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Abstract

The coastal areas outside Lofoten, Vesteralen and Senja, in the northern Nor-
wegian coast, are known for their incredible nature, majestic mountains and
unique fishing communities. This coastal area is known for high marine pro-
ductivity and an important marine environment, being the home for valuable
fish stocks including pollock, haddock, herring and cod. To study the charac-
teristics of coastal waters, remote sensing techniques are useful tools. Level
2 ocean color images, containing water quality parameters, and sea surface
temperature(SST) images are collected from the optical satellite Sentinel-3, as
well as intensity images and geophysical Doppler images from the Synthetic
Aperture Radar(SAR) satellite Sentinel-1 are collected. When observing ocean
color water quality parameters such as chlorophyll(CHL), total suspended ma-
terial(TSM) and colored dissolved organic material(CDOM), and SST images,
we can observe patterns that appear to be generated by ocean dynamics. The
SAR intensity is modified by wind stress and currents variations, and the geo-
physical Doppler can tell us something about the velocity field in the line of
sight direction of the satellite. This study has investigated the relations be-
tween ocean color parameters, the SST and the SAR intensity and geophysical
Doppler. Using statistical analysis approaches, the results show a clear rela-
tion between the various ocean color parameters, a less significant relation
between ocean color parameters and SST, but no clear correlation between
CHL or SST and the SAR products. The optical and near infrared radiation
used to estimate ocean color and SST parameters is dependent on light and
nice weather, while the microwave radiation that is used in the SAR products is
not. Our investigations do not establish a significantly clear relation between
CHL, SST and the SAR products to maintain that SAR images can complement
optical sensors in understanding coastal waters during periods with less light

and bad weather conditions.
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Introduction

This introductory chapter starts with the motivation of the work of the thesis,
before it provides a brief overview of the state of the art. Then it presents the

topic of research and gives a short summary of the upcoming chapters.

1.1 Motivation and State of the Art

Lofoten, Vesterdlen and Senja are areas known for their majestic mountains
and unique fishing communities. Every year, thousands of tourists, climbers,
surfers, divers, photographers and artists visit the magnificent landscape. These
areas are not only incredible beautiful, but more importantly, the home for
the worlds last robust cod stock, that stands for thousands of fish meals and
billions of income every year. Not to mention the large bird life and the worlds

biggest cold water coral reefs. [Naturvernforbundet, nd ]

No other places in the world have such an importance for several of our most
valuable fish stocks including pollock, haddock, herring and cod. Every year,
as much as 70 percent of the fish from the fish catch of the Norwegian Sea and

the Barents Sea, pass by Lofoten, Vesterdlen and Senja in their most vulnerable



2 CHAPTER 1 / INTRODUCTION
phases of life. [Naturvernforbundet, nd ]

An EU project, Ocean Margin Exchange(OMEX)! , has reported a strong up-
welling along the coast of Northern Norway, explained to be generated by
Ekman transport during periods of north east wind, which occurs from May to
July. Offshelf transport of surface water, with compensating upwelling of deep

nutrient rich water occurs in this time period almost every year.

Compared with other shelf areas in Norway, this area outside Lofoten, Vesteralen
and Senja have an enhanced primary production. When the demand for nu-
trients is high, nutrients are brought up to the surface during a given time
window by unique physical properties. These physical properties are wind
induced upwelling and a strong vertical mixing and, due to irregular bottom
topography combined with ocean currents, a topographically steered upwelling.

[Slagstad et al., 1999]

To study the characteristics of the sea, such as coastal dynamics, remote sensing
techniques are useful tools. In this thesis project, optical ocean color satellite
data and sea surface temperature data will be collected, as well as Synthetic
Aperture Radar(SAR) imagery such as intensity images and Doppler prod-
ucts that are derived from SAR data, to study different features of coastal

dynamics.

Optical satellites use visible and near infrared electromagnetic radiation for the
retrieval of data, while SAR satellites use microwave electromagnetic radiation
for the retrieval of data. Different substances on Earth react different to different
types of electromagnetic radiation, and therefore the use of both types of
satellites may provide more information that can be used when interpreting

coastal waters in a study area.

Information from satellite images can be a tool to the gathering of informa-
tion about the coastal area around Lofoten, Vesteralen and Senja. Gathering
information about coastal dynamics can contribute to the broad spectrum of

information needed to safeguard these unique areas.

1. The official home page of OMEX https://www.bodc.ac.uk/omex/


https://www.bodc.ac.uk/omex/
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Satellite observations in the visible spectral bands allow for retrieval of ocean
color parameters, such as chlorophyll-a(CHL-a), total suspended material (TSM)
and colored dissolved organic material(CDOM). The concentration of CHL-a
is considered to be a proxy for primary production in the ocean, and may here
be used to identify events of high biologic activity.[Martin, 2014] Phytoplankton

blooms can also be spotted from ocean colorimages. [Blondeau-Patissier et al., 2014].

In coastal waters, we have a variation of the availability of nutrients and
sunlight, thus the primary production will vary from area to area. A growth in
phytoplankton will therefore take place in upwelling regions where nutrients
are brought up to the surface. These upwelling regions can be seen in ocean
color images. In the ocean, the water gets colder the deeper you get. So, when
you have an upwelling of colder nutrient rich water, one would think that this

could be seen in satellite sea surface temperature images. [Martin, 2014]

Satellite observations in the short-wave infrared spectral bands allow for the
retrieval of sea surface temperature(SST). Images of CHL-a, CDOM, TSM and
SST shows different patterns, which are considered to be associated with ocean
dynamics. The combination of these products may hence give a good indication

on the local sea surface dynamics.

Sea surface dynamics can be seen in Synthetic Aperture Radar(SAR) images.
SAR satellites provide intensity images showing the intensity of the backscat-
tered radiation from the ground. A SAR sensor on a satellite is sensitive to
surface roughness, and therefore, from an intensity image, one can get infor-
mation on wind and waves of a surface. The intensity image of the sea surface
will be modified by wind stress, variations in ocean currents and surface slicks.
[Henderson, 1998] Another product that can be derived from SAR data, are
geophysical Doppler products. This product contains information of the velocity
field in the line of sight direction of the satellite.

By studying ocean color images and sea surface temperature images, we can
clearly see the same patterns. These patterns are probably related to the
coastal dynamics in that area. If we combine ocean color data, sea surface
temperature(SST) data and SAR products such as intensity images and geo-

physical Doppler images, we can investigate the study area and see if we can
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find any relations between these different images. Not many studies have
tested this topic before. [Lin et al., 2002] found a negative correlation between
CHL-a and SAR NRCS(intensity image), using ocean color data from the satel-
lite SeaWiFS(Sea-viewing Wide Field-ofview Scanner) and SAR data from the
satellite ERS-2(European Remote Sensing Satellite 2). [Gade and Barale, 2008]

have also studied the link between ocean color and SAR data.

In ocean color remote sensing, we observe spectral properties of natural emitted
or reflected light from the water body. We can use sunlight that is backscattered
from the water colon to retrieve information of the concentration of chlorophyll,
color dissolved organic material and other particles in the near surface water.
To get this information we use a satellite borne spectrometer to detect and

measure the reflected and backscattered sunlight.

When it comes to the physics of it, one assumes to know the spectral properties
of the incident sunlight that comes into the water body. Then, the spectral
character of sunlight is altered, depending on the absorption and scattering
properties of the water body. The properties of the water body will depend on
the type and concentration of the different substances. A portion of the altered
sunlight is emitted, reflected or scattered back out from the water and detected
and measured at the sensor on the satellite. This measured radiation can be

made into images displaying spatial distribution of the substances.

If we have the knowledge of how the different substances alter sunlight, for
example by wavelength dependent absorption or scattering, then we might be
able to gather from the measured radiation what types of substances and their

concentration that are in the water body.

Ocean color remote sensing is used for classifying water as for what the water
contain. Through satellite images, one wishes to make an image where we can
separate water from chlorophyll, color dissolved organic matter(CDOM) and
other particles. This can be of interest for researchers that need to know the
concentration of for example chlorophyll in an area, water quality or it can
be useful in the field of aquaculture and fisheries. If one sees changes in the
concentration of chlorophyll, it can be an indication of change in photosynthetic

activity. Primary producers in the ocean use photosynthesis for living and
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growing [Blondeau-Patissier et al., 2014], and areas with much chlorophyll may

also indicate areas that contain a lot of fish.

Ocean currents transports chlorophyll and other particles in the ocean. Using
radar imaging systems with intensity images and Doppler products, may hence
give us an indication on the motion of particles in the ocean. Additionally, it
would be interesting to see if Doppler products have a relation to ocean color
parameters. Ocean color remote sensing uses optical imaging systems, and are
therefore sensitive to clouds and weather, while radar imaging systems are not.
If there exists a relation between these optical properties and radar images,
radar imaging can become a useful tool when areas are covered in clouds -

which often is the case in northern Norway. [Climatestotravel.com, nd ]

1.2 Research Questions

The aim of this study is to investigate which capabilities the combination of
remote sensing imaging sensors offer for mapping and monitoring of coastal
waters. This project will include using ocean color data and sea surface tem-
perature data from the optical satellite Sentinel-3, and intensity images and

Doppler product data from the SAR satellite Sentinel-1.

From the OLCI instrument aboard satellite Sentinel-3 we get images of ocean
color parameters such as CHL, CDOM and TSM that can tell us something
about the primary production and water quality in the ocean. From the SLSTR
instrument aboard Sentinel-3, we get sea surface temperature(SST) data. From
the satellite Sentinel-1 we get radar intensity images and derived Doppler
products containing information of the velocity field in the line of sight direction
of the satellite. These data can be used to retrieve information about wind,

currents and velocity of the ocean surface.

Using these different products from visual, thermal and radar satellites we will
analyse coastal waters of the study area. Sentinel-3 is an optical satellite and
receives visual and near infrared radiation, which means that it is dependent on

light and good weather conditions to get data observations. Sentinel-1 on the
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other hand, is a Synthetic Aperture Radar(SAR) satellite that uses microwave
radiation, which means that it is independent on light and weather conditions to
provide data observations. In northern Norwegian coastal waters you typically
have clouds that takes over the satellite images. Therefore, you only get optical

data when you have light and nice weather conditions.

When observing ocean color parameter images and sea surface temperature
images, we can clearly see some of the same patterns in all of the images. By
observing these images it appears that the patterns are generated by ocean
dynamics. In this thesis project I wish to investigate if the pattern one can see
from ocean color and sea surface temperature images, correlates with patterns
that can be observed in the intensity and Doppler product images from the
SAR satellite.

In particular, this thesis will address 2 main reasearch questions:

1. Is it possible to find a relationship between ocean color parameters and sea

surface temperature images?

2. Are there any correlations between the patterns we can observe from ocean
color parameters and sea surface temperature from an optical satellite,
and intensity images or geophysical Doppler product images from a SAR

satellite?

1.3 Structure of Thesis

Chapter 2 presents coastal dynamics such as ocean currents, ocean gyres,

coastal upwelling and ocean fronts.

Chapter 3 introduces remote sensing of coastal waters. It presents ocean color

remote sensing and introduces SAR remote sensing.

Chapter 4 introduces the study area for this thesis. It presents the coastal

dynamics of the study area.
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Chapter 5 addresses information about the satellites and sensors that will be

used to collect data for this project.

Chapter 6 addresses the methodology. It presents the data sets used in this

thesis, and describes the set up of the data analysis.

Chapter 7 provides and discusses the results of the detection based on the

different statistical analysis used for the data sets.

Chapter 8 concludes the work of this thesis and suggests some future work

based on findings.
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Coastal Dynamics

Coastal dynamics are important for understanding aspects of the ocean. This
chapter presents coastal dynamics such as ocean currents, ocean gyres, coastal

upwelling and ocean fronts.

2.1 The Ocean

Earth’s surface is covered by approximately seventy percent oceans. The ocean
contains most of Earth’s water, as well as distinctive amounts of particles and
minerals. The ocean has many different roles. It is the home for many marine
ecosystems and many species. The coast is an important area for humans and
their dependence of the ocean for fishing and trading. The coastal zones of
Earth is often in change; some because of human city development and some

from the erosion that the ocean has on the landscape. [Martin, 2014]

Different particles and minerals end up in the ocean. Since almost half of Earth’s
population live within 200 kilometres of the coastal line, a lot of waste from
people ends up in the ocean. Harbor areas with in- and outgoing ships will

contribute to contamination and waste. Particles and minerals from erosion of

M
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soil, rock and other land materials, also contribute to the amount of particles in
the water. As well, wind and rivers bring much sediments and other particles
with them in to the ocean. So, the ocean has over millions of years become a
complex system containing many different particles and minerals that need to

be taken into account when studying it. [Martin, 2014]

The ocean also has a major role when it comes to climate. Both weather
patterns and climate change depend upon the ocean. Large ocean currents
stand for much of the heat transfer from equator to the poles, and transport
heat to northern and southern parts of the globe. The ocean absorbs heat
very well, and works therefore as a heat storage. Another role when it comes
to climate and climate change, is that the ocean absorbs carbon dioxide and

works as a CO, storage. [Martin, 2014]

The ability to observe and monitor the oceans of Earth and the atmosphere
above it, comes from years and years of developing technology. Earth is change-
ing, and by observing it from satellites one can watch the physical changes -
for example the decrease of ice and snow cover in the arctic and the antarctic.
From satellites, one can also predict weather and storms, fisheries management,
naval operations and international commerce just to mention some. When it
comes to the ocean, we can use satellites both for a local scale or a global scale.

[Martin, 2014]

2.1.1 Coastal Dynamics by Definition

The coast is the zone where land meet sea, and they merge together in the so
called coastal zone (that reaches from the edge of the continental shelf to the
high-tide mark on land). This is an area where terrestrial environmental sys-

tems meet and interact with marine environmental systems. [Park, 2017]

Dynamics is said to be a study of motion, or more precise; a study of the relation-

ship between motion and the force that affect that motion. [Park, 2017]

Coastal dynamics will then be the study of coastal motion and all the forces

that affect this motion, such as winds, ocean currents, ocean fronts, upwelling,
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construction on land etc.

2.2 Introduction to Coastal Dynamics

Earth’s coastlines are filled with humans, industries, harbors and terrestrial
and marine ecosystems. The coast is a difficult area to study, because of its
complexity. Coastal oceans contain many particles like sediments from rivers,

human and industrial waste.

The study of coastal dynamics can be important for understanding aspects of
the ocean in an area. It can help explain how ecosystems move or why the
temperatures in northern Europe are as they are. It might tell us why primary
production is better in some areas than others, or it can help us understand

the forces that affect ocean motion.

One major characteristics of the ocean, is the continuous motion of water.
Both vertical and horizontal movements in the water forms the ocean circu-
lation system. There are many factors contributing to a transitional motion
of ocean water. There are winds, tides, evaporation, deposition from land,
coastal drainage and atmosphere pressure just to mention some. In addition,
because of Earth’s rotation, we have the Coriolis force that bends masses of
water to the right on the northern hemisphere, and to the left on the southern

hemisphere.
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2.3 Ocean Gyres

NORTH
ATLANTIC
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Figure 2.1: Earth’s ocean gyres. (From [NOAA, nd a])

Ocean gyres are huge systems of rotating ocean currents. World wide there
are many different ocean currents, and five major ocean gyres. From Figure
2.1 we can see the five major gyres; the North- and the South Pacific Gyres,
the North- and the South Atlantic Gyres, and the Indian Ocean Gyre. If we
look at the Arctic area in Figure 2.1, we can see a warm incoming flow of
Atlantic water towards Scandinavia. This flow brings nutrients from the North
Atlantic gyre to the Arctic. This warm flow also triggers melt of snow and
ice as it brings a warmer climate with it, which again leads to an increase
of nutrients to phytoplankton growth in the ocean. [Scott and Hansen, 2016,
Randelhoff and Sundfjord, 2018]

2.3.1 Boundary Currents

Ocean currents that have dynamics that are determined by a coastline, are said
to be boundary currents. The five major gyres mentioned above are all flanked
by a strong and narrow Western Boundary Current, and a weak and broad East-

ern Boundary Current. The westerly boundary currents are formed on the west
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side of ocean basins, carrying warm tropical water towards the poles. The east-
erly boundary currents are formed on the eastern side of the ocean basins and
carry cold water from higher to lower latitudes. The Gulf Stream is an example
of a Western Boundary Current, while the Humbolt Current is an example of

an Eastern Boundary Current. [Warren, 1976, Imawaki et al., 2013]

Thousands of years ago, humans thought of the ocean as this blue unlimited
world filled with different species and organisms. After years and years of
exploring the ocean, men gathered knowledge and information and started to
become aware of the fact that not all of the ocean areas were the same. Some
ocean areas contained productive marine life, while other areas almost did not
contain that much marine life. Humans found the west coast of the continents
to have the most productive marine life. These areas are known to be part of
the eastern boundary currents, and are said to account for approximately 1 %
of Earth’s oceans, and at the same time stand for approximately 20 % of the

worldwide fish catch. [Kdmpf and Chapman, 2016]

Areas with the main eastern boundary systems can be seen in Figure 2.2.



