
Faculty of Science and Technology
Department of Computer Science

Incremental Information Retrieval
Finding new information by registering and ignoring already seen search results
—
Erlend Johannessen
INF-3990 Master’s Thesis in Computer Science - June 2017

“I’ll be more enthusiastic about encouraging thinking outside the box
when there’s evidence of any thinking going on inside it.”

–Terry Pratchett

“Wisdom comes from experience.
Experience is often a result of lack of wisdom.”

–Terry Pratchett

“Real stupidity beats artificial intelligence every time.”
–Terry Pratchett

“You can’t kill me, because I’ve got a magic aaargh...”
–Terry Pratchett

Abstract
When searching the internet today we want immediate answers. We often
search for a person, or a solution to a problem, or some topic we are interested
in. The result quality off this kind of search is pretty good, most of the time we
get the answers we need. The results, though, seems to be minor variations on
the same results.

But what if the search for information is of a different nature, more like explor-
ing. A typical case would be when a person has a hobby, and wants to search for
information about it. Very soon all the quickly accessed information has already
been seen, and is not that interesting in the context of new information.

It appears that no research has been done on search from this angle of approach.
This thesis will look into this matter, to attempt to implement a system to give
users the kind of search where the user may want to see new results on the
same subject, maybe over a period of days, months, even years.

Acknowledgements
Working full time and doing a master’s thesis at the same time is not really
recommended. This thesis could not have been possible without the goodwill
and/or support of several different agencies, most importantly family, friends,
university and workplace.

Without discussion with and presence of class mates throughout the courses
preceding the thesis, this would have been a much poorer experience.

I am particularly grateful to my supervisor Randi Karlsen, who offered invalu-
able advice, structure and encouragement.

Heartfelt thanks also goes out to my fellow testers, André, Jørgen, Stephan
and Easterine, who gave very good feedback on what was right - and wrong -
with the application.

Easterine Kire, my girl, my proofreader, my work ethic inspiration, partner,
friend and test subject for several parts of this thesis. Explaining inner workings
of this to you made me distil and simplify my ramblings into something
hopefully more coherent. Thank you! ♥

Author’s note: This document is written in Queen’s English - "the English language
as written and spoken correctly by educated people in Britain". Any "spelling
errors" would be those words where the reader would expect American English,
which is an abhorrence.

Contents
Abstract iii

Acknowledgements v

List of Figures xiii

List of Tables xvii

List of Listings xix

Glossary xxi

1 Introduction 1
1.1 Motivation . 2
1.2 Research question . 3
1.3 Approach . 3

1.3.1 Description . 3
1.3.2 Selecting search method 4

1.4 Contributions . 5
1.5 Limitations . 5
1.6 Outline . 6

2 Background 7
2.1 How search engines work 7

2.1.1 Building and updating the index 7
2.1.2 Indexing . 8
2.1.3 Querying . 9
2.1.4 Ranking . 10

2.2 Using traditional on-line search 10
2.3 Web scraping . 10
2.4 Search engine APIs . 11

2.4.1 Search engine API status 11
2.4.2 On-line search vs search APIs 12

2.5 Related work . 13

vii

viii CONTENTS

3 Problem overview 15
3.1 Query and QueryRun . 15
3.2 Search example . 16

3.2.1 Results graph . 19
3.3 User search . 20
3.4 Goal . 21

4 Architecture and design 23
4.1 Design goal . 23
4.2 Architecture . 24
4.3 How IIR search works . 25

4.3.1 Search details . 25
4.4 IIR features . 26

4.4.1 Result status . 28
4.4.2 Ranking . 29
4.4.3 Result folders . 30

4.5 Client design . 31
4.6 System requirements . 31

4.6.1 Web server hardware 31
4.6.2 Storage . 32

4.7 Selecting search engine to work with 34
4.8 Hypothetical search progression 35

5 Data collection and analysis 39
5.1 Why data collection . 39
5.2 Queries . 40
5.3 The anatomy of a query . 41
5.4 Data collection environment 42

5.4.1 Hardware . 42
5.4.2 Database . 42
5.4.3 The batch job . 44
5.4.4 Updating the database 45

5.5 Data collection problems and errors 47
5.5.1 Typing error . 47
5.5.2 Premature termination 47
5.5.3 Exact search . 48
5.5.4 Connection error . 48
5.5.5 Parameter incorrect 49
5.5.6 Parse error . 49

5.6 Batch result analysis . 49
5.6.1 Data collection periods 49
5.6.2 Data selected for analysis and testing 50
5.6.3 Short analysis of new results 50
5.6.4 Result overlap between days 52

CONTENTS ix

5.6.5 Duplicates . 53
5.7 Batch result patterns . 55

5.7.1 Many free results - many exact 55
5.7.2 Many free results - no exact 59

5.8 Simulation of usage . 60

6 Implementation 65
6.1 Technology . 65

6.1.1 MongoDB . 66
6.1.2 Go programming language 66
6.1.3 Go packages . 66
6.1.4 Web client . 67
6.1.5 Server . 67

6.2 Database architecture . 68
6.3 Front-end . 71
6.4 Back-end . 73
6.5 Using Bing Search API . 76

6.5.1 Interfacing with the API 76
6.5.2 Go wrapper for Bing Search API 77
6.5.3 Calling Bing Search API 77
6.5.4 Search during the test phase 79

6.6 Development environment 79
6.7 Code summary . 80

7 Testing 81
7.1 User testing . 81
7.2 Manual for using IIR . 82
7.3 Instructions to the testers 83
7.4 Questionnaire . 84
7.5 Questionnaire result . 85

7.5.1 Statement scores 85
7.5.2 Replies in comment field 1 85
7.5.3 Replies in comment field 2 86
7.5.4 Replies in comment field 3 86
7.5.5 Questionnaire result summary 87
7.5.6 Author testing . 88

7.6 Testing statistics . 88
7.7 Data analysis . 91

7.7.1 Test result plot details 91
7.7.2 Few QueryRuns . 91
7.7.3 Energetic usage pattern 93
7.7.4 Relaxed usage pattern 95
7.7.5 Other patterns . 97

x CONTENTS

8 Discussion 101
8.1 Findings . 101
8.2 The approach to search . 102
8.3 Implementing the prototype 103

8.3.1 Storage . 104
8.3.2 Usability . 104
8.3.3 Reliability . 105
8.3.4 Scalability . 105

8.4 Data collection . 105
8.4.1 Ranking . 106
8.4.2 Query quality . 106

8.5 Test results . 107
8.5.1 Exact search . 108
8.5.2 Analysing new results 108
8.5.3 Author’s comments on testing IIR 109

