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Abstract

Photovoltaics (PV) and electric vehicles (EVs) are promising technologies for increasing energy efficiency
and the share of renewable energy sources in power and transport systems. As regards the deployment, use
and system integration of these technologies, spatio-temporal modeling of PV power production and EV
charging is of importance for several purposes such as urban planning and power grid design and operation.
There is an abundance of studies and reviews on modeling of PV power production and EV charging available
in the literature. However, there is a lack of studies that review the opportunities for combined modeling
of the power consumption and production associated with these technologies. This paper aims to fill this
research gap by presenting a review of previous research regarding modeling of spatio-temporal PV power
production and charging load of EVs. The paper provides a summary of previous work in both fields and
the combination of the fields. Finally, research gaps that need to be further explored are identified.

This survey revealed some research gaps that need to be further addressed. Improving the accuracy of
PV power production ramp-rate modeling in addition to quantifying the aggregate clear-sky index on city-
scale are two priorities for the PV potential studies. For the EV charging load models, differences in model
assumptions, such as charging locations, charging powers and charging profiles, need to be studied more
extensively. Moreover, there is an imminent need for metering the load of charging stations. This is essential
in developing accurate models and time series forecasting techniques. For studies exploring both the PV
and EV impacts, local weak points in a spatial network need to be discovered, especially for the city-scale
studies. Cooperation between eminent researchers in the PV and EV fields might propagate state-of-the-art
models from the separate fields to the combined studies.
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1. Introduction

Since electricity generation and transportation accounted for 60% of all energy use in the world in 2013,
renewable energy sources for electricity generation and electrification of transport provide a great potential
for reducing fossil fuel use [1, 2]. In an ambitious set of targets the European Commission has setup a
policy framework for 2030 which includes 40% reduced CO2 emissions compared with the 1990 level [3]. This5

implies reducing energy use, increasing energy efficiency and increasing the percentage of energy demand
met by renewable energy sources.

While electrification of transport presents a great possibility for reducing CO2 emissions [4], a renewable
energy source of the electrification, such as photovoltaics (PV) power production, presents an even stronger
case [5]. This, however, is contingent on the use of plug-in vehicles. The number of electric or hybrid10

vehicles has risen rapidly in the world, with over 565,000 plug-in cars sold globally 2011-2015 [6]. In the
year 2016, the global sales of plug-in cars exceeded 750,000 vehicles [7]. Electric vehicles (EVs) is a term
applied to hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric
vehicles (BEVs) [8]. In this paper, EVs refer only to PHEVs and BEVs.

As an example, a target of 20 million EVs and fuel cell vehicles, on the road was set by the Electric15

vehicle initiative (EVI) to be achieved in 2020 [9]. This target is expected to be surpassed if the 78% growth
rate achieved in the year 2015 was maintained [10]. However in the year 2016, the annual growth rate of
EV sales has fallen below 50% for the first time since 2010, and the annual growth rate of publicly available
charging has increased by 72% [11]. The Electric and plug-in hybrid roadmap aims that EVs represent 50%
of the sales of vehicles worldwide by 2050 [12]. This is to say that the current research is investigating20

penetration levels of EVs that are expected to take place within decades, which is likely going to affect the
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household electricity consumption patterns. This change will make the current studies inaccurate in their
representation of the grid load. Thus, continuous updating of modeling parameters is needed to cope with
changing external factors.

Alongside the electrification of transport, the share of renewable energy has risen as well. In particular25

PV power capacity grew by 50 percent — or 75 GW — during 2016 [13, p.4], and a cumulative 303 GW
was installed globally as of 2016 [13, p.7]. The growth of PV power production in the world is mainly due
to falling prices on PV panels, balance of system (BOS), and installation costs, largely due to increases in
production volume, and governmental subsidies [14, 15]. The price for PV systems have been more than
halved from 2007–2015 [15]. However, in mature markets the PV power production installation rate rapidly30

decreased and the total installed capacity appears to stagnate below 10 percent of the installed electricity
generation capacity [14, p.15]. Still, for these capacities, PV power production has potentially adverse effects
on the local electricity grid, such as over-voltage and even component failure [16]. For these situations local
self-consumption of PV power can reduce the risk of adverse effects by reducing the electricity that is fed
into the grid. In this case there is potential for using PV power to charge EVs [2, 17–20].35

Type of EV charging, as well as location and time of charging affects the synergy potential of combining
PV power production and EV charging, where controlled charging generally has higher potential than
uncontrolled charging [18]. Uncontrolled charging is here defined as opportunistic, as opposed to controlled
charging, which can be based on some scheme. Estimates of opportunistic EV home-charging suggest that
home-charging occurs mostly during late evening (from about 6 p.m.) and night-time [17, 21]. When40

combined with PV power production that is an increased self-consumption [17], but that it generates a
larger mismatch overall [5, 17]. It should also be emphasized that the match between PV power production
and EV charging is higher when aggregates of charging stations and PV power systems are considered [22].
It should also be mentioned that local battery storage can also improve this matching [23].

Multiple businesses in the electricity sector — like grid operators, power plants, electricity traders, and45

large consumers — rely heavily on accurate load models [24–27]. Even for city planning purposes and for
design and operation of urban electricity distribution grids, models of future dispersed PV power production
and EV charging patterns are important for, e.g., matching variability in PV supply and improving local
self-consumption of PV production in EV charging [2, 16, 28–30]. Models that combine a realistic spatial
distribution over a city or parts of a city with high time resolution are necessary for detailed system integra-50

tion studies. However, there is a lack of data for EV charging on the city-scale [31], and the literature is even
more scarce on the combination of EV charging and PV power production in cities. At the same time, recent
research on solar irradiance has provided advances in modeling of dispersed and correlated high-resolution
irradiance over small spatial scales, and there is an abundance of EV models that address different important
aspects, including time-scales and driving patterns [2, 32]. There should be opportunities for a combined55

modeling approach based on existing models. A first step towards this is to map the current state-of-the-art
in the PV and EV modeling fields.

