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Abstract 
Formation of tertiary lymphoid structures (TLS) occurs in tissues targeted by chronic 

inflammatory processes, such as infection and autoimmunity. In systemic lupus 

erythematosus (SLE), TLS have been observed in the kidneys of lupus-prone mice and in 

kidney biopsies of SLE patients with Lupus Nephritis (LN). Here the role of tissue-specific 

mesenchymal stem cells (MSCs) as lymphoid tissue organizer cells on the activation of CD4+ 

T cells from three groups of donors; Healthy, SLE patients and LN patients were investigated.  

Human MSCs were stimulated with the pro-inflammatory cytokines TNF-α and IL-1β 

to resemble an inflammatory condition. CD4+ T cells isolated from PBMC were co-cultured 

with stimulated and non-stimulated MSCs at 1:1 and 1:100 ratios (MSCs:CD4+ T cells) or 

seeded alone as a control. The AlamarBlue® proliferation assay was performed on CD4+ T 

cells at day zero and at day 5, 7 and 10 after co-culture. Flow cytometric analyses were 

conducted on CD4+ T cells at day zero and day 10 to analyse the Th1, Th2, Th9, Th17, Th22, 

and Th1/17 subsets before and after co-culturing with MSCs. To detect MSCs within TLS in 

kidneys of lupus-prone (NZBxNZW) F1 mice confocal imaging was used. 

After stimulation a significant increase in the expression of CCL19, VCAM1, ICAM1, 

TNF-α, and IL-1β were observed in MSCs. For all groups CD4+ T cells co-cultured with 

stimulated MSCs and non-stimulated MSCs at 1:100 ratio proliferated significantly more at 

day 10 compared to day zero and CD4+ T cells cultured. CD4+ T cells co-cultured with 

stimulated MSCs at 1:100 ratio proliferated significantly more than co-cultured with non-

stimulated MSCs at day 10 in healthy and SLE groups, but not in the LN group. No difference 

in cell proliferation at 1:1 ratio was detected. An increase in Th2 and Th17 subsets were 

observed in the healthy group at day 10 when co-cultured with stimulated MSCs at 1:100 

ratio compared to day zero and CD4+ T cells alone at day 10. MSC-like cells were detected 

within the pelvic wall of the kidneys and within the developed TLS.  

Our data suggest that tissue-specific MSCs could have pivotal roles in accelerating 

early inflammatory processes and initiating the formation of TLS in chronic inflammatory 

condition. 

  



 6 

 

  



 7 

Abbreviations  

ACR American College of the 
rheumatology 

 ICAM-1 Intercellular Adhesion 
Molecule 1 

AIR Annual incidence rate  IFN Interferon  

ANAs Antinuclear antibodies  Ig Immunoglobulin  

BCR B cell receptor  
IL 
 Interleukin 

CCR C-C chemokine receptor  LN Lupus nephritis  

CD Cluster of differentiation  LT Lymphotoxin  

CTL Cytotoxic CD8+ T cells  MALTs Mucosal associated 
lymphoid tissues 

CXCR C-X-C motif chemokine 
receptors 

 MHC Major histocompability 
complex 

DCs Dendritic cells  MSCs Mesenchymal stem cells  

dsDNA Double stranded 
deoxyribonucleic acid 

 SCA-1 Stem cell antigen-1 

ECM Extra cellular matrix  SLE Systemic lupus 
erythematous  

FcR Fragment-crystallize 
receptor 

 SLEDAI SLE disease activity index 

FDCs Follicular dendritic cells  SLOs 
Secondary lymphoid 
organs 

FoxP3 Forkhead box P3  
TCR 
 T cell receptor 

FRCs Fibroblastic reticular cells  TGF Transforming growth factor 

GC Germinal centre  Th cells CD4+ T helper cells 

HEV s High endothelial venules  TLR Toll like receptor 

HMLE Human mammary 
epithelial cells 

 TLSs Tertiary lymphoid 
structures 

HSCs Hematopoietic Stem cells  TNF Tumour necrosis factor 

HUV-EC-C Human Umbilical Vein 
Endothelial Cells 

 VCAM-1 Vascular cell adhesion 
protein 1 

ICs Immune complexes  
PBMC 
 

Peripheral blood 
mononuclear cells 

 



 8 

  



 9 

1 Introduction 

1.1 Immune system, tolerance and autoimmunity  
The immune system is a creation of the evolution as a defence against the potential 

danger pathogenic infections generate. The immune system can roughly be divided into two 

main compartments the innate and the adaptive immune system, where the “communication” 

between these parts plays an important role in the development and control of the disease 

progression. The innate immune system involves most cell types in the body and mediates a 

general protection against infection, and can for example mediate an activation of the adaptive 

immune system through antigen presenting cells such as dendritic cells (DCs) and 

macrophages.  

The specificity of the immune system, the power of which a single pathogen are 

recognized and eliminated, lies within the adaptive immune system. The effector cells of the 

adaptive immune system are the B and T cells with their respectively B cell receptor (BCR) 

and T cell receptor (TCR) [1]. With the two processes of selective somatic genome 

modification; V(D)J recombination of both TCR and BCR in primary lymphoid tissues and 

somatic hypermutation of the BCR in peripheral lymphoid tissue, receptors with a enormous 

diversity can be produced [1].  Interesting 20-50% of the V(D)J recombined BCR and TCR 

can in the theory bind with high affinity and react to a self-antigen, but only 3-8% of the 

world population is affected by autoimmune diseases [1].  

One of the reasons why the percentages of the developing autoimmune diseases in the 

world population are so low compared to the percentages of autoreactive BCR and TCR, is 

the tolerance mechanisms involved in the developing lymphocytes and controlling of 

lymphocytes [1]. There are two main types of tolerance mechanisms acting on the developing 

lymphocyte: central and peripheral tolerance [2], illustrated in Figure 1.1 and further 

explained in section 1.4 Lymphoid organs.  
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Figure 1.1: Tolerance mechanisms for controlling and removing of autoreactive lymphocytes.  
In central tolerance an autoreactive lymphocyte can be removed during their development in either the thymus or in the bone 
marrow. There are three main mechanisms for central tolerance; BCR change in autoreactive B cells, development of Treg 
cells or that the autoreactive lymphocyte dies via apoptosis. In peripheral tolerance the autoreactive T or B cell can either be 
functional inactive in a process known as anergy, die via apoptosis or of autoreactive T cells be controlled by Treg cells. 
Modified from ref [2] 

Autoimmunity arise when an organisms immune system start to produce an immune 

reaction against its own cells, tissues and/or organs [3]. The knowledge about the existence of 

autoimmune diseases has been known for over 100 years with more than 80 human diseases 

being investigated, but the underlying initiation mechanisms for why autoimmunity exists are 

still a mystery among scientists [3]. It is clear that there are three main phases of an 

autoimmune disease; initiation, propagation and resolution (Figure 1.2), which all can be 

linked to a deficiency in the immune regulatory mechanisms [4]. 
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Figure 1.2: Common disease progression in autoimmune diseases. Normally when the patients are in the resolution phase, 
a relapse occurs and acute inflammation with tissue damage are observed [4]. 

 

1.2 Systemic Lupus Erythematous  
Systemic Lupus Erythematous (SLE) is an autoimmune rheumatic disorder that can 

affect multiple organs systems, which is a result after a loss of immunological tolerance and 

immune response against self-antigens [5, 6]. The diagnosis of SLE follows the 1997 updated 

version of the 1982 revised criteria by the American College of the rheumatology (ACR) [7, 

8] where it is required that the patient have the presence of four out of eleven criteria before 

the diagnosis SLE is set [6, 7]. In addition to the ACR classifications the severity of SLE is 

assessed by the SLE disease activity index (SLEDAI), which is a scoring system that includes 

24 clinical and laboratory variables that are weighted differently according to how life 

threatening the manifestation is [9, 10]. From these criteria it is obvious that this disease may 

affect some if not most of the vital organs and tissues of the body, implying it is crucial that 

the diagnostic tools and therapeutic agents are further developed to improve the life and 

health quality of the patient. 

It is common knowledge that one of the major risk factor for SLE is gender, observed 

by that at least 9 out of 10 patients are women [6, 11, 12].  The incidence of SLE is varying 

worldwide depending on the geographic and ethnicity. Studies from United Kingdom (UK) 

and North America observed that Afro-Americans and Asians had a higher risk to develop 

SLE than other ethnical groups [13]. In Scandinavia the total annual incidence rate (AIR) is 

lower, between 2.35-3.5/100 000 [5, 10, 13, 14], compared to countries with a much wider 

ethnicity spectrum such at United Kingdom (total ACI; 4.7-4.9/100 000)[15, 16] and USA 

(Total ACI; 5.5-7.22/100 000) [17, 18]. In the study by Lerang and colleagues from 2012 the 
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prevalence of SLE in Norway were calculated to be in total 51.8/100 000, where the 

prevalence for women were 91.0 and for men 10.7 [13].  At approximately the same time 

Lerang published her data, Hermansen and colleagues calculated the prevalence of SLE in 

Denmark. Interesting the prevalence from Denmark were lower than the prevalence in 

Norway with a total prevalence of 45.2/100 000, 79.6/100 000 for women and 10.1/100 000 

for men [5]. 

 

1.2.1 Pathology SLE 

The one and exact factor for the disease development in SLE is sadly still unknown, 

making it difficult to predict, diagnose and treat. In Figure 1.3 some of the more common 

factors that might stimulate disease development are illustrated, but it is wise to be aware that 

development of the disease often are caused by a mix of several factors [19, 20].  Figure 1.3 

also illustrates some of the most common immunological effects and which organ that are 

associated with SLE. One of the most central immunological disturbance in SLE is the 

production of autoantibodies, which is an important contributor in the pathogenicity and 

diagnostic of the disease. Antinuclear antibodies (ANAs), which are found in 90 to 95% of 

SLE patients [21], are antibodies that can recognize and bind to components in the cell 

nucleus, such as DNA, RNA, nuclear protein, and the protein-nucleic acid complexes 

nucleosome and spliceosome [21, 22]. In SLE there are several factors that could contribute to 

the development of autoantibodies, but the deficiency of removal of apoptotic cell debris 

might be one of the leading mechanisms [23]. 

 
Figure 1.3: Overview of some of the pathogenically hallmarks of SLE.  This illustration was inspired by “Figure 1” in the 
review article “Mechanisms of disease - Systemic Lupus Erythematous” published in 2011 by G.C Tsokos.  
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1.2.2 Lupus nephritis 

Lupus nephritis (LN) is the kidney manifestation of the SLE autoimmune disease and is 

one of the more severe manifestations of SLE [21]. 25% to 60% of the patients with SLE are 

affected by this renal manifestation and this occurs often during the first year of disease 

course [10]. Classification of LN follows the classification system provided by the 

International Society of Nephrology and the Renal Pathology Society from 2003 (ISN/RPS 

2003) [24]. This criteria system is based on the glomerular changes in LN patients, from when 

immune complexes deposits (ICs) in the glomerular to when sever scaring occurs and the 

function of the glomeruli are lost and proteinuria is observed.  

The pathology of LN (Figure 1.4) is characterized by deposition of immune 

complexes (IC) in the glomeruli, which will lead to an inflammatory cascade with activation 

of Fc receptors (FcR) and Toll-like receptors (TLRs) on the cells in the glomeruli and the 

tubulointerstitium [20, 21, 25-27]. Activation of these receptors will stimulate the production 

of proinflammatory cytokines such as IL-1, IL6, TNFα and monocyte chemoattractant protein 

1 (MCP-1), which again will contribute to the recruitment of immune cells [26, 28]. In 

addition to the production of proinflammatory cytokines, the cells in the kidney will also start 

the production of extracellular matrix (ECM) compounds [29]. These ECM compounds 

promote the scaring formation in for example the glomeruli and causes glomerulosclerosis, 

leading to organ failure and proteinuria [29].  

Deposition of ICs in the glomeruli might also stimulate mesangial cells to proliferate 

and expand the mesangial matrix, leading to a reduced flow of filtrating in the glomerular 

capillaries and thereby eventually seal the capillary lumen [30]. The fenestrated endothelial 

cells in the glomeruli will also be activated and start to express adhesion molecules such as 

VCAM-1, ICAM-1 and E-selectin, when the ICs are deposited in the glomeruli [25, 31, 32]. 

These adhesions molecules are important for the recruitment and infiltration of immune cells 

to the subendothelium and mesangium [25, 32]. The deposition of ICs in glomeruli and with 

the infiltration of immune cells and expanding mesangium, add a huge stress on the 

specialized glomerular epithelial cells; the podocytes. One of their main responses is the loss 

of their characteristic pattern of foot processes in a process called effacement in podocyte foot 

processes [33]. In a study by Wang et al. from 2014, a positive correlation between the widths 

of the foot processes and the level of proteinuria was observed [34]. These findings might be 

explained with that the foot processes are important for the filtration processes in the 

glomeruli, and when they are damaged the filtration will be affected and interrupted in a way 

leading to proteinuria [33].  
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Infiltrating leukocytes are also associated with formation of tertiary lymphoid 

structures (TLS) with active germinal centres (GCs), which will promote B cell differentiation 

into antibody secreting plasma cells and stimulate a local production of autoantibodies [26]. 

Chang and colleagues published in 2011 the first article where they describe how infiltrating 

immune cells are capable organize into B-T cell aggregates and GCs in lupus patients with 

nephritis [35]. From this study, they found that there was a correlation between the B-T cell 

aggregate and GCs formation and the IC deposition in the tubular basement membrane [35].  

 

 
Figure 1.4: Some of the possible outcome when circulating immune complexes and ANAs are deposited in the kidney. 
When ICs are deposited in the glomeruli or in the tubulointerstitium they will activate the cells in the tissue to produce 
proinflammatory cytokines and chemokines, which will recruit immune cells to the site of inflammation. The kidney cells 
will also have an increased production of ECM components leading to fibrosis. TLSs have been observed in kidneys of LN 
patients and in murine models of LN. The end outcome of the damaged kidney is eventually kidney failure with proteinuria. 
Based on ref [20, 26, 29, 34, 35] 
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1.3 Immune cells 
The soldiers of the immune system are the immune cells, which are composing both the 

innate and adaptive immune system (Figure 1.5). The innate immune system could be viewed 

as the first line defence and the cells in this part of the immune system are the first one to 

react to a pathogen exposure [36]. The phagocytic cells, such as neutrophils and 

macrophages; cytotoxic natural killer cells and granulocytes will carry out the effector 

functions of the innate immune responses [36, 37]. The adaptive immune responses will 

immediate an antigen-specific defence with the development of the (long lived) antigen-

specific lymphocytes; B and T cells [36, 37]. Antigen-presenting cells, which include cells 

from the innate immune system such as macrophages and DCs, are important in the activation 

and priming of the antigen-specificity of the adaptive immune system. In this study the T cells 

from the adaptive immune system are in focus and will therefore be discussed further.  

 

 
Figure 1.5: Immune cells of the innate and adaptive immune system. The innate immune system consist of the dendritic 
cells, the granulocytes (basophils, eosinophils, neutrophils), macrophages, NK cells and mast cells, while the adaptive 
immune system consists of the antibody producing B cell, the CD4+ and CD8+ T eclls. γδ T cells and NK-T cells cytotoxic 
lymphocytes that straddle the interface of innate and adaptive immunity. B; B cells, BG; basophil granulocyte, DC; Dendritic 
cells, EG; eosinophil granulocyte, MC; Mast cell, Mφ; Macrophage, NK; natural killer cells, NKT; natural killer T cells, T; T 
cells, CD4+Th; CD4+ T helper cells, CD8+ CTL; CD8+ cytotoxic T cells, γδ-T; gamma delta T cells.  Figure modified from 
Figure 1 by Dranoff [37]. 
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1.3.1 T cells and their main linages   

T cells are lymphocytes that play an important role in cell-mediated immunity, and are 

characterized with their expression of their T cell receptor (TCR). These cells develop in the 

bone marrow and are primary matured in the thymus as discussed in the Section 1.4.1. The T 

cells are broadly divided into the two main linages, αβ and γδ, based on how their TCR are 

composed of [38].  The first combination of the TCR consist have α and β chains, and most 

of the T cells belong to this class. TCR of both the sublinage of CD4+ T helper cells (Th 

cells) and the cytotoxic CD8+ T cells (CTL) consist of α and β chains. These cells will 

recognize antigens presented on the MHC molecule to either assist other cells in 

immunological effector functions (Th Cells), or to kill infected cells and cancer cells (CTL). 

In the αβ linage of T cells consists also of the Natural killer T (NKT) cells, which have both 

phenotypic and functional characteristics found in both conventional NK cells and αβ-T cells 

[39]. The NKT cells have the ability to recognize lipid antigens presented by the CD1d-

molecule cell types present in the intestine and liver, and could thereby contribute to the 

immune responses in the digestive system for both promoting health and disease [39].  

The second main linage of T cells, the γδ T cells, show several innate cell-like features 

that permit early activation and recognition of conserved non-peptide ligands presented by 

stressed cells [40]. Interesting these γδ T cells are mainly located in mucosal tissues and on 

epithelial surfaces, such as the gut mucosa, skin, lungs and uterus, where they migrate early in 

their development [40]. The main functions of the γδ T cells varies from a protective 

immunity against extracellular and intracellular pathogens, tumour surveillance, modulation 

of both innate and adaptive immune reactions to tissue healing and regulation of the function 

of a physiological organ [40].  

 

1.3.2 The family of CD4+ Th cells 

The CD4+Th cells are further divided in to subsets based on the differentiation of 

naïve CD4+ T cells, which depends on the antigen, the strength of the TCR signal and the 

cytokines in the environment [41] (Figure 1.6). In 1986 Mosman and Coffman distinguished 

Th1 and Th2 subsets form each other based on the cytokine profile of these two subsets [42]. 

The main functions of Th1 cells are involved in cell mediated inflammation, defence against 

intracellular pathogens and in delayed-type hypersensitivity reactions [43]. The Th1 cells are 

known for their production of the characteristic cytokines: IL-2 and IFNγ, but they can also 

produce other cytokines such as TNFα and LTα [43]. The T cells of the Th2 subset are 
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involved in humoral-mediated immunity and their main function are to defend the host 

against extracellular pathogens, but unfortunately the Th2 subset are also associated with 

allergy, eczema and asthma [43, 44]. The characteristic cytokine profile of the Th2 subset 

consists of IL-4, IL-5 and IL-13, as well as IL-9 ad IL-10. IL-4 is a cytokine with several 

functions for other lymphocytes and for cells from the innate immune system. The IL-4 

cytokine promote activation in macrophages and monocytes, stimulate development and 

maturation of dendritic cells, and for plasma cell differentiation and antibody isotype 

switching to IgG1 and IgE [43].  