8.6 Problems, bugs and errors 109
8.7 Is it commercially viable? 110

9 Future work 111
9.1 New features . 112

9.1.1 Content preview . 112
9.1.2 Rules or filters . 112
9.1.3 White- or black-listing 113
9.1.4 Analysis of user interactions 114
9.1.5 Handling many queries and results 114
9.1.6 Miscellaneous features 115

9.2 Refactoring . 115
9.2.1 Front-end . 115
9.2.2 Back-end . 116
9.2.3 Unit testing . 116
9.2.4 Error handling . 116

9.3 Change in type of application 117
9.4 Search Engine . 117

10 Conclusion 121

Bibliography 123

A Data collection results 129
A.1 Queries and the reasoning behind them 129

CONTENTS xi

A.2 Full data collection results 131
A.2.1 Full data collection results, totals 131
A.2.2 Full data collection results, details 133

A.3 Plots for results . 154
A.3.1 Summary plots for all queries 154
A.3.2 Summary plots for all queries, with errors 155
A.3.3 Summary plots for each query 157

B IIR testing instructions 173

C IIR online manual 175

D Questionnaire 179

E Detailed test results 181

F IIR code and utilities 187
F.1 bingv2batch . 187
F.2 bingv2analysis . 188
F.3 bingv2analysispercent . 188
F.4 bingv2convert . 189
F.5 iirweb . 189
F.6 iiranalysis . 189
F.7 Summary . 190

List of Figures
3.1 How Query and QueryRun are related. 16
3.2 First batch of results . 17
3.3 Second batch of results . 17
3.4 Third batch of results . 18
3.5 Fourth batch of results . 18
3.6 The expected curve for new results 19
3.7 User search results 1 . 20
3.8 User search results 2 . 20

4.1 IIR system at a glance. 24
4.2 User using IIR to search. IIR connects to the search engine

API, and returns refined results to the user. 26
4.3 Main features available to the user from the UI of IIR. 28
4.4 The main user interface . 31
4.5 Hypothetical search progression, search 1 36
4.6 Hypothetical search progression, search 2 37
4.7 Hypothetical search progression, search 3 38
4.8 Hypothetical search progression, search 4 38

5.1 Anatomy of a batch query 42
5.2 Data collection database entities, and corresponding database

collections. 43
5.3 Distribution of days in the datacollection period 50
5.4 Plot of free searches from day 1 51
5.5 Screen capture of comparison of Query 17 53
5.6 Free query "Winds of winter" 56
5.7 Exact query "Winds of winter" 56
5.8 Day to day results of free query "Winds of winter" 57
5.9 Day to day results of exact query "Winds of winter" 58
5.10 Free query "mobile application health sensor data" 59
5.11 Exact query "mobile application health sensor data" 60
5.12 Progression for 25 results per day, for query 11 61
5.13 Progression for 100 results per day, for query 11 62
5.14 Progression for 250 results per day, for query 11 62

xiii

xiv L IST OF FIGURES

5.15 Progression for 500 results per day, for query 11 63

6.1 IIR database entities, and corresponding database collections. 68
6.2 The main user interface, with the first query loaded 71
6.3 IIR client architecture. 72
6.4 Search API call sequence diagram 77

7.1 Detailed test results for query 17 92
7.2 Detailed test results for query 29 93
7.3 Detailed test results for query 29, lower part 94
7.4 Detailed test results for query 35 95
7.5 Detailed test results for query 35, lower part 98
7.6 Detailed test results for query 36 98
7.7 Detailed test results for query 15 99

9.1 Top 3 search engines shown, out of 15 listed, courtesy of
eBizMBA (see footnote). 118

A.1 Combined plots for all free searches 154
A.2 Combined plots for all exact searches 155
A.3 Full combined plots for free searches 156
A.4 Full combined plots for exact searches 157
A.5 Percentage-wise plots for queries 1 and 2 158
A.6 Data plots for queries 1 and 2 158
A.7 Percentage-wise plots for queries 3 and 4 159
A.8 Data plots for queries 3 and 4 159
A.9 Percentage-wise plots for queries 5 and 6 159
A.10 Data plots for queries 5 and 6 160
A.11 Percentage-wise plots for queries 7 and 8 160
A.12 Data plots for queries 7 and 8 160
A.13 Percentage-wise plots for queries 9 and 10 161
A.14 Data plots for queries 9 and 10 161
A.15 Percentage-wise plots for queries 11 and 12 161
A.16 Data plots for queries 11 and 12 162
A.17 Percentage-wise plots for queries 13 and 14 162
A.18 Data plots for queries 13 and 14 162
A.19 Percentage-wise plots for queries 15 and 16 163
A.20 Data plots for queries 15 and 16 163
A.21 Percentage-wise plots for queries 17 and 18 163
A.22 Data plots for queries 17 and 18 164
A.23 Percentage-wise plots for queries 19 and 20 164
A.24 Data plots for queries 19 and 20 164
A.25 Percentage-wise plots for queries 21 and 22 165
A.26 Data plots for queries 21 and 22 165

http://www.ebizmba.com/articles/search-engines

L IST OF FIGURES xv

A.27 Percentage-wise plots for queries 23 and 24 165
A.28 Data plots for queries 23 and 24 166
A.29 Percentage-wise plots for queries 25 and 26 166
A.30 Data plots for queries 25 and 26 166
A.31 Percentage-wise plots for queries 27 and 28 167
A.32 Data plots for queries 27 and 28 167
A.33 Percentage-wise plots for queries 29 and 30 167
A.34 Data plots for queries 29 and 30 168
A.35 Percentage-wise plots for queries 31 and 32 168
A.36 Data plots for queries 31 and 32 168
A.37 Percentage-wise plots for queries 33 and 34 169
A.38 Data plots for queries 33 and 34 169
A.39 Percentage-wise plots for queries 35 and 36 169
A.40 Data plots for queries 35 and 36 170
A.41 Percentage-wise plots for queries 37 and 38 170
A.42 Data plots for queries 37 and 38 170
A.43 Percentage-wise plots for queries 39 and 40 171
A.44 Data plots for queries 39 and 40 171

B.1 Testing instructions . 174

C.1 IIR on-line manual, page 1 176
C.2 IIR on-line manual, page 2 177

D.1 IIR questionnaire . 180

E.1 Detailed test results for queries 1 and 2. 181
E.2 Detailed test results for query 3 182
E.3 Detailed test results for queries 5 and 6. 182
E.4 Detailed test results for query 7 182
E.5 Detailed test results for queries 9 and 10. 183
E.6 Detailed test results for queries 11 and 12. 183
E.7 Detailed test results for queries 13 and 14. 183
E.8 Detailed test results for queries 15 and 16. 184
E.9 Detailed test results for query 17 184
E.10 Detailed test results for query 29 184
E.11 Detailed test results for query 31 185
E.12 Detailed test results for query 33 185
E.13 Detailed test results for queries 35 and 36. 185
E.14 Detailed test results for queries 37 and 38. 186
E.15 Detailed test results for queries 39 and 40. 186

List of Tables
2.1 Discontinuing of web search APIs from the major search providers.