The aim of this review paper is therefore to provide an overview of the fields of EV charging and PV
power production modeling on city-scales to identify the main research and development gaps and the
opportunities for combining modeling approaches for the two technologies. The paper provides a summary60

of previous work in both fields and the combination of the fields — which was not performed as extensively
before — and identifies gaps that need to be further explored in future research. Reviewing time series
forecasting techniques is beyond the scope of this paper because of the following reasons: (1) time series
forecasting techniques for PV power production were reviewed before in [33, 34], and (2) EV charging load
forecasting papers are scarce. This is a result of the scarcity of metered data measured at charging stations65

[31, 35]. Among Ref. [35–37] who developed forecasting techniques for EV charging load, only [36] used
recorded load data. Ref. [35, 37] relied solely on exogenous variables — such as ambient temperature, traffic
data, and driving behaviors — in their forecasting technique.

The authors read and analyzed previous research contributions in addition to the important former
advancements in both fields individually and combined. The aim is to highlight the previous research results70

along with the currently unanswered questions so that forthcoming studies explore the open questions and
avert the formerly explored ones.

The paper is structured as follows. Section 2 reviews recent advances in solar irradiance and PV power
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production modeling that allow city-scale spatio-temporal models of dispersed PV systems to be developed.
Section 3 reviews EV charging models, with a broad overview of available models and a special focus on75

controlled charging, which is generally believed to be necessary for a smooth integration into the existing
infrastructure. Section 4 reviews the existing studies and models of combined EV charging and PV power
production. Finally a concluding discussion, pointing out gaps in knowledge, data and model capabilities,
is given in Section 5.

2. City-scale modeling of PV power generation80

For modeling the power output from a large number of PV systems spatially distributed over time in
a city, three main parts need to be included: (1) the solar irradiance distributed over the systems, taking
varying cloudiness into account, (2) a method for identifying and efficiently representing a large number
of building areas on which PV systems are mounted, and (3) suitable models for conversion of irradiance
components between horizontal and tilted planes and for PV system output. In the following sections we85

summarize current state-of-the-art and common practice in these areas.
This section contains spatio-temporal modeling of solar irradiance, and excludes forecasting, since that

is outside the scope of this paper. For overviews of solar irradiance and solar power forecasting, see, e.g.,
Ref. [33, 34].

2.1. Spatio-temporal solar irradiance modeling90

Broadly speaking, a spatio-temporal model of solar irradiance describes how the irradiance simultaneously
varies over both space and time. The output is typically irradiance time series [38], probability distributions
for instantaneous irradiance [39] or some measure of variability [38] for a number of dispersed sites [38]
or aggregated over a geographical area [40, 41]. Input data are typically meteorological parameters that
characterize the weather at a certain location, either very generalized, such as the daily clear-sky index [39],95

or more detailed cloud cover parameters [39].
As many studies over the last years have shown, temporal variability of the solar irradiance over a set

of sites can be considerably smoother than at a point location, with higher dispersion leading to lower
total variability (for overviews, see e.g. Ref. [42, 43]). This is because cloudiness varies over dispersed
sites, making high-resolution irradiance time series measured at different sites more or less correlated or100

uncorrelated depending on the distance between them. Knowledge about this distance-smoothing effect
stems both from dense solar radiation networks [44–48] and from monitored PV plants [49–52] and is similar
in character to that of other weather-dependent renewables, such as wind and wave power [43]. Common
practice for solar irradiance is to study and model the clear-sky index, which is the ratio between global solar
radiation and the corresponding clear-sky radiation, and essentially describes the non-systematic variability105

(cloudiness variability) in the solar irradiance.
Spatio-temporal irradiance models are often built around a correlation model. This is the case for the

so-called wavelet variability model [41], in which a single-site time series is smoothed out to represent the
profile of a set of distributed sites or a large PV plant. A correlation model also makes up the backbone
of a recent analytical model for the irradiance variability continuously distributed over an area [53] and in110

several solar forecasting approaches [54–56]. Correlations between sites in terms of solar irradiance over
short distances and high time resolutions were first studied and modeled in Ref. [47, 57–59]. Exponential
decay models are the ones most commonly used to describe how the correlations depend on the distance
between sites [42, 60], although there are indications that logarithmic modeling could be more accurate [53].

An important distinction to make is between isotropic and anisotropic correlation models. In the former,115

the correlation is assumed to be independent of the direction of cloud movement, while in the latter it
depends on the cloud or wind direction. For ramp-rate correlations, empirical measurements have shown
that the correlations are highly anisotropic for along-wind station pairs and cross-wind station pairs [48].
Anisotropic correlation models have subsequently been proposed [61, 62] and should be preferred for realistic
spatio-temporal models.120

A promising way to describe spatially distributed high-resolution solar irradiance is through probabilistic
modeling. Early investigations of the clear-sky index at individual sites showed that it was bimodal or, at
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least, that it displayed asymmetry with respect to the mean value [63–71]. Characterizations of probability
distributions have since improved from daily and hourly resolution [72–75] to minutely or near-instantaneous
resolution [76–79], and probability distribution models have been developed for characterizing the clear-sky125

index. Examples of distribution families for representing the clear-sky index include single Gamma [74],
single Boltzmann [73], Bi-exponential [80], double Normal [78, 81], double Beta [82], double Boltzmann [79],
Logistic combined with Weibull [83] and recently triple Normal [84]. Also a convolution-type model has
been developed [85]. No clear preference for a single distribution family is indicated by the literature, which
motivates further comparative studies.130

Spatially correlated probability distributions can be modeled via a joint distribution function called a
copula [86]. This methodology has been used for modeling of dispersed wind power plants [87], but has a
yet largely unrealized potential of contributing to spatio-temporal solar irradiance modeling. Initial studies
on using copula to model solar irradiance suggest that it can be used on city-scale [88], and possibly even
regional scale, at least if applied to PV power generation [89].135

2.2. Modeling of available building areas and PV systems

To go from spatially modeled clear-sky index to a full model of distributed PV systems within a city a
number of steps are typically involved. First, to model sites for building-applied PV systems we must be
able to identify available building areas. Second, clear-sky index data at these sites need to be converted
to solar irradiance, for which a clear-sky irradiance model is required. Third, we must be able to convert140

solar irradiance on the horizontal plane to the tilted plane of the building-applied PV system. Finally, a
PV model must be used to convert in-plane solar irradiance to PV power output. State-of-the art modeling
within each of these steps is summarized below.

