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Abstract 

Objectives: Bulk fill composites are becoming increasingly popular due to claimed facilitated 

placement and curing. Varying results on the mechanical properties and depth of cure have 

been reported, however. The aim for the present study was to compare flexural strength, E-

modulus, secant modulus, Knoop hardness and depth of cure of bulk fill and universal 

composite materials, subjected to different storage times and artificial aging. 

Materials and methods: Two bulk fill (1 low and 1 high viscosity) vs. 2 universal composite 

resin based materials were subjected to mechanical and depth of cure testing. Evaluation was 

performed according to ISO4049:2009 with slight modifications regarding mould size and 

storage time/temperature. To simulate aging, increased storage temperature was used for 

additional analysis. Three groups were made of each material, 37°C (24 hours and 7 days) and 

57°C (7 days). Mechanical testing was performed after assigned storage time. Micro CT was 

used for complimentary evaluation on 2 randomly selected samples. All data were tested for 

normality and analyses were performed with a 95% confidence interval.     

Conclusion and significance:  There were significant differences in mechanical properties 

among the tested materials. Storage and aging affected the materials in a dissimilar manner. 

The low viscosity bulk fill composite evaluated showed lower moduli and hardness due to 

filler loading in comparison to the other materials tested, but a significant higher flexural 

strength and depth of cure with increased storage temperature in comparison. The increase 

could be explained by the monomer composition in the material.  The result indicates that the 

term “bulk fill” seems irrelevant since it is not a discriminating factor for assessment of 

different mechanical properties. More relevant information concerning filler loading and 

monomer content should be given and assessed.  Negative effects on the mechanical 

properties can be obtained due to voids within the materials. 
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Introduction  

In dentistry, conservative direct treatment with polymer resin based restorative materials used 

in dentistry (hereafter referred to as composites) was introduced at the late 50s, early 60s (1). 

After its entry, composite has undergone radical improvements from its early origin (1). Still, 

there are limitations concerning handling. Differences in filler type and content, photo 

initiators, inhibitors and monomer composition confines universal composites to 1,5-2mm 

oblique layers.  

Reasons among others are that, best bond strength and lowest polymerization stress have been 

reported with the incremental layering technique, due to the decrease of the configuration 

factor (C-factor) (2-5). The C factor describes the relationship between the cavity 

configuration and development of stress. It is dependent on the bonded vs. unbonded areas as 

well as volume of the composite (6, 7). A high C-factor will inversely increase polymerization 

stress during cure of photo-polymerized composites, independent of composite used (7, 8). 

Examples of effects caused by high polymerization stress are; interfacial/cohesive failure, 

ingrowth of bacterial biofilm, cuspal flexure, secondary caries and failure of the restoration 

(9-11).  

By introduction of more flexible and multi-functional monomers (e.g. high density UDMA, 

Bis-EMA etc.), new initiator systems (e.g. Ivocerin), shrinkage stress relievers and/or 

polymerization modulators (table 1), improvements of decreased polymerization stress and 

higher degree of conversion (DC) can be achieved (12, 13). Bulk fill composites is an 

example of a different class of materials developed with the attempt to decrease 

polymerization stress and having an adequate degree of conversion even when increments up 

to 5 mm are placed (14). 

While universal composites are proven to attain the best properties when used in combination 

with the incremental layering technique, bulk-fill composites have several methods used for 

introducing material to the cavity (3, 15). Due to their different viscosities (i.e. high or low) 

some are manipulated with instruments like universal composites (e.g. Tetric EvoCeram bulk 

fill), while others are not (e.g. SDRTM and Sonic fill) (14, 16, 17).  It can be speculated that 

the use of instruments when placing composites in the cavity will make the process more 

technique sensitive, due to the risk of introducing defects (e.g. voids etc.) compared to 

materials that can be more easily placed (e.g. low viscosity bulk fill composites). A high 

number of porosities/defects will affect the mechanical properties negatively. One reason 
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could be that no cross linkage of polymers is achieved in the area of a void. To the knowledge 

of the authors, however, there seems to be limited data on the subject at present. For 

evaluation of internal structures in relation to mechanical properties, Micro-CT offer a non-

invasive suitable method for evaluation of the presence/distribution of voids in polymer-based 

materials (18-21).  