12

3.1 10 first days of results for free Query 11 19

4.1 IIR user actions available on a list showing only new results. 27
4.2 A result’s possible statuses. 29
4.3 Weighting scores for IIR search word ranking. 30
4.4 Folders to show results with different statuses. 30

5.1 Summary of automated searches, run for 54days. 41
5.2 The "moving parts" of the data collection system. 41
5.3 Overlap in the first 100 results 52

6.1 IIR client components. 72
6.2 IIR server main controllers. 75
6.3 Parameters used in Bing Search API transactions 78

7.1 Statement score for the questionnaire 85
7.2 Replies in the first comment field 85
7.3 Replies in the second comment field 86
7.4 Replies in the third comment field 87
7.5 Explanation for columns in table 7.6 89
7.6 Test totals for query 1 - 40 90
7.7 Detailed test results for Query 17 92
7.8 Detailed test results for Query 29 95
7.9 Detailed test results for Query 35 97

A.1 Queries, query "owners" and a short reasoning behind the
queries. 130

A.2 Explanation for columns in table A.3 131
A.3 Totals and averages for query 1 - 40 132
A.4 Error codes for the QueryRuns. 133
A.5 Query results for queries 1 - 2 134

xvii

xviii L IST OF TABLES

A.6 Query results for queries 3 - 4 135
A.7 Query results for queries 5 - 6 136
A.8 Query results for queries 7 - 8 137
A.9 Query results for queries 9 - 10 138
A.10 Query results for queries 11 - 12 139
A.11 Query results for queries 13 - 14 140
A.12 Query results for queries 15 - 16 141
A.13 Query results for queries 17 - 18 142
A.14 Query results for queries 19 - 20 143
A.15 Query results for queries 21 - 22 144
A.16 Query results for queries 23 - 24 145
A.17 Query results for queries 25 - 26 146
A.18 Query results for queries 27 - 28 147
A.19 Query results for queries 29 - 30 148
A.20 Query results for queries 31 - 32 149
A.21 Query results for queries 33 - 34 150
A.22 Query results for queries 35 - 36 151
A.23 Query results for queries 37 - 38 152
A.24 Query results for queries 39 - 40 153

F.1 Summary of number of code lines 190

List of Listings
5.1 Go struct describing the data collection Query 43
5.2 Go struct describing the data collection QueryRun 43
5.3 Go struct describing the data collection Result 44
5.4 Running the queries in a command file 45
5.5 The starting configuration of the query, before any searches

are run . 45
5.6 The same query after 3 runs, with more information from the

runs . 45
5.7 The first out of the 823 results for query 27 on the first day . 46

6.1 Go struct describing the User 69
6.2 Go struct describing the Query 69
6.3 Go struct describing the QueryRun 70
6.4 Go struct describing the Result 70
6.5 Main program for IIR . 73
6.6 Registering routes for the IIR web service 74
6.7 Main function for accessing the Bing Search API from Go . . 78
6.8 Summary of code used in IIR 80

F.1 Data collection application code summary 187
F.2 Data collection analysis code summary # 1 188
F.3 Data collection analysis code summary # 2 188
F.4 Data collection conversion code summary 189
F.5 IIR web service code summary 189
F.6 Test results analysis code summary 189

xix

Glossary
API Application Programming Interface

AWS Amazon Web Services

CET Central European Time

CLI Command line (user) interface

CSS Cascading Style Sheets

DOM Document Object Model

GCS Google Custom Search

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IIR Incremental Information Retrieval, this thesis

JSON JavaScript Object Notation

LAMP Linux, Apache, MySQL, and PHP/Python/Perl

OSE On-line Search Engine

P2P Peer-to-peer

PaaS Platform as a Service

PoC Proof of Concept

UI User Interface

xxi

xxii GLOSSARY

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML eXtensible Markup Language

1
Introduction
Information retrieval can be defined in very broad terms. Looking at your
watch or reading the timetable on a bus stop is a form of information retrieval.
However, as an academic field of study, information retrieval could be defined
as dealing with the representation, storage, organization of, and access to
information items[2].

The amount of digitally stored knowledge is growing at an exponential rate,
and with more and more people creating content on-line[26], this will only
continue to increase[20].

Information retrieval in the form of search engines is a crucial part of finding and
using existing data on the Internet. It is increasingly important to be able to find
relevant information across the Internet. At the same time it seems increasingly
difficult to find relevant or precise information, as a direct consequence of the
staggering amount of information that is becoming available.

When we are searching the Internet today we often search for a person, or a
solution to a problem, or some topic we are interested in. The result quality is
pretty good, but seems to have a tendency to give minor variations on the same
results. The variation in results for the exact same search could stem from
the user’s profile[22], location[28], search history and search habits, among
others.

Sometimes we want more information on a particular subject, a search that
can present information that the user has not seen before. In this case today’s

1

2 CHAPTER 1 INTRODUCT ION

search engines have a tendency to repeatedly give the same or similar results.
Using the major search engines, the user has to leaf through page after page
of increasingly irrelevant answers to find relevant search result that is new to
the user.

Experience tells us that searching for previously unseen information on the
same subject in this way, can be more cumbersome and time-consuming, and
may in the end make the user just give up searching, or the search may simply
yield no new information on a subject.

An expected scenario in this kind of search is that the user has a hobby or a
long-term special subject, e.g. a chronic illness, that the user is interested in
getting more information on. The result items the user gets from the traditional
on-line search engines may be precise, but the user has most likely seen them
before. Finding previously unseen material, normally buried deeper down in
the list of results, is more important. This is the kind of search where the user
may want to see new results on the same subject over a period of days, months,
even years.