16 CHAPTER 2 / COASTAL DYNAMICS
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Figure 2.2: The four main eastern boundary currents. a) California/Oregon/Washing-
ton in the North Pacific. b)Peru and Chile in the South Pacific. ¢) Northwest
Africa and Portugal in the North-Atlantic. d) South Africa and Nambia in
the South Atlantic. (From [Caccioppoli, 2014])

Nutrient rich water are often brought into eastern boundary currents by coastal
upwelling. These upwelling systems export phytoplankton-fixed carbon into
the ocean via Ekman transport and mesoscale filaments and Eddies. This
happens over complex coastal topography when eastern boundary currents
flows past these areas. The four major upwelling systems we can see in Fig-
ure 2.2 are known to provide a great environment and habitat for fish, sea
birds and mammals in and close to the ocean. [Kdmpf and Chapman, 2016,

Lovecchio et al., 2018]

2.4 Upwelling

Upwelling is a natural phenomenon that contains from deep water a vertical
component toward the surface. As we can see from Figure 2.3, upwelling occurs

when deep, cool and nutrient-rich water comes up to the surface to balance
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the loss of surface water close to the coast. This upwelling fills surface waters

with plant nutrients. [Bakun, 1990]

UPWELLING

Figure 2.3: The process of upwelling.(From [NOAA, nd b])

In some specific areas upwelling occurs more than in other areas. These areas
contain an overflood of marine life, and most of Earth’s fisheries happens
here. Phytoplankton grows where we have nutrients, and therefore it grows
with this upwelling of nurtient-rich water. Microscopic animals, zooplankton,
eats phytoplankton, and the zooplankton will be eaten by fish. Therefore, we
can see that it tends to be a lot of fish near upwelling areas. [Bakun, 1990,

Matthews, 2014]

Throughout the worldwide ocean it exist a great quantity of other upwelling
systems. Some of these systems only occur on a seasonal basis, while others
occur year round. Upwelling systems are important processes for coastal oceans.
They are important for worldwide productivity, biochemical cycles and food-
web dynamics. [Kdmpf and Chapman, 2016]

In the top 50 to 100 meters of the ocean, the euphotic zone, we find phytoplank-
ton and phototropic bacteria. These organisms produce organic carbon from
inorganic carbon. Because of this carbon fixation, marine organisms can grow,
live and reproduce. Photosynthesis happens through phytoplankton and pho-
totropic bacteria, and almost all marine ecosystems depend on carbon fixation.
The rate of carbon fixation depend on the amount of nutrients in the euphotic

zone in different ways. To mention some, we have upwelling which brings up
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high-nurtient cold water from deeper waters up with a current. We also have
vertical mixing in the ocean and run-off water, from groundwater or rivers,

from the continent that contain nutrients. [Kimpf and Chapman, 2016]

When marine life forms in Earth’s oceans, there are some factors that are fun-
damental; sunlight, nutrients and oxygen. These fundamentals are important
for the understanding between physical and biological interactions in these

upwelling areas. [Kdmpf and Chapman, 2016]

2.4.1 Ocean Life

The action of water, ice, wind and waves have for millions of years eroded the
Earth. The elements from this erosion have in different ways ended up in the
ocean. Now the ocean seems to be a huge bowl with a mixture of all of Earth’s
elements, and have a big variety of marine life. The food webs for these species
are complex systems based on the conversion from inorganic to organic matter.
[Kampf and Chapman, 2016]

To study upwelling areas, there are many factors to take into consideration.

Here is a simplified figure of processes that influence the marine life.

Light (irradiance)

Gas exchange (air-sea)

o Fishing, human |
emissions,
trading..

[« Bacteria,
0#9 phytoplankton,
Interaction (land-sea) zooplankton,

fish..

| Biological Human 7
environment impact

Biochemical cycles and
food web dynamics

Chemical Physical
environment environment R

* Nutrients, pH,
minerals,
carbonate..

Temperature,
pressure,
salinity, sea ice,
currents..

Figure 2.4: Processes influencing marine life.



2.4 / UPWELLING 19
2.4.2 The Physics of Coastal Upwelling

There are different types of coastal upwelling mechanisms. The classical one
is wind-driven, and are the mechanism that rule for the largest upwelling
areas on Earth. When it comes to the physics of it, we can describe it as an
upward movement of water. The water parcels in the water column have a
movement up towards the surface. This upward movement has to happen
over a long enough period of time, from a few days to a couple of weeks,
and rise the water parcels over a vertical distance of hundred meters or more.
There are three main forms of wind-driven coastal upwelling (see Figure 2.5):

[Kampf and Chapman, 2016]
* Coastal upwelling
* Equatorial upwelling

* Ice-edge upwelling
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Figure 2.5: Three types of wind-driven oceanic upwelling. (a) Coastal upwelling
(southern hemisphere), (b) Equatorial upwelling, and (c) Ice-edge up-
welling. Relative to the coast, the eqator or the ice-edge, the red arrow

shows the prevailing wind direction. (From [Kdmpf and Chapman, 2016])

When it comes to the dynamics of wind-driven upwelling, there are some forces
that play a dominant role - such as the rotation of Earth and related effects as
the force of Coriolis. [Kimpf and Chapman, 2016]

As we can see from Figure 2.5, the three wind-driven upwelling systems act

differently. Coastal upwelling, (a) in Figure 2.5 rely on two things to exist. That
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is the presence of relative shallow water and a solid coast boundary that works
impermeable. Equatorial upwelling, (b) in Figure 2.5 is linked with the Coriolis
force, where the sign of the Coriolis parameter, which is the proportionality
constant in the Coriolis force, changes over the equator. The Coriolis force
represents the deflection pattern for objects that are not linked to the ground
as they move large distances over and around Earth. This force deb off around
the equator, but takes a full swing around >50 km from the equator. Because
of these rotational effects and their spatial variation, the upwelling process for

the equator is similar to that for coasts. [Kdmpf and Chapman, 2016]

Ice-edge upwelling, (c) in Figure 2.5, is created slight different. The currents
under the sea ice will feel a substantial dampening of the effect of wind stresses,

and this will create the ice edge upwelling. [Kdmpf and Chapman, 2016]

Coastal upwelling can be in a major coastal upwelling system as a quasi-
permanent feature, or it can be in a seasonal coastal upwelling system as as a
seasonal feature, all depending on how the typical wind condition is in that

area. [Kdmpf and Chapman, 2016]

Since coastlines and seafloors are often inconstant, and upwelling can oc-
cur along a straight coastline, we can get generally localized wind-driven
coastal upwelling systems. The upwelling is not constant, and as a conse-
quence some areas will have more upwelling in some regions. These regions
are called upwelling centres, and have more pronounced upwelling. With these
centres one associates strong frontal flows linked with upwelling jets that
breaks up into Eddies. Eddies are patterns of mesoscale circular circulation
(for coastal waters 10-20 km) - easily described as rotation of water mass.
Close to these upwelling centres most of the primary productivity takes place.

[Kampf and Chapman, 2016, Joseph, 2014]

2.4.3 The Upwelling Process

We say that seawater is incompressible. Thus, upwelling induces a vertical vol-
ume flux. This can only happen if a divergence of a horizontal flow move

laterally away the same amount of water per time. A result from this is
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wind-induced offshore movement of ocean surface water that triggers up-
welling of cold water from below to replace the surface water that moved away.
[Kampf and Chapman, 2016]

When it comes to equatorial upwelling, the trade winds will induce a movement
of surface water away from the equator on both the northern and the southern
hemisphere. This will result in a replacement by water below the surface.
Generally, the lower water below the surface tends to be denser than the surface
water. The potential energy of the system will be increased due to this density
difference. Therefore, the system requires an external energy source, here being

provided by wind stress from the surface. [Kdmpf and Chapman, 2016]

Rotational effects, such as the Coriolis force, will control all dynamical processes
on the ocean that lasts longer than a day. The dynamics of horizontal ocean
currents in the oceans interior (somewhere between the seafloor and the sea
surface) is goverened by the geostrophic balance. The geostrophic balance is
known as a balance between two forces; the Coriolis force and the horizontal
pressure gradient force. This balance indicates that the horizontal currents
follows lines of constant pressure(isobars). Throughout the water column, there
are horizontal geostrophic flows because of the surface pressure anomalies. If
this flow is weakened by an adaptation of density interface, it is called baroclinic
compensation. Frictional effects as well as geostrophic flows becomes relevant
near lateral and vertical boundaries. Near these vertical boundaries we get
bands called Ekman layers. Ekman layers are made when the balance between
the friction and the Coriolis force creates a retreat of the geostrophic balance
flow.[Kampf and Chapman, 2016]

The general dynamic structure of coastal upwelling can be seen in Figure
2.6
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Figure 2.6: The general dynamic structure of coastal upwelling. (a) shows the flow
structure in the water column, with the sea surface being in the top of
the figure. (b) shows the vertical structure of the ocean dynamics. (From
[Kampf and Chapman, 2016])

In these upwelling systems there exist a geostrophic current that is parallell to
the coast. This current is also called an upwelling jet, and is detected, as we can
see from Figure 2.6, towards the shore in a bottom Ekman layer and away from

the shore in a near surface Ekman layer. [Kdmpf and Chapman, 2016]

An offshore movement in the surface Ekman layer induced by a component
of wind stress that is parallel to the coast. This component lowers the sea
level with approximately 5-10 cm before the lowering reasches a dynamic
equlibrium. This sea level drop is important for the creation of a force with
a pressure gradient towards the shore that drives the geostrophic upwelling
jet into a speed of around 10 to 50 cm per second. Hence, a flow towards the
shore is created in the lower Ekman layer near the bottom (with a thickness
in between 5 to 25 meters), due to the fact that the frictional effects from
the seafloor have an impact on the geostrophic flow. The flow towards the
shore from near the bottom is the impetus that moves the lower water near
the bottom towards the shore as it reaches the coast in the euphotic zone.

[Kampf and Chapman, 2016]
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2.4.4 Ekman Drift and Wind Stress

From this formula
T = pairCDWa (2.1)

we can calculate the magnitude of the frictional wind stress at the sea surface,
7. Here W is the wind speed (horizontally), approximately W = 10m above
the sea surface(a reference height), Cp is the coefficient of the wind drag with
a value that depend on on the level of turbulence in the lower part of the
atmosphere (set to be approximately Cp = 0.001 — 0.002). At last we have
pair, which is the air density and sat to be pg; = 1.28kg/m3. The frictional
wind stress, p, has the same vector direction as the horizontal wind speed.

[Kampf and Chapman, 2016]

The response of the ocean surface from wind stress is not quite uncomplicated.
Currents in an Ekman layer moves in an Ekman spiral, see Figure 2.7, with the

depth of the ocean when no other processes occurs. [Kimpf and Chapman, 2016]

Figure 2.7: An Ekman sprial. (From [NOAA, 2017])

The Coriolis force changes direction at the equator. In a surface Ekman layer the

horizontal volume transport, Ekman drift or Ekman transport, has a 9o°angle to
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wind stress. This is due to the fact of the change in Coriolis force at the equator.
On the northern hemisphere, the Ekman drift turns right, while on the southern
hemisphere, it turns left. See Figure 2.8. [Kdmpf and Chapman, 2016]

Wind stress Wind stress

(a) The northern hemisphere. (b) The southern hemisphere.

Figure 2.8: The relationship between Ekman drift and wind stress.

The magnitude of the Ekman drift, M, can be calculated with formula

T
M=

|f|’ (2.2)

pSEa
where 7 is the magnitude of wind stress given with formula 2.1, ps., is the sea
density given at ps.q = 1026kg/m3, and f being the Coriolos parameter which
can be calculated by formula
4
Teartn

f=

sin(¢), (2.3)

where Tg,, 1 is Earth’s rotation period sat to be Tg,,+n = 86400 seconds, and
¢ is the latitude. Therefore, one only needs the geographical position and the

wind stress to calculate the Ekman drift. [Kdmpf and Chapman, 2016]

2.4.5 Upwelling Jets

It is typical for upwelling jets to become unstable. When they reach far up
towards the surface they can often break up into mesoscale Eddies creating
a turbulent field in the ocean. An upwelling zone can vary in width, some
areas can have small upwelling zones and others can be up to several hundred

kilometres wide. [Kimpf and Chapman, 2016]
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The wind-driven circulation on Earth is important for transport around the
globe. Coastal upwelling jets plays a major role for this wind-driven circulation.
Especially when it comes to transporting heat and fresh water, and it helps to in-
tensify flows from subtropical gyres towards the equator. Hence, along the coast,
upwelling jets transport organic material and nutrients with the water, and they
implies the establishment of divergent biological zones. These zones will have a
difference in production, since phytoplankton, zooplankton, fish, etc. have dif-
ferent time scales linked to their creation. It takes for example 5 days for phyto-
plankton to be produced, 25 days for zooplankton and as much as up to a couple

of months or more for small fish grow.[Kampf and Chapman, 2016]

Upwelling jets are not very smooth flows. As mentioned earlier in the text,
coastal upwelling jets tends to shed mesoscale Eddies, especially after days or
weeks. Mesoscale Eddies can vary in diameter size depending on the location.
Open ocean Eddies are much larger (300 km) than coastal Eddies (10-20 km).
Because of the shed of Eddies, upwelling zones can increase in width along the

coast for the same direction as the jets. [Kampf and Chapman, 2016]

Filaments

Filaments are specific pathways with Eddy fields, where upwelled nutrient and
organic rich matter water get transported offshore. These filaments can be

seen in satellite images. [Kdmpf and Chapman, 2016]

2.4.6 Other Types of Coastal Upwelling Mechanisms

So far I have only mentioned wind-driven coastal upwelling systems, which
are most known, but there also exist other upwelling mechanisms. In fact,
depending on how your study area is constructed, the upwelling can be different.
Topography, continental shelf, tide and wind will all affect the upwelling in
that area. Therefore we can have slightly different upwellings like Shelf-Break
Upwelling, Tidally-Induced Upwelling or Upwelling Caused by Topography,
while the result is the same; underlaying more nutrition rich water are brought

up towards the surface. [Kéampf and Chapman, 2016]
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2.5 Ocean Fronts

According to [Park, 2017], a oceanic front is "a boundary that separates masses of
water within the ocean that have different temperatures and densities". Easily ex-
plained, an ocean front is a boundary separating two different masses of water.

This can be seen in satellite images using microwave remote sensing.



Remote Sensing of Coastal
Waters

Remote sensing of coastal waters include the use of several different satellite
instruments. As mentioned in the introductory chapter, we can get different
information about the coast from different types of remote sensing. From ocean
color remote sensing, we can get information about different parameters in
the ocean, such as the concentration of chlorophyll, total suspended matter or
color dissolved organic material. From thermal remote sensing, we can get sea
surface temperature. And from Synthetic Aperture Radar(SAR) remote sensing

we can get information about the ocean dynamics.

3.1 Remote Sensing

Remote sensing involves using electromagnetic radiation to obtain information.
This can be done from a sensor on a satellite or an aircraft for example. When

it comes to remote sensing, one often seek information about land, the ocean

27
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and/or the atmosphere. While obtaining the information, one is not in physical

contact with the investigating object or phenomenon. [Martin, 2014]

So, using remote sensing can give us information about many important an
interesting factors to help us understand and measure different aspects of the
Earth.

3.1.1 Electromagnetic Waves

The electromagnetic spectrum is important for remote sensing. Remote sens-
ing uses electromagnetic radiation to obtain information from the surface,
the atmosphere and the ocean. One can use different wavelengths of the
electromagnetic spectrum for different purposes. The optical spectrum, the
infra-red spectrum and microwave spectrum are mostly used. This is because
the atmosphere in the other parts of the electromagnetic spectrum often ab-
sorb all the energy, and are therefore unpracticle to use for remote sensing.
[Elachi and Van Zyl, 2006]

When the electromagnetic radiation interacts with an object, the energy re-
flected, emitted or scattered back from that object will depend on the wave-
length of the radiation and the physical properties of the object. Thereafter,
when the radiation is on its way to the sensor, it will carry the information
from when it interacted with the object, and propagate through the atmo-
sphere all the way to the sensor. To extract the information from this radi-
ation, you can use a collector and a detector to investigate the information.
[Elachi and Van Zyl, 2006]
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Figure 3.1: The electromagnetic spectrum by frequency and wavelength. (From
[Martin, 2014])

The electromagnetic spectrum is divided into many regions as we can see from
the Figure 3.1. We can see the five gray bands of the spectrum that are used
for satellite remote sensing: visible, near infra-red, thermal infra-red, passive

microwave remote sensing and satellite radar. [Martin, 2014]

3.1.2 Ocean Remote Sensing

The first ocean remote sensing satellite was launched by the USA in 1970.
After that many other countries have also launched satellites with oceano-
graphic instrumentation on board. From a satellite with instrumentation like
this combined with in-situ information from for example boats, we can get
several interesting variables related to ocean color remote sensing. Just to

mention some different variables; sea surface temperature(SST), directional
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distribution and height of ocean swell, the direction and speed of wind, wa-
ter content and rain rate in the atmosphere, concentration of phytoplankton,
sediments, suspended and dissolved materials, and types and areal extent of
polar sea ice. These variables can help us to study and understand the ocean.