The difference in viscosity is mainly due to filler content and/or resin composition (22). Low 

viscous bulk fill materials may be indicated as a base, before high viscous universal 

composites is deposited in direct occlusion. The main reason for placing a composite material 

of high viscosity in occlusion is because low viscosity bulk fill composites are less wear 

resistant due to their lower filler content and hardness (23, 24). They are therefore not 

recommended to be in occlusion, especially posterior due to inferior wear resistance (25). 

Still, composite of low viscosity may adapt more sufficiently to the surface of the cavity, 

leading to lower failure rate – as shown by Figueiredo et. al. with the use of universal low 

viscosity composites (2). These features are claimed to facilitate handling and reduce time 

spend reconstructing, especially for larger cavities. However, neither any improvements in 

survival rate of occlusal restorations, nor any decrease in polymerization stress has been 

reported using universal composites (15, 26). For low viscosity bulk fill restorations covered 

with universal high viscous composite occlusal has shown an annual failure rate comparable 

with cavities restored with universal composite alone (27).  

Bulk-fill composites (both high- and low viscous) can according to their manufacturers, and 

depending on material, be deposited in layers up to 4/5mm before each curing cycle (14, 16, 

17). Still, there are concerns about mechanical properties such as flexural strength, E-modulus 

and surface hardness (24). Therefore, uncertainty about the advantage of bulk fill materials in 

comparison to universal types of composites have been raised (24).  

Composites are exposed to a high dynamic stress in the oral cavity – therefore the materials 

must endure high mechanical and physical stress. Several parameters are used to describe a 

materials ability, such as flexural strength, modulus of elasticity and micro hardness (28-30). 

Flexural strength describes the materials resistance to fracture and studies published indicated 

the correlation between high flexural strength and high fracture resistance (28, 31-34). ISO 

4049:2009 state a minimum flexural strength requirement of 80 Mpa for light curing 

composites (35). Modulus of elasticity (Young’s modulus, or E-modulus) is considered as one 

important feature for mechanical stability (29). Environmental conditions have been shown to 
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affect the E modulus, e.g. storage in water or alcohol as well as temperature and time have a 

diminishing effect on the modulus (36-40). Reports of correlation between low E-modulus 

and marginal fractures have been made, however, not conclusively substantiated (41). The 

hardness of a composite, or “micro hardness”, is best determined by Knoop hardness (29). 

Micro hardness correlates with wear resistance, i.e. a higher hardness – yielding a higher wear 

resistance (42). Micro hardness also correlates with modulus of elasticity, viscosity and 

degree of polymerization (43). 

Hypothesis:  

The null hypothesis formulated for the present study were that no differences concerning 

flexural strength, E-modulus, secant modulus and Knoop hardness between universal 

composites and bulk fill composites could be recorded, and that storage time or artificial 

aging would in addition not affect the properties tested.  

Aim:  

To evaluate flexural strength, E-modulus, secant modulus, Knoop hardness and depth of cure 

of bulk fill composites compared with universal composites after water storage and simulated 

aging, using micro CT as a complimentary evaluation method.   
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Materials and methods:  

Composites: 

Two Bulk fill composites, SDRTM (low viscosity) (Dentsply DeTrey, Konstanz, Germany) 

and Tetric EvoCeram Bulk Fill® (high viscosity) (Ivoclar/Vivadent, Schaan, Lichtenstein) 

were compared with two universal composites, Ceram X Universal® (Dentsply DeTrey, 

Konstanz, Germany) and Tetric EvoCeram® (Ivoclar/vivadent, Schaan, Lichtenstein). The 

content of monomer and fillers of the materials investigated are presented in table 1. All 

samples were made in a shade comparing to A3, with exception of SDRTM that had one shade 

only.  

Table 1: Content as described in “Scientific Compendium” from each manufacturer. 

 

Sample preparation: 

For each of the materials tested, 21 samples were made. Eighteen of the samples for each 

material were divided into 3 groups for the testing of mechanical properties after storage at 

different times and temperature (figure 1). Three samples of each material were subjected to 

tests for depth of cure.  

 

Composites  LOT nr. Monomer content Filler content Other 
Ceram X 
Universal 
(CXU) 

1508000827 UDMA, Bis-
EMA, TEGDMA 
and methacrylic 
polysiloxane 
nano-particles. 

79 % (wt %) 
Pre-polymerized 
SphereTEC™, non-
agglomerated barium glass 
and ytterbium fluoride. 