An alternative route for the user can be to become a member of forums and
communities that have the same interests. Many answers can be found this way
as well. But this source of information is also limited to what other community
members have found, or are able to contribute.

1.1 Motivation
Search engines are created to give immediate and relevant answers to search
queries, with high precision. This situation often leads to the same or similar
relevant answers for the same search query.

Sometimes users want to explore more information on a particular subject, but
the nature of search engines becomes a hindrance more than a help for this
kind of search.

The motivation for this thesis is thus the lack of new results, previously un-
seen information in both a short- and long-term situation. An incremental
information retrieval (IIR) system could solve this.

1.2 RESEARCH QUEST ION 3

1.2 Research question
This thesis builds on the motivation in section 1.1, and can be distilled into a
single question.

How can a long term search service be created to discover previ-
ously unseen search results, regularly concealed in traditional on-line
search?

Long term search in this case refers to a web based search, performed several
times over a period of weeks or months. Initially no search results have been
seen before by the user, but as time goes by, the user has seen an increasing
number of results. The results the user has seen is normally at the top of the
list of search results from the on-line search engine.

This means that traditional on-line search is trying to help the user to find
precise and relevant answers, but as time passes is obscuring other results that
may be equally relevant for the user. The aim is to not show the seen results
to the user, and only show previously unseen search results. Such a service will
attempt to show results that are regularly concealed by the search engine’s
results.

1.3 Approach
In this section the thesis approach and search engine selection is presented.

1.3.1 Description
The goal of the thesis is to create an Incremental Information Retrieval (IIR)
system, that can monitor the user’s actions, and based on details of this usage
hide previously seen results, and only show the user previously unseen results.
The user can actively choose to save or discard results. Even if the user only
browses through results, and does not use the system actively, IIR automatically
records information on the results the user has seen. This way IIR will continue
to show only those results that the user has not seen before.

To help users find new information, a prototype of IIR is created, a proof
of concept¹ (PoC) type implementation, to search the web through the Bing
Search API. This prototype is set up as a web based service that connects to

1. https://en.oxforddictionaries.com/definition/proof_of_concept

https://en.oxforddictionaries.com/definition/proof_of_concept

4 CHAPTER 1 INTRODUCT ION

the search engine, and shows the results to the users.

The users have the possibility to save or discard results, and black-list or white-
list domain names. Information about the results the user has interacted with
is stored in a database, so they can be hidden from the users when they do
subsequent searches.

In order to verify the usefulness of such a prototype, IIR was tested by users in
a live situation. Users gave feedback in a questionnaire on the service created,
and the testers’ usage patterns were inspected, to evaluate their feedback. Data
received from the search API were also analysed, to investigate staleness in the
results returned over a period of time.

1.3.2 Selecting search method
There are a lot of different types of search engines, e.g. traditional on-line
search, meta-search, geographically limited scope, semantic, enterprise, legal,
medical, and more. However, a traditional on-line search engine should be
used, to be able to search across a broad range of topics. So the focus is the
major existing search engine APIs, and what they can offer. These are Google,
Bing, and Yahoo.

One technique for accessing search results is "web scraping"², parsing results
directly from the HTML returned from an on-line search result. This is possible,
but it violates the terms of service for search engines, and are (by some)
considered illegal³.

So a better way is using an existing search engine API, i.e., services that have
been created for just this kind of purpose.

In this thesis, Bing Search API has been selected as the data provider for the
solution.

2. http://wiki.c2.com/?WebScraping
3. http://blog.icreon.us/advise/web-scraping-legality

http://wiki.c2.com/?WebScraping
http://blog.icreon.us/advise/web-scraping-legality

1.4 CONTR IBUT IONS 5

1.4 Contributions
This thesis makes the following contributions:

1. A proof of concept implementation of the IIR system, a prototype appli-
cation that monitors the user’s activity, and applies this user context to
the system, to hide results from the user that the user has seen before.

2. By collecting and analysing data from Bing search engine through Bing
Web Search API, showing that search engines yield the same or similar
search results for the same search query, when run repeatedly.

In addition to these two contributions, a Go language[41] wrapper for the Bing
Web Search API v2 was implemented.

1.5 Limitations
This project has no financing attached to it, so this puts a limitation on what
kind of environment can be created to support the thesis. As a consequence,
the cost of doing the thesis must be as close to zero as possible.

Another matter is the sheer number of search engines that theoretically could
be used to implement this kind of search. There are different technologies used
(like P2P) and different search engine types, like mash-up or aggregate. There
are also dedicated search engines; fashion, genealogy, jobs, legal, medical etc.,
in addition to specific services search, like Twitter⁴ or Flickr⁵ search APIs.

In theory, several search engines could be used as a test search engine and data
collection tool for this thesis. In practice - to reduce the complexity of the thesis
- only one of the major search engines is used. Google, Bing and Yahoo! are
general purpose search engines, the top three most used search engines[15]
on many lists, among them Alexa⁶. Out of these three, Bing has been chosen
as search engine.

4. https://dev.twitter.com/rest/public/search
5. https://www.flickr.com/services/api/flickr.photos.search.html
6. http://www.alexa.com/topsites/category/Computers/Internet/

Searching/Search_Engines

https://dev.twitter.com/rest/public/search
https://www.flickr.com/services/api/flickr.photos.search.html
http://www.alexa.com/topsites/category/Computers/Internet/Searching/Search_Engines
http://www.alexa.com/topsites/category/Computers/Internet/Searching/Search_Engines

6 CHAPTER 1 INTRODUCT ION

1.6 Outline
The outline for the rest of this thesis is as follows.

Chapter 2 Describes the background and related work.
Chapter 3 Gives a problem description for this thesis.
Chapter 4 Prototype architecture and design is presented.
Chapter 5 Data collection is described and analysed.
Chapter 6 Implementation of the chosen design is detailed.
Chapter 7 User-testing of the solution is presented and evaluated.
Chapter 8 Findings and implications are discussed.
Chapter 9 Future work is presented.
Chapter 10 A summary and concluding remarks.

2
Background
Information retrieval is a wide subject. For the purpose of this project, the
discussion will be limited to information indexers and search engines for the
World Wide Web.

In this project, a service that uses search engines’ data as data source, is created.
So in order to know how the solution is influenced by the search engine, the
search engine’s inner workings need to be examined more closely.

2.1 How search engines work
A search engine is in principle no more than a combination of applications that
index the web and provide the index to us, the users, so we can search the
index for subjects we are interested in[23] [42] [5] [6]. In practice this can
be quite difficult, with the vast amount of information available, and the large
increase in information creation.