Methods for assessing areas available on buildings for PV systems were reviewed in Ref. [90], which
divided methods into constant-value methods (using high-level statistics to make rough estimates in re-145

gions), manual selection methods (based on manual identification of rooftops from aerial photographs) and
geographical information system (GIS)-based methods (applying algorithms to GIS-based building data for
automatic detection of suitable areas). For spatio-temporal PV system modeling on city-scale, the last set
of methods is clearly the most relevant. Most existing studies using the latter method have been used for
determining the annual energy potential [91, 92], but there have been attempts at GIS-based spatio-temporal150

modeling with higher temporal resolution [93]. For studies of widespread PV dispersion in cities, there are
recently developed methods that automatically construct low-complexity polygon models of buildings from
light detection and ranging (LiDAR)-data [94–96].

For determining global radiation on building surfaces from clear-sky index data, several detailed and
advanced clear-sky models are available. Models that estimate the solar irradiance in cloud-free skies for155

any time and location on Earth exist, such as the state-of-the-art models McClear [97] (for a thorough
review see [98]) and National Renewable Energy Laboratory’s (NREL’s) Bird Clear-Sky Model [99]. These
are fully physical models, including advanced atmospheric and radiative transfer models. For a survey of
different models and model types see [100]. In general, the error of simpler models tends to vary over time
more than that of more advanced models, even though the simpler models are only slightly less accurate160

than the more advanced ones given the same conditions [101]. Among the models compared in Ref. [101],
the most accurate model, which was an advanced model, achieved a root mean square error (RMSE) of 4.7%
while one of the simpler models achieved a RMSE of 6.3%.

For converting incident solar irradiance from the horizontal plane to the tilted plane, both the diffuse and
beam components must be available. Since only global irradiance can be obtained by combining global clear165

sky irradiance with the clear-sky index, global radiation must first be split into beam and diffuse radiation.
Several methods are available for this [102], with the Erbs model being commonly used due to its simplicity
combined with a good performance [103]. Different models also exist for converting diffuse radiation to the
tilted plane [104, 105]. Two of the most commonly used ones, both with good performance, are the Hay
model [106] and the Perez model [107].170

The last step in city-scale PV modeling is the model of the PV systems. Several PV performance models
are available [108], with varying degrees of complexity. For city-scale modeling, it is reasonable to aim for
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a less complex model which still reproduces the essential features of PV modules, such as [109, 110], and a
reasonably simplified model of inverters, such as in [111].

The most common type of PV installation is grid-connected [15], which constitutes distributed genera-175

tion of PV power production in the electricity distribution grid [16]. There are two main challenges with
intermittent distributed generation: on the one hand, there is an increased need for power system balancing
to keep the system frequency within limits; and on the other, the local distribution grid may experience new,
reversed, power flows, voltage rise and component overloading [16]. Several studies explored PV impacts
on the electricity grid [112–116]. Ref. [117] studied the approaches followed by several countries aiming to180

improve PV integration in the grid. The challenge for distributed generation thus regards the limits of the
distribution grid. The term, ‘hosting capacity’ can be used to define the amount of distributed generation
power for which the grid performance becomes unacceptable [118]. There are a number of possible ways
to increase the hosting capacity though such as altering tap changer settings, curtailment, reactive power
control and self-consumption [23, 118].185

3. Modeling of EV charging load

The current research on EVs charging is based on the outcomes of the research in the previous century.
Since 1913 benefits of off-peak charging have been perceived [119]. These benefits were further explored in
Ref. [120]. Some models were based on mechanical estimation of the specific consumption (kWh/km) of the
EVs [121] based on data including vehicle dynamics and the driving cycles of the drivers. Vehicle dynamics190

data contains data about aerodynamic drag, weight, and drivetrain efficiency of the vehicle. Driving cycle is
the pattern according to which speed changes with time. The previous models were implemented on HEVs
that cannot be connected to the grid. However, a recent model in 2011 followed the same approach on EVs
[122]. In the year 1999, Ref. [123] developed a probabilistic model to estimate the charging load of 10000
EVs in an urban area. The daily driving distance as well as the charging start time were probabilistically195

distributed. Nowadays, probabilistic models are more often used to represent trip start and end times as
well as daily driving distance distribution. Ref. [124] developed a deterministic model that estimated the
charging load of EVs, the model used average driving distance as well as the specific consumption to estimate
the impact of night time and fast charging on the grid. The impacts of EVs charging on the electricity grid
were studied in Ref. [125, 126]. Controlled charging was explored in Ref. [127, 128].200

3.1. Overview of recent models

Nowadays, accurate EVs charging models are essential tools to predict the impacts of EVs on the
electricity grid. The mathematical models developed in the literature are plentiful. They can be categorized
based on their modeling technique to Markov chain models [21, 129, 130], queuing theory models [131–133],
deterministic models [134], Bayesian inference model [135], Markov-modulated Poisson process [136], zero205

inflated Poisson [137], joint searching scheduling algorithm [138], fuzzy based model [139], Gaussian mixture
model [140], and other stochastic models [141, 142]; or based on the simulation techniques to Monte Carlo
[129, 135, 142–144], and fuzzy linear programing [145]; or based on the probability distribution to Poisson
distribution [138, 144], Gaussian distribution [129, 142]. Overall, the accuracy of the model is not dependent
on the modeling technique, rather it depends on the model assumptions. In general, stochastic models tend210

to cater for uncertainties of the charging vehicles. Hence, stochastic models tend to provide better security
risk assessment for the system at hand [141, 142]. On the other hand, deterministic models tend to represent
the worst case scenario in the grid [142].

