulinemia maintains plasma glucose levels within the normal range, but eventually with the gradual decline in the insulin production by β-cells of the pancreas, the person enters overt diabetic phase [30, 31]. Nonetheless, most of the times, impairment of insulin secretion and insulin resistance coexist in the same patient and it is unclear which abnormality, if either alone, is the primary pathology [3]. Genetic and environmental factors interplay to develop both the insulin resistance and the β-cell loss (Figure 1) [15]. Several epidemiologic studies have indicated strong genetic associations, since in monozygotic twins over 40 years of age, there is a 70% one-year concordance in the development of T2DM [15]. Numerous genetic loci have so far been implicated in heightened risk of T2DM, most of them appear to encode proteins involved in β-cell development and function [15].
Figure 1. Pathophysiology of type 2 diabetes mellitus. Adapted from «Lancet 2014, 383(9922): p. 1068-83». [1].
1.1.3 Signs, symptoms, and late complications of type 2 diabetes mellitus

The majority of patients with T2DM (especially obese ones) have an insidious onset of hyperglycaemia and are asymptomatic initially [15]. Classic symptoms of T2DM include polyuria, polydipsia, unexplained weight loss, accompanied sometimes with polyphagia [3]. Complications of T2DM can be divided into microvascular and macrovascular complications. Microvascular complications include blurred vision due to retinopathy, numbness and tingling (paraesthesia) in the limbs (diabetic polyneuropathy), autonomic neuropathy and resultant gastrointestinal, genitourinary, and cardiovascular symptoms as well as sexual dysfunction [3, 4, 32]. Macrovascular complications of T2DM include coronary artery disease, stroke, arterial insufficiency (necrotic ulcers in the lower extremities leading sometimes to amputation), mesenteric ischemia, and diabetic nephropathy [4].

If the glycaemic state is poorly controlled, the patient may develop diabetic ketoacidosis or hyperglycaemic hyperosmolar coma [15].

By diagnosing patients in early phase of the disease, the development of the disease can, in most cases, either be prevented or delayed so that late complications are avoided to the greatest extent possible.
Figure 2. Late complications of diabetes mellitus. Source: Colourbox
1.1.4 Risk factors for type 2 diabetes mellitus

Several risk factors have been mentioned in the literature for development of T2DM. Although the exact mechanism of action of all these risk factors are not completely known, it is highly likely that factors like advanced age, overweight (BMI ≥ 25 kg/m²) and obesity, low physical activity, and family history of T2DM have causal relationship to the development of T2DM. On the other hand, risk factors like hypertriglyceridemia, hypercholesterolemia, low HDL, hypertension, polycystic ovary syndrome, acanthosis nigricans, and history of cardiovascular disease might have only an association (non-causal relationship) with T2DM [15, 28, 33]. Male sex has been mentioned as a risk factor for undiagnosed diabetes, which might be a proxy for other unfortunate factors like abdominal obesity, smoking and lower willingness to seek medical care [34]. T2DM is more prevalent among African Americans, Latinos, Native Americans and some other ethnic groups, which might be due to a combined effect of genetic predisposition and environmental factors [4].

Discrimination has been reported to be associated with both obesity [35] and T2DM [36, 37]. There is a plethora of studies showing that early life events like child maltreatment, malnutrition, economic insecurity, low socioeconomic status, and even in-uterus exposure to gestational diabetes and maternal hyperglycaemia as contributors to the development of T2DM later in life [38-41]. On the other hand, it is been reported that breastfeeding was associated with reduced incidence of DM in mothers and offspring among indigenous people in Canada [42].

Of the mentioned risk factors, obesity is the most important factor causing insulin resistance [15]. While visceral obesity, owing to accumulation of fat in the omental and mesenteric regions, is highly correlated with insulin resistance; subcutaneous abdominal fat has less of an association with insulin insensitivity [15]. It is believed that in obese people, adipose tissue
releases higher amounts of non-esterified fatty acids, glycerol, hormones, pro-inflammatory cytokines, and other factors contributing to development of insulin resistance [28, 43]. The prevalence of general obesity (BMI ≥ 30 kg/m²) was reported to be higher among participants who had Sami as their home language in three generations compared to Norwegian participants, both in men (26.9% vs 23.4%) and women (38.7% vs 24.3%) [44]. In the Finnmark study, BMI was reported to be the dominant risk factor for DM among men, while in women this association was less prominent. In both sexes a dose-response relationship between obesity and DM was observed [45].

High plasma triglycerides and low plasma HDL cholesterol have been shown to contribute to insulin resistance via increasing circulating levels of free fatty acids resulted from heightened insulin levels and enhanced chylomicron-assembly and secretion in the gut [46]. The strong observed association between hypertension and T2DM has been linked to insulin resistance [47], endothelial dysfunction [48], and inflammatory processes [49, 50] being present in both conditions. Smoking can increase the risk of T2DM through insulin resistance [51, 52] and inadequate compensatory insulin secretion response [53]. Physical activity has a well-known and strong protective effect against development of T2DM both directly by increasing insulin sensitivity [54] and indirectly by alteration in body mass and composition [55, 56]. Individuals of lower socioeconomic status (e.g. lower educated, unemployed) are at higher risk of developing T2DM and its complications [57-59]. Dietary habits have substantial impact on the development of T2DM [60]. Intake of foods with high glycaemic index was found to be an important risk factor for development of T2DM in numerous studies [61-63]. High consumption of sugar-sweetened beverages are strongly correlated with development of T2DM, particularly among children [64]. While regular consumption of white rice increased the risk of T2DM development, replacement of white rice with brown rice or other whole grains had a protective effect [65]. Higher intake of polyunsaturated fat and long-chain n.3
fatty acids was reported as being protective against development of T2DM, while higher intake of saturated fat and trans fat had adverse effect on glucose metabolism and insulin resistance [66]. Similarly, higher intake of butter, potato, and whole milk was reported to be associated with increased risk of development of T2DM, while higher consumption of fruits and vegetables was associated with lower risk of T2DM [67, 68]. The positive effect of plant-based regimens on insulin sensitivity and decreasing risk of T2DM has been attributed to their rich fibre content [69].

In Norway, Sami people live in both urban and rural areas in the inland or coastal regions and their diet, just like for other ethnic groups, differs from region to region. Furthermore, the dietary habits vary from generation to generation and from rural to urban settings [70]. As the T2DM is a chronic disease and its risk factors might have been present some years or decades before onset of the disease, it is challenging to attribute the development of T2DM to a specific kind of food eaten by a given ethnic group. In the inland regions, the consumption of reindeer is much higher among Sami people compared with non-Sami, while in the coastal regions this difference is less remarkable [71]. Interestingly, obesity is more prevalent in the inland regions where the reindeer consumption is highest [44, 72]. The higher intake of fat as spread on bread, total coffee, freshwater fish, reindeer meat, moose meat, and food made with animal blood and lower consumption of vegetables, potatoes, total fish, lean fish and chicken [71], might be an explanation for the higher prevalence of adiposity and consequently T2DM among Sami people [73].
1.2 Pre-diabetes

Pre-diabetes can be defined as impaired fasting glucose (IFG), impaired glucose tolerance test (IGT), or abnormal glycated haemoglobin (HbA1c) [74]. The term “pre-diabetes” implies a relatively high risk for future development of DM (although this is not always the case) [74]. The American Diabetes Association (ADA) stresses that IFG or IGT should not be regarded as clinical entities in their own right, but rather risk factors for T2DM as well as cardiovascular disease [3]. It has been reported that the incidence of T2DM among those with HbA1c levels at 6.0–6.4% is more than 10 times that of those with lower levels [75-78]. However, this HbA1c range fails to identify a substantial proportion of those who have IFG and/or IGT [3]. Prospective studies demonstrate that those with HbA1c range at 6.0–6.4% has a 5-year cumulative incidence of T2DM that ranges from 12 to 25% [75-78]. Data from the National Health and Nutrition Examination Survey (NHANES) indicate that among the nondiabetic adult population, a fasting plasma glucose (FPG) of 6.1 mmol/L corresponds to an HbA1c of 5.6% and an FPG of 5.6 mmol/L corresponds to an HbA1c of 5.4% [3].

Some trials have reported that among those with a pre-diabetes state, lifestyle interventions may prevent or delay onset of T2DM [79]. The ADA recommends that those with pre-diabetes state (especially those with HbA1c levels above 6.0%) being informed of their increased risk for T2DM and counselled about effective strategies such as weight reduction and physical activity to lower their risk [3].
1.3 Diagnosis of pre-diabetes and diabetes mellitus

T1DM is usually diagnosed based on its sufficiently characteristic clinical onset with relatively acute, extreme increases in glucose concentrations in the face of characteristic symptoms, such that specific blood glucose cut-offs are not required for diagnosis in most clinical settings [80]. Diagnosis of T2DM can be made through one of the criteria which follows [3]: (Criteria 1 through 3 should be confirmed by repeat testing.)

1) HbA1c ≥ 6.5% (48 mmol/L)

2) Fasting plasma glucose (FPG) ≥ 7 mmol/L (126 mg/dL)

3) 2-hour postprandial (2hpp) plasma glucose ≥ 11.1 mmol/L (200 mg/dL) after oral intake of 75g glucose

4) Random plasma glucose (RPG) ≥ 11.1 mmol/L (200 mg/dL) in the presence of classic symptoms of hyperglycaemia or hyperglycaemic crisis

In Norway, the HbA1c criterion is preferred for diagnosis of T2DM, and glucose measurements (fasting or oral glucose tolerance test [OGTT]) should be used if HbA1c is regarded inadequate [81, 82].

There is internationally an inconsistency as how to define pre-diabetes to the extent that “a transatlantic trip may cure or cause pre-diabetes simply as a result of small but important differences in diagnostic criteria” [83]. According to the ADA diagnostic criteria, pre-diabetes is IFG (fasting glucose= 5.6–6.9 mmol/L), IGT (two-hour glucose levels on the 75-gram oral glucose tolerance test=7.8–11.0 mmol/L), or HbA1c 5.7–6.4% [3]. In 2003, the International Expert Committee defined pre-diabetes as IFG 5.6–6.9 mmol/L or IGT 7.8–11.0 mmol/L [84]. In this report, the committee did not recommend HbA1c as a diagnostic test for DM due to lack of standardised methodology. In 2009, however, the committee approved HbA1c as a
diagnostic test for DM, recommending HbA1c 6.0–6.4% as pre-diabetic range [80]. The World Health Organisation (WHO) recommends IFG 6.0–6.9 mmol/L or IGT 7.8–11.0 mmol/L for categorising pre-diabetes [85]. It should be emphasised that as with the case with FPG and 2hpp, defining a lower cut-off for HbA1c to categorise pre-diabetes is somewhat arbitrary as the risk of T2DM with any measure or surrogate of glycaemia is a continuum, extending well into the normal ranges [3].
1.4 Non-fasting plasma glucose measurement

As mentioned above, random (non-fasting) plasma glucose (RPG) measurement can (especially in emergencies) be applied to check hyperglycaemia at the presence of classic signs and/or symptoms of hyperglycaemia. In some studies, especially in the past when other glycaemic indicators like HbA1c or FPG were not standardised or feasible, RPG measurement was used to ascertain DM. There are, however, some shortcomings of using RPG in both screening measures and epidemiological studies. Primarily, the RPG levels are strongly influenced by the postprandial time and times of the day [86]. Furthermore, sensitivity of RPG at $\geq 11.1$ mmol/L for detecting DM is quite low [86]. According to the study conducted by Ziemer et al. the sensitivity, specificity and positive predictive value (PPV) of RPG for diagnosing DM at cut-off 140 mg/dL (7.8 mmol/L) was 20%, 97% and 26%, respectively (with the prevalence of DM around 5%) [86]. They did not present the sensitivity of the test at 11.1 mmol/l, but it is expected that higher cut-off of a test would yield even lower sensitivity. Based on these findings, Ziemer et al. suggested using RPG $\geq 125$ mg/dL (6.9 mmol/L) (sensitivity=40% and specificity=93%) as an opportunistic initial screening test for patients at risk of glucose intolerance. Johnson et al. reported 63% sensitivity and 87% specificity with an RPG cut-off of 130 mg/dL (7.2 mmol/L) [87]. Zhang et al. found that a (non-fasting) capillary glucose of 120 mg/dL (6.6 mmol/L) would provide a 89% specificity and 68% sensitivity [88]. The abovementioned studies used OGTT as the reference test. The common denominator for all these and numerous other studies is that the sensitivity of RPG measurement with cut-offs higher than 7.8 mmol/L for detecting undiagnosed DM is quite low. Perhaps the reason that only one RPG $\geq 11.1$ mmol/L (in the presence of classic signs and symptoms of DM) is sufficient for diagnosis of DM is the extremely high specificity and PPV of RPG measurement at this cut-off (albeit at the expense of extremely low sensitivity of the test).
1.5 Glycated haemoglobin

HbA1c demonstrates the ratio between glycated HbA1 and total HbA1 and represents the average plasma glucose concentration during the preceding 2–3 months [81]. The concentration of HbA1c is determined by concentration of glucose in blood and erythrocyte lifespan [89]. HbA1c has been used as an important biomarker for glycaemia control in patients with DM since 1980’s [90]. In 2009, the International Expert Committee approved the diagnostic use of HbA1c in the wake of its standardisation [91]. In 2012, the Norwegian Directorate of Health approved and recommended HbA1c in the diagnosis of DM and stated that glucose measurements (fasting or OGTT) should be used when HbA1c is unreliable as a measure of the level of glycaemia such as in anaemia [82]. The ADA has recommended HbA1c ≥ 6.5% for diagnosing DM and 5.7 ≤ HbA1c < 6.5% for diagnosing pre-diabetes [3]. The diagnostic HbA1c cut-off levels were determined based on epidemiologic studies reflecting the strong association between HbA1c concentration and occurrence of retinopathy [3, 81, 92, 93]. HbA1c measurement has various advantages over glucose measurements like better sample stability, low intra-individual variation, independence of acute factors such as illness, recent food intake, stress, or exercise, and no need for prior fasting or glucose overload [94]. On the other hand, there are some conditions, which affect HbA1c values like iron deficiency anemia, chronic renal failure, pregnancy, and conditions causing shortened erythrocyte lifespan [95]. Beside these shortcomings of HbA1c, this test has been reported in several studies to be insensitive at the diagnostic cut-off of 6.5% [96-99]. The overlap between HbA1c and OGTT results was reported to be quite low [100, 101]. The ADA hope that greater practicality and convenience of the test would offset the low sensitivity of the test at the recommended diagnostic cut-off [3].
1.6 Prevalence of diabetes mellitus

1.6.1 Global burden of diabetes mellitus and its risk factors

T1DM comprises around 5–10% of DM cases [3]. T2DM accounts for approximately 90% of DM cases in all ages throughout the world [2]. In 2012, T2DM caused directly 1.5 million and indirectly 2.2 million deaths worldwide, being the eighth leading cause of death in both sexes [102]. The prevalence of T2DM is increasing worldwide and the number of affected people has risen from 108 million people in 1980 [103] to 422 million people in 2014 corresponding to 8.5% among adults >18 years [104]. The number of affected people worldwide is projected to increase to 592 million by the year 2035 [105]. Increasing global prevalence of T2DM is due to various factors like population growth, aging of societies, increasing risk factors for T2DM (e.g. obesity, sedentary lifestyle), more effective diagnostic instruments and case-finding schemes and increased longevity of the diseased [106]. Excess body fat, reflecting several aspects of diet and physical activity, is mentioned as the strongest risk factor for T2DM worldwide [106]. In 2014, it was estimated that globally one in three adults over 18 years were overweight and more than one in ten were obese [107]. At the same time, physical inactivity became a great concern throughout the world. Based on data from 2010, it was estimated that 27% of women and 20% of men from all countries were insufficiently physically active [107]. In 2017, health authorities in Norway reported that only around one third of Norwegian adult population applied the recommendations regarding physical activity [108].

1.6.2 Prevalence of type 2 diabetes mellitus in Europe

While in 1980 the estimated prevalence of T2DM among adults >18 years in Europe was 5.3%, this figure reached 7.3% in 2014 [106]. Data suggest that the incidence and prevalence of T2DM in European countries is frequently higher among people of lower socioeconomic status and these inequalities were mediated by BMI [109]. It should be mentioned that the
proportion of undiagnosed cases of T2DM varies widely from country to country and even in high-income countries this proportion might be as high as 30–50% [110]. A systematic review and meta-analysis study revealed that the prevalence of T2DM among ethnic minority groups resident in Europe was considerably higher than in ethnic Europeans [111].

1.6.3 Prevalence of diabetes mellitus in Norway

In 2004, the prevalence of known cases of any type DM in Norwegian adults over 30 years old was estimated 3.4% [11]. This estimate was based on data from nine regional surveys. The authors estimated also that the number of unknown cases might be nearly equal to the number of known cases in the age group ≥30 years old. According to the Norwegian Institute of Public Health, in 2017, approximately 245,000 (4.7%) Norwegians had known DM, of which 216,000 were estimated to have T2DM [112]. The annual number of new users of glucose-lowering agents in Norway is reported around 15,000–16,000 [113]. A recent nationwide cohort study based on national registries in Norway showed that the prevalence of known T2DM among inhabitants aged 30–89 years increased from 4.9% in 2009 to 6.1% in 2014 [10]. According to this study, at the same time, the incidence of known cases of the disease decreased significantly from 609 cases per 100,000 person-years in 2009 to 398 cases per 100,000 in 2014, an annual reduction of 10.1%. This decline was observed for both pharmacologically and non-pharmacologically treated T2DM and in all sex, age, education level and place of birth subgroups [10]. In 2006, the third Nord-Trøndelag Health Survey (HUNT 3) reported the prevalence of any type DM in adults aged 20 years and over living in the county of Nord-Trøndelag to be 4.3% [114]. In 2011, the direct costs of DM treatment in Norway reached €408 million; and indirect costs reached €108 million [115].

It is worth mentioning that, like in many other countries and societies, the prevalence of DM is not homogenous across Norway or even within its cities and districts. Results from three
population-based, cross-sectional studies conducted between 2000 and 2002 in Oslo revealed that the prevalence of self-reported adult DM was strikingly different between inhabitants of West and East Oslo [116]. While Western parts of Oslo have traditionally been inhabited by a wealthy, highly educated and ethnically homogeneous community, the historically disadvantaged and much more densely populated ‘East’ is popularly associated with immigration and social stigma [116]. According to the mentioned study, while the prevalence of self-reported DM in the Western parts of Oslo was 1.6%, this prevalence was 5.4% in the Eastern parts. The observed spatial disparity in the prevalence of DM remained highly significant even after adjustment for a range of covariates such as ethnicity, age or BMI. The results showed that ethnicity is a strong predictor for DM with being of non-Western origins increases the odds by a factor of almost 5 [116].

1.6.4 Diabetes among indigenous peoples

Higher prevalence and incidence of T2DM among indigenous peoples compared with benchmark populations worldwide seems to be a common phenomenon [117]. Indigenous peoples throughout the world are experiencing an unprecedented epidemic of T2DM [117]. While incidence rates of T2DM have been on the rise during the last decades, the disease disproportionately affects different racial and cultural groups [118].

The prevalence of self-reported DM among indigenous Australians aged ≥ 40 years was 37.3% (95% confidence interval (CI): 34.6–40.2%) in 2008, which was more than eight times higher than that in non-indigenous Australians [25]. This happens in spite of the fact that the prevalence of DM was extremely uncommon among Australian indigenous populations some 30 years ago (the rate was 10% of national rate) [117, 119]. A systematic review reported a great variation in the prevalence of DM between different segments of the Australian Indigenous population [120]. According to this study, the prevalence of (any type) DM was
greater among Indigenous Australian women compared to men and in remote compared to urban settings. A great deal of the disparities in the prevalence of DM can be attributed to disadvantageous socioeconomic status of indigenous people in Australia [121].

While the overall age-standardised prevalence of DM in Canada in 2008–2009 was 6.8%, the age-standardised prevalence of DM was 17.2% among First Nations people living on-reserve, 10.3% among those living off-reserve and 7.3% among Métis [122]. The corresponding prevalence among Inuit was similar to that of the general Canadian population [122]. Although the prevalence of DM in Canadian Inuit is now comparable to the general Canadian population, it was around 2% in 2001 [122]. The age-standardised prevalence of diagnosed DM increased 35% among adults aged > 20 years residing in rural Status Aboriginals in Alberta, Canada, from 10.9% (95% CI: 10.4–11.5) in 1995 to 14.7% (95% CI: 14.2–15.2) in 2006. Corresponding prevalence in urban Status Aboriginals increased by 22% from 9.4% (95% CI: 8.5–10.3) in 1995 to 11.5% (95% CI: 10.9–12.1) in 2006 [123].

The Greenland population is a population isolate. While the prevalence of T2DM in Greenland was at a very low level in the 1960s, a study by Jørgensen et al. revealed that around 9% of adult (≥ 18 years) Inuit in Greenland suffered from DM in 2005–2010 with 79% of them being previously undiagnosed [124]. This prevalence is almost twice as high as the prevalence of T2DM in Denmark, a country that Greenland is culturally and politically linked to [125]. The study showed also an inverse correlation between the prevalence of DM and urbanisation with people of lower socioeconomic status living in small towns and villages being at higher risk. The high prevalence of T2DM in Greenland is despite the fact that Greenlanders mostly consume a traditional Inuit diet with a high content of marine mammals and fish [126]. Therefore, changes in traditional lifestyle risk factors cannot fully explain the high prevalence of T2DM in Greenland and some genetic risk factors might be involved as
well [127]. A newly performed association mapping of T2DM-related quantitative traits among 2575 Greenlandic DM-free individuals discovered a nonsense p.Arg684Ter variant in the gene TBC1D4 with an allele frequency of 17% [128]. According to authors of the study, homozygous carriers of this variant have significantly higher concentrations of plasma glucose and serum insulin 2 hours after an oral glucose load compared with individuals with other genotypes. Increasing number of p.Arg684Ter alleles leads to a severely decreased insulin-stimulated glucose uptake in skeletal muscles, leading to postprandial hyperglycaemia, impaired glucose tolerance and T2DM [128]. In recent years, the quality of DM health care in Greenland has improved and the prevalence of diagnosed DM has increased since 2008 due to heightened awareness, increased funding and case-finding schemes [129].

While T2DM was probably uncommon among American Indian and Alaska Native (AI/AN) populations before the 1940s [130] it was reported that in 2010 AI/AN had a higher rate (over 14%) of diagnosed T2DM than any other racial or ethnic group in the USA [131]. At the same time, the prevalence of overweight and obesity was also reported to be higher among AI/AN compared to White or Hispanic Americans [22, 132]. Diabetes-related mortality rates are three times higher among AI/AN compared with White Americans [133] and DM is the fifth leading cause of death among AI/AN [22]. A study performed by Fretts et al. revealed that around half of American Indians developed DM by age 55 years and a high proportion of those affected by DM remained undiagnosed [134]. Fretts et al. reported also in the same study that of 2001 adult (aged 19–74) AI/AN free of DM and cardiovascular diseases recruited in the study and followed for 8 years, 243 individuals (12.1%) developed DM with consuming processed meat being a significant risk factor for developing DM among AI/AN (OR: 1.63).
The incidence rates of T2DM among Pima Indians in Arizona aged 5 years or older was as high as 25 cases/1000 person-years between 1965 and 2003 [135]. They feature a classic and well-known example of high incidence and prevalence of a subtype of T2DM characterized by obesity, insulin resistance, and a relative insulin deficiency [136]. Just like many other indigenous peoples, they have experienced a transition from a traditional lifestyle with low-calorie diet and high physical activity to a sedentary lifestyle with high calorie intake [137]. Like Inuit in Greenland, Pima Indians are a population isolate, i.e. the population is derived from a small number of individuals with limited connection to other populations [137]. Generally, such populations exhibit a unique profile of rare diseases [138], and the prevalence of common diseases like T2DM might also be strikingly different from large, open populations [127]. Isolated populations are more vulnerable to rapid changes in the environment and lifestyle [127].

Unlike Inuit in Greenland and Pima Indians in the USA, Sami people in Norway have not been an isolated population, neither geographically nor genetically. Throughout the history, they have been in constant interaction with surrounding populations and now they live well-integrated lives as part of Norwegian society [139]. The prevalence of metabolic syndrome among both Sami and non-Sami inhabitants of Northern Norway was reported to be high in the SAMINOR 1 Survey [13]. While, according to this survey, the prevalence of self-reported DM was not different between the Sami and non-Sami groups, ethnicity appeared to affect DM treatment, which was more prevalent among Sami than non-Sami women.

In the Finnmark Study (1993) and the SAMINOR 1 and 2 Surveys, Sami women reported lower leisure-time physical activity than their non-Sami counterparts, while both Sami men and women were significantly more active during work [140-142].
1.7 Ethnicity

The concept of ethnicity is multifaceted. Self-defined ethnicity depends on the context the definition has been shaped and applied in and may change over time [143]. According to various sources, ethnicity can be defined as a group of individuals who identify themselves and have a sense of belonging to each other based on some similarities like assumed common ancestry, language, dialect, society, culture, religion, mythology, rituals, nation, history, homeland, dressing style, art, and physical appearance [144-147]. The complexity of individual identity makes writing with precision about ethnicity challenging [148].

The ethnicity is not a mutually exclusive concept and one may be assigned to or conceive his/herself as member of different ethnic groups according to country of origin, ancestry, birthplace, language and so on [149]. Bhopal in his book on race and ethnicity emphasises that in most cases the differences between individuals belonging to a certain ethnic group are larger than the differences between different ethnic groups [149]. This results in ethnic categories being broad with overlapping and obscure borders [148]. Due to these issues, it has been recommended that researchers should elaborate on how and on what basis they defined the ethnic groups [150].

Each definition of a given ethnic group relies on one or a few main feature(s) of that group and may in addition make use of other less important distinguishing features to further define the group. This may lead to having different definitions of an ethnic group, which might adversely affect results and comparisons. To ensure that any observed difference between ethnic groups is a result of real differences in the concerned endpoint of the study and not the applied definition of the ethnic group, sensitivity analyses can be helpful to avoid spurious conclusions [151].
1.8 The Sami people in Norway

The Sami are an indigenous people who have traditionally inhabited northern parts of Norway, Sweden and Finland, and in Russia’s Kola Peninsula [152]. In Norway, their settlement area, Sápmi, encompasses Finnmark county in the north to Engerdal in Hedmark county in the south. According to Norwegian legislation, the Sami people are recognised as indigenous people [153]. Although there is no ethnic registry in Norway, it is estimated that the largest population of Sami people (proposed to be around 40,000) live in Norway [154]. The Sami people have traditionally pursued various livelihoods including reindeer husbandry, small-scale fishing, and agriculture [155, 156]. Today Sami people are active in almost all professions and only less than 10% of them are actively pursuing the traditional practices [157]. The Sami people in Norway consists of heterogeneous groups such as North, East/Skolt, Lule, Ume and South Sami, with various cultural, linguistic, and dietary features [158].