Spere TEC™: 
Combination of large and 
small fillers 
 

Smart 
Dentin 
Replacement 
(SDRTM) 
 

1510000225 SDR™ patented 
high density 
UDMA, di-
methacrylate resin 
and di- functional 
diluents. 

68% (wt %) 
Barium and strontium 
alumino-fluoro-silicate 
glasses. 
 

Claims low shrinkage 
stress due to high density 
UDMA and high glass 
filler loading. In addition 
to polymerization 
modulators embedded in 
monomers 

Tetric 
EvoCeram 
(EC) 

S01562 17% (wt %)  
Bis-GMA, 
UDMA and 
ethoxylated bis-
EMA. 

82-83% (wt %)  
Barium glass filler, 
ytterbiumtrifluoride, 
mixed oxide and 
prepolymer. 

 

Tetric 
EvoCeram 
Bulk Fill 
(ECB) 

U17294 21% (wt %) 
Bis-GMA, bis-
EMA and 
UDMA. 

79% (wt. %)  
Barium aluminium silicate 
glass, ytterbium fluoride, 
spherical mixed oxide and 
prepolymer. 

Ivocerin initiator, 
patented filler with low e-
modulus. 
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For evaluation of the mechanical properties, samples were made according to ISO 4049:2009 

for flexural strength. SDRTM was inserted with the supplied capsules without using any hand 

instruments. The other materials were inserted from their compules and placed by hand 

instruments. All materials were inserted in one layer and covered with a thin polyethylene 

sheet with a glass block placed on top. Great care was taken to avoid voids and ensure proper 

application. The composite was light cured in overlapping sections in accordance with ISO 

4049:2009 after removal of the block. 

The time used for each curing cycle was as recommended by the manufacturers. For SDRTM 

and Ceram X Universal (CXU), 20s as given at an irradiance >550mW/cm2. For EvoCeram  

 (EC) and EvoCeram Bulk Fill (ECB), 10s as given at an irradiance >1000mW/cm2, or 20s 

(<1000mW/cm2). All curing was performed with a Bluephase G2 light curing unit (LCU) 

(Ivoclar/Vivadent, Schaan, Lichtenstein) set to “high mode”.  

This LCU has been shown to have a homogenous light beam profile (44-47). The irradiance 

was controlled regularly before sample preparation for each group, using a calibrated MARC 

resin calibrator (Bluelight Analytics, Halifax, Canada). Mean irradiance measured to 1330±42 

mW/cm2 (table 2).  

Figure 1: Flowchart of sample production and testing.
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After curing, the samples were removed from the mould and excess eliminated with Silicon 

Carbide paper (800 grit, Buehler, Lake Bluff, USA) and visually inspected. The samples were 

then individually placed directly in glass containers containing double distilled water; grade II 

(ISO 3696:1987) and stored in accordance to its respective test group (figure 1). For the 

purpose of storage, two identical heating cabinets (Memmert, VWR International, Radnor, 

Pennsylvania, US) were used for the two conditions determined (37±1°C and 57±1°C). The 

temperature of 37±1°C was used to simulate oral environment, and 57±1°C to give a 4 times 

aging effect – meaning that 7 days at 57°C was comparable to 28 days of aging in 37°C, 

based on the Arrhenius equation (48).  

After storage, the samples in their containers were removed from their respective heating 

cabinet and given 30 minutes to recover to room temperature (≈23±1°C). The aim was that all 

samples should reach the same temperature before start of the test. The samples were then 

carefully dried using a thin clean paper towel, and submitted to testing.  

To evaluate eventual bias effects caused by differences in recommended polymerization 

schemes, one additional group of EC (EC20s) and ECB (ECB20s) was made using 20s (in 

“high mode”) instead of 10s, to assess the effect of the same cure time as SDRTM and CXU. 

These two groups were stored for 24 hours and then tested.  

Evaluation of mechanical properties:  

Three-point bending test was performed according to ISO 4049:2009 using a Zwick/Roell 

Z050 (Ulm, Germany, equipped with TestXpert II v.3.4 software). A Heidenhain ND 287 

(software version V1.07) (Traunreut, Germany) digital measuring instrument connected to the 

Zwick/Roell was used for measurements of the specimen dimensions. The distance between 

the bars were 20 mm and the force was applied vertical with a cross-head speed of 

0,75mm/min until fracture. Results were calculated relating to the mechanical factors 

described below:  

 

Material Output: (mW/cm2) Cure time: RE: 
   Before After      

CXU 1391 1313 20  27 820 

SDR 1366 1294 20  27 320 

EC 1326 1285 10  13 260 

EC 20S 1326 1285 20  26 520 

ECB 1286 1312 10  12 860 

ECB 20S 1286 1312 20  25 720 

Table 2: LCU Output measurements before and after cure. RE: Radiant exposure (output x time). 
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Flexural strength 

ߪ ൌ
ܮܨ3
2ܾ݀^2

 

(F = axial load, L = length of sample, b = sample width, d = sample depth)  

E-Modulus 

This factor, visualized as the angle of the elastic part of the stress/strain curve, describes the 

ability for a material to resist elastic deformation (22). 