Models can be also categorized depending on the input data of the model. The most basic models
rely on measuring the charging load of a number of EVs, then this data is used to generate the demand215

profile of a large number of EVs as in Ref. [137, 146, 147]. Alternatively, the models presented in Ref.
[129, 138, 146–154] relied on statistical data for vehicles driving in cities. In most of the cases, the statistical
data was data for internal combustion engine vehicles (ICEVs) due to the abundance of statistics on this
type of vehicles in comparison with the EVs. It is often assumed that the driving habits of EV owners will
not be affected by the switch from ICEVs towards EVs [122, 151, 155]. On the other hand, some models220
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measure charging data from EV charging stations [133, 139, 142, 144, 156]. These models are not as wide
spread as the previous ones due to the scarcity of charging stations in general. Moreover, few existing
stations record data from charging sessions [31, 35]. Combining data from charging stations and driving
statistics will result in a more accurate model. Data from driving statistics will calibrate the total daily
charging needs of the vehicle, while data from public charging stations will calibrate tendency of vehicle225

owners to publicly charge their vehicles. This modeling strategy needs to be further implemented in the
future studies, since the accessibility of public charging stations, which is an important step towards more
sustainable transportation [157], is expected to significantly increase in the future. Consequently, owners of
EVs will be able to charge their vehicles during the day in public charging stations and charge their vehicles
at home in the evening.230

With the expected increase in public charging stations, more models are expected to assume that the
owners of EVs will have the ability to charge their vehicles in different locations during the day, for example at
work and at home. In the literature, this assumption was studied in Ref. [129–131, 143, 146, 150]. Accurate
predictions of the daily charging load in charging station is an important input to planning new charging
stations. The daily load of the charging station is paramount in the selection of the station equipment. It235

is also vital in the assessment of the capability of the grid to withstand the station’s charging requirement.
Models developed in Ref. [131, 141, 144, 156, 158] estimated the load of EV charging stations.

Most of the models in the literature assume a constant charging power during the whole charging session.
This assumption is, however, not accurate [159]. On the other hand, constant power charging represents
the worst case scenario for charging an EV. Batteries, however, have different charging stages, and charging240

power is not constant in the stages. Batteries are charged using various charging methods like: constant
current (CC), constant voltage (CV), constant power, and taper charging [160]. The commonly applied
method is a mixture of CC and CV charging [161]. As depicted in Figure 1, in this method the charging
session starts with CC until a certain voltage is reached, after that the charger completes charging through
reducing the current at CV [162]. Models developed in Ref. [137, 147, 159, 163] consider the dependence245

of charging power on the charging stages. The inaccuracy of assuming constant power charging on the
modeling results has still not been explored.

Charging of EVs induce a stress on the electricity grid [153, 164, 165]. Since EVs consume large amounts
of energy at high power, undesirable peaks can occur in the electrical system [165]. In the year 2014, the
International Energy Agency (IEA) member states recorded an average final electricity consumption of 21.85250

kWh/day/capita [166] which is smaller than many EVs batteries. Several papers studied the effect of EVs
charging on grid voltages [141, 142, 144, 147, 153, 164, 165, 167, 168], power peaks [142, 144, 149], network
losses [142, 144, 149, 152, 153, 165, 167], and components loading [141, 142, 144, 147, 151, 152, 164, 168].
Usually, studies that explore the impacts on the electricity grid propose a controlled charging strategy to
reduce the impact on the grid [142, 151–153, 164, 169, 170].255

Figure 1: The voltage and current variation during a charging session of a battery. In this diagram the CC-CV method is used
for battery charging. This figure is inspired by Ref. [8, 159, 162].

3.2. Controlled charging

Regardless of model assumptions and grid topology, there is a consensus in the literature that uncontrolled
charging of EVs stresses the electricity grid. Ref. [171] showed that the enhancements needed in the grid cost
up to 19% of the network costs without EVs and 60–70% of these costs can be reduced through controlled
charging. In order to alleviate this stress, controlled charging should be implemented. In addition to260

enhancement to the grid stability, controlled charging has other advantages, such as reducing charging costs
for both EV owners and grid operators. Controlled charging is proposed in many research papers. However,
the user acceptability of the controlled charging was not considered while modeling. The models assume
that the users are going to adopt the controlled charging strategy precisely as designed which might not be
the case. Based on a survey on 237 EV owners, Ref. [172] showed that the respondents were motivated265

to adopt controlled charging when it protects the grid and when it improves the integration of renewable
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energy sources. Owners also showed little motivation towards monetary compensation. Besides that, they
expressed an unwillingness towards sacrificing their flexible mobility for the sake of controlled charging.

Controlled charging strategies in the literature are divided into two categories: centralized and decentral-
ized strategies. The decentralized strategies allow vehicle owners to schedule their charging. The centralized270

charging employs a controller that schedules the charging of multiple vehicles [173, 174]. The centralized
controller can be placed in the charging station or, in some cases, can be a separate entity known as an
aggregator. The controller is responsible for acquiring data about electricity prices, the grid situation as
well as the state of charge (SOC) of the vehicles under control. The decentralized strategy can be easily
scaled up to match the number of participating vehicles besides it is more tolerant to faults and requires less275

computational power and communication lines [173]. On the other hand, the centralized strategy ensures
optimal charging of EVs and provides more services to the grid operator and the electricity market [174].
The business model of aggregators requires a large number of vehicles that can be controlled otherwise the
model will not achieve the aimed outcomes [175]. Hence, high penetration of EVs is a prerequisite for an
aggregator scale controlled charging. Table 1 provides an overview of the controlled charging strategies in280

the literature.

Table 1: Summary of literature investigating controlled charging.