The history of Sami people has many similarities with the histories of other indigenous peoples throughout the world. The Sami people have for centuries been subject to discrimination and for more than 100 years victims of an official assimilation policy exerted by the Norwegian government. Motivation for this policy was “Social Darwinism” and national romantic ideologies [159]. Some areas like the areas bordering Russia and Finland as well as coastal Sami areas of Northern Troms and Finnmark were more exposed to this so-called Norwegianisation policy [155, 159, 160]. The education system was one of the most effective tools for Norwegian authorities to enforce this policy by banning the Sami language at schools and removing Sami children from their cultural and linguistic environments [161, 162]. Besides linguistic policies, Norwegian authorities encouraged thousands of people from other parts of Norway to immigrate and settle in Finnmark county, which turned Sami people into minority groups in their own traditional territories at the coastal areas [163]. During the
19th and 20th centuries, fishing industry, which traditionally was one of main livelihoods of Sami people in coastal areas, became industrialised. This had profound economic as well as lifestyle impact on Sami inhabitants in coastal areas [164]. The evacuation of coastal areas during and ensuing the second World War in tandem with rapid modernisation process occurring in almost all aspects of labour market did put extra pressure on Sami language and culture [155].

Nowadays, many Sami people are active in administrative and service sectors and almost the entire reindeer husbandry and agriculture are mechanised with less physical activity involved [165]. The pro-Sami movements and revitalisation policies implemented from 1960s have, to some extent, managed to reverse the adverse effects of the past Norwegianisation policies [139]. The changes in lifestyle towards so-called western and sedentary lifestyle with unhealthy diet, which have affected all ethnic groups in the region, have continued in the same direction until now [166]. Like a two-edged sword some of these changes have been unfavourable, others have had beneficial effects on the health situation.

The abovementioned colonisation, assimilation and marginalisation policies exerted on Sami people throughout the history might have made them more vulnerable to adverse health outcomes like cardiovascular diseases, obesity, metabolic syndrome and chronic muscle pain [167].
1.9 The Sami people and health studies

Research on the Sami people was started in the early 1800s by gathering skeletal material from archaeological excavations and autopsies at the Department of Anatomy, the University of Oslo, Norway [168]. These so-called research activities focused on racial attributes and used cranial indices and skull measurements with the intention of distinguishing ethnic groups. Rather than investigating Sami’s lifestyle and culture, they tried to use physio-anthropological features to provide a scientific evidence for the superiority of the benchmark population. This discriminatory and racist approach to scientific methods left a deep impression on many Sami people causing them to distrust researchers [168].

Since the Second World War, a growing political awareness and generally higher levels of education among the Sami people, in combination with increasing interest and involvement of researchers with Sami affiliations have paved the way for new studies on Sami health issues with a totally different approach and ethical principles [168]. The first population-based study conducted in the Sami regions was the different surveys of the Finnmark Study (1974–2000), which included all ethnic groups living in the Finnmark county [169]. Before the Finnmark Study, only some isolated reports from practitioners working in North-Sami regions were published, reporting issues such as tuberculosis, echinococcosis and high rates of infant mortality [170-172].

The establishment of the Centre for Sami Health Research at UiT the Arctic University of Norway in 2001 was the turning point in meeting the increasing need for knowledge about Sami peoples’ health and living conditions. Ever since, the centre has collaborated with several regional, national and international actors in the field of research among Sami or other indigenous peoples and facilitated a substantial increase in publications and reports in this regard [168, 173, 174].
1.10 Kvens

Kvens are descendants of Finnish ethnicity who immigrated from Sweden and Finland to Norway and settled in the northern parts of Norway in the 1700s and 1800s [175]. Since 1998, Kvens are recognised as a national minority in Norway [176]. The Kvens in Norway do not have indigenous status like the Sami. Similar to the Sami people, the Kvens have also experienced linguistic and cultural assimilation in the Norwegian society and enormous changes in lifestyle and way of living during the past centuries and decades. A large number of Kvens mentioned in the questionnaire affiliations to either Sami or Norwegian ethnic groups besides their main ethnicity. Due to relatively small number of Kvens in our surveys, they were not assessed separately in the present thesis.
1.11 The aims of the thesis

The inspiration and motivation for the present thesis was the paucity of publications regarding the incidence and prevalence of DM among the Sami people inhabiting rural districts in Norway, and several publications reporting higher incidence and/or prevalence of lifestyle related diseases, especially T2DM, among other indigenous peoples throughout the world. The overall aim of the thesis is to assess the burden of DM among Sami and non-Sami inhabitants of Northern Norway.

The specific aims of the thesis are:

1) To measure the prevalence of pre-diabetes and DM among inhabitants of the included municipalities of Northern Norway in two points of time; the SAMINOR 1 Survey (2003–2004) and the SAMINOR 2 Clinical Survey (2012–2014);

2) To explore any ethnic difference between Sami and non-Sami inhabitants of these municipalities in terms of dysglycaemia;

3) To determine the 8-year cumulative incidence of DM from the SAMINOR 1 Survey (2003–2004) to the SAMINOR 2 Clinical Survey (2012–2014);

4) To elucidate some possible explanatory factor(s) behind any ethnic difference in the prevalence or cumulative incidence of DM in the included municipalities.
2 Methods

2.1 The SAMINOR 1 Survey

In 2003–2004, the Centre for Sami Health Research at UiT The Arctic University of Norway, in collaboration with the Norwegian Institute of Public Health, conducted the SAMINOR 1 Survey, a cross-sectional population-based survey on health and living conditions in regions with both Sami and Norwegian populations [177]. The survey was first designed and planned as a cardiovascular screening in Northern Norway by the National Health Screening Service and then by joining the Centre for Sami Health Research took the form of the SAMINOR 1 Survey. This survey included municipalities and districts in Norway with a high proportion of people with Sami ethnicity, as determined by ethnicity and language information reported in the 1970 census and historical and local knowledge about traditional Sami settlements [178]. The included municipalities were: Karasjok, Kautokeino, Tana, Nesseby, Porsanger, Lebesby, Loppa, Kvalsund, Alta, Lyngen, Storfjord, Kåfjord, Kvænangen, Lavangen, Skånland, Narvik, Evenes, Tysfjord, Hattfjelldal, Røyrvik, Namsskogan, Grane, Snåsa and Røros (Figure 3). These municipalities are all except the Alta municipality located in rural areas. Only some districts of Hattfjelldal, Grane, Narvik, Namsskogan, Snåsa and Røros municipalities with considerable proportion of Sami inhabitants were included in the survey.

An invitation was mailed several weeks before the survey with information on the time and place of screening, relevant and required information about the survey, and questionnaires. The questionnaires were returned by the participants at the time of the clinical examination [177]. All residents aged 30 and 36–79 years registered in the National Registry in the selected regions were invited to participate in the SAMINOR1 Survey regardless of their ethnic background (n=27,987). Due to the small sample size and low participation rate among 30-year-old inhabitants – only 328 participants out of the 836 invited (39.2%) – , they were
excluded from analyses (DM prevalence estimates) in the first paper. Of the remaining individuals, 16,538 participated and gave consent to use their information in medical research (60.9%).

The survey included a short clinical examination, blood sampling and three self-administered questionnaires: an initial two-page questionnaire that contained a variety of questions, including questions about ethnicity; a three-page screening questionnaire that collected information about symptoms, lifestyle factors, and some diseases, including DM; and an additional four-page questionnaire that collected cultural, social, and nutritional information. The English version of the SAMINOR 1 Survey questionnaire is available at www.saminor.no.

In the first four municipalities, it was possible to participate with the initial questionnaire only, without taking part in the clinical examinations or fill in the main questionnaire. In addition, due to a design problem, some participants underwent clinical examinations without filling in the initial questionnaire. The questionnaires were prepared in Norwegian and translated into the three main Sami languages; however only the Northern Sami version was used in the six municipalities defined in the Sami Language Act at that time as the Sami Language Administrative District (Karajok, Kautokeino, Tana, Nesseby, Porsanger, and Kåfjord). More than 98% of the participants completed the Norwegian version of the questionnaire. In 15 of the 24 municipalities, non-responders were offered a second chance to attend when the buses returned a couple of months later. Unlike inhabitants in Finnmark and Troms counties, inhabitants in Nordland and both Trøndelag counties did not receive a second invitation; thus, this design affected the participation rate in these areas.

A trained team of experienced fieldworkers undertook the practical work. The clinical examination was carried out in two buses that moved throughout the study area, spending 1–6
weeks in each of the municipalities included in this analysis [177]. Non-fasting venous blood samples were drawn with the participants in a seated position. Participants came to the examination buses throughout the day, from 8 o’clock in the morning to 19 o’clock in the afternoon. The time after the last meal ranged from immediate after meal to 9 hours with average postprandial time a little over 2 hours. The samples were left to coagulate for a minimum of 30 minutes and were centrifuged within 1.5 hours. Serum was sent by overnight mail to the Department of Clinical Chemistry, Ullevål University Hospital, Oslo, Norway, where glucose was measured directly by an enzymatic method (Hitachi 917 autoanalyzer, Roche Diagnostic, Switzerland). Autonorm Human Liquid was used as internal quality control material. The control material was analysed at the start and for every 30th sample. During physical examination, height (to the nearest 0.1 cm) and weight (to the nearest 100 grams) were measured with an electronic height and weight scale (DS-102, Dong Sahn Jenix, Seoul, Korea) with the participant wearing light clothing without shoes. Body mass index (BMI, kg/m²) was calculated as weight (kg)/(height (m))² to the nearest 0.1 unit. Waist circumference (WC, cm) was measured at the umbilicus level to the nearest centimetre at the end of expiration with the individual standing and breathing normally [177].
Figure 3. The map of the included municipalities and the 4 defined geographical regions. The SAMINOR 1 Survey. Published with permission from Centre for Sami Health Research.
2.2 The SAMINOR 2 Survey

The Centre for Sami Health Research conducted also the SAMINOR 2 Survey, which consisted of two parts. The first part of this survey, the SAMINOR 2 Questionnaire Survey, was purely questionnaire-based and was conducted in year 2012 among inhabitants aged 18–69 years from the same 24 municipalities and districts included in the SAMINOR 1 Survey in addition to the municipality of Sør-Varanger [179]. The second part of the survey, the SAMINOR 2 Clinical Survey was conducted in 2012–2014 and consisted of self-administered questionnaires, a clinical examination, and analysis of blood samples. The survey included individuals aged 40–79 years old from 10 municipalities of Finnmark, Troms, and Nordland counties: Kautokeino, Karasjok, Porsanger, Tana, Nesseby, Storfjord, Kåfjord, Lyngen, Skånland, and Evenes (Figure 4). Please note that these 10 municipalities were included also in the SAMINOR 1 Survey and the SAMINOR 2 Questionnaire Survey.

Like in the SAMINOR 1 Survey, an invitation was mailed several weeks in advance to eligible inhabitants of the designated municipalities along with pertaining information about the provided questionnaires and the time and place of the clinical examination. Participants were asked to present their completed questionnaires at the time of the clinical examination, which was performed at one of 10 research stations established in 9 municipalities (two research stations were set up in Kåfjord municipality in the communities of Manndalen and Birtavarre; participants living in Evenes visited the research station in neighbouring Skånland). In total, 12,455 were invited, and 6004 took part in the clinical examination. All the clinical examinations were performed within 2–7 weeks in each municipality.

During the clinical examination, trained personnel measured participants’ height (to the nearest 0.1 cm) and weight (to the nearest 100 grams) using an electronic height and weight scale (DS-103, Dongsahn Jenix, Seoul, Korea) with participants wearing light clothing and no
shoes. These measures were then used to calculate body mass index (BMI, kg/m²). Waist circumference (WC, cm) was measured at the umbilicus to the nearest cm with the participant standing and breathing normally. Waist-to-height ratio (WHtR) was calculated by dividing the waist by the height. Finally, blood samples were collected by venepuncture at normal venous pressure, with participants in a seated position. Blood samples were stored at -20°C in a freezer and after some weeks transported to the biobank at UiT The Arctic University of Norway where the serum samples were stored at -70°C in ultra-freezers. Random plasma glucose was analysed at the Laboratory of the Department of Clinical Chemistry, University Hospital of North Norway, Tromsø, Norway in the period of September 2014 – November 2014.

Glucose was measured on the Cobas 8000 system from Roche/Hitachi using an in-vitro test for the quantitative determination of glucose in human serum. The test principle is an ultraviolet test with enzymatic references method with hexokinase. Glucose values for human serum obtained on the Roche/Hitachi c 701 analyser were compared with those determined using the same reagent on the Roche/Hitachi cobas 501 analyzer. This method has been standardised against isotope dilution mass spectrometry reference measurement procedure. The analyser automatically calculates the analyte concentration of each sample by conversion factor mg/dl x 0.0555= mmol/L. All reagents were purchased from the same company.

Glycated haemoglobin (HbA1c) was analysed immediately on whole blood at the examination site, with The DCA Vantage™ (Siemens Medical Solutions Diagnostics, Tarrytown, NY), which is based on latex agglutination inhibition immunoassay methodology and provides results in 6 minutes.

Questionnaires differed by age group: participants aged 40–69 years received an 8-page questionnaire that covered a broad range of questions on lifestyle, diet, risk factors, and
diseases. In contrast, participants aged 70–79 years received a 4-page questionnaire with larger fonts. Only questions that were identical in the two questionnaires were included in the present analyses. Both questionnaires were originally prepared in Norwegian and then translated into the Northern Sami language owing to the fact that all 10 municipalities belong to the Northern Sami language area. In Kautokeino, Karasjok, Nesseby, and Tana municipalities, participants received both the Sami and Norwegian versions of the questionnaire. In Kåfjord, Storfjord, Porsanger, and Lyngen municipalities, the questionnaire in the Northern Sami language was available on request. Invitees in Skånland and Evenes municipalities received the Norwegian questionnaire only. Among all of our participants, less than 5% chose to use the Sami version of the questionnaire. The English version of the SAMINOR 2 Clinical Survey questionnaire for 40–69-year-old participants is available at www.saminor.no.

2.3 Ethics

The Norwegian Data Protection Authority approved the SAMINOR 1 Survey and the SAMINOR 2 surveys. The surveys were approved by Regional Committees for Medical and Health Research Ethics (REC North). All participants gave a written informed consent, which also included a consent to later linkages to national registers, previous censuses and cardiovascular screenings. Information letters and brochures were elaborated in co-operation with the Norwegian Data Protection Authority and REC North. This specific diabetes study was also accredited by REC North and the SAMINOR Project Board.
Figure 4. The map of the 10 municipalities included in the SAMINOR 2 Clinical Survey. Published with permission from Centre for Sami Health Research.
2.4 Definition of ethnicity

In both surveys, information on ethnicity was obtained from the questionnaires with identical questions regarding ethnicity (Figure 5). The questions were: “What language(s) do/did you, your parents and your grandparents use at home?”, “What is your, your father’s and your mother’s ethnic background?”, and “What do you consider yourself to be?” On all items the response options were: “Norwegian”, “Sami”, “Kven”, and “Other”. The questions were to be answered separately for each relative and multiple answers were allowed. Sami ethnicity was defined based on two criteria: 1) self-identification as a Sami, and 2) a Sami language connection. Sami self-identification was regarded as fulfilled if the respondent considered him/herself to be Sami or reported having a Sami ethnic background. Sami language connection was defined if at least one grandparent, parent, or the participant him/herself spoke a Sami language at home. Participants who fulfilled both criteria were categorised as Sami. All other participants were categorised as non-Sami.

To assess the reproducibility of answers to ethnicity questions, results from the SAMINOR 1 and 2 Surveys were compared. Of a total of 3303 persons who participated in both the SAMINOR 1 Survey and the SAMINOR 2 Clinical Survey, respectively, and included in Paper 3, 1314 (39.8%) and 1317 (39.9%) reported having Sami ethnicity with a high agreement between answers given to ethnicity questions by each participant (Cohen’s Kappa=0.85, p<0.01).
Family and linguistic background

People of different ethnic backgrounds live in Northern Norway. That is, they have different languages and cultures. Examples of ethnic backgrounds, or ethnic groups, are Norwegian, Sami and Kven.

10. What language(s) do/did you, your parents and your grandparents speak at home? (Put one or more crosses)

<table>
<thead>
<tr>
<th></th>
<th>Norwegian</th>
<th>Sami</th>
<th>Kven</th>
<th>Other, describe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother’s father</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother’s mother</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father’s father</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father’s mother</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myself</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. What ethnic backgrounds do you, your father and your mother have? (Put one or more crosses)

<table>
<thead>
<tr>
<th></th>
<th>Norwegian</th>
<th>Sami</th>
<th>Kven</th>
<th>Other, describe</th>
</tr>
</thead>
<tbody>
<tr>
<td>My ethnic background is</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My father’s ethnic background is</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My mother’s ethnic background is</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12. What do you consider yourself to be? (Put one or more crosses)

<table>
<thead>
<tr>
<th></th>
<th>Norwegian</th>
<th>Sami</th>
<th>Kven</th>
<th>Other, describe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5. Questions on language and ethnicity from the questionnaire
2.5 Paper 1

2.5.1 Study participants

Of the 27,151 inhabitants (36–79 years) who were invited to the SAMINOR 1 Survey, 16,538 (60.9%) agreed to participate. After exclusion of those with either missing ethnicity variable or outcome variable (self-reported DM and/or non-fasting plasma glucose), 15,208 (56.0%) individuals were included in the study (Figure 6 and Table 1).

Figure 6. The invited in the SAMINOR 1 Survey, the participants, exclusions, and the actual study sample, paper 1.
Table 1. Characteristics of the invited (36–79 years old), participants, sub-groups and the final working sample in paper 1. The SAMINOR 1 Survey

<table>
<thead>
<tr>
<th></th>
<th>Invited (%)</th>
<th>Total participation (%)</th>
<th>Participated in clinical examinations (%)</th>
<th>Clinical examinations and initial questionnaire (%)</th>
<th>Included in Paper 1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>27,151</td>
<td>16,538</td>
<td>15,718</td>
<td>15,515</td>
<td>15,208</td>
</tr>
<tr>
<td>Percent</td>
<td>60.9</td>
<td>57.9</td>
<td>57.1</td>
<td>56.0</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>14,114 (52)</td>
<td>7,985 (48)</td>
<td>7,529 (48)</td>
<td>7,444 (48)</td>
<td>7,315 (48)</td>
</tr>
<tr>
<td>Women</td>
<td>13,037 (48)</td>
<td>8,553 (52)</td>
<td>8,189 (52)</td>
<td>8,071 (52)</td>
<td>7,893 (52)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36–49</td>
<td>10,748 (40)</td>
<td>6,040 (37)</td>
<td>5,722 (36)</td>
<td>5,654 (36)</td>
<td>5,492 (36)</td>
</tr>
<tr>
<td>50–59</td>
<td>7,739 (28)</td>
<td>5,063 (31)</td>
<td>4,833 (31)</td>
<td>4,773 (31)</td>
<td>4,681 (31)</td>
</tr>
<tr>
<td>60–79</td>
<td>8,664 (32)</td>
<td>5,435 (33)</td>
<td>5,163 (33)</td>
<td>5,088 (33)</td>
<td>5,035 (33)</td>
</tr>
<tr>
<td>Regions*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2,704 (10)</td>
<td>1,777 (11)</td>
<td>1,366 (9)</td>
<td>1,190 (8)</td>
<td>1,169 (8)</td>
</tr>
<tr>
<td>2</td>
<td>4,174 (15)</td>
<td>2,687 (16)</td>
<td>2,301 (15)</td>
<td>2,283 (15)</td>
<td>2,221 (15)</td>
</tr>
<tr>
<td>3</td>
<td>14,078 (52)</td>
<td>8,647 (52)</td>
<td>8,631 (55)</td>
<td>8,624 (56)</td>
<td>8,465 (56)</td>
</tr>
<tr>
<td>4</td>
<td>6,195 (23)</td>
<td>3,427 (21)</td>
<td>3,420 (22)</td>
<td>3,418 (22)</td>
<td>3,353 (22)</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>6,472 (24)</td>
<td>3,202 (19)</td>
<td>2,952 (19)</td>
<td>2,903 (19)</td>
<td>2,842 (19)</td>
</tr>
<tr>
<td>Married</td>
<td>15,175 (56)</td>
<td>10,259 (62)</td>
<td>9,848 (63)</td>
<td>9,728 (63)</td>
<td>9,535 (63)</td>
</tr>
<tr>
<td>Widow(er)</td>
<td>1,826 (7)</td>
<td>1,066 (6)</td>
<td>1,015 (6)</td>
<td>992 (6)</td>
<td>979 (6)</td>
</tr>
<tr>
<td>Divorced</td>
<td>3,054 (11)</td>
<td>1,704 (10)</td>
<td>1,614 (10)</td>
<td>1,606 (10)</td>
<td>1,574 (10)</td>
</tr>
<tr>
<td>Separated</td>
<td>623 (2)</td>
<td>307 (2)</td>
<td>289 (2)</td>
<td>286 (2)</td>
<td>278 (2)</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sami</td>
<td>3,932 (24)</td>
<td>3,406 (22)</td>
<td>3,406 (22)</td>
<td>3,398 (22)</td>
<td></td>
</tr>
<tr>
<td>Non-Sami</td>
<td>12,095 (74)</td>
<td>11,831 (77)</td>
<td>11,831 (77)</td>
<td>11,810 (78)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>2,40 (1)</td>
<td>226 (1)</td>
<td>226 (1)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>271</td>
<td>255</td>
<td>52</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–7 years</td>
<td>2,551 (17)</td>
<td>2,543 (17)</td>
<td>2,474 (17)</td>
<td>2,454 (17)</td>
<td></td>
</tr>
<tr>
<td>8–12 years</td>
<td>7,469 (51)</td>
<td>7,452 (51)</td>
<td>7,373 (51)</td>
<td>7,265 (51)</td>
<td></td>
</tr>
<tr>
<td>13+ years</td>
<td>4,757 (32)</td>
<td>4,749 (32)</td>
<td>4,708 (32)</td>
<td>4,562 (32)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>1,761</td>
<td>974</td>
<td>960</td>
<td>927</td>
<td></td>
</tr>
</tbody>
</table>

*Region 1: Karasjok and Kautokeino municipalities; Region 2: Porsanger, Tana and Nesseby municipalities; Region 3: Lyngen, Storfjord, Kåfjord, Kvænangen, Alta, Loppa, Kvalsund and Lebesby municipalities; Region 4: Lavangen, Narvik, Evenes, Skånland, Tysfjord, Hattfjelldal, Rørvik, Namsskogan, Grane, Snåsa and Røros municipalities
2.5.2 **Dysglycaemia**

Both questionnaire information and non-fasting plasma glucose measurements were used to categorise participants as normoglycaemic, with pre-diabetes or DM. The question about DM was: “Do you have, or have you ever had diabetes?” Those who reported in the questionnaire that they currently have or previously had DM were classified as having DM. Missing answers were regarded as “no”. In addition, a random (non-fasting) plasma glucose measurement was used for ascertaining dysglycaemia. Participants with non-fasting plasma glucose levels of 11.1 mmol/L or higher were also classified as having DM, and those with a level of 7.8–11.0 mmol/L were classified as having pre-diabetes. The remaining participants were categorised as normoglycaemics.

2.5.3 **Geographical regions**

Four geographical regions were defined: “Region 1” consisted of areas in the inland of Finnmark county, including Karasjok and Kautokeino municipalities. “Region 2” consisted of both inland and coastal areas in Finnmark county, including Porsanger, Tana, and Nesseby municipalities. “Region 3” consisted of coastal areas in Finnmark and the northern part of Troms county, including Lyngen, Storfjord, Kåfjord, Kvænangen, Alta, Loppa, Kvalsund, and Lebesby municipalities. “Region 4” consisted of Marka, Lule, and South Sami areas in southern Troms, Nordland, Nord- and Sør-Trøndelag counties, including Lavangen, Narvik, Evenes, Skånland, Tysfjord, Hattfjelldal, Røyrvik, Namsskogan, Grane, Snåsa, and Røros municipalities (Figure 3).
2.5.4 *Statistical analysis*

Using the direct method, the European standard population of 2013 was used to age-standardise the prevalence values. Hence, these results may be compared with multiple studies as the European standard population is frequently used as reference. As the outcome variable (dysglycaemia) had three categories (diabetes, pre-diabetes, normoglycaemia), multinomial logistic regression analysis stratified by sex (and separately for four geographic regions) and adjusted for age was applied to determine the age-adjusted odds ratio (OR) for pre-diabetes and DM for Sami compared with non-Sami.
2.6 Paper 2

2.6.1 Study participants

Regardless of ethnic background, all inhabitants aged 40–79 years from the 10 municipalities included in the SAMINOR 2 Clinical Survey were invited to participate. Of the 12,455 invited, 6004 (48.2%) attended the clinical examination. After exclusion of those with uncompleted questionnaire (n=21), missing HbA1c results (n=22), missing ethnicity variable (n=72), and those with T1DM (n=11), 5878 individuals (47.2%) were included in the analyses (Figure 7, Table 2).

2.6.2 Type 2 diabetes mellitus

Information about DM was obtained from both questionnaires and HbA1c results. In the questionnaires, this information came from the question: “Have you ever been diagnosed with diabetes (elevated blood sugar levels)?” The available answers were “yes” or “no”. Missing values were classified as “no”. If the participant answered “yes”, they were asked about the type (T1DM, T2DM, or gestational diabetes). In addition to participants who reported T2DM, those who reported DM without specifying the type (56 participants) were also categorised as having T2DM. Moreover, those who reported having T1DM and reported taking glucose-lowering medication for its treatment (26 participants) or never using insulin (6 participants), were recategorised as having T2DM.