2.1.1 Building and updating the index
Themainmechanism for updating the search engine indexwith new or changed
information is an application that can browse the web in an automated manner.
This type of application, called a web crawler, saves a copy of all the browsed

7

8 CHAPTER 2 BACKGROUND

pages for later processing by the search engine[11] [8] [16].

2.1.2 Indexing
Different search engines may have their own ways of analysing the output from
the web crawler, but some of techniques used are common to most of them.
Many different types of sources are indexed - natural language documents, but
also media like audio, video and images[14].

Inverted indexes
When documents are added to the search engine storage, data structures are
created so that the documents could be found quickly through text search. This
type of indexes are called inverted indexes[12], in that they are mapping words
or numbers to the relevant documents.

Tokens and terms
During the index creation phase, sequences of characters, numbers and other el-
ements are analysed and processed to optimise search. There aremany issues to
consider, like punctuation, capitalisation, stemming and stop words[14].

Punctuation like ".", "-", ",", "#" or "$" is also normally not indexed, something
that is problematic e.g. when searching for "C#".

The search engine also needs to decide what to do with capitalisation. There is
a difference between "WHO", the abbreviation of World Health Organization,
and the word "who" (which incidentally may also be a stop word, see stop words
below). There are also other capitalisation variants, like "Cat", cAt", "CAT" or
"caT" which are different words but may refer to the same thing.

Stemming is when different forms of a word are reduced to their common
base[19]. An example can be "stems", "stemmer", "stemming", "stemmed" which
all have "stem" as their base. Storing the base of the word in the index makes
the index smaller and faster to search, but then searching for the original word
like "stemming" may give additional results that may not be interesting for the
user.

Stop words[42] like "the", "a", "in", or "which" are not considered important and
is a candidate for removal, something which can make a search for e.g. the
band "The the" more difficult.

2.1 HOW SEARCH ENG INES WORK 9

When the search engine index is maintained, all this needs to be considered
and managed appropriately.

Duplicates
It can be difficult for the search engine to distinguish between duplicates within
the same site, but near-duplicates[25] can also be a problem. Near-duplicates
stem mostly from different sites or addresses that show the same content, but
differ in session id, time stamp, visitor count etc. in addition to URLs[4].

One source of duplicates can be home pages for e.g. newspapers, like http://
www.nytimes.com/, i.e., at the root of their domain name. These would normally
have different content even when the URL, Title and Description is the same,
since news content changes from day to day. Indexing of root domains can
also be adjusted by the respective websites’ robot.txt¹, which suggests to the
search engine’s web crawler (web indexer) which paths are available on their
web site.

2.1.3 Querying
When searching, the user enters a query into the search engine and gets results
according to the terms and words entered. But there is more happening to this
query under the bonnet².

When the search engine receives a query, it often needs to rewrite it in order
to help the user obtain better precision in the result[24] [31] [1] [7].

Using a search for angora cats as an example, the search engine may need to
rewrite "cats" to "cat" to possibly get better results. Orwhat if the usermisspelled
cats as "ctas". The search engine needs to handle this gracefully[44].

A normal way of forcing the search engine to accept an exact query is to put the
query in quotes. All the three major search engines offer this mode of searching.
Searching for an exact phrase may yield no results from the search engine.
When this happens, search engines have different strategies for what to show
the user. Google tells you that no results were found, and gives the results
for the non-exact (free) version of the phrase given. Bing shows no results,
but suggests alternative searches that may give relevant answers. Yahoo in
the same way as Google shows the non-exact version of answers, without any
warning that the exact phrase was not found.

1. http://www.robotstxt.org
2. "The hinged metal canopy covering the engine of a motor vehicle."

http://www.nytimes.com/
http://www.nytimes.com/
http://www.robotstxt.org

10 CHAPTER 2 BACKGROUND

2.1.4 Ranking
In order to present relevant information to someone using a search engine,
some ranking mechanism is necessary. Results that appear at the top of the
result list would be considered of a higher rank than results further down on
the list. This is achieved by organising the results through algorithms that
weighs the importance of each result[36] [13].

Many factors contribute to the result’s importance. These include - but are not
limited to - user behaviour, user location, general popularity, time frame, user’s
connections with other users, user’s search history and particular interests.
Other more technical factors apply as well, e.g. mobile friendly web sites may
be ranked higher in mobile searches.

The major search engines also allow parties to pay for a higher ranking in the
result[29] [32].

The outcome is that results may vary from one search to another, even if the
same search is done by the same user over a short time span.

2.2 Using traditional on-line search
Search engines uses algorithms for ranking search results to produce a useful
result for the user. Search engines also display advertisements as a part of
the search result, called "paid listings", "pay per click"listings or "sponsored
links"[29] [32].

Users normally do not page around in the search results much. A study done in
2013[10] by the on-line ad network Chitika³ suggests that 91.5% of all registered
search engine traffic was on the first results page, 4.8% of users read the second
page, and only 3.7%went further than the second page. This suggests that users
generally either re-query with a different wording, give up, or go elsewhere
(other search engine or other information retrieval system).

2.3 Web scraping
One technique for accessing search results is "web scraping"⁴, parsing re-
sults directly from the HTML returned from a traditional on-line search

3. http://chitika.com
4. http://wiki.c2.com/?WebScraping

http://chitika.com
http://wiki.c2.com/?WebScraping

2.4 SEARCH ENG INE AP IS 11

engine[35].

This is technically possible to use as an information retrieval source, but it is
by many considered illegal⁵. Web scraping violates the Terms of Service (TOS)
for search engines, see Google TOS⁶.

"Do not misuse our Services, for example, do not interfere with Services
or try to access them using a method other than the interface and the
instructions that we provide."

2.4 Search engine APIs
An Application Programming Interface (API)⁷, is a way of allowing different
programs to communicate with each other. Any piece of software can talk to
the API as long as the rules of the API are followed, like authentication and
method/procedure signatures.

The search engine API lets the consumer of the API connect to the provider’s
search engine, and use it for searching the provider’s database of web re-
sults.

The search engines’ APIs also differ in what features they offer to their con-
sumers. Differences include what parameters the APIs accept, or the data
format they return their results in.

2.4.1 Search engine API status
All of the three major search engines; Google, Bing, and Yahoo, offers or have
offered connections to their search engines through APIs.

Google’s remaining search API service is called Google Custom Search, and is a
free service that can be used to search specific websites, typically blogs or small-
scale home pages. Ads and Google branding are required with GCS⁸.