 After the discovery of Th1 and Th2 subsets of CD4+T cells, several subsets of CD4+ 

T cells have been classified such as Th9, Th17 and Th22 cells, T regulatory cells (Treg) and 

follicular helper T cells (Tfh) [43]. The Th17 subset is characterized by its expression of IL-

17, primarily IL-17A and IL-17F, in addition to their expression of TNFα, IL-6, IL-22, IL-21 

and IL-26 [43, 45]. The main function of the Th17 subset involves the host defence against 

extracellular bacteria, fungi and viruses [43, 45], where these cells stimulate production of 

antimicrobial peptides, increase the barrier function of epithelial cells and lead to recruitment 

of neutrophils and monocytes to the site of inflammation [46]. The Th9 subset of the CD4+ T 

cell repertoire are one of the main producers of IL-9, which will stimulate inflammation by 

promoting the growth of leukocytes such as mast cells and the secretion of chemokines that 

will stimulate the recruitment of more immune cells to the site [47]. In addition to their 

production of IL-9, the Th9 cells can also produce IL-10, which is an anti-inflammatory 

cytokine and indicating that Th9 cells might perform immune regulatory mechanisms [43]. 

The newest member to the Th subset is the Th22 cell, which has several similarities to the 

Th17 cell with the production of IL-22 [43]. The IL-22 is a member of the IL-10 family, 

indicating that the role of Th22 cells in host defence acts on non-immune cells and promote 

enhancement of innate immunity and tissue regeneration [43, 48].  

The linage of Treg cells are a subset of specialized T cells that execute suppressive 

functions of other effector T cells and could be seen as a “police” or a “break” of the immune 

system. Their main task is to control and supress overactive immune cells [43]. Some 

examples where they have an important role are: their suppression of allergy; in the 

establishing of tolerance to organ grafts and to prevent graft-versus-host disease; and to 

promote feto-maternal tolerance in pregnant women [49]. αβTCR linage of Treg cells are 

characterized by their transcription factor FoxP3 and can be developed in the thymus 

(nTregs), as a result of central tolerance, or they could be induced via post-thymic maturation 
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(iTreg) that often are characterized as CD4+CD25+FoxP3+ [43]. The Tregs uses multiple 

methods to perform their effector functions: one through modulation of APCs and thereby 

indirectly supress T effector function, or by directly suppress T and B cells [50]. Treg cells 

can secrete of anti-inflammatory cytokines (IL-10 and TGFβ), which will inhibit the 

proinflammatory effector functions of lymphocytes and APCs [50]. Treg cells are also 

capable with expression of inhibitory receptors (CTLA-4) [43], which can down regulate the 

expression of MHC-II molecule and the costimulatory molecules CD80/CD86 and CD28 on 

the APC [43, 49]. The Treg can induce apoptosis in T cells or APCs through cell-to-cell 

contact by a granzyme or perforin mechanism, or via the stimulation of tryptophan catabolism 

in APCs through indoleamine 2,3-dioxygenas (IDO) that produce the T cell toxic compound 

kynurenines [49]. 

The follicular helper T cells (Tfh) are a specialized subset of T cells whose main task 

is to provide B cell help in the GCs together with follicular dendritic cells (FDCs) [51]. 

Through their expression of surface molecules and chemokines such as; CD40L, IL-21, IL-4, 

PD-1, and BAFF, they will regulate the B cell survival and proliferation, participate in the 

initiation of somatic hypermutation and differentiation of B cells into plasma B cells and 

memory B cells [51]. The Tfh can also induce apoptosis via Fas-FasL interactions in B cells 

that fail to present cognate antigen [51].  

 
Figure 1.6: The CD4+ Th subsets; their inducing cytokines, their expression of transcription factor, and their main 
production of chemokines. The chemokines and transcription factors included are only some of the factors that will 
determine the fate of the naïve CD4+ T cell. Information from Table 1 by Tangye et.al (2013) [48] 
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1.3.3 CD4+ T helper cells and their role in lupus  

It is observed that T cells from patients have abnormal phenotypes and functions [52], 

which can lead to exaggeration of TCR response to a stimuli and the T cells get activated [19, 

53]. The CD4+ T helper cells are important in the production of autoantibodies and tissue 

inflammation, and they have a strong connection to the pathogenicity of SLE and LN [54] 

(Figure 1.7). All the cytokines produced by Th1 and Th2 are important for the pathogenicity 

of SLE and lupus prone mice that are IFNγ-/- and IL-4 -/- have reduced lymphadenopathy and 

end-organ disease compared to the cytokine sufficient control group [55]. In murine models 

of SLE, deficiency in the IFNγ and IL-4 have shown to be important for the pathology of the 

disease [43, 56].  

Today it is clear that other subsets of T cells, both within the Th family and in other 

subset of T cells, are of high importance in the contribution to the immune disturbance in SLE 

[6, 57]. An increase in the IL-17-levels in the blood and tissues (kidney, skin) from lupus 

patients have been observed [54], indicating that the Th17 cells are involved in the 

pathogenicity of lupus. From murine models IL-17 have shown to promote spontaneous 

formation of ectopic GCs, stimulate loss of B-cell tolerance and maturation of B cells into 

plasma cells, in addition to induce autoantibody production in these B cells [43, 54, 56]. IL -

17 have also been associated with infiltration of NK cells and neutrophils, and an increased 

IFNγ production by NK cells, CTLs and Th1 cells has been detected in patients with nephritis 

[56].  Circulating follicular helper-like CD4+ T (cTfh-like) cells have been observed to be 

associated whit the disease activity in SLE patients were, which can indicate that the 

regulation of the maturation of naïve B cell might be disturbed and promote the development 

of ectopic GCs [58, 59]. The development of the different Th effector-subsets and the Tfh are 

under control of Treg cells [49]. If the balance between the effector and regulatory cells is 

disrupted, the chances of developing autoimmune diseases are increased [49]. Impaired 

functions and reduced numbers of Treg cells in patients with lupus have been reported, and 

are linked to the disease progression in SLE (reviewed in [60]). In 2005, Hatashi and 

colleagues found depletion of Treg cells in murine models resulted in increased titers of 

ANAs and an early development of glomerulonephritis compared to the control [61]. These 

results support the importance of Treg in the control of effector functions of the immune 

system.  
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Figure 1.7: Dysregulation of T cell function and subset population in SLE pathogenesis.  Reduced effector functions of 
the Treg and the CD8+ CTL stimulate an increase in pro-inflammatory Th and Tfh subsets, which infiltrate tissues, enhance 
the inflammation processes, and stimulate autoantibody production. DN-T cells are also observed to contribute to the disease 
pathology through their production of IL-17. Green arrows indicating upregulated pathway and red arrows indicating down 
regulated pathway. Modified from figure 1 from Suárez-Fueyo et.al (2016) [54] 

  

1.4 Lymphoid organs 
Even though good defences against infections are scattered in tissues throughout the 

body, the optimized structures to create pathogen specific lymphocytes include the lymphoid 

organs. These organs are important for the production and activation of “combat approved” 

lymphocytes, which during normal conditions are not self-reactive. The lymphoid organs can 

be divided into three main categories; primary, secondary and tertiary lymphoid organs or 

tissues, and their main function and development will be discussed in this section.  

 

1.4.1 Primary lymphoid organs  

Primary lymphoid organs are defined as organs, or compartments within organs, 

where hematopoietic progenitor cells differentiate into an abundance of immune cells capable 

of performing effector functions [62]. There are three main types of primary lymphoid organs: 

the bone marrow, the thymus and the fetal liver, which will follow a programmed 

development during embryogenesis [62]. In addition to produce immune cells with effector 

function, the primary lymphoid organs also hold the site of central tolerance mechanisms 

(Figure 1.1).  

In the adults the bone marrow harbour the source of self-renewing stem cells such as 

hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and endothelial progenitor 

cells, in addition to various progenitor cells that have started their pathway in differentiation 
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and specialization into specific cell types [62, 63]. One of the main functions of the bone 

marrow is to produce erythrocytes, platelets and leukocytes such as neutrophils, monocytes 

and mast cells, just to mention some of the common leukocytes. The bone marrow is also the 

site of B cell maturation, where IgM producing B cells are developed before they are 

distributed into the blood. The central tolerance of B cell maturation occurs in the bone 

marrow, where a combination of positive and negative signals from the BCR and co-receptors 

together with signals from survival factors (i.e. BAFF) will determine the fate of the B cell [2, 

64]. The three outcomes of these signals are the survival and activation of the developing B 

cell, the clonal deletion by apoptosis or the B cell will reach an inactivated anergic phase. 

Self-reactive B cells can undergo receptor editing, where an additional light chain VJ 

recombination and new Ig light chain production occurs, in the hope of changing the BCR 

specificity not self-reactive. If the outcome of the receptor editing still creates a self-reactive 

B cell, the B cell dies via apoptosis [64]. 

The thymus is the main location where lymphocyte progenitors cell undergo a 

multistep maturation, differentiation, expansion and selection program to become either a 

naïve CD4+ or CD8+ T cell [62], which can be activated in secondary lymphoid organs and 

mediate cellular immunity. In this maturation program of T cells, there are some essential 

checkpoints that the developing T cell has to pass before it is released into the circulation as 

mature naïve CD4+ or CD8+ T cell.  T progenitor cells (thymocytes) entry the thymus in the 

corticomedullary junction and start their journey through out the thymus [65]. At this stage 

the thymocyte lack the expression of the TCR, CD4 and CD8, and are termed double-negative 

(DN) thymocytes. In the cortex of the thymus these DN thymocytes goes through four stages 

of differentiation and simultaneously starts to express their pre-TCR molecule [66]. When the 

thymocyte manages to successfully express the pre-TCR, the thymocyte will proliferate and 

become double positive (DP) thymocytes with their expression of CD4 and CD8 [62]. Then 

the TCR on the DP thymocytes will interact with peptide-MHC complexes that are expressed 

by cortex stromal cells, such as cortical thymic epithelial cells (cTEC) and DCs in the cortex. 

Low-avidity interactions will induce the DP thymocytes to receive signals for survival and 

differentiation into single positive (SP) thymocytes [65].  The next event in the developing 

thymocyte is the central tolerance, which occurs in the medulla of the thymus. Here the 

autoimmune regulator (AIRE) expressing medullary thymic epithelial cells (mTEC) will 

interact with the SP thymocytes through peptide-MHC complexes, and recognize thymocytes 

which binds to strongly to the complex [65]. These self-reactive thymocytes will either fate 

death by apoptosis or be stimulated to become FoxP3+ nTreg cells [65]. Sphignosine-1-



 22 

phosphate receptor 1(S1P1) expressing mature T cell, which have overcome all the 

developing checkpoints in the thymus, will be attracted to the circulation where they can be 

activated and become effector T cells [65].  

 

1.4.2 Secondary lymphoid tissues 

Lymph nodes, spleen, and mucosa associated lymphoid tissues (MALTs), such as 

payer’s patches (PPs) and tonsils, are common known as secondary lymphoid organs (SLOs) 

located statically within the lymph and blood [62, 67, 68]. The organization of the immune 

cells share several similarities   

 The lymph node is a highly organized organ that is surrounded by a capsule, and the 

three main compartments are the cortex, the paracortex and the medulla [62, 69]. The cortex 

contains B cells, macrophages and follicular dendritic cells (FDCs) arranged into primary B 

cell follicles, where the chemokine CXCL13 produced by the FDCs plays the dominant role 

in the position of the B cells via the interaction with CXCR5 [62]. In the primary follicles B 

cells immunity are mediated by FDCs [70]. These FDCs can present antigens in form of 

immune complexes that are bound via Fc and complement receptor, and thereby stimulate B 

cells through the BCR receptor and promoting germinal centre formation [70]. The T cell 

zone located in the paracortex are mainly composted of T cells, DCs and fibroblastic reticular 

cells (FRCs), where the chemokines CCL19, CCL21 and CXCL12 are important for the 

organization and recruitments of T cells and DCs [69]. It is in the T cell zone naïve T cells are 

activated by antigen-presenting cells APCs, which in most cases are mature DCs. In between 

the cortex and paracortex are the location of the secondary B cell follicles and germinal 

centres (GCs), where Tfh cells are involved in somatic hypermutation and isotope switch of 

the B cells Ig-molecule [71]. The most inner layer of the lymph node, the medulla, consists of 

the medullary cords that are separated by the lymph filled spaced of the medullary sinuses 

[69]. In the lymphatic sinuses, the filtration of lymph from afferent lymph vessels occurs, 

before the compounds from the lymph flows to the B cell area in the cortex or via the 

subscapular sinuses and out of the lymph node via the efferent lymphatic vessel [71]. The 

afferent and the efferent lymphatic vessels lined with lymphatic endothelial cells, together 

with the high endothelial venules (HEVs), complete the vasculation of the lymph node [71].   

B and T cells will, together with blood antigens, enter the lymph node via HEVs in a 

process known as the leukocyte adhesion cascade [62]. The HEVs in the lymph node express 

a special selectin ligand called pheripheral LN adressin (PNAd) on their luminal surface, 
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which will interact with the L-selectin (CD62L) on B and T cells and initiate the rolling 

cascade. The chemokines located at the HEVs; CCL19, CCL21, CXCL12 and CXCL13, are 

important for guiding and select the B and T cell via their chemokine receptors (CCR7, 

CXCR4 and CXCR5) into the lymph node. These chemokines will activate the chemokine-

triggered adhesion to the HEVs, which involves activation of the α1β2 integrin to 

ICAM1/ICAM2 on the HEVs. [62] 

 

Immunological properties  

The main functions of the SLOs are to filter the blood and lymph to trap and 

concentrate foreign antigens in addition to attract antigen-presenting cells (APCs), which have 

brought in antigens from surrounding tissues, to initiate an adaptive immune response with 

activation of naïve lymphocytes [62, 63, 67, 72]. Second important functions of the SLOs are 

their capacity to execute mechanisms for peripheral tolerance. There are several ways that the 

tolerance mechanisms are archived, and are involved with several cell types inside the SLOs. 

The essential parts in the decision of the fate of the naïve lymphocytes lies in the presence or 

absence of antigen, co-stimulation, cell interaction and/or chemokines/cytokine [69].  

In the classical activation of naïve T cells, the naïve lymphocyte needs two types of 

signal to be fully activated. The first signal is depended of the TCR:MHC interaction between 

the T cell and the APCs, while the second signal is provided to the T cell by the APC and it is 

composed of costimulatory molecules such as CD80/CD86 and chemokines [73]. Usually the 

APC that are involved in this process are mature DCs, which have migrated from surrounding 

tissues after they have been activated by a “danger signal” via their pattern recognition 

receptors  (PRRs) and captured antigens. In for example the lymph node, there are several 

immature DCs that have not been activated but can present antigens on their MHC-II 

molecules [74]. If the MHC-II molecule on this immature DC interacts with the TCR on a 

naïve CD4+ T cell, the T cell either dies or become anergic since the immature DCs can’t 

provide with the important second signal with the expression of costimulatory molecules [74, 

75].   

Initially stromal cells were thought to be mainly involved in supporting of the 

structure of SLO [69, 75]. However, later research has found that they can also serve an 

important immunological function in the regulation of the adaptive immune system [69, 75]. 

These stromal cells, especially the fibroblastic reticular cells (FRCs), can express peripheral 

tissue-restricted antigen (PTAs), such as proteins associated with pancreas, eye, intestine, 
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thyroid, skin, CNS and liver, in a similar fashion as the mTECs does in the thymus [76]. The 

PTA expression has shown to induce anergy and subsequent elimination of CD8+ T cells, and 

might be a method to increase the odds for eliminating rare, self-reactive T cells [76].  

 

Development of secondary lymphoid organs 

The development of the SLOs is a pre-programmed process and occur either during 

the embryogenesis or early in the post-natal period [68]. The SLO development requires the 

interaction between the mesenchymal stromal cell expressing the lymphotoxin-β receptor 

(LTβR) and the hematopoietic lymphoid tissue inducer (LTi) cell, which express the 

lymphotoxin-α1β2 (LTα1β2) complex [70, 72]. LTα1β2 is a heterotrimeric complex 

belonging to the TNF superfamily, it is composed of the membrane-bound LTβ2 and the 

soluble LTα1 and by binding to its receptor LTβR will initiate a signalling cascade necessary 

for the developing lymphoid organ and the interaction is necessary for the maintenance of the 

organized structure [77].  

 The LTi cells are derived from the family of type 3 innate lymphoid cells (ILC3) and 

are characterized by their expression of being ID2+RORγt+CD4+ [78, 79]. The development 

of the LTi cells from the ILC3 is strictly depended on their expression of the transcription 

factors RORγt and the ID2 and the TNF family ligand-receptor pair RANKL-

RANK/TNFRSF11A [79], where the RORγt expression are controlled by maternal retinoic 

acid [78].  Figure 1.8 illustrates the main events that occur during SLO development. Before 

the interaction between the LTo cells and the LTi cells occurs, the LTi cells need to be 

clustered in a LTα1β2/LTβR independent manner [72, 80].  

The chemokine CXCL13 produced by the mesenchymal stromal cells are important 

for the initial clustering of LTi cells by binding to the CXCR5 on these cells [81], and 

activation of the CXCR5 results in increased levels of LTαβ on their cell surface [79]. In 

mice with deficient CXCL13 and CXCR5 signalling have an insufficient development of 

peripheral lymph nodes [81] and the white pulp in spleen [82]. The production of the 

CXCL13 chemokine is under the control of retinoic acid from neurons, observed by retinoic 

acid producing neurons are located near to CXCL13 expressing stromal cells near the 

branching site of blood vessels [81]. Retinoic acid will control the gene expression of 

CXCL13 by binding to DNA-binding RA receptors (i.e. RARβ), which then will bind to the 

retinoic-acid-responsive elements (RARE) in the CXCL13 gene and induce the CXCL13 

production [81].  
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The increased expression of LTαβ on the LTi cells promote the LTα1β2/LTβR 

interaction between the LTi and the mesenchymal stromal cells, and results in maturation of 

the mesenchymal stromal cell into lymphoid tissue organizer cell (LTo). The LTo are 

characterized with their expression of the adhesion molecules (VCAM-1, ICAM-1 and 

MADCAM-1) and their increased production of the homeostatic chemokines (CXCL13, 

CCL19 and CCL21) [72, 79, 80]. The LTo cells will also produce interleukin-7 (IL7), which 

together with the homeostatic chemokine upregulation lead to a positive feedback loop that 

will result in an increased recruitment of LTi cells [80]. The LTo cell will also contribute to 

the incorporation of lymphatic endothelial cells (LECs) by expressing VEGF-C [62]. LTo 

cells secreting potent vascular growth factors will stimulate LTβR expression on endothelial 

cells, which are important for the differentiation into HEVs [83]. In addition the LTβR 

signalling is necessary for maintenance and homeostasis of this HEV network in the 

developing SLO [83]. The LTo will later in the SLO development differentiate into the non-

haematopoietic stromal cell types such as FDCs and FRCs [80]. In development of PPs in the 

small intestine, a second distinct population of CD4-CD45+ ILRα- CD11c+ lymphoid tissue 

induction (LTin) cells are involved in the stromal activation in the developing organ [80]. 

 
Figure 1.8: The first events in the developing SLO.1. Retinoic acid from nerve cell will stimulate mesenchymal stromal 
cell to produce CXCL13, which will interact on the CXCR5 receptor on a LTi cell (2.).  The LTi cell will respond with 
production of LTαβ (3.), which will interact with the LTβR on the stromal cell and stimulate differentiation into LTo cell 
(4.). The LTo cell will produce a positive feedback and recruit more LTi cells to the site by producing CCL19 and CCL21 
(5.). The LTo cell will also contribute the formation of HEVs and incorporation of lymphatic endothelial cells (LECs) to the 
structure (6.). In the later stages of the developing SLO, the LTo cell will further differentiate into FRCs and FDCs (7.) 
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1.4.3 Tertiary lymphoid structures  

Tertiary lymphoid structures (TLS) are ectopic accumulation of lymphoid, myeloid 

and stromal cells, which occur after birth and are often observed as a response to an 

environmental stimuli and/or the transition from an acute to a chronic inflammation [62, 79]. 