[Martin, 2014]

Before we got the opportunity to study the ocean from space, we only had
the possibility to study it on Earth. Then, the only way to get the information
was from expensive expeditions on ships, air craft surveys or ice islands. These
methods were slow and time consuming, and one could only get a small
overview of the ocean. When using satellite imagers, the desired variables can
be observed on a scale all from 1 km to 1000 km. The same observation would
have needed several ships and a lot more time. However, not all variables can be
observed by satellites. Some need to be measured by ships or buoys placed in
the ocean. To get information deeper down in the ocean, one can for example
use instruments as an Argos float. An Argos float is a device that measures
the interior of the ocean over a time period before it reaches the surface and
sends its information to a satellite. When using all these methods, we get a
good picture of the important variables used for ocean color remote sensing.

[Martin, 2014]

3.2 Ocean Color Remote Sensing

Ocean color remote sensing is developed to retrieve information of different
particles in the top layer of the ocean. This following section introduces ocean
color remote sensing and describes how we can use this method to classify the

water for what it contain.

3.2.1 Introduction

In ocean color remote sensing, we observe natural emitted light or reflected
light by the water body. We can use sunlight that is backscattered from the
water colon to retrieve information of the concentration of chlorophyll, color

dissolved organic material (CDOM) and other particles in the near surface
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water. To get this information we use a satellite to detect and measure the

reflected and backscattered sunlight.

When it comes to the physics of it, one assume to know the spectral properties
of the incident sunlight that comes into the water body. Then, the spectral
character of sunlight is altered, depending on the absorption and scattering
properties of the water body. The properties of the water body will depend
on the type and concentration of the different substances in the water body.
A portion of the altered sunlight is emitted, reflected or scattered back out
from the water and detected and measured at the sensor on the satellite. This
measured information can be made into a set of data or an image that can be

used for further analysis.

If we have the knowledge of how the different substances alter sunlight, for
example by wavelength dependent absorption or scattering, then we might be
able to gather from the measured radiation what types of substances and their

concentration that are in the water body.

Ocean color remote sensing are used for classifying water as for what the water
contain. Through satellite images, one wishes to make an image where we
can separate water from chlorophyll, color dissolved organic matter(CDOM),
total suspended material(TSM) and other particles. This can be of interest for
researchers that need to know the concentration of for example chlorophyll
in an area, it can be useful in the field of aquaculture and fisheries, and to
measure water quality. If one sees changes in the concentration of chlorophyll,
it can be an indication of change in photosynthetic activity. Primary producers
in the ocean uses photosynthesis for living and growing, and areas with much

chlorophyll may also indicate areas that contain a lot of fish.

Ocean color remote sensing can also be used for the detection, mapping and
monitoring of phytoplankton blooms, where algal blooms can be an indication
of the health of marine ecosystems. It is important to map the amount of

chlorophyll in the ocean for applications mentioned above.
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3.2.2 Phytoplankton

Most of the plants in the ocean are called phytoplankton or algae, and they
have a huge global distribution. They can range from less than 1ym to more
that 100um. Phytoplankton uses photosynthesis just as other plants, to convert
light energy into chemical energy with help from the pigment chlorophyll. The
process of photosynthesis in the ocean have been going on for many millions

of years. [Wright et al., 2005, Callot, 1991]

One recognizes phytoplankton as a basis for animal production at sea. This
animal production supports the food web for fish, and are the base for fisheries.
It is therefore important to monitor the population of phytoplankton, since this
can have an effect on the fisheries through the timing and abundance of algal
blooms. [Lasker, 1981]

The marine food webs dominant source of organic material can be found in
the upper layer of the ocean where the sun reaches. Here will the production
of phytoplankton associated with photosynthesis take place. Around half of
the total primary production on land and at sea comes from phytoplankton.
Primary production is measured by the change of biomass. In phytoplankton
the photosynthesis is used for making organic forms of carbon from inorganic
carbon. Phytoplankton actually transform 10! kg, one hundred million tonnes,
carbon dioxide into organic material. One can clearly say that phytoplankton
plays an important role in the global carbon cycle, converting CO, to organic

carbon. [Siegel et al., 2012, Martin, 2014]

Through the process of the oceanic biological pump, the phytoplankton dies,
sinks and brings carbon to the deep ocean. So, one can say that phytoplankton
helps taking down a part of the atmospheric carbon to the deep oceans. The
carbon cycle is out of balance due to fossil fuel consumption with more CO,
transferred into the atmosphere and the ocean. Because of this unbalance, it is
important to measure and monitor the amount and distribution of chlorophyll

and primary production. [Martin, 2014]

Ocean color remote sensing depend on the photosynthesis. The photosynthetic

pigment within each phytoplankton cell is important for ocean color remote
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sensing. This pigment consist of chlorophyll a, b and c. Where a is the ubig-
uitous one, and b and ¢ are the accessory pigments. When we study ocean
color remote sensing, we are interested in chlorophyll a, because it is the pig-
ment that appears in all phytoplankton and therefore it can tell us how much
phytoplankton we have in the ocean. [Martin, 2014, Wright et al., 2005]

The global distribution of phytoplankton are different from various areas on
the globe. Here is an image showing the distibution of chlorophyll.

0.01 0.1 1.0 10 60
Chlorophyll a concentration (mg/m3)

Figure 3.2: The global distribution of chlorophyll a. Dark red indicates the most, purple
indicates the least and green indicates the moderate regions. Data are
from the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) (Courtesy
SeaWiFS Project). (From [Naranjo, nd ])

As we can see from Figure 3.2, the regions that contains great concentrations
of chlorophyll a are located north of 45° in coastal areas and on continental
shelves. These regions contain strong nutrient supply. We can see moderate
chlorophyll regions around equator and in the subtropical convergence zone
south of 45° south. The equator region contains an upwelling of deep nutrient
cool water that mix with the warm equatorial waters. And the areas south
of 45° contain cool nutrient rich water mixing with warm nutrient poor wa-
ter from the subtropical waters. [Cullen, 1982, Blondeau-Patissier et al., 2014,

Huisman et al., 2006]



34 CHAPTER 3 / REMOTE SENSING OF COASTAL WATERS
3.2.3 Ocean Color

The presence of phytoplankton, suspended material and dissolved material
affect the scattering, absorption and reflectance of the ocean. The color of the
ocean will be affected by the size and distribution of particles, and the properties
and consentration of dissolved matter. This dissolved organic material is also
called chromophoric dissolved organic matter (CDOM). CDOM is also called
gelbstoff, which is yellow substance and dissolved organic matter that is colored.

[Martin, 2014, Zaneveld et al., 2006, McClain, 2009]

There are both oceanic CDOM and terrestrial CDOM. Terrestrial CDOM is
produced from land-based runoff that contains dissolved humic acid and fulvic
acid. While oceanic CDOM is produced from the degradation of phytoplankton
through photolysis. Where photolysis is the chemical process where molecules
breaks down into smaller pieces, from absorption of light. The particles split
up in organic and inorganic materials. The organic material, also called detri-
tus, are made up of cell fragments from zoo- and phytoplankton. While the
inorganic materials are made up of dust and sand from erosion of soil, rock
and other land materials. The inorganic material flows into the ocean with
rivers, or it blows into the ocean with wind. [Carder et al., 1999, Martin, 2014,
Callao and Larrechi, 2015, Mobley, 1994]

The optical properties of sea water is different when it comes to open ocean
water and coastal waters. Morel and Prieur(1977) split the ocean into two
cases; case 1 waters and case 2 waters. For case 1 waters we have that
the optical properties of sea water are dominated by phytoplankton, where
the concentration of chlorophyll a is C, [mgm™]. Open ocean waters are
mostly case 1 waters. For case 2 waters, the optical properties of sea water
are dominated by suspended material, organic particles and CDOM. This is
typical for coastal areas with river runoffs, high human activities like shipping,
recreation and fisheries. On Earth, we therefore have mostly case 1 waters.

[Morel and Prieur, 1977, Martin, 2014]
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3.2.4 Absorption

The total absorption properties can be described by

ar(A) = aw(4d) + apn(A) + acpom(A) (3.1)

where a7 is the total absorption, ay, is the absorption value from clear water,
app is the absorption value from phytoplankton and acpou is the absorption

value from CDOM and inorganic particles. [Martin, 2014]

The absorption is different from phytoplankton, CDOM and inorganic parti-

cles.
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Figure 3.3: The wavelength dependence of the total absorption from three locations,
where Indian Ocean and Near Bermuda are oceanic waters, and Baltic
Sea is coastal and estuarine water. (The figure is from[Martin, 2014] with
data from [Mobley, 1995]
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As we can see from Figure 3.3, coastal and estuarine waters contain more
CDOM and particles than Oceanic waters. Clearly from Figure 3.3 above, the
more CDOM and particles in the water, the more absorption we have in the
blue wavelengths. The upper curve for coastal and estuarine waters decreases
exponentially with longer wavelengths. For wavelengths between 350 nm
and 700 nm, one can write acpoum as [Hoepffner and Sathyendranath, 1993,

Roesler et al., 1989, Maritorena et al., 2002, Martin, 2014]

acpom = acpom(Ao)exp[—S(A — Ag)] (3.2)

Or in other words, the absorption from CDOM and inorganic particles equals the
functional dependence of the absorption on wavelength, times the CDOM ab-
sorption value at a specific wavelength. Where A is usually set to 443nm, and S
is a constant for a specific species and sat to 0.0206m™!. [Hoepffner and Sathyendranath, 1993,

Roesler et al., 1989, Maritorena et al., 2002, Martin, 2014]
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Figure 3.4: The wavelength dependance absorption of phytoplankton. The solid
line is the normalized absorption for CHL-a, and the dashed line is
the normalized absorption for carotenoids (pigments poduced by plants
and alge [Stahl and Sies, 2003]). (From [Martin, 2014] with data from
[Hoepffner and Sathyendranath, 1993])

We can see from Figure 3.4 that we have two significant absorption peaks
for chlorophyll a. One around 440 nm in the blue band, and one around 665
nm in the red band, where the peak in the blue band is almost three times
greater than the peak in the red. Furthermore we have that the absorption
of phytoplankton is zero between wavelengths 490 and 580, and within this
region lays the green spectral band. This is the reason for chlorophyll appearing

green in blue oceanic areas. [Martin, 2014]
The phytoplankton absorption can be written as
apn(A) = Caa;h(l) (3.3)

where C, is the concentration of chlorophyll and a; , is the coefficient of the
specific absorption of chlorophyll. To put it another way, the absorption of
phytoplankton is equal to the chlorophyll concentration times the coefficient

of the specific absorption of chlorophyll. [Martin, 2014]
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3.2.5 Scattering

The total backscattering properties can be described by

br(A) = bw () + by() (3.4)

where b7 is the total backscatter, by, is the backscatter value from clear water
and bp is the backscatter from CDOM and particles. [Martin, 2014]

In a study from Mobley(1995), he writes that even small quantities of particles
at presence in the water column, will increase the scattering coefficient by an
order of magnitude. The reason is that the particles will generate a strong
forward scatter. Depending on the size of the particles, the scatter and the
wavelength dependence will be different. Small particles will show a tendency
towards Rayleig solution, while larger particles will show tendensy towards
Mie solution. For smaller particles the forward scattering will be smaller and
have a stronger wavelength dependence, while for larger particles the forward
scattering will be larger and have a weaker wavelength dependence. Harbor
areas with large particles will have a higher scattering than coastal areas with
smaller particles, while clear ocean will have smaller scattering. [Martin, 2014,

Mobley, 1995]

In other words, the more suspended material lead to an increase in forward
scattering up to five orders of magnitude, and an increase in backscatter up to
one order of magnitude. Compared to the forward scattering, the backscatter

is relatively small. [Martin, 2014, Carder et al., 2002]

The particle and CDOM backscatter coefficient can be written

by(1) = by(Ao)[A/A0] ™ (3.5)

where Y is a power-law exponent and depends on the scattering. If the scat-
tering is from small particles with stronger wavelength dependence, Y < 0.
And if the scattering is from larger particles, Y = 0. A = 443nm. [Martin, 2014,
Carder et al., 1999]

To observe phytoplankton, CDOM and particles by using ocean color instru-
ments, one need to make sure the instrument takes images at specific wave-

lengths. From wavelength 443 nm at the chlorophyll absorption peak and the
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CDOM dominating peak at 410 nm, we can get information of chlorophyll and
CDOM concentrations. As well, we need information between soo nm and 550
nm, where chlorophyll is absorbed and carotenoid absorption is dominating.
If we take this into consideration, we can try to find the concentration of these

particles in ocean water. [Martin, 2014]

3.2.6 Algorithms Used for Ocean Color Parameters in This
Thesis

The search for accurate concentrations of chlorophyll in coastal and open oceans
from ocean color remote sensing happens through ocean color algorithms.
Because of the complex case 2 waters, it can be difficult to differentiate between
chlorophyll and CDOM. Therefore, one need to use different algorithms for
case 1 and case 2 waters. For this thesis project, Sentinel-3 Level-2 products
will be used. These level-2 products have been derived using the following

algorithms.

CHL

In this thesis, level-2 Full Resolution Water & Atmosphere geophysical products
data from the Sentinel-3 satellite will be used. Chlorophyll data will be taken
from the OLCI-instrument, and the CHL-a concentration will be calculated
with two algorithms depending on what case of water it is. The reference for
the algorithm in case 1 waters are collected from the Sentinel-3 OLCI Level-2
Algorithm Theoretical Basis Document for Ocean Color Products in Case 1
Water [Antoine, 2010], while the reference for the algorithm in case 2 waters
are collected from the Sentinel-3 OLCI Level-2 Algorithm Theoretical Basis

Document for Ocean Color Turbid Waters[Doerffer, 2010].

Case 1 Waters

Case 1 waters, or open waters, are calculated with the OC4Me algorithm.
0OC4Me is a Band-Ratio Algorithm, and it is called a Maximum Band Ra-
tio (MBR) semi-analytical algorithm developed by [Morel et al., 2007]. This
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algorithm is the MERIS! algal pigment 1 forth-order polynomial algorithm
merged with analysis of AOPs(Apperent Optical Properties) measured in-situ
data over the past decades in different ocean areas. [Tilstone et al., 2017,

Morel and Antoine, 2011]

The OC4Me algorithm gives out the concentration of CHL-a derived from
remote sensing reflectance(R,s)(in the blue and green areas in the visible
spectrum) and in-situ measurements of chlorophyll. [ESA, nd c] The input of
the algorithm is R, at two to four wavelengths between 440 and 670 nm, and

gives out the concentration of chlorophyll in mgm ™.

The OC4Me Algorithm is expressed as

n

log10[Chl] = Z Ai[log10(p; j)o]* (3.6)

x=0

where p; ; is the ratio of the irradiance reflectance, R, at band i(Ai) to band j(4).
The maximum found among the three ratios that are formed using 2-4 bands,
is the value of the irradiance reflectance ratio. The band used here for Ai is 443
nm, 490 nm or 510 nm, while for Aj 560 nm is used. [Morel and Antoine, 2011,
ESA, nd ¢, ESA, nd e]

Its polynomial structure of 4, order, n = 4, gives five coefficients. These are
derived using AOPs measured in-situ data that are collected over the past

decade in different ocean areas. The coefficients are: [ESA, nd e]

Ap = 0.4502748
A1 = -3.259491
Ay = 3.522731

A3z = -3.359422

Juy

MERIS Algorithm Theoretical Basis Document(ATBD) 2.9 (https://earth.esa.int/
documents/700255/2042855/MERIS_ATBD_2.9_v4.3+-+2011.pdf)


https://earth.esa.int/documents/700255/2042855/MERIS_ATBD_2.9_v4.3+-+2011.pdf
https://earth.esa.int/documents/700255/2042855/MERIS_ATBD_2.9_v4.3+-+2011.pdf
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Agq = 0.949586

Since the OC4Me algorithm uses the irradiance reflectance R and since the
MERIS atmospheric correction provides directional reflectance, p,,, one need

a conversion

Pwo
R

R = (3.7)

where Q is a factor from [Morel et al., 2002], and R is the geometrical factor
defined as

(1-p) (1-pr(8))
(1-"FR) n2

R(0') = (subscript O when 6" = 0) (3.8)

where R at air-sea interface, merges all reflection/refraction as in [Morel and Gentili, 1996],
n is the refractive water index, p is, for downward irradiance at the sea

surface, the mean reflection coefficient, pp(6’) is, for incident angle 6, the

Fresnel coefficient, 7 is, for upward irradiance at water-air interface, the av-

erage reflection, and 0’ is the refracted viewing angle 0’ = sin~!(nsin(6v)).

