

Direct 40Ar/39Ar K-feldspar dating of Late Permian - Early Triassic brittle faulting in northern Norway

Journal:	Terra Nova		
Manuscript ID	TER-2017-0117.R1		
Wiley - Manuscript type:	Paper		
Date Submitted by the Author:	n/a		
Complete List of Authors:	Davids, Corine; Norut Northern Research Institute; University of Tromsø, Department of Geology Benowitz, Jeffrey; University of Alaska Fairbanks, Geophysical Institute Layer, Paul; University of Alaska Fairbanks, Geophysical Institute Bergh, Steffen; University of Tromsø, Department of Geology		
Keywords:	Brittle Faulting, 40Ar/39Ar K-Feldspar geochronology, Post-Caledonian, Northern Norway, Late Permian - Early Triassic		
	·		

SCHOLARONE[™] Manuscripts

Late Permian - Early Triassic Northern Norwegian Faulting

1	
2	
3	
4	
5	Direct ⁴⁰ Ar/ ³⁹ Ar K-feldspar dating of Late Permian - Early Triassic brittle faulting in northern
6	Norway
7	Corine Davids ^{1,2} , Jeff A. Benowitz ^{3*} , Paul W. Layer ⁴ , Steffen G. Bergh ²
8	¹ Norut Northern Research Institute, NO-9294 Tromsø, Norway
9	² Department of Geosciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
10	^{3*} Corresponding author: Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK
11	99775-5940, USA, <u>jbenowitz@alaska.edu</u> , 907-474-7010
12	⁴ College of Natural Science and Mathematics, University of Alaska Fairbanks, Fairbanks, AK
13	99775-5940, USA
14	
15	
16	
17	
18	
19	
20	
21	

Late Permian - Early Triassic Northern Norwegian Faulting

22

23

24 ABSTRACT

25 While the offshore post Caledonian extensional history of the north Norwegian passive 26 margin is well constrained, the tectonic relationship between onshore and offshore regions is less clear because of limited age constraints on the timing of rifting onshore. ⁴⁰Ar/³⁹Ar dating of K-27 28 feldspar from hydrothermally altered fault rocks in a Precambrian gneiss complex in northern Norway was used to study the timing of extensional faulting onshore. In addition. ⁴⁰Ar/³⁹Ar 29 30 dating of K-feldspar from the host rock provided insight into the regional rock cooling history 31 prior to brittle deformation. Results indicated a dominant Late Permian - Early Triassic (~265-32 244 Ma) faulting event and found no evidence for later reactivation, which has been documented offshore. The region cooled to below the closure temperature for ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ K-feldspar in the 33 Carboniferous to Early Permian, prior to the main brittle faulting event. ⁴⁰Ar/³⁹Ar dating of fault 34 35 zone.

36

1. INTRODUCTION

37 The Norwegian passive margin was formed during a ~300 My period of extension and 38 rifting that followed Caledonian orogenesis. The extensional history of the continental shelf of 39 northern Norway and the Barents Sea is well understood through the study of seismic and well data (e.g. Tsikalas et al., 2012; Hansen et al., 2012; Clark et al., 2013; Indrevær et al. 2013, 2014; 40 41 Koehl et al. 2017), but less is known about the onshore post-Caledonian history. Constraining the 42 timing of the brittle fault activity and exhumation in the coastal areas of northern Norway is 43 therefore essential for understanding the relationship between offshore and onshore tectonics and 44 the implications for the extensional tectonic history of the North Atlantic margin.

Late Permian - Early Triassic Northern Norwegian Faulting

45	Brittle faults in crystalline terrains are often difficult to date. The fault cores, which may
46	contain dateable clay minerals in fault gouge or fault breccia, are often not exposed, and the lack
47	of sedimentary strata precludes relative age determination. Outcrops with fault gouge are rare in
48	western Troms, northern Norway, but three faults were determined as Permian through K-Ar
49	illite geochronology (Davids et al., 2013) and paleomagnetic dating (Olesen et al., 1997).
50	However, several fault and fracture zones are associated with hydrothermal alteration which, in
51	granitic rocks, is visible as a red discoloration within fault zones and around fractures. The
52	infiltration of hot fluids associated with faulting can potentially fully reset the 40 Ar/ 39 Ar isotopic
53	system in K-feldspar, in which case the apparent age can be interpreted to be close in time to the
54	faulting event (e.g. Steltenpohl et al., 2011).
55	This paper compares new K-feldspar ⁴⁰ Ar/ ³⁹ Ar ages from brittle fault and fracture zones
56	with results from host rock K-feldspar, and demonstrates that the hydrothermally altered K-
57	feldspar were indeed fully reset during fracturing and associated hot fluid infiltration. These
58	results are used to estimate the timing of brittle faulting onshore in northern Norway and
59	combined with the regional cooling history obtained from host rock K-feldspar to correlate the
60	identified onshore post-Caledonian tectonic history with tectonic events offshore along the north
61	Atlantic margin and in the SW Barents Sea.

62 **2. REGIONAL GEOLOGY**

The study area (Figs. 1 and 2) is located on the North Atlantic passive margin across the transition from the rifted Lofoten-Vesterålen margin to the sheared SW Barents Sea margin (Faleide et al., 1993, 2008; Tsikalas et al., 2012). The North Atlantic passive margin started to develop following Caledonian orogenic collapse in the Late Devonian to Carboniferous. Rifting took place during a succession of pronounced rift phases from the Carboniferous to the

Late Permian - Early Triassic Northern Norwegian Faulting

68	Paleogene (e.g. Ziegler, 1989; Lundin and Doré, 1997; Mosar et al., 2002; Clark et al., 2013) and
69	resulted in continental break-up and drifting in the Paleogene (e.g. Talwani and Eldholm, 1977;
70	Olesen et al., 2007).

71 Paleozoic extension and rifting is thought to have been influenced by the structural 72 framework inherited from the Caledonian orogeny in the Ordovician to Early Devonian 73 (Gudlaugsson et al., 1998; Clark et al., 2013; Gernigon et al., 2014). The SW Barents Sea was 74 the tectonic intersection between the NE-trending Scandinavian Caledonides, the N-trending 75 Svalbard Caledonides to the north and the NW-trending Timanides to the east (Gudlaugsson et al., 1998; Gee and Pease, 2004). Post Caledonian brittle fault zones on the Lofoten-Vesterålen 76 77 margin are dominated by NNE-SSW and ENE-WSW trends (Figs. 1 and 2): in contrast, basins 78 and ridges in the SW Barents Sea form a fan-shaped structure (Fig. 1), with N-S trending fault 79 zones in the west linking up with the Arctic rift (Gudlaugsson et al., 1998).

80 The geology of the study area (Fig. 2) is comprised of a Precambrian gneiss complex, the 81 West Troms Basement Complex (WTBC) (Bergh et al., 2010), which forms a NE-SW trending 82 basement horst extending northward on the Finnmark Platform offshore (Koehl et al. 2017). The 83 WTBC is separated from a stack of Caledonian nappes to the east by Caledonian thrusts and 84 post-Caledonian brittle normal faults (Andresen and Forslund, 1987; Olesen et al., 1997; 85 Indrevær et al. 2014), and from a series of deep offshore basins filled with Late Paleozoic to 86 Quaternary sedimentary rocks to the west (Gabrielsen et al., 1990; Hansen et al., 2012; Gudlaugsson et al., 1998; Tsikalas et al., 2012; Indrevær, et al., 2013; Faleide et al., 2017). 87 88 Unlike similar Precambrian gneiss complexes in southern Norway, which experienced 89 high pressure metamorphism during the Scandian phase of Caledonian orogeny (e.g. Roberts,

90 2003), the WTBC was only weakly influenced by Caledonian deformation, and Precambrian

Late Permian - Early Triassic Northern Norwegian Faulting

91	tectono-metamorphic structures are well preserved (Corfu et al., 2003; Bergh et al., 2010). The
92	presence of Proterozoic ⁴⁰ Ar/ ³⁹ Ar hornblende ages throughout the WTBC indicate that the
93	WTBC has not experienced temperatures over ~500°C during the Caledonian orogeny
94	(Dallmeyer, 1992). WTBC brittle faulting occurred in the Permian (Olesen et al., 1997; Davids et
95	al., 2013) and was regionally followed by cooling from \sim 120°C-60°C in the Late Permian –
96	Early Triassic based on apatite fission track analysis (Davids et al., 2013).
97	
98	3. SAMPLE DESCRIPTIONS
99	Eleven K-feldspar samples were analyzed: six from undeformed granite host rock and
100	five samples from brittle fault zones. The host rock samples were collected from across the
101	WTBC in order to reconstruct the regional cooling history. In contrast, the brittle fault samples
102	come from the southwestern part of the WTBC, where the intensity and frequency of brittle
103	deformation is higher than in the northeast.
104	Host rock samples were collected from macroscopically undeformed granite or granitic
105	dykes. K-feldspar in host rock samples show some low temperature deformation with minor
106	recrystallization along grain boundaries and undulose extinction, but to a lesser extent than the
107	fault samples. The sampled brittle fault zones are all located in weakly deformed Proterozoic
108	granite and are oriented either NNE-SSW (samples S08/46, S10/32 and S09/20) or ENE-WSW
109	(samples S11/6 and S11/21), the same two orientations that are dominant offshore. The fault
110	zones are generally steeply dipping (> 60°), but their orientation is locally influenced by an
111	existing gneissic foliation (e.g. Tussøya S10/32). Lineations, if present, are mostly steep. The
112	fault zones are characterized by 5-50 m wide zones of strongly fractured red-colored granite with
113	abundant chlorite and hematite-coated fracture surfaces. Epidote veins and (ultra)cataclasite

Late Permian - Early Triassic Northern Norwegian Faulting

135	5. REGIONAL COOLING
134	245 Ma.
133	Table 1); integrated ages (excluding outliers with evidence of excess 40 Ar) vary between ~267-
132	majority of the apparent plateau and weighted average ages between \sim 240-280 Ma (Fig. 4A and
131	(Harrison et al., 1994). In contrast, all 5 brittle samples show similar flat age spectra with the
130	and high Cl/K ratios and the known link between Cl/K ratios and melt inclusions in K-feldspar
129	presence of excess Ar, based on the correlation between individual analysis old apparent ages
128	over 400 Ma (Fig. 4C and Table 1). Intermediate age maxima in samples EG and R3 indicate the
127	apparent ages of ~350-370 Ma in the initial ca 40% of the gas release followed by an increase to
126	Table 1). Two samples from the northern two islands (Vanna and Ringvassøya, Fig. 2) yield
125	in the initial 20-30% of the spectra which subsequently increase to \sim 350-500 Ma (Fig. 4B and
124	from the southern two islands (Kvaløya and Senja, Fig. 2) show apparent ages of ~280-300 Ma
123	can be found in DR1, DR2 and DR3. Host rock samples gave complex spectra. Four samples
122	Descriptions of the sample locations, analytical procedures, data tables, and age spectra
121	4. ⁴⁰ Ar/ ³⁹ Ar RESULTS
120	feldspar is mostly clear microcline, but some grains contain domains of perthite.
119	and microfracturing (Fig. 3), indicating temperatures < ~400°C (Passchier and Trouw, 2005). K-
118	brittle samples display extensive sub grain formation along grain boundaries, undulose extinction
117	collected from the red-colored granite associated with the brittle fault zones. K-feldspar in all
116	gouge yielded a K-Ar maximum age of ~293 Ma (Davids et al., 2013). The fault samples were
115	(Senja), 5 km along strike of the sample location S11/21 (Fig. 2). Illite separated from this fault
114	occur in the cores of some of the zones; fault gouge was found in the fault zone in Sifjord