Microsoft Bing Web Search API v2 is replaced by v5, which is a part of Microsoft
Cognitive Services⁹. Version 5 offers a web search API for a fee, where the
entire Bing search engine database can be searched. The former version (v2)

5. http://blog.icreon.us/advise/web-scraping-legality
6. http://www.google.com/policies/terms
7. http://wiki.c2.com/?ApplicationProgrammingInterface
8. http://searchengineland.com/google-site-search-way-now-271366
9. https://www.microsoft.com/cognitive-services

http://blog.icreon.us/advise/web-scraping-legality
http://www.google.com/policies/terms
http://wiki.c2.com/?ApplicationProgrammingInterface
http://searchengineland.com/google-site-search-way-now-271366
https://www.microsoft.com/cognitive-services

12 CHAPTER 2 BACKGROUND

had 5000 free searches per month.

Yahoo BOSS API was Yahoo’s search API offering. It was discontinued and
replaced by Yahoo Partner Ads (YPA), a system created to "Monetize your
website across desktop, tablet and mobile" ¹⁰.

Shutting down search engine APIs seems to be a trend. Other similar search
services, like entireweb Search API¹¹, has also been discontinued.

Search API Type Deprecated Discontinued
Google Web Search API Search API Nov. 1, 2010 Sept. 29, 2014
Google Custom Search¹² (GCS) Site search
Google Site Search¹³ (GSS) Site search March 31, 2017 March 31, 2018
Microsoft Bing Web Search API v2¹⁴ Search API Dec. 15, 2016 March 31, 2017
Microsoft Bing Web Search API v5¹⁵ Search API
Yahoo BOSS API¹⁶ Search API March 31, 2016

Table 2.1: Discontinuing of web search APIs from the major search providers.

2.4.2 On-line search vs search APIs
APIs have been created for computers to be able to retrieve results from search
engines in a machine readable format. APIs can generally be more precisely
controlled, give results in a machine-readable format like JavaScript Object
Notation (JSON), and also contain meta-data about the results.

There are limitations with using APIs vs the on-line search engines. One major
problem is that the results vary between the on-line search and the API search
for the same search engine, doing the same query.

An article by Kumar et al. [30] discusses the differences between the online and
API version of the major search engines. And in an article comparing Google
on-line search with using their API, Mayr and Tosques concludes that "... it has
to be clear that querying the Google APIs does not deliver the same result data
as the highly optimized Google Standard interface"[34].

Even though these are older articles, there is no reason to doubt that there

10. https://developer.yahoo.com/ypa
11. http://www.entireweb.com/services
12. https://developers.google.com/custom-search/docs/overview
13. https://enterprise.google.com/search/products/gss.html
14. https://datamarket.azure.com/dataset/bing/search
15. https://www.microsoft.com/cognitive-services/en-us/bing-web-

search-api
16. https://developer.yahoo.com/boss/search/

https://developer.yahoo.com/ypa
http://www.entireweb.com/services
https://developers.google.com/custom-search/docs/overview
https://enterprise.google.com/search/products/gss.html
https://datamarket.azure.com/dataset/bing/search
https://www.microsoft.com/cognitive-services/en-us/bing-web-search-api
https://www.microsoft.com/cognitive-services/en-us/bing-web-search-api
https://developer.yahoo.com/boss/search/

2.5 RELATED WORK 13

still are differences between on-line search and API based search. Reasons
that results differ in this way include, among others, features such as real-time
results, social features, ranking, or personalized results. APIs also have different
uses and other market targets than on-line search.

In addition, web search APIs have limits on how many results can be returned
from the search engine.

2.5 Related work
A close to exhaustive search for directly relatable work has been fruitless. There
seems to be no one that has done similar research or has made a comparable
solution.

However, several articles have been found on personalisation and user context
based work. These discuss how to use the user’s context and preferences to
adjust the results of queries to fit the user.

Some interesting ones are "Contextual search: Issues and challenges" by
Gabriella Pasi[37], and "Personalised Information Retrieval: survey and classifi-
cation", by Ghorab, M Rami et al. [21]. But none of them directly attempts the
approach of this thesis.

Google has made an extension for their web browser Chrome called Personal
Blocklist¹⁷, which blocks domains/hosts from appearing in your Google search
results. The description is as follows: "The personal blocklist extension will
transmit to Google the patterns that you choose to block. When you choose to
block or unblock a pattern, the extension will also transmit to Google the URL
of the web page on which the blocked or unblocked search results are displayed."
The extension can be installed by anyone and can be used to permanently keep
less relevant results away from Google on-line search, as long as Chrome is
used as browser. The IIR prototype offers domain name black-listing, but also
much more.

In a study that has some similarities, Karlsen et al. examines "ranking of diabetes
health videos on YouTube¹⁸ over a time period, to learn whether videos from
credible sources are ranked sufficiently high to be reachable to users"[27]. Findings
in this study indicate that many relevant videos (over time) consistently were
given a low ranking, and thus less available to the user, even when querying

17. https://chrome.google.com/webstore/detail/personal-blocklist-by-
goo/nolijncfnkgaikbjbdaogikpmpbdcdef

18. http://youtube.com

https://chrome.google.com/webstore/detail/personal-blocklist-by-goo/nolijncfnkgaikbjbdaogikpmpbdcdef
https://chrome.google.com/webstore/detail/personal-blocklist-by-goo/nolijncfnkgaikbjbdaogikpmpbdcdef
http://youtube.com

14 CHAPTER 2 BACKGROUND

multiple times. Their conclusion was that new tools are needed for finding
relevant and trustable videos.

Pocket[40] is a commercial system for saving video, images, text and other
content, to read or watch later. Their motto is "Save for later, view when ready".
Over 1500 applications support Pocket, which has more than 22 million users,
saving more than 2 billion items. Their website sums it up. "Save directly from
your browser or from apps like Twitter, Flipboard, Pulse and Zite. If it’s in Pocket,
it’s on your phone, tablet or computer. You don’t even need an Internet connection."
IIR could easily implement saving to Pocket in addition to, or instead of, saving
search results in IIR.

Another interesting aspect of search is the invisible web¹⁹ ²⁰. This is marginally
related to IIR, in that information searched for in a "deep web" type search is
not normally available through traditional on-line search.