In addition, those with HbA1c ≥ 6.5% were categorised as having T2DM. As virtually all individuals with T1DM are aware of their disease and are under treatment, all those who had high HbA1c (≥ 6.5%) without reporting DM in the questionnaires were regarded as having T2DM. Those who had 5.7% ≤ HbA1c < 6.5% were categorised as having pre-diabetes.
2.6.3 Geographical regions

The 10 municipalities were divided into three different regions: Region 1 consisted of areas in the inland of Finnmark county, including Karasjok and Kautokeino. Region 2 was comprised of both inland and coastal areas in Finnmark county, including Porsanger, Tana, and Nesseby. Region 3 consisted of the remaining municipalities (Evenes, Skånland, Lyngen, Storfjord, and Kåfjord) (Figure 4).

2.6.4 Statistical analysis

Differences in mean age, education, physical activity score, height, weight, WHtR, BMI, and WC by sex and ethnic groups were assessed using two-sample t-tests. Self-reported DM and categorised HbA1c were compared between groups using \( \chi^2 \) tests. The direct method was used to age-standardise the prevalence of pre-diabetes and T2DM. To obtain estimates that better reflect the true prevalence values of T2DM in the selected municipalities and age groups, invitees in the SAMINOR 2 Clinical Survey were chosen as the standard population (age groups: 40–59, 60–69 and 70–79 years). Prevalence of pre-diabetes and T2DM by sex, age, and ethnic groups were presented as percentages with 95% confidence interval (based on normal approximation). Multinomial logistic regression analysis was used to calculate the odds ratio (OR) with 95% CI of pre-diabetes and T2DM for Sami compared to non-Sami ethnicity stratified by sex and adjusted for age, physical activity, education, BMI, and WHtR.
Figure 7. The invited in the SAMINOR 2 Clinical Survey, the participants, exclusions and actual study sample, paper 2
Table 2. Characteristics of the invited (40–79 years), participants, sub-groups, and working samples of paper 2, The SAMINOR 2 Clinical Survey

<table>
<thead>
<tr>
<th>Invited (%)</th>
<th>Participated in clinical examinations (%)</th>
<th>Clinical examinations and questionnaire (%)</th>
<th>Included in Paper 2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>12,455</td>
<td>6004</td>
<td>5983</td>
</tr>
<tr>
<td>Percent</td>
<td>48.2</td>
<td>48.0</td>
<td>47.2</td>
</tr>
</tbody>
</table>

Sex

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invited (%)</td>
<td>6469 (52)</td>
<td>5986 (48)</td>
</tr>
<tr>
<td>Participated in clinical examinations (%)</td>
<td>2747 (46)</td>
<td>3257 (54)</td>
</tr>
<tr>
<td>Clinical examinations and questionnaire (%)</td>
<td>2732 (46)</td>
<td>3251 (54)</td>
</tr>
<tr>
<td>Included in Paper 2 (%)</td>
<td>2688 (46)</td>
<td>3190 (54)</td>
</tr>
</tbody>
</table>

Age (years)

<table>
<thead>
<tr>
<th></th>
<th>40–59</th>
<th>60–69</th>
<th>70–79</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invited (%)</td>
<td>6810 (54)</td>
<td>3589 (29)</td>
<td>2056 (17)</td>
</tr>
<tr>
<td>Participated in clinical examinations (%)</td>
<td>2868 (48)</td>
<td>2008 (33)</td>
<td>1128 (19)</td>
</tr>
<tr>
<td>Clinical examinations and questionnaire (%)</td>
<td>2851 (48)</td>
<td>2004 (33)</td>
<td>1128 (19)</td>
</tr>
<tr>
<td>Included in Paper 2 (%)</td>
<td>2800 (48)</td>
<td>1966 (33)</td>
<td>1112 (19)</td>
</tr>
</tbody>
</table>

Regions*

<table>
<thead>
<tr>
<th></th>
<th>Region 1: Karasjok and Kautokeino municipalities; Region 2: Porsanger, Tana and Nesseby municipalities; Region 3: Lyngen, Storfjord, Kåfjord, Kvænangen, Alta, Loppa, Kvalsund and Lebesby municipalities; Region 4: Lavangen, Narvik, Evenes, Skånland, Tysfjord, Hattfjelldal, Røyrvik, Namsskogan, Grane, Snåsa and Røros municipalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2616 (21)</td>
</tr>
<tr>
<td>2</td>
<td>4034 (32)</td>
</tr>
<tr>
<td>3</td>
<td>3605 (29)</td>
</tr>
<tr>
<td>4</td>
<td>2200 (18)</td>
</tr>
</tbody>
</table>

Marital status

<table>
<thead>
<tr>
<th></th>
<th>Married</th>
<th>Cohabitant</th>
<th>Divorced</th>
<th>Unmarried</th>
<th>Widow(er)</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invited (%)</td>
<td>3401 (57)</td>
<td>859 (15)</td>
<td>533 (9)</td>
<td>722 (12)</td>
<td>389 (7)</td>
<td>80</td>
</tr>
<tr>
<td>Participated in clinical examinations (%)</td>
<td>3401 (57)</td>
<td>859 (15)</td>
<td>553 (9)</td>
<td>722 (12)</td>
<td>389 (7)</td>
<td>59</td>
</tr>
<tr>
<td>Clinical examinations and questionnaire (%)</td>
<td>3350 (57)</td>
<td>843 (14)</td>
<td>540 (9)</td>
<td>712 (12)</td>
<td>380 (7)</td>
<td>53</td>
</tr>
</tbody>
</table>

Ethnicity

<table>
<thead>
<tr>
<th></th>
<th>Sami</th>
<th>Non-Sami</th>
<th>Other</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invited (%)</td>
<td>2410 (41)</td>
<td>3380 (57)</td>
<td>118 (2)</td>
<td>96</td>
</tr>
<tr>
<td>Participated in clinical examinations (%)</td>
<td>2410 (41)</td>
<td>3380 (57)</td>
<td>118 (2)</td>
<td>75</td>
</tr>
<tr>
<td>Clinical examinations and questionnaire (%)</td>
<td>2396 (41)</td>
<td>3365 (57)</td>
<td>117 (2)</td>
<td>72</td>
</tr>
</tbody>
</table>

Education

<table>
<thead>
<tr>
<th></th>
<th>0–7 years</th>
<th>8–12 years</th>
<th>13+ years</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invited (%)</td>
<td>672 (12)</td>
<td>2738 (48)</td>
<td>2321 (40)</td>
<td>273</td>
</tr>
<tr>
<td>Participated in clinical examinations (%)</td>
<td>672 (12)</td>
<td>2738 (48)</td>
<td>2321 (40)</td>
<td>252</td>
</tr>
<tr>
<td>Clinical examinations and questionnaire (%)</td>
<td>669 (12)</td>
<td>2697 (48)</td>
<td>2262 (41)</td>
<td>250</td>
</tr>
</tbody>
</table>

*Region 1: Karasjok and Kautokeino municipalities; Region 2: Porsanger, Tana and Nesseby municipalities; Region 3: Lyngen, Storfjord, Kåfjord, Kvænangen, Alta, Loppa, Kvalsund and Lebesby municipalities; Region 4: Lavangen, Narvik, Evenes, Skånland, Tysfjord, Hattfjelldal, Røyrvik, Namsskogan, Grane, Snåsa and Røros municipalities
2.7 Paper 3

2.7.1 Study participants

Individuals aged 30 and 36–71 years in SAMINOR 1 from the same 10 municipalities who participated in both the SAMINOR 1 Survey (2003–2004) and the SAMINOR 2 Clinical Survey (2012–2014) were included in the analysis. The two data files were merged by Statistics Norway using the unique 11-digit personal identification numbers assigned to all individuals who live in Norway. The merged file contains individuals born 1933–1968 and 1973 (i.e., aged 30 and 36–71 in the SAMINOR 1 Survey, and 40–41 and 44–79 in the SAMINOR 2 Clinical Survey). Due to collection of data over two calendar years in the SAMINOR 1 Survey and three calendar years in the SAMINOR 2 Clinical Survey, the time span between the two surveys varied from eight to eleven years, with a mean of 10.1 years.

In the SAMINOR 2 Clinical Survey, 12,455 people, aged 40–79 years were invited to take part, and 6004 participated (48.2%). We lack information about those invited to the SAMINOR 2 Clinical Survey who had also participated in the SAMINOR 1 Survey, as a linkage was only allowed for those who participated in both surveys. Therefore, loss to follow-up is described based on the SAMINOR 1 Survey participants who would have been invited to the SAMINOR 2 Clinical Survey, given that they had not died or moved from the 10 studied municipalities prior to invitation to the SAMINOR 2 Clinical Survey. There were 11,558 invitees to the SAMINOR 1 Survey, who, according to their birth year and municipality, would have been invited to the SAMINOR 2 Clinical Survey, given that none had moved or died. Of these, 6450 (55.8%) participated in the SAMINOR 1 Survey clinical examinations, of whom 6408 gave their consent to register linkages.

Among the 6408 individuals, 169 were excluded due to missing initial questionnaire, 2 with missing main questionnaire (containing diabetes information), and 27 with missing ethnicity
information in the SAMINOR 1 Survey. Based on self-report and random (non-fasting) plasma glucose (RPG) ≥ 11.1 mmol/L measurement in the SAMINOR 1 Survey, 260 prevalent cases of DM were excluded. To ensure exclusion of prevalent cases, additionally 75 participants were excluded, as they reported in the SAMINOR 2 Clinical Survey the time of DM diagnosis prior to (n=52), at the same time as (n=6) or during the first two years after participating in the SAMINOR 1 Survey (n=17, two years wash-out period). Of the remaining 5875 persons, 11 were not included in the final analysis due to missing main questionnaire (n=10) or HbA1c measurement (n=1) in the SAMINOR 2 Clinical Survey. A total of 2561 subjects from the SAMINOR 1 Survey did not participate in the SAMINOR 2 Clinical Survey as they died, moved out of the included municipalities during the follow-up period, or were not willing/able to participate. Hence, 3303 individuals were included in the analysis (Figure 8, Table 3).
Table 3. Characteristics of the invited, participants, sub-groups and the final working sample in paper 3. The SAMINOR 1 and 2 Clinical Surveys

<table>
<thead>
<tr>
<th></th>
<th>Invited (%)</th>
<th>Participated in clinical examinations and gave consent to linkage (%)</th>
<th>Participated in clinical examinations in both surveys (%)</th>
<th>Included in analysis, Paper 3 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>11,558</td>
<td>6408</td>
<td>3624</td>
<td>3303</td>
</tr>
<tr>
<td>Percent</td>
<td></td>
<td>55.4</td>
<td>31.4</td>
<td>28.6</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>6114 (53)</td>
<td>2998 (47)</td>
<td>1586 (44)</td>
<td>1447 (44)</td>
</tr>
<tr>
<td>Women</td>
<td>5444 (47)</td>
<td>3410 (53)</td>
<td>2038 (56)</td>
<td>1856 (56)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>336 (3)</td>
<td>111 (2)</td>
<td>51 (1)</td>
<td>45 (1)</td>
</tr>
<tr>
<td>36–49</td>
<td>4978 (43)</td>
<td>2525 (39)</td>
<td>1329 (37)</td>
<td>1243 (38)</td>
</tr>
<tr>
<td>50–59</td>
<td>3807 (33)</td>
<td>2285 (36)</td>
<td>1425 (39)</td>
<td>1302 (39)</td>
</tr>
<tr>
<td>60–71</td>
<td>2437 (21)</td>
<td>1487 (23)</td>
<td>819 (23)</td>
<td>713 (22)</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>3378 (29)</td>
<td>1435 (22)</td>
<td>711 (20)</td>
<td>652 (20)</td>
</tr>
<tr>
<td>Married</td>
<td>6218 (54)</td>
<td>3931 (61)</td>
<td>2364 (65)</td>
<td>2158 (65)</td>
</tr>
<tr>
<td>Widow(er)</td>
<td>440 (4)</td>
<td>266 (4)</td>
<td>146 (4)</td>
<td>126 (4)</td>
</tr>
<tr>
<td>Divorced</td>
<td>1253 (11)</td>
<td>650 (10)</td>
<td>332 (9)</td>
<td>300 (9)</td>
</tr>
<tr>
<td>Separated</td>
<td>268 (2)</td>
<td>126 (2)</td>
<td>71 (2)</td>
<td>67 (2)</td>
</tr>
<tr>
<td>Missing</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sami</td>
<td>2464 (38)</td>
<td>1452 (40)</td>
<td>1314 (40)</td>
<td></td>
</tr>
<tr>
<td>Non-Sami</td>
<td>3887 (61)</td>
<td>2145 (59)</td>
<td>1989 (60)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>57 (1)</td>
<td>27 (1)</td>
<td>0 (excluded)</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–7 years</td>
<td>825 (13)</td>
<td>459 (13)</td>
<td>400 (12)</td>
<td></td>
</tr>
<tr>
<td>8–12 years</td>
<td>3180 (50)</td>
<td>1810 (50)</td>
<td>1637 (50)</td>
<td></td>
</tr>
<tr>
<td>13+ years</td>
<td>2058 (32)</td>
<td>1222 (34)</td>
<td>1132 (34)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>345 (5)</td>
<td>133 (3)</td>
<td>134 (4)</td>
<td></td>
</tr>
</tbody>
</table>
Figure 8. Participants in the SAIMINOR 1 Survey, exclusions, those we would want to follow up, and, finally, those who were included in the final analysis and those not, paper 3
2.7.2 Diabetes mellitus

In the SAMINOR 1 Survey, both questionnaire information and random (non-fasting) plasma glucose (RPG) levels were used to categorise participants as having DM. In the SAMINOR 1 Survey, the question concerning DM was: “Do you have or have you had diabetes?” In the SAMINOR 2 Clinical Survey, the question was: “Have you ever been diagnosed with diabetes (elevated blood sugar levels)?” The available answers were “yes” or “no”. Missing values were classified as “no”.

All those who in the SAMINOR 1 Survey reported that they had DM as well as those with RPG levels ≥ 11.1 mmol/l were excluded from the analyses (They were prevalent cases). In addition, and as discussed above, those who in the SAMINOR 2 Clinical Survey reported the time of DM diagnosis as prior to, at the same time as or during the first two years after participating in the SAMINOR 1 Survey (wash-out period) were regarded as prevalent cases of DM in the SAMINOR Survey and were excluded from the final analysis. Thus, the follow-up time was around eight years.

In the SAMINOR 2 Clinical Survey, self-report and glycated haemoglobin (HbA1c ≥ 6.5%) were used to identify incident cases of DM. By dividing the number of incident cases of DM in the SAMINOR 2 Clinical Survey by the DM-free individuals in the SAMINOR 1 Survey, the 8-year cumulative incidence of DM was calculated.

2.7.3 Risk factors of type 2 diabetes mellitus

At the entrance of the SAMINOR 1 Survey, some potential risk factors for T2DM like age, BMI, WC, WHtR, family history of DM, marital status, education level, smoking, alcohol consumption, mental distress (Hopkins symptom checklist (SCL-10 score)), physical activity, and gross family income were measured or asked about. The levels of these risk factors were
compared in those who were finally included in the analysis with those who were not included. The same was done for Sami versus non-Sami participants in the final analysis.

2.7.4 *Statistical analysis*

Logistic regression analysis was used to assess the effect of ethnicity as well as available and relevant risk factor variables on the development of DM in men and women.
3 Summary of the results

3.1 Paper 1

Of the 15,208 participants in the SAMINOR 1 Survey included in the study sample, 696 (4.6%) were defined as having DM, and 426 (2.8 %) as having pre-diabetes. Among those defined as having DM, 636 (91.4%) reported DM in the questionnaire, whereas 60 (8.6%) were identified only by non-fasting plasma glucose.

Little or no ethnic difference was observed in the total age-standardised prevalence of pre-diabetes or DM in either sex. Total age-standardised prevalence of pre-diabetes and DM for Sami men was 3.4% and 5.5%, respectively. Corresponding values for non-Sami men were 3.3% and 4.6%. Total age-standardised prevalence of pre-diabetes and DM for Sami women was 2.7% and 4.8%, respectively, while corresponding values for non-Sami women were 2.3% and 4.5%.

In Region 1, the age-adjusted odds of having DM was significantly lower among Sami men than among non-Sami men (OR=0.29, 95% CI=0.10–0.82). The same was observed for Sami women in Region 2 (OR=0.46, 95% CI=0.23–0.91). In Region 4, the situation was opposite, with the age-adjusted odds for DM being significantly higher in both Sami men and women than in their non-Sami counterparts [OR=2.87 (95% CI=1.63–5.06) for men and OR=2.38 (95% CI=1.28–4.43) for women]. Odds for pre-diabetes was also significantly higher for Sami men compared to non-Sami men in this region (OR=2.05, 95% CI=1.06–3.96).
3.2 Paper 2

Based on self-report and/or HbA1c-measurements, a total of 2083 (35.4%) individuals were defined to have pre-diabetes and 565 (9.4%) to have T2DM in the SAMINOR 2 Clinical Survey. Of those who were categorised as having T2DM, 465 (82.3% of all cases) reported T2DM or elevated blood sugar levels in the questionnaire. The total age-standardised prevalence of pre-diabetes and T2DM were, respectively, 34.1% (95% CI: 33.1–35.1) and 8.7% (95% CI: 8.0–9.4).

In men, the total age-standardised prevalence of pre-diabetes (37.9% vs 31.4%) and T2DM (10.8% vs 9.5%) were higher in Sami compared with non-Sami. When adjusting for age as a continuous variable in a multinomial logistic regression analysis, the ethnic difference was statistically significant for both pre-diabetes (OR 1.42, 95% CI: 1.20–1.68) and T2DM (OR 1.31, 95% CI: 1.01–1.70).

In women, pre-diabetes (36.4% vs 33.5%) and T2DM (8.6% vs 7.0%) were also more prevalent in Sami than non-Sami. The ethnic differences in both pre-diabetes (OR 1.20, 95% CI: 1.02–1.41) and T2DM (OR 1.38, 95% CI: 1.05–1.82) were also herein statistically significant.

Adjustment for WHtR had the largest impact on the OR for pre-diabetes and T2DM for Sami compared to non-Sami, especially in women; after adjusting for WHtR, the OR for pre-diabetes in women was 1.05 (p=0.59) and for T2DM 1.00 (p=1.00).

In men, the observed prevalence of pre-diabetes and T2DM was higher in Sami in all geographical regions; statistically significant ethnic difference was, however, only found for pre-diabetes in region 2 and for T2DM in region 3. In women, the observed prevalence of pre-diabetes and T2DM was higher in Sami in all geographical regions but region 2, wherein
fewer Sami had dysglycaemia. Statistically significant ethnic differences were, however, only observed for pre-diabetes in region 1 and for T2DM in regions 1 and 3.

### 3.3 Paper 3

A total of 201 incident cases of DM were identified in the SAMINOR 2 Clinical Survey, based on self-report (n=138) or HbA1c≥6.5% (without self-report) (n=63). All who reported DM had HbA1c ≥ 6.5%. This number (n=201) corresponds to a 6.1% (95% CI: 5.3–6.9) 8-year cumulative incidence of DM. No statistically significant difference in the 8-year cumulative incidence of DM was found between Sami and not-Sami of the same sex.

The age-adjusted logistic regression analysis showed no statistically significant difference between Sami and non-Sami in the odds for DM in men or women. Further adjustments for other risk factors of DM confirmed that there were no ethnic differences in the odds of contracting DM. BMI, waist circumference (WC) and waist-to-height ratio (WHtR) were, however, statistically significant risk factors for DM in both sexes (adjusted for age and ethnicity).
4 Discussion

4.1 Methodological considerations

The first two articles had cross-sectional design, and the last one had a longitudinal design. Cross-sectional studies, which are conducted in a population at a specific time and place, measure disease frequency and factors which may cause diseases, or both, simultaneously [180]. The primary output of cross-sectional studies is prevalence data, although associations between risk factors and diseases can be sought and tested [180]. Cross-sectional studies usually serve as hypothesis-generating studies and inferring any causal relationship between the exposure and the outcome may be challenging, as the proper temporal sequence of events needed to establish causality cannot be observed due to the design of the study [180]. If a cross-sectional survey is followed up for a defined period of time to measure a health outcome, this study can then be a cohort study (longitudinal study) [180]. Paper 3 was a longitudinal study and tried to measure the cumulative incidence (risk) of DM. Similar to cross-sectional studies, longitudinal studies provide associations between risk factors and disease outcomes and inferring causal relationship between exposure and outcome may be problematic. Contrary to cross-sectional studies, in longitudinal studies risk factors are measured prior to the occurrence of the outcome, hence the risk of temporal bias (reverse causation) is reduced. It is unlikely that ethnicity, place of living, or education being affected by DM. However, it is possible that after a person is diagnosed with either pre-diabetes or DM, they apply lifestyle advices and change their dietary and physical activity habits. Furthermore, DM can lead to weight loss and in many instances, the only reason for seeking medical evaluation is unexplained weight loss. Consequently, BMI, WC, WHtR and physical activity are all subject to temporal bias in cross-sectional studies.
The ethnicity as an exposure variable in itself, is rarely a cause of a disease, but it is rather an index of some other related variables such as cultural (perception of illness and wellbeing), socioeconomic (education, profession, income), or lifestyle-related (diet, physical activity, smoking, alcohol drinking) factors [149]. The definition of ethnicity concept has always been a matter of contention, as ethnicity is a culturally constructed concept rather than being based on objective differences [181]. When it comes to Sami ethnicity in literature, there have been various definitions [177, 182, 183]. While some definitions pay especial attention to linguistic features [177], the core in the Sami definition in the present thesis is self-perception. According to the applied definition of Sami in this thesis, Sami is a person who responded that they either considered themselves to be Sami or reported to have a Sami ethnic background, and, in addition, at least one of their grandparents, parents, or they themselves spoke a Sami language at home. All participants who did not meet this criterion were defined as non-Sami. As many Sami people lost their Sami language during decades of assimilation and Norwegianisation policies, the linguistic features are not central in this definition. This definition is not mutually exclusive, which means that a Sami person may have a sense of self-affiliation to other ethnic groups as well as Sami ethnicity or speak other languages at home as well. The Sami features are regarded dominant in the present study. While an ethnic Norwegian person hardly presents affiliation to Sami ethnicity, it is likely that a Sami has a sense of affiliation to both Sami and Norwegian identity. It is the sense of belonging to an ethnic group that brings about behavioural and cultural differences and can expose a person for or protect them against health/disease determinants. As mentioned before, self-perception ethnicity is subject to change with time and some participants who considered themselves as Sami in the SAMINOR 1 Survey did not do so in the SAMINOR 2 Clinical Survey and vice versa.
As sensitive questions like those which may be construed as intrusive or invasive might produce lower participation rates, higher item non-response rates, or lower response accuracy [184], this was taken into account in the design and phrasing of the questions in the questionnaires. Cultural, social and historical attributes of the target society were also taken into consideration in the study design especially in the forming of questionnaires and during conduction of the surveys. To lessen the language barrier for Sami people, the questionnaires were provided in Sami languages, although only a few percent of Sami participants preferred to complete the Sami version of questionnaires.
4.2 Validity

Validity is the ultimate goal of any epidemiological study. Validity can be regarded as lack of bias and a study is called valid when it measures what it is supposed to measure correctly and without any distortion or deviation [185]. While internal validity indicates that the provided results are correct for the source population of the study sample, external validity ensures that the provided results are generalisable to other groups who were not included in the study [185]. There are two main types of errors, which can occur at virtually any step of the research process: systematic errors and random errors. While systematic errors, i.e. bias, affect comparison between groups, random errors affect the reliability (reproducibility) of the measurements and the precision of the estimates [186]. To control systematic errors, one should properly design the study, and to decrease random errors one could increase the sample size and apply good scientific techniques [186]. As error and bias cannot be fully controlled and avoided in epidemiological studies, the most important need is for systematic, cautious and critical interpretation of data and results [187].

Bias can create false patterns and misjudgements (either differences where none exist or failure to detect present differences) [187]. As mentioned above, to achieve high validity, one should avoid bias, which is categorised into three main types: selection bias, information bias, and confounding [188]. These issues are to be discussed here with respect to the conducted study.
4.2.1 Selection bias

Selection bias occurs when individuals have different probabilities of being included in the study groups according to relevant study characteristics, i.e. the exposure or outcome of interest [185]. This kind of bias creates erroneous prevalence estimates and distorted measure of association between exposure and outcome. As the included individuals are not representatives of the entire study population, the results are not generalisable to the study population or other groups [187].

4.2.1.1 Paper 1

Paper 1 is based on data from inhabitants of 24 municipalities included in the SAMINOR 1 Survey. Having a 56% participation rate in the SAMINOR 1 Survey might be a source of selection bias. It is not certain that non-participants had the same characteristics as the participants. Participation rates were different from county to county and from municipality to municipality, which to some extent is due to different designs in the recruitment phase. For example, inhabitants of some municipalities received a reminder and non-responders got the chance to attend when the buses returned a couple of months later.

Table 1 presents some characteristics of the invited, participants and working samples in paper 1 according to sex, age, regions, marital status, ethnicity, and education. The non-participants tended to be men, young and single. In addition, there are numerous other important features of non-responders, which are not known to us. Therefore, it is not possible to rule out the possibility of selection bias. Lack of ethnic registry in Norway made it impossible to determine whether the ethnic composition of the participants in the SAMINOR surveys reflected that of the actual population in our geographical regions. The fact that the SAMINOR Study might have been deemed as being primarily directed towards Sami people might have deterred the non-Sami inhabitants of the included municipalities to participate in
the survey. On the other hand, the history of study misconduct and abuse of participants in so-called scientific studies conducted throughout the periods when Sami people were regarded as an inferior race might be a source of concern and reluctance from Sami people to participate. As long as the participants in the survey are representatives of their respective ethnic groups, possible different participation rates in different ethnic groups would not affect the estimated prevalence of DM in each ethnic group and the odds ratio of DM. However, it might reduce the power of the study to show possible differences in the prevalence of DM. If participation rate, however, depends on both the exposure variable (ethnicity) and the outcome variable (DM), both the estimated prevalence of DM in each ethnic group and the odds ratio of DM would be distorted. In this case, the real prevalence of outcome variable (DM) in each ethnic group would also be a determinant of the total participation rate in that group.

To enhance the participation rate, Sami people themselves were involved in almost all aspects of the SAMINOR Study and several information sessions were held in the municipalities before, during and after study performance. The participants were ensured that the questionnaires were anonymised and personal and sensitive information of participants were to be safeguarded. Participants were also ensured right to withdraw from the study at any given point of time.

It is likely that those who are more conscious about their health (usually those with higher socioeconomic status) are more interested in participating in health studies like SAMINOR [189]. On the other hand, the severely ill and disabled may not be able to participate. This selection bias may lead to underestimation of the prevalence of DM.