Late Permian - Early Triassic Northern Norwegian Faulting

136	In the Caledonian nappes immediately east of the WTBC, ⁴⁰ Ar/ ³⁹ Ar hornblende and
137	muscovite ages of ~ 430-425 Ma and ~425-400 Ma recorded cooling following peak
138	metamorphism (Coker et al., 1995; Dallmeyer and Andresen, 1992) during the main phase of
139	nappe emplacement, the Scandian event at ~430-400 Ma (e.g. Roberts, 2003). In the WTBC,
140	however, the presence of Proterozoic ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ hornblende ages (Dallmeyer, 1992) and pre-
141	Caledonian ⁴⁰ Ar/ ³⁹ Ar muscovite ages (Davids et al., 2012) throughout the WTBC confirmed
142	field observations that the WTBC is only weakly affected by Caledonian deformation and
143	metamorphism (Dallmeyer, 1992; Corfu et al., 2003; Bergh et al., 2010). Although three of the
144	host rock samples show signs of excess Ar (intermediate age maxima, EG and R3, or increasing
145	Cl/K ratios in the higher temperature steps, S10/40), three other host rock samples record
146	apparent ages of \geq 350 Ma in the higher temperature steps without indication of excess Ar. These
147	new results suggest that the regional temperature in the WTBC was below $\sim 400^{\circ}$ C by the end of
148	the Caledonian orogeny.
149	The region cooled to below the K-feldspar closure temperature by \sim 280 Ma as shown by

the apparent ages of ~280-370 Ma in the low temperature steps. The difference in initial ages of ~280-320 Ma for host rock K-feldspar in the southwest and ~350-370 Ma in the northeast is intriguing. It implies either that the host rock K-feldspar in the southwestern part are affected to some extent by regional Permian fault events (Eide et al., 1997), or that the northeastern part cooled earlier than the southwestern part. The latter would imply either a vertical offset, possibly due to Permian faulting, or tilting with the northeastern part subsiding relative to the southwestern part of the WTBC.

157 6. TIMING OF BRITTLE DEFORMATION

Late Permian - Early Triassic Northern Norwegian Faulting

158	The flat ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ age spectra from the fault samples (Fig. 4A) indicate that these samples
159	experienced resetting due to a thermal disturbance at ~250 Ma. The lack of a step-wise increase
160	in apparent ages in the low temperature steps of the age spectra suggests that this thermal event
161	took place while the regional temperature was already below the Ar closure temperature for K-
162	feldspar at $\sim 200^{\circ}$ C. The latter is supported by the age spectra of the host rock samples from the
163	southwestern part of the WTBC, which show initial apparent ages between \sim 300 and \sim 280 Ma
164	(EG, S09/18 and S11/20) (Fig. 4B). The K-feldspar grains in the fault zone samples show
165	varying amounts of recrystallization and microfracturing (Fig. 3). The precipitation of epidote
166	and hematite on fracture surfaces, which locally display slickenslides, and the red coloration of
167	granitic rocks indicate the infiltration of fluid simultaneous with brittle deformation. It is,
168	therefore, likely that a combination of brittle deformation and associated fluid infiltration caused
169	the resetting of the Ar isotopic system in the brittle K-feldspar between \sim 265 and \sim 244 Ma. This
170	is ~20-40 My younger than previous estimates of the timing of brittle faulting in the WTBC, but
171	similar to brittle faults identified further south in Norway (e.g. Eide et al., 1997). K-Ar dating of
172	2 fault gouges from major faults in the WTBC gave maximum ages of \sim 293-284 Ma for the
173	formation of illite in the fault gouge (Davids et al., 2013), while paleomagnetic dating of brittle
174	fault rocks in the WTBC has previously demonstrated two periods of brittle faulting, an early
175	Permian phase overprinted by a Paleogene-recent phase (Olesen et al., 1997). The initial
176	apparent ages of the host rock samples, ~300-280 Ma (Fig. 4B), correspond well with these
177	published ages from fault gouges and paleomagnetic dating. The younger 40 Ar/ 39 Ar ages for the
178	brittle K-feldspar samples could be explained by two different scenarios: 1. The brittle K-
179	feldspar ages can be interpreted to indicate a second phase of faulting associated with hot fluid
180	infiltration. 2. Alternatively, the microfracturing and grain size reduction (Fig. 3), induced by

Late Permian - Early Triassic Northern Norwegian Faulting

181 brittle faulting and hot fluid infiltration, reduced the diffusion length sufficiently to result in 182 further Ar loss in the fault samples after the faulting event compared to the host rock samples. In 183 the latter case, one would expect to see a diffusion profile with increasing apparent ages in the 184 low temperature steps of the age spectra. However, as the age spectra are flat, we prefer to 185 interpret the data to be the result of two separate periods of fault activity: early localized faulting 186 in the Early Permian (~300-280 My), resulting in a small number of major faults as documented regionally (Eide et al., 1997; Blaich et al., 2017), followed by more widespread fracturing and 187 188 reactivation, particularly in the southwestern part of the WTBC, associated with hot fluid 189 infiltration in the Late Permian-Triassic (~265-244 My).

190 7. TECTONIC IMPLICATIONS

191 The dated faulting in the WTBC was part of a widespread Late Permian – Early Triassic 192 rifting event, which has been recognized throughout the North Atlantic and Arctic regions. In the 193 SW Barents Sea, rifting started in the Early-Mid Carboniferous (Koehl et al. 2017) and was 194 followed by Mid to Late Triassic post-rift thermal subsidence and an influx of coastal and 195 alluvial sediments that were probably derived from the Fennoscandian Shield (e.g. Clark et al., 196 2013; Gudlaugsson et al., 1998; Smelror et al., 2009; Torgersen et al., 2014). At the same time, 197 Late Permian – Early Triassic fault activity in the WTBC was followed by cooling to ~60°C in 198 the Early to Mid Triassic (Davids et al., 2013). Since faulting and associated hot fluid infiltration 199 took place when the temperature in the WTBC block was below the K-feldspar closure 200 temperature, we can estimate that faulting was associated with \sim 4-5 km of uplift and subsequent 201 exhumation to a depth of ~2-3 km (assuming a regional geotherm of ~25-30°C/km; e.g. 202 Hendriks, 2003). The same Early to Mid Triassic cooling was also reported from the region east 203 of the WTBC, indicating that the whole area exhumed at the same time without significant offset

Late Permian - Early Triassic Northern Norwegian Faulting

204	along the VVFC (Fig. 1) that forms the eastern boundary of the WTBC. This suggests that the
205	main movement may have taken place along the western boundary of the WTBC, the TFFC (Fig.
206	1). The \sim 4-5 km of erosion that must have taken place in these onshore areas is likely to have
207	contributed to the thick Triassic deposits in the Barents Sea. There is to date no indication that
208	subsequent rifting events in the Jurassic-Cenozoic, which have been recognized both offshore
209	and in the Vesterålen-Lofoten region to the southwest, have significantly affected the WTBC.
210	8. CONCLUSION
211	Fluid infiltration is often associated with normal faulting (Sibson, 2000). This study
212	demonstrates the usefulness of applying ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ analysis to K-feldspar from brittle fault and
213	fracture zones to better constrain the history of brittle faulting and fluid infiltration. Combined
214	with the regional cooling history obtained from the host rock, the results presented here indicate
215	that the WTBC cooled to below $\sim 200^{\circ}$ C prior to a dominant faulting event in the Late Permian –
216	Early Triassic (~265-244 My). This event is associated with a major rifting event in the SW
217	Barents Sea and along the North Atlantic margin. No evidence has been found for later
218	reactivation.
219	ACKNOWLEDGEMENTS

The work was carried out as part of the larger Onshore-Offshore project led by Steffen Bergh.
We thank Det Norske and Statoil for financial support. We thank Victoria Pease, an anonymous
reviewer and, editors Klaus Mezger and Klaudia Kuiper for constructive and helpful reviews and
suggestions that improved the manuscript.

224

225 **REFERENCES CITED**

Late Permian - Early Triassic Northern Norwegian Faulting

226	Andresen, A. and Forslund, T., 1987. Post-Caledonian Brittle Faults in Troms: Geometry, Age					
227	and Tectonic Significance. The Caledonian and Related Geology of Scandinavia conference					
228	Cardiff, 22–23 September.					
229	Bergh, S.G., Kullerud, K., Armitage, P.E.B., Zwaan, K.B., Corfu, F., Ravna, E.J.K. and Myhre,					
230	P.I. 2010. Neoarchaean to Svecofennian tectono-magmatic evolution of the West Troms					
231	Basement Complex, North Norway. Norwegian Journal of Geology, 90, 21-48.					
232	Blaich, O.A., Tsikalas, F. and Faleide, J.I., 2017. New insights into the tectono-stratigraphic					
233	evolution of the southern Stappen High and its transition to Bjørnøya Basin, SW Barents					
234	Sea. Marine and Petroleum Geology, 85, 89-105, doi: 10.1016/j.marpetgeo.2017.04.015.					
235	Clark, S.A., Glorstad-Clark, E., Faleide, J.I., Schmid, D., Hartz, E.H. and Fjeldskaar, W., 2013.					
236	Southwest Barents Sea rift basin evolution: comparing results from backstripping and time-					
237	forward modeling. Basin Research, 25, 1–17, doi: 10.1111/bre.12039.					
238	Coker, J.E., Steltenpohl, M.G., Andresen, A. and Kunk, M.J., 1995. An 40Ar/39Ar					
239	thermochronology of the Ofoten-Troms region: implications for terrane amalgamation and					
240	extensional collapse of the northern Scandinavian Caledonides. Tectonics, 14, 435-447.					
241	Corfu, F., Armitage, P.E.B., Kullerud, K. and Bergh, S.G., 2003. Preliminary U-Pb					
242	geochronology in the West Troms Basement Complex, North Norway: Archaean and					
243	Palaeoproterozoic events and younger overprints. Norges Geologiske Undersøkelse Bulletin,					
244	441 , 61–72.					
245	Dallmeyer, R.D., 1992. ⁴⁰ Ar/ ³⁹ Ar mineral ages within the Western Gneiss Terrane, Troms,					
246	Norway: evidence for polyphase Proterozoic tectonothermal activity (Svecokarilian and					

247 Sveconorwegian). *Precambrian Research*, **57**, 195–206.

Late Permian - Early Triassic Northern Norwegian Faulting

- 248 Dallmeyer, R.D. and Andresen, A., 1992. Polyphase tectonothermal evolution of exotic
- Caledonian nappes in Troms, Norway: evidence from 40Ar/39Ar mineral ages. *Lithos*, 29, 19–42.
- 251 Davids, C., Benowitz, J.A. and Layer, P., 2012. Constraining the Caledonian Tectonic Overprint
- 252 in a Precambrian Gneiss Terrane in Northern Norway. International Conference on

253 *Thermochronology*, 13th, Guilin, China, Abstracts.