[Morel and Antoine, 2011, ESA, nd ¢, ESA, nd e]

Case 2 Waters

Case 2 waters, or coastal waters, are calculated with an Inverse Modelling Tech-
nique(IMT), that uses an Inverse Radiative Transfer Model-Neural Network (IRTM-
NN) to estimate different coefficients from normalized water-leaving reflectance
at different OLCI bands. This algorithm gives out coefficients that can be used
to derive CHL-a concentration. [ESA, nd b]

For this algorithm, also following the heritage of MERIS, an artificial neu-
ral network(NN) has been chosen as a multiple non-linear regression tech-
nique. The neural network will convert the directional water leaving radi-

ance reflectance(RLw) into several Inherent Optical Properties(IOP) - and
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these properties can be converted into different concentrations of constituents.
To convert these properties to concentrations of constituents, regressions
are used. Here is an overview to the steps that create the NN algorithm.
[ESA, nd b, Morel and Antoine, 2011]
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data realistic spectra
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Bio-optical
model
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Simulations of
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water leaving Neural network | | Neural network
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Figure 3.5: Steps overview to create the NN algorithm. Figure from the Sentinel-3
ATBD Ocean Color Turbid Water (From [ESA, nd f]

The output coefficient from the NN system will depend on the training process
of the inverse and forward neural network. In this process, directional RLw
are simulated with a complex radiative transfer model. This radiative transfer
model includes a bio-optical model which expresses the inherent optical prop-
erties that describes optically active different classes of water constituents that
affect RLw and the underwater light field. [ESA, nd b, Morel and Antoine, 2011,
ESA, nd f]

Description of the algorithm:
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The bio-optical model have been based on pure water and five compo-

nents:
1. absorption by phytoplankton pigments
2. absorption by dissolved organic matter / fulvic acids
3. absorption by particulate organic matter / humic acids
4. scattering by total suspended matter
5. scattering by white particles

The objective is that, for case 2 waters, a mix of these five components will

represent mostly standard optical properties. [ESA, nd f]

Simulation of the radiance reflectance spectra are done with Hydro-
light. Hydrolight is a numerical radiative transfer model, which calculates the
distributions of sprctral radiance and associated quantities for water bodies.
[Mobley, 1998, ESA, nd f]

For all of the OLCI spectral bands, the radiance distribution is calculated with
Hydrolight for 36x24 zenith and azimuth angles(quads) for 17 sun zenith angles.
The radiance distribution of RLw, are for the 15 spectral bands, calculated in

the same direction as the incoming radiance.[ESA, nd f]

Selection of spectra for the training process happens through a subset
of simulated RLw that are in the range of measured spectra of the North
Sea by GKSS and stored in the MERMAID data set. Easily explained, the
MERMAID data set is used as a selection criteria to determine, for some of
the spectral bands, upper and lower reflectances for the selection of realistic
spectra. [ESA, nd f]

Training and test data are chosen from the 15 OLCI spectral bands with
wavelengths 400, 412.5, 442.5, 490, 510, 560, 620, 665, 673.75, 681.25, 708.75,
753.75, 778.75, 865, and 1020 nm. The 10 chosen to train the neural net-
work are 400, 412.5, 442.5, 490, 510, 560, 620, 665, 673.75 and 708.75 nm.
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[ESA, nd f]

The neural network system consist of two neural networks; one inverse
network and one forward network. The inverse neural network is used to
describe the IOPs from the measured RLws. The forward neural network is
used to make a test to see if the input RLw spectrum is in concurrence with

the spectra that is included in the training data set. [ESA, nd f]

The structure of the inverse NN is as follows; 15 input neurons, 4 hidden layers
with 45, 20, 15 and 8 neurons, and 5 output neurons. The input neurons are
the logio RLws of the OLCI spectral bands 1-9 and 11, salinity, temperature
and 3 angles (the sun zenith angle, the nadir viewing angle and the azimuth
difference between sun direction and viewing direction). Output are the five
IOPs mentioned above with the bio-optical model. [ESA, nd f]

The structure of the forward NN is as follows; 10 input neurons, 3 hidden layers
with 45,20 and 15 neurons, and 11 output neurons. The input neurons are the
log1o of the five IOPs mentined above, salinity, temperature and the same three
angles as in the inverse NN. Output are the logio RLws from the 11 first bands
of MERIS. [ESA, nd f]

Standard for NN is hat the inverse NNs output is used as input to the forward
NN. To determine how far the input spectrum is out of scopt with the training
data set, the output from the forward NN is compared with the measuered

RLw spectrum in consistent with

X* = 3" ((RLwpm(i) - RLws(0))%/n) (3.9)

i=1

where X? is the out of scope distance, RLw,,(i) is the measured radiance
reflectance for OLCI band i, and RLw; (i) is the simulated spectrum from forward
NN. The RLw values can be very low such that they can become uncertain or
negative. To avoid this, one define a threshold for all RLws. [ESA, nd f]
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Converting the IOPs into concentrations are done at last to give users
concentrations of different constituents instead of IOPs. This is converted on
the bases of empirical relationships. [ESA, nd f]

TSM and CDOM

Level-2 data from Sentinel-3 and the OLCI instrument gives both TSM and
CDOM concentrations calculated with Neural Network algorithms. Neural
Network algorithms tends to give more accurate results in complex areas. The
NN system described for case 2 waters are the same that is used for these
contituents as well. [ESA, nd n, ESA, nd a, ESA, nd f]

3.2.7 Errors With the Algorithms

None of these algorithms can give a perfectly correct result. There will always
be errors, and it is hard to know how dominant these errors are. If in-situ data
are available, one can test them up with the data from the algorithm to see
how correctly it is. When this is said, many ocean color algorithms are good
algorithms to use, but one must not forget that errors will show up. Chlorophyll
data for case 1 water and case 2 water are often found with different algorithms.
Case 2 waters (coastal waters) are more complex and contains CDOM that

often causes errors to classification of chlorophyll in coastal areas.

Another problem can occur with the algorithm for case 1 water. This comes
from the fact that this algorithm is merges with in-situ data collected over the
past decades from different areas in the ocean. If these areas are far from the

study areas we use in this thesis, we might get less accurate answers.
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3.3 Synthetic Aperture Radar(SAR) Remote

Sensing

Synthetic Aperture Radar(SAR) remote sensing is quite different from optical
remote sensing such as Ocean Color remote sensing. SAR systems are side-
looking systems that transmits microwave radiation and receive the backscat-
tered radiation. The received backscatter radiation is saved and constructed

into an image. [Campbell, 2011]

To obtain two- or three-dimensional images with high resolution, SAR satellites
uses the motion of the radar antenna. Typically, one says that the larger the
aperture, the higher the resolution on the images will be. A synthetic(moving
antenna) will therefor allow a SAR satellite to create, with a relatively small

physical antenna, an image with high resolution. [Campbell, 2011]

A SAR satellite will receive signals scattered from the landscape during an
interval of time, as the satellite moves along its flight path. The satellite saves
and stores the backscattered information and re-constructs the received signal
as if they were received by a single antenna. When re-creating the image with
the correct positions of features as representation of the landscape, this can be
a complicated process. This problem occurs because features in the landscape
will experience different frequency shifts relative to their distance from the
satellite. This effect is called the Doppler shift. [Campbell, 2011]
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Figure 3.6: Features within the field of view of the radar will experience frequency
shifts. (From [Campbell, 2011])

As we can see from Figure 3.6, depending on where the feature is in the field of
view of the radar, it will experience a frequency shift towards lower or higher

frequency depending on the position of the feature relative to the radar.

SAR imagery allows for the detection of structures in the ocean like ocean
swell, currents and internal waves. A knowledge of wave conditions in coastal
waters will help researches gain information relevant to their study area, and
can actually provide better safety for many operations. The values in SAR
Normalized Radar Cross Section(intensity) images will have variations in its
short-scale surface roughness. This roughness are induced by geophysical
phenomena. The intensity image of the sea surface will be modified by wind

stress, variations in ocean currents and surface slicks. [Henderson, 1998]

[Henderson, 1998] also informs the SAR images associated with thermal images
of sea surface temperature, have shown to be good tools together for observing

currents from satellite images.

Overall, Sentinel-1 provides us with different products that can give us infor-
mation about the ocean.SAR images are sensitive to surface roughness that are
modulated by a surface current. Because of this, mesoscale oceanic phenomena

can be seen in SAR images. Relative to this project, we are most interested
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in information about motion of wind, waves and currents in coastal waters.
[ESA, nd d]

3.3.1 Geophysical Doppler Product

When scanning the ocean, and recording backscatter with a SAR satellite, one
get phase information from the ocean backscatter. This phase information can
be used to obtain range velocity, or Doppler centroid frequency equivalently.
This has previously been demonstrated to give valuable estimates of ocean

surface currents and near surface wind speed. [Engen et al., 2014]

Based on the satellite orbit/attitude and the rotation of Earth, one can predict a
Doppler centroid. In addition, one can record a Doppler centroid frequency over
the ocean. The difference between these Doppler centroids, the Geophysical
Doppler, is a measure of the radial velocity of the moving ocean surface. Since
this Geophysical Doppler product is based on the difference between the two
Doppler centroids, it will be very sensitive to the motion of scatters that comes

from winds, ocean waves and surface currents. [Engen et al., 2014]

In this project, I use radar intensity images and, derived from SAR data, a
geophysical Doppler product that tells us about the velocity field in the line of
sight direction. An image showing the velocity field in an area, can help with

the analysis of motion in ocean color images.



Lofoten, Vesteralen and
Senja

The study area for this thesis is the unique areas outside Lofoten, Vesterélen
and Senja. As mentioned in the introduction, these areas are quite popular for
tourists, outdoor enthusiasts and photographers, because of their incredible
nature and significant marine life. These areas are unique, not only because
of their nature, but also because of the large fish stocks that pass these areas
every year. The marine life in these areas are vulnerable, as well as important
for the many fishing communities that depend on the income these areas bring

with them. [Naturvernforbundet, nd ]

This chapter presents some of the coastal dynamics in the study area, before it

shows the ocean color parameters for the area.
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4.1 Coastal Dynamics for Study Area

The Arctic region is dominated by large areas of ocean waters. In these areas
the warmer North Atlantic current and the North Pacific current meets cold
Arctic oceans. The study area for this thesis is an area in the Norwegian Sea

outside Lofoten, Vesterdlen and Senja, see Figure 4.1

(b)

Figure 4.1: The study area for this thesis. Images collected from Google Earth (From
https://www.google.com/intl/no/earth/)

Lofoten, Vesterdlen and Senja are known to be unique areas. They are ar-
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eas known for their incredible nature, ocean as far as the eye sees and a
significant marine life and high marine productivity. These are the areas for
Norway’s most important fish stocks, and play a major role in the marine
ecosystems while they form the basis for the country’s most important fisheries.

[Naturvernforbundet, nd ]

4.1.1 Ocean Currents

The ocean currents for this study area will be slightly different during the
season on a local scale, but they have a clear trend. Figure 4.2 shows the ocean
currents for the Norwegian Sea, the Barents Sea, the Greenland Sea and the
North Sea.
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Figure 4.2: The system of ocean currents in the Norwegian Sea, the Barents Sea and
the Greenland Sea. (From [Regjeringen.no, 2002])

As we can see from Figure 4.2, the North Atlantic current brings warm water

northwards as it swipes past the Norwegian coast and runs further north
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meeting Arctic waters. Figure 4.3 shows a more detailed image of ocean

currents outside the study area.

Figure 4.3: Ocean currents study area.
(From [Havforskningsinstituttet, 2011])

As we can see from Figure 4.3, the island group Lofoten and Vesterélen gives
resistance to both the North Atlantic current and the Norwegian coastal wa-
ter, which affects both currents. Because of upwelling from the continental
shelf-edge, nutrient rich warmer water is brought up to the surface mixing
with the Norwegian coastal water. As we can see from the figure, the green ar-
rows represents coastal water. At the Norwegian coast, the Norwegian coastal
water has the same direction as the North Atlantic current. This is a phe-
nomenon that often leads to high marine productivity many places on Earth.
[Havforskningsinstituttet, 2011] Outside Lofoten, Vesterdlen and Senja the con-
tinental shelf is quite narrow. Thus, the mixing of different waters will happen
on a small area outside the study area. The fronts between these water masses
will therefore be closer to land compared to other places at the Norwegian
coast, and they will also be unstable because of the topography of the con-
tinental shelf. The tide in this area is very significant, and some areas have
a difference of more than 1.5 meters. This leads to a forceful mixing of the

different water masses. [Havforskningsinstituttet, 2011]
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4.1.2 Upwelling

The study area is known to have upwelling of nutrient rich water. Due to stable
and nutrient rich inflow of water, as well as the wind and ocean currents in
the study area, the water mixes with upwelled water due to the topography
of the area. This upwelling feeds the surface waters with nutrients helping
phytoplankton to grow. [Myhre, 2013] This is probably a major source for
the large fish stocks in the area. As mentioned in chapter 2.4, upwelling of
nutrient rich water causes the increased phytoplankton growth is often linked
with cold water that flows up to the surface. Because of this phenomenon,
it will be interesting to investigate if there exists a relation between ocean
color parameters and sea surface temperature. At first thought, correlation
and image subtraction will be natural to check. Another interesting thing to

investigate here, will be to check if the relationship is linear or non-linear.

4.2 Ocean Color Parameters

Ocean color parameters such as the concentration of chlorophyll, TSM and
CDOM, and sea surface temperatures, can give information about the biological

activity and the water quality in the top layer of the ocean.

4.2.1 Chlorophyll(CHL)

Using images of chlorophyll concentration gives a measure of the amount of
chlorophyll in different areas, and therefore it can tell us something about the
biological activity. Depending on what case of water we are studying, we use
either CHL Ny (case 2) or CHLoc4me (case 1). Figure 4.4 shows an ocean color
image with the concentration of chlorophyll(this is a CHLoc4p1 image).
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Figure 4.4: Ocean color data with chlorophyll concentration outside study area
07.28.2018. (Image with colorbar produced in SNAP(Sentinel Application
Platform))

From Figure 4.4 land and cloud areas are illustrated in white, and ocean areas
in a range of colors. These colors tells us the concentration of chlorophyll in
water, where blue is the lowest and red is the highest amounts(mgm™~3). The
range for the concentration of chlorophyll in Figure 4.4 is between o and 10

mgm‘?’.

4.2.2 CDOM

As mentioned in Chapter 4.3, CDOM is colored dissolved organic material. It
is produced both on land from land based run-off containing dissolved humic
and fulvic acid, and at sea from the degradation of phytoplankton through
photolysis. Water with high amounts of CDOM will look brown- and yellow-ish.
For example in inland waterways, one can often observe brownish waters. This
is because of high concentration of CDOM. Figure 4.5 shows an image of ocean

color data showing the concentration of CDOM.
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Figure 4.5: Ocean color data with CDOM concentration outside study area
07.28.2018. (Image with colorbar produced in SNAP(Sentinel Application
Platform))

From Figure 4.5 land and cloud areas are illustrated in white, and ocean areas
in a range of blue, yellow and brown-ish colors. These colors tells us the amount
of cdom in the water, where blue and light yellow is the lowest and the rusty
orange is the highest amounts(m™!). The range for the concentration of CDOM

in Figure 4.5 is between o and 10 m™*.

4.2.3 TSM

TSM is, as mentioned earlier, total suspended material. It is important for
the control of water quality, especially for turbid inland waters. TSM carries
nutrient input and photosynthetic process, and will therefore affect the aquatic
ecosystem. When it comes to case 2 waters, one often link TSM to primary
production, heavy metal fluxes and micro-pollutants. Inland turbid waters can

also be linked to problems with sediment transport. [Song et al., 2012]
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Figure 4.6: Ocean color data with TSM concentration outside study area 07.28.2018.
(Image with colorbar produced in SNAP(Sentinel Application Platform))

From Figure 4.6 land and cloud areas are illustrated in white, and ocean areas
in a range of blue to red-ish colors. These colors tell us the amount of TSM in
the water, where blue is the lowest and the red is the highest amounts(gm_B).
The range for the concentration of TSM in Figure 4.6 is between o and 2
gm=3.

4.2.4 SST

Sea Surface Temperature(SST) data contains data of the sea surface tempera-

ture over the ocean. Figure 4.7 is an example of an SST image.