4. PV and EV synergies

The environmental impact of driving an EV is highly dependent on the primary energy source of the
electricity grid used to charge the vehicle [176, 177], this dependence is decreasing as emission control in285

power plants is improving [176]. On the other hand, half of the life cycle environmental impact of EVs
occurs during production [178]. For example, in the USA and China, an EV that is charged using 80%
electricity from renewable energy sources could reduce green house gases (GHG) emissions by up to 85%
compared with the current emissions [176]. EVs can emit more CO2 and SO2 compared with ICEVs in
electricity grids that rely on a coal-natural gas mixture as the primary energy source [179]. Consequently,290

synergies between renewable energy sources like PV and EVs are paramount to increase sustainability in
transportation [180]. A study made on the EU countries showed that the major benefits of switching from
ICEVs to EVs is the reduction in local emissions [181]. Moreover, EVs are more efficient and dissipate less
heat compared with ICEVs. As a result, the energy consumption for air conditioning in cities was reduced
by 14.4 million kWh [182].295

Charging EVs during both daytime and night-time increases the daily mileage driven by the same battery
capacity compared with only night-time charging [18, 183, 184]. This finding demonstrates the possibility
of reducing the EV battery size [18]. This scenario will only be feasible provided that owners have access
to charging stations during the day. Moreover, increasing accessibility to charging stations is an important
step towards more sustainable transportation [157]. Following Ref. [185], the literature studies exploring300

synergies between PV and EVs can be categorized based on the scale of the study into three categories:
small, medium, and large scales. Small scale studies focus on the scale of parking lots and charging stations,
while low voltage feeders and residential neighborhoods are studied in the medium scale studies. The large
scale studies explore the synergies on the scale of a whole city. It is important to note that the scale of the
study depended on the scale of the impact which the authors intended to investigate.305

Ref. [29, 186–193] studied the energy balance between the local PV power generation and the EV
charging load. Controlled charging benefits were explored in [18, 28, 194–197]. Grid optimization was
studied in [198]. Financial and environmental benefits were explored in [193, 199]. Finally, several studies
proposed operating strategies for smart charging stations that take into consideration the PV production
and the electricity grid loading [200–208].310
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Solar panels installed above parking lots represent a great potential for charging EVs with the already
available solar energy during the day. This locally produced energy will reduce the impact of EV midday
charging on the electricity grid. The amount of impact reduction depends on the grid design, the penetration
of the PV and EVs, the existence of battery storage systems and other model assumptions such as charging
power. A study in New Jersey [186] estimated the yield from a horizontal PV panel installed above a parking315

lot of 15 m2. The results showed that the yield energy is enough to drive EV commuters to and from work
given that they live within a radius of 24 km of their work. Another study in Switzerland [190] estimated
the potentials of installing PV on parking lots. Only 29 stations out of the 40 studied were suitable for PV
production. The annual energy produced was enough to supply 40% of the energy needed to drive light
weight EVs. A similar study was made on three different locations in Italy [191]. This study simulated320

different charging scenarios as well as different initial SOCs for the batteries of the EVs. Energy from PV
could supply from 1%–3% to 56%–72% of the needed energy to charge the EVs. In the Netherlands, a
study [192] estimated the impacts of installing battery storage systems as well as PV on workplace charging
station. The results proved that without having the battery storage installed PV can supply up to 60% of
the energy needed for charging the EVs. It was also shown that a 10 kWh battery would reduce the energy325

imported from the grid by 25%. However, the utilization of the battery is not proportional to the battery
capacity, and since 75% of the variations in solar insolation between days is less than 15 kWh, batteries
with capacity less than 15 kWh were recommended by the authors. The authors in [199] studied the
financial and environmental benefits form adopting a PV powered charging station for EVs compared with
home-charging. This study was made on two US universities, one located in Ohio and the other located330

in California. The payback period of the PV was dependent on the parking fee and the size of the panels.
Nonetheless, it ranged between 4–30 years.

A recent similar study compared the economic and environmental impacts of a university-located EV
charging station using different orientations of PV panels in Sicily [193]. The authors observed that the east-
oriented panels resulted in a higher self-consumption. In the same time, east-facing panels reduced the daily335

solar production in the winter by up to 20%. However, the south-oriented panels required energy storage
to shift the afternoon solar production to the following day’s early morning charging. The authors showed
that orienting the PV panels to match the early morning charging — east orientation — will cost 77% of
the south-directed panels and storage. This value was obtained when the authors oversized the east-oriented
panels, compared with the south-oriented panels, to account for the 20% drop in daily production in the340

winter months. In Ref. [209], the authors developed an optimization algorithm to control the energy flow
between a charging station connected to building where PV panels were installed on both the station and
the building. The objective of the optimization was to minimize the operating cost. The authors studied
combinations of different building types, different charging availability, and different initial SOC. Building
types such as office, apartment, warehouse, etc. were included, and charging availability included daytime345

long duration, daytime short duration and night time charging. Unfortunately, the optimization algorithm
did not adjust the orientation of the PV panels. The previous two papers revealed a research gap regarding
the relation between the orientation of PV panels and the self-consumption of EVs for different charging
behaviors like early morning and late afternoon charging.

In [194], the authors studied the possibility of controlling the voltage of a low voltage feeder that had350

high PV penetration level using an EV charging station that had a battery storage system. This study was
performed on a 7 bus feeder supplying 33 residential customers with a 28% PV penetration level (measured
as a percentage of total energy consumption). The results showed that EV charging stations can ensure
that the feeder voltages remain within safe limits. Moreover, the capacity of the battery storage system
decreased with the increase of the distance between the EV charging station and the transformer, 47 kWh for355

the furthest location compared with 12 kWh for the nearest location. Ref. [198] developed an optimization
technique to optimally size and allocate solar parking lots for EVs located in a LV feeder. The objective of
the technique was to reduce the costs and to ensure that the network is operating within safe limits. The
technique reduced the energy loss in the grid by 49% and reduced the total costs by 39%. The authors in
[195] proposed a coordination scheme between combined heat power plants (CHPs), PV, battery storages360

and EVs in an industrial micro-grid. The results showed a reduction in the overall costs of the industrial
micro-grid, a reduction in EV charging costs and an enhancement in network security. Another similar
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study was based in Belgium [210]; this study explored charging of EVs in an office building micro-grid that
contained a CHP unit and PV. The percentage of self-consumption of the energy produced from the PV
and the CHP increased with the increase in the number of EVs. The amount of increase varied based on the365