TLSs are observed in a large variety of diseases ranging from several autoimmune diseases 

[84], cancer [85], infections [86], to transplant graft rejections [86]. How the TLS is organized 

varies between the site of inflammation, organ affected and individual variance between each 

patient. The degree of organization ranges from oligocellular accumulation of B and T cells to 

more sophisticated structures similar to SLO with distinct B and T cell area, active GCs, 

PNAd+ or MAdCAM-1+ HEVs, FRCs and FDCs [62]. The TLS formation is a reversible 

process, observed with that they can decrease in size after the removal of the initiating 

stimulus or after therapeutic intervention, and thus making TLSs to be a quite plastic 

lymphoid organ [67].  

The development of TLS, or the neogenesis of the TLS, shows several similarities to 

the SLO development regarding the chemokine/cytokine and adhesion molecule expression 

patterns [79]. One of the most dominant similarities is the expression of homeostatic 

chemokines (CXCL13, CCL19, CCL21 and CXCL12) and signalling through LTα1β2/LTβR 

leading to the positive feedback loop that guide the recruitment and organization of 

lymphocytes [87]. The more striking differences between the SLO and TLS development are 

that the TLS development does not require fetal derived CD4+CD3-RORγ+Id2+ LTi cells and 

inflammatory events are triggers for the TLS development, while the SLO development is 

depended of fetal derived LTi and is pre-programmed during embryogenesis [87]. The 

questions then arise regarding which cell type can function as an LTi cell candidate in the 

developing TLS. Infiltrated immune cells, such as DCs, macrophages, Th17 cells and γδ T 

cells could function as an LTi-like cell and express LTα1β2 [77, 86]. Recent studies have 

shown that the cytokine IL-17, which are produced by Th17 and γδ T cells, are important in 

the initiation of TLS structures [77]. The cells that can act as an LTo cell candidate in the 

developing TLS are the stromal cells (from a mesenchymal progenitor cell) in the inflamed 

tissue; the fibroblasts, myofibroblasts and the perivascular cells, which under stimulation by 

proinflammatory cytokines can express LTβR and produce compounds for recruitments of 

LTi-like cells leading to the formation of TLS [88]  
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Tertiary lymphoid and diseases  

What outcomes, both beneficial and detrimental, are associated with TLS formation in 

a host? To answer this question the case studied has to be defined, since there are both pros 

and cons with this ectopic lymphoid tissue development. In viral infections, such as in acute 

influenza virus infection, bronchial-associated lymphoid tissue (iBALT) formation in the 

lower respiratory tract is observed and induces a host protective role against the infection 

[89].  

On the opposite site of the scale, the development of TLS might be the cause of the 

induction or exacerbating of an autoimmune reactions and thereby is associated the 

detrimental effects [80]. Activation of autoreactive B cells in TLS is not so strictly regulated 

compared to the activation of B cells in the SLOs, increasing the risk of differentiation and 

expansion of these autoreactive B cells and promote a local production of autoantibodies in 

the inflamed tissue [90].  TLSs have been associated with several autoimmune diseases and 

where these structures develop are related to where the immune system usually attack in the 

disease [89]. For example TLSs have been observed in the joints and lung of patients 

suffering of rheumatoid arthritis [91], in the salivary glands in Sjögren’s syndrome [92], in the 

pancreas in diabetes [93], and in the kidney of SLE patients [35]. TLS formation in patients 

might also affect how they are responding to the therapy, making it challenging to treat this 

patient group [90].  
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1.5 Stem cells  
Stem cells are characterized with their differentiation potential to become multiple 

mature cell types and their ability to self-renewal, which are important to replenish the stem 

cell pool [94, 95]. The ability to differentiate into various cell types is described with the 

potency of the cell. The more cell types a stem cell can be the ancestor of, the higher is its 

potency, which can range from a totipotent (ie. Zygote) to unipotent (ie. spermatogonial stem 

cells) [94]. The stem cells can broadly be divided into two main categories; the embryo stem 

cells and the adult somatic stem cells, also known as the nonembryonic stem cells [96]. The 

embryo stem cells are isolated from the inner mass of a blastocyst and are derived from the 

totipotent zygote [94, 96]. The embryotic stem cells, categorized as pluripotent stem cells, 

have the ability to become the ancestor of all the cells in a developing fetus and some of the 

extra embryonic cells such as cells in the placenta [94]. The adult somatic stem cells can be 

found in adults and children, but also in the infants, placenta and the umbilical cord blood 

[96]. These adult stem cells are known to be multipotent, meaning that they have the capacity 

to generate the mature cell type of their tissue origin, but will not differentiate into unrelated 

linages under normal physiological circumstances [94]. The bone marrow harbours two types 

of adult somatic stem cells; the hematopoietic stem cell (HSCs) and the mesenchymal stem 

cell (MSCs) [96]. In this study MSCs are in focus, and their functions and role in medicine 

are further discussed.  

 

1.5.1 Mesenchymal stem cells  

Mesenchymal stem cells (MSCs), also known as mesenchymal stromal cells, are 

nonhematopoietic stromal cells that have the potential to differentiate into tissues of 

mesenchymal origin such as bone, cartilage, adipose, connective tissue, smooth muscle and 

hematopoietic supporting stroma [97, 98]. Isolation of MSCs have been successfully 

performed from various tissues such as bone marrow, adipose tissue, nervous tissue, placenta, 

menstrual blood and dental pulps [99, 100]. A challenge in the field of the study of MSCs 

have been the lack of one uniform specific marker, but the MSCs cells do express patterns of 

surface markers [99, 100]. Table 1.1, present some of the common surface molecules that 

MSCs are expressing [100], but the MSCs should also lack the expression of CD45, CD34, 

CD14, CD11b, CD79a, CD19 and HLA-DR (MHC-II) surface molecule [101].  
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Table 1.1: Some of the surface molecules expressed by MSCs, table modified from Xie 2015 [100] 

Surface molecules expressed by MSCs Other cell types expressing the surface molecule 
Stro-1 Endothelial cells 
Sca-1 HSCs, cancer stem cells 
CD13 Cancer stem cells, myeloid cells 
CD29 Neural stem cells, cancer stem cells 
CD44 T cells, cancer stem cells 
CD73 Endothelial cells, lymphocytes 
CD90 (Thy-1) T cells 
CD105 (Endoglin) HSCs, endothelial cells, macrophages 
CD106 (VCAM-1) Endothelial cells 
CD146 (MCAM) T cells, pericytes, endothelial cells 
CD166 (ALCAM) Epithelial cells 
CD271 (LNGFR) Neural stem cells, cancer stem cells 
Nestin Endothelial progenitor cells, endothelial cells, fibroblasts 
PDGFR-α (CD140a) Fibroblasts, smooth muscle cells 
Leptin-R Adipocytes 
 

In addition to their ability to differentiate into several cell types, the MSCs exhibit the 

immuno regulatory capacity of immune cells [102]. This characteristics have made these cells 

interesting in the development for treatment of immune-mediated disorders [102]. The 

immune phenotype of the MSCs is considered as non-immunogenic, characterised as MHC 

I+, MHC II-, CD40-, CD80- and CD86-, and transplantation into an allogeneic host may not 

lead to an allogeneic response [97, 102]. MSCs activated in a milieu with high levels of IFNγ, 

TNF-α, IL-1α and IL-1β have shown to stimulate the immunosuppressive mechanisms of 

MSCs, which can supress the effector functions of macrophages, neutrophils, NK cells, DCs, 

T cells and B cells (Figure 1.9) [103, 104]. Some of the secreted compounds that MSCs use 

in their function in immunosupressive mechanisms are IL-10, TGF-β, nitric oxide (NO), 

catabolites of IDO activity (i.e. kynurenine), Tumor necrosis factor-inducible gene 6 protein 

(TSG6), and prostaglandin E2 (PGE2) [103, 104]. These compounds will stimulate the 

differentiation of M2 macrophages from monocytes, which are important for tissue repair and 

have anti-inflammatory properties with its enhanced production of IL-10 and TGF-β [104]. In 

addition the MSCs will also stimulate the recruitment of monocytes and macrophages to the 

site, through their production of CCL2, CCL3 and CCL12, thus enhance the differentiation of 

more M2 macrophages [104]. With their production of catabolites of the IDO activity and 

PGE2, the MSCs will both supresses T cell proliferation (arresting in the G0/G1 phase of cell 

cycle) and favour the iTreg differentiation [104, 105]. MSCs can induce a cytokine profile 

shift in Th1-Th2 balance towards the Th2 subset of CD4+ T cells [106]. 
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Environments with weak inflammation have paradoxically shown to stimulate MSCs 

and enhance immune responses by stimulating T effector cell function and differentiation of 

the proinflammatory M1 macrophage [103, 104]. In an early phase of inflammation or during 

chronically inflammation, the proinflammatory activities of MSCs can be beneficial in 

creating a proper immune response (Figure 1.9) [104]. When MSCs are exposed to low levels 

of the proinflammatory cytokines, such as TNFα and IFNγ, they can produce the chemokines 

CXCL9, CXCL10 and CXCL11 [104]. This response is observed to occur in mice, when NO 

production is insufficient [107]. One theory of how MSC can be polarized toward 

proinflammatory or anti-inflammatory phenotypes is through their activation of TLRs, this 

process is common known as “licensing” [108]. TLR-4 and TLR-2 are toll like receptors that 

will recognize components of the bacteria wall: the lipopolysaccharide (LPS)-layer from 

gram-negative bacteria for TLR-4 activation and lipoproteins from gram-positive bacteria for 

TLR-2 activation [104, 108, 109]. Priming of TLR-4 or TLR-2 priming has shown to promote 

the proinflammatory properties of MSCs, which will start to produce of proinflammatory 

cytokines such as IL-6 and IL-8 [104, 108, 109]. Contrary, activation of TLR-3, by virus 

dsRNA, have shown to promote the anti-inflammatory properties of the MSCs [108].  
 

 
Figure 1.9: Role of MSCs in tissue repair and chronic inflammation. Recent studies on MSC-mediated immunoregulation 
suggest that MSCs are recruited to sites of tissue damage and activated by local inflammatory cytokines produced by 
activated immune cells. Depending on the types of immune responses (acute vs. chronic inflammation), MSCs may either 
attenuate the inflammatory response and lead to repair of the damaged tissue, or maintain a persistent chronic inflammatory 
response, leading to fibrosis and deformation of tissue architecture. Reused with permission from Shi et al. [110] 
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1.5.2 Mesenchymal stem cells in treatment of SLE 

With their immunosuppressive properties the MSCs have been studied as a candidate 

in therapy for autoimmune diseases such as SLE [111]. In a small pilot study from 2010 

(n=15), administration of MSCs had a positive effect in improvement of the disease [112]. 

After one year only two of the patients had relapse of proteinuria, while the rest had a 

significantly decrease in disease activity and an improvement of the levels of Treg cells [112]. 

In an article published in 2013 by Wang et.al, promising results were reported in patients with 

severe SLE (n=87) treated with MSCs derived from the bone marrow and the umbilical cord 

[113]. After 4 years of studying the clinical effects of transplantation, 50% of the treated 

patents had entered clinical remission, although 23% had suffered from disease relapse [113]. 

In a smaller study from the same research group published in 2014, 40 patients with active 

SLE got intravenously transplantation with umbilical cord MSCs on day 0 and 7. After one 

year 32,5% of the patients reported major clinical response to the treatment and 27,5% 

reported a partial clinical response, while 17,5% patients suffered with disease relapse [114]. 

In this study an improvement of the CD4+FoxP3+ Treg cell levels were observed 3 month 

after transplantation, in addition the urinary protein levels were decreased [114]. In a small 

pilot study from 2010 (n=15), administration of MSCs had a positive effect in improvement 

of the disease [112]. After one year only two of the patients had relapse of proteinuria, while 

the rest had a significantly decrease in disease activity and an improvement of the levels of 

Treg cells [112].  

In murine models of SLE, MSCs treatments have also reported in promising effects 

with suppression of immune reactions and disease recovery [115-117]. In the study published 

by Ma et.al [116], reported that MRL/lpr mice treated with murine derived MSCs had an 

increased probability of surviving compared with the untreated control group. They could also 

reported that the treated mice had smaller spleens than control animals, with fewer activated 

Th1, Th2, B cells and plasma cells, in addition to a decreased production of anti-dsDNA 

autoantibodies and proteinuria [116]. The treatment of MSCs in the murine model NZBW-F1, 

on the other hand, was shown to increase the severity of disease and stimulate anti-dsDNA 

autoantibody production [118].  After treatment the mice had increased levels of plasma cells 

in the bone marrow, increased levels of deposited glomerular immune complexes and sever 

proteinuria compared to the untreated mice [118].  



 32 

1.6 Aim of study 
MSCs and their immunosuppressive potential have made them a excellent candidate 

for cell immune-therapy [111]. In the trials where SLE patients were treated with allogeneic 

MSCs indicated promising results such as decrease in disease severity and recovery from 

proteinuria, but there were several cases that experienced disease relapse after a short period 

of time [112-114, 119]. In murine models of SLE, MSCs treatment showed also a promising 

effect with suppression of immune reactions and disease recovery [115-117]. Other 

publications report that MSCs treatment had no effect on the clinical symptoms, such as 

proteinuria or anti-dsDNA antibody levels [118, 120]. These conflicting observations indicate 

the need for more investigation within the field of MSCs and their immunoregulatory 

properties, to evaluate the risk with treatment and make suggestions for improvement.  

Therefore the aim of this study was as follow:  

• To evaluate the immunostimulatory potential of MSCs in inflammatory environment.  

• To examine the effects of MSCs on proliferation and differentiation of CD4+ T cells, 

and how the MSC:CD4+ T cell ratio will influence their immunoregulatory effects. 

• To investigate if there were any difference in the T cell response between normal 

healthy donor, SLE patients with and without LN. 

• Determine if MSCs could play the role of LTo cells in initiating and developing of TLS   

Figure 1.10 illustrates the workflow of this study 

 
Figure 1.10: Workflow; first the immunostimulatory potential of MSCs were evaluated in a screening before their 
effect on proliferation and differentiation were examined in a coculture between MSCs CD4+ T cells isolated from 
Healthy blood donors, SLE patients and LN patients.  
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2 Materials and methods 

2.1 Cell work 
In this project three different cell lines were used; human mesenchymal stem cells 

(MSC, PCS-500-012, lot no: 0216, ATCC Manassas, US), human umbilical vein endothelial 

cells (HUV-EC-C, CRL-1730TM, lot no: 3822271, ATCC) and human mammary epithelial 

cells (HMLE). The HMLE cell line was a kind gift from Robert Weinberg (Whitehead 

Institute for Biomedical Research and Department of Biology, Massachusetts Institute of 

Technology). The cell lines were cultured with their appropriate media as described in Table 

2.1. In this study, the following passage number was used; passage number 9 for MSC, 

passage number 18 for HUV-EC-C and the passage number 18 for the HMLE cells.  

Table 2.1: Culture media for the cell lines  

Cell line  Basal media  Supplemented with 

MSC Mesenchymal stem cell basal 
medium (PCS-500-030, ATCC) 

Mesenchymal stem cell growth kit – for 
bone marrow derived MSCs (PCS-500-
041, ATCC). Containing L-alanyl-L-
Glutamine, FBS, rh GF-1, rhFGF-b and 
1% penicillin-streptomycin (Sigma-
Aldrich) 

HMLE 1:1 mixture of MEGM™ 
Mammary Epithelial Cell 
Growth Medium (Lonza) and 
DMEM/F12 (11320033, 
Thermo Fisher) 

 

10ng/mL EGF 0.5 µg/mL hydrocortisone 
0,01mg/mL insulin and 1% penicillin-
streptomycin (Sigma-Aldrich) 

HUV-EC-C F-12K Kaighn´s Modification of 
Ham´s F12 media (30-2004, 
ATTC) 

0,1mg/mL of sodium heparin (H3393-
199KU, Sigma Aldich), 0,03% 
endothelial cell growth supplement 
(ECGS, E2759, Sigma Aldrich), 1% 
penicillin-streptomycin (P0781-100mL, 
Sigma-Aldrich) and 10% Fetal bovine 
serum (FBS, 7524, Sigma-Aldrich) 
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2.1.1 Cell culturing 

2.1.1.1 Maintenance of cell culture and cell counting 

All procedures were performed under laminar flow hood, and all equipment were 

sterilized with 70% ethanol before starting the experiments. The different cell lines were 

grown in the appropriate medium in cell culture incubators at 37°C with 5 % CO2, 95 % air 

and 100 % humidity. Cells were grown until they reached 80% confluency.  

 

Cells passaging 

Cell culture medium was aspirated, and cells were washed once with 1×PBS 

(Dulbecco’s phosphate buffered saline, D8537-500ML, Sigma-Aldrich Corporation, US). Pre-

warmed 0.25%Trypsin-0.04% EDTA solution (T4049-100mL, Sigma-Aldrich Corporation, 

US) was added to cells in the culture flask. After 5 minutes incubation at 37°C (until 80% of 

cells were rounded up and detached), an equal volume of pre-warmed growth medium 

containing 20% FBS (7524, Sigma-Aldrich Corporation, US) were added to the flask to 

neutralize the trypsin. Cells were gently homogenized by pipetting up and down to get a 

single cell suspension. Cells were centrifuged at 250 x g for 5 minutes, and the supernatant 

was aspirated. The cell pellet was resuspended with the appropriate amount of medium and 

transferred to a new flask and incubated at 37°C inside a 5% CO2 humidified incubator. It was 

possible to calculate the cell count (Table 2.2) of the resuspended cells before they are 

transferred to the flask.  

 
Table 2.2 Equations for calculations of cell count and cell solutions with wanted cell numbers 

Eq.	1. Cell	count	
!"# !"##$ !"#$%&' !" ! !"#$% !"#$%&! !" !"#$%!!! !"#$%&'

!" !" !"#$%&! !"#$%&' !!"! 

Eq.	2. Calculation	of	total	
cell	nr	in	solution	

(!"## !"#$%) ! (!"#$%& !" !"## !"!#$%!&'%) 

Eq.	3. Volume	cell	
suspension	in	the	
seeding	solution	

!" !" !"##$ !""#"#
!"## !"#$% = !" !" !"##$  ! (!" !"##$ !" !"##)

!"## !"#$%  

Eq.	4. Volume	media	in	
the	seeding	solution	 !"#$% !"#$%& !""#"# − !"#$%& !"!! !"!#$%!&'% 
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2.1.1.2 Cryopreservation 

When cells reached logarithmic growth phase (80% confluency), the culture medium 

was changed with fresh growth medium 24 hours before freezing. Cells were collected as 

describe in the Section 2.1.1.1 Maintenance of cell culture and cell counting. The cell 

pellet was resuspended in complete medium (Table 2.1) containing 20% FBS and 10% 

dimethyl sulfoxide (DMSO, D2650-100mL, Sigma-Aldrich Corporation, US) at a cell density 

of 104-106. The cryovials stored at -80oC for 24 hours and transferred into liquid nitrogen for 

long-term preservation.  