ܧ  ൌ
ி௅଴

஺଴∆௅
 

(F = force exerted, L0 = sample length pre bending, A0 = Cross section of sample, ∆L = change in length)  

Secant modulus 

To complement the description of the loadbearing properties of the test materials, secant 

modulus was additionally calculated. In contrast to E-modulus, the secant modulus describes 

the slope from 0 to a given point on the stress-bearing curve (22). It is calculated using the 

same formula as for E-modulus, only with an altered point of deflection, in this experiment 

the point of 60% flexure was used (49). The aim was to provide a more complex description 

of the total stress/strain of a material with viscoelastic properties (22).  

Knoop Hardness 

For evaluation of surface hardness, Knoop hardness was tested for on the same samples used 

for the 3-point bending test and in conjunction with the latter. A Zwick/Roell Indentec ZHVµ-

A test machine (Ulm, Germany) equipped with Zwick/Roell ZHµ HD Micro Hardness 

Software (Ulm, Germany) was used. Test conditions were set to 50g load with a dwell time of 

15s. This setting was determined after pilot tests that provided stable values. Four 

indentations per sample (2 on each fragment) were performed and the mean value was used to 

describe the Knoop hardness of the specimen. 

Micro CT evaluation 

Two random selected samples (containing 2 fragments each) from each material, regardless of 

group, was evaluated for defects and irregularities using a Micro-CT scanning (Skyskan 1272, 

Bruker, Kontich, Belgium). The samples were stored in a desiccator using dehydrated silica to 

enhance the contrast between pores and material prior to the Micro-CT scanning.  

Depth of cure (DOC)  

ISO 4049:2009 was used as a reference for the depth of cure, with exception of the diameter 

of the mould due to availability. The diameter used in this experiment was 6 mm in contrast to 

4mm stated by the standard. The measurements were performed straight after cure. “High 

mode” (1330±42mW/cm2) was used with the same setting as in the mechanical test and 
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curing time as described by the manufacturer. However, when high mode was used, no 

discrimination in cure depth between the materials tested could be observed – due to complete 

cure of the entire sample. Therefore, a second test in “Low mode” (783±31mW/cm2) where 

performed. All composites in this group were cured for 20s in accordance with the 

manufacturers recommendation respectively (16, 17, 50, 51). Sample dimension were 

measured using a Heidenhain ND287 height measurement device (Heidenhain, Traunreut, 

Germany), to a precision of 0,001mm. Depth of cure was defined as the total polymerized 

sample depth divided by 2 (35). A total of 3 tests per material were performed, as required by 

ISO 4049:2009. 

Statistical analysis 

All data were tested for normality (Shapiro-Wilk). The data for the Knoop hardness and depth 

of cure test fulfilled the assumptions for One Way ANOVA parametric test. The E – modulus, 

secant modulus and flexural strength data did nor fill the assumptions for a parametric test; 

thus, Kruskal-Wallis non-parametric One Way ANOVA were used. Analyses were conducted 

using Sigmaplot 13 (Systat Software Inc., San Jose, CA, USA), at a level of significance set 

to 5%. 
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Results 

The results achieved are presented in table 3. 

 

Flexural strength  

At 24 hours of storage (37°C) all materials displayed flexural strength values well above the 

limit set in the ISO standard (i.e. 80 MPa). With increased storage time (7 days) at 37°C, the 

materials EC and ECB showed a decrease in flexural strength to a lager degree compared to 

CXU and SDRTM respectively (table 3). The difference recorded between the materials was, 

however, not significant (p>0.05). In contrast, with increased storage temperature (57°C), a 

change was recorded with a pronounced increase in flexural strength for SDRTM and a 

decrease for the other materials tested (table 3). The difference was significant (p<0.05) and 

the increase was also significant when SDRTM was compared at 24 hours (37°C) and 7 days 

(57°C). For EC and ECB, the flexural strength decreased below the limit of the ISO standard 

after 7 days’ storage (57°C).   