charging scenario, the charging power, and the number of EVs. The self-consumption increased up to 80.2%
from 70% when no EVs were charged. The study also showed that controlled charging could reduce the
impact on the grid. The conclusion is that workplace charging using PV will reduce the charging load on the
grid. An extensive study [28] explored the implication of various levels of PV and EV penetration on a small
test feeder. The PV penetration ranged from no PV to each customer installing 25 m2 of PV panels, and the370

number of EVs varied from zero to one EV per household. Moreover, different EV charging strategies were
simulated. Synergies between PV and EVs helped reduce the drawbacks of each. However, both technologies
have opposite implications; consequently no ideal solution to all the problems was achieved. One limitation
of the previous study arose from the fact that it tested a feeder with small impedances and short distances
between nodes which may have affected the results of the simulation [211]. This indicates the necessity of375

further research in this area.
On the larger scale, Ref. [196] assessed the synergy between PV and EVs in a city in Northern Italy.

Two modes of EV charging were modelled: controlled and uncontrolled charging. The controlled charging
increased the maximum EV penetration by 64% compared with the uncontrolled charging. Moreover, the
penetration level of PV increased from 218% to 249% when implementing controlled charging. Ref. [29]380

estimated the electricity demand profile of the city of Toyonaka in Japan in the year 2030. Various scenarios
were proposed for EVs and PV penetration in the grid. This study revealed that PV reduced the total
electricity load by 19.7% and using vehicle to grid (V2G) cut peaks by 37.3%. The authors in [212] modeled
actual households’ consumption and PV data in an urban region in Brazil. The aim of the study was to use
V2G to stabilize the network and achieve financial profit to the owners of the EVs. In this study, the feeder385

was able to handle all the energy generated from the PV panels. Financial profit up to $1000 was possible
with only 40% allowable depth of discharge (DOD) for the V2G to operate within. A study made on Kansai
area in Japan [197], an area which has 8 million households and 7.76 million cars, integrated PV, EVs, and
heat pumps (HPs) at various penetration levels. High levels of PV penetration could be achieved through
charging EVs and operating HPs during off-peak hours and during high PV production. During peak hours,390

EVs could supply electricity to the grid and HPs could go on standby mode. In Texas, a study [18] performed
on a grid supplying 23 million customers explored the benefits of combining both PV and EVs. The study
assumed that EVs constitute 50% of the transportation sector. Two charging strategies were explored;
controlled and uncontrolled. Uncontrolled charging assumed that the vehicle is charged whenever parked.
Controlled charging was similar to the uncontrolled charging strategy but it stopped charging during peak395

hours form 3 p.m. to 9 p.m. provided that the vehicle would be fully charged at 7 a.m. The results showed
that the synergy between PV and EVs reduced the demand peaks and decreased the curtailed PV energy
during times of high solar production and low demand.

It was shown that the population density is inversely correlated with both the energy used for trans-
portation and the solar production, both measured per capita [187–189]. This is to say that the solar yield400

from PV installed above a certain roof and the energy used for transport by the inhabitants who live under
the same roof both decrease as the population density increases. A study made on the city of Toronto,
Canada, explored the relationship between the energy use per capita and population density [187]. The
study included the households’ energy use, transportation energy use, and solar energy generation. The
authors showed that the net yearly energy use per capita is lower in densely populated regions compared405

with the sparsely populated ones. They also showed that this trend was reversed if highly efficient solar
panels in addition to strict-efficiency measures were adopted at homes which included shifting to EVs. In
this study, the authors assumed that the roofs were horizontal. In addition, they also included the solar
yield from facade mounted PV panels. In Ref. [188], the authors evaluated the solar rooftop potential in
the city of San Francisco and compared this to the vehicle energy use. The authors compared the electricity410

produced by a certain rooftop and the electricity consumed by the vehicles owned by the people living
under this roof, the results were compared in kWh/capita. The results showed that the yearly yield of the
PV panels is higher than the charging load of the vehicles — both in kWh/capita — if BEVs replaced
conventional ICEVs. This result was valid for all population densities. However, when spatially presented,
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few regions had a higher BEV charging load compared with PV production. Unfortunately, the authors did415

not comment on this finding. One limitation for this study was that they calculated the solar production of
one fourth of the rooftop areas — including the north facing sections of tilted roofs. In [189], the authors
calculated the energy generated from the potential PV installations on rooftops and facades of buildings in
the city of Aukland in New Zealand. They included only the most efficient facades and roofs — above 95%
— depending on the tilt and orientation of the PV panel. Unfortunately, they did not describe the method-420

ology used to evaluate the efficiency of the roofs and facades. The authors showed that the persons share
of PV production could accommodate for the EV charging load regardless of the population density. The
previous three studies used deterministic assumptions for the EV models. The use of stochastic assumptions
is preferred over deterministic assumptions [213].

5. Concluding discussion425

The current rate of uptake of PV and EVs indicates that these technologies are going to have significant
impacts on the electricity grid in the future. The impacts include both challenges, like increase in grid
losses, and potentials, like balancing the intermittence of the generation and the load. A careful assessment
of the impacts is paramount to ensure successful adoption of both technologies. In this paper, a review
of the current research related to modeling the power use and production for both technologies has been430

presented. Even though the amount of research that was done on these topics is plentiful, there are some
gaps that need to be explored.