- 254 Davids, C., Wemmer, K., Zwingmann, H., Kohlmann, F., Jacobs, J. and Bergh, S.G., 2013. K-
- 255 Ar illite and apatite fission track constraints on brittle faulting and the evolution of the
- 256 northern Norwegian passive margin. *Tectonophysics*, **608**, 196–211, doi:
- 257 10.1016/j.tecto.2013.09.035.
- Eide, E.A., Torsvik, T.H. and Andersen, T.B., 1997. Absolute dating of brittle fault movements:
- Late Permian and Late Jurassic extensional fault breccias in western Norway. *Terra Nova*, 9,
 135–139.
- Faleide, J.I., Vågnes, E. and Gudlaugsson, S.T., 1993. Late Mesozoic–Cenozoic evolution of the
 south-western Barents Sea in a regional rift-shear tectonic setting. *Marine and Petroleum Geology*, 10, 186–214.
- 264 Faleide, J.I., Tsikalas, T., Breivik, A.J., Mjelde, R., Ritzmann, O., Engen, Ø., Wilson, J. and
- Eldholm, O., 2008. Structure and evolution of the continental margin off Norway and the
- 266 Barents Sea. *Episodes*, **31**, 82–91.
- 267 Faleide, J.I., Pease, V., Curtis, M., Klitzke, P., Minakov, A., Scheck-Wenderoth, M.,
- 268 Kostyuchenko, S. and Zayonchek, A., 2017. Tectonic implications of the lithospheric
- structure across the Barents and Kara shelves. In: *Circum Arctic Lithosphere Evolution* (V.

Late Permian - Early Triassic Northern Norwegian Faulting

270	Pease and B. Coakley, eds), Geological Society of London Special Publication, 460, 285-
271	314, doi: 10.1144/SP460.18.
272	Gabrielsen, R.H., Færseth, R.B., Jensen, L.N., Kalheim, J.E. and Riis, F., 1990. Structural
273	elements of the Norwegian continental shelf — part I: the Barents Sea Region. Norwegian
274	Petroleum Directorate Bulletin, 6, 1–33.
275	Gernigon, L., Brönner, M., Roberts, D., Olesen, O., Nasuti, A. and Yamasaki, T., 2014. Crustal
276	and basin evolution of the southwestern Barents Sea: from Caledonian orogeny to
277	continental breakup. Tectonics, doi: 10.1002/2013TC003439.
278	Gudlausson, S.T., Faleide, J.I., Johansen, S.E. and Breivik, A.J., 1998. Late Palaeozoic structural
279	development of the South-western Barents Sea. Marine and Petroleum Geology, 15, 73-
280	102.
281	Hansen, JA., Bergh, S.G. and Henningsen, T., 2012. Mesozoic rifting and basin evolution on
282	the Lofoten and Vesterålen Margin, North-Norway; time constraints and regional
283	implications. Norwegian Journal of Geology, 91, 203–228.
284	Harrison, T.M., Heizler, M.T., Lovera, O.M., Wenji, C. and Grove, M., 1994. A chlorine
285	disinfectant for excess argon released from K-felsspar during step heating. Earth and
286	Planetary Science Letters, 123, 95-104.
287	Indrevær, K., Bergh, S.G., Koehl, JB., Hansen, JA., Schermer, E.R. and Ingebrigtsen, A.,
288	2013. Post-Caledonian brittle fault zones on the hyper- extended SW Barents Sea Margin:
289	New insights into onshore and offshore margin architecture. Norwegian Journal of Geology,
290	93 , 167–188.
291	Indrevær, K, Stunitz, H. and Bergh, S.G., 2014. On Palaeozoic-Mesozoic brittle normal faults
292	along the SW Barents Sea margin: fault processes and implications for basement

Late Permian - Early Triassic Northern Norwegian Faulting

- 293 permeability and margin evolution. Journal of the Geological Society, London. 171, 831-
- 294 846, doi: 10.1144/jgs2014-018.
- 295 Koehl, J-B., Bergh, S.G., Henningsen, T., and Faleide, J-I. 2017. Mid/Late Devonian-
- 296 Carboniferous collapse basins on the Finnmark Platform and in the southwesternmost
- 297 Nordkapp basin, SW Barents Sea. *Solid Earth Discuss.*, doi:10.5194/se-2017-124.
- Lundin, E.R. and Doré, A.G., 1997. A tectonic model for the Norwegian passive margin with
- 299 implications for the NE Atlantic; Early Cretaceous to break-up. *Journal of the Geological*
- 300 Society, London, **154**, 545–550.
- 301 Mosar, J., Eide, E.A., Osmundsen, P.T., Sommaruga, A. and Torsvik, T.H., 2002, Greenland —
- 302 Norway separation: a geodynamic model for the North Atlantic. *Norwegian Journal of*303 *Geology*, 82, 281–298.
- 304 Olesen, O., Torsvik, T.H., Tveten, E., Zwaan, K.B., Løseth, H. and Henningsen, T., 1997.
- 305 Basement structure of the continental margin in the Lofoten–Lopphavet area, northern
- 306 Norway: constraints from potential field data, on-land structural mapping and
- 307 palaeomagnetic data. *Norsk Geologisk Tidsskrift*, **77**, 15–30.
- 308 Olesen, O., Ebbing, J., Lundin, E., Mauring, E., Skilbrei, J.R., Torsvik, T.H., Hansen, E.K.,

309 Henningsen, T., Midbøe, P. and Sand, M., 2007. An improved tectonic model for the Eocene

- 310 opening of the Norwegian-Greenland Sea: use of modern magnetic data. *Marine and*
- 311 *Petroleum Geology*, **24**, 53–66.
- 312 Osmundsen, P.T., Sommaruga, A., Skilbrei, J.R. and Olesen, O., 2002. Deep structure of the Mid
- 313 Norway rifted margin. *Norwegian Journal of Geology*, **82**, 205–224.
- 314 Passchier, C.W. and Trouw, R.A.J., 2005. *Microtectonics*. Springer, 366 pp.

Late Permian - Early Triassic Northern Norwegian Faulting

- 315 Roberts, D., 2003. The Scandinavian Caledonides: event chronology, palaeogeographic settings
- and likely modern analogues. *Tectonophysics*, **365**, 283–299.
- Sibson, R.H., 2000. Fluid involvement in normal faulting. *Journal of Geodynamics*, 29(3-5),
 469-499.
- Smelror, M., Petrov, O., Larssen, G.B. and Werner, S., editors, 2009. *Atlas: Geological History of the Barents Sea*. Trondheim, Geological Survey of Norway, 135 pp.
- 321 Steltenpohl, M.G., Moecher, D., Andresen, A., Ball, J., Mager, S. and Hames, W.E., 2011. The
- 322 Eidsfjord shear zone, Lofoten-Vesterålen, north Norway: an Early Devonian,
- 323 paleoseismogenic low-angle normal fault. *Journal of Structural Geology*, **33**, 1023-1043.
- Talwani, M. and Eldholm, O., 1977. Evolution of the Norwegian-Greenland Sea. *Geological Society of America Bulletin*, 88, 969–999.
- 326 Torgersen, E., Viola, G., Zwingmann, H. and Harris, C. 2014. Structural and temporal evolution
- 327 of a reactivated brittle-ductile fault Part II: Timing of fault initiation and reactivation by K-
- 328 Ar dating of synkinematic illite/muscovite. *Earth and Planetary Science Letters*, **407**, 221-
- 329 233.
- 330 Tsikalas, F., Faleide, J.I., Eldholm, O. and Blaich, O.A., 2012. The NE Atlantic conjugate
- 331 margins. In: *Phanerozoic Passive Margins, Cratonic Basins and Global Tectonic Maps* (D.
- Roberts and A.W. Bally, eds.) Elsevier, 141–201.
- 333 Ziegler, P.A., 1989. Evolution of the North Atlantic; an overview. *American Association of*
- 334 *Petroleum Geologists Memoir*, **46**, 111–129.

Late Permian - Early Triassic Northern Norwegian Faulting

336

337 FIGURE CAPTIONS

338 Table 1. ⁴⁰Ar/³⁹Ar K-feldspar (KS) step heating results.

339

- 340 Figure 1. Geological overview map of the North Norwegian margin. Simplified after Mosar et
- al., (2002) and Faleide et al., (2008). BB: Bjørnøya Basin; FP: Finmark Platform; HB: Harstad
- 342 Basin; HfB: Hammerfest Basin; LH: Loppa High; LR: Lofoten Ridge; RH: Røst High; SB:

343 Sørvestsnaget Basin; TB: Tromsø Basin; TKF: Trollfjord-Komagelv Fault; TP: Trøndelag

344 Platform; TFFC: Troms-Finmark Fault Complex; VB: Vøring Basin; VfB: Vestfjorden Basin;

345 VVFC: Vestfjorden-Vanna Fault Complex.

346

347 Figure 2. Simplified map of the sample area with sample locations. Fs: K-feldspar; SEF:

348 Stongelandseidet Fault; TFFC: Troms-Finmark Fault Complex; VF: Vannareid Fault; VVFC:

349 Vestfjorden-Vanna Fault Complex. K: Kvaløya; S: Senja; R: Ringvassøya; V: Vanna.

350

351 Figure 3. Representative photomicrographs of K-feldspar (KS) from hydrothermally altered fault

352 rocks. A. Microfractures in S08/46A. B. Sub-grain formation in S10/32.

353

- Figure 4. Summary of 40 Ar/ 39 Ar age spectra. A. 5 hydrothermally altered K-feldspar samples
- 355 (S08/46A, S09/20, S10/32, S11/6, S11/21); B. 4 host rock samples from Senja and Kvaløya (EG,
- 356 S09/18, S09/22, S11/20); C. 2 host rock samples from Ringvassøya and Vanna (R3, S10/40).

357 Detailed individual age spectra are included in data repository DR3.

Late Permian - Early Triassic Northern Norwegian Faulting

- 359 Data Repository, supplementary material on analytical procedures (item DR1), ⁴⁰Ar/³⁹Ar data
- and sample locations (item DR2), and detailed sample 40 Ar/ 39 Ar age spectra with Cl/K ratios
- 361 (item DR3), is available online at XXX.

Sample	Lat, Long	Integrated Age (Ma)	Plateau Age (Ma)	Plateau Information	Isochron Age (Ma)	Isochron or other Information
S09/20 (deformed)	69.12052°N, 17.30883°E	313.8 ± 1.3	260.6 ± 1.6*	11 out of 17 fractions 50.1% ³⁹ Ar release MSWD = 2.88		
S11/21 (deformed)	69.28062°N, 17.10295°E	245.0 ± 1.2	244.2 ± 1.2	13 out of 15 fractions 56.8% ³⁹ Ar release MSWD = 1.09		
S11/6 (deformed)	69.36030°N, 17.46383°E	248.4 ± 0.9	259.5 ± 1.4*	5 out of 14 fractions 31.6 $\%$ ³⁹ Ar release MSWD = 1.12	261.3 ± 2.8	
S10/32 (deformed)	69.66078°N, 18.08980°E	267.4 ± 1.1	259.2 ± 1.5	10 out of 14 fractions 58.6% ³⁹ Ar release MSWD = 1.42	255.8 ± 2.9	
S08/46 (deformed)	69.72904°N, 18.32058°E	261.1 ± 0.9	264.9 ± 1.2	6 out of 14 fractions 49.5% ³⁹ Ar release MSWD = 1.70		
S11/20 (undeformed)	69.28062°N, 17.10295°E	325.4 ± 1.1				
S09/18 (undeformed)	69.47225°N, 17.23075°E	459.7 ± 1.7				
S09/22 (undeformed)	69.35660°N, 18.06627°E	485.4 ± 1.6				
EG (undeformed)	69.70094°N, 18.60005°E	451.6 ± 1.5				
R3 (undeformed)	70.05195°N, 19.03317°E	421.9 ± 1.5				
S10/40 (undeformed)	70.21555°N, 19.69545°E	515.6 ± 1.7				

Table 1 ⁴⁰Ar/³⁹Ar K-feldspar Results

Samples analyzed with standard MMhb-1 with an age of 523.1 Ma. Most robust age determination in **bold**.