In spite of relatively large number of included municipalities (n=24) and participants, generalisation of the results to Sami and non-Sami inhabitants in other regions is not advisable.
4.2.1.2 Paper 2

Paper 2 is based on data from the SAMINOR 2 Clinical Survey. As participation rate here is just under 50%, the chance of selection bias due to non-response is even higher than in the SAMINOR 1 Survey. Table 2 presents some characteristics of the invited and participants in paper 2. Like in paper 1, non-participants tended to be younger and male. Apart from that, there is little information at hand regarding non-participants in our surveys. Similar to our survey, in the Tromsø 2 Study, it was reported that non-participants were over-represented among young unmarried men [190] with increased mortality rates [191]. Of the 50,807 invited in the HUNT 3 Study (2006–2008), 54% participated [189]; it was revealed that the prevalence of diseases like cardiovascular diseases, DM, and psychiatric disorders was higher among non-participants. In addition, registry data revealed that the non-participants had lower socioeconomic status and higher mortality rate [189]. If this was the case in our surveys, it can be assumed that the prevalence of T2DM is underestimated. Nonetheless, it is not known if non-participation due to the mentioned factors affected Sami and non-Sami subjects equally or not. Selection bias due to non-participation is in most cases a greater threat to the validity of prevalence estimates than to the validity of the associations between exposure and outcome [192].

As the number of included municipalities in the SAMINOR 2 Clinical Survey was limited (n=10), the participants may be considered representative for the rural, Sami and non-Sami population in included municipalities in Finnmark and Troms counties. However, generalisations to the entire Sami or non-Sami populations in Norway are not advised.
4.2.1.3  Paper 3

This paper is a longitudinal study following participants in the SAMINOR 1 Survey up to the SAMINOR 2 Clinical Survey. From the 10 municipalities, which were included in the SAMINOR 1 Survey, 5875 participants could potentially be followed up to the SAMINOR 2 Clinical Survey. Of 5875 eligible individuals, 3303 (56.2%) were included in the analyses (Figure 8). Dropouts might be due to death, emigration, debilitating diseases, or conscious choice not to participate in the follow-up study. Loss-to-follow-up (attrition or censoring) is a source of selection bias if those who were eligible to participate in the SAMINOR 2 Clinical Survey but did not do so had different risk profile than those who participated in the SAMINOR 2 Clinical Survey. In fact, loss-to-follow-up should be independent of the outcome [185].

Table 4 presents some characteristics of individuals we were able to follow-up compared to those who were not followed up. Although some differences in the marital status, smoking, mental health score, yearly gross income of the household and leisure-time physical activity were found between the two groups, main risk factors for DM including age, obesity indices (BMI, WC, and WHtR) and family history of DM were not markedly different.

Linkage of data from the SAMINOR 1 Survey and the SAMINOR 2 Clinical Survey was done only for those who participated in both surveys and gave consent to linkage, so it was not feasible to keep track of those who were censored during the follow-up. Our dataset was not linked to the Cause of Death registry, so we do not have direct information about the number and death cause of those who died during the follow-up period. We do not expect that there were many participants who got DM during the follow-up period and died of the disease itself or its late complications.
Table 4. Characteristics of individual we were able to follow-up compared to those who were not followed up among those who participated in SAMINOR 1 (2003–2004) and were eligible
to SAMINOR 2 (2012–2014), by sex (N=5875). Numbers are mean (standard deviation) for continuous variables (age, body mass index, waist circumference, and waist-to-height ratio) and percent (number of subjects) for categorical variables (family history of DM, married, education>12 years, SCL-10 score>1.85, alcohol, low-income, and inactive).

<table>
<thead>
<tr>
<th>Men</th>
<th>Included in the follow-up analysis</th>
<th>Not followed up</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>N=1447</td>
<td>N=1307</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>52.4 (8.7)</td>
<td>51.2 (9.8)</td>
<td>0.42</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>27.5 (3.5)</td>
<td>27.6 (4.2)</td>
<td>0.07</td>
</tr>
<tr>
<td>Waist-to-height ratio</td>
<td>92.3 (9.3)</td>
<td>93.0 (10.9)</td>
<td>0.10</td>
</tr>
<tr>
<td>Sami ethnicity (%)</td>
<td>0.534 (0.054)</td>
<td>0.537 (0.064)</td>
<td>0.01</td>
</tr>
<tr>
<td>Family history of DM (%)</td>
<td>40.2 (581)</td>
<td>32.7 (866)</td>
<td>0.44</td>
</tr>
<tr>
<td>Married (%)</td>
<td>64.5 (933)</td>
<td>52.8 (690)</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Education&gt;12 years (%)</td>
<td>32.8 (458)</td>
<td>30.7 (381)</td>
<td>0.26</td>
</tr>
<tr>
<td>SCL-10 score* &gt;1.85 (%)</td>
<td>5.3 (72)</td>
<td>9.5 (114)</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Current smoker (%)</td>
<td>28.8 (416)</td>
<td>39.5 (516)</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Alcohol (%)</td>
<td>30.7 (444)</td>
<td>31.1 (407)</td>
<td>0.80</td>
</tr>
<tr>
<td>Low-income (%)</td>
<td>57.0 (825)</td>
<td>61.5 (804)</td>
<td>0.02</td>
</tr>
<tr>
<td>Inactive (%)</td>
<td>18.8 (272)</td>
<td>23.1 (302)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Women</th>
<th>Included in the follow-up analysis</th>
<th>Not followed up</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (year)</td>
<td>N=1856</td>
<td>N=1265</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>51.6 (9.0)</td>
<td>50.7 (10.1)</td>
<td>0.38</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>84.0 (11.2)</td>
<td>84.2 (11.8)</td>
<td>0.08</td>
</tr>
<tr>
<td>Waist-to-height ratio</td>
<td>0.526 (0.074)</td>
<td>0.527 (0.076)</td>
<td>0.40</td>
</tr>
<tr>
<td>Sami ethnicity (%)</td>
<td>39.5 (733)</td>
<td>29.4 (372)</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Family history of DM (%)</td>
<td>23.2 (430)</td>
<td>21.8 (276)</td>
<td>0.38</td>
</tr>
<tr>
<td>Married (%)</td>
<td>66.0 (1225)</td>
<td>58.2 (736)</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Education&gt;12 years (%)</td>
<td>38.0 (674)</td>
<td>36.3 (428)</td>
<td>0.34</td>
</tr>
<tr>
<td>SCL-10 score* &gt;1.85 (%)</td>
<td>8.4 (141)</td>
<td>11.5 (130)</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Current smoker (%)</td>
<td>30.6 (568)</td>
<td>40.9 (517)</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Alcohol (%)</td>
<td>19.7 (365)</td>
<td>20.5 (259)</td>
<td>0.58</td>
</tr>
<tr>
<td>Low-income (%)</td>
<td>58.7 (1090)</td>
<td>62.7 (793)</td>
<td>0.03</td>
</tr>
<tr>
<td>Inactive (%)</td>
<td>19.1 (355)</td>
<td>22.9 (289)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

1) Living in the 10 SAMINOR 2 municipalities at time of SAMINOR 1 with relevant year of birth
2) Those who had at least one with DM among father, mother, siblings or children
3) Married vs single, widow/widower, divorced, or separated
4) SCL-10 score: Hopkins symptom checklist score
5) Current smokers vs former smokers or never-smokers
6) Drinking alcohol at least once a week
7) Yearly gross income of the household less than 451,000 Norwegian Kroner
8) Leisure-time activities include males, reading, watching TV or other sedentary activities
If loss-to-follow happened due to diseases, which share risk factors with the outcome of interest (like cardiovascular diseases and DM), the risk of DM would be underestimated (competing risks). Cardiovascular diseases can be a complication of DM, but there is not a one-to-one correspondence between cardiovascular diseases and DM. In fact, most cases of cardiovascular diseases occur independently of DM and not all who get DM die of cardiovascular diseases. According to the Norwegian Institute of Public Health, cancers, not cardiovascular diseases, are the leading cause of death in people with similar age-span as our participants [193]. Based on numbers from Statistics Norway, one can expect around 330 deaths from year 2001 until 2010 (10 years) in a group of 5875 individuals with similar age-span and age-distribution as our participants (calculations not shown) [194]. Competing risks become more important with the increasing age of the population under study (increased risk of multimorbidity). As the mean baseline age of both those who were followed up and those who were not was around 52 years, and there were relatively few expected deaths (a total of 330 deaths), it is not expected that competing risks have substantially affected our estimate of the cumulative incidence of DM. Furthermore, studies have shown minimal or no difference between Sami and non-Sami individuals in the distribution of risk factors for cardiovascular diseases and/or the risk of acute myocardial infarction or cerebral stroke; hence, the relative risk of DM (between Sami and non-Sami) was also not considerably distorted [141, 195].

In Kautokeino and Karasjok, where a large share of the population is involved with reindeer husbandry, the SAMINOR Clinical Survey was conducted in winter-time, to avoid seasons when many Sami people would be out of their main living place due to reindeer husbandry. We do not have information on the participants in the SAMINOR 1 Survey, who due to moving to other regions, were not included in the final analysis, but they are expected to be few, and it is unlikely that they had any impact on the conclusions.
4.2.2 Information bias

Information bias (e.g., measurement error) occurs when information collected about and from study subjects is erroneous [185]. This type of bias leads to a person or population subgroup being put into the wrong category (misclassification) [187]. When the misclassification is random and independent of any other variable, it is called non-differential misclassification. When the mismeasurement (error) affects subgroups unequally, it is called differential misclassification [187]. Put in other words, when misclassification in the outcome variable depends on the exposure status or vice versa, the misclassification is differential [186].

Recall bias resulting from inaccurate recall of past events is a common source of misclassification in cross-sectional and case-control studies. This bias (differential misclassification) occurs as comparison populations or subgroups (e.g. diseased individuals) unequally recall and report outcome-related events and/or exposure to various risk factors [186].

Ethnicity was the exposure variable (or proxy of exposure) throughout the thesis and is more likely to be wrongly reported by Sami people than non-Sami. Reporting Sami ethnicity needs more conscious choice than reporting Norwegian ethnicity and the majority of people regard Norwegian as the default ethnicity. A Sami person might intentionally or unintentionally report his/her ethnicity as Norwegian. Intentional misreporting happens if the person has a sense of inferiority by being identified as Sami and it is not unimaginable taking the long history of stigmatisation and assimilation of Sami people into consideration. Unintentional misreporting of Sami ethnicity by a Sami person can occur if the person is not aware that they had a Sami-speaking grandparent or parent or they had a Sami ethnic background. Some Sami people might have misunderstood the question “What do you consider yourself to be?” as a question about their citizenship and in spite of answering positively to all other questions
regarding the Sami ethnicity, they reported that they considered themselves as Norwegians. Although according to our definition of Sami ethnicity, this person was regarded as Sami, if other answers were also erroneous, the person would not be categorised as Sami. As mentioned before, a high agreement was observed between Sami ethnicity classifications in the SAMINOR 1 and the SAMINOR 2 Clinical surveys.

We have to assume that misclassification in the exposure variable (ethnicity) does not depend on the outcome variable status (like e.g., dysglycaemia), therefore the misclassification is non-differential. As alternative definitions of Sami ethnicity produced quite similar results (results not shown) and considering that the participants were provided with comprehensive instructions regarding the meaning of questions and how to fill out the questionnaires, we do not think that this misclassification was of great importance in the present thesis.

DM in most situations is a chronic and life-long disease without a cure (except gestational diabetes). Contrary to T1DM where the patient would not survive without diagnosis and treatment, there are always a proportion of those with T2DM who are not aware of their disease and consequently do not report it in the questionnaires. As well as the disease itself, related details like the exact date of diagnosis, type of DM (especially gestational diabetes), medications (if prescribed), family history of DM, or risk factors for T2DM (e.g. unhealthy diet, low physical activity) might be reported imprecisely. A qualitative study argued that Sami people tend to underreport their diseases due to some cultural differences (different conceptualisation of diseases) [196]. If this was the case for our Sami participants, this might have led to underestimation of the prevalence of DM among them (differential misclassification).

As mentioned previously, the questionnaires were in some municipalities available in both Norwegian and Sami languages, and people in the age group 70–79 years were given
questionnaires with fewer questions and larger font size. Nonetheless, there are many elderly Sami who have difficulty reading and writing both Norwegian and Sami. In both the SAMINOR 1 and the SAMINOR 2 Clinical surveys, participants were offered help in filling out the questionnaire if they requested. Therefore, the probability of misclassification due to linguistic issues is negligible.

The validity of the questionnaires in the SAMINOR 1 and SAMINOR 2 Clinical surveys was not assessed, but according to literature, questionnaires are a valid and reliable source of acquiring information about prevalent, known cases of DM. According to the first HUNT Study performed in North Trøndelag, Norway, the sensitivity and PPV of applied questionnaire for self-reported DM were 99.4% and 96.4%, respectively [197]. A Dutch study reported no ethnic difference in the accuracy of self-reported DM when comparing Dutch patients with patients who were first-generation immigrants, mostly from Turkey and Surinam [198]. In a study conducted in Olmsted county, Minnesota, with 2037 participants aged ≥ 45 years, the sensitivity and PPV of self-reported DM were 66.0% and 94.3%, respectively [199]. The French national study of CADEUS reported a sensitivity and PPV of self-reported DM as 86.7% and 73.4%, respectively [32]. The Finnmark study, which applied a quite similar questionnaire to the questionnaire applied in our surveys, reported 66% agreement between positive answers to DM and medical records [200]. Of 33 participants who had reported DM at Finnmark 1 Study, 24 (73%) did so at Finnmark 2 Study conducted three years later. The test-retest reliability of self-reported T1DM and T2DM diagnoses was assessed between three self-administered questionnaires applied in Norwegian Women and Cancer Study (the NOWAC Study). According to the authors, the Cohen’s kappa for T1DM was ≥ 0.73 in the 1991–2005 and the 1998–2005 test–retest studies, and 0.83 in the 1991–1998 test–retest study [201]. The kappa for T2DM was reported moderate (0.57) in the 1991–2005 test–retest study and high (≥0.66) in the 1991–1998 and 1998–2005 test–retest studies.
All the above-mentioned studies applied medical records as reference standard. The validity of a questionnaire might vary from population to population and factors like age, education level, and health status of participants as well as phrasing of the question(s) might affect the performance of a given questionnaire. As mentioned before, the two main questions regarding DM were not identical in the SAMINOR 1 and the SAMINOR 2 Clinical surveys. Contrary to the SAMINOR 1 Survey, the question about DM was followed by questions about the type of DM in the SAMINOR 2 Clinical Survey. Furthermore, in the SAMINOR 2 Clinical Survey, “elevated blood sugar levels” was added in parentheses. This may have lead to more people answering “yes” to the question. This may render a different validity for both questionnaires.

Non-differential misclassification is more subtle and may have little or no effect on the final prevalence figure [187]. If non-differential misclassification is present when relating the (dichotomous) outcome of interest (DM in the present thesis) and the (dichotomous) exposure variable (ethnicity in the present thesis), the strength of association is always underestimated, so the problem is failing to find associations, which, in reality, are present [186, 187]. Misclassifications that affect confounding factors tend to have unpredictable effects [187].

The misclassification of ethnicity (the same definition in all papers) and self-reported DM is already discussed; thus in the rest of this section, misclassification of dysglycaemia (pre-diabetes and/or diabetes mellitus) will be discussed under the respective papers.

4.2.2.1 Paper 1

In paper 1, random plasma glucose (RPG) with cut-off 7.8 mmol/L and 11.1 mmol/L was used to categorise pre-diabetes and DM, respectively. Random plasma glucose in the presence of classic symptoms of hyperglycaemia or hyperglycaemic crisis is recommended by the ADA for diagnosis of DM [3]. In the SAMINOR Study, we did not perform medical
examination to find DM symptoms, so we relied on RPG values without knowing about classical DM symptoms to recognise DM. Neither did we carry out OGTT test, so we used RPG values (7.8–11.0 mmol/L) instead of 2hpp test results to categorise pre-diabetes.

The RPG levels are affected by the natural fluctuations of blood glucose throughout the day and the mentioned criterion can only detect DM that is poorly controlled [202]. Paper 1 used data from 24 municipalities included in the SAMINOR 1 Survey. In the SAMINOR 1 Survey neither other laboratory tests (e.g. fasting plasma glucose, 2hpp [glucose tolerance test] or HbA1c) nor medical examination was used to ascertain DM. The applied cut-offs have very low sensitivity to identify pre-diabetes and DM [86]. This is reflected in the low percentage of diagnosed cases using this cut-off (only 8.6% of all ascertained DM cases). Furthermore, the overall prevalence of pre-diabetes and DM was reported as 2.8% and 4.6%, respectively. We assume that the real prevalence of pre-diabetes and DM was underestimated in paper 1. In this paper, no overall difference in the prevalence of pre-diabetes and DM was found between Sami and non-Sami of the same sex. As mentioned before, non-differential misclassification in the outcome variable inevitably attenuates the strength of association between the exposure and the outcome [187]. Although same RPG cut-offs were applied to both ethnic groups, we cannot rule out any ethnic difference in the prevalence of pre-diabetes and/or DM in the entire survey region.

4.2.2.2 Paper 2

The choice of HbA1c cut-off of 6.5% was based on recommendation from the ADA [3] and Norwegian medical guidelines [81]. Numerous publications have reported different performance of HbA1c at different cut-offs [34, 96-98, 203-206]. According to the Tromsø OGTT Study, HbA1c cut-off at 6.5% gives a sensitivity and PPV of 34.7% and 41.2%, respectively (OGTT as reference test, prevalence=5.7%) [96]. It is worth mentioning that
there is no perfect test (gold standard) for diagnosing DM and each test has its strengths and limitations and can capture different groups of patients [101]. Although the mentioned sensitivity and PPV could yield a comparable number of false positive and false negative cases, which could compensate for each other to give a realistic prevalence of DM, the relatively low sensitivity and PPV lead to a large misclassification of T2DM. This misclassification is non-differential as it affects both ethnic groups equally. Nonetheless, as mentioned before, any non-differential misclassification in the outcome variable attenuates the strength of association between exposure (ethnicity) and outcome (T2DM). Despite the misclassification, a statistically significant ethnic difference in the prevalence of pre-diabetes and T2DM was observed in paper 2. It implies that the real ethnic difference in the prevalence of pre-diabetes and T2DM might be larger than what was observed. The same applies to other risk factors for T2DM like male sex, (general and abdominal) obesity, low education and low physical activity. The non-differential misclassification in the outcome variable might have diluted the association between each risk factor and the outcome so that the OR is underestimated and no longer statistically significant. Of the mentioned risk factor variables, misclassification was more likely to affect physical activity, as it was not measured objectively. It is not clear if the misclassification in physical activity was differential or non-differential. As mentioned before, misclassification in the confounding variable may have unpredictable effect on the measure of association between exposure and outcome [187].

Another source of (non-differential) misclassification in this paper was that all those who had HbA1c ≥ 6.5% (without mentioning T2DM in the questionnaire) were classified as having T2DM. New research have shown that a considerable proportion (approximately 10–15%) of those who get DM in adulthood and were previously diagnosed as T2DM have indeed Latent Autoimmune Diabetes of Adults (LADA) [207].
Unlike paper 1, Sami people had higher prevalence of pre-diabetes and T2DM in the majority of geographical regions (stratified by sex) in paper 2. This makes it less likely that the observed ethnic difference is a chance finding. Furthermore, regarding the non-differential misclassification in the outcome variable, it is more likely that the real ethnic differences were even larger than what was observed. As for paper 1, the relatively small number of participants in each geographical region should be taken into account before making any inference in this regard.

4.2.2.3 Paper 3

The same criterion for categorisation of incident cases of DM was used in this paper (self-report and/or HbA1c ≥ 6.5%) as in paper 2; thus the same issues with non-differential misclassification of DM cases due to low sensitivity and PPV of HbA1c test affect the strength of association between the exposure and outcome. Another source of misclassification is to classify prevalent cases of DM as the incident ones. We excluded those who reported the time of DM diagnosis during the first two years of follow-up after the SAMINOR 1 Survey (two years wash-out period). Nevertheless, regarding the low sensitivity of RPG ≥ 11.1 mmol/L to ascertain those with DM, there is still possibility that some prevalent cases of DM were classified as incident cases of DM.

Besides small sample size, the expected non-differential misclassification in the outcome (DM) variable (as well as in the exposure variable) might be possible explanations for lack of statistically significant ethnic difference in the 8-year cumulative incidence of DM.
4.2.3 Confounding, over-adjustment, and residual confounding

The term *confounding* refers to a situation in which a non-causal association between a given exposure and an outcome is observed due to the impact of a third variable (or group of variables), usually known as confounding variable(s) [208]. The confounder is defined as a variable, which is causally associated to the outcome and causally or non-causally associated with the exposure, but is not part of the causal pathway between the exposure and the outcome (intermediate variable) [208]. The potential for confounding is present whenever the cardinal rule “compare like-with-like” is broken [187]. Put in other words, when the comparison groups differ in characteristics other than the risk factor under study [187]. Confounding is of particular importance in differentiating between causal and non-causal (pure association) relations [187]. The confounding effect can be controlled for through various ways like randomisation (randomised controlled trials), matching (case-control studies), selecting comparable groups or restriction entry into study (e.g. same sex, age or socioeconomic status), stratification (e.g. by sex or age), adjustment (multiple regression analyses) and standardisation (directly or indirectly) [187].

In dealing with confounders, one should be aware of two pitfalls; *over-adjustment* and *residual confounding*. Over-adjustment occurs when adjustment is inadvertently carried out for a variable that either lies in the causal pathway between the exposure and the outcome or is so strongly related to either the exposure or the outcome that their true relation is distorted [209]. Over-adjustment may obscure a true effect or create an apparent effect which does not exist [210].

Residual confounding occurs when adjustment does not completely remove the confounding effect due to a given variable or set of variables [211]. The common sources of residual confounding are [211]:

---

74
1) Improper definition of the categories of the confounding variable

2) The variable used for adjustment is an imperfect marker of the condition or characteristic the investigator wishes to adjust for

3) Failure to adjust for other important confounders

4) Misclassification of confounding variable

4.2.3.1 Paper I

Stratified by sex, we compared Sami and non-Sami aged 36–79 years inhabiting the same rural districts of Northern and Mid-Norway. The principle of comparing comparable people with each other is the cornerstone of the study design (the SAMINOR Study) and applies to all the papers. The total prevalence of pre-diabetes and DM among Sami and non-Sami men and women were age-standardised using European standard population of 2013. All analyses were stratified by sex and adjusted for age in the multinomial logistic regression analysis as sex and age are two known confounding factors. There were other important confounding variables, which were not adjusted for in the multinomial logistic regression, as they had not been measured precisely. Dietary habits and physical activity, for example, are very hard to objectively and precisely measure especially in the years prior to the DM diagnosis. Education is usually used in studies as a proxy for socioeconomic status, but education is not a perfect surrogate for socioeconomic status and was not considerably different between the two ethnic groups. Temporal bias was a great obstacle in this regard, as DM occurrence could negatively affect the income and physical activity of a person. Although weight and height (to measure BMI, WC and WHtR) had been objectively and reliably measured, they were not adjusted for in the multinomial logistic regression analysis as it was argued that DM and obesity were firmly related together and both were parts of metabolic syndrome. Occurrence of T2DM may affect obesity either through insulin resistance and resultant weight loss or through conscious changes in lifestyle. This may lead to temporal bias assessing the effect of
obesity on the development of T2DM. Furthermore, it was argued that obesity was on the causal pathway to DM (intermediate variable). Nonetheless, it may be argued that obesity should have been accounted for owing to the fact that it is a source of residual confounding. Obesity is neither a necessary nor a sufficient cause of DM and by adjustment for it, one can assess the effect of the exposure on the outcome which goes through obesity.

4.2.3.2 Paper 2

Participants were 40–79 years old inhabitants of 10 rural municipalities in Northern Norway. Age-standardisation of the prevalence values of pre-diabetes and T2DM was carried out based on the invited individuals in the SAMINOR 2 Clinical Survey. Prevalence values and analyses were all stratified by sex. In the multinomial logistic regression analysis age, education, BMI, WHtR and physical activity were adjusted for. Physical activity was self-scored from 1 to 10 and as this scoring was subjective, there is possibility of misclassification and residual confounding. As discussed before, education is not a perfect surrogate for socioeconomic status. The possibility of residual confounding cannot be ruled out as other potential confounding factors (like dietary habits) might have been overlooked. Although hypertension, hypertriglyceridemia, low HDL cholesterol are known risk factors for T2DM [33], they were not adjusted for in the regression analysis to avoid over-adjustment. These risk factors are firmly related to T2DM and are all part of metabolic syndrome [212]. As DM and family history for DM in an individual are firmly related to each other, adjustment was not performed for this variable to avoid over-adjustment.
4.2.3.3 *Paper 3*

Participants are 30 and 36–71 years old inhabitants of 10 rural municipalities in Northern Norway. All analyses were stratified by sex. The 8-year cumulative incidence is presented separately for men and women, and the older and younger age groups. In the logistic regression analysis, age, ethnicity, BMI, WC, WHtR, education, leisure-time physical activity, mental distress score, smoking, and alcohol drinking were adjusted for. These variables were measured in the SAMINOR 1 Survey (prior to development of diabetes mellitus) so the risk of temporal bias is reduced. The validity of the applied questions about leisure-time physical activity has been assessed in several studies and is shown to be good [213, 214], nevertheless, there is inevitable misclassification in the reported leisure-time physical activity. In the final analysis, this variable was dichotomised into low leisure-time physical activity (reading, watching TV or other sedentary activities) versus higher leisure-time physical activity. Smoking (current smoker vs ex-smoker or never-smoker), alcohol drinking (at least once a week versus lower or no alcohol drinking) and mental distress (Hopkins SCL-10 >1.85 versus others) were also used as dichotomous variables which opens the possibility for residual confounding. It is worth mentioning that the effects of the above-mentioned dichotomised variables were assessed separately and as original multi-categorical variables, which showed negligibly different results.
4.3 Interaction

Interaction (effect modification) is present when two or more risk factors modify the effect of each other with regard to the occurrence or level of a given outcome [215]. Put in other words, interaction occurs when the effect of a risk factor $A$ on the risk of an outcome $Y$ is not homogeneous in strata formed by a third variable $Z$ [215]. To assess the interaction, one can either examine the interaction term in the regression analysis or stratify the population according to the potential effect modifier. Interaction is present if the interaction term in the logistic regression is statistically significant or the measure of risk is heterogeneous within the strata formed by the potential effect modifier [215]. In papers 1 and 2, there was observed a heterogeneity of risk between different geographical regions. According to the above definition, there is an interaction by geographical region when assessing the relation between ethnicity and the prevalence of pre-diabetes or DM.