19. https://www.lifewire.com/search-the-invisible-web-20-resources-
3482497

20. http://deep-web.org/how-to-research/deep-web-search-engines/

https://www.lifewire.com/search-the-invisible-web-20-resources-3482497
https://www.lifewire.com/search-the-invisible-web-20-resources-3482497
http://deep-web.org/how-to-research/deep-web-search-engines/

3
Problem overview
When using traditional on-line search, the search engines will try to help the
user find the most precise results according to what the user is searching
for.

This means that for the same search, the results may be variations of the same
list. Using the same search query will make it more difficult to find something
new.

3.1 Query and QueryRun
In the Incremental Information Retrieval (IIR) solution, search will be carried
out differently. The user sets up a search query, to be run by IIR several times.
Each time the query is run, the results from the run are compared to results that
were seen by the user in previous runs, to see if the user had been presented
with those results before.

To this end, two terms have been devised, to be able to discuss these mecha-
nisms more precisely.

15

16 CHAPTER 3 PROBLEM OVERV IEW

Query To be able to compare results from one searchwith results from previous
searches, every main search topic needs to be organised into a group,
a Query. This represents a container for the textual query sent to the
search engine.

QueryRun This represents a single search, a one time run of the textual query
contained in the Query, where results are returned to the user.

Figure 3.1: How Query and QueryRun are related.

3.2 Search example
In the course of working with this thesis, some characteristics of the results
emerged. As further detailed in chapter 5, queries were executed every day to
collect data through the Bing Search API. The collected result items showed a
clear overlap from day to day.

The following illustrates a sequence of results from an imagined generic query.
The concrete search text is not important here, only how the results appear
over time. The query is imagined run once per day over four consecutive days.
The results will vary, but not a great deal.

On the first day, shown in figure 3.2, all results are new, they have not been
seen before.

On the second day, shown in figure 3.3, many results were already in search
results from the first day, so only the new results here are interesting.

This accumulates to the third day, shown in figure 3.4, where the situation is
similar, most search results were seen on the first and second day.

3.2 SEARCH EXAMPLE 17

Figure 3.2: First batch of results

Figure 3.3: Second batch of results, where most of the search results the second day
also appeared the first day.

On the fourth day, shown in figure 3.5, only a small amount of new results are
present. Most of the results from day 4 have already been seen the previous
days.

Each search for the same text query in the days following day four, will show
the same pattern. The number of new results will vary, though, e.g. based on
new information collected by the search engine’s web crawler, see section 2.1.1.
See also table 3.1 which shows variation in results after day one.

The pattern shown in figure 3.2 to 3.5 demonstrates that the search API show
same or similar results each time the same search is executed.

This sequence of results is backed up by collected data. Table 3.1 shows the ten
first days of data collected for Query 11, "winds of winter". This shows 96.4%
new results the first day, and a dramatic drop in new results for the next days;
8.5%, 3.5%, 5.9%, etcetera. See also section 5.6.3 Short analysis of new results,
and tables for this and other Queries in section A.2.2 in appendix A.

18 CHAPTER 3 PROBLEM OVERV IEW

Figure 3.4: Third batch of results, where most search results from the third day still
appeared the first and second day.

Figure 3.5: Fourth batch of results, where almost all of the search results have been
seen the previous days.

3.2 SEARCH EXAMPLE 19

Date Day in period Results New New %
2016.11.18 1 949 915 96.4
2016.11.19 2 999 85 8.5
2016.11.20 3 999 35 3.5
2016.11.21 4 999 59 5.9
2016.11.22 5 CT 948 62 6.5
2016.11.23 6 998 4 0.4
2016.11.24 7 997 0 0.0
2016.11.25 8 999 52 5.2
2016.11.26 9 1000 43 4.3
2016.11.27 10 999 3 0.3

Table 3.1: 10 first days of results for free Query 11, "winds of winter", showing a steep
drop from the first to the second day of data collection. This is an excerpt
from table A.10 in appendix A.

3.2.1 Results graph
Given the Venn diagram based description above, the expected curve for unique
results is a rapidly descending curve, as shown in figure 3.6. The more times a
search is run, the more results have already been found in previous runs.

Figure 3.6: The expected curve for new results

The largest difference is between the first and second QueryRun. In the first
QueryRun all results would be new, while in the second QueryRun a lot of the
results found would also have been found in the first QueryRun, as indicated
in figure 3.3.

20 CHAPTER 3 PROBLEM OVERV IEW

3.3 User search
This section looks at new results from the viewpoint of the user, when the user
searches, either through a traditional on-line search engine, or through IIR. In
this context, new results means results that were previously unseen by the user.
In figures 3.7 and 3.8, the green area represents new results coming from the
search engine, that the user has not seen before. Note that new results in figure
3.7 (green area) may well also be found in new results in figure 3.8 (green
area), as opposed to figures 3.2 - 3.5, where the green area represents new
results that are not seen in any of the previous searches.

An example of the first search the user does is shown in figure 3.7. It contains
many results, of which the user usually browses through the first page and
maybe the second or third[10], and therefore sees only a few results.

Figure 3.7: The first time a user searches, (s)he only sees a small part of the result.

When the user does the exact same search a second time, the user may see
some more results, and likely some of the same results as the first day, see
figure 3.8.

Figure 3.8: The second time a user searches, (s)he still sees only a small part of the
result, but has in total seen more than in the first search.

3.4 GOAL 21

Even though many of the results in the second search were same as the first
search, as shown in figures 3.2 - 3.5, the user doing the search has not seen all
of them. The total number of new results (previously unseen by user) stays
high, but the normal user pattern shown in the Chitika study[10] shows that
the user rarely bothers to browse beyond the first page of results.

The problem originates from the search engine’s ranking mechanism. As seen
in the study by Karlsen et al. [27], ranking of results are consistent. Their study
was conducted with YouTube as data source, but it is plausible that this applies
to search engines as well. See also section 5.6.4, which has some insights into
this for some of the Queries run through the Bing Search API v2. Rankings
are consistent because search engines want to give the most relevant results
for the user. When the user gets a search result from a search engine, the set
of results returned often consists of most of the same results, ranked mostly
the same way. This masks other possibly relevant results by pushing them to
page two, three or further back in the list of results coming from the search
engine. As a consequence, the user gets few previously unseen results among
the top-ranked results.

If the user used a traditional on-line search engine to do the search, the number
of previously unseen results are practically unlimited. Even if the number of
results is finite, e.g. 2 million results, the user is not expected to page through
all of them. So for all intents and purposes, the number of previously unseen
results are infinite.

When searching through the search APIs by the major search engines, how-
ever, there is a much lower limit to how many results are returned. For Bing
Search API v2 this was 1000 per search, the other search engines had similar
limits.