 

2.1.1.3 Thawing of cell lines 

A cryovial of cells was obtained from the liquid nitrogen storage tank, and quickly 

thawed in a 37oC incubator for 3-5 minutes. As soon as the cells were completely thawed, 

they were transferred to a 50 mL conical tube containing an appropriate volume of pre-

warmed medium inside a laminar flow hood. The cells were resuspended gently and 

transferred to the new flask and incubated at 37°C inside a 5% CO2 humidified incubator. 

Next day, the medium of the cell culture was aspirated and cells were washed once with pre-

warmed 1xPBS and an appropriate volume of pre-warmed complete media was added to the 

flask.  
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2.1.2 Stimulation of MSCs and HUV-EC-C for co-culture 

Cells were seeded based on different experiments set up (Table 2.3) and allowed to 

grow for 24 hours. Then, cells were washed once with 1xPBS and starved with complete 

MSCs basal medium (ATCC, Table 2.1) containing 3% FBS for 18 hours. Next, cells were 

washed once with PBS and stimulated with 8ng/mL TNFα (210-TA-005, R&D systems, US) 

and IL-1β (201-LB-005, R&D systems, US) in complete media containing 0.1% FBS for 6 

hours. The stimulation setups were based on a previous study, which has been established in 

our group (RNA and molecular pathology research group, IMB, UiT).  For all the different 

setups, separate control replicates were included, where cells were starved but not stimulated.  

 
Table 2.3 Cell number of the MSCs and HUV-EC-C seeded out for the co-culture assays and the cell number of 
HMLE and HUV-EC-C seeded out as control cell lines. 

 
Number of cells seeded 

out in each well 
Type of plate used 

Volume in each 

well 

Coculture assays – 

 MSCs : T cells 

 

Or  

 

HUV-EC-C : T cells 

Proliferation 

assay 
2000 

24well plate 

(PLATE TYPE) 

½ mL 

“Flow assay” 5000 
24well plate 

(PLATE TYPE) 

½ mL 

Trans well – 

migration assay 
8000 

6 well plate 

(PLATE TYPE) 

2mL directly in well  

1mL in insert 

HMLE cells 100 000 
24well plate 

(PLATE TYPE) 

½ mL 

HUV-EC-C cells 100 000 
24well plate 

(PLATE TYPE) 

½ mL 

 

2.1.3 Stimulation of HMLE and HUV-EC-C cell lines in time series  

HMLE and HUV-EC-C cell lines as controls were stimulated with 8ng/mL TNFα and 

IL-1β according to the same set up as for the MSCs (Section 2.1.2) at the different time 

points; 1, 3, 6, 12, 24, 48 and 72 hours. HMLE cells were not starved before stimulation since 

complete medium did not contain FBS. After each time point, cells were washed and 

harvested with TRIsure (Section 2.8) for further analysing. 
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2.2 Patients in this study  
This study was approved by the Regional Committees for Medical and Healthy 

Research Ethics (REC; Norway, 2015/1315) .Ten patients, eighth women and two men, whit 

a diagnosis of SLE according to the criteria of the American College of Rheumatology were 

studied, and Table 2.4 present the main clinical data of these patients. Five of the patients 

were also diagnosed with lupus nephritis (LN), which was classified according to the World 

Health Organization. Patient samples were collected in 6mL sodium heparin blood tubes. The 

normal controls in this study were healthy blood donors that had donated blood for the blood 

bank at the Univeristy Hospital of North Norway (UNN), and blood form these donors were 

collected and stored as buffy coat. Employers of the UNN performed the blood sampling. 

 

2.3 Peripheral blood mononuclear cells (PBMCs) isolation  
Buffy coat or blood obtained from the blood bank (UNN) was diluted with 1xPBS + 

2%FBS (1:1). Diluted buffy coat or blood was layered gently (to minimize mixing) on top of 

Lymphoprep (1114545, STEMCELL Technologies, Canada) and centrifuged at 800 rpm for 

30 min at 15 - 25°C. Peripheral blood mononuclear cells (PBMCs) layer (grey layer, Figure 

2.1) were collected carefully without disrupting plasma and erythrocyte/granulocyte layers. 

PBMCs were resuspended in 1xPBS and centrifuged at 1200 rpm for 15 minutes. The 

supernatant was aspirated and the pellet was resuspended in appropriate working buffer 

containing 1xPBS pH 7.2, 0.5% bovine serum albumin (BSA) and 2 mM EDTA (Table 2.5) 

for further procedures. 

 
Figure 2.1: Density separation by Lymphoprep, where the marked grey/white layer consists of PBMCs.  

 

PBMCs 
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Table 2.4: Patient information 
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t	

th
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P1	
M.	 53	 6md.	 SLE	

Hem(Ly),	
Se	(Pl),	
Diskoid	
ANA,	Im	

RP,	Lymph	 anti-dsDNA,	
LAC,	low	C3	 -	 Met,	Pred,	Pla	

P2	
F.	 33	 6y.	 LN	

Rash,	Ou,	
Ar,	N,	ANA,	

Im	
RP	 RNP,	anti-

dsDNA	AB	
Class	2	(6y)	
Class	4	(3y)	

CC,	Pred,	Ren,	
Pla,	CF	

P3	

F.	 38	 1y.	 LN	
N,	ANA,	
Hem(Ly),	

Im,	

CAC,	IRI	
PCOS,	APS,	
latent	TB,	

SSS	

ACA-B2-IgA,	
ACA-IgA,	ACA-
IgM,	anti-RNP,	
anti-SSA,	anti-
SSB,	anti-Sm	

Class	3A	(1y)	
Class	5	(?)	

SM,	CC,	Pla,	
Albyl-E	

P4	
M.	 58	 5y.	 SLE	

Rash,	Ph,	
Hem-Le,	
Ar,	ANA,	

Sicca,	pre-
OP	 SSA,	SSB,	 -	 Pla,	Ale,	CF	

P5	

F.	 36	 17y.	 SLE	
Er,	Rash,	
Hem-Le,	
Ar,	ANA,	

RP,	SICCA	

dsDNA,	anti-
sm,	Comp,	
ACA-IgM,	

ACA-IgG,	ACA-
B2-IgA	

-	 Albyl-E,	Imu,	
Pla,	Pred,	CF	

P6	

F.	 20	 12y	 SLE	

Diskoid,	
rash,	Ou,	
Ar,	ANA,	
Im,	Hem	
(Ly),	CNS?	

Alopecia	
	 Anti-SSA,		 -	 Pla,	Imu,	Lev	

P7	

F.	 73	 1y.	 LN	
Ph,	Rash,	
Hem(An),	
N,	Im,	Ar?	

TC	(-89),	
PT,	

HBP,BCC-
RE,	Hip-OA,	
Epilepsy	(-

02)	

Anti-Nucleus	 Class	2	(6md)	
Euro	lupus	
protokoll.	SM,		
Sen,	Pred,	

P8	
F.	 64	 28y							 LN	 N,	Im	 APS	

anti-DNA,	,	
anti-smD,	low	

C3,	
Class	2	(16y)	 Hyd,	Pred	

P9	
F.	 61	 31y		 LN	

Ar,	Discoid,	
N,	

Hem(Ly)	
APS	

dsDNA,	SSA,	
low	C3/C4	
(normal	at	
time	of	test)	

Class	2B	
16y(LN)	

Kio,	Pla,	Pred,	
CC,	Ben,	

P10	
F.	 82	 42y.	 SLE	

Diskoid,	
Ar,	CNS,	
Im,	ANA	

HypoT4,	
DM,	Endo-
PC,	OP	

Anti-SSA	 -	 Imu,	Pred	

Abbreviations Table 3.3: F.; female, M.; Male, Y.;year, md.; months, LN; Lupus nephritis, SLE; Systemic lupus 
erytheomaus, Main clinical symptoms: ANA; ANA-positive screening, Ar; Arthritis, CNS; CNS affection (epilepsy and/or 
psychosis); Discoid; Discoid Lupus erythematous (skin affections), Hem (An, Le, Ly, Tr); Haematological manifestations 
(haemolytic anaemia, leukopenia/lymfopenia, thrombocytopenia), Im; Immunological disruption, N; Nephropathy 
(protenuria >0,5g/day and/or), Ou; oral ulcers, Ph; Photosensitivity, Rash; Malar rash/Butterfly rash, Se (Pl, Pe, Ed); 
Serositis (Pleuritt, perkaritt, edokarditt). Other clinical diagnosis: APS; antiphospholipid antibody syndrome, BCC-RE; 
Basal cell carcinoma right eye, CAC; Chronic angular cheilitis, DM; Diabetes mellitus, Endo-PC; Endocrine Pancreatic 
cancer. HBP; Hypertension, HIP-OA; Hip osteoarthritis, HypoT4; Hypothyroidism, Iri; iridocyclitis, Lymph; Lymphoma, 
OP; osteoporosis, PCOS; Polycystic ovary syndrome, pre-OP; Osteopenia, PT; Partial thyroidectomy, RP; Raynaud's 
phenomenon, SICCA; Sicca symptoms, SS; Sjögrens syndrome, SSS; Secondary Sjögrens Syndrome, TB; Tuberculosis, TC; 
Thyroid cancer.  Immunological disruption: anti- indicating antibodies against the compound are found in screening, ACA-
B2-IgA; anti-B2-glykoprotein IgA, ACA-IgA; Anti-cardiolipin antibody IgA, ACA-IgG; Anti-cardiolipin antibody IgG, 
ACA-IgM; Anti-cardiolipin antibody IgM, Comp; Complement activation, LAC; lupus anticoagulant. Current therapy: 
Alby-E; Alby-E, Ale; Alendronat, Bav; Bactrim, Ben; Benlysta, CC; CellCept, CF; Calcigran Forte, Hiz; Hizentra, Hyd; 
hydroxycloroquine, Ig; tilskudd immuno-globuliner, Imu; Imurel, Kio; Kiovig, Lev; Levaxin, MabT; MabThera, Met; 
Methotrexate, Mety; Metylrednisolon, Pla; Plaquenil, Pred; Prednisolon, Pro; Prograf, Ren; Renitec, San; Sandimmun, Sen; 
Sendoxan, SM; Solu-Medrol 
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2.4 CD4+T cells isolation 
Cell numbers of mononuclear cells obtained from peripheral blood was determined, and 

cell suspension was centrifuged at 300×g for 10 minutes. The supernatant was aspirated and 

the cell pellet was resuspended in 40 µL of working buffer (containing PBS, pH 7.2, 0.5% 

BSA, 2mM EDTA) per 107 total cells. Next, 10 µL of CD4+ T Cell Biotin-Antibody Cocktail 

(130-096-533, Miltenyi Biotec, Germany) per 107 total cells was added and incubated at 4 °C 

for 5 minutes. Then, 30 µL of the working buffer and 20 µL of the CD4+ T Cell MicroBead 

Cocktail (130-096-533, Miltenyi Biotec) per 107cells were added. The cell suspensions were 

mixed well and incubated for 10 minutes at 4°C. LS MACS Columns (130-042-401, Miltenyi 

Biotec) were placed in QuadroMACS (Miltenyi Biotec) magnetic separator and rinsed with 3 

mL of working buffer. Cell suspensions were applied into the columns and flow-through 

containing unlabelled cells (representing the enriched CD4+ T cells) were collected. Through 

this method, non-target cells were magnetically labelled with the CD4+ T Cell Biotin-

Antibody Cocktail and CD4+ T Cell MicroBead Cocktail, and CD4+ T Cell were obtained by 

negative selection.  

 
Table 2.5: CD4+ Working Buffer recipe; PBS pH7.2, 0.5% BSA and 2mM EDTA 

400mL buffer 
0,5M EDTA 

20mL 10% bovine 

serum albumin (BSA) 

Dulbecco’s 

Phosphate Buffered 

Saline (1xPBS) 

16 mL 20 mL 364 mL 

  

2.5 CD4+T cells co-culture  
The collected CD4+ T cells were centrifuged at 1200rpm for 10minutes at room 

temperature, and resuspended in the appropriate media. Cell suspensions with the different 

cell numbers for different experiments were prepared (see Table 2.3 and Table 2.6). The 

stimulated and non-stimulated MSCs and HUV-EC-C cells (see Section 2.1.2) were washed 

two times with 1xPBS to avoid dead cells and pre-added pro-inflammatory cytokines.  Next, 

CD4+ T cells were added based on experiments set up (Table 2.6) to each well with complete 

medium. For the trans well system, MSCs or HUV-EC-C were seeded in wells, and CD4+ T 

cells were added into the inserts (to avoid cells contact).  
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Table 2.6: Cell numbers in the experiment 

Cell number 

 Assay type Proliferation assay 
½ mL in each well 

Flow measurement 
½ mL in each well 

Trans well system 
1 ½ mL in well +  
1 ½ mL in insert 

 Cell ratio 1:1 1:100 1:1 1:100 1:1 1:100 

C
el

l 
ty

pe
 MSC or 

HUV-EC-C	 2000	 2000	 5000	 5000	 8000	 8000	

CD4+ T-cell	 2000	 200 000	 5000	 500 000	 8000	 800 000	
 

 

2.6 Proliferation assay  
To perform a proliferation assay AlamarBlue® (ThermoFisher) was used according to 

the manufacturer’s instructions. At days zero, 5, 7, and 10, the proliferation of CD4+T cells 

co-culture with MSCs and CD4+T cells alone were measured. After transferring the CD4+T 

cells to a new flat clear bottom 24 wells plate (Corning Inc, US), 50µL of AlamarBlue (10% 

of media total volume) was added directly to the wells. Cells were incubated for three hours at 

37°C with 5% CO2. The fluorescence of reduced AlamarBlue® in the supernatant was 

measured (excitation at λ=540 nm; emission at λ=590 nm) with a CLARIOstar® (BMG 

LABTECHq).  

 

2.7 Fluorescence-activated cell sorting (FACS) of the CD4+ T cell subset  
The immunofluorescence staining of the CD4+ T cells was performed according to the 

manufacturer’s instructions. Cells were stained with antibodies against CD4, CCR4, CCR6, 

CCR10 and CXCR3 (Table 2.7).  Cell suspensions were centrifuged at 300×g for 10 minutes, 

and the supernatants were completely aspirated. The cell pellet was resuspended in 100µL of 

working buffer (containing PBS, pH 7.2, 0.5% BSA, and 2 mM EDTA). 5µL of the 

antibodies were added and incubated for 10 minutes in the dark at 4 °C. Then, cells were 

washed by adding 1 mL working buffer and were centrifuged at 300×g for 10 minutes. The 

cell pellet was resuspended in 100µL MACSQuant running buffer (130-0922-747, Miltenyi 

Biotec) and 5µL of Propodium iodide (130-093-233, Miltenyi Biotec) was added shortly 

before running the samples on the FACSARIA III (BD Biosciences).  
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2.7.1 Compensation for flow cytometry  

The compensation was performed according to the manufacturer’s instructions 

(Miltenyi Biotec). For each fluorochrome-conjugated human and mouse Igκ antibody a 

separate tube was prepared, containing 100µL of the MACSQuant Running Buffer. Next, 10 

µL of intended Igκ (human or mouse) fluorochrome-conjugated antibodies were added to the 

specified sample tube. A full drop of the MACS Comp Beads – anti-human or anti-mouse Igκ 

(Miltenyi Biotec) and a full drop of the MACS Comp Beads – Blank (Miltenyi Biotec) were 

added to each tube and incubated for 10 minutes in the dark at room temperature (21 °C) and 

tubes were shaken during incubation. Samples were diluted by adding 1mL of the 

MACSQuant Running Buffer. In the end, they were preceded on FACSARIA III to optimally 

compensate the fluorescence spillover from fluorochrome-conjugated antibodies α. 

 
Table 2.7: Flow cytometry analysis antibodies and reagents.  

Antibody Cat.no 
Fluorophore 

marked 

Excitation 

wavelength  

Emission 

wavelength 

Compensation 

kit used 

Anti-CD4-

antibody 
130-106-

655 
VivoGreenTM 405nm 520nm 

MACS® comp 

bead kit anti-

mouse IgK 

Anti-

CD194(CCR4)-

antibody 

130-103-

813 
APC 561/635nm 660nm 

MACS® comp 

bead kit anti-

human IgK 

Anti-

CD196(CCR6)- 

antibody 

130-107-

142 
PE-Vivo-615 488/561nm 615nm 

MACS® comp 

bead kit anti-

human IgK 

Anti-CCR10-

antibody 
130-104-

822 
PE 488/561nm 578nm 

MACS® comp 

bead kit anti-

human IgK 

Anti-

CD183(CXCR3)-

antibody 

130-101-

381 
PE-Vivo-770TM 488/561nm 775nm 

MACS® comp 

bead kit anti-

human IgK 
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2.8 RNA isolation  
Adherent cells were washed two times with PBS and 500µL TRIsure (BIO-38033 

Bioline, London, UK) was added to the cells directly. For the non-adherent cells (Th subsets), 

cells were centrifuged at 1000xg for 10 minutes at 4oC and the supernatant was discarded and 

150µL TRIsure was added to the cells pellet. Both adherent and non-adherent cells were 

incubated 5 minutes at room temperature after adding TRIsure, and samples were collected 

and stored at -80oC. 

Further procedure of the RNA extraction was continued with phase separation by 

adding 0.2 volumes of chloroform (32211-1L, Sigma Aldrich) to each sample, and kept on ice 

for 20 minutes and shook every two minutes. Samples were centrifuged at 9000xg for 20 

minutes at 4oC, and the upper aqueous phase were collected and transferred to clean DNA-

low-bind tubes (Eppendorf, Sigma-Aldrich). The RNA was precipitated by adding 1 volume 

of isopropanol and incubated overnight at -20oC to have better participation. Next day, the 

RNA was pelleted down by centrifugation at 15000xg for 1h at 4oC. The supernatants were 

discarded and the RNA pellets were washed two times with 1mL ice-cold 80% ethanol. 

Ethanol was discarded and RNA pellets were briefly air dried and dissolved in 10 µl RNase 

free water (L0015, Merck Millipore). The RNA extraction of the HUV-EC-C cells from the 

time series set up (Section 2.1.3) was performed by using the kit Direct-zolTM RNA MiniPrep 

(R2052, Zymo Research) based on manufacture instruction. RNA quantity and quality were 

determined using the NanoDrop 2000 spectrophotometer (Thermo Scientific, US). 
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2.9 cDNA synthesis 
High Capacity cDNA Reverse Transcription kit (4368813, Applied Biosystems® by 

Life Technologies, US) was used to synthesize cDNA. For HMLE and HUV-EC-C cell lines, 

10µL RNA sample (containing 150ng RNA in total) was used. The 2X Master mix was 

prepared based on manufacture instruction (see Table 2.8), then 10µl of The 2X Master Mix 

was added to each sample. Samples were briefly vortexed to mix solution and centrifuged to 

eliminate air bubbles. The samples were transferred to the Mastercycler gradient (5331-01627, 

Eppendorf, Germany), which was programmed for the optimal conditions for reverse 

transcription according to the manufacturer (Table 2.9). In the end, samples were diluted 1:10 

in RNase-free water and stored at -20oC. Two negative controls were also prepared, one 

minus template and one minus reverse transcriptase enzyme to evaluate procedure accuracy. 