4.4 External validity

Most of our study participants were inhabitants of rural municipalities and districts in Northern and Mid-Norway, all of which have substantial Sami settlements. We believe that the results from paper 1 can be generalised to the Sami and non-Sami people living in rural, Sami core areas in these regions. Generalisation to other Sami or non-Sami people living in urban areas or rural areas in other parts of Norway may be problematic. Results in paper 2 and 3 are based on data from only ten municipalities all located in Northern Norway. As there might be considerable differences in the living conditions of inhabitants of the ten municipalities and other municipalities and given the small number of included municipalities and participants, generalisation of the results from papers 2 and 3 to other regions might be even more problematic. The different geographic areas and population composition must be taken into account when comparing results from paper 1 and 2.
4.5 Statistical associations

The SAMINOR 1 Survey had a large sample size (n=16,538 after exclusion of 30-year-old participants). Large sample size increases the power of the study and the precision of the estimates. Paper 1, which was based on a large sample, had potential to detect small ethnic differences in the prevalence of pre-diabetes and DM.

The SAMINOR 2 Clinical Survey had considerably smaller sample size (n=6004); hence paper 2, which was based on the data obtained from this survey suffer from lower power and precision. Paper 3 had even smaller sample size (n=3303), and the study’s power to catch any ethnic difference in the cumulative incidence of DM was not high. The large within-group variations worsened the issue.

The comparisons, which were made in rather small geographical regions or sex and age groups all suffer from having small sample size with low power and precision.

It is of particular importance that both Sami and non-Sami people represent a wide variety of life and are under constant effect of genetic and environmental factors. They comprise heterogeneous and dynamic populations and this heterogeneity was best echoed in the varying prevalence of pre-diabetes and DM in different sex and age groups residing in different geographical regions. Even municipalities, which were put into one geographical region (like Karasjok and Kautokeino) were not quite similar in terms of the prevalence of DM.
4.6 Brief discussion of main results and future research

In paper 1, we found no overall ethnic difference in the prevalence of pre-diabetes and DM. Nonetheless, there were some disparities in the prevalence of pre-diabetes and/or DM in some geographical regions. In spite of the large sample size of the SAMINOR 1 Survey, the use of RPG (≥11.1 mmol/L) lowered the ability of the study to catch undiagnosed cases of DM. While according to our definition of DM in paper 1 only about 8% of cases were previously undiagnosed, it is reported in a systematic review that globally, undiagnosed adult DM cases ranges from 24.1% to 75.1% across data regions [110]. The low sensitivity of our method to catch DM cases might have led to underestimated absolute prevalence of pre-diabetes and DM as well as failure to find any ethnic difference in the prevalence of pre-diabetes and/or DM.

In paper 2, a combination of self-report and HbA1c ≥ 6.5% was used to ascertain DM. It is known that HbA1c with this cut-off has generally low sensitivity and identifies one-third fewer cases of undiagnosed DM than a fasting glucose cut-off of ≥ 7.0 mmol/L [3]. In spite of this low sensitivity, the total age-standardised prevalence of pre-diabetes and T2DM was respectively 34.1% and 8.7%. According to these findings, more than one-third of the participants had pre-diabetes and run a substantial risk of developing T2DM later in life. Furthermore, the prevalence of both pre-diabetes and T2DM was statistically significantly higher among Sami compared with non-Sami. This pattern was present in almost all age and sex groups and geographical regions. Although the prevalence of pre-diabetes and T2DM was shown to be higher among Sami participants compared with their non-Sami counterparts, the 95% CIs around the odds ratios were quite wide. This reflects the uncertainty around the exact amount of the higher odds of having the disease and can be due to our relatively small sample size.
The higher estimated prevalence values of pre-diabetes and T2DM in the SAMINOR 2 Clinical Survey compared to corresponding values in the SAMINOR 1 Survey can partly be explained by the higher mean age of participants in the SAMINOR 2 Clinical Survey. The questions regarding DM was not identical in the two surveys and the question in the SAMINOR 2 Clinical Survey was followed by questions on the type of DM. Applying different methodology (HbA1c ≥ 6.5% vs RPG ≥ 11.1 mmol/L) is another important explanation for the observed difference in the estimated prevalence values. Nevertheless, it is quite likely that the prevalence of pre-diabetes and DM in the included municipalities increased during this period in harmony with the increase in the prevalence of DM in all Norway [10].

The most plausible explanation for the observed higher prevalence of pre-diabetes and T2DM in Sami subjects was higher WHtR (index of abdominal obesity). In the SAMINOR 2 Clinical Survey, WHtR was higher among both Sami men and women compared with their non-Sami counterparts. WHtR has in several studies been mentioned to be the best indicator of obesity and predictor of metabolic syndrome and cardiovascular diseases [216]. As Sami people are in average 5–6 cm shorter in stature than their non-Sami counterparts, WC does not seem to perform satisfactorily in comparison of abdominal obesity between them. Obesity was also more prevalent among Sami participants of both sexes in the SAMINOR 1 Survey [13, 44]. Obesity in combination with low physical activity (which was also reported by the Sami women) are well-established risk factors for T2DM. It has been reported that the prevalence of metabolic syndrome (hyperglycaemia, hypertension, obesity, hypertriglyceridaemia, low HDL cholesterol) among participants of both ethnicities in the SAMINOR 1 Survey was quite high [13]. Hansen, in his study on the Sami populations ascribed a number of poor health outcomes like obesity, metabolic syndrome and DM to ethnic discrimination reported by Sami people in the SAMINOR 1 Survey [167]. In spite of revitalisation and integration of
Sami culture, language and identity, the Sami people still report ethnic discrimination more frequently than do ethnic Norwegians [217]. Experienced ethnic discrimination has been reported to be associated with adverse somatic and psychological health outcomes [218, 219], and this relationship is complex and multidimensional [220]. This association is usually stronger in areas where Sami populations live in minority compared to areas they live in majority [167]. As DM is known to be a chronic and multifactorial disease, it is more likely that various behavioral, environmental, biological and genetic factors to varying extent interact with stressful conditions like perceived discrimination and contribute to illness and early mortality [221].

Although no statistically significant difference in the 8-year cumulative incidence of DM was observed (paper 3), this lack of statistically significant difference can partly be explained by the small sample size. As for paper 2, indices of obesity (e.g. BMI and WHtR) were generally higher among Sami compared to their non-Sami counterparts.

Contrary to many indigenous peoples throughout the world, no huge difference in the prevalence or incidence of DM was observed between Sami people and ethnic Norwegians. This can be explained by the close interaction and similar standard of living between them. The rapid transition from traditional to so-called western and sedentary lifestyle has affected all inhabitants of the rural study areas regardless of their ethnicity.
5 Implications for public health policies

High prevalence of pre-diabetes and DM among both Sami and non-Sami people and the observed higher prevalence of pre-diabetes and T2DM among Sami compared to non-Sami (in the SAMINOR 2 Clinical Survey) needs attention from health authorities and policy-makers. A large proportion of both Sami and non-Sami people had high indices of obesity and obesity was the most plausible explanation for higher prevalence of pre-diabetes and T2DM among Sami people. These results were partly observed in previous studies as well [222]. The fact that more than one-third of inhabitants in the included municipalities suffer from pre-diabetes and run a higher risk of developing T2DM in the future underscores the need for promoting information campaigns to enhance inhabitants’ insight into lifestyle-related diseases and potential consequences of obesity and T2DM. Primary health care personnel especially general practitioners have decisive roles in changing patients’ health attitude and implementing preventive measures. Encouraging walking and daily physical activities, promotion of dietary balance in macronutrient intake, increasing fruit and vegetable consumption, reduction in high-sugar and fast-food intake, motivating people in consuming traditional food sources are examples of the preventive measures in this regard [223]. In tailoring any health promotion scheme, Sami language, culture, and perspectives should be taken into account. At-risk persons like those with family history of DM, personal history of gestational diabetes, IFG, IGT, high BMI or WC, hypertension or dyslipidemia should be encouraged to attend periodic medical encounters to diagnose any dysglycaemia at early stage and prevent T2DM development towards late complications. Vigorous efforts have so far been made by Centre for Sami Health Research to convey the findings of the SAMINOR Study to the inhabitants and health care providers of the included municipalities (at local level) and to draw health policy-makers’ attention to the needs of local communities (at national level).
6 Further research

Follow-up studies in the future with especial emphasis on the risk factors of T2DM should be undertaken. The applied questionnaires should be validated in advance by comparison between the answers to the questions and medical records. The main concern regarding DM is its late complications (rather than hyperglycaemia itself) and these complications develop well below recommended medical cut-offs [3]. The main objective in most epidemiological studies is to measure the burden of diseases, their risk factors and consequences rather than diagnosing unknown cases. Therefore, instead of or besides using a certain cut-off for the applied test to dichotomise participants as having or not having DM, a risk score can be developed and calculated for each participant based on the continuum of risk at various test values. Sum of these scores can then be compared between the ethnic groups.

Norway has comprehensive registries and healthcare databases like the Norwegian Prescription Database, the Norwegian Patient Registry and primary care database. The future surveys of the SAMINOR Study can benefit from linkage of participants’ data to these databases. To elucidate the role of genetic endowment in predisposition to and development of various diseases, gene analyses can be included in the future studies.

As obesity is highly prevalent amongst both Sami and non-Sami people and seems to be the most plausible cause of higher prevalence of T2DM among the Sami people, any future study should try to measure thoroughly the obesity indices. Beside traditional anthropometric measures (e.g. BMI, WC, WHtR), new techniques for measuring body composition (e.g. bioelectrical impedance, dual-energy X-ray absorptiometry, body density, and total body water estimates), physical activity and calorie expenditure should be applied. Potential risk factors for obesity like genetic predisposition, unhealthy dietary habits, low physical activity, and psychological stressors should be addressed and scrutinised.
Literature


89


92


157. Jones-Bamman, R.W., "As long as we continue to joik, we'll remember who we are": negotiating identity and the performance of culture: the Saami joik. 1993, Seattle (WA): University of Washington.


130. Nystad, T., A population-based study on cardiovascular risk factors and self-reported type 2 diabetes mellitus in the Sami population. 2010, UiT The Arctic University of Norway, Faculty of Health Sciences, Department of Community Medicine, Centre for Sami Health Research: Tromsø.

Paper I
Paper II
Paper III
Appendix
Appendix 1

The SAMINOR 1 Survey

Original Norwegian versions of:

- Information brochure
- Invitation letter
- Informed written consent form
- Main+ Initial questionnaire
- Additional questionnaire

https://en.uit.no/forskning/forskningsgrupper/sub?p_document_id=591555&sub_id=591661


Selv om du sier ja til dette nå, kan du senere ombestemme deg og be om å bli slettet fra undersøkelsen uten at du må oppgi noen grunn for det. Dette gjøres ved skriftlig beskjed til

Institutt for samfunnsmedisin, UiTø, 9037 Tromsø.

Blodprøven din vil da bli tilintetgjort.

Vi ønsker å følge alle som møter til helseundersøkelsen i lang tid framover med hensyn til hjerteanfall, hjerneslag og andre aktuelle sykdommer. Derfor ønsker vi å lagre opplysningene du har gitt, frem til fylte 100 år, før sammenholde disse med opplysninger fra sentra le registre slik som Kreftregisteret og Dødsårssaksregisteret.

Velkommen til helseundersøkelsen

Selv om du nettopp har vært hos lege eller selv om du føler deg frisk, kan du likevel delta i undersøkelsen. Da hjelper du oss til bedre kunnskap og riktigere oversikt over helsen i kommunen og fyl ket ditt.

Dødsårssaksregistret ja olmomošloka mat. Visot dáid oktavuođain sihkkonamma ja personnummar. Dáhkádus fitnodagat eai beasa dáid dieduid oaidnit.

4) Ahte du varraiskkus sáhattá råddjot ja adnot medisiinnalaš dutkamii ja gene talaš analysaide gávnnahit dávddaid árttaid. Dán iskosa juohe geava heampi geavvá dušše Datatilsynet dohkkeheami miele ja manjil go Regional komite for medisinsk forsk ningsetikk i Nord-Norge lea árvvoštal lan ja ráven prošeavtta.

Vaikke dása dáid miedat, de sahtaut manjil molosu oavuila ja biwít sihkkot iskkadea mis dieditkheahtta makkárge akka dasa. Dán dagat čalalačcat Institutt for samfunnsmedisini; Institutt for samfunnsmedisín, UiTø, 9037 Tromsø. Du varra iskkus dalle bálkestuvvo.

Mii dáhtošeimmet guhkit áiggi čuovvut juohkehačča gii boahít dearvasvuodaiskkadeapmái väibmodoqpehpehaga, vuoin ńašälämnarvii ja eara vejolás dávddaid harrái. Danne dáhtošeimmet rådjat du addán dieduid, gita devdon 100 jahkái, vai daid beassá sulastahtit guvdášd regis teriidi diedüguin, nugo Kreftregisterat ja Dødsårssaksregisterat.

Bures boahítin dearvasvuodaiskkadeapmái

Vaikke leatge aiddo leamaš doaktára luhtte dáhje dovddat ičzat dearvasvain, de sahtaut liikká searvat iskkadeapmái. Dalle veahkehat min oaažžut eanet máh tu ja riektasat dieduid du gieldd a jykka dearvasvuodas.

Grafiska utformning: Britt Hansen Biti – BHB Grafiska tjänster, Kárášjohka/Karasjok.

Nå skal vi sette fokus på helsen i kommunen din. Hvordan står det egentlig til? Hvordan fungerer helsetjenesten?

Selv om du nettopp har vært hos lege eller selv om du føler deg frisk, kan du likevel delta i undersøkelsen. Da hjelper du oss til bedre kunnskap og riktigere oversikt over helsen i kommunen og fyl ket ditt.


For mer informasjon, ring 78 46 89 04, Senter for samisk helseforskning, Karasjok.
E-post: helseus@fagmed.uit.no

Jus dárbbašat eambbo dieduid, čuojahastte 78 46 89 04, Sámi dearvasvuodadutkama guovddáši, Kárášjohka. E-poasta: helseus@fagmed.uit.no
Hvordan forøgre helsetilsynets aktivitet?

Voraredsdømm. Dette er et forskningsprosjekt der det trengs å forøvre og utvikle helsetilsynets aktivitet i Nord-Norge. Prosjektet har tre formål:

1. For å sikre at folk i områder med samisk og norsk folkegruppe har adgang til en bred måling av helse og sykdommer. Det gjøres gjennom å bidra til en større samarbeidssone mellom forskning og faglige handlinger.

2. For å oppfordre til en mer inkludert og inkluderende tilfeldighet. Det gjøres gjennom å forbedre tilgangen til informasjon og ressurser for folk i områder med samisk og norsk folkegruppe.

3. For å oppfordre til en mer inkludert og inkluderende tilfeldighet. Det gjøres gjennom å forbedre tilgangen til informasjon og ressurser for folk i områder med samisk og norsk folkegruppe.

Hvem kan delta?


Hvordan får du tillgang til helsetilsynets aktivitet?

Du kan delta ved å kryssere for det ivedlagte spørreskjema, besvare det og sende det til helsetilsynet. Vi ber om at du fyller ut skjemaet hjemme og sender det sammen med innkallingen til helsetilsynet.

Gjennom hjælpevåvođaiskkadeami dieđuin leat golsma ulbmila:

– Dus gii searvvat iskkadeapmái iskat leatgo dus dihto dávddat, dahje leagodus várra daid oažžut.

– Oažžut ođđa máhtu dearvvasvuođa, dávddaid ja eallindili birra sámi jadáža ássanguovlluin.


Vig til å delta?


Mo oaččut diimmu dearvvasvuođaiskkadeapmái?


Vi trenger din tilbakeføring?

Når du sender inn spørreskjemaet, besvare det og sende det til helsetilsynet, velger du om du ønsker å gi tillatelse til å bli kontaktet med anbefaling om oppfølging, behandling eller for å forebygge sykdom.

1) At du kan bli kontaktet med anbefaling om oppfølging, behandling eller for å forebygge sykdom.

2) At opplysningene dine kan brukes til medisinsk forskning etter vurdering og tillatelse fra Regional komité for medisinsk forskning i Nord-Norge og Datatilsynet.

3) At resultatene dine kan settes sammen for å oppfølge behandling eller for å forebygge sykdom.

Hvordan får du tilgang til helsetilsynets rapporter?

Hvis du ønsker å kryssere for det ivedlagte spørreskjema, besvare det og sende det til helsetilsynet. Du kan deretter få innføring i rapportene, hvis du ønsker å delta i prosessen. Vi ber om at du fyller ut skjemaet hjemme og sender det sammen med innkallingen til helsetilsynet.
Helse- og levekårsundersøkelse
– et forskningsprosjekt


Helse- og levekårsundersøkelsen er nærmere beskrevet i brosjyren, som ligg vedlagt. Dersom du er i tvil om noe, kan du kontakte oss på tlf. 78 46 89 04 eller på e-post: helseus@fagmed.uit.no

Du kan delta på følgende måter: (kryss av overst på spørreskjema under «samtykke til deltakelse»)

A Dersom du ønsker å delta i helseundersøkelsen og forskningsprosjektet, krysser du av punkt A, fyller ut spørreskjemaet og returnerer det til oss i vedlagte konvolutt. Du vil senere få et brev med tid og sted for fremmøte sammen med et nytt spørreskjema.

B Dersom du bare ønsker å delta i en innledende del av forskningsprosjektet uten helseundersøkelse, krysser du av punkt B, fyller ut spørreskjemaet og returnerer det til oss i vedlagte konvolutt.

C Du kan unngå purring fra oss ved å krysse av punkt C og returnere spørreskjemaet til oss. Purring vil skje skriftlig.

Datatilsynet har gitt konsesjon for lagring av opplysninger fra undersøkelsen og forskningsprosjektet er tilrådd av Regional komite for medisinsk forskningsetikk i Nord-Norge.

For forskningen sin del vil det være av stor interesse at vi får inn så mange opplysninger som mulig. Du deltar frivillig og kan, etter å ha sagt ja til deltakelse, senere trekke deg uten å begrunne hvorfor og uten at det vil ha noen konsekvenser for deg. Det samme gjelder dersom man i utgangspunktet ikke ønsker å delta. Opplysninger du har gitt kan du be om å få slettet.

Resultatene vil bli publisert i massemedia, og det utformes en rapport fra helse- og levekårsundersøkelsen når den er avsluttet.

De som fullfører hele helse- og levekårsundersøkelsen vil være med i trekningen av 3 reisegavekort til en verdi av á kr. 10 000,–. Vi regner med en deltakelse på ca. 15000 personer.

Med hilsen

Anne Kirsten Anti
Senter for samisk helseforskning
Karajok

Eiliv Lund
Institutt for samfunnsmedisin
Tromsø

Per G. Lund-Larsen
Nasjonal folkehelseinstitutt
Oslo
INFORMERT SAMTYKKE

Jeg har lest informasjonen om undersøkelsen og samtykker i at (stryk det / de avsnitt du reserverer deg mot):

1. Jeg kan bli kontaktet med anbefaling om oppfølging, behandling eller for å forebygge sykdom.

2. Opplysningene mine kan brukes i medisinsk forskning til å kartlegge og finne årsaker til helse, sykdom og levekår. All bruk av opplysningene i eventuell framtidig medisinsk forskning vil bare bli brukt dersom Regional komité for medisinsk forskningsetikk og Datatilsynet ikke har noen innvendinger mot dette.


4. Blodproven min kan lagres og brukes til medisinsk forskning og genetiske analyser for å finne årsak til sykdom. All bruk av denne prøven vil bare skje i samsvar med godkjenning fra Datatilsynet og etter at Regional komite for medisinsk forskningsetikk i Nord-Norge har vurdert de etiske sidene ved gjennomføring av prosjektet.

................................. .................................
sted og dato underskrift

DIEDIHUVON MIEHTAN

Lean lohkan dieđud iskkadeami birra ja mieđan ahté (sihko dan / daid osiid maidda várašat):

1. Sáhttá muinna váldi: oktavuoča go álgu rávvvet čuovvołaami, dálkkodit dahje eastadit dávvađad.


................................. .................................
báiki ja beaivi vuolláičála
Helse- og levekårsumundersøkelsen

Personlig innbydelse
### 1. EGEN HELSE

**Hvordan er helsen din nå?** (Sett bare ett kryss)

- [ ] Dårlig
- [ ] Ikke helt god
- [ ] God
- [ ] Svært god

<table>
<thead>
<tr>
<th>Alder første gang</th>
<th>JA</th>
<th>NEI</th>
</tr>
</thead>
</table>

**Har du, eller har du hatt?**

- [ ] Astma
- [ ] Kronisk bronkitt/emfysem/KOLS
- [ ] Diabetes (sukkersyke)
- [ ] Fibromyalgi/kronisk smertesyndrom
- [ ] Psykiske plager som du har søkt hjelp for
- [ ] Hjerteinfarkt (sår på hjertet)
- [ ] Angina pectoris (hjertekrampe)
- [ ] Hjerneslag/hjerneblødning
- [ ] Multipel sklerose (MS)
- [ ] Ulcersist kolitt

**Får du smerter eller ubehag i brystet når du:**

- [ ] Går i bakker, trapper eller fort på flatmark?
- [ ] Bestandig
- [ ] I perioder av måneders varighet
- [ ] I perioder av ukers varighet

**Hvordan er helsen din nå?** (Sett bare ett kryss)

- [ ] Ikke hele
- [ ] God
- [ ] Veldig
- [ ] Stort

**Er du ofte plaget av oppblåsthet, rumling i magen eller rikelig luftavgang?**

- [ ] JA
- [ ] NEI

**Er du ofte plaget av oppblåsthet, rumling i magen eller rikelig luftavgang?**

<table>
<thead>
<tr>
<th>Alder første gang</th>
<th>JA</th>
<th>NEI</th>
</tr>
</thead>
</table>

### 2. MUSKEL OG SKJELETTPLAGER

**Har du i løpet av det siste året vært plaget med smerter og/eller stivhet i muskler og ledd som har vart i minst 3 måneder sammenhengende?**

<table>
<thead>
<tr>
<th>JA</th>
<th>NEI</th>
</tr>
</thead>
</table>

**Har du noen gang hatt: Hebbede Håndledd/underarm?**

<table>
<thead>
<tr>
<th>JA</th>
<th>NEI</th>
</tr>
</thead>
</table>

**Lårhalsbrudd?**

<table>
<thead>
<tr>
<th>JA</th>
<th>NEI</th>
</tr>
</thead>
</table>

### 3. MAGE OG TARM SYMPTOMER

**Har du hatt sure oppstøt, halsbrann eller brystbrann nesten daglig i minst en uke?**

<table>
<thead>
<tr>
<th>JA</th>
<th>NEI</th>
</tr>
</thead>
</table>

**Har du noen gang hatt smerter eller verk i magen som har vart i minst 2 uker?**

<table>
<thead>
<tr>
<th>JA</th>
<th>NEI</th>
</tr>
</thead>
</table>

**Hvis JA, hvor i magen sitter smertene?** (Sett ett kryss)

- [ ] Øvre del
- [ ] Nedre del
- [ ] Hele magen

**Er smertene eller «verken» jevnt over tilstede?** (Sett ett kryss)

- [ ] I perioder av ukers varighet
- [ ] I perioder av måneders varighet
- [ ] Bestandig

**Er du ofte plaget av oppblåsthet, rumling i magen eller rikelig luftavgang?**

<table>
<thead>
<tr>
<th>JA</th>
<th>NEI</th>
</tr>
</thead>
</table>

### 4. ANDRE PLAGER

Under finner du en liste over ulike problemer. Har du opplevd noe av dette den siste uken? (Sett ett kryss for hver plage)

<table>
<thead>
<tr>
<th>Plage</th>
<th>JA</th>
<th>NEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plutselig frykt uten grunn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Følte deg redd eller engstelig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matthet eller smellem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Følter deg anspent eller oppjaget</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Søvnproblemer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nedtrykt, tungsindig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Følelse av å være unyttig, lite verd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Følelse av at alt er et slitt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Følelse av håplosheit mht. framtiden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenkt på å gjøre slutt på livet ditt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 5. SYKDOM I FAMILIEN

**Har en eller flere av dine foreldre eller søsken hatt hjerteinfarkt eller angina pectoris?**

<table>
<thead>
<tr>
<th>JA</th>
<th>NEI</th>
<th>IKKE</th>
</tr>
</thead>
</table>

**Kryss av for de slektningene som har eller har hatt noen av sykdommene og angi deres alder for når de fikk sykdommene.** (Hvis flere søsken, før opp den som fikk det tidligst i livet)

<table>
<thead>
<tr>
<th>Mor</th>
<th>Far</th>
<th>Søster</th>
<th>Bror</th>
<th>Barn</th>
<th>Ingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>VET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Hvordan er helsen din nå?** (Sett bare ett kryss)

- [ ] I tillegg
- [ ] Ikke helt god
- [ ] God
- [ ] Svært god

**Har du plager i mage/tarm etter inntak av melk?**

- [ ] JA
- [ ] NEI

**Er det andre i familien som har de samme magesymptomene?**

- [ ] Mor
- [ ] Far
- [ ] Søsken
- [ ] Barn
- [ ] Ingen

**Har du hatt plaque i mage/tarm etter inntak av melk?**

- [ ] JA
- [ ] NEI

**Er det andre i familien som har de samme magesymptomene?**

- [ ] Mor
- [ ] Far
- [ ] Søsken
- [ ] Barn
- [ ] Ingen

**Er avføringen din vanligvis:** (Sett ett eller flere kryss)

- [ ] Normal
- [ ] Løs
- [ ] Hard og perlende
- [ ] Vekslende hard og løs
- [ ] Illeluktende

**Har du hatt plankemessige årsaker til forfetthet i magebukten?**

- [ ] JA
- [ ] NEI

**Får du avføring eller avføring der det løper melk?**

- [ ] JA
- [ ] NEI

**Berører avføringen din vanligvis:**

<table>
<thead>
<tr>
<th>Plage</th>
<th>JA</th>
<th>NEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>I tillegg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ikke helt god</td>
<td></td>
<td></td>
</tr>
<tr>
<td>God</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Svært god</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Har du tenkt på å gjøre slutt på livet ditt?**

<table>
<thead>
<tr>
<th>JA</th>
<th>NEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Før det med i dag?</td>
<td></td>
</tr>
</tbody>
</table>

**Før det med i dag?**

- [ ] JA
- [ ] NEI

**Søvnproblemer:**

- [ ] Plutselig frykt uten grunn
- [ ] Følelse av å være unyttig, lite verd
- [ ] Følelse av at alt er et slitt
- [ ] Følelse av håplosheit mht. framtiden
- [ ] Tenkt på å gjøre slutt på livet ditt

**Hvor mange søsken har du?**

- [ ] Brødre
- [ ] Søstre
### 6. BRUK AV MEDISINER

Med medisiner mener vi her medisiner kjøpt på apotek. Kosttilskudd og vitaminer regnes ikke med her.