*Did not meet all the criteria for a plateau age, hence a weighted average age determination is presented. Coordinate system: WGS84

Figure 1. Geological overview map of the North Norwegian margin. Simplified after Mosar et al., (2002) and Faleide et al., (2008). BB: Bjørnøya Basin; FP: Finmark Platform; HB: Harstad Basin; HfB: Hammerfest Basin; LH: Loppa High; LR: Lofoten Ridge; RH: Røst High; SB: Sørvestsnaget Basin; TB: Tromsø Basin; TKF: Trollfjord-Komagelv Fault; TP: Trøndelag Platform; TFFC: Troms-Finmark Fault Complex; VB: Vøring Basin; VfB: Vestfjorden Basin; VVFC: Vestfjorden-Vanna Fault Complex.

86x82mm (300 x 300 DPI)

Figure 2. Simplified map of the sample area with sample locations. Fs: K-feldspar; SEF: Stongelandseidet Fault; TFFC: Troms-Finmark Fault Complex; VF: Vannareid Fault; VVFC: Vestfjorden-Vanna Fault Complex. K: Kvaløya; S: Senja; R: Ringvassøya; V: Vanna.

58x56mm (300 x 300 DPI)

Figure 3. Representative photomicrographs of K-feldspar (KS) from hydrothermally altered fault rocks. A. Microfractures in S08/46A. B. Sub-grain formation in S10/32.

45x22mm (300 x 300 DPI)

Figure 4. Summary of 40Ar/39Ar age spectra. A. 5 hydrothermally altered K-feldspar samples (S08/46A, S09/20, S10/32, S11/6, S11/21); B. 4 host rock samples from Senja and Kvaløya (EG, S09/18, S09/22, S11/20); C. 2 host rock samples from Ringvassøya and Vanna (R3, S10/40). Detailed individual age spectra are included in data repository DR3.

50x14mm (300 x 300 DPI)

Late Permian - Early Triassic Northern Norway Faulting

1	Terra Nova data repository for 'Direct ⁴⁰ Ar/ ³⁹ Ar K-feldspar dating of Late
2	Permian - Early Triassic brittle faulting in northern Norway'
3	
4	hy
4	Uy
5	Corine Davids ^{1,2} , Jeff A. Benowitz ^{3*} , Paul W. Layer ⁴ , Steffen G. Bergh ²
6	¹ Norut Northern Research Institute, NO-9294 Tromsø, Norway
7	² Department of Geosciences, UiT The Arctic University of Norway, NO-9037 Tromsø,
8	Norway
9	^{3*} Corresponding author: Geophysical Institute, University of Alaska Fairbanks,
10	Fairbanks, AK 99775-5940, USA, <u>jbenowitz@alaska.edu</u> , 907-474-7010
11	⁴ College of Natural Science and Mathematics, University of Alaska Fairbanks,
12	Fairbanks, AK 99775-5940, USA
13	
14	Data Repository (DR) item 1: Analytical procedures.
15	
16	⁴⁰ Ar/ ³⁹ Ar Analysis
17	The rock samples were crushed, washed and sieved. Mineral concentrates of
18	K-feldspar were obtained using standard mineral separation procedures, including
19	heavy liquid and magnetic separation. In addition, aliquots of K-feldspar separates
20	derived from the heavy liquid separation were analyzed at the University of Alaska
21	Fairbanks using a Niton xl3t hand held X-ray fluorometer (XRF) to confirm mineral
22	identification and purity. The monitor mineral MMhb-1 (Samson and Alexander,
23	1987) with an age of 523.1 Ma (Renne et al., 1998) was used to monitor neutron flux
24	and calculate the irradiation parameter J. The samples and standards were wrapped in

Late Permian - Early Triassic Northern Norway Faulting

25	aluminum foil and loaded into aluminum cans of 2.5 cm diameter and 6 cm height.
26	The samples were irradiated in position 5c of the uranium enriched research reactor of
27	McMaster University in Hamilton, Ontario, Canada for 10 megawatt-hours. Upon
28	their return from the reactor, single K-feldspar grains of the samples and monitors
29	were loaded into 2 mm diameter holes in a copper tray that was then loaded in a ultra-
30	high vacuum extraction line. The monitors were fused and samples step-wise heated,
31	using a 6-watt argon-ion laser following the technique described in York et al. (1981),
32	Layer (2000) and Benowitz et al. (2014). Argon purification was achieved using a
33	liquid nitrogen cold trap and a SAES Zr-Al getter at 400°C. The samples were
34	analyzed in a VG-3600 mass spectrometer at the Geophysical Institute, University of
35	Alaska Fairbanks. The argon isotopes measured were corrected for system blank and
36	mass discrimination, as well as calcium, potassium and chlorine interference reactions
37	following procedures outlined in McDougall and Harrison (1999). Typical full-system
38	8 min laser blank values (in moles) were generally 2×10^{-16} mol 40 Ar, 3×10^{-18} mol
39	39 Ar, 9 × 10 ⁻¹⁸ mol 38 Ar and 2 × 10 ⁻¹⁸ mol 36 Ar, which are 10–50 times smaller than
40	the sample/standard volume fractions. Correction factors for nucleogenic
41	interferences during irradiation were determined from irradiated CaF_2 and K_2SO_4 as
42	follows: $({}^{39}\text{Ar}/{}^{37}\text{Ar})_{Ca} = 7.06 \times 10^{-4}$, $({}^{36}\text{Ar}/{}^{37}\text{Ar})_{Ca} = 2.79 \times 10^{-4}$ and $({}^{40}\text{Ar}/{}^{39}\text{Ar})_{K} = 0.00 \times 10^{-4}$.
43	0.0297. Mass discrimination was monitored by running calibrated air shots. The mass
44	discrimination during these experiments was 1.3% per mass unit. While doing our
45	experiments, calibration measurements were made on a weekly- monthly basis to
46	check for changes in mass discrimination with no significant variation seen during
47	these intervals. The 40 Ar/ 39 Ar results are given in Appendix 2, with all ages quoted at
48	the \pm 1 sigma level and calculated using the constants of Steiger and Jaeger (1977).

Late Permian - Early Triassic Northern Norway Faulting

- The integrated age is the age given by the total gas measured and is equivalent to a
 potassium-argon (K-Ar) age if no ³⁹Ar recoil is present.
- 51

52 K-feldspar laser-step heating interpretation

53 Multidomain diffusion modeling (MDD) K-feldspar thermochronology has 54 proven to be a useful tool in examining orogenic development because of the wide Ar 55 closure-temperature window (ca. 150–350°C) of the system (McDougall & Harrison, 56 1999, and references therein). In our study, the age spectra of the brittle K-feldspar 57 are consistently flat as a result of fast cooling, which limits the applicability of MDD 58 modeling. Some of the host rock K-feldspar show intermediate age maxima, 59 indicating problematic behavior that is possibly caused by low temperature alteration 60 (Lovera et al., 2002; Harrison et al., 2005). Inverse modeling may therefore produce 61 incorrect thermal histories. Additionally, during our laser step heating analysis the 62 temperature of heating steps is not known, hence MDD modeling is not possible. 63 For this study, we preferred to use a modified MDD concept approach by 64 analyzing the samples with a more time efficient laser step-heating approach 65 (Benowitz et al., 2011, 2012; Löbens et al., 2017). We examine the resulting age 66 spectra using the MDD approach to determine thermal histories as done by others 67 (Copeland and Harrison, 1990; Ridgway et al., 2007; Benowitz et al., 2014; Riccio et 68 al., 2014). 69

70 **REFERENCES CITED**

Benowitz, J., Layer, P.W., and VanLaningham, S., 2014, Persistent Long-Term (~24
Ma) Exhumation in the Eastern Alaska Range Constrained by Stacked

73 Thermochronology, Geological Society of London Special Volume, 40Ar/39Ar

Late Permian - Early Triassic Northern Norway Faulting

74	Dating: from Geochronology to Thermochronology, from Archaeology to
75	Planetary Sciences.
76	Benowitz, J. A., P. J. Haeussler, P. W. Layer, P. B. O'Sullivan, W. K. Wallace and R.
77	J. Gillis, 2012, Cenozoic tectono-thermal history of the Tordrillo Mountains,
78	Alaska: Paleocene-Eocene ridge subduction, decreasing relief, and late Neogene
79	faulting, Geochemistry, Geophysics, Geosystems, v. 13, Q04009,
80	doi:10.1029/2011GC003951.
81	Benowitz, J., P. Layer, P. Armstrong, S. Perry, P. Haeussler, P. Fitzgerald, and S.
82	VanLaningham, 2011, Spatial Variations in Focused Exhumation Along a
83	Continental-Scale Strike- Slip Fault: the Denali Fault of the Eastern Alaska
84	Range, Geosphere, v. 7; no. 2; p. 455 467; DOI: 10.1130/GES00589.1
85 86	Copeland, P., and Harrison, T.M., 1990, Episodic rapid uplift in the Himalaya
87	revealed by ⁴⁰ Ar/ ³⁹ Ar analysis of detrital K-feldspar and muscovite, Bengal fan,
88	Geology, v. 18, 354–357, doi:10.1130/0091-
89	7613(1990)018<0354:ERUITH>2.3.CO;2.
90	Harrison, T.M., Grove, M., Lovera, O.M., and Zeitler, P.K., 2005, Continuous
91	Thermal Histoties from Inversion of Closure Profiles, in Reiners, P.W. and
92	Ehlers, T.A., eds., Low-Temperature Thermochronology, Techniques,
93	Interpretations, and Applications: Reviews in Mineralogy and Geochemistry, v.
94	58, p. 389–409.
95	Layer, P.W., 2000, 40Ar/39Ar age of the El'gygytgyn impact event, Chukotka,
96	Russia: Meteoritics & Planetary Science, v. 35, p. 591-599.
97	Löbens, S., Oriolo, S., Benowitz, J., Wemmer, K., Layer, P., Siegesmund, S., 2017,

Late Permian - Early Triassic Northern Norway Faulting

98	Late Paleozoic deformation and exhumation in the Sierras Pampeanas
99	(Argentina): constrained by first Ar/Ar-feldspar datings, International Journal of
100	Earth Science.
101	Lovera, O. M., Grove, M., and Harrison, T.M., 2002, Systematic analysis of K-
102	feldspar ⁴⁰ Ar/ ³⁹ Ar step heating results: II. Relevance of laboratory argon diffusion
103	properties to nature, Geochimica et Cosmochimica Acta, 66, 1237-1255,
104	doi:10.1016/ S0016-7037(01)00846-8.
105	McDougall, I., and Harrison, T.M., 1999, Geochronology and Thermochronologv by
106	the 40Ar/39Ar Method: New York, USA, Oxford University Press, 288 p.
107	Renne, P.R., Swisher, C.C., Deino, A.L., Karner, D.B., Owens, T.L., and DePaolo,
108	D.J., 1998, Intercalibration of standards, absolute ages and uncertainties in
109	⁴⁰ Ar/ ³⁹ Ar dating: Chemical Geology, v. 145, p. 117–152.
110	Riccio, S. J., Fitzgerald, P.G., Benowitz, J.A., and Roeske, S.M., 2014, The role of
111	thrust faulting in the formation of the eastern Alaska Range Thermochronological
112	constraints from the Susitna Glacier Thrust Fault region of the intracontinental
113	strike-slip Denali Fault system: Tectonics, v. 33, p. 2195-2217,
114	doi: 10.1002/2014TC003646, 2014.
115	Ridgway, K. D., Thoms, E.E., Layer, P.W., Lesh, M.E., White, J.M., and Smith, S.V.,
116	2007, Neogene transpressional foreland basin development on the north side of
117	the central Alaska Range, Usibelli Group and Nenana Gravel, Tanana basin, in
118	Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of
119	Southern Alaska, edited by K. D. Ridgway et al., Spec. Pap. Geol. Soc. Am., 431,
120	507-547, doi:10.1130/ 2007.2431(20).
121	Samson, S.D., and Alexander, E.C., 1987, Calibration of the interlaboratory ⁴⁰ Ar- ³⁹ Ar
122	dating standard, MMhb-1: Chemical Geology, v. 66, p. 27-34.