- sea_surface_temperature_S [kelvin]

-
270.22274.59 279.49283.82287.96292.45 297.67 313.54318.08

Figure 4.7: Sea Surface Temperature(SST) data outside study area 28.07.2018. (Im-
age with colorbar produced in SNAP(Sentinel Application Platform))
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From Figure 4.7 land areas are illustrated in black and ocean areas in a range of
blue to red colors. These colors tell us the degrees(Kelvin) of water temperature,
where blue is the lowest and the red is the highest degrees(K). The range of

the sea surface temperature in Figure 4.7 is between 270 and 320 K.

4.3 Ocean Dynamics

Turbulent structures in the ocean are generated by several different factors.
Depending on coastal instability, irregular topography, coastal currents, shears,
islands and other obstacles, all affects and give rise to the turbulent structures
in the ocean. These turbulent structures can be mesoscale fronts, eddies and

filaments. [Lovecchio et al., 2018]

From ocean color chlorophyll data one can spot some turbulent structures in

the ocean, especially filaments.

4.3.1 Upwelling Areas

Along the western boundaries of the continent, coastal regions are charac-
terized by winds flowing towards the equator inducing an offshore Ekman
transport. This generates an upwelling of cold nutrient rich water near the
shore, increasing the biological activity. From chlorophyll data one can see
where the concentration of chlorophyll is highest. In upwelling areas one can

clearly see high amounts of chlorophyll. [Lovecchio et al., 2018]

From ocean color data with the concentration of chlorophyll, one can clearly
see areas along the coast containing high amounts of chlorophyll. Many of
these areas are upwelling areas, and others have a large input of nutrients

giving rise to phytoplankton.
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Figure 4.8: Ocean color data with CHLyN concentrations outside study area
10.05.2018. (Image with colorbar produced in SNAP(Sentinel Application
Platform))

In Figure 4.8 we can see the study area. This data is calculated with a Neural
Network (NN) algorithm giving better results in case 2 waters. We can see high
concentrations of chlorophyll in coast and fjord areas, and on the west side of
Lofoten and Vesteralen. Top left in Figure 4.8 we can see a black area with high
concentrations of chlorophyll. This is the effect from clouds on ocean color
data. So, we should just look away from this area. All of the green area outside
Lofoten contains moderate amounts of chlorophyll. One of the factors deciding
these amounts of chlorophyll, can be the known upwelling area mentioned in

the introduction part, due to offshelf transport of surface water.

4.3.2 Ocean Currents

As mentioned in chapter 3.5.1, the coastal currents outside the study area meet
the North Atlantic current (see Figure 4.2 and 4.3). This phenomenon, where
the North Atlantic current and the coastal current flow the same direction,
leads to a high marine productivity. We can clearly see this in our study area
in Figure 4.8. Because of the narrow continental shelf, the topography and the
tide difference outside our study area, the fronts of the water masses will act

unstable. This can be slightly difficult to see from ocean color data, but we can
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clearly see motion in the water.

In Figure 4.8, in the area between Senja and the clouds, we can see some hints
of circle-ish features. These are ocean current eddies, making turbulent circle
like feature in the ocean.

Filaments are also to be seen in these images. They look like "arms" in ocean

color CHL data. Here are some examples.

Figure 4.9: Filaments. (Image with colorbar produced in SNAP(Sentinel Application
Platform))

4.3.3 Water Masses

From looking at SST images, one can clearly see indications of different water
masses. We can see fronts meeting and mixing. We can see how the turbulent

water features brings and mixes the different water masses.
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A -

Figure 4.10: Sea Surface Temperature(SST) data outside study area 10.05.2018.
(Image with colorbar produced in SNAP(Sentinel Applcation Platform))

If we compare the motion in Figure 4.7 to the normal motion of currents outside
the study area in Figure 4.3, we can see that in the North of Senja, currents

start flowing northwards. Just as we can see from the SST image in Figure

4.7.
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4.4 Similarities Between CHL and SST

Only looking at images of CHL and SST, one can clearly see similarities in the

patterns in the two images shown in Figure 4.11.

a) CHL b) SST

Figure 4.11: Images of chlorophyll concentration and sea surface temperature,

28.07.2018. (Image with colorbar produced in SNAP(Sentinel Applcation
Platform))

a) CHL b) SST

Figure 4.12: Figure 4.11 with a few pointers showing some similarities between a)
and b). (Image with colorbar produced in SNAP(Sentinel Applcation
Platform))

In Figure 4.12, some of the similarities are pointed out with arrows or dark blue
pen. We can clearly see some of the rotating eddies (see arrow blue, orange and
grey) in both images. Furthermore we can see a similar pattern for both the
CHL and the SST image where the blue pen is drawn. These fronts show up for
both of these images and for TSM and CDOM images as well. As we can see in
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Figure 4.12, we can see a connection between areas with high amounts of CHL
in the left image, and areas with colder water in the same areas in the right
image. This correspond with the theory from chapter 2 and 3 about upwelling,
where colder water tends to have more nutrients that helps phytoplankton
growth. It would be interesting to see if these patterns also appear in radar

imaging.

Observing the CHL image in Figure 4.12 and comparing it to the currents that
can be seen in Figure 4.3, we can see that the area with higher concentrations
of CHL to the top left corner corresponds with the North Atlantic current, and
the areas with CHL close to land seems to be generated by upwelling and the
Norwegian coastal currents. On the tip south of Lofoten, we can also observe
area with a bit colder water from the SST image(the green area on the tip of
Lofoten) in Figure 4.12, and areas with higher concentrations of CHL in the
CHL image. This is considered to be upwelling of nutrient rich colder water

that increases phytoplankton growth.



Sensors and Satellites

To retrieve remote sensed data we need to use for example satellites or air
crafts with sensors that collect the information we want. In some cases, one
need several instruments as well to get the information one seeks. This chapter
presents differences with optical vs. microwave remote sensing. Thereafter,
it addresses information about the satellite and sensors that will be used to

collect data in this thesis.

5.1 Introduction

As mentioned, when using remote sensing, the satellite instrument is not in
physical contact with the investigating object. Because of this, the properties
of the satellite instrument must be inferred from the frequency distribution
and intensity of the radiation that is received. This radiation has propagated
through the atmosphere, and therefore its distribution will depend on the
propagation. We have three princpal sources for the radiaton; reflected solar
radiation, blackbody radiaton (emitted from surface) and backscattered energy

(recieved at sensor). [Martin, 2014]
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The radiation does not only depend upon the propagation through the atmo-
sphere, it also depend on the sensor. Depending on what information you are
interested in, you need to choose the right sensor to use. The sensor have
to be designed such that it uses appropriate wavelengths for the investigat-
ing object. The recieved data can now be collected and organized into data
sets so that the information can be viewed. There are two ways of collect-
ing satellite data; by optical remote sensing and microwave remote sensing.

[Martin, 2014, Elachi and Van Zyl, 2006]

5.2 Optical vs Microwave Remote Sensing

We can classify imaging sensor systems as passive and active imaging sys-

tems.

O
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Figure 5.1: Electromagnetic radiation received by a passive imaging sensor.(From
[Franceschetti and Lanari, 1999])
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Figure 5.2: Electromagnetic radiation received by an active imaging sensor. (From
[Franceschetti and Lanari, 1999])

Optical remote sensing expands from visible wavelengths and into the near
infra-red wavelengths. We can divide optical remote sensing into active and
passive sensing, see Figure 5.1 and Figure 5.2. The most commonly used one
is the passive type of remote sensing, which depends upon illumination from
the sun to reach Earth’s surface and reflect back to the satellite to be recorded.
Because of the dependence of the sun, this type of remote sensing is restricted
to daylight and cloud-free periods. This will also vary from where you are on
Earth, since the length of daylight will vary from place to place and from the
time of year, and it will be very dependent of the weather. Examples of satellites
that use passive optical sensors are Landsat, MODIS and Sentinel-3. An active
optical sensor will send out radiation and then measure the backscatterd energy.
An example of a sensor of this type is LIiDAR. [Martin, 2014]

Microwave remote sensing on the other hand, can also be divided into two
different groups of remote sensing; active microwave remote sensing and
passive microwave remote sensing. Passive remote sensing instruments observe
the radiation that is naturally emitted. An example of a satellite using passive
microwave sensing is SSM/I. Active remote sensing instruments, on the other
hand, actually transmit energy itself and collect the backscattered energy that
is emitted. An advantage of using active sensors, is the independence of
illumination and weather, and is the reason why active microwave sensors

are more used than passive microwave sensors. Examples of active microwave



66 CHAPTER 5§ / SENSORS AND SATELLITES

satellites are ENVISAT, TerraSAR-X and Sentinel-1. [Martin, 2014]

5.3 Optical Imaging Systems

The optical electromagnetic spectrum extends from wavelengths of the vis-
ible spectrum (approximately 400 nm to 700 nm) and into the near in-
frared spectrum (approximately 700 nm to 2500 nm). The most commonly
used system for optical imaging is passive systems. These systems are sen-
sitive to variations in illumination from the sun, since they measure the re-
flected illumination from the ground. These systems are also sensitive to
weather and night conditions, since they depend on the illumination of the sun.

[Martin, 2014, Campbell, 2011]

5.3.1 Ocean Color Remote Sensing

For ocean color remote sensing one chooses to use optical passive imaging
systems. This is because light penetrates water depths of 10-100 meters, and
the only wavelengths that can reach theses depths are the visible and near infra-
red wavelengths. Furthermore, chlorophyll only absorbs certain wavelengths
from the visible part of the electromagnetic spectrum. The visible spectrum is
only a small part of the electromagnetic spectrum, as we can see from Figure
3.1, and it only reaches wavelengths betweeen 400 and 700 nano meters.

[Martin, 2014]

5.3.2 Sentinel-3

Sentinel-3 is a multi-sensor European Space Agency(esa) satellite. It was
launched in February 2017, primarily for ocean missions. However, it can also
provide applcations for land and atmosphere. [ESA, nd j]

This satellite consists of two satellites; Sentinel-3A and Sentinel-3B with a phace
shift between them of around 140°. Sentinel-3A launched in February 2017,

while Sentinel-3B launched in April 2018. The satellite has a sun-synchronous
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orbit type with orbit height 814 km above ground. Its repeat cycle is 27 days.
Sentinel-3 has several different sensors aboard. Some of them are OLCI(Ocean
and Land Color Instrument), SLSTR(Sea and Land Surface Temperature Ra-
diometer), GNSS(Global Navigation Satellite System) and MWR (Microwave
Radiometer). [ESA, nd j]

The satellite’s main objective is measuring ocean- and land-surface color, sea-
surface topography and sea- and land-surface temperature. For this thesis,
we are mostly interested in data from the OLCI insturment and the SLSTR

instrument. [ESA, nd j]

5.3.3 Ocean and Land Cover Instrument (OLCI)

As mentioned earlier, OLCI is an instrument on the satellite Sentinel-3. It
is an instrument with 21 bands, reaching from 400 nm to 1020 nm, using
a spatial resolution of 300 m. With five cameras it provides a wide field of
view with swath width 1270 km. This instrument gives us both data from the
ocean and land, but for this thesis we are most interested in data from the
ocean. From OLCI we can get level-2 data with estimations of for example
Chl-a concentration and the concentration of total suspended matter (TSM).
OLCI uses spectral bands in the visible and short infrared spectrum to retrieve
information. [ESA, nd k]
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Table 5.1: OLCI band characteristics. (From [ESA, nd h])

Band A centre (nm) Width (nm) Function
0ao1 400 15 Aerosol correction, improved water constituent retrieval
0a02 412.5 10 Yellow substance and detrital pigments (turbidity)
0a03 442.5 10 Chlorophyll absorption maximum, biogeochemistry, vegetation
0a04 490 10 High Chlorophyll,
0a05 510 10 Chlorophyll, sediment, turbidity, red tide
0a06 560 10 Chlorophyll reference (Chlorophyll minimum)
0a07 620 10 Sediment loading
0a08 665 10 Chlorophyll (2nd Chlorophyll absorption maximum), sediment, yellow
substance/vegetation
0a09 673.75 7.5 For improved fluorescence retrieval and to better
account for smile together with the bands 665 and 680 nm
0a10 681.25 7.5 Chlorophyll fluorescence peak, red edge
Oa11 708.75 10 Chlorophyll fluorescence baseline, red edge transition
Oa12 753.75 7.5 02 absorption/clouds, vegetation
0a13 761.25 25 02 absorption band/aerosol correction.
Oa14 764.375 3.75 Atmospheric correction
Oa15 767.5 25 O2A used for cloud top pressure, fluorescence over land
0Oa16 778.75 15 Atmos. corr./aerosol corr.
Oa17 865 20 Atmospheric correction/aerosol correction, clouds, pixel co-registration
0a18 885 10 Water vapour absorption reference band. Common reference
band with SLSTR instrument. Vegetation monitoring
0a19 900 10 Water vapour absorption/vegetation monitoring
(maximum reflectance)
0a20 940 20 Water vapour absorption, Atmospheric correction/aerosol correction
Oa21 1020 40 Atmospheric correction/aerosol correction

5.3.4 Sea and Land Surface Temperature Radiometer
(SLSTR)

SLSTR is an instrument on the satellite Sentinel-3, and is designed for a global
coverage of the surface temperature on Earth. This is not directly an ocean
color instrument, but for different purposes we are interested in sea surface
temperature(SST). From this sensor we can get level-2 data with estimation
of temperature on land and sea, and in this project we are more interested in
SST. SLSTR uses spectral bands in the short-wave infrared region to retrieve
SST. [ESA, nd 1]
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Table 5.2: SLSTR band characteristics. (From [ESA, nd g])

Band  Central | Bandwidth Function
Wavelength (nm)
(nm)
S1 554.27 19.26 Cloud screening,

vegetation monitoring,
aerosol

S2 659.47 19.25 NDVI, vegetation
monitoring, aerosol
S3 868.00 20.60 NDVI, cloud

flagging,Pixel co-
registration

S4 1374.80 20.80 Cirrus detection over
land
S5 1613.40 60.68 loud (;]earingY ice‘
snow,vegetation
monitoring
S6 2255.70 50.15 Vegetation state and
cloud clearing
S7 3742.00 398.00 SST, LST, Active fire
S8 10854.00 776.00 SST, LST, Active fire
S9 12022.50 905.00 SST, LST
F1 3742.00 398.00 Active fire
F2 10854.00 776.00 Active fire

5.4 Radar Imaging Systems

The microwave electromagnetic spectrum extends from wavelengths of approx-
imatley 1 um to 1 m. The most commonly used systems for radar imaging are
active systems. These systems are not dependent on illumination from the sun.
Active systems transmit energy themselves and collect the backscattered energy
that is emitted from the ground. One major difference in ocean remote sensing
is that optical imaging systems are able to sense a few meters below the ocean
surface, while radar imaging systems are not. As mentioned in the introduction,
the main objective of this thesis is to invesigate if there is a correlation between
ocean color and SST images against SAR images. We wish to see if patterns in
ocean color or sst images, can be seen in SAR images. If patterns in the ocean

color images are below the surface, these will not appear in the SAR images.
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On the other hand, if the patterns in the ocean color images lay on the surface,
they should appear if the patterns are controlled by wind stress and currents.
[Martin, 2014, Campbell, 2011, Henderson, 1998]

5.4.1 Coastal Dynamics

Mapping and monitoring of coastal dynamics from satellite sensors include the
use of different instruments and sensors to get the data we needs. One need a
combination of optical data from passive sensing and radar data from active

sensing.

5.4.2 Sentinel-1

The Sentinel-1 satellite is a constellation of two satellites Sentinel-1A and
Sentinel-1B. Sentinel-1A launched in April 2014 and Sentinel-1B launched in
April 2016. The prime objective of this satellite is to provide C-Band SAR data
for land and ocean monitoring. [ESA, nd i]

Sentinel-1 has a sun-synchronous orbit type with orbit height 693 km above
ground. Its repeat cycle is 175 orbits in 12 days. The satellite’s has only one
instrument aboard; the C-Band Synthetic Aperture Radar(C-SAR) instrument.
The C-SAR uses wavelengths of 7.5-3.75 cm. The satellites main objectives are
land monitoring of forest and soil, marine monitoring, sea ice observations,

mapping of oil spills, and climate change monitoring. [ESA, nd i]

5.4.3 C-Band Synthetic Aperture Radar(C-SAR)

To manage good monitoring of land and sea, Sentinel-1 carries a C-SAR sensor
that offers, in all weather conditions, medium and high resolution images. The
satellite is very useful for land and ocean monitoring because it detects small

movements on the ground, as well as it takes night imagery. [ESA, nd i]

The C-Band Synthetic Aperture Radar instrument has four resolution and
Swath widths; Strip Map Mode: 8o km Swath and 5x5 m spatial resolution,
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Interferometric Wide Swath: 250 km Swath and 5x20 m spatial resolution, Extra-
Wide Swath Mode: 400 km Swath and 25x100 m spatial resolution, and last

Wave-Mode: 20x20 km Swath and 5x20 m spatial resolution. [ESA, nd i]
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Method

This chapter presents where the data for this thesis are collected, as well as it
introduces the software used for data processing and analysis. Thereafter, it

continues by describing the design and setup of the data analysis.