**Bruker du?**

<table>
<thead>
<tr>
<th></th>
<th>Nå</th>
<th>Før, men ikke nå</th>
<th>Aldri brukt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medisin mot høy blodtrykk</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Kolesterolenkende medisin</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Insulin</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Tabletter mot sukkersyke</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

**Hvor ofte har du i løpet av de siste 4 ukene brukt følgende medisiner?** *(Sett ett kryss pr. linje)*

<table>
<thead>
<tr>
<th></th>
<th>Ikke brukt siste 4 uker</th>
<th>Sjeldnere enn hver uke</th>
<th>Hver uke, men ikke daglig</th>
<th>Daglig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smertestillende uten resept</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Smertestillende på resept</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Sovemedisin</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Beroøgende medikamenter</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Medisiner mot deprepsjon</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Annen medisin på resept</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

For de medisinene du har krysset av for i de to punktene ovenfor og som du har brukt i løpet av **de siste 4 ukene**:

Angi navnet og hvilken grunn det er til at du tar/har tatt disse (sykdom eller symptom): *(Kryss av for hvor lenge du har brukt medisinen)*

<table>
<thead>
<tr>
<th>Navn på medisinen: (sett ett navn pr. linje)</th>
<th>Grunn til bruk av medisinen:</th>
<th>Inntil 1 år</th>
<th>1 år eller mer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dersom det ikke er nok plass her, kan du fortsette på eget ark som du legger ved.

### 7. MAT OG DRIKKE

**Hvor ofte spiser du vanligvis disse matvarene?** *(Sett ett kryss pr. linje)*

<table>
<thead>
<tr>
<th></th>
<th>1-2 g. pr. dag</th>
<th>3-6 g. pr. dag</th>
<th>1-2 g. pr. dag</th>
<th>3-6 g. pr. dag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frukt</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Bær</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Ost (alle typer)</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Poteter</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Kokte grønnsaker</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Rå grønnsaker/salat</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

**Hva slags fett bruker du oftest?** *(Sett ett kryss pr. linje)*

<table>
<thead>
<tr>
<th></th>
<th>Øl</th>
<th>Vin</th>
<th>Brennevin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruker brød</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>I matlagingen</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

**Bruker du følgende kosttilskudd?**

<table>
<thead>
<tr>
<th></th>
<th>Ja, daglig</th>
<th>Iblant</th>
<th>Nei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tran, trankapsler</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Fiskeoljekapsler</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Vitamin- og/eller mineraltilskudd?</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

**Hvor ofte har du i løpet av det siste året drukket alkohol?** *(Lettøl og alkoholfritt øl regnes ikke med)*

<table>
<thead>
<tr>
<th></th>
<th>Antall kopper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filterkaffe</td>
<td>√</td>
</tr>
<tr>
<td>Kokekaffe/trykkanne</td>
<td>√</td>
</tr>
<tr>
<td>Annen kaffe</td>
<td>√</td>
</tr>
<tr>
<td>Te</td>
<td>√</td>
</tr>
</tbody>
</table>

**Omtrent hvor ofte har du i løpet av det siste året drukket alkohol?** *(Lettøl og alkoholfritt øl regnes ikke med)*

<table>
<thead>
<tr>
<th></th>
<th>Antall ganger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Har aldri drukket alkohol</td>
<td>√</td>
</tr>
<tr>
<td>Har ikke drukket alkohol siste år</td>
<td>√</td>
</tr>
<tr>
<td>Noen få ganger siste år</td>
<td>√</td>
</tr>
<tr>
<td>Omtrent 1 gang i måneden</td>
<td>√</td>
</tr>
</tbody>
</table>

Til dem som har drukket siste år:

Når du har drukket, hvor mange glass eller drinker har du vanligvis drukket?

**Omtrent hvor mange ganger det siste året har du drukket så mye som minst 5 glass eller drinker i løpet av ett døgn?**

<table>
<thead>
<tr>
<th></th>
<th>Antall ganger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Øl</td>
<td>√</td>
</tr>
<tr>
<td>Vin</td>
<td>√</td>
</tr>
<tr>
<td>Brennevin</td>
<td>√</td>
</tr>
</tbody>
</table>
8. RØYKING OG BRUK AV SNUS

Hvor lenge er du vanligvis daglig i et røykfylt rom? Antall hele timer

Røykte noen av de voksne hjemme da du vokste opp? JA NEI

Bor du, eller har du bodd, sammen med noen dagligrøykere etter at du fylte 20 år? JA NEI

Har du røukt/røyker du daglig? ja, nå ja, før Aldri

Hvis du røyker daglig nå, røyker du: Jakke/nej kasket

Hvis du har røukt daglig tidligere, hvor lenge er det siden du sluttede? Antall år

Hvis du røyker daglig nå, eller har røykt tidligere: Hvor mange sigaretter/røykte du vanligvis daglig? Antall sigaretter

Hvor gammel var du da du begynte å røyke daglig? Alder i år

Hvor mange år til sammen har du røkt daglig? Antall år

Har du brukt/bruker du snus daglig? Ja, nå Ja, før Aldri

Hvis du bruker/har brukt snus, hvor mange år til sammen har du brukt snus? Antall år

9. MOSJON OG FYSISK AKTIVITET

Hvorlen er den fysiske aktiviteten i fritiden vært det siste året? (Tenk deg et ukentlig gjennomsnitt for året. Arbeidsvei regnes som fritid. Besvar begge spørsmålene)

Timer pr. uke:

<table>
<thead>
<tr>
<th>Lett aktivitet</th>
<th>Ingen</th>
<th>Under 1</th>
<th>1-2</th>
<th>3 og mer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ikke svett/andpusten)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hard fysisk aktivitet</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Svett/andpusten)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Angi bevegelse og kroppslig anstrengelse i din fritid. Hvis aktiviteten varierer meget f. eks. mellom sommer og vinter, så ta et gjennomsnitt. Spørsmålene gjelder bare dette året. (Sett kryss i den ruta som passer best)

Leser, ser på fjernsyn eller annen stillesittende beskjeftigelse?     1

Spaserer, sykler eller beveger deg på annen måte minst 4 timer i uka? 2

Regn også med gang eller sykling til arbeidstedet, søndagsturer m.m.)

Driver mosjonsidrett, tynge hagearbeid eller? 3

Mech at aktiviteten skal være minst 4 timer i uka)

Trener hardt eller driver konkurransedrett regelmessig og flere ganger i uka? 4

10. UTDANNING OG ARBEID

Hvor mange år skolegang har du gjennomført? (Ta med alle år du har gått på skole eller student) Antall år

Hvordan trives du i din jobb? 1 Svært godt 2 Godt 3 Dårlig 4 Veldig dårlig

Mener du at du står i fare for å miste ditt nåværende arbeid eller inntekt de nærmeste 2 årene? JA NEI

Mottar du noen av følgende ytelsener? Sykepenger... Attføring... Sosialhjelp-stønad... Overgangsstønad for enslige forsørger...

11. RESTEN AV SKJEMAET SKAL BARE BESVARES AV Kvinner

Hvor gammel var du da du fikk menstruasjon aller første gang? Alder i år

Hvis du ikke lenger får menstruasjon, hvor gammel var du da den slutted? Alder i år

Er du gravid nå? Ja Nei Usikker Over fruktbar alder

Hvor mange barn har du født? Antall barn

Hvis du har født barn, fyll ut hvert barns fødselsår, og hvor mange måneder du ammet etter fødselen. (Hvis du ikke ammet, skriv 0)

Barn: Fødselsår: antall mnd:

<table>
<thead>
<tr>
<th>1. barn</th>
<th>2. barn</th>
<th>3. barn</th>
<th>4. barn</th>
<th>5. barn</th>
</tr>
</thead>
</table>

Bruker du, eller har du brukt? (Sett et kryss for hver linje)

P-pille/minipille/p-sprøyte
Hormonspiral (ikke vanlig spiral)
Østrogen (tabletter eller plaster)
Østrogen (krem eller stikkpiller)

Hvis du bruker p-pille, minipille, p-sprøyte, hormonspiral eller østrogen; hvilket merke bruker du?

Spesifiser:

Ikke skriv her

<table>
<thead>
<tr>
<th>Nå</th>
<th>Før, men ikke nå</th>
<th>Aldri</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BRUK AV HELSETJENESTER

Hvor mange ganger de siste 12 måneder har du selv brukt: (sett ett kryss for hver linje)

<table>
<thead>
<tr>
<th></th>
<th>Ingen</th>
<th>1-3 ganger</th>
<th>4 eller flere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kommunelege/fastlege</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spesialist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legevakt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sykehus innlegging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hjemmesykepleie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kommunal hjemmehjelp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fysioterapeut</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kiropraktor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tannlege</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternativ behandler</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hvor mange leger har du selv vært hos de siste 12 måneder? (angi antall)

Har du fått tildelt navngitt fastlege?  Ja  Nei

Når du er til undersøkelse, hvilket språk kommuniserer du og legen på? (sett ett eller flere kryss)
- Norsk
- Samisk
- Bruker tolk
- Annet språk

Tror du det skjer noen gang at du og legen misforstår hverandre p.g.a. språklige problemer?
- Aldri
- Sjelden
- Av og til
- Ofte
- Usikker

Dersom det er behov for tolk, synes du at legen er flink nok til å be om det?
- Ja, alltid
- Ja, som regel
- Nei, ikke alltid
- Nei, aldri
- Jeg liker ikke å bruke tolk

Hvor fornøyd eller misfornøyd er du med følgende sider ved den kommunale legetjenesten i din bostedskommune? (sett ett kryss per linje)

<table>
<thead>
<tr>
<th></th>
<th>Meget fornøyd</th>
<th>Fornøyd</th>
<th>Misfornøyd</th>
<th>Meget misfornøyd</th>
<th>Vet ikke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avstand til legen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legens tilgjengelighet på telefon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventetid på legetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tid inne hos legen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mulighetene for å få fortalt om dine plager</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legens forståelse av din kulturelle bakgrunn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legens informasjon om dine helseplager, undersøkelse og behandlingsopplegg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BRUK AV HELSETJENESTER (fortsettelse)

Legens språkkeherskelse (samisk eller norsk)  |  |  |  |  |

Totalt sett, hvor fornøyd eller misfornøyd er du med den kommunale legetjenesten?

Hvor lenge er det siden du var hos lege sist? (angi i hele tall)

Dersom du noen gang har benyttet alternative behandlere, hvilke har du brukt? (sett ett eller flere kryss)
- Hellbreder (guvllár, leser, blåser, håndspålegger)
- Healer
- Akupunktør
- Soneterapeut, homeopat, kinesiolog osv.

Dersom du har benyttet en alternativ behandler, hvor lenge er det siden sist? (angi i hele tall)

Tenk deg at du i dag skulle få behov for hjelp/bistand fra den kommunale helse- og sosialtjenesten (hjemmesykepleie, hjemmehjelp, sosiale tjenester, fysioterapi o.s.v.)

Vet du hvor du skal henvende deg?

Er du trygg på at du får hjelp hvis du trenger det?

Dersom du i dag får hjelp fra den kommunale helse- og sosial tjenesten, er du fornøyd med tilbudet?

SKADER/ULYKKER

Har du vært utsatt for noen ulykker som medførte behandling hos lege og/eller sykehusinnlegging?

Leg | Ja  Nei  Usikker
Sykehus innleggelse | Ja  Nei  antall ganger

Dersom du noen gang har benyttet alternative behandlere, hvilke har du brukt?

Dersom du har benyttet en alternativ behandler, hvor lenge er det siden sist?

Tenk deg at du i dag skulle få behov for hjelp/bistand fra den kommunale helse- og sosialtjenesten (hjemmesykepleie, hjemmehjelp, sosiale tjenester, fysioterapi o.s.v.)

Vet du hvor du skal henvende deg?

Er du trygg på at du får hjelp hvis du trenger det?

Dersom du i dag får hjelp fra den kommunale helse- og sosialtjenesten, er du fornøyd med tilbudet?

Har du vært utsatt for noen ulykker som medførte behandling hos lege og/eller sykehusinnlegging?

<table>
<thead>
<tr>
<th></th>
<th>Ja  Nei  Usikker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sykehus innleggelse</td>
<td>Ja  Nei  antall ganger</td>
</tr>
</tbody>
</table>

Dersom du noen gang har benyttet alternative behandlere, hvilke har du brukt?

Dersom du har benyttet en alternativ behandler, hvor lenge er det siden sist?

Tenk deg at du i dag skulle få behov for hjelp/bistand fra den kommunale helse- og sosialtjenesten (hjemmesykepleie, hjemmehjelp, sosiale tjenester, fysioterapi o.s.v.)

Vet du hvor du skal henvende deg?

Er du trygg på at du får hjelp hvis du trenger det?

Dersom du i dag får hjelp fra den kommunale helse- og sosialtjenesten, er du fornøyd med tilbudet?

Har du vært utsatt for noen ulykker som medførte behandling hos lege og/eller sykehusinnlegging?

<table>
<thead>
<tr>
<th></th>
<th>Ja  Nei  Usikker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sykehus innleggelse</td>
<td>Ja  Nei  antall ganger</td>
</tr>
</tbody>
</table>
Hvilken type arbeid/livsopphold har du?  
(sett ett eller flere kryss pr. linje)

- Arbeid
- Hjem
- Fritid
- Ingen

<table>
<thead>
<tr>
<th>Arbeid</th>
<th>Hjem</th>
<th>Fritid</th>
<th>Ingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bil</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Motorsykkel</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Snøscooter</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Firehjulssykkel</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Traktor</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Fallulykke</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Kuttkade</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Annet</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Har ulykken(e) ført til nedsatt arbeidsevne? ☐

- Helt
- Delvis
- Ikke i det hele tatt

Familie og språkbakgrunn

I Nord-Norge bor det folk med ulik etnisk bakgrunn. Det vil si at de snakker ulike språk og har forskjellige kulturer.

Eksempler på etnisk bakgrunn, eller etnisk gruppe er norsk, samisk og kvens.

Hvilket hjemmespråk har/hadde du, dine foreldre og beste?

- Norsk
- Samisk
- Kvensk
- Annet, beskriv

| Morfar:   | ☐ | ☐ | ☐ | ☐ |
| Mormon: | ☐ | ☐ | ☐ | ☐ |
| Farfar: | ☐ | ☐ | ☐ | ☐ |
| Farmor: | ☐ | ☐ | ☐ | ☐ |
| Far: | ☐ | ☐ | ☐ | ☐ |
| Mor: | ☐ | ☐ | ☐ | ☐ |
| Jeg selv: | ☐ | ☐ | ☐ | ☐ |

Hva er din, din fars og din mors etniske bakgrunn?

(sett ett eller flere kryss)

- Norsk
- Samisk
- Kvensk
- Annet, beskriv

- Min etniske bakgrunn er: ☐ ☐ ☐ ☐ 
- Fars etniske bakgrunn er: ☐ ☐ ☐ ☐ 
- Mors etniske bakgrunn er: ☐ ☐ ☐ ☐ 

Hva regner du deg selv som?  
(sett ett eller flere kryss)

- Norsk
- Samisk
- Kvensk
- Annet, beskriv

<table>
<thead>
<tr>
<th>Arbeidsliv/Økonomi (fortsettelse)</th>
</tr>
</thead>
</table>
| Hvis ja, hva slags ulykke(r) er du blitt behandlet for?  
(sett ett eller flere kryss pr. linje) |
| - Arbeidshemmelighet |
| - Skadedyrkere |
| - Arbeidsskader |
| - Arbeidstapet |
| - Annet |

Kunne du tenke deg å flytte fra din bostedskommune dersom du fikk tilbud om arbeid et annet sted? ☐

- Ja
- Nei
- Deler av året
- Usikker

Dersom du er arbeidsledig, angi hvor lenge du har vært arbeidssøker: (angi i hele tall)

- (år)
- (måneder)

Dersom du er selvstendig næringsdrivende, hvilken type næring jobber du i?  
(sett ett eller flere kryss)

- Reindrift
- Fiske
- Jordbruk
- Skogbruk
- Forretningsvirksomhet
- Annet (spesifiser)

Hvor mange personer bor det i din husstand? 

- (antall personer)

Hvor stor er familiens/husstandens bruttoinntekt per år? ☐

- Under kr. 150 000
- Kr. 150 000–300 000
- Kr. 301 000–450 000
- Kr. 451 000–600 000
- Kr. 601 000–750 000
- Over kr. 750 000

Hvor ofte spiller du på ulike pengespill slik som lotto, tipping, spilleautomater og lignende? ☐

- Aldri/sjelden
- 1-3 ganger i mnd.
- 1 gang i uka
- 2-6 ganger i uka
- Hver dag

Hvor mye spiller du for ukentlig i gjennomsnitt? ☐

- Under kr. 100 i uka
- Kr. 100-500 i uka
- Kr. 501–1000 i uka
- Over kr. 1000 i uka

Mobbing

Med mobbing mener vi når en eller flere personer gjengatte ganger sier eller gjør ondte ting mot deg, og du har vanskeligheter med å forsvare deg.

Har du vært utsatt for mobbing? ☐

- Ja, de siste 12 mnd.
- Ja, før
- Nei

Dersom du har vært utsatt for mobbing, hvilken type mobbing er du blitt utsatt for?  
(sett ett eller flere kryss)

- Baksnakking
- Ignorering
- Diskriminerende bemerkninger
- Annet

Kan du angi hvor dette foregår/foregikk?  
(sett ett eller flere kryss)

- På skolen
- På skoleinternat
- I yrkeslivet
- I lokalsamfunnet
- Annet

<table>
<thead>
<tr>
<th>Arbeidsliv/Økonomi (fortsettelse)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hvor ofte spiller du på ulike pengespill slik som lotto, tipping, spilleautomater og lignende?</td>
</tr>
<tr>
<td>- (antall personer)</td>
</tr>
</tbody>
</table>

Hvor mye spiller du for ukentlig i gjennomsnitt? |

- (antall personer)
TILLEGGSSPØRSMÅL TIL HELSE- OG LEVEKÅRSUNDERSØKELSEN

Takk for fremmøte til helseundersøkelsen. På denne måten har du bidratt til å skaffe ny viten om helse og levekår i områder med samisk og norsk bosetting. Hovedformålet med undersøkelsen er å være å skaffe ny viten om hjertekar sykdommer for å kunne forebygge dem. I tillegg skal undersøkelsen gi oss kunnskap om andre sykdommer og plager slik at vi kan lage en oversikt over folks helse i fylket. Vi ber deg derfor svare på noen spørsmål om forhold som kan ha betydning for disse og andre sykdommer.

Det utfylte skjemaet sendes i vedlagte svarkonvolutt. Portoen er betalt. På forhånd takk for hjelpen!

Med vennlig hilsen,
Senter for samisk helseforskning og Nasjonal folkehelseinstitutt

1. SYMPTOMER

Hoster du omtrent daglig i perioder av året? □ JA □ NEI

Har du hatt slik hoste så lenge som i en 3 måneders periode i begge de to siste årene? □ JA □ NEI

Hender det at du er plaget av søvnløshet?
□ Hvis ja, når er du mest plaget av søvnløshet?
(sett ett eller flere kryss)
□ Hele året □ Vår □ Sommer □ Høst □ Vinter

□ Har du de siste årene vært plaget av søvnløshet slik at det har gått ut over arbeidsevenen?
□ JA □ NEI

2. KOSTHOLD NÅ


□ Hvor mange ganger i uken pleier du å spise middag?
□ Antall ganger □ □
### Hvor ofte spiser du fiskepålegg?

<table>
<thead>
<tr>
<th>Aldri</th>
<th>1-5 pr. år</th>
<th>6-11 pr. år</th>
<th>1 pr. mhnd.</th>
<th>1 pr. uke</th>
<th>2-3 pr. uke</th>
<th>3-4 pr. uke</th>
<th>5+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speket/saltet fisk</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Røkt fisk</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Makrell i tomat</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Nedlagt sild</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Kaviar</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Annet fiskepålegg</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

### Hvor ofte spiser du følgende retter?

<table>
<thead>
<tr>
<th>Aldri</th>
<th>1-5 pr. år</th>
<th>6-11 pr. år</th>
<th>1 pr. mhnd.</th>
<th>1 pr. uke</th>
<th>2-3 pr. uke</th>
<th>3-4 pr. uke</th>
<th>5+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pizza</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Spagetti, pastaretter</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Hamburger i brød</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Kjøttkaker/karbonader</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Pølser</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Gryterett</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

### Hvor ofte spiser du rent kjøtt til middag (f.eks. koteletter, steik, grytekjøtt, biff, filet)?

<table>
<thead>
<tr>
<th>Aldri</th>
<th>1-5 pr. år</th>
<th>6-11 pr. år</th>
<th>1 pr. mhnd.</th>
<th>1 pr. uke</th>
<th>2-3 pr. uke</th>
<th>3-4 pr. uke</th>
<th>5+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kylling</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Svin</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Okse/storfe</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Sau/lam</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Elg</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Hval</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

### Hvor mange egg fra sjøfugl spiser du pr. år?

<table>
<thead>
<tr>
<th>Antall egg</th>
<th>0</th>
<th>1-3</th>
<th>4-6</th>
<th>7-9</th>
<th>10+</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

### Hvor ofte spiser du kjøtt av rein?

<table>
<thead>
<tr>
<th>Aldri</th>
<th>1-5 pr. år</th>
<th>6-11 pr. år</th>
<th>1 pr. mhnd.</th>
<th>1 pr. uke</th>
<th>2-3 pr. uke</th>
<th>3-4 pr. uke</th>
<th>5+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kokt reinkjøtt (buljong)</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Stekt reinkjøtt (helt, skivet, oppmalt)</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Røkt reinkjøtt</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Tørket reinkjøtt</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

### Hvor ofte spiser du andre matvarer av rein?

<table>
<thead>
<tr>
<th>Aldri</th>
<th>1-5 pr. år</th>
<th>6-11 pr. år</th>
<th>1 pr. mhnd.</th>
<th>1 pr. uke</th>
<th>2-3 pr. uke</th>
<th>3-4 pr. uke</th>
<th>5+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blodmat av rein</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Margbein</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Reintunge</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Reinlever</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

### Hvor ofte spiser du bær?

<table>
<thead>
<tr>
<th>Aldri</th>
<th>1-5 pr. år</th>
<th>6-11 pr. år</th>
<th>1 pr. mhnd.</th>
<th>1 pr. uke</th>
<th>2-3 pr. uke</th>
<th>3-4 pr. uke</th>
<th>5+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molter</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Kokt/kjøpt syltetøy</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Tyttebær</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Blåbær</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Saft</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

### Hvordan pleier du/ditt hushold å skaffe følgende råvarer til eget bruk? (Sett ett eller flere kryss)

<table>
<thead>
<tr>
<th>Spiser</th>
<th>Aldri</th>
<th>Sjelden</th>
<th>Helt selvforsnyt</th>
<th>Delvis selvforsnyt</th>
<th>Kjøper i butikk</th>
<th>Kjøper privat</th>
<th>Bytter eller får</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kjøtt:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rein</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Sau</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Elg</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Fisk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forskvann</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Saltvann</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Bær:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molter</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Tyttebær</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

### Hvor ofte pleier du å jakte, fiske og plukke bær?

| Jakte rype/småvilt | □ | □ | □ | □ |
| Jakte storvilt | □ | □ | □ | □ |
| Fiske | □ | □ | □ | □ |
| Plukke bær | □ | □ | □ | □ |

### Hvor ofte har du spist et hovedmåltid fra ditt husholds jakt/fiske siste år?

<table>
<thead>
<tr>
<th>Aldri</th>
<th>1-5 pr. år</th>
<th>6-11 pr. år</th>
<th>1 pr. mhnd.</th>
<th>1 pr. uke</th>
<th>2-3 pr. uke</th>
<th>3-4 pr. uke</th>
<th>5+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hovedmåltid jakt</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Hovedmåltid fiske</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

---
### 3. KOSTHOLD I OPPVEKSTEN

Tenk på maten du fikk hjemme før du flyttet for deg selv. Hvis du bodde mesteparten av året på skoleinternat, tenk på maten du fikk der.

Bodde du på internat (statsinternat eller privat) da du gikk på barne- og ungdomsskolen?
- [ ] Ja, ungdomsskolen
- [ ] Ja, barneskolen
- [ ] Ja, både barne- og ungdomsskolen
- [ ] Nei, ingen av delene

Hvis ja, hvor mange klassesetrinn?
- [ ] 1-3 mnd.
- [ ] 4-6 mnd.
- [ ] 7-9 mnd.

**Hvor ofte spiste du fisk og reinkjøtt i oppveksten?**

<table>
<thead>
<tr>
<th>Aldri</th>
<th>1-11 pr. år</th>
<th>1 pr. mnd.</th>
<th>2-3 pr. 1-2 pr. uke</th>
<th>3-4 pr. uke</th>
<th>5+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kokt/stekt fisk</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
</tr>
<tr>
<td>Reinkjøtt</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
</tr>
</tbody>
</table>

**Hvor ofte spiste du andre matvarer i oppveksten?**

<table>
<thead>
<tr>
<th>Aldri</th>
<th>1-11 pr. år</th>
<th>1 pr. mnd.</th>
<th>2-3 pr. 1-2 pr. uke</th>
<th>2 pr. uke</th>
<th>3+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blodmat</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
</tr>
<tr>
<td>Sauerkjøtt</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
</tr>
<tr>
<td>Kjøttkaker, pølser</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
</tr>
<tr>
<td>Fiskemat</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
</tr>
<tr>
<td>Fiskelever og rogn</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
</tr>
<tr>
<td>Grøt, pannekaker</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
</tr>
</tbody>
</table>

Fikk du medisinsk tran i oppveksten? [ ] JA [ ] NEI

Fikk du servert tran til for eksempel fisk (i stedet for annet fett)? [ ]

**Hvor ofte spiste du ville bær og planter i oppveksten?**

<table>
<thead>
<tr>
<th>Aldri</th>
<th>1-5 pr. år</th>
<th>6-11 pr. år</th>
<th>1 pr. mnd.</th>
<th>2-3 pr. 1-2 pr. uke</th>
<th>1-2 pr. uke</th>
<th>3+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ville bær</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
</tr>
<tr>
<td>Syregress</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
</tr>
<tr>
<td>Kvann</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
</tr>
</tbody>
</table>

Er maten du spiser nå, forskjellig fra det du fikk i oppveksten?
- [ ] Nei
- [ ] Litt forskjellig
- [ ] Ganske forskjellig
- [ ] Veldig forskjellig

### 4. NATTSPISING

Våkner du ofte opp for å spise etter at du har lagt deg om kvelden?