Late Permian - Early Triassic Northern Norway Faulting

- 123 Steiger, R.H., and Jaeger, E., 1977, Subcommission on geochronology: Convention
- 124 on the use of decay constants in geo and cosmochronology: Earth and Planetary
- 125 Science Letters, v. 36, p. 359–362.
- 126 York, D., Hall, C.M., Yanase, Y., Hanes, J.A., and Kenyon, W.J., 1981, 40Ar/39Ar
- 127 dating of terrestrial minerals with a continuous laser: Geophysical Research
- 128 Letters, v. 8, p. 1136–11.

Late Permian - Early Triassic Northern Norway Faulting

DR item 2: ⁴⁰Ar/³⁹Ar data and sample locations.

FS= Potassium Feldspar L=Laser

9001 Step: Same power as 9000 mW step, but with the laser spot focused down to assure fusion.

Sample name: S08/46A FS#L1 (deformed) Location: Rekvika, Kvaløya (69.72904°N, 18.32058°E) Weighted average of J from standards = 3.652e-03 +/- 1.134e-05 Days since irradiation = 33

Laser Power	Cumulative	40Ar/39Ar	+/-	37Ar/39Ar	+/-	36Ar/39Ar	+/-	% Atm.	+/-	Ca/K	+/-	CI/K	+/-	40*/39K	+/-	Age	+/-
(mW)	39Ar	meas.		meas.		meas.		40Ar								(Ma)	(Ma)
400	0.1314	43.8438	0.2803	0.0031	0.0006	0.0225	0.0004	15.1394	0.2595	0.0056	0.0010	0.0012	0.0001	37.1810	0.2834	229.73	1.64
600	0.2011	43.4093	0.2381	0.0041	0.0008	0.0019	0.0004	1.2763	0.2646	0.0075	0.0015	0.0003	0.0001	42.8260	0.2626	262.18	1.5
800	0.2261	44.5501	0.3148	0.0330	0.0039	0.0014	0.0012	0.8926	0.8114	0.0605	0.0071	0.0007	0.0003	44.1240	0.4776	269.56	2.71
1000	0.2441	44.6529	0.4228	0.1492	0.0056	0.0024	0.0021	1.5861	1.3899	0.2738	0.0102	0.0009	0.0003	43.9200	0.7482	268.4	4.25
1300	0.2649	45.5575	0.4612	0.2358	0.0055	0.0023	0.0015	1.4445	0.9683	0.4326	0.0101	0.0011	0.0003	44.8777	0.6344	273.83	3.59
1600	0.2849	45.2195	0.4144	0.0309	0.0045	-0.0020	0.0027	-1.2800	1.7360	0.0567	0.0083	0.0011	0.0003	45.7692	0.8888	278.87	5.02
2000	0.3069	46.9655	0.4444	0.0406	0.0065	0.0023	0.0018	1.4114	1.1098	0.0745	0.0119	0.0001	0.0011	46.2747	0.6816	281.72	3.84
2500	0.3309	47.1545	0.4278	0.0250	0.0038	0.0123	0.0012	7.7090	0.7368	0.0458	0.0070	0.0015	0.0002	43.4927	0.5312	265.97	3.02
3000	0.3618	49.1021	0.2527	0.0067	0.0023	0.0166	0.0012	9.9856	0.7453	0.0123	0.0041	0.0023	0.0003	44.1724	0.4327	269.83	2.45
4000	0.5676	47.5981	0.0895	0.0018	0.0004	0.0152	0.0003	9.4118	0.1930	0.0034	0.0008	0.0017	0.0001	43.0914	0.1247	263.69	0.71
5000	0.7428	47.8179	0.1095	0.0005	0.0005	0.0152	0.0002	9.4218	0.1052	0.0010	0.0009	0.0018	0.0001	43.2857	0.1137	264.8	0.65
6000	0.7854	48.9381	0.1701	-0.0011	0.0016	0.0179	0.0007	10.8291	0.4139	- 0.0021	0.0029	0.0024	0.0002	43.6120	0.2556	266.65	1.45
9000	0.8014	49.3682	0.4330	0.0000	0.0048	0.0207	0.0022	12.3898	1.3304	0.0000	0.0088	0.0019	0.0004	43.2255	0.7693	264.45	4.38
9001	1.0000	49.2209	0.1311	0.0003	0.0004	0.0175	0.0003	10.5100	0.1774	0.0006	0.0007	0.0020	0.0001	44.0213	0.1484	268.98	0.84
Integrated		47.0618	0.0611	0.0119	0.0003	0.0144	0.0002	9.0330	0.0966	0.0218	0.0006	0.0016	0.0000	42.7841	0.0733	261.94	0.86

Late Permian - Early Triassic Northern Norway Faulting

Sample: S09/20 FS#L1 (deformed) Location: Vassvik, Senja (69.12052°N, 17.30883°E) Weighted average of J from standards = 3.775e-03 +/- 1.217e-05 Days since irradiation = 62

Laser Power	Cumulative	40Ar/39Ar	+/-	37Ar/39Ar	+/-	36Ar/39Ar	+/-	% Atm.	+/-	Ca/K	+/-	CI/K	+/-	40*/39K	+/-	Age	+/-
(mW)	39Ar	meas.		meas.		meas.		40Ar								(Ma)	(Ma)
400	0.0013	2658.5766	#####	0.0761	0.2029	0.4511	0.0781	5.0138	0.7806	0.1397	0.3724	0.0907	0.0111	2525.3888	193.4282	4245	124.9
600	0.0063	405.7988	8.3351	0.0319	0.0662	0.0605	0.0190	4.4037	1.3773	0.0585	0.1215	0.0097	0.0022	387.9089	9.7521	1626.7	26.93
800	0.0384	66.1839	0.6711	0.0037	0.0102	0.0079	0.0038	3.5100	1.7061	0.0069	0.0187	0.0013	0.0003	63.8323	1.3034	389.48	7.15
1000	0.1054	43.9583	0.2242	0.0022	0.0050	0.0022	0.0015	1.4900	1.0343	0.0040	0.0092	0.0006	0.0002	43.2742	0.5057	272.99	2.96
1300	0.2922	46.0665	0.3010	-0.0002	0.0016	0.0027	0.0005	1.7064	0.2954	- 0.0003	0.0029	0.0007	0.0001	45.2512	0.3275	284.52	1.91
1600	0.4315	40.7964	0.2779	0.0015	0.0021	0.0019	0.0008	1.3772	0.5404	0.0028	0.0039	0.0004	0.0001	40.2052	0.3527	254.93	2.09
1900	0.5316	41.0781	0.2956	0.0033	0.0025	0.0021	0.0009	1.5334	0.6576	0.0061	0.0046	0.0004	0.0001	40.4190	0.3983	256.19	2.35
2200	0.5838	41.7089	0.3455	0.0079	0.0079	0.0023	0.0023	1.5930	1.6046	0.0144	0.0145	0.0008	0.0002	41.0155	0.7508	259.72	4.43
2500	0.6119	43.2499	0.4456	0.0068	0.0103	0.0003	0.0029	0.1825	1.9847	0.0125	0.0189	0.0010	0.0004	43.1416	0.9663	272.21	5.66
3000	0.6410	42.1296	0.3016	0.0124	0.0136	0.0048	0.0034	3.3328	2.3573	0.0227	0.0250	0.0008	0.0003	40.6971	1.0351	257.84	6.11
3500	0.6648	42.1012	0.2566	0.0059	0.0114	-0.0001	0.0040	-0.0596	2.8214	0.0108	0.0209	0.0011	0.0006	42.0968	1.2145	266.08	7.14
4000	0.6856	42.1318	0.5064	0.0065	0.0125	0.0026	0.0045	1.8280	3.1435	0.0119	0.0229	0.0011	0.0008	41.3326	1.4140	261.58	8.33
4500	0.7069	42.6240	0.5085	0.0002	0.0124	0.0073	0.0049	5.0495	3.4238	0.0004	0.0227	0.0006	0.0006	40.4435	1.5369	256.34	9.08
5000	0.7279	42.9368	0.2718	0.0075	0.0150	0.0028	0.0041	1.9241	2.8041	0.0137	0.0276	0.0011	0.0005	42.0818	1.2325	265.99	7.24
6000	0.7582	44.3274	0.3808	0.0135	0.0077	0.0052	0.0040	3.4675	2.6711	0.0248	0.0142	0.0006	0.0003	42.7621	1.2397	269.99	7.27
9000	0.7930	45.0823	0.4266	0.0096	0.0072	0.0034	0.0027	2.2323	1.7665	0.0176	0.0132	0.0006	0.0003	44.0472	0.8992	277.51	5.25
9001	1.0000	55.4887	0.2305	0.0000	0.0016	0.0048	0.0003	2.5506	0.1661	0.0000	0.0030	0.0006	0.0001	54.0444	0.2433	334.95	1.38
Integrated		51 5505	0 1071	0.0032	0.0013	0 0040	0 0004	2 3179	0 2316	0.0058	0.0023	0 0008	0 0001	50 3267	0 1591	313.8	13

Late Permian - Early Triassic Northern Norway Faulting

Sample name: S10/32 FS#L1 (deformed) Location: Tussøya (69.66078°N, 18.08980°E) Weighted average of J from standards = 3.688e-03 +/- 1.087e-05 Days since irradiation = 37

Laser Power	Cumulative	40Ar/39Ar	+/-	37Ar/39Ar	+/-	36Ar/39Ar	+/-	% Atm.	+/-	Ca/K	+/-	CI/K	+/-	40*/39K	+/-	Age	+/-
(mW)	39Ar	meas.		meas.		meas.		40Ar								(Ma)	(Ma)
400	0.2355	48.7776	0.3153	0.0044	0.0004	0.0224	0.0006	13.5510	0.3713	0.0082	0.0007	0.0033	0.0001	42.1423	0.3307	260.66	1.9
600	0.2925	42.2726	0.3058	0.0535	0.0034	0.0046	0.0012	3.1904	0.8292	0.0982	0.0062	0.0003	0.0002	40.8967	0.4608	253.48	2.66
800	0.3293	43.1927	0.2575	0.0296	0.0037	0.0046	0.0014	3.1158	0.9273	0.0543	0.0068	0.0005	0.0002	41.8190	0.4737	258.8	2.73
1000	0.3586	44.8633	0.3486	0.0148	0.0045	0.0116	0.0026	7.6138	1.7426	0.0272	0.0083	0.0006	0.0004	41.4205	0.8483	256.5	4.9
1300	0.3913	50.2834	0.4418	0.0371	0.0023	0.0292	0.0019	17.1413	1.1123	0.0680	0.0043	0.0014	0.0003	41.6407	0.6753	257.77	3.9
1600	0.4155	51.3586	0.3756	0.0260	0.0068	0.0362	0.0023	20.8273	1.3182	0.0477	0.0125	0.0026	0.0004	40.6392	0.7476	251.99	4.33
2000	0.4469	51.3470	0.4777	0.0163	0.0024	0.0306	0.0028	17.6122	1.6173	0.0298	0.0044	0.0023	0.0004	42.2797	0.9261	261.45	5.33
2500	0.5031	49.7961	0.3787	0.0088	0.0017	0.0283	0.0015	16.7946	0.8754	0.0161	0.0031	0.0020	0.0003	41.4086	0.5469	256.43	3.16
3000	0.5335	49.8197	0.3651	0.0171	0.0031	0.0258	0.0025	15.3232	1.4890	0.0315	0.0056	0.0025	0.0003	42.1611	0.8101	260.77	4.67
3500	0.5864	50.8779	0.4769	0.0111	0.0019	0.0266	0.0015	15.4677	0.8730	0.0203	0.0035	0.0035	0.0002	42.9835	0.6104	265.5	3.51
4000	0.7405	51.3152	0.4302	0.0048	0.0005	0.0242	0.0006	13.9626	0.3335	0.0088	0.0009	0.0023	0.0001	44.1248	0.4292	272.04	2.46
9000	1.0000	54.2543	0.2746	0.0056	0.0007	0.0276	0.0004	15.0142	0.2271	0.0102	0.0012	0.0026	0.0001	46.0834	0.2697	283.22	1.53
Integrated		50.2911	0.1301	0.0118	0.0004	0.0235	0.0003	13.8080	0.1736	0.0216	0.0008	0.0024	0.0001	43.3217	0.1451	267.44	1.11