 
Table 2.8: 2x Reverse Transcription Master Mix. The volumes are given for 1 reaction and were multiplied with the 
total number of samples that was run each time the cDNA synthesis was performed. 

Components 10x RT 
Buffer 

10x RT 
Random 
primers 

25x dNTP 
(100mM) 

MultiscribleTM 
reverse 
transcriptase 

RNase-free 
H2O 

Total 
volume  

Reagents for 
each sample 2,0µL 2,0µL 0,8µL 1,0µL 4,2µL 10,0µL 

RT negative 
control 2,0µL 2,0µL 0,8µL 0 µL 5,2µL 10,0µL 

 
Table 2.9: Settings for the Therminal cycler used in the cDNA synthesis. The total reaction volume was 20µL and the 
synthesis was performed in 0.5mL DNA loBind eppendorf tubes 

 Step 1 Step 2 Step 3 Step 4 

Temperature (OC) 25 37 85 4 

Time (min) 10 120 5 oo 
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2.10 Real time quantitative PCR (qPCR) 
The mRNA expressions of genes (Table 2.10) were analysed by qPCR. The master 

mix containing 5 µL of TaqMan® Fast Universal Master Mix (4352042, Applied Biosystems), 

0.5 µL of primer probe and 2 µL of RNase-free water were prepared for each reaction. 2.5µl 

of cDNA and 7.5µL of the master mix (in total 10 µl) were pipetted to 96 wells plate 

(4346906, Applied Biosystems) and the plate was sealed (MicroAmp optical adhesive film, 

4311971, Applied Biosystems) before centrifuged briefly at 10800xg for one minute. The 

plate was run on the LightCycler® Analysing machine (Roche Holding AG, Basel, 

Switzerland) with the settings as described in Table 2.11. 

 
Table 2.10: TaqMan primer probes used to analyse the gene expression by qPCR. Applied Biosystems by Thermo 
Fisher are the provider of the primer-probes. 

Gene Cat.nr Gene Cat.nr 

CCL19 HS00171149 LTβR HS00158922 

CCL20 HS00989654 PDPN HS00366766 

CXCL13 HS00757930 TBP HS00427621 

ICAM-1 HS00164932 TNFα HS00174128 

IL-1β HS00174097 VCAM-1 HS01003372 
 

 

Table 2.11: Settings for the running of qPCR in the LightCycler® Analysing machine (96system) 

Program  Temperature Duration  Ramp 

Preincubation  95oC 600sec 4,4 

2-step amplification 
– 40 cycles 

Step 1 
Step 2 

95oC 
60oC 

15sec 
60sec  

Cooling  37oC 30sec  
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2.11 Immunofluorescence staining and confocal microscopy 

2.11.1 Immunofluorescence staining of a tissue section 

Immunofluorescence staining was performed on kidney cryosections (5µm in 

thickness) from (NZBxNZW) F1 mice (Table 2.12 for description of mice). Sections were 

dried at room temperature for 30 minutes and then fixed for 5 minutes in 4% 

paraformaldehyde. Sections were washed two times in 1xPBS for 5 minutes each and 

incubated with blocking serum containing 1xPBS with 10% donkey serum (AB7475, Abcam, 

UK) for 30 minutes. The sections were incubated with primary antibodies cocktail (Table 

2.13) for 30 minutes and washed two times by dipping in 1xPBS for 5 minutes each. 

Secondary antibodies plus PerCP-CyTM 5.5 mouse-anti-mouse CD45 cocktail containing 

fluorophore-conjugated antibodies was prepared by mixing the antibodies as described in 

Table 2.14. The sections were incubated with the secondary antibody cocktail for 30 minutes 

at dark and were washed two times by deeding in 1xPBS for 5 minutes each. The sections 

were carefully dried and mounted by using 20µL Mowiol (Table 2.15). For each sample, a 

negative control was prepared through the same procedure minus primarily antibodies and 

PerCP-CyTM 5.5 mouse-anti-mouse CD45 conjugated.  

 
Table 2.12: Information regaring the disease progression in (NZBW)-F1 mice studied  

Mice Age (week) Proteinuria TLS 

Young 6 1 Negative 

Anti-dsDNA Ab positive 30 1 Positive 

Proteinuric 27 4 Positive 

 

2.11.2 Laser-scanning confocal microscopy 

Laser-scanning confocal microscopy was performed on LSM780 AxioObserver (Carl 

Zeiss, Oberkochen, Germany) by using the ZEN 2012 (black edition) software. Alexa Flour 

405, Alexa Flour 488, and Alexa Flour 594 were excited at 405, 488 and 561 nm and they 

were emitted at 440, 522 and 609 nm respectively.  PerCP-CyTM 5.5 CD45.2 conjugated was 

excited at 405 nm and was emitted at 435 nm. Two different objectives i plan-Apochromat 

63×/1.4 Oil DIC M27 and i plan-Apochromat 20×/0.8 M27 were used. The same instrument 

setting was used for all samples. 
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Table 2.13: Primary antibodies and their dilutions in the primary antibody cocktail. 

Antibody 

against 

Dilution in primary 

antibody cocktail 

Host Cat. nr Manufacture 

NESTIN 1:100 Rabbit AB7659 Abcam, UK 

SCA1 1:50 Rat AB25195 Abcam, UK 

PDGFRα 1:100 Goat AF1062 R&D Systems, US 

 

 
Table 2.14: Fluorophore conjugated primary and secondary antibodies and their dilutions in the secondary antibody 
cocktail. For the primary antibody negative samples, the antibody against CD45 was excluded from the cocktail 
solution.  

Antibody 

ID 

Dilution in secondary 

antibody cocktail 

Fluorophore 

conjugated 
Cat. nr Manufacture 

Donkey-anti-

Rabbit 
1:1000 

Alexa Fluor 

405 
AB175651 Abcam, UK 

Donkey-anti-

Rat 
1:1000 

Alexa Fluor 

594 
A-21209 

Thermo Fisher 

Scientific, US 

Donkey-anti-

goat 
1:1000 

Alexa Fluor 

488 
A-11055 

Thermo Fisher 

Scientific, US 

PerCP-CyTM 

5.5 mouse-

anti-mouse 

CD45 

1:50 PerCP-CyTM 552950 
BD Biosciences, 

US 

 

 
Table 2.15: Mowiol Mounting Medium 

Reagent Mowiol 4-88 

(CALBIOCHEM code: 

475904) 

Glycerol  

 
dH2O 0.2 M Tris pH 8.5 

 2.4g 6 g 6mL 12mL 
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2.12 Statistic analysis 

2.12.1 Statistical analysing of data generated by the qPCR; Stimulation time series of 

HUV-EC-C and HMLE cell lines  

The raw data of the gene of interest from the qPCR, given as threshold cycle number 

(Ct), was first converted into fold changes in Microsoft Excel 2011 (version 14.7.2). This was 

performed as following; the Ct mean of the reference gene (TBP) were subtracted from the Ct 

mean of the gene of interest, creating the normalized ΔCt value. The ΔCt values were further 

corrected by the average ΔCt values of the non-stimulated cultured cells at each time point, 

resulting in the ΔΔCt value. The fold change was then calculated by 2(-
ΔΔ

Cq). For the non-

stimulated cells, the ΔCt values were also normalized against the ΔCt of the 0h cells, this to 

observe any changes from the start of the stimulation.  

Statistical analyses of the differences between the mRNA expressions of the 

investigated genes were performed in Graph Pad Prism 7 (version 7.0b). Missing values were 

handled with the average and standard error of each time point within the two groups 

(stimulated and non-stimulated/control) were calculated together with the number of 

measured values in the actual time point. To find statistical significant effects of the cytokine 

stimulation and the time of stimulation, two-way ANOVA was performed on the datasets. 

Further Sidak’s multiple comparison tests was used to compare the fold change at a given 

time point between the stimulated group and control group, and Dunnett’s multiple 

comparison test was used to compare the changes from 0h in fold changes within a group. 
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2.12.2 Statistical analysing of data generated on proliferation and differentiation of T 

cells in coculture  

Figure 2.2 present the grouping system over the data produced of T cells cocultured 

with MSCs. CD4+ T cells isolated from the main groups: healthy (n=5), SLE (n=5) and LN 

(n=5), were cultured under three main conditions: alone (T cell), in coculture with stimulated 

and non-stimulated MSCs. In addition the effects of the different ratio of MSCs on CD4+ T 

cells were evaluated, with T cells either cocultured in a low ratio (1:100, MSCs:CD4+Tcells) 

or high ratio (1:1, MSCs:CD4+Tcells). The changes in T cell proliferation were examined by 

the Alamar Blue proliferation assay, where the T cell proliferation was measured as optical 

density (OD) at day 0, day 5, day 7 and day 10.  To analyse the statistical significant effects 

provided by the time and coculture two-way ANOVA and the post-hoc analyses of Dunnett’s 

and Tukey’s multiple comparison tests were performed. Flow cytometry technique was used 

to measure the CD4+ T cells differentiation to different Th cells subsets in coculture with 

MSCs at day 10. The CD4+ T cells differentiation was examined to be either contact 

depended or not by applying a Transwell system, which prohibited direct contact between T 

cells and MSCs (nhealthy=3, nsick=3). As control cell line, the same experiment was performed 

by HUV-EC-C cells (endothelial cells) to compare with MSCs (n=3). Statistical analyses of 

the differences between the proliferations and differentiation of the cocultured T cells were 

performed in Graph Pad Prism 7 (version 7.0b). Missing values were handled with the 

average and standard error of each time point within the tree culture conditions (T cells alone, 

cocultured with stimulated MSCs, cocultured with non-stimulated MSCs).  
 

Figure 2.2: Overview over the grouping system that includes the main groups the T cells were isolated from, which 
culture condition and ratio with MSCs the T cells were cultured in. For the culture condition “T cells alone” the 1:1 and 
1:100 cell ratio refer to the matching T cell number as for the cocultured T cells.  *Duration of coculture* indicate for when 
T cells were harvested for measurement. For the proliferation assay, the T cell proliferation was measured at before culturing 
(day 0) and after five, seven and ten days after start of culturing. The measurement of Th subset with flow cytometry 
occurred only before culturing (day0) and after ten days in culture with MSCs.  

 

Ratio MSCs:T 

Culture condition 

Duration of culture 
condtion  

Main group  Healthy, SLE, LN  

0, 5, 7, 10 days* 

T cell alone 

1:1 1:100 

Coculture with 
stimulated MSCs 

1:1 1:100 

Coculture with non-
stimulated MSCs 

1:1 1:100 
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Figure 3.1: Expression of A.] TNFα , B.] IL-1β, C.] CCL19, D.] ICAM-1 and E.] VCAM-1 in MSC stimulated by 
8ng/mL TNFα  and IL-1β  for 6h, 12h, 24h, 48h and 72h.  Data reported as mean with SEM. Two-way ANOVA was 
performed with the post-hoc analysis of Sidak’s multiple comparison test (to compare between the groups at given time 
point – marked with *) and Dunnett’s multiple comparison test (to compare within a group towards time point 0h – 
marked with #). Only statistical significant values are included in the figures and marked with either “*” or “#” where: 
*/# equals a p-value <0.05, **/## equals a p-value <0.01, *** /### equals a p-value <0.001 and ****/#### equals a p-
value <0.0001. This unpublished result is a part of a pilot study performed in the research group RAMP by my co-
supervisor. 

3 Results 

3.1 Gene expression of control cell lines  
To study under which inflammatory conditions MSCs could function as a stimulator 

of the immune system, a screening were performed. In this screening MSCs were stimulated 

with various combination of cytokines at different time points, to examine the optimal 

conditions for these cells. By combining low concentration (8ng/mL) of the proinflammatory 

cytokines TNFα and IL-1β, the immune-stimulatory characteristics of the MSCs were more 

potent MSCs significantly increased the expression of TNFα, IL-1β, CCL-19, ICAM-1 and 

VCAM-1 as presented in Figure 3.1. CCL19, ICAM-1 and VCAM-1 had their peak in 

mRNA expression after 6hour with stimulation, therefore this time with stimulation was used 

in the coculture between MSCs and CD4+ T cells. In the first phases of screening, when only 

one cytokine were used: the LTβR and PDPN were expressed for both stimulated and non-

stimulated MSCs with relatively high Ct values, but the expressions were not affected by the 

stimulation (data not shown). (My co-supervisor performed this screening before I started 

with my master project).  

The cell lines, HMLE and HUV-EC-C, were cultured in 24 well plates and stimulated 

with a combination of 8ng/mL TNFα and IL-1β. The cells were stimulated for 0, 1, 3, 6, 12, 

24, 48 and 72 hours before they were harvested.  
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3.1.1 Stimulation of HMLE  

An increase in the mRNA expression of IL-1β, TNFα and ICAM-1, represented as 

fold changes, were observed in HMLE cells upon cytokine stimulation with 8ng/mL of TNFα 

and IL-1β (Figure 3.2), but they did not express CCL19, CXCL13 and VCAM-1 as no 

mRNA were detected by qPCR (data not shown).  The results of the statistical analysis of the 

fold changes by two-way ANOVA are shown in Table 3.1 for HMLE cells. Two-way 

ANOVA was conducted to examine both the individually and combined effects of stimulation 

and time on the fold change of the mRNA expression of the gene of interest in the HMLE 

cells (Table 3.1). Stimulation, time and the interaction statistical significantly influenced the 

expression of IL-1B and TNFα in HMLE cells, while the expression of ICAM-1 was affected 

by stimulation alone inducing a statistical significant effect. 

Figure 3.2: mRNA expression of IL-1β(A), TNFα(B) and ICAM-1(C) in HMLE cells stimulated by 8ng/mL of TNFα  
and IL-1β  and harvested after 0h, 1h, 3h, 6h, 12h, 24h, 48h and 72h after stimulation. Two-way ANOVA was 
performed with the post-hoc analysis of Sidak’s multiple comparison test (to compare between the groups at given time point 
– marked with *) and Dunnett’s multiple comparison test (to compare within a group towards time point 0h – marked with 
#). Data reported as mean with SEM, only statistical significant values are reported. A.] mRNA expression of IL-1β: 
Sidak’s multiple comparison test: 1h (p=0.0006), 3h(p=0.0107), 12h(p=0.0388) and 24h (0.0009). Dunnett’s multiple 
comparison test: 1h (p=0.0016), 3h(p=0.0093) and 24h (p=0.0025). B.] mRNA expression of TNFα  Sidak’s multiple 
comparison test:1h (p=0.0003), 3h(p=0.0072), 24h(p=0.0182), 48h(p<0.0001) and after 72h(p<0.0001). Dunnett’s multiple 
comparison test: 1h (p=0.0010), 3h(p=0.0094), 24h (p=0.0299), 48h (p<0.0001) and 72h (p<0.0001).  C.] mRNA expression 
of ICAM-1: Sidak’s multiple comparison test:1h (p=0.0026) and 3h(p=0.0118). Dunnett’s multiple comparison test: 1h 
(p=0.0023), 3h(p=0.0099) D-F] Controls normalized to the 0h fold change for the expression of IL-1β  (D), TNFα  (E) 
and ICAM-1 (F).  
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Performing the post-hoc analyses, Sidak’s multiple comparison test and Dunnett’s 

multiple comparison test, after the 2-way ANOVA test gave the opportunity to compare the 

expression of the gene of interest in the stimulated cells at each time point compared to the 

non-stimulated control cells and to the 0h control. The expression of IL-1β had an 

immediately increase upon stimulation with the fold change around 8 at the 1h time point, a 

bit less at 3h, but still significant. At the 6h time expression decreased and the difference 

became statistical insignificant with the non-stimulated expression with a fold change around 

2 (Figure 3.2.A). At the 12h time point, the expression increased in stimulated cells and it 

was statistically significant compared non-stimulated group with a fold change 5 in the 

stimulated group (p=0.0388). Increase in expression was continued until the 24h time point, 

but at the 48h time point, no statistical differences was observed compared to the 0h time 

point with a fold change of 2.884. The expression pattern of TNFα in the stimulated cells 

showed a statistically significant increase after one-hour stimulation (fold change of 7.735) 

and it decreased slightly at the 6h and 12h time point. The expression started to increase and 

became statistically significant at 24h time point with a fold change around 6 (Figure 3.2.B). 

The ICAM-1 expression (Figure 3.2.C) had an immediate statistically significant increase 

after one hour with a fold change of 4.872 and a decrease at the 6h time point (1.263). The 

ICAM-1 expression was slightly increased at the 12h time point (fold change: 1.990), but it 

was not statistically significant.   

 
Table 3.1: Two-way ANOVA HMLE result table 

 HUV-EC-C 
IL-1β  

HUV-EC-C 
TNFα  

HUV-EC-C 
ICAM-1 

Interaction 
(Time*stim.) 

F(7,29)=2.591 
 p= 0,0332 (*) 

F(7, 28) = 11,00 
p<0.0001 (****) 

F(7, 29) = 2,264  
p=0.0574 (ns) 
 

Time  F(7,29)=2.708 
p=0.0274 (*) 

F(7, 28) = 10,91 
p<0.0001 (****) 

F(7, 29) = 2,336  
p=0.0509 (ns) 

Stimulation F(1, 29) =49.42 
p<0.0001 (****) 

F(1, 28) = 124,3 
p<0.0001 (****) 

F(1, 29) = 25,62 
p<0.0001 (****) 
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3.1.2 HUV-EC-C cells 

The HUV-EC-C cells stimulated with 8ng/mL of TNFα and IL-1β showed an 

increased in the mRNA expression as fold changes of IL-1β, TNFα, ICAM-1 and VCAM-1 

as presented in Figure 3.3.  The expression of LTβR in HUV-EC-C cells was not affected by 

the TNFα and IL-1β stimulation (Figure 3.3.E), but the Ct-values for LTβR for both 

stimulated and non-stimulated HUV-EC-C cells were relatively high compared to the 

reference gene (see appendix, Fig. A) indicating a relatively high and unchanged expression. 

The results of the statistical analysis of the fold changes by two-way ANOVA are shown in 

Table 3.2. No mRNA expression of CCL19, CCL21, CXCL13 and PDPN were observed 

when HUV-EC-C cell line was stimulated by 8ng/mL IL-1β and TNFα.  

A two-way ANOVA performed on the HUV-EC-C cells, showed that the individual 

effects of time, stimulation and the combined effect would give a statistically significant 

increase in mRNA expression of IL-1β, TNFα, ICAM-1, and VCAM-1 (p<0.0001) (Table 

3.2). The expression of LTβR was influenced by the stimulation alone (F(7,32)=7,092, 

p=0,0120), but neither the time alone nor the interaction between time and stimulation gave 

any statistically significant effect. 