E- and secant moduli 

When the moduli were tested and calculated for, no significant difference between the 

materials CXU, EC and ECB was recorded. Concerning changes with time and temperature, 

ECB showed the largest decrease in moduli after 7 days both in 37°C and 57 °C environment, 

despite having the highest value after 24 hours (37°C) of storage. SDRTM showed a 

comparable lower E- and secant moduli (p<0.05) at all test occasions, but not significant to 

the material EC (table 3). As expected, the secant modulus as a test parameter showed slightly 

lower values than that of the E-modulus for all materials tested.   

    (mPa) (mPa) (mPa)   (mm) 
 Composite: Group: Flex.strgt. E-mod Secant-mod KH Poly depth 

CXU 24hours:  97±16  7780±128  7470±145  50±2  5,2±0,02 
  57degree:  85±6  7340±149  7080±118  46±2    
  7days:  102±13  7990±225  7690±229  51±2    

EC 24hours:  93±7  6650±128  6400±187  38±3  4,6±0,3 
  57degree:  72±4  5520±144  5330±126  39±2    
  7days:  80±11  6320±100  6060±115  38±2    
  20s   83±7  6510±255  6280±251  40±2    

ECB 24hours:  98±6  8110±146  7790±121  45±1  6,6±0,4 
  57degree:  76±4  6840±154  6570±160  45±2    

  7days:  82±11  7380±115  7090±74  46±2    
  20s   95±8  7860±90  7548±109  48±1    

SDR 24hours:  103±4  4510±426  4390±395  24±1  7,8±0,06 
  57degree:  114±4  4970±194  4830±198  29±1    
  7days:  101±11  4610±296  4480±278  26±2    
Table 3: Mean values and standard deviation (respectively) for all performed tests.
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Knoop hardness 

CXU showed highest Knoop hardness at all test occasions while SDRTM displayed the lowest 

(table 3). The differences between the materials were significant (p<0.05) at all conditions 

tested for with exception for CXU and ECB at 7 days (57°C). When changes depending on 

time and storage temperature within each group of material were tested for, no statistical 

changes in Knoop hardness could be recorded, with one exception, however. CXU stored in 

57°C (7 days) had significantly lower value (46±2 KH) than when stored in 37°C (7 days) 

(table 3).  

Micro CT evaluation  

A qualitative assessment of size, number of voids, and their distribution are presented in table 

4. A representative illustration from each material is given in figure 2.  

 Figure 2: Illustrations of 3D modeled Micro CT scanning. 
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Depth of cure:  

The results are presented in figure 3 and the differences were significant for all materials 

(p<0.05). All composites respectively fulfilled the requirements claimed by their 

manufacturer. Both bulk fill materials showed higher depth of cure than the universal 

composites.  

  

Material Micro CT assessment 
CXU Fairly homogenous. Voids show some tendency to follow the interface between the different 

composite layers. Small voids, with exception of a large operator induced void between two 
composite layers. 

SDR Homogenous. Voids seem to be located in connection to the surface of the mould. Has the fewest 
voids in the samples seen, however, a few large voids (“air bubbles”) are present. 

EC Slightly heterogeneous. Random distribution, but clear tendency for accumulation between 
composite layers. Small voids, radiopaque spots also visible. 

ECB Slightly heterogeneous. Random distribution, but tendency for accumulation between composite 
layers. Small voids, radiopaque spots also visible. 

Table 4: Evaluation of the test materials based on micro CT scanning of 2 random samples from each material. 

Figure 3: Polymerization depth of all composites. X axis depicting polymerization depth in 
millimeters. The error‐bar on top of each bar indicates standard deviation. Results 
presented were attained using “Low mode” setting on the LCU. 
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Discussion  

Aging due to temperature increase affected the materials in a dissimilar manner. No 

differences regarding flexural strength between the materials were shown at the lower storage 

temperature. At 57 °C however, the differences were more pronounced. SDRTM showed a 

significant increased strength in comparison and also the moduli for SDRTM increased. 

Concerning Knoop hardness, time and temperature seemed to have less effect, the differences 

between the materials was however, more pronounced. 

Based on the results obtained, the null-hypothesis stated was considered as rejected for the 

low viscosity bulk fill material tested.  