Late Permian - Early Triassic Northern Norway Faulting

Sample name: S11/6 FS#L1 (deformed) Location: Heggdalen, Senja (69.36030°N, 17.46383°E) Weighted average of J from standards = 3.688e-03 +/- 1.087e-05 Days since irradiation = 38

Laser Power	Cumulative	40Ar/39Ar	+/-	37Ar/39Ar	+/-	36Ar/39Ar	+/-	% Atm.	+/-	Ca/K	+/-	CI/K	+/-	40*/39K	+/-	Age	+/-
(mW)	39Ar	meas.		meas.		meas.		40Ar								(Ma)	(Ma)
400	0.2381	36.6789	0.1873	0.0309	0.0008	0.0094	0.0002	7.5415	0.1737	0.0567	0.0014	0.0010	0.0001	33.8861	0.1861	212.48	1.1
600	0.3088	41.5399	0.2693	0.0969	0.0022	0.0068	0.0006	4.8058	0.4484	0.1777	0.0041	0.0020	0.0002	39.5180	0.3221	245.49	1.87
800	0.3558	44.5417	0.4320	0.0728	0.0031	0.0113	0.0008	7.5074	0.5375	0.1335	0.0057	0.0020	0.0003	41.1724	0.4708	255.07	2.72
1000	0.4252	43.3823	0.2912	0.0543	0.0025	0.0098	0.0010	6.6622	0.6769	0.0996	0.0046	0.0021	0.0002	40.4659	0.4049	250.98	2.34
1300	0.4864	43.9941	0.3032	0.0460	0.0021	0.0096	0.0008	6.4260	0.5019	0.0844	0.0039	0.0018	0.0002	41.1406	0.3651	254.89	2.11
1600	0.5365	46.8599	0.3754	0.0517	0.0023	0.0114	0.0008	7.2026	0.4689	0.0949	0.0042	0.0015	0.0002	43.4588	0.4175	268.23	2.39
2000	0.6025	46.8332	0.3532	0.0455	0.0019	0.0096	0.0007	6.0683	0.4678	0.0835	0.0035	0.0017	0.0002	43.9647	0.4038	271.13	2.31
2500	0.6395	46.0486	0.3464	0.0438	0.0027	0.0109	0.0014	6.9664	0.9131	0.0803	0.0050	0.0017	0.0003	42.8144	0.5341	264.53	3.07
3000	0.6838	55.4916	0.3544	0.1552	0.0032	0.0369	0.0016	19.6244	0.8230	0.2848	0.0059	0.0026	0.0003	44.5827	0.5556	274.66	3.17
3500	0.6989	55.9577	0.4054	0.2661	0.0084	0.0500	0.0037	26.4006	1.9278	0.4884	0.0155	0.0045	0.0007	41.1704	1.1289	255.06	6.52
4000	0.7200	49.6350	0.4024	0.1469	0.0063	0.0282	0.0029	16.7593	1.7014	0.2696	0.0115	0.0032	0.0005	41.2961	0.9132	255.78	5.27
5000	0.9247	45.6290	0.2136	0.0445	0.0007	0.0128	0.0003	8.3048	0.1622	0.0816	0.0012	0.0018	0.0001	41.8137	0.2118	258.77	1.22
6000	0.9733	45.1526	0.3887	0.0283	0.0025	0.0085	0.0009	5.5856	0.5524	0.0520	0.0045	0.0014	0.0002	42.6034	0.4475	263.32	2.57
9001	1.0000	49.3338	0.5591	0.0189	0.0039	0.0226	0.0017	13.5355	0.9939	0.0346	0.0071	0.0016	0.0003	42.6312	0.7102	263.48	4.08
Integrated		43.8119	0.0886	0.0564	0.0005	0.0127	0.0002	8.5909	0.1299	0.1035	0.0010	0.0017	0.0000	40.0225	0.1003	248.41	0.9

Late Permian - Early Triassic Northern Norway Faulting

Sample name: S11/21 FS#L1 (deformed) Location: Sifjord, Senja (69.28062°N, 17.10295°E) Weighted average of J from standards = 3.688e-03 +/- 1.087e-05 Days since irradiation = 38

Laser Power	Cumulative	40Ar/39Ar	+/-	37Ar/39Ar	+/-	36Ar/39Ar	+/-	% Atm.	+/-	Ca/K	+/-	CI/K	+/-	40*/39K	+/-	Age	+/-
(mW)	39Ar	meas.		meas.		meas.		40Ar								(Ma)	(Ma)
400	0.1988	38.5487	0.3076	0.0045	s10/40	0.0036	0.0004	2.7520	0.3389	0.0082	0.0017	0.0007	0.0001	37.4591	0.3303	233.49	1.93
600	0.2574	39.4889	0.3685	0.0163	0.0024	0.0014	0.0012	1.0341	0.8897	0.0300	0.0044	0.0006	0.0002	39.0516	0.5068	242.78	2.95
800	0.3028	39.4802	0.3134	0.0086	0.0025	0.0005	0.0014	0.3366	1.0122	0.0158	0.0045	0.0007	0.0005	39.3179	0.5071	244.33	2.95
1000	0.3428	39.5967	0.4119	0.0066	0.0032	0.0015	0.0020	1.0997	1.4768	0.0120	0.0058	0.0007	0.0004	39.1321	0.7128	243.25	4.14
1300	0.3813	39.4353	0.3189	0.0069	0.0029	0.0037	0.0018	2.8037	1.3094	0.0127	0.0053	0.0008	0.0004	38.3010	0.6031	238.41	3.52
1600	0.4280	39.4360	0.3868	0.0094	0.0025	0.0029	0.0013	2.1947	0.9940	0.0173	0.0046	0.0014	0.0003	38.5417	0.5456	239.81	3.18
2000	0.4939	40.2920	0.3052	0.0046	0.0020	0.0029	0.0011	2.1038	0.8184	0.0084	0.0037	0.0010	0.0002	39.4154	0.4463	244.89	2.59
2500	0.5849	40.8294	0.2667	0.0032	0.0014	0.0035	0.0009	2.5427	0.6575	0.0058	0.0025	0.0012	0.0002	39.7624	0.3751	246.91	2.18
3000	0.5957	40.0382	0.5608	0.0259	0.0111	0.0053	0.0077	3.9126	5.6470	0.0476	0.0203	0.0013	0.0012	38.4439	2.3231	239.24	13.54
3500	0.6139	40.5749	0.4506	0.0115	0.0067	0.0039	0.0036	2.8089	2.6562	0.0211	0.0122	0.0011	0.0007	39.4067	1.1631	244.84	6.76
4000	0.6313	41.0240	0.4383	0.0170	0.0076	0.0094	0.0044	6.8017	3.1836	0.0311	0.0140	0.0003	0.0008	38.2064	1.3693	237.85	7.99
5000	0.6652	40.4798	0.4240	0.0022	0.0037	0.0049	0.0022	3.6094	1.5845	0.0040	0.0068	0.0009	0.0004	38.9902	0.7617	242.42	4.43
6000	0.7310	40.9681	0.3361	0.0018	0.0017	0.0036	0.0011	2.5783	0.7829	0.0033	0.0032	0.0011	0.0002	39.8829	0.4598	247.61	2.67
9000	0.7667	41.8415	0.2347	0.0048	0.0035	0.0043	0.0020	3.0434	1.3779	0.0088	0.0064	0.0006	0.0005	40.5394	0.6208	251.41	3.59
9001	1.0000	42.5937	0.5515	-0.0019	0.0006	0.0038	0.0004	2.6347	0.2739	- 0.0036	0.0011	0.0005	0.0001	41.4425	0.5545	256.63	3.2
Integrated		40.4680	0.1511	0.0045	0.0005	0.0034	0.0003	2.4815	0.2118	0.0083	0.0009	0.0008	0.0001	39.4350	0.1716	245.01	1.2

Late Permian - Early Triassic Northern Norway Faulting

Sample name: EG FS#L2 (undeformed) Location: Ersfjordbotn, Kvaløya (69.70094°N, 18.60005°E) Weighted average of J from standards = 3.657e-03e-03 +/- 1.135e-05 Days since irradiation = 166 Laser 37Ar/39Ar % Atm. Power Cumulative 40Ar/39Ar +/-+/-36Ar/39Ar +/-+/-Ca/K +/-CI/K +/-40*/39K +/-Age +/-(mW) 39Ar 40Ar (Ma) (Ma) meas meas meas 5.4156 0.0113 19.5658 1.3663 0.6950 0.4527 0.0071 0.0024 191.6106 5.6405 956.94 21.86 400 0.0032 238.3138 -0.3789 0.2469 0.1577 600 0.0432 105.8832 0.6841 -0.0609 0.0253 0.0013 0.0006 0.3702 0.1710 0.1117 0.0464 0.0017 0.0002 105.4571 0.7055 587.75 3.36 0.1755 800 0.1392 53.7277 0.4679 -0.0256 0.0095 0.0004 0.0003 0.2396 0.0469 0.0173 0.0007 0.0001 53.5683 0.4766 322.37 2.63 1000 0.2291 49.9157 0.2583 -0.0044 0.0089 0.0007 0.0004 0.3949 0.2164 0.0080 0.0163 0.0003 0.0001 49.6889 0.2794 300.86 1.56 0.0123 0.2657 1300 0.3175 53.8212 0.3544 -0.0067 0.0005 0.0005 0.2677 0.0123 0.0225 0.0006 0.0001 53.6472 0.3815 322.8 2.1 1600 0.3833 61.3392 0.2148 0.0566 0.0248 0.0013 0.0007 0.6218 0.3263 0.1039 0.0456 0.0005 0.0002 60.9307 0.2929 362.49 1.58 2000 0.4237 69.8814 0.3659 -0.0089 0.0279 0.0018 0.7398 0.3721 0.0163 0.0512 0.0006 0.0002 69.3346 0.4471 407.22 0.0009 2 35 2500 0.4612 87.1108 0.4176 0.0085 0.0342 0.0013 0.0013 0.4240 0.4248 0.0156 0.0628 0.0007 0.0002 86.7124 0.5568 496.33 2.79 3000 0.5004 96.6901 0.4966 0.0119 0.0382 0.0024 0.0012 0.7292 0.3698 0.0219 0.0700 0.0013 0.0003 95.9564 0.6092 542 2.97 4000 0.5589 99.5612 1.0407 -0.0307 0.0279 0.0007 0.0007 0.2026 0.1998 0.0563 0.0512 0.0011 0.0002 99.3277 1.0582 558.37 5.12 5000 0.6092 103.6549 1.0316 -0.0035 0.0268 0.0020 0.0012 0.5656 0.3274 0.0064 0.0492 0.0014 0.0002 103.0389 1.0826 576.22 5.18 6000 0.6440 98.8344 0.5490 0.0237 0.0427 0.0026 0.0015 0.7659 0.4561 0.0434 0.0784 0.0014 0.0003 98.0496 0.7076 552.18 3.43 9000 0.6609 96.2039 0.7532 0.0147 0.0744 0.0072 0.0036 2.2049 1.1106 0.0270 0.1366 0.0012 0.0004 94.0546 1.2995 532.69 6.37 0.0012 9001 1.0000 85.5636 0.3173 0.0014 0.0044 0.0005 0.4015 0.1842 0.0025 0.0081 0.0008 0.0001 85.1906 0.3532 488.7 1.77 0.0017 0.6565 0.0904 0.0062 0.0087 77.8879 0.1661 Integrated 78.4325 0.1510 -0.0034 0.0048 0.0002 0.0009 0.0000 451.63 1.5