First regarding PV power production modeling, improved modeling of variability of the clear-sky index
over space and time is of interest. That is, improved accuracy for estimating PV power production ramp-
rate can assist future smart grids more accurately match power supply with demand. Also, quantifying435

the aggregate clear-sky index and subsequent PV power production on a city-scale, is interesting. Here
high resolution solar irradiance data on city-scale for various regions is scarce, and more metering networks
such as NREL’s radiometer array [214] at Oahu, Hawaii, USA, could be useful. Improved modeling of solar
irradiance for single or multiple locations might also assist in improving the models for PV power production
forecasting.440

As regards EV charging models, there is a need to introduce more variability in the model assumptions.
That is, multiple charging powers, charging locations, and battery capacities need to be modeled in the same
paper. This strategy will ensure a more accurate model that reflects the different requirements of different
EVs. Moreover, there are few papers that model the charging spatially over a complete city. Spatial models
excel at predicting the impacts of charging in multiple locations in the grid and during different times of445

the day. Future research on V2G and controlled charging is expected to find a compromise between the
needs of vehicles owners and grid stability. Further research needs to explore the impact of the high PV and
EV penetration on the electricity tariffs and electricity market. Moreover, the reaction of vehicle owners
to aggregator requirements needs to be further explored. Comparative studies that estimate the costs of
grid enhancements compared with the costs of controlled charging need to be further explored. Also, more450

detailed data on EV charging could be beneficial for narrowing down the vast number of EV models and
free parameters, potentially giving more accurate predictions.

Finally, as regards the combination of modeling PV power production and EV charging, there is a need for
improved modeling on the variability of the combined power use and production in the local distribution grid.
In particular, for various profiles of charging, such as home-charging, work charging and public charging.455

In similarity with the research gaps identified for both PV power production modeling and EV charging
modeling, there is a gap in the understanding of the variability of the combination of this for large scales,
such as city-scale. City-scale studies lag behind the former advancements reached in the separate fields.
In other words, advanced spatial models for the solar yield and the charging load of EVs for the different
profiles of charging are still missing. Collaborations between researchers in both fields are encouraged. The460

next step of that is to estimate electricity grid-impacts, and to identify the spots of critical power production
or consumption in the grid, and to quantify the potential and need for controlled charging.
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[26] Fischer D, Härtl A, Wille-Haussmann B. Model for electric load profiles with high time resolution for German households.

Energy and Build 2015;92(Supplement C):170 –9.
[27] Weron R. Electricity price forecasting: A review of the state-of-the-art with a look into the future. Int J of Forecast

2014;30(4):1030 –81.
[28] Tuffner FK, Chassin FS, Kintner-Meyer MCW, Gowri K. Utilizing Electric Vehicles to Assist Integration of Large

Penetrations of Distributed Photovoltaic Generation Capacity. Pacific Northwest National Laboratory; 2012.
[29] Iwai N, Kurahashi N, Kishita Y, Yamaguchi Y, Shimoda Y, Fukushige S, et al. Scenario Analysis of Regional Electricity

Demand in the Residential and Commercial Sectors–influence of Diffusion of Photovoltaic Systems and Electric Vehicles
into Power Grids. Procedia CIRP 2014;15:319–24.

[30] Galus MD, Zima M, Andersson G. On integration of plug-in hybrid electric vehicles into existing power system structures.
Energy Policy 2010;38(11):6736–45.

12

http://www.cleanenergyministerial.org/Our-Work/Initiatives/Electric-Vehicles
http://www.cleanenergyministerial.org/Our-Work/Initiatives/Electric-Vehicles


[31] Quirós-Tortós J, Ochoa LF, Lees B. A statistical analysis of EV charging behavior in the UK. In: Innov Smart Grid
Technol Lat Am (ISGT LATAM), 2015 IEEE PES. 2015, p. 445–9.

[32] Shareef H, Islam MM, Mohamed A. A review of the stage-of-the-art charging technologies, placement methodologies,
and impacts of electric vehicles. Renew and Sustain Energy Rev 2016;64:403–20.

[33] Inman RH, Pedro HT, Coimbra CF. Solar forecasting methods for renewable energy integration. Prog in Energy and
Combust Science 2013;39(6):535 –76.

[34] Antonanzas J, Osorio N, Escobar R, Urraca R, de Pison FM, Antonanzas-Torres F. Review of photovoltaic power
forecasting. Sol Energy 2016;136:78 – 111.

[35] Botero AF, Rios MA. Demand forecasting associated with electric vehicle penetration on distribution systems. In: 2015
IEEE Eindh PowerTech. 2015, p. 1–6.

[36] Majidpour M, Qiu C, Chu P, Pota HR, Gadh R. Forecasting the EV charging load based on customer profile or station
measurement? Appl Energy 2016;163(Supplement C):134 –41.

[37] Arias MB, Bae S. Electric vehicle charging demand forecasting model based on big data technologies. Appl Energy
2016;183(Supplement C):327 –39.

[38] Bright JM, Babacan O, Kleissl J, Taylor PG, Crook R. A synthetic, spatially decorrelating solar irradiance generator
and application to a LV grid model with high PV penetration. Sol Energy 2017;147(Supplement C):83 – 98.

[39] Widén J, Shepero M, Munkhammar J. On the properties of aggregate clear-sky index distributions and an improved
model for spatially correlated instantaneous solar irradiance. Sol Energy 2017;157(Supplement C):566 –80.

[40] Widén J. A model of spatially integrated solar irradiance variability based on logarithmic station-pair correlations. Sol
Energy 2015;122(Supplement C):1409 –24.

[41] Lave M, Kleissl J, Stein JS. A wavelet-based variability model (WVM) for solar PV power plants. IEEE Trans on Sustain
Energy 2013;4(2):501–9.

[42] Perez R, Hoff TE. Chapter 6: Solar resource variability. In: Kleissl J, editor. Solar Energy Forecasting and Resource
Assessment. Boston: Academic Press; 2013, p. 133–48.

[43] Widén J, Carpman N, Castellucci V, Lingfors D, Olauson J, Remouit F, et al. Variability assessment and forecasting of
renewables: A review for solar, wind, wave and tidal resources. Renew and Sustain Energy Rev 2015;44:356–75.

[44] Otani K, Minowa J, Kurokawa K. Study on areal solar irradiance for analyzing areally-totalized PV systems. Sol Energy
Mater and Sol Cells 1997;47:281–8.

[45] Kawasaki N, Oozeki T, Otani K, Kurokawa K. An evaluation method of the fluctuation characteristics of photovoltaic
systems by using frequency analysis. Sol Energy Mater and Sol Cells 2006;90:3356–63.