Hvis "ja", besvar de neste 4 spørsmålene:

- [ ] Hele året
- [ ] Vår
- [ ] Sommer
- [ ] Høst
- [ ] Vinter

**Hva spiser du om natten?** (Sett ett eller flere kryss)

- [ ] Kjøtt
- [ ] Brødmat
- [ ] Godteri
- [ ] Annet

Spiser du mer enn halvparten av døgnets matmengde etter kl. 20 om kvelden? [ ]

Er andre i familien plagent med nattspising? [ ]

- [ ] JA
- [ ] NEI
- [ ] VET IKKE

Har du skiftarbeid, nattarbeid eller går vakter? [ ]

- [ ] JA
- [ ] NEI

### 5. OPPVEKST, FAMILIE OG VENNER

I hvilken kommune har du bodd lengre enn ett år?

Kommune:

1. Fødested: [ ] fra 0 år til [ ] år
2. [ ] fra [ ] år til [ ] år
3. [ ] fra [ ] år til [ ] år
4. [ ] fra [ ] år til [ ] år
5. [ ] fra [ ] år til [ ] år

(Hvis du har bodd i flere kommuner, bruk eget ark.)

Bør du sammen med ektefelle/samboer? [ ]

- [ ] JA
- [ ] NEI

Har du delt eller daglig omsorg for

- [ ] Barn?
- [ ] Foreldre/andre?

Hvor mange gode venner har du?

(De som du kan snakke fortrolig med og som kan gi deg hjelp dersom du trenger det. Tell ikke med de du bor sammen med.)

Antall venner [ ]

Er du tilknyttet noen av de følgende menigheter/trossamfunn: (Sett ett eller flere kryss)

- [ ] Medlem i statskirkja
- [ ] Den Læstadianske menighet
- [ ] Annen menighet
- [ ] Ikke medlem av noen menighet

Føler du at du kan påvirke det som skjer i lokalsamfunnet der du bor? (Sett bare ett kryss)

- [ ] Ja, i stor grad
- [ ] Ja, en del
- [ ] Ja, i liten grad
- [ ] Nei
- [ ] Har ikke forsøkt
SYNEST DU AT BEVARING AV TYPISKE SAMISKE NÆRINGER ER VIKTIG?
Meget viktig Viktig Lite viktig Helt uviktig

Er utviklingen av det moderne samiske skoleverket viktig for deg?
Meget viktig Viktig Lite viktig Helt uviktig

Har du opplevd at du er blitt mobbet eller diskriminert på grunn av din etniske bakgrunn (samisk, kvensk, russisk, tamilsk, norsk, etc.)?

Svært mange ganger Noen ganger En sjelden gang Aldri

Tror du at diskriminering av etniske minoriteter kan ha negative helsemessige konsekvenser?
I stor grad I noen grad I liten grad Absolutt ikke

Føler du deg presset ut av næringen din?
I stor grad I noen grad I liten grad Absolutt ikke

Hva betyr samisk media (radio, TV, aviser, høyer) for deg?
Meget stor Stor Liten Ingen betydning

Hva betyr moderne samisk kunst (billedkunst, musikk, film og teater) for deg?
Meget stor Stor Liten Ingen betydning

Opplever du forurenning av eller inngrep i naturen som en trussel mot din samiske tilværelse?
I stor grad I noen grad I liten grad Absolutt ikke

Føler du at den moderne utviklingen fortrenger den samiske kulturen?
I stor grad I noen grad I liten grad Absolutt ikke

HVA BETYR SAMETINGET FOR DEG?
Meget stor Stor Liten Ingen betydning

Takk for hjelpen!
Husk å postlegge skjemaet i dag!
Appendix 2

The SAMINOR 2 Clinical Survey

Original Norwegian versions of:

- Pamphlet
- Information brochure
- Invitation letter (Illustrated by information letter to Karasjok municipality)
- Informed written consent form
- Questionnaire (for 40–69 years participants)
- Questionnaire (for 70–79 years participants)

https://en.uit.no/forskning/forskningsgrupper/sub?p_document_id=591555&sub_id=591882
VI KOMMER NÅ TIL DIN KOMMUNE
Du vil i løpet av noen uker motta en forespørsel i posten fra Universitetet i Tromsø om å delta i en helseundersøkelse. Resultatene vil kunne bidra til å fremme folkehelse og forbedre velferdstilbud i nord.

HVORFOR SPØR VI DEG?
Alle mellom 40 – 79 år i din kommune vil bli inviteret. Hver deltaker er like viktig, enten du er ung eller gammel, kvinne eller mann, frisk eller syk. Godt oppmøte er viktig for gode forskningsresultater.

UNDERSØKELSER AV DEG
- Høyde og vekt
- Liv- og hoftevidde
- Blodtrykk og puls
- Blodprøve
Vi ber deg også om å fylle ut et spørreskjema.

TILBAKEMELDING PÅ RESULTATER
Dersom du ønsker det, vil du ved undersøkelsen få dine egne resultater på høyde, vekt, liv- og hoftemål, blodtrykk, puls, blodprosent og langtidsblodsukker.

DIN SIKKERHET
Det er frivillig å delta.
Din sikkerhet er høyt ivaretatt. All behandling av helseopplysninger eller prøvemateriale skjer i tråd med helseforskningsloven. Alle opplysninger og prøver anonymiseres og blir da behandlet uten navn og fødselsnummer eller andre direkte gjenkjennbare opplysninger.

Undersøkelsen er godkjent av Datatilsynet og REK Nord – Regional komite for medisinsk og helsefaglig forskningsetikk.
VI VIL HA ØKT KUNNSKAP OM
Kosthold
Diabetes
Hjerte-karsykdommer
Miljøgifter
Tannhelse
Søvn

REISEGAVEKORT
Alle som deltar vil være med i trekning av to reisegavekort verdt kr 10 000,- hver. I tillegg vil det trekkes to ekstra reisegavekort i den kommunen som har best deltagelse. Ut over dette gis det ingen økonomisk kompensasjon for deltagelse i studien.

VI KOMMER NÅ TIL DIN KOMMUNE
Du vil høre fra oss i løpet av noen uker. Vi vil sende et brev om sted og tid for undersøkelsen. Ved å delta, bidrar du til spennende og samfunnsnyttig forskning på helse og livsstil i nord.

DERSOM DU HAR SPØRSMÅL
ta gjerne kontakt med oss på telefon eller via e-post.
Senter for samisk helseforskning
Institutt for samfunnsmedisin
Universitetet i Tromsø
9037 Tromsø
http://site.uit.no/helseoglivsstil/
E-post: saminor@ism.uit.no
Telefon: 404 90 467
BAKGRUNN OG HENSIKT
Dette er et spørsmål til deg om å delta i et forskningsprosjekt for å få mer kunnskap om helse, sykdom og levevåk i omrader med samisk og norsk bosetting. Du som deltaker i denne undersøkelsen får sjekket om du har bestemte såkalte livsstilssykdommer eller om det er fare for at du kan få dem.
Du er invitert til å være med i denne studien fordi du er i alderen 40-79 år og tilhører en av de utvalgte kommuner. Studien utføres av Senter for samisk helseforskning, Institutt for samfunnsmedisin ved Universitetet i Tromsø.

HVA INNEBÅRER STUDIEN?
Du inviteres til å svare på vedlagte spørreskjema og ta det med når du møter opp på anvist forskningsstasjon i din kommune. Her vil det gjøres målinger av blodtrykk, puls, høyde, vekt og liv-hoftevidde, og det blir også tatt blodprøve.
Blodprøvene kan senere bli analyseret for næringsstoffer, miljøgifter, fettstoffer og markører som kan knyttes til livsstilssykdommer eller tilstander som for eksempel diabetes (sukkersyke), hjerte- og karssykdommer og søvnforstyrrelser. Genetiske analyser av blodet for å finne mulige årsaker til nevnte livsstilssykdommer/tilstander kan også bli aktuelt.

MULIGE FORDELER OG ULEMPER

HVA SKJER MED PRØVENE OG INFORMASJONEN OM DEG?


Prosjektslutte er satt til 31. desember 2067. Efter dette anonymiseres alle dataene.

BIO BANK
Blodprøvene vil bli lagret i en såkalt forskningsbiobank ved Universitetet i Tromsø eller eventuelt ved et annet nasjonalt lager for biobank med høyeste grad av sikkerhet i forhold til provens kvalitet og personvern som er godkjent av aktuelle instanser. Hvis du sier ja til å delta i studien, gir du også samtykke til at blodprøvene inngår i denne biobanken. Universitetet i Tromsø er ansvarshavende for forskningsbiobanken.

BEHANDLINGSANSVARLIG
Universitetet i Tromsø ved administrerende direktør er databehandlingsansvarlig.

RETT TIL INNSYN OG SLETTING AV OPPLYSNINGER OG PRØVER
Hvis du sier ja til å delta i studien, har du rett til å få innsyn i hvilke opplysninger som er registrert om deg. Du har videre rett til å få korrigert eventuelle feil i de opplysningene vi har registrert. Dersom du trekker deg fra studien, kan du kreve å få slettet innsamlede prøver og opplysninger, med mindre opplysningene allerede er inngått i analyser eller brukt i vitenskapelige publikasjoner.

KOMPENSASJON
Det gis ingen økonomisk kompensasjon for deltakelse i studien. Opplysninger og prøver vil bli behandlet i henhold til opplysningene fra studien, kan du kreve å få slettet innsamlede prøver

ØKONOMI
Studien og biobanken er finansiert gjennom forskningsmidler fra Det Regionale forskningsfond Nord-Norge, de tre nordligste fylkeskommunene, Helse Nord, Sametinget, Universitetet i Tromsø og Helse og omsorgsdepartementet, Ingen av disse instansene har interessekonflikter i undersøkelsen.

FORSKRING
Deltakerne er dekket gjennom pasientskadeerstatningsloven.

Foto: Bjørn-Kåre Iversen, helsefak. uit.no
HELSE OG LIVSSTIL

INFORMASJON OM UTFALLET AV STUDIEN
Resultater av undersøkelsen vil publiseres i internasjonale og nasjonale vitenskapelige tidsskrifter i tillegg til ulike populærvitenskapelige kanaler og media.

FRIVILLIG DELTAKELSE
Det er frivillig å delta i studien. Dersom du ønsker å delta, møter du opp til angitt sted og tidspunkt. Her vil du bli bedt om å signere et samtykke på deltakelse. Du kan når som helst og uten å oppgi noen grunn trekke ditt samtykke til å delta i studien.

Dersom du senere ønsker å trekke deg eller har spørsmål til studien, kan du kontakte oss på vår prosjektlefon: 404 90 467 eller på e-post: saminor@ism.uit.no

Du finner ytterligere informasjon om studien på vår nettside http://site.uit.no/helseoglivsstil/

VELKOMMEN TIL UNDERSØKELSEN

Magritt Brustad
Prosjektleder
Professor

Ann Ragnhild Broderstad
Forsker

Overlege Dr. med.

UNIVERSITETET I TROMSØ UIT
DET HELSEVITENSKAPELIGE FAKULTET

FORESPØRSEL OM DELTAKELSE I HELSE- OG LIVSSTILS-UNDERSØKELSE
Forespørsel om deltakelse i forskingsprosjekt
Vi spør deg om å delta i en helse- og livsstilsundersøkelse som Universitetet i Tromsø nå gjennomfører. Hele befolkningen i alderen 40-79 år i utvalgte distriktsskommuner i Nord-Norge får tilbud om undersøkelsen. Karasjok kommune er først ut i Finnmark.

Vi inviterer deg til å møte opp på denne undersøkelsen som vil finne sted i tidsrommet 28. januar til 21. februar 2013 ved:

Sentrumsbygget, Fidnodatgeaidnu 39 i Karasjok.

For å avvikle undersøkelsen raskest mulig, setter vi opp et visst antall personer i timen.

Du har fått tildelt frammøtetid:

**Dato:**

**Tid:**

Om du ikke kan møte opp til avtalt time, er du velkommen til å møte opp når som helst i åpningstiden for drop-in som skissert under. Merk at åpningsdagen åpner vi klokken 11:00, og vi har lunsj i tidsrommet 12:00 -12:30.
Hva undersøkes?
På stedet undersøker vi ditt blodtrykk, din puls, høyde, vekt og livhoftevidde, samt at vi tar en blodprøve av deg.

Ta med ditt utfylte spørreskjema til undersøkelsen
Vi ber deg om å svare på vedlagte spørreskjema og ta dette med for levering på undersøkelsesdagen. Her kan du også få hjelp til utfylling av skjemaet om du trenger det. Du kan la være å svare på enkelte spørsmål. Spørreskjemaet omhandler i hovedsak spørsmål vedrørende hjerte-karsykdommer, diabetes og kosthold. For å kunne beregne næringsinntak (kalorier, næringsstoffer o.l.) er det nødvendig med en grundig kartlegging av hva du normalt spiser.

Forberedelser til undersøkelsen
Ha gjerne på et kortermet plagg innerst som ikke strammer da det letter blodtrykksmålingen. Vekt og liv-hoftevidde måles også med lett påkledning og vekt uten sko. Ingen andre forberedelser som fasting o.l. er nødvendig.

Det er frivillig å delta. For mer informasjon om undersøkelsen, vennligst se vedlagte informasjonsfolder.
Har du spørsmål om undersøkelsen, kan du ringe Institutt for samfunnsmedisin ved Universitetet i Tromsø på telefon 77 64 48 36 eller mobil 404 90 467 (samisk talende).

Med vennlig hilsen

Magritt Brustad
Prosjektleder
Professor

Ann Ragnhild Broderstad
Forsker
Overlege Dr. med.
Helse- og livsstilsundersøkelse

Samtykke til deltakelse i studien

Jeg er villig til å delta i studien

(Signert av prosjektdeltaker, dato)

☐ Jeg ønsker ikke tilbakemelding på utvalgte prøvesvar
Helse- og livsstilsundersøkelse


1. I hvilket år er du født? .......................... Årstall
2. Er du? .................................................................
3. Hva er din sivilstatus?
   □ Gift  □ Samboer  □ Skilt
   □ Ugift  □ Enke/enkemann
4. Hvor mange personer bor det i din husstand? ......
   Antall personer
5. Hvor mange års skolegang har du gjennomført?
   (Ta med alle år du har gått på skole eller studert) .................
6. Hvor stor er familiens/husstandens bruttoinntekt pr. år?
   □ Under kr 150 000  □ Kr 150 000–300 000
   □ Kr 301 000–450 000  □ Kr 451 000–600 000
   □ Kr 601 000–750 000  □ Kr 751 000–900 000
   □ Over kr 900 000
7. Bruker du medisin mot høyt blodtrykk?
   □ Ja, nå  □ Før, men ikke nå  □ Aldri brukt
8. Hvis du bruker eller tidligere har brukt blodtrykksmedisin, omtrent hvor gammel var du første gang du begynte med slik medisin?
   □ Alder
9. Har du hatt hjerteinfarkt?
   □ Nei, aldri  □ 1 gang  □ 2 ganger  □ 3 eller flere ganger
   □ Alder
10. Hvis ja, hva var din alder første gang du fikk hjerteinfarkt? ..................................................
   □ Alder
11. Har du angina pectoris (hjertekrampe)?  ....... □ Ja  □ Nei
   □ Alder
12. Hvis ja, hva var din alder første gang du fikk angina pectoris? ..................................................
   □ Alder
13. Hvis ja, hvor ofte har du merket slike smerten i løpet av den siste måneden?
   □ Sjelden  □ 1 gang pr. uke  □ 2-3 ganger pr. uke  □ 4-6 ganger pr. uke  □ 7 eller flere ganger pr. uke
14. Har du blitt hjerteoperert (bypass)? ......... □ Ja  □ Nei
15. Har du blitt blokket/fått innsatt stent? ....... □ Ja  □ Nei
16. Har legen sagt at du har hjerteflimmer? .... □ Ja  □ Nei

Fysisk aktivitet


Hjerte-karsydommer

18. Har du noen gang fått påvist diabetes (for høyt blodsukker)? .................................. □ Ja  □ Nei
Dersom nei, gå videre til spørsmål 28 om spisevaner
19. Dersom ja, hvilken type diabetes har du fått påvist?
   (Sett ett eller flere kryss)
   □ Svangerskapsdiabetes ..........................................
   □ Diabetes type I ...................................................
   □ Diabetes type II ...................................................
20. Hvordan ble din diabetes oppdaget?
   □ Jeg søkte lege pga. symptomer ...................... □ Ja  □ Nei
   □ Ble oppdaget uten at jeg hadde symptomer
      (legeattest, bedriftskontroll, svangerskapskontroll, undersøkelse for annen sykdom e.l.) ........... □ Ja  □ Nei
21. Hvor gammel var du da din diabetes ble oppdaget?
   □ Alder

Diabetes (sukkersyke)

INSULIN

Dersom du bruker eller har brukt insulin:

23. Hvor gammel var du da du begynte med insulin?  
   Alder

24. Hvor mange ganger pr. dag tar du/tok du vanligvis insulin?  
   Ganger

25. Hvor mange enheter insulin tar du/tok du vanligvis til sammen pr. dag?  
   Enheter(E)

Dersom du bruker eller har brukt tabletter:

26. Bruker du tabletter mot din diabetes?  
   Ja, nå □  
   Før, men ikke nå □  
   Aldri brukt □

Hver dag □

Spisevaner

Sett et kryss i ruten som beskriver spisevanene dine slik du synes de har vært de siste 4 ukene:

28. Hvor fornøyd har du vært med spisevanene dine?  
   Aldri □
   1 □  
   2 □
   3 □  
   4 □
   5 □
   6 □
   7 □
   Svært fornøyd □

29. Har du trøstespist eller spist ekstra på grunn av at du har vært nedstemt eller følt deg utilfreds?  
   Aldri □
   1 □  
   2 □
   3 □  
   4 □
   5 □
   6 □
   7 □
   Hver dag □

Smerter

30. Har du følt at det er nødvendig for deg å følge strenge dietter eller andre matritualer for å holde kontroll med hvor mye du spiser?  
   Aldri □
   1 □  
   2 □
   3 □  
   4 □
   5 □
   6 □
   7 □
   Hver dag □

31. Hvor mange enheter (E) har du vært med spisevanene dine slik du synes de har vært de siste 4 ukene:
   Enheter(E)

Kosthold

32. Hvor mange sigaretter/rulletobakk har du i gjennomsnitt røykt daglig i de årene du har røukt daglig?  
   Aldri □
   1 □  
   2 □
   3 □
   4 □
   5 □
   6 □
   7 □
   8 □
   9 □
   10 □
   Høyestenkelige smerter □

33. Har du noen gang røykt daglig?  
   Aldri □
   Ja □
   Nei □

Røykevaner

34. Røyker du daglig nå?  
   Aldri □
   Ja □
   Nei □

35. Hvis du har sluttet å røyke daglig, hvor gammel var du da du sluttet?  
   År

36. Hvor mange år til sammen har du røukt daglig?  
   År

37. Hvor mange glass melk drikker du vanligvis av hver type?  
   Aldri □
   1–6 pr. pr. dag □
   1–4 pr. dag □
   1 pr. dag □
   2–3 pr. dag □
   4–5 pr. dag □
   6–7 pr. dag □
   8+ pr. dag □

Drikke

38. Bor du sammen med noen som røyker?  
   Aldri □
   Ja □
   Nei □

39. Har du smerter nå som har vart i tre måneder eller lengre?  
   Aldri □
   1 □  
   2 □
   3 □  
   4 □
   5 □
   6 □
   7 □
   8 □
   9 □
   10 □
   Verste tenkelige smerter □

40. Hvis ja, vennligst angi hvor sterke smerter du har hatt den siste uken:  
   (Sett et kryss)
   Ingen smerte □
   1 □
   2 □
   3 □
   4 □
   5 □
   6 □
   7 □
   8 □
   9 □
   10 □

41. Angi hvor smertene er mest plagsomme:  
   (Sett et kryss)
   Nakke □
   Korsrygg □
   Annet □
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Hvor mange glass vann drikker du vanligvis?</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Sett ett kryss pr. linje)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Brødmat</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Hvor mange brødskiver/knekkebrød bruker du?</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Sett ett kryss pr. linje)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Yoghurt/kornblanding</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Hvor ofte spiser du yoghurt (1 beger)?</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Sett ett kryss)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Fruk og grønnsaker</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Hvor ofte spiser du potet?</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Sett ett kryss pr. linje)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Hvor ofte spiser du ulike typer grønnsaker?</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Sett ett kryss pr. linje)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
60. **Hvor ofte spiser du grøt?** (Sett ett kryss pr. linje)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogn</td>
<td></td>
</tr>
<tr>
<td>Fiskelever</td>
<td></td>
</tr>
</tbody>
</table>

61. **Hvor ofte spiser du suppe?** (Sett ett kryss pr. linje)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Som hovedrett</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Som forrett, lunnsj eller kveldsmat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### FISK


<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Torsk, sei, hyse, lyr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steinbit, flyndre, uer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laks, sjøørret</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kveite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

63. **Med tanke på periodene av året der du spiser fisk, hvor ofte pleier du å spise følgende til middag?** (Sett ett kryss pr. linje)

<table>
<thead>
<tr>
<th>Aldri/ sjelden</th>
<th>1 pr. uke</th>
<th>2–3 pr. mnd.</th>
<th>1 pr. uke</th>
<th>2 pr. uke</th>
<th>3+ Buketter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kokt torsk, sei, hyse, lyr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stekt torsk, sei, hyse, lyr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steinbit, flyndre, uer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laks, sjøørret</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kveite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makrell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sild</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferskvannfisk (abbor, gjedde, hann, røye, sik, ørret)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferskvannfisk (abbor, gjedde, hann, røyen, sik, ørret)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

64. **Dersom du spiser fisk, hvor mye spiser du vanligvis hver gang?** (1 skive/stykke = 150 gram)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiskelever</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

65. **Hvor mange ganger pr. år spiser du fiskeinmat?** (Sett ett kryss pr. linje)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiskelever</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

66. **Dersom du spiser fiskelever, hvor mange spiseskjær pleier du å spise hver gang?** (Sett ett kryss)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rogn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiskelever</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

67. **Hvor ofte bruker du følgende typer fiskemat?** (Sett ett kryss pr. linje)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiskekaker/-pudding/-boller</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fikskefisk/fiskekragteng</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frityr/fiskepinner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andre fiskeretter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

68. **Hvor stor mengde pleier du vanligvis å spise av de ulike rettene?** (Sett ett kryss pr. linje)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiskekaker/-pudding/-boller</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiskekifisk/fiskekragteng</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frityr/fiskepinner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andre fiskeretter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I tillegg til informasjon om fiskeforbruk er det viktig å få kartlagt hvilket tilbehør som blir servert til fisk.

### 69. Hvor ofte bruker du følgende til fisk?

<table>
<thead>
<tr>
<th>Aldri/sjelden</th>
<th>1 pr. mnd.</th>
<th>2–3 pr. mnd.</th>
<th>1 pr. uke</th>
<th>2+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smeltet/fast smør</td>
<td>½</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Smeltet/fast margarin</td>
<td>½</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Settemønster (35%)</td>
<td>½</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Letrommekløver (20%)</td>
<td>½</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Saus med fett (hvitt/brun)</td>
<td>½</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Saus uten fett (hvitt/brun)</td>
<td>½</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

### 70. For de ulike typene tilbehør du bruker til fisk, vær vennlig å kryss av for hvor mye du vanligvis pleier å spise:

| Smeltet/fast smør (ss) | ½ | 1 | 2 | 3 | 4+ |
| Smeltet/fast margarin (ss) | ½ | 1 | 2 | 3 | 4+ |
| Settemønster (ss) | ½ | 1 | 2 | 3 | 4+ |
| Letrommekløver (ss) | ½ | 1 | 2 | 3 | 4+ |
| Saus med fett (dl) | ¼ | ½ | ¾ | 1 | 2+ |
| Saus uten fett (dl) | ¼ | ½ | ¾ | 1 | 2+ |

### 71. Hvor ofte spiser du skaldyr? (f.eks. reker, krabbe og skjell)

<table>
<thead>
<tr>
<th>Aldri/sjelden</th>
<th>1 pr. mnd.</th>
<th>2–3 pr. mnd.</th>
<th>1 pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brunn saus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjysaus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomatsaus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saus med fløte/rømmene</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 72. Hvor mange måseegg eller egg fra annen sjøfugl spiser du i året?

<table>
<thead>
<tr>
<th>Aldri</th>
<th>1-3</th>
<th>4-6</th>
<th>7-9</th>
<th>10-15</th>
<th>16+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barndom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ungdom 13-19 år</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voksen (før siste året)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 73. Hvor ofte har du spist ferskvannsfisk? (abbor, gjedde, harr, røye, sik, orret)

<table>
<thead>
<tr>
<th>Aldri/sjelden</th>
<th>1 pr. mnd.</th>
<th>2–3 pr. mnd.</th>
<th>1 pr. uke</th>
<th>2–3 pr. uke</th>
<th>4+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brun saus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjysaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomatsaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saus med fløte/rømmene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 74. Hvor ofte spiser du følgende kjøttrettet?

<table>
<thead>
<tr>
<th>Aldri/sjelden</th>
<th>1 pr. mnd.</th>
<th>2–3 pr. mnd.</th>
<th>1 pr. uke</th>
<th>2+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinkjøtt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elgkjøtt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 75. Hvor ofte spiser du følgende kjøtt- og færkeretter?

<table>
<thead>
<tr>
<th>Aldri/sjelden</th>
<th>1 pr. mnd.</th>
<th>2–3 pr. mnd.</th>
<th>1 pr. uke</th>
<th>2+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steik (økse, svin, får)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koteletter (økse, svin, får)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biff (økse, svin, får)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kjøttkaker, karbonader</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pølser</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rype, annen vildfugl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gryterrett, lapskauks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pizzas med kjøtt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 76. Dersom du spiser følgende retter, oppgi mengden du vanligvis spiser.