Late Permian - Early Triassic Northern Norway Faulting

Sample name: S09/18 FS#L1 (undeformed) Location: Bøvær, Senja (69.47225°N, 17.23075°E) Weighted average of J from standards = 3.775e-03 +/- 1.217e-05 Days since irradiation = 62

Laser Power	Cumulative	40Ar/39Ar	+/-	37Ar/39Ar	+/-	36Ar/39Ar	+/-	% Atm.	+/-	Ca/K	+/-	CI/K	+/-	40*/39K	+/-	Age	+/-
(mW)	39Ar	meas.		meas.		meas.		40Ar								(Ma)	(Ma)
400	0.0035	4940.2824	#####	-0.0408	0.0425	0.1999	0.0135	1.1957	0.0747	- 0.0749	0.0779	0.0179	0.0028	4881.0441	124.9137	5348.1	43.75
600	0.0176	150.2900	1.9266	0.0133	0.0124	0.0111	0.0047	2.1847	0.9141	0.0244	0.0228	0.0020	0.0006	146.9789	2.3395	796.18	10.24
800	0.0505	57.8220	0.6146	0.0085	0.0050	0.0027	0.0014	1.3596	0.7232	0.0156	0.0091	0.0006	0.0002	57.0068	0.7384	351.63	4.14
1000	0.0962	45.3610	0.3453	0.0134	0.0042	0.0018	0.0010	1.1735	0.6710	0.0245	0.0077	0.0005	0.0003	44.7998	0.4589	281.89	2.67
1300	0.1509	46.1038	0.3183	0.0104	0.0030	0.0015	0.0009	0.9333	0.5612	0.0191	0.0055	0.0006	0.0001	45.6444	0.4092	286.81	2.38
1600	0.2002	57.9745	0.5369	0.0094	0.0035	0.0016	0.0010	0.8288	0.5065	0.0173	0.0064	0.0005	0.0001	57.4649	0.6092	354.2	3.41
1900	0.2319	44.7847	0.3908	0.0072	0.0056	0.0013	0.0016	0.8772	1.0291	0.0133	0.0103	0.0006	0.0002	44.3627	0.6025	279.35	3.51
2200	0.2574	45.8060	0.2259	0.0107	0.0071	-0.0013	0.0020	-0.8422	1.2764	0.0196	0.0130	0.0006	0.0003	46.1622	0.6267	289.81	3.63
2500	0.2763	48.4218	0.3291	0.0020	0.0091	-0.0032	0.0027	-1.9423	1.6404	0.0036	0.0167	0.0004	0.0003	49.3321	0.8610	308.1	4.94
3000	0.3007	54.7031	0.4353	0.0078	0.0075	-0.0028	0.0022	-1.4892	1.1686	0.0144	0.0138	0.0009	0.0003	55.4879	0.7756	343.1	4.37
3500	0.3203	56.3267	0.4607	0.0166	0.0088	-0.0037	0.0023	-1.9460	1.1896	0.0305	0.0162	0.0010	0.0004	57.3932	0.8168	353.8	4.57
4000	0.3402	54.8169	0.4754	0.0015	0.0088	-0.0021	0.0031	-1.1088	1.6889	0.0028	0.0162	0.0008	0.0004	55.3947	1.0423	342.58	5.87
4500	0.3591	63.4470	0.5302	0.0150	0.0081	-0.0023	0.0029	-1.0870	1.3340	0.0275	0.0149	0.0008	0.0004	64.1073	1.0010	390.99	5.49
5000	0.3776	58.8081	0.4105	0.0104	0.0100	-0.0039	0.0032	-1.9693	1.6170	0.0190	0.0184	0.0008	0.0004	59.9363	1.0376	367.97	5.76
6000	0.4022	65.1560	0.6384	0.0023	0.0066	-0.0010	0.0020	-0.4708	0.9047	0.0043	0.0120	0.0007	0.0003	65.4330	0.8706	398.24	4.75
9000	0.4256	63.2955	0.4513	0.0108	0.0068	-0.0014	0.0022	-0.6480	1.0105	0.0197	0.0125	0.0007	0.0004	63.6763	0.7836	388.62	4.3
9001	1.0000	62.9987	0.2456	0.0044	0.0003	0.0024	0.0001	1.1240	0.0382	0.0080	0.0005	0.0008	0.0000	62.2614	0.2444	380.84	1.35
Integrated		77.5506	0.1844	0.0063	0.0007	0.0022	0.0002	0.8243	0.0810	0.0116	0.0013	0.0008	0.0000	76.8823	0.1936	459.7	1.66

Late Permian - Early Triassic Northern Norway Faulting

Sample name: S09/22 FS#L1 (undeformed) Location: Gibostad, Senja (69.35660°N, 18.06627°E) Weighted average of J from standards = 3.775e-03 +/- 1.217e-05 Days since irradiation = 63

Laser Power	Cumulative	40Ar/39Ar	+/-	37Ar/39Ar	+/-	36Ar/39Ar	+/-	% Atm.	+/-	Ca/K	+/-	CI/K	+/-	40*/39K	+/-	Age	+/-
(mW)	39Ar	meas.		meas.		meas.		40Ar								(Ma)	(Ma)
400	0.0101	1170.4346	6.9629	-0.0185	0.0055	0.0675	0.0024	1.7042	0.0597	- 0.0340	0.0101	0.0122	0.0003	#####	6.8876	3021.7	8.77
600	0.0220	97.3698	0.7684	0.0021	0.0048	0.0106	0.0019	3.2017	0.5725	0.0039	0.0088	0.0016	0.0002	94.2238	0.9357	548.98	4.7
800	0.0415	53.3069	0.4657	-0.0020	0.0023	0.0052	0.0011	2.8915	0.6157	- 0.0036	0.0043	0.0008	0.0001	51.7366	0.5614	321.85	3.2
1000	0.0762	45.5829	0.3025	0.0026	0.0015	0.0032	0.0006	2.1009	0.4068	0.0048	0.0027	0.0006	0.0001	44.5963	0.3521	280.71	2.05
1300	0.1642	46.4820	0.1658	0.0011	0.0006	0.0027	0.0003	1.7393	0.1920	0.0019	0.0012	0.0005	0.0001	45.6444	0.1862	286.81	1.08
1600	0.2375	46.2604	0.1980	0.0006	0.0009	0.0016	0.0004	1.0239	0.2415	0.0011	0.0017	0.0004	0.0001	45.7574	0.2258	287.46	1.31
1900	0.2761	47.7691	0.2822	0.0031	0.0013	0.0019	0.0005	1.1833	0.3176	0.0058	0.0024	0.0004	0.0001	47.1746	0.3189	295.67	1.84
2200	0.3037	48.8519	0.3556	0.0023	0.0016	0.0021	0.0008	1.2668	0.4695	0.0043	0.0029	0.0004	0.0001	48.2038	0.4207	301.61	2.42
2500	0.3256	50.0355	0.3301	-0.0012	0.0025	0.0025	0.0009	1.4936	0.5442	0.0021	0.0045	0.0004	0.0002	49.2589	0.4256	307.68	2.44
3000	0.3454	50.3244	0.3825	0.0029	0.0034	0.0024	0.0010	1.3988	0.6108	0.0054	0.0062	0.0004	0.0002	49.5913	0.4876	309.59	2.8
3500	0.3620	54.9486	0.4132	0.0024	0.0032	0.0028	0.0014	1.4807	0.7619	0.0044	0.0059	0.0005	0.0002	54.1058	0.5852	335.3	3.31
4000	0.3739	54.7060	0.3909	0.0093	0.0029	0.0003	0.0017	0.1638	0.9246	0.0170	0.0053	0.0003	0.0003	54.5871	0.6387	338.02	3.61
4500	0.3847	56.0886	0.3210	0.0062	0.0047	0.0029	0.0019	1.5006	1.0025	0.0114	0.0086	0.0006	0.0004	55.2179	0.6460	341.58	3.64
5000	0.3941	58.0647	0.3124	-0.0012	0.0060	0.0031	0.0025	1.5650	1.2476	0.0021	0.0110	0.0000	0.0005	57.1267	0.7877	352.3	4.41
6000	0.4039	64.6130	0.6238	0.0000	0.0067	0.0031	0.0022	1.3965	1.0164	0.0001	0.0122	0.0002	0.0003	63.6814	0.9008	388.65	4.95
9000	0.4142	63.8568	0.6021	0.0030	0.0045	0.0054	0.0020	2.5000	0.9379	0.0056	0.0082	0.0004	0.0003	62.2315	0.8402	380.67	4.63
9001	1.0000	85.9862	0.2755	0.0004	0.0001	0.0023	0.0000	0.7964	0.0152	0.0008	0.0002	0.0011	0.0000	85.2719	0.2741	503.44	1.41
Integrated		82.7515	0.1659	0.0007	0.0002	0.0032	0.0001	1.1308	0.0333	0.0014	0.0004	0.0010	0.0000	81.7864	0.1668	485.4	1.62

Late Permian - Early Triassic Northern Norway Faulting

Sample name: S11/20 FS#1 (undeformed) Location: Sifjord, Senja (69.28062°N, 17.10295°E) Weighted average of J from standards = 3.688e-03 +/- 1.087e-05 Days since irradiation = 38