The Sidak’s multiple comparison test showed a statistical significant increase of 

mRNA expression of IL-1β in the stimulated cells after 3h compared to the control cells (non-

stimulated) with an fold change around 52 (p=0.0221). The increase in IL-1β expression 

continues with an approximate 415 fold change after 72 hours (Figure 3.2.A). Comparing the 

mRNA expression of TNFα between the stimulated and control cells, and the expression of 

TNFα within the stimulated cells, showed that there were only statistically significant 

differences between the stimulated and control cells at 3h, 6h and 12h time points (Figure 

3.2.B).  The peak of TNFα mRNA expression occurred after 3hours with a fold change 

around 40 (p<0.0001), and expression decreased and became statistical insignificant at 24 

hours with a fold change of 6,606 compared to the non-stimulated cells (p=0.4226) and the 0h 

time point (p=0.2837) 
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Figure 3.3: mRNA expression of IL-1β  (A), TNFα  (B), ICAM-1 (C), VCAM-1 (D) and LTβR (E) given as fold 
changes  (mean with SEM) in HUV-EC-C cells stimulated by 8ng/mL of TNFα  and IL-1β  and harvested after 0, 1, 3, 
6, 12, 24, 48 and 72hours (h. Two-way ANOVA was performed with the post-hoc analysis of Sidak’s multiple comparison 
test (to compare between the groups at given time point – marked with *) and Dunnett’s multiple comparison test (to 
compare within a group towards time point 0h – marked with #). Data reported as mean with SEM, only statistical significant 
values are reported. A.] mRNA expression of IL-1β: Sidak’s multiple comparison test: 3h (p=0.031), 6h(p<0.0001), 
12h(p<0.0001), 24h(p<0.0001), 48h(p<0.0001), and 72h(p<0.0001). Dunnett’s multiple comparison test: 3h (p=0.0221), 6h 
(p<0.0001), 12h (p<0.0001), 24h (p<0.0001), 48h(p<0.0001), and 72h(p<0.0001), B.] mRNA expression of TNFα  Sidak’s 
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multiple comparison test: 3h (p<0.0001), 6h(p<0.0001) and 12h(p<0.0001). Dunnett’s multiple comparison test: 3h 
(p=0.0001), 6h (p<0.0001), 12h (p<0.0001), C.] mRNA expression of ICAM-1: Sidak’s multiple comparison test: 3h 
(p<0.0001), 6h(p<0.0001), 12h(p<0.0001) and 24h (p<0.0001). Dunnett’s multiple comparison test: 3h (p<0.0001), 6h 
(p<0.0001), 12h (p<0.0001), 24h (p<0.0001) and 48h(p=0.0384) D.] mRNA expression of VCAM-1: Sidak’s multiple 
comparison test: 3h (p=0.031), 6h(p<0.0001), 12h(p<0.0001), 24h(p<0.0001), 48h(p=0.002), and 72h(p=0.007). Dunnett’s 
multiple comparison test: 3h (p<0.0001), 6h (p<0.0001), 12h (p<0.0001), 24h (p<0.0001), 48h(p=0.0015), and 
72h(p=0.0006), D.] mRNA expression of LTβR: Neither the Sidak’s nor Dunnett’s multiple comparison test gave a 
statistical significant changes in the mRNA expression of LTβR when stimulated with TNFα and IL-1β. F-J] Controls 
normalized to the 0h fold change for the expression of IL-1β(F), TNFα(G), ICAM-1(H), VCAM-1(I) and LTβR (J).  

 

The mRNA expressions of ICAM-1 and VCAM-1 (Figure 3.2.C & D) upon 

stimulation of HUV-EC-C cells showed a massive increase after 3hours with and fold change 

of 548 and 123.7 respectively. The peak in expression observed after 12 hours and was 

followed by a decrease at the 24h, 48h, and 72h time points There was not detected any 

statistical significant change in mRNA expression of LTβR in HUV-EC-C cells after 

stimulation in different time points (the Sidak’s and Dunnett’s multiple comparison tests on 

the stimulated and control group were performed) (Figure 3.2.E). 
 

Table 3.2: Results of the two-way ANOVA of the mRNA expression given as fold changes of IL-1β , TNFα , ICAM-1, 
VCAM-1 and LTβR in HUV-EC-C cell lines stimulated with 8ng/mL IL-1β  and TNFα .   

 HUV-EC-C 
IL-1β  

HUV-EC-C 
TNFα  

HUV-EC-C 
ICAM-1 

HUV-EC-C 
VCAM-1 

HUV-EC-C 
LTβR 

Interaction 
(Time*stim.) 

F(7,32) = 78,63  
p<0,0001 
(****) 

F(7,32) = 23,04  
p<0,0001 
(****) 

F(7,32) = 71,24  
p<0,0001 
(****) 

F(7,32) = 159  
p<0,0001 
(****) 

F(7,32) = 0,9405 
p=0,4897 (ns) 

Time  F(7,32) = 78,50 
p<0,0001 
(****) 

F(7,32) = 23,03  
p<0,0001 
(****) 

F(7,32) = 71,24  
p<0,0001 
(****) 

F(7,32) = 159  
p<0,0001 
(****) 

F(7,32) = 0,9752  
p=0,4659 (ns) 

Stimulation F(1,32) = 727  
p<0,0001 
(****) 

F(1,32) = 143  
p<0,0001 
(****) 

F(1,32) = 465,2  
p<0,0001 
(****) 

F(1,32) = 904,4 
p<0,0001 
(****) 

F(1,32) =7,092 
p=0,0120 (*) 
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3.2 Effects of MSC on the CD4+Tcells differentiation and proliferation 
CD4+ T cells isolated from the main groups: healthy (n=5), SLE (n=5) and LN (n=5), 

were cultured under three main conditions: alone (Tcell), in coculture with stimulated and 

non-stimulated MSCs. In addition the effects of the different ratio of MSCs on CD4+ T cells 

were evaluated, with MSCs cells either cocultured in a high ratio (1:100, MSCs:CD4+Tcells) 

or low ratio (1:1, MSCs:CD4+Tcells). The changes in T cell proliferation were examined by 

the Alamar Blue proliferation assay, where the T cell proliferation was measured as optical 

density (OD) at day 0, day 5, day 7 and day 10. Flow cytometry technique was used to 

measure the CD4+ T cells differentiation to different Th cells subsets in coculture with MSCs 

at day 10. As control cell line, the same experiment was performed by HUV-EC-C cells 

(endothelial cells) to compare with MSCs (n=3). 

 

3.2.1 The positive effects of stimulated MSCs on CD4+ T cell proliferation. 

To find the effect of MSCs on the proliferation of CD4+ T cells isolated from healthy 

blood donors, SLE- and LN patients, a proliferation assay was performed. Figure 3.4 present 

the data related to the proliferation of T cells from three groups (Healthy, SLE, and LN), 

cocultured under the three conditions: T cell alone, in coculture with stimulated MSCs and 

coculture with non-stimulated MSCs. Two-way ANOVA was performed, which gave an 

examination over the effects provided by both time and coculture individually and combined 

had on the proliferation (Table 3.3). First, the post-hoc analysis with Tukey’s multiple 

comparison test was applied to examine statistical differences between the culture conditions 

of the CD4+ T cells, then Dunnett’s multiple comparison test was used to test if there were 

any statistical significant changes in proliferation compared to the day 0.  
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Figure 3.4: Proliferation of CD4+ T cells isolated from healthy blood donors (A, D), LN patients (B, E) and SLE 
patients (C, F) in coculture with MSC at 1:100 or 1:1 ratio. The T cells were either cultured alone (Tcell – dark blue) or in 
coculture with MSC, which were either stimulated (Stim – turquoise) or not stimulated (Non-stim, pink) before coculture. 
Two way ANOVA and the post-hoc analyses Dunnett’s (#) and Tukey’s (*) multiple comparison tests were performed, to 
test for differences between the proliferation at the different days to D0 within one group and to test for differences between 
the different group at a given time point respectively. Data reported as mean with SEM. Only statistical significant values are 
included in the figures and marked with either “*” or “#” where: */# equals a p-value <0.05, **/## equals a p-value <0.01, 
*** /### equals a p-value <0.001 and ****/#### equals a p-value <0.0001. In addition the statistical significant values are 
colour coded, where turquoise marks and pink marks are for cocultured with simulated MSCs and non-stimulated MSCs 
respectively. Blue marks indicate comparison of T cell proliferation between T cells in coculture with stimulated MSCs and 
non-stimulated MSCs. See appendix Table B to Table D for adjusted p-values. OD; optical density. 
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on the T cell proliferation.  This was observed with an increased T cell proliferation when the 

T cells were in coculture with MSCs compared to when they were cultured alone (Figure 

3.4.A/C/E). Statistical analysis with the two-way ANOVA showed that both coculture and 

time individually and combined had a positive effect on the T cell proliferation (Table 3.3), 
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Table 3.3: ANOVA table for the two-way ANOVA performed on the T cell proliferation from the three main groups  

 1:1 1:100 

 Healthy SLE LN Healthy SLE LN 

Interaction  
F(6,48)=0.274 
p=0.9465  
 (ns) 

F(6.45)=0.2188 
p=0.9688 
 (ns) 

F(6.48)=0.1397 
p=0.9902 
 (ns) 

F(6,48)=9.086 
p<0.0001 
(****) 

F(6.45)=5.229 
p<0.0001 

(****) 

F(6.48)=2.305 
p<0.0001 

(****) 

Time 
F(3,48)=5.443 
p=0.0027 
 (**) 

F(3.45)=4.348 
p=0.0090 
 (**) 

F(3.48)=4.911 
p=0.0047 
 (**) 

F(3,48)=12.5 
p<0.0001 
(****) 

F(3.45)=10.99 
p<0.0001 

(****) 

F(3.48)=6.921 
p<0.0001 

(****) 

Coculture 
F(2,48)=0.995 
p=0.3772 
 (ns) 

F(2.45)=0.2274 
p=0.7975 
 (ns) 

F(2.48)=0.1612 
p=0.8516 
 (ns) 

F(2,48)=34.48 
p<0.0001 
(****) 

F(2.45)=19.97 
p<0.0001 

(****) 

F(2.48)=15.6 
p<0.0001 

(****) 

 

The results from the post-hoc analyses gave that T cells isolated from healthy donors 

and cocultured in high ratio (1:100) with MSC had after five days a statistical significant 

increase when compared to T cells cultured alone (Figure 3.4.A). The proliferation of these 

healthy T cells in coculture continued to increase, and at day 7, in coculture, there was also a 

statistical significant difference between the proliferation compare to the day 0. At the day 10, 

the proliferations difference between T cells cocultured with stimulated MSCs and non-

stimulated MSCs were observed, and it was statically significant (p <0.0001).  

The effects of the MSCs were similar to the T cells isolated from SLE patients (1:100) 

as for the effects observed with the T cells isolated from the healthy blood donors (Figure 

3.4.C). T cells at day 7 proliferated statistically significant in the cocultured compared to T 

cells cultured alone, and at day 10 there were a statistical significant increase in proliferation 

of T cells cocultured with stimulated MSCs compared to the T cells cocultured with non-

stimulated MSCs (p=0.0003). The proliferation of the T cells isolated from the LN patients 

was increased when cocultured with a high MSCs: CD4+ T cells ratio (1:100) (Figure 3.4.E), 

but we did not observed statistical significant difference between the T cells cocultured with 

stimulated and non-stimulated MSCs at the day 10 (ratio 1:100).   

When MSCs were cocultured with a low number of T cells (1:1 ratio), only time had a 

statistical significant influence on the T cell proliferation for all three groups (T cells cultured 

alone, T cells cocultured with stimulated and non-stimulated MSCs) at day 10 (Table 3.3). As 

showed in Figure 3.4.B/D/F, the proliferation of the T cells isolated from healthy (B), SLE 

patients (D) and LN patients (F), had no statistical significant differences by the post-hoc 

analyses between the three culture conditions for the T cells at 1:1 ratio.  

T cells proliferation related to stimulated-MSCs:CD4+ T-cells 1:100 ratio for all 

individuals in SLE and LN groups were plotted (Figure 3.5). In the SLE group, all patients 

until day 7 showed same proliferation pattern, but at day 10, they showed different 
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proliferation pattern (some higher and some lower) (Figure 3.5.A). We did not see the same 

pattern in LN group and there were a larger variance between the patients (Figure 3.5.B) 

T cells cultured alone (both 1.1 and 1:100 ratios) from the three main groups plotted 

together, and all 15 patients from three groups showed the same proliferation pattern and no 

statically significant differences were observed between the groups (Figure 3.6). 

 
Figure 3.5: Proliferation assay of CD4+ T cells isolated from SLE (A.) and LN (B.) patients cocultured with 
stimulated MSCs 

 

 
Figure 3.6: Proliferation assay of CD4+ T cells isolated from healthy blood donors, LN patients and SLE patients and 
cultured alone. A.] T cell cultured alone for the 1:100 coculture setup and B.] T cells cultured alone for the 1:1 
coculture setup. 
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EC-C cells, only time will have a statistical significant effect on the T cell proliferation 

(Table 3.4).   

 The post hoc analyses of the proliferation of the T cells showed that the coculture in 

1:100 ratio were increased from day 5 when compared to the T cells cultured alone (Figure 

3.7.A). We did not observe a statically significant difference in T cells proliferation 

cocultured with stimulated HUV-EC-C cells compered to non-stimulated at day 10. When the 

T cells were cultured at 1:1 ratio, no statistically significant differences was observed by the 

post-hoc analyses between three culture conditions (Figure 3.7.B), but there were statistical 

significant differences between the day 0 and day 10 for all culture conditions of T cells. 

 
Table 3.4: Two-way ANOVA of the proliferation assay of CD4+ T cells in coculture with HUV-EC-C.  

 HUV-EC-C 1:1 HUV-EC-C 1:100 

Interaction 

(time*coculture) 

F (6, 24) = 0,1080  

p = 0,9947(ns) 

F (6, 24) = 15,10 

p < 0.0001 (****) 

Time F (3, 24) = 14,54  

p < 0.001 (****) 

F (3, 24) = 53,99 

p < 0.0001 (****) 

Coculture F (2, 24) = 0,2329  

p = 0,7940 (ns) 

F (2, 24) = 60,35 

p < 0.0001 (****) 

 

 

 
Figure 3.7 Proliferation of CD4+ T cells isolated from healthy blood donors in coculture with HUV-EC-C in 1:00 (A) 
and 1:1 (B) ratios. The T cells where either cultured alone (T cell – dark blue) or in coculture with HUV-EC-C, which were 
either stimulated with IL-1β and TNFα (Stim – turquoise) or non-stimulated (non-Stim – pink). Two way ANOVA and the 
post-hoc analyses Dunnett’s (#) and Tukey’s (*) multiple comparison tests were performed, to test for differences between 
the proliferation at the different days to D0 within one group and to test for differences between the different group at a given 
time point respectively.. Data reported as mean with SEM. Only statistical significant values are included in the figures and 
marked with either “*” or “#” where: */# equals a p-value <0.05, **/## equals a p-value <0.01, *** /### equals a p-value 
<0.001 and ****/#### equals a p-value <0.0001. In addition the statistical significant values are colour coded, where 
turquoise marks and pink marks are for cocultured with simulated MSCs and non-stimulated MSCs respectively. See 
appendix Table E for adjusted p-values. OD; optical density. 
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3.2.3 Flow cytometric analysis of CD4+ Th subsets 

Figure 3.7 present the positive compensation of the gating system, which was applied 

in this study. Single cells were identified by FSC-A vs. FSC-H blots (Figure 3.8.A). After 

gating on live T cells (PI negative cells, Figure 3.8.B), CD4+Th subsets were identified by 

CD4+T cells vs. SSC-A blot (vio-green positive, Figure 3.8.C). The CD4+T cells were 

analysed for CXCR3 and CCR4 expression (Figure 3.8.D). The CXCR3 positive cells from 

Figure 3.8.D were gated and further analysed with their expression of CCR6 and CCR10 

(Figure 3.8.E), which will determine if the cells belonged to the Th1 or Th17 subpopulation.  

From Figure 3.8.D, where expression CXCR3 and CCR4 were plotted against each other, 

CCR4 positive cells were gated and further analysed in Figure 3.8.F to distinguish Th2 cells 

from the Th1/Th17 population. The CD4+ cells were also analysed for CCR4 and CCR6 

expression to distinguish Th9 cells (Figure 3.8.G). Th22 cells were detected by CXCR3 vs. 

CCR10 plot (Figure 3.8.H). 

 
Figure 3.8: Positive control gating strategy for CD4+ Th subsets population.  
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3.2.4 CD4+ T cell differentiation in coculture with MSCs 

Flow cytometry was performed to examine the CD4+ T cell differentiation in the 

coculture with MSCs. The percentage of the Th1, Th2, Th17, TH17/TH1, Th9 and the Th22 

subsets of healthy donors, SLE and LN patients are presented in Figure 3.9. Statistical 

analyses were determined by using one-way ANOVA (Table 3.5) and the Sidak’s multiple 

comparison test as post hoc analysis.  The different culture set up for the CD4+ T cells were 

only statistical significant for the T cells isolated form healthy group for Th2 and Th17 

subsets, when CD4+ T cell were cocultured with stimulated MSCs a 1:100 ratio at day 10 

compared to the day 0 and CD4+ T cells cultured alone at day 10 at 1:100 ratio (Figure 3.9.B 

& C). For the rest of the Th subsets in all three groups, only non-statistical significant trends 

were observed. For example, the Th2 subset showed a trend for the SLE group with increase 

level at day 10 for cocultured with stimulated MSCs at 1:100 ratio compared to the day 0 and 

CD4+ T cells cultured alone at day 10 at 1:100 ratio.  

 

To examine the variation in the Th subsets between the healthy, SLE and LN group, 

the levels of the various subsets at day 0 were compared between the groups. One-way 

ANOVA showed that there were only statistical significant differences for Th1 and Th9 

subsets at day 0 in the SLE group compared with the healthy group. Both subsets were lower 

in the SLE group compared to the healthy group (Figure 3.10.A & E).  For the LN group, a 

trend with higher levels of Th2 and Th17 were observed, but the differences were not 

significant (Figure 3.10.B & C).  
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Figure 3.9:  Th subsets (from healthy donors, and SLE and LN patients) differentiation in coculture with MSCs. 
Abbreviations; T cells from day 0 (D0), T cells grown alone for ten days (T), T cells grown in coculture with MSCs 
pre-stimulated for 6hours with TNFα  and IL-1β(S), T cells grown in coculture with non-stimulated MSCs (N). Data 
are presented as mean with SEM. One-way ANOVA and the post-hoc analysis Sidak’s multiple comparison tests were 
performed on the Th-cell subsets within each group (Healthy, SLE or LN). A.] Th1 subset; B.] Th2 subset; statistical 
significant differences observed for the healthy group between the T cells at day 0 (D0) and T cells from coculture with pre-
stimulated MSC (S) (p=0.0373), and between T cells cultured alone at day 10 (DT) and T cells from coculture with pre-
stimulated MSC (S) (p=0.0462). C.] Th17 subset; statistical significant differences occurred only for the healthy group 
between the T cells at day 0 (D0) and T cells from coculture with pre-stimulated MSC (S) (p=0.0224). D.] Th1/Th17 subset; 
E.] Th9 subset; F.] Th22 subset.  
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Table 3.5: One-way ANOVA results of the changes in Th subset populations upon coculture with stimulated or non-
stimulated MSCs.  