[46] Lave M, Kleissl J, Arias-Castro E. High-frequency irradiance fluctuations and geographic smoothing. Sol Energy
2012;86(8):2190–9.

[47] Perez R, Kivalov S, Schlemmer J, Hemker K, Hoff TE. Short-term irradiance variability: Preliminary estimation of
station pair correlation as a function of distance. Sol Energy 2012;86(8):2170–6.

[48] Hinkelman LM. Differences between along-wind and cross-wind solar irradiance variability on small spatial scales. Sol
Energy 2013;88:192–203.

[49] Wiemken E, Beyer H, Heydenreich W, Kiefer K. Power characteristics of PV ensembles: experiences from the combined
power production of 100 grid connected PV systems distributed over the area of Germany. Sol Energy 2001;70(6):513–8.

[50] Murata A, Yamaguchi H, Otani K. A method of estimating the output fluctuation of many photovoltaic power generation
systems dispersed in a wide area. Electr Eng in Jpn 2009;166(4):9–19.

[51] Marcos J, Marroyo L, Lorenzo E, Alvira D, Izco E. Power output fluctuations in large scale PV plants: One year
observations with one second resolution and a derived analytic model. Prog in Photovolt: Res and Appl 2011;19(2):218–
27.

[52] van Haaren R, Morjaria M, Fthenakis V. Empirical assessment of short-term variability from utility-scale solar PV
plants. Prog in Photovolt: Res and Appl 2012;22:548–59.

[53] Widén J. A model of spatially integrated solar irradiance variability based on logarithmic station-pair correlations. Sol
Energy 2015;122:1409–24.

[54] Inman RH, Pedro HT, Coimbra CF. Solar forecasting methods for renewable energy integration. Prog in Energy and
Combust Science 2013;39(6):535–76.

[55] Yang D, Gu C, Dong Z, Jirutitijaroen P, Chen N, Walsh WM. Solar irradiance forecasting using spatial-temporal
covariance structures and time-forward kriging. Renew Energy 2013;60:235 –45.

[56] Aryaputera AW, Yang D, Zhao L, Walsh WM. Very short-term irradiance forecasting at unobserved locations using
spatio-temporal kriging. Sol Energy 2015;122:1266 –78.

[57] Hoff TE, Perez R. Quantifying PV power output variability. Sol Energy 2010;84(10):1782–93.
[58] Perez R, Kivalov S, Schlemmer J, Hemker Jr. K, Hoff T. Parameterization of site-specific short-term irradiance variability.

Sol Energy 2011;85(7):1343–53.
[59] Hoff TE, Perez R. Modeling PV fleet output variability. Sol Energy 2012;86(8):2177–89.
[60] Lave M, Kleissl J. Cloud speed impact on solar variability scaling – Application to the wavelet variability model. Sol

Energy 2013;91:11–21.
[61] Lonij VPA, Brooks AE, Cronin AD, Leuthold M, Koch K. Intra-hour forecasts of solar power production using measure-

ments from a network of irradiance sensors. Sol Energy 2013;97:58–66.
[62] Arias-Castro E, Kleissl J, Lave M. A Poisson model for anisotropic solar ramp rate correlations. Sol Energy 2014;101:192–

202.
[63] Ångström A. Note on the relation between time of sunshine and cloudiness in Stockholm 1908-1920. Ark för Mat, Astron

och Fys, K vetenskapsakademien 1922;17:1–7.

13
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[173] Garćıa-Villalobos J, Zamora I, Knezović K, Marinelli M. Multi-objective optimization control of plug-in electric vehicles

in low voltage distribution networks. Appl Energy 2016;180:155–68.
[174] Esmaili M, Rajabi M. Optimal charging of plug-in electric vehicles observing power grid constraints. IET Gener, Transm

& Distribution 2014;8(4):583–90.
[175] Sundstrom O, Binding C. Flexible charging optimization for electric vehicles considering distribution grid constraints.

IEEE Trans on Smart Grid 2012;3(1):26–37.
[176] Huo H, Cai H, Zhang Q, Liu F, He K. Life-cycle assessment of greenhouse gas and air emissions of electric vehicles: A

comparison between China and the US. Atmospheric Environ 2015;108:107–16.
[177] Yuksel T, Tamayao MAM, Hendrickson C, Azevedo IM, Michalek JJ. Effect of regional grid mix, driving patterns and

climate on the comparative carbon footprint of gasoline and plug-in electric vehicles in the United States. Environ Res
Lett 2016;11(4):044007.

[178] Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH. Comparative environmental life cycle assessment of conventional
and electric vehicles. J of Ind Ecol 2013;17(1):53–64.

[179] Sioshansi R, Miller J. Plug-in hybrid electric vehicles can be clean and economical in dirty power systems. Energy Policy
2011;39(10):6151–61.
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Figure 1: The voltage and current variation during a charging session of a battery. In this diagram the CC-CV method is used
for battery charging. This figure is inspired by Ref. [1–3].

References

[1] Kuperman A, Levy U, Goren J, Zafranski A, Savernin A, Peled I. Modeling and control of a 50KW electric vehicle fast
charger. In: 2010 IEEE 26th Conv. of Electr. and Electron. Eng. in Isr. (IEEEI). 2010, p. 000188–9.

[2] Yong JY, Ramachandaramurthy VK, Tan KM, Mithulananthan N. A review on the state-of-the-art technologies of electric
vehicle, its impacts and prospects. Renew and Sustain Energy Rev 2015;49:365–85.

[3] Haidar AMA, Muttaqi KM. Behavioral characterization of electric vehicle charging loads in a distribution power grid
through modeling of battery chargers. In: 2014 IEEE Ind. Appl. Soc. Annu. Meet. 2014, p. 1–8.

23


	Introduction
	City-scale modeling of PV power generation
	Spatio-temporal solar irradiance modeling
	Modeling of available building areas and PV systems

	Modeling of EV charging load
	Overview of recent models
	Controlled charging

	PV and EV synergies
	Concluding discussion