<table>
<thead>
<tr>
<th>Aldri/sjelden</th>
<th>1 pr. mnd.</th>
<th>2–3 pr. mnd.</th>
<th>1 pr. uke</th>
<th>2+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steik (skiver)</td>
<td>½</td>
<td>1</td>
<td>½</td>
<td>1</td>
</tr>
<tr>
<td>Koteletter (stk.)</td>
<td>½</td>
<td>1</td>
<td>½</td>
<td>1</td>
</tr>
<tr>
<td>Pølser (stk. á 150g)</td>
<td>½</td>
<td>1</td>
<td>½</td>
<td>1</td>
</tr>
<tr>
<td>Gryterrett, lapskauks (dl)</td>
<td>1–2</td>
<td>3</td>
<td>4</td>
<td>5+</td>
</tr>
<tr>
<td>Pizza m/kjøt</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4+</td>
</tr>
</tbody>
</table>

### 77. Hvilke sauser bruker du til kjøttrettet og pastaretter?

<table>
<thead>
<tr>
<th>Aldri/sjelden</th>
<th>1 pr. mnd.</th>
<th>2–3 pr. mnd.</th>
<th>1 pr. uke</th>
<th>2+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brun saus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjysaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomatsaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saus med fløte/rømmene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 78. Hvor mye bruker du vanligvis av disse sausene?

<table>
<thead>
<tr>
<th>Aldri/sjelden</th>
<th>1 pr. mnd.</th>
<th>2–3 pr. mnd.</th>
<th>1 pr. uke</th>
<th>2+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brun saus (dl)</td>
<td>¼</td>
<td>½</td>
<td>¾</td>
<td>1</td>
</tr>
<tr>
<td>Sjysaus (dl)</td>
<td>¼</td>
<td>½</td>
<td>¾</td>
<td>1</td>
</tr>
<tr>
<td>Tomatsaus (dl)</td>
<td>¼</td>
<td>½</td>
<td>¾</td>
<td>1</td>
</tr>
<tr>
<td>Saus med fløte/rømmene (dl)</td>
<td>¼</td>
<td>½</td>
<td>¾</td>
<td>1</td>
</tr>
</tbody>
</table>

### ANDRE MATVARER

### 79. Hvor mange egg spiser du vanligvis i løpet av en uke?

<table>
<thead>
<tr>
<th>Aldri/sjelden</th>
<th>1 pr. mnd.</th>
<th>2–3 pr. mnd.</th>
<th>1 pr. uke</th>
<th>2+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brun saus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjysaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomatsaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saus med fløte/rømmene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 80. Hvor ofte spiser du iskrem? (til dessert, Krone-is osv.)

<table>
<thead>
<tr>
<th>Aldri/sjelden</th>
<th>1 pr. mnd.</th>
<th>2–3 pr. mnd.</th>
<th>1 pr. uke</th>
<th>2+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brun saus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjysaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomatsaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saus med fløte/rømmene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 81. Hvor ofte spiser du boller, kaker, wienerbrot eller småkaker?

<table>
<thead>
<tr>
<th>Aldri/sjelden</th>
<th>1 pr. mnd.</th>
<th>2–3 pr. mnd.</th>
<th>1 pr. uke</th>
<th>2+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brun saus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjysaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomatsaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saus med fløte/rømmene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 82. Hvor ofte spiser du boller, kaker, wienerbrot eller småkaker?

<table>
<thead>
<tr>
<th>Aldri/sjelden</th>
<th>1 pr. mnd.</th>
<th>2–3 pr. mnd.</th>
<th>1 pr. uke</th>
<th>2+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brun saus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjysaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomatsaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saus med fløte/rømmene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 83. Hvor ofte spiser du bakevarer som boller, kaker, wienerbrot eller småkaker?

<table>
<thead>
<tr>
<th>Aldri/sjelden</th>
<th>1 pr. mnd.</th>
<th>2–3 pr. mnd.</th>
<th>1 pr. uke</th>
<th>2+ pr. uke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brun saus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjysaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomatsaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saus med fløte/rømmene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
83. **Hvor ofte spiser du dessert?** (Sett ett kryss pr. linje)

<table>
<thead>
<tr>
<th>Aldri</th>
<th>Sjelden pr. mnd.</th>
<th>Pr. uke</th>
<th>Pr. uke daglig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Lefser, lomper
- Småkaker, kjeks
- Vafler
- Lys sjokolade
- Potetchips
- Andre nøtter
- Andre nøtter
- Annen snacks

84. **Hvor ofte spiser du sjokolade?** (Sett ett kryss pr. linje)

<table>
<thead>
<tr>
<th>Aldri</th>
<th>Sjelden pr. mnd.</th>
<th>Pr. uke</th>
<th>Pr. uke daglig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Mørk sjokolade
- Lys sjokolade

85. **Dersom du spiser sjokolade, hvor mye pleier du vanligvis å spise hver gang?** Tenk deg størrelsen på en Kvikk-Lunsj sjokolade, og oppgi hvor mye du spiser i forhold til den.

<table>
<thead>
<tr>
<th>Aldri</th>
<th>Sjelden pr. mnd.</th>
<th>Pr. uke</th>
<th>Pr. uke daglig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

86. **Hvor ofte spiser du ansett godtideri?** (Sett ett kryss)

<table>
<thead>
<tr>
<th>Aldri</th>
<th>Sjelden pr. mnd.</th>
<th>Pr. uke</th>
<th>Pr. uke daglig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

87. **Hvor ofte spiser du salt snacks?** (Sett ett kryss pr. linje)

<table>
<thead>
<tr>
<th>Aldri</th>
<th>Sjelden pr. mnd.</th>
<th>Pr. uke</th>
<th>Pr. uke daglig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

88. **Bruker du tran (flytende)?**

- Ja
- Nei

89. **Hvis ja, hvor ofte tar du tran?** (Sett ett kryss pr. linje.)

<table>
<thead>
<tr>
<th>Aldri</th>
<th>Sjelden pr. mnd.</th>
<th>Pr. uke</th>
<th>Pr. uke daglig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

90. **Hvor mye tran pleier du å ta hver gang?**

- 1 ts
- ½ ss
- 1+ss

91. **Bruker du tranpiller/fiskeoljekapsler?**

- Ja
- Nei

92. **Hvis ja, hvor ofte tar du tranpiller/fiskeoljekapsler?** (Sett ett kryss pr. linje.)

<table>
<thead>
<tr>
<th>Aldri</th>
<th>Sjelden pr. mnd.</th>
<th>Pr. uke</th>
<th>Pr. uke daglig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

93. **Hvilken type tranpiller/fiskeoljekapsler bruker du vanligvis, og hvor mange pleier du å ta hver gang?**

Navn på produkt:

Antall:

| 1 | 2 | 3 |

**Kosttilskudd**

94. **Bruker du kosttilskudd?** (vitaminer/mineraler)

- Ja
- Nei

**Alkohol**

95. **Er du totalavholdskvinne/mann?**

- Ja
- Nei

96. **Hvis nei, hvor ofte og hvor mye drakk du i gjennomsnitt siste året?** (Sett ett kryss pr. linje)

<table>
<thead>
<tr>
<th>Aldri</th>
<th>Sjelden pr. mnd.</th>
<th>Pr. uke</th>
<th>Pr. uke daglig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Øl/rusbrus
- Vin (glass)
- Brennevin (drink/shot)
- Likør/hetvin (glass)

**Tannhelse**

97. **Sist du gikk til tannlege, gikk du til en tannlege/tannpleier i privat praksis eller til en tannlege/tannpleier ansatt i den offentlige tannhelsetjenesten?** (Sett kryss)

- Tannlege i privat praksis
- Tannlegespesialist i privat praksis
- Tannpleier i privat praksis
- Tannlege ansatt på offentlig tannklinikk
- Tannlegespesialist ansatt på offentlig tannklinikk
- Tannpleier ansatt på offentlig tannklinikk
- Tannlege i utlandet

98. **Når var du sist hos tannlege/tannpleier?** (Sett ett kryss)

- Mindre enn ett år siden
- 1-2 år siden
- 3-5 år siden
- Mer enn 5 år siden

99. **Hvis det er mer enn 2 år siden, hva er da grunnen?** (Sett ett kryss)

- Jeg har ikke blitt innkalt
- Jeg har ikke hatt behandling
- Jeg har ikke hatt behandling
- Jeg er redd eller engstelig for å gå til tannlege
- Andre årsaker:
100. Hvor mye har du betalt i alt for dine egen tannbehandling (tannlege, spesialist og tannpleier) de siste 12 månedene? (Sett ett kryss)

☐ Ingenting (har ikke vært hos tannlegen)  ☐ Ingenting (har fått kostnadene dekket)
☐ Mindre enn 1000 kroner  ☐ 1000-5000 kroner
☐ 5001-10.000 kroner  ☐ 10.001-20.000 kroner
☐ Over 20.000 kroner

101. Sett kryss for de to viktigste forhold med tennene for deg personlig?

At tennene er pene når jeg snakker og smiler ............................................
At tennene er smertefrie ....................................................................................
At jeg kan tygge uten problemer .................................................................
At min pust er god ...............................................................................................
At jeg har mine tenner resten av livet ................................................................

102. Hvordan vurderer du tannhelsen din? (Sett ett kryss)

☐ Dårlig  ☐ Ikke helt god  ☐ God  ☐ Svært god

103. Har du tannprotese/gebiss/tannbro? ........ Ja  ☐ Nei

Soling

104. Har du vært i syden eller på annen solferie i løpet av den siste måneden? ........ Ja  ☐ Nei

105. Hvor mye har du vært ute i dagslys i løpet av de siste 7 dagene? ........ timer

106. Har du vært i solarium i løpet av den siste måneden?

☐ Nei  ☐ 1 - 2 ganger  ☐ 3+ ganger

Hudplei midler

107. Hvor ofte (antall ganger) bruker du følgende hudpleiemidler? (Sett ett kryss pr. linje)

<table>
<thead>
<tr>
<th>Aldri/sjelden</th>
<th>1-3 pr. mnd.</th>
<th>1 pr. uke</th>
<th>2-4 pr. uke</th>
<th>5-6 pr. uke</th>
<th>1 pr. dag</th>
<th>2+ pr. dag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ansiktskrem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Håndkrem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bodylotion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parfyme/aftershave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deodorant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hårprodukt (utenom shampoo/balsam)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Egne barn og amming

108. Hvis du er kvinne og har født barn, kan du angi fødselsår på barna og ca. hvor mange måneder du ammet hvert av disse barna?

<table>
<thead>
<tr>
<th>Fødselsår</th>
<th>Antall mnd. barnet ble ammet</th>
<th>Ikke ammet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barn nr. 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barn nr. 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barn nr. 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barn nr. 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barn nr. 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dersom flere barn, skriv på eget ark.

Familie og språkbakgrunn

109. Hvordan var de økonomiske forhold i familien under din oppvekst? (Sett ett kryss)

☐ Meget gode  ☐ Gode  ☐ Vanskelig  ☐ Vanskelig

I Nord-Norge bor det folk med ulik etnis bakgrunn. Det vil si at de snakker ulike språk og har forskjellige kulturer. Eksempler på etnis bakgrunn, eller etnis gruppe er norsk, samisk og kvensk.

110. Hvilket hjemmespråk har/hadde du, dine foreldre og besteforeldre? (Sett ett eller flere kryss pr. linje)

<table>
<thead>
<tr>
<th>Norsk</th>
<th>Samisk</th>
<th>Kvensk</th>
<th>Annet, beskriv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morfar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mormor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farfar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Far</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeg selv</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

111. Hva er din, din fars og din mors etniske bakgrunn?

(Sett ett eller flere kryss pr. linje)

<table>
<thead>
<tr>
<th>Min etniske bakgrunn er</th>
<th>Min fars etniske bakgrunn er</th>
<th>Min mors etniske bakgrunn er</th>
</tr>
</thead>
</table>

112. Hva regner du deg selv som? (Sett ett eller flere kryss)

☐ Norsk  ☐ Samisk  ☐ Kvensk  ☐ Annet, beskriv:

[Blank spaces for additional entries]
Vi vil gjerne stille deg noen spørsmål om dine søvnvaner. Vær oppmerksom på at klokkeslettene må angis i 24 t., det vil si at 11:00, er elleve på formiddagen, og 23:00, er elleve om kvelden.

122. Har du hatt skiftarbeid (natt- eller kveldsarbeid) de siste tre månedene? □ Ja □ Nei

123. Hvor mange dager i uken har du ikke anledning til å velge fritt når du vil sove og når du vil stå opp? (Kan f.eks. gjelde for dager hvor du skal på arbeid, skole etc.) (Sett ett kryss)

<table>
<thead>
<tr>
<th>Dag</th>
<th>Minutter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

124. På dager jeg ikke har anledning til å velge fritt når jeg vil sove/stå opp:

<table>
<thead>
<tr>
<th>Time</th>
<th>Minutt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Takk for at du deltok i undersøkelsen!
**Helse- og livsstilsundersøkelse**


1. I hvilket år er du født? 
   - Årstall: __________
   - Kvinne: ☐ Mann: ☐

2. Er du?
   - ☐ Kvinne
   - ☐ Mann

3. Hva er din sivilstatus?
   - ☐ Gift
   - ☐ Samboer
   - ☐ Skilt
   - ☐ Ugift
   - ☐ Enke/enkemann

4. Hvor mange års skolegang har du gjennomført? (Ta med alle år du har gått på skole eller studert)
   - Antall år: __________

5. Hvis du er kvinne: Hvor mange barn har du født?
   - Antall: __________

6. Hvis du er kvinne: Hvor mange barn har du ammet?
   - Antall: __________

**Egen helse**

7. Hvordan er helsen din? (Sett ett kryss)
   - ☐ Dårlig
   - ☐ God
   - ☐ Ikke helt god
   - ☐ Svært god

8. Hvordan vurderer du tannhelsen din? (Sett ett kryss)
   - ☐ Dårlig
   - ☐ God
   - ☐ Ikke helt god
   - ☐ Svært god

9. Har du tannprotese/gebiss/tannbro?
   - ☐ Ja
   - ☐ Nei

10. Når var du sist hos tannlege eller tannpleier?
    - ☐ Mindre enn ett år siden
    - ☐ 1–2 år siden
    - ☐ 3–5 år siden
    - ☐ Mer enn 5 år siden

11. Hvor fornøyd er du med tannhelsetjenesten i din kommune? (Sett ett kryss)
    - ☐ Svært misfornøyd
    - ☐ Mesfornøyd
    - ☐ Fornøyd
    - ☐ Vet ikke

**Hjerte-karsykdommer**

12. Har du eller har du hatt høyt blodtrykk?
    - ☐ Ja
    - ☐ Nei

13. Hvis ja, hvor gammel var du da du fikk høyt blodtrykk?
    - Alder: __________

14. Bruker du medisin mot høyt blodtrykk?
    - Ja, nå: ☐
    - Før, men ikke nå: ☐
    - Aldri: ☐

15. Hvis du bruker eller tidligere har brukt blodtrykksmedisin, omtrent hvor gammel var du første gang du begynte med slik medisin?
    - Alder: __________

16. Har du hatt hjerteinfarkt?
    - ☐ Nei, aldri
    - ☐ 1 gang
    - ☐ 2 ganger
    - ☐ 3 eller flere

17. Hvis ja, hvor gammel var du første gang du fikk hjerteinfarkt?
    - Alder: __________

18. Har du angina pectoris (hjertekrampe)?
    - ☐ Ja
    - ☐ Nei

19. Hvis ja, hvor ofte har du merket slike smatter i løpet av den siste måneden?
    - Sjelden: ☐
    - 1 gang pr. uke: ☐
    - 2-3 ganger pr. uke: ☐
    - 4-6 ganger pr. uke: ☐
    - 7 eller flere ganger pr. uke: ☐

20. Hvor gammel var du første gang du fikk angina pectoris?
    - Alder: __________

21. Har du blitt hjerteoperert (bypass)?
    - ☐ Ja
    - ☐ Nei

22. Har du blitt blokket/fått innsatt stent?
    - ☐ Ja
    - ☐ Nei

23. Har legen sagt at du har hjerteflimmer?
    - ☐ Ja
    - ☐ Nei

24. Hvor gammel var du første gang du fikk hjerteflimmer?
    - Alder: __________
**Diabetes (sukkersyke)**

25. Har du noen gang fått påvist diabetes (for høyt blodsukker)? □ Ja □ Nei

*Dersom nei, gå videre til spørsmål 35.*

26. Dersom ja, hvilken type diabetes har du fått påvist? (Sett ett eller flere kryss)

□ Svangerskapsdiabetes
□ Diabetes type I
□ Diabetes type II

Dersom du bruker eller har brukt insulin:

27. Hvor gammel var du da din diabetes ble oppdaget?

□ Alder

28. Hvor gammel var du da din diabetes ble oppdaget?

□ Alder

**INSULIN**

29. Bruker du insulin mot din diabetes? □ Ja □ Nei □ Aldri

Dersom du bruker eller har brukt insulin:

30. Hvor gammel var du da du begynte med insulin? □ Alder

31. Hvor mange ganger pr. dag tar du/tok du vanligvis insulin? □ ganger

32. Hvor mange enheter insulin tar du/tok du vanligvis til sammen pr. dag? □ enheter(E)

**TABLETTER**

33. Bruker du tabletter mot din diabetes? □ Ja □ Nei □ Aldri

Dersom du bruker eller har brukt tabletter:

34. Hvor gammel var du da du begynte med tabletter mot diabetes? □ Alder

**Andre sykdommer**

35. Har du eller har du noen gang hatt?

Ja □ Nei □ Alder første gangen

□ Astma
□ Eksem
□ Kronisk bronkitt, emfysem, KOLS
□ Multippel sklerose (MS)
□ Psoriasis
□ Bechterews sykdom

**Smerter**

36. Har du smerter nå som har vart i tre måneder eller lengre?

□ Ja □ Nei

37. Hvis ja, vennligst angi hvor sterke smerter du har hatt den siste uken: (Sett ett kryss)

□ Ingen smerte
□ Verste tenkelige smerter

38. Angi hvor smertene er mest plagsomme:

□ (Sett ett kryss)

☐ Nakke ☐ Korsrygg ☐ Annet

**Fysisk aktivitet**


□ Svært lite □ Svært mye

□ Alder 1 2 3 4 5 6 7 8 9 10

☐ 14 år ☐ 30 år ☐ I dag
40. Er du totalavholdskvinne/mann? ☐ Ja ☐ Nei

41. Hvis nei, hvor ofte og hvor mye drakk du i gjennomsnitt siste året? (Sett ett kryss for hver linje)

<table>
<thead>
<tr>
<th>Øl/rusbrus (½ l.)</th>
<th>aldri/ sjelden</th>
<th>1 pr. mn.</th>
<th>2–3 pr. mn.</th>
<th>1 pr. uke</th>
<th>2–4 pr. uke</th>
<th>5–6 pr. uke</th>
<th>1 pr. dag</th>
<th>2+ pr. dag</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vin (glass)</th>
<th>☐</th>
<th>☐</th>
<th>☐</th>
<th>☐</th>
<th>☐</th>
<th>☐</th>
<th>☐</th>
<th>☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brennevin (drink/shot)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Likør/hetvin (glass)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

42. Har du noen gang røykt daglig? ☐ Ja ☐ Nei

Dersom du aldri har røykt daglig, kan du gå videre til spørsmål 47.

43. Røyker du daglig nå? ☐ Ja ☐ Nei

44. Hvis du har sluttet å røyke daglig, hvor gammel var du da du sluttet? ☐ ☐

45. Hvor mange år til sammen har du røykt daglig? ☐ ☐

46. Hvor mange sigaretter/rulletobakk har du i gjennomsnitt røkt daglig i de årene du har røkt daglig? ☐ ☐

47. Bor du sammen med noen som røyker? ☐ Ja ☐ Nei

48. Hvilket språk ønsker du først og fremst å snakke med helsepersonell på? (Sett ett eller flere kryss)

<table>
<thead>
<tr>
<th>Norsk</th>
<th>Samisk</th>
<th>Kvensk</th>
<th>Annet, beskriv:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>

49. Hvis du har svart «samisk», men ikke fikk tilbud om samisktalende lege ved siste legebesøk, ble det da tilbudt tolk?

Hos fastlegen
☐ Ja ☐ Ønsker ikke bruke tolk ☐ Ikke aktuelt

På sykehus/ hos spesialist
☐ Ja ☐ Ønsker ikke bruke tolk ☐ Ikke aktuelt

Familie og språkbakgrunn

50. Hvordan var de økonomiske forhold i familien under din oppvekst? (Sett ett kryss)

<table>
<thead>
<tr>
<th>Meget gode</th>
<th>Gode</th>
<th>Vanskelige</th>
<th>Meget vanskelige</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

I Nord-Norge bor det folk med ulik etnisk bakgrunn. Det vil si at de snakker ulike språk og har forskjellige kulturer. Eksempler på etnisk bakgrunn, eller etnisk gruppe er norsk, samisk og kvensk.

51. Hvilket hjemmespråk har/hadde du, dine foreldre og beste foreldre? (Sett ett eller flere kryss)

<table>
<thead>
<tr>
<th>Morfar</th>
<th>Mormor</th>
<th>Farfar</th>
<th>Farmor</th>
<th>Far</th>
<th>Mor</th>
<th>Jeg selv</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

52. Hva er din, din fars og din mors etniske bakgrunn? (Sett ett eller flere kryss)

<table>
<thead>
<tr>
<th>Norsk</th>
<th>Samisk</th>
<th>Kvensk</th>
<th>Annet, beskriv:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>

53. Hva regner du deg selv som? (Sett ett eller flere kryss)

<table>
<thead>
<tr>
<th>Norsk</th>
<th>Samisk</th>
<th>Kvensk</th>
<th>Annet, beskriv:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>
**Erfaringer og bruk av helsetjenester**

54. Den legen du vanligvis bruker er:
- [ ] Din fastlege
- [ ] Annen lege

55. Hvor lenge har du hatt din nåværende fastlege?
- [ ] Mindre enn 6 mnd
- [ ] 6 til 11 måneder
- [ ] 12 til 24 mnd
- [ ] Mer enn 2 år

56. Har du i løpet av de siste 12 mnd kontaktet fastlegen din for hjelp eller råd til deg selv?  [ ] Ja  [ ] Nei

Hvis ja, opplevde du at du fikk den hjelpen du ba om?
- [ ] Aldri
- [ ] Av og til
- [ ] Vanligvis
- [ ] Alltid

57. Hvor fornøyd eller misfornøyd er du med følgende sider ved fastlegetjenesten?  (Sett ett kryss)  

<table>
<thead>
<tr>
<th>Fastlegens tilgjengelighet på telefon</th>
<th>Meget fornøyd</th>
<th>Forøyd</th>
<th>Misfornøyd</th>
<th>Vet ikke</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ventetid for å få time hos fastlege</th>
<th>Meget fornøyd</th>
<th>Forøyd</th>
<th>Misfornøyd</th>
<th>Vet ikke</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tid hos fastlegen</th>
<th>Meget fornøyd</th>
<th>Forøyd</th>
<th>Misfornøyd</th>
<th>Vet ikke</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fastlegens forståelse for dine problem</th>
<th>Meget fornøyd</th>
<th>Forøyd</th>
<th>Misfornøyd</th>
<th>Vet ikke</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fastlegens informasjon om dine helseplager, undersøkelse og behandlingsopplegg</th>
<th>Meget fornøyd</th>
<th>Forøyd</th>
<th>Misfornøyd</th>
<th>Vet ikke</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Totalt sett, hvor fornøyd eller misfornøyd er du med den kommunale helsetjenesten?</th>
<th>Meget fornøyd</th>
<th>Forøyd</th>
<th>Misfornøyd</th>
<th>Vet ikke</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
<td>[ ]</td>
</tr>
</tbody>
</table>

De neste spørsmålene omhandler spesialisthelsetjenesten.

Med spesialisthelsetjenesten menes det sykehus, distriktssykehus, distriktspsykiatrisk senter (DPS), spesialistlegesenter eller enkeltspesialist.

58. Har du i løpet av de siste 12 måneder vært til undersøkelse eller behandling for fysiske plager hos:
- [ ] Sykehus
- [ ] Spesialistlegesenter
- [ ] Privatpraktiserende spesialist
- [ ] Ingen av delene

59. Har du i løpet av de siste 12 måneder vært til undersøkelse eller behandling for psykiske plager hos:
- [ ] Psykiatrisk sykehus
- [ ] Distriktspsykiatrisk senter
- [ ] Privatpraktiserende spesialist
- [ ] Ingen av delene

60. Dersom du har vært til behandling hos spesialist for fysiske eller psykiske plager, svar på følgende spørsmål:  (Sett ett kryss)  
Svar på en skala fra 0 til 10 (0 = i liten grad 10 = i stor grad)

**Fikk du anledning til å fortelle det du følte var viktig om din tilstand?**

- [ ] Ikke aktuelt
- [ ] 0
- [ ] 1
- [ ] 2
- [ ] 3
- [ ] 4
- [ ] 5
- [ ] 6
- [ ] 7
- [ ] 8
- [ ] 9
- [ ] 10

For fysiske plager  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]

For psykiske plager  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]

**Snakket legene/behandlerne til deg slik at du forstod dem?**

- [ ] Ikke aktuelt
- [ ] 0
- [ ] 1
- [ ] 2
- [ ] 3
- [ ] 4
- [ ] 5
- [ ] 6
- [ ] 7
- [ ] 8
- [ ] 9
- [ ] 10

For fysiske plager  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]

For psykiske plager  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]

**Alt i alt, har du tillit til sykehuset eller spesialisten du var hos?**

- [ ] Ikke aktuelt
- [ ] 0
- [ ] 1
- [ ] 2
- [ ] 3
- [ ] 4
- [ ] 5
- [ ] 6
- [ ] 7
- [ ] 8
- [ ] 9
- [ ] 10

For fysiske plager  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]

For psykiske plager  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]

**Alt i alt, hvor tilfreds er du med pleien og behandlingen du eventuelt fikk?**

- [ ] Ikke aktuelt
- [ ] 0
- [ ] 1
- [ ] 2
- [ ] 3
- [ ] 4
- [ ] 5
- [ ] 6
- [ ] 7
- [ ] 8
- [ ] 9
- [ ] 10

For fysiske plager  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]

For psykiske plager  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]

Takk for at du deltok i undersøkelsen!