 Healthy 1:100  SLE 1:100  LN 1:100 

Th1 
F(3, 16)=1.575  

p=0.2345 (ns) 

 F(3, 16)=0.1878  

p=0.9031 (ns) 

 F(3, 16)=0,1653  

p=0,9182 (ns) 

Th2 
F(3, 16)=4.259  

p=0.0217 (*) 

 F(3, 16)=0.5540  

p=0.6528 (ns) 

 F(3, 16)=0.3277 
p=0.8054 (ns) 

Th9 
F(3, 16)=0.4930  

p=0.6922 (ns) 

 F(3, 16)=1,611  

p=0.2261 (ns) 

 F(3, 
16)=0.08958 
p=0.9647 (ns) 

Th17 
F(3, 16)=3.955  

p=0.0276 (*) 

 F(3, 16)=0.6463  

p=0.5965 (ns) 

 F(3, 16)=0.1580 
p=0.9230 (ns) 

Th22 
F(3, 16)=1.103  

p=0.3766 (ns) 

 F(3, 16)=1.707  

p=0.2057 (ns) 

 F(3, 16)=1.915  

p=0.1679 (ns) 

TH1/Th17 
F(3, 16)=0.3350  

p=0.8002 (ns) 

 F(3, 16)=1.142  

p=0.3624 (ns) 

 F(3, 16)=0.6476  

p=0.5958 (ns) 

 

 

 
Figure 3.10: Th subsets from healthy donors, and SLE and LN patients at day 0. One way ANOVA and the post-hoc 
analysis Sidak’s multiple comparison tests were performed on the Th-cell subsets within each group (Healthy, SLE or LN) 
Statistical significant values are marked with  “*” where: * equals a p-value <0.05, ** equals a p-value <0.01 and *** 
equals a p-value <0.001.A.] Th1 subset; there were significant statistical differences between the levels of Th1 from healthy 
blood donors and Th1 from SLE patients (p=0.0449). B.] Th2 subset; C.] Th17 subset; D.] Th1/Th17 subset, E.] Th9 
subset; there were significant statistical differences between the levels of Th1 from healthy blood donors and Th1 from SLE 
patients (p=0.0183). F.] Th22 subset. 
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To determine if the differentiation of Th subsets were depended on direct contact with 

MSCs or not, a Transwell system were used (Figure 3.11). The results showed that Th2 and 

Th17 subsets differentiation were contact dependent since no statistically significant changes 

were observed at 1:100 ratios, especially in the healthy group (Figure 3.11). Further, the 

different Th subset populations in Transwell system were compared with T cells in direct 

contact with MSCs at 1:100 ratios (Figure 3.12). 

 

 
Figure 3.11: Th subset differentiation in T cells obtained from health blood donors (n=3) and patients (n SLE=1, n 
LN= 2), when Transwell system were applied to the culture condition.  T cells from day 0 (D0), T cells grown alone for 
ten days (T), T cells grown in coculture with MSCs pre-stimulated for 6hours with TNFα and IL-1β(S), T cells grown in 
coculture with non-stimulated MSCs (N). Data are presented as mean with SEM. Only statistical significant values are 
included in the figures and marked with either “*”, where: *equals a p-value <0.05, **equals a p-value <0.01, *** /equals a 
p-value <0.001 and **** equals a p-value <0.0001. A.] Th1 subset, B.] Th2 subset, C.] Th17 subset, D.]Th1/Th17 subset, 
E.]Th9 Subset, F.] Th22 subset 
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Figure 3.12: Comparison of the Th subsets when the T cells are cocultured with MSCs. Data is presented as 
mean with SEM. One-way ANOVA and the post-hoc analysis Sidak’s multiple comparison test were performed 
on the Th-cell subsets, which CD4+ T cells were cocultured in direct contact with MSCs or in Transwell system. In 
the post-hoc analysis following comparison were performed; T cells cocultured in direct contact with stimulated 
MSCs compared with T cells cocultured with stimulated MSCs in Transwell system (light blue); T cells cocultured 
in direct contact with non-stimulated MSCs compared with T cells cocultured with non-stimulated MSCs in 
Transwell system (dark blue); T cells cultured alone for the direct contact setup compared with T cells cultured 
alone for the Transwell system (purple). A.] and B.] present the changes in respectively Th2 and Th17 subset 
populations, when T cells from healthy blood donors were cocultured in direct contact or in Transwell 
system with MSCs. The marked statistical significant with an increase levels of Th2 and Th17 population, when 
the T cells from healthy blood donors were cocultured in direct contact with MSCs, were based on the calculation 
in Figure 3.8. C.] and D.]Changes in Th2 and Th17 subset populations for when T cells from patients are 
cultured with MSCs, either in direct contact or in Transwell system. One-way ANOVA and Sidak’s multiple 
comparison test showed statistical reduction in Th17 population for T cells cultured alone in the Transwell system, 
compared to the T cells from SLE patients and cultured without the Transwell system (p= 0.0218). Abbreviations: 
T cells from day 0 (D0), T cells grown alone for ten days (T), T cells grown in coculture with MSCs pre-
stimulated for 6hours with TNFα and IL1β(S), T cells grown in coculture with non-stimulated MSCs (N). 
Only statistical significant values are included in the figures and marked with either “*”, where: *equals a p-value 
<0.05, **equals a p-value <0.01, *** /equals a p-value <0.001 and **** equals a p-value <0.0001 

The one-way ANOVA and the Sidak’s multiple comparisons between Th2 and Th17 

subsets from direct contact compared to the Transwell at 1:100 ratio, showed only 

significantly lower Th17 subset at day 10 for the T cells cultured alone in the Transwell 

system compared to the Th17 subset in the direct contact in SLE group at 1:100 ratio. In the 

Healthy group, Th2 and Th17 populations from cocultured with stimulated MSCs at 1:100 

ratio were higher, but not statically significant, in direct contact compared to Transwell 

system. In the SLE and LN groups, Th2 and Th17 populations in all three different setups in 

direct contact (cocultured with stimulated MSCs, cocultured with non-stimulated, and T cells 

cultured alone at 1:100 ratio) were higher compared to Transwell system, but it were not 

statically significant. 
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3.2.5 CD4+ T cell differentiation in coculture with HUV-EC-C cells 

The same experiment was performed with HUV-EC-C cells to examine if HUV-EC-C cells 

also could induce differentiation of CD4+ T cell isolated from healthy individuals (n=3) or 

not (Figure 3.13). One-way ANOVA analysis showed that only the coculture between T cells 

with HUV-EC-C cells could only have a statistical significant effect on the Th1/Th17 subset 

population (F(3,8)=13.73,p=0.0016), but not for the remaining CD4+ subset population. 

Th1/17 subset increased significantly at day 10 in all three different setups (cocultured with 

stimulated HUV-EC-C, cocultured with non-stimulated, T cells cultured alone at 1:100 ratio) 

compared to day 0, but there was not a significant difference between cocultured with 

stimulated HUV-EC-C compared to T cells cultured alone at 1:100 ratio. 

 
Figure 3.13: Th subsets healthy donor in coculture with HUV-EC-C cell line, which were either pre-stimulated with 
TNFα  and IL-1β  (S) or were non-stimulated (N). T cells from day 0 (D0) and T cells grown alone for ten days (T).  
One way ANOVA and the post-hoc analysis Sidak’s multiple comparison tests were performed on the Th-cell subsets, and 
statistical significant values are marked with  “*” where: * equals a p-value <0.05, ** equals a p-value <0.01 and *** equals 
a p-value <0.001. A.] Th1 subset, B.] Th2 subset, C.] Th17 subset, D.] Th1/Th17 subset; Statistical significant differences 
between D0 to T (p=), D0 to N (p=) and between D0 and S (p=), E.] Th9 subset, F.] Th22 subset  

  

0D T N S
0
5
10
15
20
25
30
35

%
 T

h-
ce

ll 
su

bs
et

 p
op

ul
at

io
n

HUV-EC-C : Th1 1:100

0D T N S
0
1
2
3
4
5
6

%
 T

h-
ce

ll 
su

bs
et

 p
op

ul
at

io
n

HUV-EC-C : Th17 1:100

0D T N S
0
5
10
15
20
25
30
35

%
 T

h-
ce

ll 
su

bs
et

 p
op

ul
at

io
n

HUV-EC-C Th9 1:100

0D T N S
0
1
2
3
4
5
6
7

%
 T

h-
ce

ll 
su

bs
et

 p
op

ul
at

io
n

HUV-EC-C  Th2 1:100

0D T N S
0

3

6

9

12

%
 T

h-
ce

ll 
su

bs
et

 p
op

ul
at

io
n

HUV-EC-C Th1/17 1:100

*
*

**

0D T N S
0.0

0.3

0.6

0.9

1.2

%
 T

h-
ce

ll 
su

bs
et

 p
op

ul
at

io
n

HUV-EC-C Th22 1:100

A. B.

C. D.

E. F.



 67 

3.2.6 Flow analysis on T cells cocultured in 1:1 ratio of MSCs 

CD4+ T cells viability among all three groups (Healthy, SLE and LN) reduce sharply 

at day 10 in 1:1 ratio  (MSCs:CD4+ T cells) coculture set up compared to 1:100 (Table 3.6). 

Due to the low number of live CD4+ T cells, we observed dramatically small cell population, 

few cells, (Figure 3.14) in different Th subsets selected populations. In some of the patients, 

only one or two cells could (e.g., Th17 in the Healthy group, Table 3.6) change the 

population percentage significantly. Hence, it is not possible to evaluate reliably the CD4+ T 

cells differentiation at 1:1 ratio. 

 
Table 3.6: Cell count and the population percentage of different CD4+ T cells subsets after cocultured with non-
stimulated MSCs at 1:1 ratio. 

  Healthy SLE LN 
Live % 11.4 2.27 14.3 

# 1674 302 1923 
Th1 % 28.1 0 7.3 

# 406 0 123 
Th2 % 0.42 0 2.31 

# 6 0 39 
Th17 % 0.21 0 2.02 

# 3 0 34 
Th9 % 22.8 40.6 12.7 

# 329 54 214 
Th1-17 % 4.64 6.77 1.6 

# 67 9 27 
Th22 % 0 1.5 0 

# 0 2 0 
% Cell population percentages, # cell count  
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Figure 3.14: CD4+ T cells from SLE patient (P1) cocultured with non-stimulated MSCs at 1:1 ratio.  
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3.3 Confocal of murine kidney 
Tissue specific MSC-like cells were detected in murine kidneys (NZBW-F1), which 

have been stained with immunofluorescence marked antibodies against PDGFR-α, Nestin, 

SCA-1 and CD45 (Figure 3.15). The MSC-like cells were characterized by their expression 

of PDGFR-α, Nestin and SCA-1 and lacking the expression of CD45. There were endothelial 

cells in the veins and arteries and some of the tubular cells, which were positive for Nestin 

and SCA-1, and negative for PDGFR-α and CD45. MSC-like cells were mostly located in the 

pelvic wall within the kidney from the young mice, and CD45+ tissue resident immune cells 

were observed at the edge of the pelvic wall (Figure 3.15.A). The antibody positive and 

protenuric mice had developed TLS in the pelvic wall, relatively larger in protenuric mice 

(Figure 3.15 B & C). In TLS, MSC-like cells were observed mostly in the pelvic wall and in 

between the CD45+ immune cells (Figure 3.15.B & C). Higher magnification of Region of 

Interest (ROI) are shown in Figure 3.16 combined with signal intensity indicators, and signal 

intensity graphs presented in Figure 3.17. The signal intensity indicators were located in two 

distinct areas, area 1 (higher frequency of MSC-like cells) and area 2 (higher frequency of 

CD45+ immune cells) (Figure 3.16 A6, B6 & C6). 
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Figure 3.15: IF of NZBW-F1 murine kidney from A.] Young mouse (6weeks old, Ab negative proteinuria negative), 
B.] Antibody positive mouse (30 weeks old, Ab positive, proteinuria negative), and C.] Protenuric mouse (27 weeks 
old, Ab positive, proteinuria), stained with antibodies against (2.) PDGFR-α , (3.) CD45, (4.) Nestin and (5) SCA-1. The 
arrows in the merged images (6.) are pointing on areas containing MSC-like cells (PDGFR-α, Nestin+, SCA-1+, CD45-).  
The boxes in the merged images are further presented in Figure. 3.X. Abbreviations: A; artery, Ab; dsDNA antibody G; 
Glomeruli, H; Hilum, PW; pelvic wall, T; tubule, US; urinary space, V; vein.  
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Figure 3.16: Magnification of the images from the boxes in “Figure 3.X; IF of NZBW-F1 murine kidney”.  Kidney 
from A.] young mouse (6weeks old, Ab negative, proteinuria negative ), B.] Antibody positive mouse (30 weeks old, Ab 
positive, proteinuria negative), and C.] Protenuric mouse (27 weeks old, Ab positive, proteinuria), stained with 
antibodies against (1.) PDGFR-α , (2.) CD45, (3.) Nestin and (4.) SCA-1. In the merged images with the signal intensity 
graphs (6.), the numbers 1 and 2 are referring to areas with MSC-like cells (1, PDGFR-α+, Nestin+, SCA-1+) and areas 
without these cells (2, low PDGFRα- and high CD45 signals). 
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Figure 3.17: Signal intensity graphs over the areas with areas marked with signal intensity graphs in Figure 3.16. A.1, 
B.1 and C.1 are referring to the areas with MSC-like cells, where A.2, B.2 and C.2 are referring to the areas without these 
cells.  
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4 Discussion  
In the present study we evaluated the immunostimulatory potential of MSCs and their 

effects on proliferation and differentiation of CD4+T cells. We also observed if there were 

any differences in the CD4+ T cell response in normal healthy blood donors and in SLE 

patients with and without nephritis. Based on these observations we investigated if MSCs 

could be a potential candidate as LTo cells in developing TLS.    

 

4.1 The immune-stimulatory potential of MSCs and their effects on CD4+ T 

cells in coculture 
Previous studies have assessed that MSCs can have proinflammatory properties if the 

pattern recognition receptors TLR-2 or TLR-4 are activated [104, 107, 109]. In our study we 

validated the immunostimulatory potential of these cells during inflammation, through 

resemble the conditions at the site of inflammation. By applying a screening of MSCs with 

different cytokines for various time lengths, we found the immunostimulatory potential of 

these cells were most potent in a low inflammation environment. The MSCs cultured with a 

low concentration (8ng/mL) of TNFα and IL-1β for a short period of time (6hours) presented 

inflammatory characteristics, with their enhanced production of proinflammatory cytokines, 

expression of adhesion molecules and an increased production of chemokines like CCL19, 

which is known for T cell recruitment. CCL19 is a chemokine, which is important for the 

recruitment and organization of T cells in an developing lymphoid tissue [86].  

From the stimulation of MSCs with low concentration of proinflammatory cytokines, 

we showed that these cells could initiate an early inflammatory cascade by the production of 

cytokines and chemokines. The next step in this study was to assess their effect in a coculture 

with CD4+ T cells isolated from healthy individuals, SLE patients and LN patients. The 

results from our study showed that MSCs cocultured in a low (1:1) CD4+ T cell ratio did not 

have any stimulatory influence on the T cell proliferation. While MSCs cocultured in a high 

(1:100) CD4+ T cell ratio, had an enhanced effect on proliferation and differentiation of T 

cells. 

Najar et al. [106], showed the importance of the MSCs:T cells ratio in coculture and 

how this could influence the MSCs’ immunoregulatory potential. They cocultured MSCs for 

five days in a relatively low ratio with T cells (1:4 and 1:8), and observed inhibitory effect of 

MSCs on the mitogenic T cell proliferation (the authors did not specified clearly what kind of 

T cells, CD4+ or CD8, they were using) [106]. Their results also imply that the T cell 
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proliferation will be stimulated by MSCs, if the MSCs were occulted with T cells in a high 

MSC:T cell ratio (1:80) [106]. The study by Le Blanc et al. supports this theory, which the 

ratio between MSCs and T cells in culture will influence the observed results of T cell 

proliferation [121]. By stimulating peripheral blood leukocytes in a mixed leukocyte reaction 

(MLR) before coculture they showed MCSs in a low MSC:Tcell were inhibiting the MLR, 

while MSCs in a high MSC:T cell ratio had the opposite effect and were enhancing the MLR 

[121]. Bocelli-Tyndal and colleagues also support the possible outcome of that MSCs can be 

immunostimulatory at specific conditions [122]. In their study, they stimulated PBMCs, total 

T cell population and the T cell subset (CD4+ and CD8+) with IL-2, IL-7 or IL-15, then 

cocultured with MSCs derived from the bone marrow. The PBMCs and T cells were 

cocultured from a low ratio (1:2) to a middle high ratio (1:50) for one week before the 

proliferation was measured. The PBMCs and T cells stimulated with IL-2 and IL-15 before 

cocultured and cocultured with MSCs in a 1:50 ratio (MSCs:PBMC/Tcell), had an increased 

proliferation compared to PBMC or T cells were cultured alone. However, in their study, 

there were no effects on proliferation when T cells were not stimulated before cocultured with 

MSC. In addition they did not stimulate the MSC before coculture with T cells.  

The results from our study showed that MSCs cocultured in a low (1:1) CD4+ T cell 

ratio did surprisingly not have any effect on the T cell proliferation. In the results published 

by other research groups, the low MSC:T cell ratio will promote the immuno-suppressive 

potential of MSCs and the T cell proliferation will be inhibited [106, 121, 122].  In these 

reported studies the authors did not include how the time and the stimulation alone will affect 

the proliferation of activated T cells, they did this by exclude the data from the day 0. By 

excluding those data, the accuracy of their results is open for questions.  

MSCs cocultured in a high ratio of CD4+ T cell, promoted the immunostimulatory 

potential of the MSCs and an increased proliferation of CD4+ T cells were observed for all 

three groups (healthy, SLE, LN). By stimulate the MSCs before coculture we tried to 

resemble an early inflammation environment to observe if this treatment would influence the 

observed effects on the T cell proliferation.  Stimulation of MSCs before coculture enhanced 

the proliferation of CD4+ T cells isolated from healthy blood donors and SLE patients 

without nephritis, compared with the proliferation of CD4+ T cells in coculture with non-

stimulated MSCs. For the CD4+ T cells isolated from the LN patients: the T cells 

proliferation for the CD4+ T cells cocultured with non-stimulated MSCs showed a similar 

enhanced proliferation, compared to CD4+ T cells cultured alone. This proliferation response 

of the CD4+ T cells from the LN patients can be linked to the possibility that these cells could 
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be more activated in patient’s body, based on disease activity level, compared to the CD4+ T 

cells isolated from healthy blood donors and SLE patients. We did not observe any 

differences in T cell proliferation between the three groups (healthy, SLE, LN), when the 

CD4+ T cells were cultured alone. These observations indicate that the observed 

proliferations are initiated by MSCs in the coculture, and are not a result of other factors.  

By comparing the Th-subsets from the three groups (healthy, SLE, LN) at day 0, a 

trend with higher levels of Th2 and Th17 subset were observed for the LN group. Th17 and 

their characteristic cytokine IL-17 are found to be increased in SLE patients, and even more 

during a SLE flare [123]. In the article by Saber and colleagues [124]: an correlation between 

Th17 cells levels in blood and the concentration of IL-17 in urine can be linked to nephritis in 

SLE patients and are  good markers for disease activity in LN. In lupus nephritis, 

autoantibody deposition in the kidney have a major pathological role where they will promote 

the inflammation cascade within for example the glomeruli and contribute to development of 

proteinuria. Often, the deposited autoantibodies are from the subclasses of IgG (IgG1, IgG3, 

IgG4), IgE and IgA [29, 125, 126], indicating that Th2 cells are involved in the activation of 

antibody producing plasma B cells in lupus.  