6.1 Data

The ocean color data collected for this thesis are downloaded from EUMET-
SAT (European Organization for Meteorological Satellites)!, which is an earth
observation portal that originally was made for monitoring climate and weather.
EUMETSAT is an intergovernmental organisation owned by 30 European coun-

tries.

From this portal it is possible to download Sentinel data. The ocean color
data used in this thesis is collected by Sentinel-3 from the OLCI instrument,
mentioned in Chapter 5, while SST data is collected from the SLSTR instrument.

As mentioned earlier, these data are level-2 data, which means that they are

1. https://www.eumetsat.int/website/home/index.html
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processed with algorithms to give the information we want.

In addition to ocean color data and sea surface temperature data, I got
some SAR data containing intensity images(Normalized Radial Cross Sec-
tion(NRCS)), Geophysical Doppler products and Radial Velocity data. These
data have been downloaded from Copernicus Openn Access Hub2 which pro-
vides a complete, free and open access to satellite data from the Sentinel
satellites. Thereafter, the data have been ran through an algorithm giving out
Geophysical Doppler product and Radial Velocity products. I have gathered
this data from Senior Research Scientist, Harald Johnsen3, at Norut(Northern

Research Institute).

6.1.1 Data sets

In this project, I have searched for satellite images of the study area between
May and July for year 2018. Using optical ocean color data, one is dependent
on cloud free days, and in northern Norway this can be challenging. I man-
aged to find 7 dates between May and July with few clouds over my area of

interest.

For this project I am using three different data sets, for each date. The first
data set consist of 4 ocean color parameters stored in images; two differ-
ent chlorophyll images(CHL yn and CHLoc4pe), One total suspended matter
image(TSM) and one color dissolved organic material image(CDOM). De-
pending on the case of water, I will use either CHLNN or CHLoc4pe. The

concentration of these parameters are stored in each image.

The second data set consists of a sea surface temperature image(SST). While
the third data set consist of two SAR products; NRCS(Normalized Radar Cross
Section) as intensity image and geophysical Doppler product. Table 6.1 gives

an overview of the data sets.

2. https://scihub.copernicus.eu/
3. https://norut.no/en/employees/harald-johnsen
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Table 6.1: Overview of the three data sets for this project. This table gives an overview
of what satellites and sensors the different images are from, what time the
images are taken and what resolution the images have.

Data Satellite Product Sub Area Time Resolution
Set & Sensor
1 Sentinel-3 CHL A 0944-0947
OLCI 300 m
B 1036-1039
TSM A 0944-0947
300 m
B 1036-1039
CDOM A 0944-0947
300 m
B 1036-1039
2 Sentinel-3 SST A 1855-2046
SLSTR 1km
B 1947-2128
3 Sentinel-1  |ntensity A 0528-0529
C-SAR image 3.3-3.9km
B 1631-1632
Geophysical A 0528-0529
Doppler 3.3-3.9km
B 1631-1632

6.1.2 Possible Sources of Error

Given the conditions of the experiment, some effects can not be avoided. These

effects are possible sources of error.

* There is a time difference between the data from the different sensors.
OLCI data is collected around noon, while the SLSTR data is collected
around nine hours after the OLCI data, and SAR products are from both
early morning and dinner time. This can have an effect on the result

when comparing data from different sensors.
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* There is also a difference in resolution between the data from the dif-
ferent sensors. OLCI data have a resolution of 300 m, while SST and
the SAT products have a resolution of 1 km. To be able to compare the
images, an interpolation method has been used to resample the data
after Ocean Color data from the OLCI satellite.

6.2 Data Pre-Processing

The software used for all of the pre-processing and analysis programming
is Matlab#, which is a mathematical programming tool. The software used
for looking at the Sentinel images is SNAP(Sentinel Application Platform)
[ESA, nd m]. This is a good tool to use to look at Sentinel images, since they

have specially designed color scales for each of the parameters.

6.2.1 Image Interpolation Methods

Image interpolation is often necessary before analysing images against each
other, since the resolution between two images can be very different. The data
used in this thesis have different resolutions; OLCI have a resolution of 300
m, SLSTR of 1 km and SAR products of around 1 km. In this case I chose to
use the level-2 image from the OLCI sensor as my master, and use the level-2
image from SLSTR sensor and the SAR products as my slaves. To resample
the images, one needs to choose what type of image interpolation method one

wants for the output.

Choosing an interpolation method can be difficult. They all have different pros
and cons, some better that others. Depending on which interpolation method
one chooses, the output will be slightly different. Some methods have a longer
processing time while others give an output with higher quality. For these
operations I chose to use Nearest Neighbour interpolation resampling. This is a
very common interpolation method. It has a quick processing time, it is simple

and at the same time gives an okay output. [Gu and Zhang, 2011]

4. https://se.mathworks.com/
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6.3 Set Up of the Statistical Analysis

This data analysis will be divided into four cases. In the first case, data set
one will be used. I will test four different statistical analysis approaches and
investigate if these approaches gives an idea of the relationship between the
ocean color parameters in data set one. In the second case, data set one and
two will be used. I will test the same four statistical analysis approaches as for
case one, to see if these approaches can give an idea of the relationship between
ocean color parameters in data set one and sea surface temperature(SST) in
data set two. Figure 6.2 shows the set up of the statistical analysis of case one

and two.

Figure 6.1: Set up of statistical analysis for case 1 and Case 2.

As we can see from Figure 6.2, for each date I choose different sub areas(in
6.2 for example, there are two sub areas A and B) that I wish to investigate
further. These areas should be as cloud free as possible, and contain features
of coastal dynamics such as Eddies or interesting patterns. Some sub areas
near land have also been chosen. Thereafter, for each of the sub areas I have
applied four different statistical analysis approaches or methods. The main
objective is to find the approach that shows the best relation between the data,

and the approach that can tell us anything about the relation of the coastal
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dynamics.

For case three and four, I will for each date use one statistical analysis approach
on the different sub areas. In case three, data set one and three will be used. I
will investigate if there are any correlations between CHL in data set one and
SAR products in data set three. In case four, data set two and three will be
used. I will investigete if there are any correlations between SST in data set

two and SAR products in data set three.

6.4 Statistical Analysis

As mentioned, to study the relation between the different parameters described
above, I will use four different statistical analysis approaches. I have chosen to

test these different approaches or methods:

6.4.1 Image Subtraction

By using image subtraction between two images, one takes the pixel value
in one image and subtracts it from the same pixel in the other image. This
method is very quick and simple, and will detect changes between the two

images containing parameters. The formula can be described like this

D =|A- B (6.1)

where D is the resulting image subtraction between the two normalized images
Aand B.

6.4.2 Regression

Regression is an approach where the objective is to investigate how sufficient
a set of predictor variables manage to predict (dependent) outcome variables.
In this thesis I am interested in the relation between two parameters(images),

therefore I use a set of randomly chosen test data from each image to make a
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model which describes the relationship between the predictor variables and
the response variables. Afterwards I will run the model on all the data, and
determine how well the model predicts the outcome parameter by calculating
bias, R squared and Normalized Root Mean Squared Error(NRMSE):

N
. 1 »
Bias = — Zl (i = ) (6.2)

RZ _ g\il(g\i - y)z

- (6.3)
>N (yi - 9)?

1 1 N
- - - AN )\2
NRMSE = N ;Zl(yl Ui) (6.4)

Ymax — Ymin

where y is the actual data, §j is the predicted data, y;,qx and yn,i, are the
maximum and minimum observed value of y, y is the mean of the actual data,
and N is the number of observations. A goodness of fit table with values of Bias,
R? and NRMSE will tell how good the model is. [Blix et al., 2018]

A resulting image showing the difference between the predicted data ver-
sus the actual data will also visually show how well the regression model

functions.

To derive the different regression models, I will use the Regression Learner app
in Matlab. I use sooo random pixels from each parameter image as training

data, and fit the model with all of the pixels in the image.

Linear Regression Model

A linear regression model will give us a model that describes the linear rela-

tionship between two sets of variables. The model will describe a relationship
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between a dependent variable, y, and an independent variable, x1, ..., x,, de-

scribed with equation

Y= ﬁo + ﬁlx + € (6.5)

where f is the y-intercept, f5; is the regression coefficient and ¢ is the term of
error. [MathWorks, nd b]

Support Vector Machine(SVM) Regression Model

A Support Vector Machine regression can give us both a linear and a nonlinear
model to describe the relationship between two sets of variables. I have chosen
to use a nonlinear SVM regression approach that uses a Gaussian kernel
function. The goal using this method is to obtain a function f(x) that deviates
from observed response values y, by a value that is smaller than ¢ for all
training points x. A nonlinear SVM finds the coefficients that minimize equation
[MathWorks, nd c]

N N N N
1 . . ) *
L(a) = 5 Z Z(ai —a; ) — a;)G(xi, xj) + EZ(O(,' +a;) - Z yi(a; — af)
1=1 j=1 = —
(6.6)
subject to
N
D (en —a) (6.7
n=1
Vn:0<a,<C (6.8)
Vn:0<a,<C (6.9)

where a, and a;, are nonnegative multipliers for each observation x,, G(x;, x;)

is the Gram matrix and ¢ is the term of error. Since I have chosen to use a
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Gaussian kernal, the Gram matrix looks like this:

G(xi, xj) = exp(— || xj — xx 1%) (6.10)
To predict the new values this function is used

N
FG) = (an = @)Glaxn, x) + b (6.11)
n=1

To obtain optimal solutions the formula requires optimization constrains;

Karush-Kuhn-Tucker(KKT) complementary conditions. These are

Vn:ay(e+& —yn+ f(Xy)=0 (6.12)
V(e + & +yn = f(Xa)) =0 (6.13)
Vn: & (C—-ay)=0 (6.14)
Vn: & (C—-a,)=0 (6.15)

where &, and &, are slack variables, and C is the box constraint. [MathWorks, nd c]

6.4.3 Correlation

The correlation coefficient between two images, let’s say A and B, can be

calculated with this formula

y = Zm Zn(Amn - A)(an - B) (6.16)

V(Zm ZnAmn = D) (Z ZnBrun — B)

where A and B is the mean of the matrices A and B. [MathWorks, nd a]

The correlation coefficient of two matrices, or images, is a scalar. To get a
resulting image showing the correlation coefficients, one can implement a loop
with two sliding windows of size MxN pixels, let’s say 9x9, that slides over the
two images A and B and calculates the correlation coefficient within MxN. This

loop slides over both images, collecting scalar values and stores them in a new
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matrix, giving a resulting matrix that can be displayed as a correlation image

of A and B, holding the information of how the images correlate.

Deriving the correlation coefficient, one assumes a linear relationship between
the two images A and B. In other words, one assumes that a change in A
involves a certain constant change in the corresponding average value of B.
The correlation coefficient does never exceed [—1, 1] , where +1 gives a perfect
correlation, 0 gives no correlation, and —1 gives a perfect negative correlation.
Easily explained, the correlation between two variables tells us something
about the underlying dependency between the variables - how much they

connect with each other. [Wright, 1921]

Sliding window

\J_l_la S—

“ »
2D correlation
Between the
images A and B

Figure 6.2: The correlation method.



Results and Discussion

This chapter will present the results and discussion of four different test cases.
I will only present the results from two dates, with one sub area for each date,
since the trends among my results are almost the same and the result of all of
the sub areas from all of the dates will occupy many pages. Therefore, I will

present the results from 10th of May and 28th of July.

7.0.1 Sub Areas

Figure 7.1 and 7.2 presents roughly the different sub areas chosen as different
study areas for the two dates I am presenting results from. I choose to show
the results for one sub area per date. But these images gives an idea on the

different sub areas I have investigated in this project.
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Sub Areas
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Figure 7.1: Sub areas, 2018.05.10.
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Figure 7.2: Sub areas, 2018.07.28.

The SAR data scenes can be seen in Figure 7.3.
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Figure 7.3: SAR scenes. (From Harald Johnsen, Norut)

7.0.2 Parameters

The following Figures shows the different parameter images in each data set
for the two dates and study areas chosen two show the results for, 10th of
May and 28th of July 2018. Since these two sub areas are not by the coast, the
OC4Me algorithm for chlorophyll concentration is used. Sub area A is the area
in the top left rectangle in Figure 7.1, and sub area B is the area in the biggest

rectangle in Figure 7.2.
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Sub Area A
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Figure 7.4: Parameter images for data set 1, 2018.05.10. (Normalized data.)

Figure 7.5: Parameter image for data set 2, 2018.05.10. (Normalized data.)
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Figure 7.6: Parameter image for data set 3, 2018.05.10.
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Figure 7.7: Parameter images data set 1, 2018.07.28. (Normalized data.)
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Figure 7.8: Parameter image for data set 2, 2018.07.28. (Normalized data.)

[arb]
0.035

Intensity Image Geophysical Doppler

100

150
0.025

200

250

300

0.015

0.005

100 200 300 400 500 600 100 200 300 400 500 600

Figure 7.9: Parameter images for data set 3, 2018.07.28.

By observing the ocean color parameters from data set one in Figure 7.4 and
7.7, and the SST images in Figure 7.5 and 7.8, we can clearly see some of the
same patterns in the images - especially between CHL, TSM and CDOM. Also,
we can observe some of the patterns in the SST images, but not as clearly as
between CHL, TSM and CDOM (the three OLCI parameters). For example in
Figure 7.4, we can observe the Eddie stream to the left in the CHL, TSM and
CDOM images. We can also see some of that "Eddie path" in the SST image in
Figure 7.5. The clear light blue path in the SST image just to the right of the

[Hz]
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centre of the image, can also be seen in the parameter images. In Figure 7.7,
we can clearly see the oval shape of a whale in the middle of the CHL, TSM
and CDOM images. This pattern can also be seen in the SST image in Figure

7.8, but it does not stand out as much as in the other images.

From the parameter images, we can also observe that areas containing high
amounts of CHL also contain high amounts of TSM and CDOM. Given this, and
the pattern they together form in the ocean, this is probably caused by coastal
dynamics in the area. If we look at the SST image in Figure 7.8 we can see
that in the top left corner of the SST image, we can see that there are lower
temperatures compared to other areas in the sub-image. These areas with lower
temperature also correspond with the high concentration of chlorophyll in the
CHL image in Figure 7.7. This corresponds with the literature discussed earlier
in chapter 2 and 4 in the thesis. That colder nutrition rich water often helps
in the production of phytoplankton. In the areas where there are the lowest

concentration of CHL, there are also warmer waters in the SST image.

By observing the parameters in Figure 7.6 and 7.9 we can see that the patterns
in the parameter images in Figure 7.4 and 7.7 are not sticking out in the SAR
product images. If we look at the intensity image in Figure 7.6, with Figure 7.4
in mind, we can see that where we have the Eddie pattern in the parameter
images in Figure 7.4, we can see something happening in the intensity image
in Figure 7.6. The triangle Eddie path we can spot in Figure 7.4 and the SST
image, we can see hints of in the intensity image in Figure 7.6. If we look at
the geophysical Doppler image, we can see some similarities with the intensity
image. We can see the dark area to the left in the intensity image corresponding

to the blue area to the left in the geophysical Doppler image.

If we look at the parameter images for sub area B in Figure 7.7 and the SAR
products in Figure 7.9, we can actually see hints of the whale shaped pattern
that can be seen in the parameter images in Figure 7.7, in the intensity image.
Down in the left corner area in the geophysical Doppler image we can see
a bit lower Doppler values. In the same area in the ocean color parameter
images, we have moderate to high concentrations of CHL, TSM and CDOM. As
mentioned in the introductory chapter and in chapter 3, the intensity images

are sensitive to changes in surface when it comes to wind and waves. While
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geophysical Doppler is a measure of the velocity in the in line of sight direction.
Looking at the Geophysical Doppler images we can see some similarities with
the intensity images. If we look to the left in the geophysical Doppler image
in Figure 7.6, we can see low values that correspond with low values in the
intensity image. We can also see the red spot on the top of the intensity image,
corresponding with the green area in the top of the geophysical Doppler image.
In Figure 7.9 we can see that the middle area in both images correspond with
each other. Also the light blue area towards the left lower corner in both images.

Except these examples, there are not many more similar features.
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7.1 Case1

In this case, I have investigated, with the four different statistical analysis
approaches described in Chapter 6, the relationship between the ocean color
parameters in data set one. The parameter images from data set one can
be seen in Figure 7.4 for the 10oth of May, and in Figure 7.7 for the 28th of
July.