In the present study, standardized evaluated methods (i.e. ISO 4049:2009) were used with 

slight modifications concerning the storage conditions (i.e. 7 days instead of 24 hours for two 

of the test groups). The modification was done to increase the possibilities of discrimination 

between the materials tested. In that respect, also the temperature was set to 57°C to increase 

the aging effect in accordance with the Arrhenius equation suitable for polymers (48). That 

will give a possibility to study changes in the materials over time. Increasing the temperature 

to simulate aging is a well-established method for studying aging effects in polymer resin 

based materials. Using the Arrhenius equation, a 20°C increase will correlate to 4 times 

increased aging, meaning that 7 days of storage in 57°C will correspond to 28 days in 37°C. 

Twenty – eight days, is still a short time and if longer times could have been used, a more 

pronounced aging effect could have been evaluated. 

As the same sample was used for the 3-point bending and Knoop hardness test – the 

mechanical properties can also be more accurately validated as they originated from the same 

sample lowering the risk of bias due to differences in handling. In addition, evaluation of the 

internal structure of the sample using micro-CT examination gave the opportunity for 

increased insight into the variability seen within – and between groups.  

For measurements of depth of cure, a mould diameter of 6mm, instead of the 4mm 

recommended by the ISO 4049:2009, was used. A larger diameter has been shown to yield 

higher and more consistent values than the 4 mm mould diameter stated by the standard for 

evaluation of depth of cure (52). The reason is due to the diameter of the mould. If that is 

close to the one of the LCU tip diameter, it will capture most of the irradiance emitted from 

the LCU, and therefore result in a more effective  cure of the material (52).  
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The number of samples tested in in vitro studies are often restricted for several reasons, but 

should always be larger than 5 (35). As for the present study, six samples from each group 

were tested. Still, that amount per test group may restrain the level of significance. It should 

be noted that low power (small number of samples in each group) increases the risk for type II 

errors – meaning that a higher power might have induced more statistical significant results. 

This may affect the results achieved in the present study, even though tendencies were 

apparent.  

Radiant exposure (irradiance x time) for EC and ECB was half of that compared to CXU and 

SDRTM, in accordance with the instructions for use from the manufacturers. Comparison of 

the 20s group of EC and ECB vs. their equivalent 10s group (24 hours) showed no statistical 

differences for mechanical parameters tested for, with exception from a slight increase in 

Knoop hardness for ECB (not shown in table). These findings support the recommended 

curing scheme for EC and ECB by the manufacturer (16, 50).  

SDRTM was chosen for this experiment along with 3 other high viscosity composites due to its 

frequent use as a bulk fill composite in Troms county, Norway (53). SDRTM was also one of 

the first bulk fill materials launched more than 7 years ago. Evaluation of differences in 

mechanical and physical properties, between a low viscosity based bulk fill system versus a 

high viscosity bulk fill system seems important since differences between universal low and 

high viscosity composites are evident mainly due to differences in filler loading (54-57).  

The stability of, or slight increase of the mechanical properties after 7 days (37°C) for SDRTM 

could be explained by post irradiant processes (58). Interestingly, for SDRTM the increased 

temperature, simulating aging, also increased the flexural strength (i.e. highest flexural 

strength results achieved). That was in contrast compared to any of the other materials tested.  

The difference can be explained by differences in monomer content with effect on cross-

linkage between the materials tested. Difference in monomer composition have shown to 

affect the degree of conversion of composite materials (36, 59). SDRTM contain UDMA or 

modified UDMA. UDMA is known as a monomer with high mobility and thus, a 

high/increased degree of conversion can be achieved (60). It is therefore plausible to assume 

that the new developed isomer of UDMA (i.e. modified UDMA) will have the same 

properties. The mobility of traditional UDMA (MW=470g/mol) or its isomer (high density 

UDMA – MW=859g/mol) during the light curing and the post curing process will therefore 

lead to higher degree of cross-linkage and enhanced flexural strength and moduli (13, 37) also 
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shown for SDRTM at 57°C in the present study. As reported by Gajewski et. al, UDMA 

presented the highest flexural strength of a selection of monomer commonly used in resin 

based composites (TEGDMA, Bis-EMA, Bis-GMA) (37). This was explained by stronger 

hydrogen bonding potential caused by hydrogen interactions with the hydroxyl and urethane 

groups in the structure of UDMA (37). Since these type of bonds also is dependent on the 

molecular weight (i.e. the higher weight the stronger ability to bond) it is plausible that higher  

density UDMA in SDRTM  (table 5) will enhance these properties (36, 48, 61).  