Laser Power	Cumulative	40Ar/39Ar	+/-	37Ar/39Ar	+/-	36Ar/39Ar	+/-	% Atm.	+/-	Ca/K	+/-	CI/K	+/-	40*/39K	+/-	Age	+/-
(mW)	39Ar	meas.		meas.		meas.		40Ar								(Ma)	(Ma)
400	0.1568	46.2854	0.1709	0.0008	0.0004	0.0036	0.0002	2.2834	0.1140	0.0015	0.0008	0.0005	0.0001	45.1995	0.1761	278.18	1
600	0.2379	45.5680	0.3247	0.0007	0.0010	0.0013	0.0005	0.8315	0.3227	0.0014	0.0018	0.0005	0.0001	45.1596	0.3552	277.96	2.03
800	0.2952	47.9415	0.3871	0.0643	0.0018	0.0013	0.0005	0.7782	0.3029	0.1180	0.0032	0.0007	0.0001	47.5411	0.4117	291.49	2.33
1000	0.3366	48.6637	0.2870	0.2293	0.0034	0.0005	0.0007	0.2872	0.4130	0.4208	0.0063	0.0017	0.0002	48.5022	0.3500	296.92	1.98
1300	0.3745	51.0297	0.3063	0.0067	0.0023	0.0049	0.0011	2.8287	0.6059	0.0123	0.0042	0.0004	0.0001	49.5576	0.4319	302.87	2.43
1600	0.4045	52.6801	0.3559	0.0077	0.0021	0.0028	0.0010	1.5445	0.5747	0.0141	0.0039	0.0005	0.0002	51.8375	0.4647	315.65	2.6
2000	0.4468	58.1489	0.4190	0.0107	0.0012	0.0033	0.0007	1.6536	0.3538	0.0197	0.0023	0.0008	0.0001	57.1585	0.4634	345.13	2.55
2500	0.4722	59.4629	0.5122	0.1231	0.0026	0.0014	0.0012	0.6644	0.6152	0.2260	0.0048	0.0005	0.0002	59.0435	0.6272	355.46	3.43
3000	0.5309	59.4120	0.3966	0.0725	0.0012	0.0022	0.0005	1.0851	0.2386	0.1331	0.0022	0.0004	0.0001	58.7409	0.4199	353.8	2.3
3500	0.7868	59.1379	0.2488	0.0035	0.0002	0.0022	0.0001	1.1120	0.0674	0.0064	0.0004	0.0005	0.0000	58.4510	0.2498	352.22	1.37
4000	0.8499	63.1699	0.4438	-0.0009	0.0014	0.0021	0.0005	0.9935	0.2419	- 0.0017	0.0026	0.0005	0.0001	62.5128	0.4676	374.31	2.53
5000	0.9125	57.3730	0.4934	-0.0010	0.0015	0.0019	0.0004	0.9831	0.1963	- 0.0019	0.0028	0.0005	0.0001	56.7795	0.5031	343.04	2.77
6000	0.9936	55.6348	0.4044	0.0011	0.0007	0.0020	0.0005	1.0809	0.2661	0.0020	0.0013	0.0005	0.0001	55.0040	0.4288	333.25	2.37
9000	1.0000	60.0833	0.4766	0.0035	0.0095	-0.0001	0.0041	-0.0458	1.9904	0.0065	0.0174	0.0011	0.0008	60.0812	1.2869	361.12	7.01
Integrated		54.2944	0.0995	0.0226	0.0003	0.0023	0.0001	1.2583	0.0651	0.0414	0.0006	0.0005	0.0000	53.5827	0.1049	325.37	1.05

Late Permian - Early Triassic Northern Norway Faulting

Sample name: R3 FS#L1 (undeformed). Location, Mikkelvik, Ringvassøya (70.05195°N, 19.03317°E) Weighted average of J from standards = 3.775e-03 +/- 1.217e-05 Days since irradiation = 64

Laser Power	Cumulative	40Ar/39Ar	+/-	37Ar/39Ar	+/-	36Ar/39Ar	+/-	% Atm.	+/-	Ca/K	+/-	CI/K	+/-	40*/39K	+/-	Age	+/-
(mW)	39Ar	meas.		meas.		meas.		40Ar								(Ma)	(Ma)
400	0.0016	404.5628	14.8881	0.2915	0.0956	0.1866	0.0316	13.6269	2.2521	0.5349	0.1755	0.0075	0.0056	#####	15.7880	1517.3	46.33
600	0.0254	77.6362	0.5214	0.0300	0.0088	0.0113	0.0018	4.2851	0.6775	0.0550	0.0161	0.0011	0.0004	74.2826	0.7289	445.93	3.88
800	0.0757	62.2980	0.3039	0.0213	0.0041	0.0101	0.0025	4.7760	1.2015	0.0392	0.0075	0.0004	0.0002	59.2953	0.8059	364.41	4.48
1000	0.1332	63.3595	0.3917	0.0238	0.0036	0.0038	0.0009	1.7509	0.3965	0.0436	0.0067	0.0008	0.0002	62.2220	0.4627	380.62	2.55
1300	0.1980	63.1622	0.3769	0.0204	0.0024	0.0029	0.0007	1.3524	0.3149	0.0375	0.0043	0.0009	0.0002	62.2796	0.4238	380.94	2.34
1600	0.2660	60.8711	0.3990	0.0283	0.0028	0.0028	0.0010	1.3528	0.4652	0.0520	0.0051	0.0005	0.0001	60.0195	0.4870	368.44	2.7
1900	0.3319	62.3264	0.4661	0.0831	0.0035	0.0028	0.0009	1.3243	0.4039	0.1525	0.0065	0.0005	0.0001	61.4754	0.5264	376.5	2.91
2200	0.3778	62.8829	0.4132	0.0733	0.0037	0.0007	0.0008	0.3389	0.3774	0.1345	0.0068	0.0006	0.0002	62.6435	0.4759	382.94	2.62
2500	0.4037	63.5695	0.5182	0.0296	0.0098	0.0007	0.0023	0.3018	1.0810	0.0543	0.0179	0.0009	0.0004	63.3493	0.8597	386.83	4.72
3000	0.4310	65.7139	0.4590	0.0330	0.0058	0.0045	0.0014	2.0193	0.6466	0.0606	0.0106	0.0006	0.0003	64.3593	0.6214	392.37	3.4
3500	0.4537	71.8816	0.5486	0.0409	0.0075	0.0042	0.0018	1.7130	0.7350	0.0751	0.0137	0.0008	0.0004	70.6231	0.7569	426.36	4.07
4000	0.4724	81.2569	0.5391	0.0720	0.0095	0.0061	0.0024	2.1988	0.8777	0.1321	0.0175	0.0005	0.0004	79.4452	0.8894	473.18	4.66
4500	0.4828	79.2335	0.9983	0.0656	0.0173	0.0052	0.0035	1.9337	1.3056	0.1203	0.0318	0.0011	0.0008	77.6759	1.4246	463.89	7.5
5000	0.4945	86.6222	0.6531	0.0640	0.0178	0.0087	0.0055	2.9442	1.8669	0.1174	0.0326	0.0011	0.0007	84.0468	1.7378	497.12	8.98
6000	0.5125	92.6633	0.7018	0.0598	0.0091	0.0106	0.0026	3.3591	0.8183	0.1098	0.0166	0.0009	0.0005	89.5257	1.0213	525.22	5.2
9000	0.5364	98.1034	0.6504	0.0393	0.0076	0.0061	0.0019	1.8461	0.5817	0.0722	0.0140	0.0011	0.0005	96.2658	0.8594	559.2	4.29
9001	1.0000	73.4344	0.2904	0.0060	0.0006	0.0027	0.0001	1.0790	0.0581	0.0110	0.0010	0.0008	0.0001	72.6129	0.2908	437.03	1.55
Integrated		70.9856	0.1489	0.0259	0.0008	0.0040	0.0002	1.6502	0.0989	0.0475	0.0015	0.0008	0.0000	69.7863	0.1628	421.86	1.5

Late Permian - Early Triassic Northern Norway Faulting

Sample name: S10/40 FS#L1 (undeformed) Location: Vannareidet, Vannøya (70.21555°N, 19.69545°E) Weighted average of J from standards = 3.775e-03 +/- 1.217e-05 Days since irradiation = 76

Laser Power	Cumulative	40Ar/39Ar	+/-	37Ar/39Ar	+/-	36Ar/39Ar	+/-	% Atm.	+/-	Ca/K	+/-	CI/K	+/-	40*/39K	+/-	Age	+/-
(mW)	39Ar	meas.		meas.		meas.		40Ar								(Ma)	(Ma)
400	0.1726	94.4024	0.5787	-0.0027	0.0007	0.0080	0.0003	2.4998	0.0810	-0.0049	0.0012	0.0017	0.0000	92.0134	0.5752	537.84	2.91
600	0.2851	57.2331	0.3300	-0.0034	0.0012	0.0016	0.0003	0.8146	0.1518	-0.0062	0.0022	0.0004	0.0001	56.7373	0.3398	350.12	1.91
800	0.3842	60.7795	0.3371	-0.0026	0.0014	0.0016	0.0004	0.7745	0.1766	-0.0047	0.0025	0.0005	0.0001	60.2792	0.3525	369.88	1.96
1000	0.4216	60.5351	0.7852	0.0007	0.0033	0.0016	0.0010	0.7636	0.4793	0.0013	0.0060	0.0006	0.0002	60.0434	0.8337	368.57	4.63
1300	0.4685	64.7818	0.6437	-0.0096	0.0026	0.0018	0.0007	0.8215	0.3355	-0.0176	0.0047	0.0008	0.0001	64.2197	0.6771	391.6	3.71
1600	0.5142	73.5091	0.7106	-0.0073	0.0033	0.0028	0.0007	1.1273	0.2623	-0.0134	0.0061	0.0007	0.0001	72.6507	0.7326	437.23	3.91
1900	0.5573	73.1119	0.8458	-0.0091	0.0026	0.0017	0.0010	0.7035	0.3823	-0.0167	0.0047	0.0006	0.0002	72.5676	0.8875	436.79	4.74
2200	0.6125	90.1288	0.4356	-0.0053	0.0022	0.0033	0.0007	1.0772	0.2273	-0.0097	0.0040	0.0015	0.0001	89.1282	0.4799	523.2	2.44
2500	0.6699	99.6254	0.5771	-0.0058	0.0019	0.0052	0.0005	1.5484	0.1584	-0.0107	0.0036	0.0017	0.0001	98.0532	0.5936	568.11	2.95
3000	0.6849	94.3463	0.8121	-0.0093	0.0115	0.0046	0.0020	1.4381	0.6272	-0.0170	0.0211	0.0016	0.0004	92.9596	1.0009	542.61	5.04
3500	0.7305	99.2618	0.8074	-0.0042	0.0025	0.0048	0.0007	1.4280	0.2079	-0.0077	0.0046	0.0024	0.0001	97.8148	0.8248	566.92	4.1
4000	0.8111	115.8306	0.6653	-0.0062	0.0016	0.0050	0.0005	1.2644	0.1250	-0.0113	0.0030	0.0026	0.0001	114.3362	0.6765	647.26	3.22
4500	0.8668	116.5661	0.7208	-0.0077	0.0025	0.0084	0.0006	2.1255	0.1466	-0.0141	0.0046	0.0022	0.0001	114.0588	0.7319	645.94	3.48
5000	0.8790	100.0161	1.1946	-0.0181	0.0100	-0.0002	0.0026	-0.0479	0.7535	-0.0333	0.0183	0.0014	0.0004	100.0330	1.4127	577.92	6.98
6000	0.8791	65.4931	8.4316	-0.1683	0.5626	-0.2590	0.1654	-116.9021	73.2709	-0.3088	1.0321	-0.0148	0.0263	141.9745	51.1440	774.13	226.7
9000	0.9278	115.8098	0.6451	-0.0048	0.0025	0.0085	0.0008	2.1682	0.2102	-0.0088	0.0045	0.0023	0.0001	113.2693	0.6830	642.18	3.26
9001	1.0000	125.6387	0.6803	-0.0081	0.0016	0.0048	0.0004	1.1211	0.0956	-0.0149	0.0029	0.0024	0.0001	124.2000	0.6872	693.57	3.19
Integrated		88.9660	0.1682	-0.0052	0.0005	0.0044	0.0001	1.4618	0.0479	-0.0095	0.0010	0.0015	0.0000	87.6359	0.1722	515.58	1.69

Late Permian - Early Triassic Northern Norway Faulting

DR item 3: Individual ⁴⁰Ar/³⁹Ar age spectra, and Cl/K ratios.