Method I: Image Subtraction Figure 7.10 for sub area A and Figure 7.11
for sub area B, shows the results of the image subtraction method for different

combinations of ocean color parameters.
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Figure 7.10: Result images from the image subtraction method, sub area A
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Figure 7.11: Result images from the image subtraction method, sub area B.

The image subtraction method is a very quick and easy method to detect
differences between pixels in two images. In Figure 7.10 and 7.11 we can see
the results of the image subtraction between ocean color parameters in sub
area A and B, respectively. The parameters have been normalized before taking
the image subtraction. The range on the colorbars are [0, 0.5]. These images
tells us if the original images are much alike. The lower values, the more alike
are they. This method shows changes between images very easily. If we have
the ocean color parameter images in Figure 7.4 and 7.7 in mind, we can see
that the Eddie feature in sub area A and the whale shaped pattern in sub area
B are visible in the resulting image subtracting images. From Figure 7.10, sub
area A, we observe that CHL and TSM in (a) and that TSM and CDOM in (c)
are very alike, meaning that there are not that many changes between the
parameters CHL and TSM, and TSM and CDOM. From Figure 7.11, sub area B,
we observe almost the same trends as in sub area A. We observe that CHL and
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TSM in (a) and that TSM and CDOM in (c) are very alike. A few more changes
between CHL and CDOM. Overall, it looks like the areas with the most changes
between two parameters are in the same area for all combinations. This can
also be observed in Figure 4.4, 4.6 and 4.5 in Chapter 4, where we can see the
patterns. As well, we can see that areas with high amounts of CHL, there is
also high amounts of TSM and CDOM.

All in all, there seems to be a clear trend if we look at the three parameters
CHL, TSM and CDOM that are taken with the same instrument. It seems to be

few significant changes between these parameters.
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Method II: Linear Regression Figure 7.12 for sub area A and Figure 7.13
for sub area B, shows the resulting difference images between predicted and

actual data.
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Figure 7.12: Difference images between predicted and actual data, for the linear re-
gression method, sub area A. (a) shows the difference image between
the predicted TSM data based on CHL data, and actual TSM data. (b)
shows the difference image between the predicted CDOM data based on
CHL data, and the actual CDOM data. (c) shows the difference image
between the predicted CDOM data based on TSM data, and the actual
CDOM data.
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Figure 7.13: Difference images between predicted and actual data, for the linear
regression method, sub area B. (a) shows the difference image between
the predicted TSM data based on CHL data, and the actual TSM data.
(b) shows the difference image between the predicted CDOM data based
on CHL data, and the actual CDOM data. (c) shows the difference image
between the predicted CDOM data based on TSM data, and the actual
CDOM data.

Table 7.1 shows the goodness of fit table for the linear regression models
between ocean color parameters in sub area A, while Table 7.2 shows the
goodness of fit table for the linear regression models between ocean color

parameters in sub area B.
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Figure | Bias ‘ R? ‘ NRMSE
a 1.2989e-04 | 0.6057 | 0.0646
b 3.8017€-05 | 0.3900 | 0.0720
c 4.3331e-06 | 0.5334 | 0.0615

Table 7.1: Goodness of fit table for the linear regression models for the combinations
of ocean color parameters, sub area A.

Figure | Bias ‘ R? ‘ NRMSE
a 2.0766€-04 | 0.6928 | 0.0284
b 1.9716e-04 | 0.5492 | 0.0150
C 5.9614e-05 | 0.8486 | 0.0087

Table 7.2: Goodness of fit table for the linear regression models for the combinations
of ocean color parameters, sub area B.

In the linear regression method we wish to check if there exists a linear regres-
sion model between two parameters, and how good this model is. Normalized
data were also used here. The range of the colorbar is [0, 0.05]. In figure 7.12
we can see the difference images between the predicted data and actual data
from sub area A. At first sight we can see that the difference images looks
almost the same. In (a) we trained a linear regression model based on CHL
and response values of TSM, to predict TSM values from CHL values. While in
(b) we trained on CHL and CDOM to predict CDOM based on CHL, and in (c)
we trained on TSM and CDOM to predict CDOM based on TSM. These three
combinations of parameters gives a relatively high R?. This can bee found in
the goodness of fit table in Table 7.1. "R squared" tells us how much better the
regression line is, compared to a horizontal line that goes through the mean
of the data. Given the relatively high values of R?> means that knowing the
"x-value" actually helps with the prediction of the "y-value". From Table 7.1 we
can see that the combinations in (a) and (c) have a relatively high R? and a
low Bias and NRMSE.

The results of the linear regression method in sub area B can be seen in Figure

7.13. We can see that the difference image between predicted CDOM based
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on TSM, and actual CDOM gives mostly low values. Meaning that the linear
relationship is good. This can also be seen from the goodness of fit table in
Table 7.2. We can also see that the linear model in (a) and (c) have high R?,

giving a good liner relationship between the ocean color parameters.

All in all, linear regression models gives clear trends with these combinations of
ocean color parameters. Predicting an ocean color parameter based on another

ocean color parameter with linear regression works well.
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Method Ill: SVM regression Figure 7.14 for study area A and Figure 7.15
for study area B, shows the resulting difference images between predicted and

actual data.
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Figure 7.14: Difference images between predicted and actual data, for the SVM re-
gression method, sub area A. (a) shows the difference image between
the predicted TSM data based on CHL data, and actual TSM data. (b)
shows the difference image between the predicted CDOM data based on
CHL data, and the actual CDOM data. (c) shows the difference image
between the predicted CDOM data based on TSM data, and the actual
CDOM data.



7.1/ CASE 1 101
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Figure 7.15: Difference images between predicted and actual data, for the SVM re-
gression method, sub area B. (a) shows the difference image between
the predicted TSM data based on CHL data, and actual TSM data. (b)
shows the difference image between the predicted CDOM data based on
CHL data, and the actual CDOM data. (c) shows the difference image
between the predicted CDOM data based on TSM data, and the actual
CDOM data.

Table 7.3 shows the goodness of fit table for the SVM regression method for
ocean color parameters in sub area A. Table 7.4 shows the goodness of fit table

for the SVM regression method for ocean color parameters in sub area B.
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Figure | Bias ‘ R? ‘ NRMSE
a 4.3027e-04 | 0.5816 | 0.0610
b 0.0013 0.3763 | 0.0716
C 0.0020 0.5461 | 0.0621

Table 7.3: Goodness of fit table for the SVM regression models for the combinations
of ocean color parameters, sub area A.

Figure | Bias ‘ R? ‘ NRMSE
a 0.0011 0.7139 | 0.0274
b 4.3333€-05 | 0.5700 | 0.0146
C 6.0263e-05 | 0.8512 | 0.0086

Table 7.4: Goodness of fit table for the SVM regression models for the combinations
of ocean color parameters, sub area B.

In the SVM regression method we wish to check if there exist a nonlinear
regression model that can explain the relationship between combinations of
parameters. Normalized data were also used here. The range of the colorbar
is [0,0.05]. In Figure 7.14 we can see the difference images between predicted
and actual data from sub area A. At first sight, these difference images does not
appear much different from the linear regression difference images in Figure
7.12. If we compare Table 7.1 and 7.3, there are not that big difference in values.
The linear regression method provides a slightly better model for (b),CHL and
CDOM, and (c),TSM and CDOM, while the SVM regression method provides
slightly better models for the combination in (a), CHL and TSM.

The results of the SVM regression method in sub area B can be seen in Figure
7.15. At first sight, also these difference images between predicted and actual
data look quite similar to the linear regression method difference images in
Figure 7.13. If we compare the goodness of fit tables 7.2 and 7.4, there are not
that big differences. But, here SVM regression models are slightly better than

the linear regression models.

Overall, SVM regression models provides slightly better models compared to

linear regression models. The best SVM models are provided for (a) CHL and
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TSM in sub area A, and (¢) TSM and CDOM in sub area B.

Method IV: Correlation Figure 7.16 for sub area A and Figure 7.25 for sub
area B, shows the results of the correlation between different combinations of

ocean color parameters.
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Figure 7.16: Result images from the correlation method, sub area A. (a) shows the
correlation between CHL and TSM. (b) shows the correlation between
CHL and CDOM. (c) shows the correlation between TSM and CDOM.
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Correlation Plot Between CHL, and CDOM
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Figure 7.17: Result images from the correlation method, sub area B. (a) shows the
correlation between CHL and TSM. (b) shows the correlation between
CHL and CDOM. (c) shows the correlation between TSM and CDOM.

In the correlation method we wish to check the correlation between two
parameters. This method uses a 9x9 pixels sliding window to perform a 2D
correlation between two images. So, 9x9 pixels from two different images are
compared at the same time. The resulting correlation coefficients are put into a
new image. Normalized data are used, and the range of the colorbar is [-1, 1],
where -1 is a perfect negative correlation, o is no correlation and 1 is perfect
correlation. The resulting correlation images for pairs of combinations between

ocean color parameters in sub area A, can be seen in Figure 7.16.

Firstly, we observe many areas with high correlation(yellow areas). In all three
images we can observe the Eddie path to the left in the images. We can see

that the edges of the Eddie path sticks out with high correlation. Since we use
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a sliding window of size gxg pixels, we take some of the neighbourhood into
account when calculating the correlation, and not only checking pixel against
pixel. The correlation images from sub area B can be seen in Figure 7.25. From
these images we can clearly see that the combination of ocean color parameters
have high correlation. We can clearly see the whale shaped pattern, and that

the edges sticks out with high correlation.

All in all, we can see a clear trend in the correlation images. (c), TSM and
CDOM, have most areas with high correlation. But, (a), CHL and TSM, and (c),
CHL and CDOM, also have many areas with high correlation.

7.1.1  Summary Case 1

All of the statistical analysis approaches gives the same trend; there are defi-
nitely a relationship between ocean color parameters. This can be found from
all methods. From the image subtraction method we found no big changes
between any of the combinations of parameters. In the two regression methods
we found slightly better nonlinear relationship between the combinations of
parameters, using SVM regression models. In the correlation method we can
clearly see the relationship between the parameters in the neighbourhood of
each pixel, meaning that there definitely are relationships between the ocean

color parameters.
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7.2 Case2

In this case, I have investigated, with the four different statistical analysis
approaches described in Chapter 6, the relationship between the ocean color
parameters in data set one and SST in data set two. The parameter images
from data set one can be seen in Figure 7.4 and 7.7, and the parameter image
for data set two can be seen in Figure 7.5 and 7.8.

Method I: Image Subtraction Figure 7.18 for sub area A and Figure 7.19
for sub area B, shows the results of the image subtraction method for different

combinations of ocean color parameters and SST.

|TSM - SST|
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|CDOM - SST|

(c) CDOM-SST

Figure 7.18: Result images from the image subtraction method, sub area A.
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Figure 7.19: Result images from the image subtraction method, sub area B.

From the resulting image subtraction images, from sub area A, in Figure 7.19
we can clearly see the same pattern and the Eddie feature as in the parameter
images in 7.4 and 7.5. From Figure 7.19 we can observe that the changes
between SST and an ocean color parameter are more significant that the
changes between ocean color parameters. We can see that CHL and SST in
(a) have greater changes between them, than TSM and SST in (b) and CDOM
and SST in (c). The relationship between CDOM and SST in (c) is the best
relationship with SST and another of the ocean color parameters.

From the introductory chapter and Chapter 2, we have that colder water often is
more nutrition rich, and thus leads to a higher biological productivity, meaning
higher concentrations of chlorophyll. This can be the reason for the high
changes in (a) between CHL and SST in the top left area. Low values of SST
and high values of CHL, will give high changes in the image subtraction image,
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since it measures the change between normalized pixels. From (c) in Figure
7.19, we can see that between CDOM and SST, there are not that many changes.
Meaning that the relationship between SST and CDOM is the best relationship

including SST and an ocean color parameter.

Method II: Linear Regression Figure 7.20 for sub area A and Figure 7.21
for sub area B, shows the resulting difference images between predicted and
actual data, between different combinations of ocean color parameters and
SST.
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Figure 7.20: Difference images between predicted and actual data, for the linear
regression method, sub area A. (a) shows the difference image between
the predicted SST data based on CHL data, and actual SST data. (b)
shows the difference image between the predicted SST data based on
TSM data, and the actual SST data. (c) shows the difference image
between the predicted SST data based on CDOM data, and the actual
SST data. (d) shows the difference image between the predicted CHL
data based on SST data, and the actual CHL data. (e) shows the difference
image between the predicted TSM data based on SST data, and the actual
TSM data. (f) shows the difference image between the predicted CDOM
data based on SST data, and the actual CDOM data.
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Figure 7.21: Difference images between predicted and actual data, for the linear re-
gression method, sub area B. (a) shows the difference image between
the predicted SST data based on CHL data, and the actual SST data.
(b) shows the difference image between the predicted SST data based
on TSM data, and the actual SST data. (c) shows the difference image
between the predicted SST data based on CDOM data, and the actual SST
data. (d) shows the difference image between the predicted CHL data
based on SST data, and the actual CHL data. (e) shows the difference
image between the predicted TSM data based on SST data, and the actual
TSM data. (f) shows the difference image between the predicted CDOM
data based on SST data, and the actual CDOM data.
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Table 7.5 shows the goodness of fit table for the linear regression method
between SST and ocean color parameters in sub area A. While Table 7.5 shows
the goodness of fit table for the linear regression method between SST and

ocean color parameters in sub area B.

Figure | Bias R? NRMSE
a 3.9358€e-05 | 0.0404 | 0.1437
b 4.1456€e-05 | 0.0151 | 0.1440

2.6775e-05 | 0.0212 | 0.1434
1.5298e-04 | 0.0286 | 0.0586

2.9118e-04 | 0.0210 | 0.0979

- D A 0

1.8267e-04 | 0.0247 | 0.0893

Table 7.5: Goodness of fit table for the linear regression models for the combinations
of SST and ocean color parameters, sub area A.

Figure | Bias R? NRMSE
a 3.0403€-04 | 0.2540 | 0.1124
b 5.3084€-05 | 0.5255 | 0.0897
C 2.9478€e-05 | 0.5596 | 0.0864
d 3.8095e-04 | 0.2580 | 0.0594
e 4.6722e-05 | 0.5317 | 0.0351
f 6.2553€-05 | 0.5629 | 0.0147

Table 7.6: Goodness of fit table for the linear regression models for the combinations
of SST and ocean color parameters, sub area B.

In Figure 7.20 and 7.21 we can see the difference images between predicted and
actual data, for the linear regression method for area A and B, respectively. At
first sight, from Figure 7.20 we can see that (a), (b) and (c) looks very similar.
First of all, we can see the same patterns as in the SST image in Figure 7.5.
We can also see some of the Eddie path, discussed earlier. In the dark blue
areas the linear model is good. These dark areas are the same in these three
images. In (d), (e) and (f) we can see that the actual data are further from
the predicted data. These areas can be seen especially in the Eddie path area

and down in the right corner of the images. For the combination of SST and
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ocean color parameters, Table 7.5 gives very low values of R? and relatively
high values of NRMSE. This means that linear regression models between SST

and ocean color parameters in sub area A are bad.

In Figure 7.21 we can see some of the trends as in Figure 7.20, by looking at
the images. The three first images gives okay relationships. Looking at the last
three difference images, (d), (e) and (f) for both sub area A and B, we can see
the difference images from the predicted of CHL, TSM and CDOM respectively,
based on SST-values. For sub are A, these models gives not that good values in
the goodness of fit table in Table 7.1, but for sub area B, these models gives bad
and okay models. Sub area A gives clearly worse R?s compared to sub area
B.

Overall, a linear regression model between SST and ocean color parameter
does not provide a sufficient models. Meaning that the relation between SST
and ocean color parameters are not sufficient, at least not for sub area A.
The relationships between SST and ocean color parameters in sub area B are
slightly better, but not good. CDOM is the ocean color parameter that have the
best relation with SST, and predicting CHL based on SST, does not give a good

liner model.

Method Ill: SVM regression Figure 7.22 for study area A and Figure 7.23
for study area B, shows the resulting difference images between predicted and
actual data, between different combinations of ocean color parameters and
SST.
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Figure 7.22: Difference images between predicted and actual data, for the SVM re-
gression method, sub area A. (a) shows the difference image between the
predicted SST data based on CHL data, and actual SST data. (b) shows
the difference image between the predicted SST data based on TSM
data, and the actual SST data. (c) shows the difference image between
the predicted SST data based on CDOM data, and the actual SST data.
(d) shows the difference image between the predicted CHL data based
on SST data, and the actual CHL data. (e) shows the difference image
between the predicted TSM data based on SST data, and the actual TSM
data. (f) shows the difference image between the predicted CDOM data
based on SST data, and the actual CDOM data.
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Figure 7.23: Difference images between predicted and actual data, for the SVM re-
gression method, sub area B. (a) shows the difference image between
the predicted SST data based on CHL data, and the actual SST data.
(b) shows the difference image between the predicted SST data based
on TSM data, and the actual SST data. (c) shows the difference image
between the predicted SST data based on CDOM data, and the actual
SST data. (d) shows the difference image between the predicted CHL
data based on SST data, and the actual CHL data. (e) shows the differ-
ence image between the predicted TSM data based on SST data, and the
actual TSM data. (f) shows the difference image between the predicted
CDOM data based on SST data, and the actual CDOM data.