In addition, a high depth of cure for SDRTM was recorded in the present study (Fig 3). The 

mobility, in addition to high monomer vs. lower filler ratio may further facilitate the reaction 

process in SDRTM, enhancing the cross-linking over time. Especially when an increase in 

temperature simplify monomer movement in the post curing phase (58, 60).  

The results of the present study showed that depth of cure varied between the materials. This 

can probably also partly be explained by the differences in monomer composition. The 

differences recorded in moduli and Knoop Hardness between the materials would on the 

contrary, be more influenced by differences in filler loading and therefore not affected by the 

storage time and temperature to the same extent. 

The decline in moduli and flexural strength for CXU, and particularly for EC and ECB at 

57°C might be due to increased hydrolytic processes due to penetration of water – acting as a 

softener, affecting the mechanical properties by decreasing the cohesion (61). Temperature 

can increase the distances between polymer chains, if not very densely cross-linked, by 

decreasing the secondary forces interacting between the chains. The result will be an increase 

in chain movements depending on degree of cross linkage as well as increased diffusion of 

water acting as a softening agent, affecting the mechanical properties (e.g. increase of the 

viscoelastic properties) (61).  

Of the composite samples investigated by micro-CT, SDRTM displayed a more homogenous 

structure and the lowest degree of voids compared to the other materials evaluated. That 

factor can be a result of the monomer composition as well as lower filler content. However, if 

the structure and low amount of voids will affect SDR’s flexural strength as well as the 

Monomer Full name Weight 
TEGDMA Triethylene glycol dimethacrylate 286 g/mol 
Bis-EMA Ethoxylated bisphenol A glycol dimethacrylate 540 g/mol 
Bis-GMA Bisphenol A glycol dimethacrylate 513 g/mol 
UDMA Urethane dimethacrylate 470 g/mol 
UDMA (SDRTM)* Urethane dimethacrylate* 859 g/mol 

Table 5: Monomers and their molecular weight. *SDRTM patented altered UDMA molecule. 
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materials ability to withstand early aging effects can only be hypothesized on, and further 

research on the subject seems needed. Still, a few large voids could be seen inside the SDRTM 

(possibly due to air in the compule) same that might cause early failure if situated in the area 

tested using 3-point bending test. Several of the other samples also displayed uneven 

distribution of voids. This might imply that the 3-point bending test normally used for 

evaluation of flexural strength might have a lower opportunity to detect potentials for early 

failure due to voids, than e.g. the 4-point bending test. The reason is that the latter would have 

the opportunity to subject a larger test area to stress in comparison to the one subjected in the 

3-point bending test. Qualitative assessment of samples studied showed a tendency for 

accumulation of voids in the interface between composite layers, the fact that this visible 

interface exists may in itself also be a defect. Samples in this experiment were made under 

optimal circumstances. If this interface will be enhanced in a clinical situation can only be 

speculated on at present. Regardless, it may lead to an argument for placing the whole filling 

in one layer, avoiding the creation of several interfaces in the restoration – minimizing 

possible sources for early failure.  
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Conclusions and significance  

Within the limitations of the present study the following conclusions were drawn. 

The null hypothesis was rejected concerning the low viscosity bulk fill material tested. The 

material SDRTM, showed lower moduli and hardness in comparison to high viscosity bulk fill 

and universal composites tested. On the contrary, SDRTM showed a higher flexural strength 

and depth of cure. The flexural strength significantly increased with increased storage 

temperature simulating aging compared to the other materials tested. The differences in 

moduli and hardness could be explained by differences in filler loading while the increase 

strength and high depth of cure could be explained by the monomer composition in SDRTM. 

The result indicates that the term bulk fill seems not relevant since that it is not a 

discriminating factor for assessment of different properties. More relevant information 

concerning filler loading and monomer content (i.e. type of monomers used) should be given 

and assessed.  

Depending on monomer content, aging seemed to affect the mechanical properties of the 

tested materials – differently. Therefore, values given by manufacturers may not be as 

descriptive as desired when it comes to comparing materials in a longer time perspective, as 

materials may react differently to aging.  

The tendency for voids to accumulate between composite layers might be an indication for 

placing the whole filling in one layer (e.g. by using a bulk fill system), as this might affect 

mechanical strength negatively. however, further studies of voids in composites might be an 

interesting topic in relation to improving the mechanical properties of these materials. 
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