By studying how the MSCs will influence the proliferation of the CD4+ T cells 

isolated from the three groups (healthy, SLE, LN), it is possible to assume the MSCs perform 

their immunostimulatory potential and stimulate the CD4+ T cells when they are cocultured 

in a high T cell ratio. The next step was to study if this interaction between MSCs and CD4+ 

T cells could influence the Th cell population by stimulating differentiation into one or 

several Th subsets.  MSCs, which were stimulated with cytokines to resemble the 

inflammatory condition, were capable to induce Th2 and Th17 differentiation in the healthy 

group in the MSC: CD4+ T cell at ratio of 1:100 with direct contact. In addition by separating 

the CD4+ T cell from the MSCs, we could observe that the shift in CD4+ Th subset were 

contact depended, as crosstalk through Transwell system were not sufficient to initiate the 

differentiation. Duffy et al. [127] reported in 2011 that MSCs could inhibit Th17 

differentiation of CD4+ T cells in a low MSC:T cell ratio. Similar results were presented by 

Carrion and colleagues, where they had cocultured MSCs with T cells under Th1, Th17 or 

Treg polarizing conditions in 1:10 MSC:T cell ratio [111]. Controversially Rozenberg et al. 

[128] reported that MSCs could stimulate Th17 response in an coculture with PBMCs, where 

increased levels of IL-17 were observed when activated PBMCs were cocultured with MSCs 

for 3 days  (1:10, MSC:PBMC ratio). In a study by Darlington et al. [129] medium from  

MSCs cultures, where the cells were either stimulated with 5pg/mL IL-1β or kept non-
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stimulated, had the potential to supress Th1 cells and simultaneously stimulate Th17 cell 

responses. These findings from Rozenberg and Darlington support the hypothesis regarding 

the immunostimulatory properties of MSC. Under the specific conditions, MSCs can shift the 

CD4+ T cell population and promote Th17 subset response. Thereby, MSCs can promote an 

inflammation cascade and contribute to increase the severity of the disease, since the effector 

mechanisms of the Th17 subset are involved in several autoimmune diseases [130].  

Batten et al. [131] reported that in a coculture with a low MSC:PBMC ratio, MSCs 

suppressed subsequent CD4+ T cell proliferative responses to allogeneic PBMCs in a contact-

dependent manner [131]. Interestingly they also reported an increased Th2 response in the 

coculture, indicating that MSCs can promote Th2 differentiation [131]. Increased levels of 

Th2 in the blood have also been observed after MSCs transplantation in animal models of 

autoimmune diseases [132, 133]. In the animal model of multiple sclerosis, mice treated with 

MSCs transplantation could recover from limb paralysis [132]. This observed neurological 

improvement was associated with reduced infiltration of CD45+ leukocytes in the brain and 

spinal cord. The levels of Th1 and Th17 cells and their associated cytokines were reduced, 

while the IL-4 producing Th2 cells were elevated [132]. In the animal model of type 1 

diabetes, Fiorina and colleagues analysed the Th1 and Th2 cytokine patterns in immune cells 

isolated from the spleen of mice treated with MSCs for 4weeks [133]. They found that the 

treatment affected the Th effector response between Th1 and Th2 cells, observed with 

increased IL-4 and IL-10 and thereby a shift toward a Th2 profile [133]. Interestingly, none of 

these studies could report an increase in both the Th2 and Th17 profile simultaneously, as we 

observed in our study. One of the reasons might be because they were focusing on either the 

Th1/Th2 balance or Th1/Th17 balance, and not the changes in the entire CD4+ T cell 

population. Nerveless, in both of the cases, when either Th17 or Th2 effector functions were 

increased, the Th1 effector functions were decreased [128, 129, 132, 133].  

In our study we observed individually differences on the proliferation within the 

patient groups. This individually differences will interrupt the observation and overview over 

the trends that are reported in each patient group. Each patient holds his or her own unique 

disease progression and treatment, which is reflected into our results. Ideally, it would have 

been advantageous to increase the patient number in each group, for example from n=5 to 

n=10, to correct for those observed individual differences and to be able to give stronger 

statistical observations for the patients as two distinct populations.   

From the screening of MSCs with low concentrations of the proinflammatory 

cytokines IL-1β and TNFα and from the coculture between T cells isolated from three groups 
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and MSCs, we have examined the immunostimulatory potential of MSCs. They have the 

capacity of stimulate CD4+ T cell proliferation and initiate CD4+ T cell differentiation into 

Th2 and Th17 subset.  We believe, it is important to consider our results before administrating 

MSCs to SLE and LN patients as cell therapy, since the MSC:T cell ratio and the local 

inflammatory environment can lead MScs to initiate and stimulate the immune response more 

severe.  

 

4.2 MSC in the role as a LTo cell in developing of TLS 
In the theory of TLS development, stromal cells with mesenchymal origin have been 

hypothesized to play the role as LTo cells. From the confocal microscopy of the kidney from 

the young mice, we observed that MSC-like cells were located in the pelvic wall before TLS 

formation start. In the TLS observed in the kidneys of the antibody positive mice and from the 

protenuric mice, the MSC-like cells were located in the pelvic wall surrounding the TLS 

structure and also in between the CD45+ immune cells.  These observations indicate that 

MSC-like cells are involved in the TLS formation and function. By merging this information 

with the observations from the coculturing with CD4+ T cells in a 1:100 ratio, it is possible to 

suggest that MSCs can play the role as LTo cells and initiates the TLS formation.  

From the literature the mesenchymal stem cells are assumed to initiate the formation 

of SLO in a developing embryo [70, 88].  The formation of SLO and TLS share several 

patterns and mechanisms, and one can assume that the mesenchymal stem cells cells also are 

important in the developed TLS [88].  In our study a possible connection between TLS 

formation and the immunostimulatory properties of MSCs, can start with the CCL19 

production. MSCs were able to produce CCL19 upon stimulation with low concentrations of 

the proinflammatory cytokines IL-1β and TNFα for a short period of time. This cytokine is 

necessary for recruitment of T and is involved in homing of T cells and DCs to lymphoid 

tissues [134], indicating that MSCs can be involved in the first phases of recruiting T cells to 

the site of inflammation. When the ratio between MSC and T cells get sufficient enough, the 

MSCs will stimulate the T cells to proliferate and initiate the T cell differentiation into 

inflammatory Th2 and Th17 subset. The Th17 will produce IL-17 and this cytokine has been 

shown to promote expression of CXCL13, CCL19 and CCL21 in tissue stromal cells, which 

are involved in the initial formation of lymphoid organs and are important in the maintenance 

of the structure [62, 135]. From the developing SLO, the first stages in lymphoid development 

were involved in recruiting of LTi cells to the site and were not depended on LTα1β2/LTβR 
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signalling [87]. In the developing TLS in the murine kidney, a crosstalk between the IL-17 

producing T cell and the MSC-like cell could then initiate the LTα1β2/LTβR signalling 

between the MSC-like cell and the CD4+ T cell and then promote initiating TLS formation 

and development. The formation of the Th2 subset of CD4+ Th cells by MSC cells, in a tissue 

can promote the developing of IgG producing B cells and induce a local production of 

antibodies that are involved in renal manifestations of lupus. In fact Th2 cells have shown to 

become Tfh-like cells in response, like what we see in helminths infections with persistence 

of pathogen/antigen conditions [136].  

 

4.3 Epithelial and endothelial cells immunostimulatory properties 
In our study stimulation of the HMLE and HUV-EC-C cell linages were used as 

control for the observed effects with stimulation of the MSC cells. By stimulating these two 

cell types, HMLE as epithelial cells and HUV-EC-C as endothelial cells, we were able to 

study whether low concentration of cytokines could have an effect on two normal cell types 

within a tissue. Ideally, it would have been optimally to use epithelial and endothelial cells 

derived directly from the kidney, for example epithelial cells from the pelvic wall or proximal 

tubule cells. However in this study the use of HMLE and HUV-EC-C cells were (as mention) 

as control cell line, in the comparison of the effects observed by the MSCs. 

 The HUV-EC-C cells had a large increase in their expression of the adhesion 

molecules VCAM-1 and ICAM-1 upon stimulation, which is a common response in activated 

endothelium [137-139]. Activated endothelium will increase their expression of adhesion 

molecules to promote leukocyte rolling and transmigration and are important for the 

recruitment and infiltration of immune cells into an inflamed tissue [139]. Both the HUV-EC-

C and the HMLE cells had an increase in their production of the pro-inflammatory cytokines 

IL-1β and TNFα, which was an expected result of positive-feedback reaction to enhance the 

inflammation response initiated by mentioned proinflammatory cytokine [137, 139]. 

With their unchanged expression of LTβR upon stimulation with low concentrations 

of proinflammatory cytokines, the HUV-EC-C cell can be a potential candidate as progenitor 

cell for HEV development. Activation of LTβR on endothelial cells are important for 

development of HEVs in SLOs [83], predicting that they can become HEVs in a developing 

TLS. The protein podoplanin (PDPN) is frequently expressed in lymphoid tissues and are 

assumed to be important for the integrity of HEVs [140, 141]. By evaluating the expression of 

PDPN in stimulated HUV-EC-C cells, we can observe if stimulation of these endothelial cells 
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can initiate the differentiation into the HEVs or other lymphoid tissue cells such as lymphatic 

endothelial cells. Since HUV-EC-C cells were not capable to express PDPN upon stimulation 

of low concentration IL-1β and TNFα, we can conclude that these cells can’t differentiate 

into lymphoid tissue cells upon stimulation of low concentration of just IL-1β and TNF-α. To 

be able to differentiate into HEVs, endothelial cells need activation through their LTβR and 

archive growth factors from an LTo cell [83].  

By using the HUV-EC-C cell line as a control for the coculture, we assessed the 

possible outcome of if endothelial cells in an inflamed tissue also could promote the changes 

in Th cells subsets population. From our results, the HUV-EC-C cells are capable to stimulate 

proliferation of healthy T cells, but will not influence the changes of the CD4+ Th subset 

population. In the stimulation of HUV-EC-C cells we observed that these cells were capable 

of producing high level of the proinflammatory cytokines IL-1β and TNFα, in addition to 

high levels of the adhesion molecules ICAM-1 and VCAM-1. These compounds might be one 

of the factors that could explain the proliferation of T cells. Endothelial cells are one of the 

first cells to interact with microbial components in the circulation and tissue damage, and will 

provide important signals for early activation of immune cells [142]. IFNγ stimulation of 

endothelial cells has been shown to promote production of compounds of the TNF family, 

which was observed with increased cytokine production and proliferation of CD4+ and CD8+ 

memory T cells [143]. In the study by Wheway et al., microparticles shed from activated 

endothelial cells were capable of stimulating both CD4+ and CD8+ T cells [144], which could 

also be one explanation of why we can observe increased CD4+ T cell proliferation in the 

coculture with HUV-EC-C cells. If HUV-EC-C cells could differentiate into HEVs in a 

developing TLS, they will also harbour an important immunostimulatory potential by 

regulating the recruitment of immune cells through their production of the chemokines 

CCL19, CCL21, CXCL12 and CXCL13 [62]. However, in our study we aimed to observe the 

effects of MSCs. The reason why we choose to work with HUV-EC-C and not HMLE as 

control for the coculture: is because of their immunological important properties as a 

messenger in an early inflammation cascade [142].   
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5 Conclusion  
Our study indicates that the MSCs are capable to trigger an inflammation reaction, 

when they are exposed to an environment with low concentrations of proinflammatory 

cytokines. These cells are capable to stimulate T cell proliferation and differentiation when 

they are cocultured with a high ratio T cell (1:100), and thereby promote the development of 

TLS as an LTo cell. These factors are important in the consideration of treatment of lupus 

patients with MSCs, and this might be one of the factors that will determine if some of the 

cases of transplantation went wrong and a relapse occurred. Further research in the fields of 

TLS formation and the immunoregulatory potential of MSCs are needed to assess the possible 

outcome and safety with MSC transplantation. 
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6 Future directions   
Further research has to be done to fill in gaps in our understanding of the 

immunostimulatory properties of MSCs and their role in TLS development. From the 

coculture between MSC and CD4+ T cells, an interesting approach to understand how these 

cells interacts will be by analysing and studying the changes in mRNA expression culturing 

has on the MSCs and the CD4+ T cells. “How will the 1:1 and 1:100 MSC-T cell ratio 

influence this mRNA expression?” is a question, which is longing for an answer. In our 

hypothesis an increased activation of LTβR and markers for FDC and FRC differentiation 

will support that the MSCs can function as an LTo cell.  

Another approach is to study the media from the coculture for soluble proteins and 

cytokines. Are there any differences in the compensations of the media collected from the 

coculture with CD4+T cells in 1:1 or 1:100 ratios, and will stimulation of MSCs before 

coculture influence this compensation of the media? Can we transfer the media from the 

MSC:T cell coculture to cultured B cells, and how will this influence the B cell response?  

A third possible approach in the study of the TLS development is to analyse the 

mRNA expression of the HUV-EC-C cells from the CD4+T cell coculture. Can these 

endothelial cells begin their journey towards HEV differentiation when in coculture with T 

cells? Or under which condition are needed for HEV development? 
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Appendix  
Additional Data 
Table  A: ANOVA table for the statistical two-way ANOVA analysis performed on the fold changes of the genes of 
interest for MSC (screening) 

 MSC 
IL-1β  

MSC 
TNFα  

MSC 
ICAM-1 

MSC 
VCAM-1 

MSC 
CCL19 

Interaction 
(Time*stim.) 

F (7, 22) = 3,363 
P=0,0136  
(*) 

F (7, 26) =957,5 
p<0,0001 
(****) 

F (7, 22) =533,6 
p<0,0001 
(****) 

F (7, 24)=169,1 
p<0,0001 
(****) 

F (7, 22) = 20,11 
p<0,0001  
(****) 

Time  F (7, 22) = 3,363 
p<0,0136 
 (*) 

F (7, 26) =957,5 
p<0,0001 
(****) 

F (7, 22) =534,1 
p<0,0001 
(****) 

F (7, 24)=169,2 
p<0,0001 
(****) 

F (7, 22) = 20,10 
p<0,0001  
(****) 

Stimulation F (1, 22) = 8,045 
p<0,0096 
 (**) 

F (1, 26) 
=1550p<0,0001 
(****) 

F (1, 22) = 2553 
p<0,0001 
(****) 

F (1, 24)=1021 
p<0,0001 
(****) 

F (1, 22) = 189,8 
p<0,0001  
(****) 

 

 

 
Fig. A Ct-values for (A) TBP and (B) LTβR for both stimulated and non-stimulated HUV-EC-C cells (stimulated with 
8ng/mL TNFα  and IL-1β) 
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Table  B: Adjusted p-values from the post-hoc analyses of the two-way ANOVA performed on T cell proliferation. T cells 
isolated from healthy blood donors and cocultured with MSCs. 

Healthy  1:1 1:100 
Post-hoc 
analysis 

Time in 
coculture 5 days 7 days 10 days 5 days 7 days 10 days 

Tuckey's 
multiple 

comparison 
test 

S VS N 0,4789 0,9923 0,8207 0,9964 0,2623 <0,0001 

S VS T 0,3323 0,9404 0,5555 0,0335 0,0004 <0,0001 

N VS T 0,9615 0,8935 0,899 0,0275 0,0342 0,0003 

Dunnett’s 
multiple 

comparison 
test 

S 0,6147 0,4369 0,0354 0,1087 0,001 0,0001 

N 0,9977 0,367 0,1345 0,0916 0,07 0,0113 

T 0,9547 0,6601 0,3008 0,9196 0,9814 0,4802 
Abbrevations: T: T cells cultured alone; S: T cells in coculture with stimulated MSCs; N: T cells in coculture with non-
stimulated MSCs. 

 

Table  C: Adjusted p-values from the post-hoc analyses of the two-way ANOVA performed on T cell proliferation. T cells 
isolated from SLE patients and cocultured with MSCs. 

SLE  1:1 1:100 
Post-hoc 
analysis 

Time in 
coculture 5 days 7 days 10 days 5 days 7 days 10 days 

Tuckey's 
multiple 

comparison 
test 

S VS N 0,997 0,9737 0,5747 0,9374 0,9055 0,0003 

S VS T >0,9999 0,9859 0,4411 0,0897 0,0064 <0,0001 

N VS T 0,9971 0,9235 0,9732 0,1763 0,0198 0,0053 

Dunnett’s 
multiple 

comparison 
test 

S 0,8748 0,4282 0,0205 0,0582 0,0035 0,0001 

N 0,8323 0,3059 0,1928 0,1267 0,0115 0,0087 

T 0,8739 0,5315 0,2851 0,9986 0,9999 0,9572 
Abbrevations: T: T cells cultured alone; S: T cells in coculture with stimulated MSCs; N: T cells in coculture with non-
stimulated MSCs. 

 

Table  D: Adjusted p-values from the post-hoc analyses of the two-way ANOVA performed on T cell proliferation. T cells 
isolated from LN patients and cocultured with MSCs.  

LN  1:1 1:100 
Post-hoc 
analysis 

Time in 
coculture 5 days 7 days 10 days 5 days 7 days 10 days 

Tuckey's 
multiple 

comparison 
test 

S VS N 0,6862 0,9838 0,9983 0,9583 0,9273 0,708 

S VS T 0,7957 0,8643 0,9593 0,1036 0,0013 <0,0001 

N VS T 0,9814 0,9372 0,9418 0,1781 0,0038 0,0018 

Dunnett’s 
multiple 

comparison 
test 

S 0,9923 0,4141 0,0993 0,0863 0,0052 0,0003 

N 0,5915 0,3182 0,0882 0,1533 0,0143 0,0031 

T 0,7182 0,1738 0,1726 0,9993 0,9339 0,9952 
Abbrevations: T: T cells cultured alone; S: T cells in coculture with stimulated MSCs; N: T cells in coculture with non-
stimulated MSCs. 
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Table  E: Adjusted p-values from the post-hoc analyses of the two-way ANOVA performed on T cell proliferation. T cells 
isolated from healthy blood donors and cocultured with HUV-EC-C. 

HUV-EC-C  1:1 1:100 

Post-hoc 
analysis 

Time in 
coculture 5 days 7 days 10 days 5 days 7 days 10 days 

Tuckey's 
multiple 

comparison 
test 

S VS N 0,6862 0,9838 0,9983 0,9583 0,9273 0,708 

S VS T 0,7957 0,8643 0,9593 0,0192 <0,0001 <0,0001 

N VS T 0,9814 0,9372 0,9418 0,1781 0,0002 <0,0001 

Dunnett’s 
multiple 

comparison 
test 

S 0,9923 0,4141 0,00014 0,0412 <0,0001 <0,0001 

N 0,5915 0,3182 0,0011 0,1533 0,0003 <0,0001 

T 0,7182 0,1738 0,0097 0,9993 0,9339 0,9952 

Abbrevations: T: T cells cultured alone; S: T cells in coculture with stimulated HUV-EC-C cells; N: T cells in coculture 
with non-stimulated HUV-EC-C cells. 
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Fig. B: Comparison of the Th subsets when the T cells are cocultured with MSCs in direct contact or in Transwell 
system. Data is presented as mean with SEM. 
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