7.2 / CASE 2 115

Table 7.7 shows the goodness of fit table for the SVM regression method
between SST and ocean color parameters in sub area A. While Table 7.8 shows
the goodness of fit table for the SVM regression method between SST and

ocean color parameters in sub area B.

Figure | Bias R? NRMSE
a 0.0011 0.1234 | 0.1456
b 8.0006€e-04 | 0.0390 | 0.1443
C 3.2203e-04 | 0.0276 | 0.1436
d 0.0020 0.0465 | 0.0582
e 0.0031 0.0382 | 0.0996
f 0.0024 0.0362 | 0.0908

Table 7.7: Goodness of fit table for the SVM regression models for the combinations
of SST and ocean color parameters, sub area A.

Figure | Bias R? NRMSE
a 0.0012 0.2673 | 0.1114

b 0.0011 0.5275 | 0.0895
(¢ 8.8049e-04 | 0.5701 | 0.0853
d 0.0048 0.2863 | 0.0582
e 2.6184e-04 | 0.5648 | 0.0338
f 0.0011 0.5835 | 0.0144

Table 7.8: Goodness of fit table for the SVM regression models for the combinations

of SST and ocean color parameters, sub area B.

In Figure 7.22 and 7.23, we can see the resulting difference images for the SVM
regression method from sub area A and B, respectively. At first sight, they look
quite like the difference images from the liner regression method in Figure
7.20 and 7.21. If we compare the goodness of fit tables for both linear and
SVM regression in sub area A for the combination of SST and ocean color
parameters, in Table 7.5 and 7.7, we can see that the SVM regression model has
slightly better goodness of fit compared to the linear regression models for the
same combinations. We can also observe that for sub area A, R? are quite bad,

meaning that SVM models are better than linear models, but still not good for
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combinations of SST and ocean color parameters in sub area A. For sub area B,
on the other hand, we can see that SVM regression models are slightly better
than for linear regression models. Meaning that there exist an okay nonlinear

relationship between SST and ocean color parameters in sub area B.

Method IV: Correlation Figure 7.24 for sub area A and Figure ?? for sub
area B, shows the results of the correlation between different combinations of
ocean color parameters and SST.
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Figure 7.24: Result images from the correlation method, sub area A. (a) shows the
correlation between CHL and SST. (b) shows the correlation between
TSM and SST. (c) shows the correlation between CDOM and SST.
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Figure 7.25: Result images from the correlation method, sub area B. (a) shows the
correlation between CHL and SST. (b) shows the correlation between
TSM and SST. (c) shows the correlation between CDOM and SST.

In Figure 7.24 and 7.24 we can see the resulting correlation images from the
correlation method, in sub area A and B. From both of these images we can
see the edges of our whale shaped feature with negative correlation. In these
images we can also see some areas with high concentrations, but not nearly as
much as in the correlation images between ocean color parameters in Figure
7.16 and 7.25. In these images, the high correlation areas lays more in lines
in the images. Meaning that in these lines, SST and ocean color parameters
correlate well. There are not high correlation between SST and ocean color

parameters, except a few areas.
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7.2.1  Summary Case 2

Most of the statistical analysis methods gives the same trends, there are not very
strong relations between SST and ocean color parameters for these images on
these dates. Sub area B provides a better relationship between SST and ocean
color parameters, compared to sub area A. Anyway, all methods give trends,
and these trends show a slight sufficient relation between SST ans ocean color

parameters, but not as strong as ocean color parameters alone.
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7.3 Case3

In this case, I have investigated the correlation between CHL from data set
one and the SAR products from data set three. The CHL images from data set
one can be seen in Figure 7.4 and 7.7, and the parameter images from data set
three can be seen in Figure 7.6 and 7.9.

The correlation between CHL and SAR products can be seen in Figure 7.26 for
sub area A and Figure 7.27
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Figure 7.26: Result images from the correlation between CHL and SAR products, sub
area A
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Figure 7.27: Result images from the correlation between CHL and SAR products, sub
area B

The results of the correlation between CHL and the SAR products can be seen
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in Figure 7.26 and 7.27 for sub area A and B respectively. If we look at the
result from the correlation from sub area A first, we can observe hints of the
Eddie pattern, from the parameter images in Figure 7.4. We can also in (a), the
correlation between CHL and Intensity image, see a very negative correlation
in the edges of the Eddie path, and a stronger correlation where the Eddie
path goes over in the "Eddie circle". We can also observe that most of the
areas in (a) and (b) have a correlation between -0.2 and 0.2, meaning a low
positive and a low negative correlation. It also looks like there are more areas
with high correlation when we compare CHL and the intensity image, and not
CHL and geophysical Doppler image. As mentioned before, intensity image are
influenced by small scale waves and currents. So, maybe the patterns are more

controlled by wind and waves, than the velocity of the surface.



7.4 | CASE 4 121
7.4 Case 4

In this case, I have investigated the correlation between SST from data set two
and the SAR products from data set three. The SST images from data set two
can be seen in Figure 7.5 and 7.8, and the parameter images from data set

three can be seen in Figure 7.6 and 7.9.

The correlation between SST and SAR products can be seen in Figure 7.28 for
sub area A and Figure 7.29

Correlation Plot Between SST and Geophysical Doppler
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Figure 7.28: Result images from the correlation between SST and SAR products, sub
area A
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Figure 7.29: Result images from the correlation between SST and SAR products, sub
area B

The results of the correlation between SST and the SAR products can be seen
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in Figure 7.28 and 7.29 for sub area A and B respectively. These images looks
quite different compared to the correlation images of CHL and SAR products in
Figure 7.26 and 7.27. In these images, Figure 7.28 and 7.29, we can see higher
variations between high positive and high negative correlation. If we look at
image (a) in both figures, between SST and intensity image, we can see many
areas with high correlation, and several areas with a negative correlation. If we
look at sub area A first, in Figure 7.28, n the left side, a bit below the middle,
we can see a yellow strip in the intensity image. This area corresponds to the
Eddie path and the light blue area in the same region in the SST image in
Figure 7.5. The correlation image between SST and the geophysical Doppler
image looks more chaotic. If you know where to look, you can think that it is
possible to see some of the Eddie path in the geophysical Doppler, but it does
not stick out at all. It is also possible to see a hint of that blue and red line that
looks like a "hook" to the right of the centre in the SST image in Figure 7.5.

Besides this, it looks very chaotic.

In Figure 7.29, we can see the correlation between SST and SAR products in
sub area B. We can see hints of the whale pattern in the parameter images in
Figure 7.7. The edge of the whale sticks out, some areas as positive correlation
and some areas as negative correlation. Most of the areas in these three images
have a correlation between -0.2 and 0.2, meaning low positive and low negative
correlation. SST and the intensity image in (a) have more areas with high
correlation, compared to (b). (b) looks more chaotic, but if you look closely
where the top of the whale shape is in the parameter images, you can see hints
of the top of the whale in all of the chaos, but only if you know where and what

to look for. Besides that, you can not really say more.

7-4.1 Summary Case 3 and Case 4

In Case 3 we are investigating if we can see any correlation between the ocean
color parameter CHL and the SAR products intensity image and geophysical
Doppler image. The results from Figure 7.26 and 7.27 does not tell us that the
relationship between the ocean color parameter CHL and SAR products are
very good. We can observe some areas that correlates well both positive and

negative, but most of the resulting images have a slightly positive or slightly
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negative correlation, meaning that the images does not really correlate that

much.

In Case 4 we are investigating if we can see any correlation between the SST
and the SAR products intensity image and geophysical Doppler image. The
results from Figure 7.28 and 7.29 does not tell us that the relationship between
SST and SAR products are very good, but definitely better than for CHL and
SAR products. We can observe many more areas with high positive and high

negative correlation.

In both Case 3 and Case 4, we can observe that CHL and SST correlates better
with the intensity images than the geophysical Doppler images. This can maybe
indicate that the factors that have the biggest impact on intensity images,
also have the biggest impact on CHL and SST images. Another interesting
phenomenon that can bee seen in Figure 7.26, 7.27, 7.28 and 7.29, are that
the patterns we have discussed through all of the results, can be seen here
as well. But, you must know where to look and what to look for. Discussed
in Chapter 3, intensity images for SAR satellites will be modified by wind
stress and variations in ocean currents. Another ting mentioned in chapter 3,
geophysical Doppler images are a measure of the velocity in the line of sight
direction. This product can tell us about the velocity of the surface, and give
an idea of the motion. Given this theory, one would think that the correlation
between CHL, SST and the SAR products would be better than the results from
Case 3 and Case 4.

There can be several possible sources of error for these results. First of all, there
is a time difference between the different products. Ocean color data are taken
before noon, and the SST data are taken a bit more than nine hours after. The
SAR products are taken early morning or around dinner time in between four
to five. The patterns can change between these times, and this can therefore

have an effect on the results.

Another possible source of error, might be the different resolution on the images.
I have chosen to interpolate the images to fit the ocean color parameters with
the nearest neighbour method. Another method could have worked better, but

it is hard to say. Instead of resampling the images to fit the ocean color data, it
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could have been done the other way around. Such that the images would be
on a 3.3-3.9km scale as the geophysical Doppler data. It is hard to say if this
could affect the result, but it would have been interesting to check the other
way around. The reason for the bad resolution in the intensity image and the
geophysical Doppler image, is due to the deriving of the geophysical Doppler
product.

A third possible source of error is that optical satellites sense in the top few
meters of the ocean, while SAR satellites only sense the ocean surface. If the
patterns we can see in the optical data are below the surface, we might not
actually see them in the SAR images. From the result images for Case 3 and
Case 4, one would think that some of the patterns we have seen in sub area B,
is actually under water since it dos not come forward in the resulting images.

But, it could also be the other errors causing these results.

It is also worth mentioning that this project has focused on using the free
and open Sentinel data, found in the period between May and July 2018 for
the study area. These results are of the data available from Sentinel-1 and
Sentinel-3 between May and July 2018. The methods used in this thesis are
also very manual, where interesting sub areas are found and investigated. A
bigger project could have made a more semi-manual method and tested not
only interesting areas, but all areas. In addition, testing more data will always
make results better. But, at last, this thesis has focused on Sentinel images
from May to July 2018, and the results will only be associated with these

images.

7.4.2 Coastal waters

As we can see from satellite images of the study area, we observe high concen-
trations of chlorophyll, total suspended matter and colored dissolved organic
material. These parameters can tell us about the biological productivity in the
water or the water quality. These values are of interest for different purposes
in the study area. SAR data from the study area can tell us about winds,
waves and currents in the study area. Combining all of these data, can give

a well overview of the coastal waters in the study area. As mentioned in the
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introduction part, the period from May to July is known for having a strong
upwelling along the coast of northern Norway. Offshelf transport of surface
water, with compensating upwelling of nutrient rich water occurs this time
period almost every year, and therefore it is interesting to look for any relation

between combinations of parameters in this time period.

Unfortunately, it does not seem that we can find a well correlation between
combinations of ocean color parameters, sea surface temperatures and SAR
products in this study. The patterns that can be seen in the parameter images
in Figure 7.4, 7.5, 7.7 and 7.8, may not be controlled only by ocean dynamics.
Or they are, but this study are not able to prove it. However, it would have
been interesting to make some changes to this study to see if the results get
any better. For example changing the data with interpolation to fit the SAR
products for example. It is not for sure that this will change the results, but
it would have been interesting to investigate. Using other images from other
satellites with less time difference could also have been very interesting to

investigate.






Conclusion and Future
Work

This thesis has examined four different test cases, to investigate the relation-
ship and correlation between different combinations of parameters. Case 1
investigated the relationship between ocean color parameters(CHL, TSM and
CDOM), and Case 2 investigated the relationship between SST and ocean color
parameters, both cases using four different statistical analysis methods. Case
3 investigated the correlation between the ocean color parameter CHL and
SAR products, while Case 4 investigated the correlation between SST and SAR

products.

Based on the results presented in the previous chapter, the following findings

and observations were made:

 Case 1: the four statistical analysis approaches all found a good relation

between ocean color parameters.

* Case 2: the four statistical analysis approaches did not find a good rela-
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tionship between SST and ocean color parameters, but there are some
sufficient relations. CDOM seems to be the ocean color parameter that
has the best relationship with SST.

* Case 3: the correlation method did not find a strong correlation between

CHL and SAR products(intensity image and geophysical Doppler image).

* Case 4: the correlation method did not find a strong correlation between
CHL and SAR products(intensity image and geophysical Doppler image),
but definitely more correlation between SST and SAR compared to CHL
and SAR.

8.1 Conclusion

The aim of this thesis was to investigate the combinations of remote sensing
imaging sensors for mapping and monitoring of coastal waters, using ocean
color and sea surface temperature data from the OLCI and SLSTR sensors on
the optical satellite Sentinel-3, and intensity image and geophysical Doppler
images from the C-SAR sensor on the SAR satellite Sentinel-1. From these
different sensors, we get various products that can be used to investigate
coastal waters. The main objective was to investigate the patterns in the ocean
that can be seen in the ocean color images, and to check if these patterns could

be seen in SAR products.
The two main research questions presented in the introduction were:

1. Is it possible to find a relationship between ocean color parameters and sea

surface temperature images?

2. Are there any correlations between the patterns we can observe from ocean
color parameters and sea surface temperature from an optical satellite,
and intensity images or geophysical Doppler product images from a SAR

satellite?

To answer the first research question, I would have to say that Case 1 showed
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a good relationship between combinations of ocean color parameters. Case
2, on the other hand, showed not a very good relationship between SST and
ocean color parameters, but an okay relationship. CDOM is the ocean color

parameter that has the best relationship with SST.

To answer the second research question, I would have to say that the correlation
method that was applied on different combinations on CHL or SST parameters
and SAR products, did not give that good results as I would have thought. From
the results in Case 3 and Case 4, we could still see hints of the patterns from
the ocean color and SST parameters in the parameter images, but they did not
exactly stick out that much. You would have to know where and what to look
for to see some of the features. We could also see that the correlation with
CHL or SST and the intensity image, gave most areas with stronger positive
and negative correlation, compared to the correlation with CHL or SST and

the geophysical Doppler images.

This study could not find a direct correlation between ocean color and sea
surface temperature images from Sentinel-3, against SAR products such as
intensity images and geophysical Doppler images from the satellites Sentinel-1.
The patterns that can be seen in the ocean color and sea surface temperature
images, may not only be controlled by ocean dynamics. Or they are, it is just
that this study could not prove it. It is difficult to know for sure, but some

limitations could affect this result.

8.1.1 Limitations

Several limitations to this study need to be acknowledged. Three possible

sources of error are:

* The time difference between the data from different sensors. The ocean
is a complex system in motion, thus the parameters in the ocean can
move in between the sensing from the sensors on the satellites. Using
satellite images from satellites with less or no time difference would

probably give a more correct result.
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* The resolution differences between data from different sensors. In this
study, the satellite data was interpolated to fit the ocean color data,
meaning an upsampling of the other products. If the images had been
interpolated to fit the intensity image and the geophysical Doppler image
with the lowest resolution, this could have had a positive effect on the

results.

* Optical satellites sense a few meters below the surface, while the SAR
satellites only sense the top of the surface. Meaning, that if the patterns
in the ocean are below the surface, the SAR satellite would not be able

to sense it.

8.2 Future Work

There are several possible improvements that might give better results or
show relationships between different combinations of products better. Firstly,
it would be interesting to test this study on images much closer in time. This
can be very hard in the "World of Remote Sensing" that we live in, given that
not many satellites, if there are any at all, sense the same area almost at the
same time. In this thesis, the free and open Copernicus satellites Sentinel-1 and
Sentinel-3 have been used, but maybe a couple of other satellites or airborne

sensors can provide satellite data closer in time.

Another thing that would be interesting to check, are the results if the inter-
polation had been the opposite way, where the interpolation resampling had
been done to fit the SAR products for example. This project has only tested
some data. With more data, let us say 1000 dates, the results will be stronger.
This thesis have also been done with a very manual method, so making a more

semi-manual method would make this study more efficient.

Last, there are very little information out there about coastal dynamics in
northern Norway. This is something that will be needed in regards to how
we in the future can understand the success of the management of marine

resources.
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Both the fish and this billion industry of Norway deserves better analysis of the
livelihood and the sustainability of these unique areas. More information and
a better understanding of these coastal areas will help us, such that we in the
future can understand the success of the management of marine resources in

a sustainable manner.
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