3.4 Goal
This thesis will explore the mechanism shown in section 3.3 User search, and
find a way to show only the previously unseen results, the "green bits" of the
Venn diagrams, and hide results the user has already seen. This is accomplished
by implementing a software solution to discard the results seen before.

4
Architecture and design
This chapter will outline the architecture and design for the Incremental Infor-
mation Retrieval (IIR) system.

4.1 Design goal
The goal of the IIR system is to help the user to find information that normally
is hidden several pages down in an on-line search, using one of the traditional
on-line search engines, as described in section 2.2.

The design goal of the IIR system is to give the user opportunity to save and
discard results, to white-list domain names they find that always contain inter-
esting information, and black-list domain names that never contain interesting
results.

It is important to note that this IIR system is not intended to replace ordinary
on-line search. The IIR system can complement the ordinary search, and can
be used when a deeper probe is appropriate.

Note that when referring to the result status Seen, it is shown in italics, see
table 4.2.

23

24 CHAPTER 4 ARCH ITECTURE AND DES IGN

4.2 Architecture
The IIR system is implemented as a web service, that will connect to a search
engine API, extract search results from it based on a user’s query, and save data,
including some meta data in the web service database. This will enable the
web service to discard incoming results for the same query, if needed.

Looking at figure 4.1, the left side of the figure represents the on-line search
engine, and the right side represents the IIR system.

The user A is using a traditional on-line search engine via its on-line user
interface. This type of use will get the ordinary immediate answers from the
search engine, and will have the normal search experience that the on-line
search engine offers.

User B is using the IIR search service. The IIR service differs in that it has its
own separate user interface, and interacts with the user in a slightly different
way, compared to traditional on-line search.

Figure 4.1: IIR system at a glance.

When using the IIR service, the user will interact with the results by saving
interesting results or discarding uninteresting results. In addition to user
actions, the system could analyse the user’s interactions with the system, and

4.3 HOW I IR SEARCH WORKS 25

manipulate the results based on these interactions. The goal of the IIR system
is to help the user find new information without the user having to relate to
results they have already seen and found uninteresting.

The intent of the IIR user interface is to make it as easy as possible for the user
to use the system. This means doing smart analysis of user actions, and giving
the user some simple but smart functionality for marking and archiving results
after a query.

4.3 How IIR search works
The user will create a Query, with a text to search for. IIR will do calls to the
search engine API, retrieve data for the user, and present the results in the
IIR user interface. The user can browse through the results, save or discard
results, or white- or black-list results. When the user uses IIR to do subsequent
searches for the same Query through the search engine API, these results are
compared with the previous results for this Query. The purpose is to make
sure that the user only sees new results, i.e., results that the user has not seen
before. To be able to do this, all results returned for a search is stored in a
database for comparison and reference.

As described in section 3.1, every main search topic needs to be organised
into a Query. When doing further searches on a topic, the topic’s group must
be selected or referenced, so IIR knows what previous results to compare the
incoming results to.

The reason for grouping results into a Query, is that a hypothetical topic A and
topic B, theoretically could contain the same result item R. This result item
could be uninteresting for topic A, but interesting for topic B.

If topics A and B were not in separate groups, the result R would not appear
for topic B if it had been discarded while searching for topic A.

4.3.1 Search details
When a search is initiated by the user by using the IIR web client, the request
goes to the IIR server, which consists of several mechanisms, working together
to handle the requests, see figure 4.2.

The data retrieval component is responsible for connecting the search engine
API and retrieving results from the search engine. The results are then com-
pared to already existing results for the same Query in the filtering process.

26 CHAPTER 4 ARCH ITECTURE AND DES IGN

This is where already seen results are removed from the API results. After
filtering, a check is done to see if these API results have domain names that are
white-listed or black-listed. If they are black-listed, they are ignored, if they
are white-listed, they are saved as white-listed. Then a proprietary IIR ranking
(see section 4.4.2) is applied, after which the remaining results are sent to the
IIR client for display.

Note that figure 4.2 is more a conceptual view of the mechanisms, in the actual
implementation of the search, these mechanisms are grouped together. More
on this in chapter 6.

Figure 4.2: User using IIR to search. IIR connects to the search engine API, and returns
refined results to the user.

4.4 IIR features
What an IIR user actually is doing, is categorising the results retrieved from
the search engine. So the main features of IIR are designed to help the user
save, discard, white- or black-list retrieved results, see table 4.1 for user actions
that the user can apply to new results.

4.4 IIR FEATURES 27

Feature Description

Save single result
Inside every shown result boundary is a button for saving this
result.

Discard single result
Inside every shown result boundary is a button for discarding
this result.

Filter results by text
A text box gives the user a chance to narrow the results by
searching.

Save filtered results
This is a button that saves all the filtered results. If no filter
text is entered, all results are saved.

Discard filtered results
This is a button that discards all the filtered results. If no filter
text is entered, all results are discarded.

Filter by Query search text

When the query is loaded, the Query’s search text is shown as
a clickable text. When clicked, the Query search text is entered
into the filter text box, and the result list is automatically
filtered accordingly.

Clear filter
Removes the search text from the text box, and refreshes the
list of results.

Filter by domain name
By clicking on the shown domain name, the domain name is
entered into the text box, and the result list is filtered automat-
ically.

White-list domain name
A small button with an up-arrow symbol, shown behind the
domain name, lets the user white-list this domain name.

Black-list domain name
A small button with an down-arrow symbol, shown behind the
domain name, lets the user black-list this domain name.

Paging
IIR contains a paging bar, with page numbers, that lets the
user leaf to first, previous, next, and last page. The user can
also choose to go to page n. Page size is 15 results per page.

Change sort order
A button is available for changing the sort order of the results.
Options are a) IIR sort order and b) original search engine sort
order.

Table 4.1: IIR user actions available on a list showing only new results.

Number of results shown per page is 15. The page length of shown results
should not be too large, and not too small. If it is too large, the user may lose
overview of the results, if it is too small, the user needs to work through more
pages.

The user can choose to save or discard a result, and a status of this is written
back to the database. If the user just pages through the result, the results that
are paged past are saved as Seen.

The user can then watch the saved result in a special saved results list, or the
discarded result in a special discarded results list. The latter can be useful if
the user e.g. makes an error and discards a result instead of saving it.

28 CHAPTER 4 ARCH ITECTURE AND DES IGN

Figure 4.3: Main features available to the user from the UI of IIR.

There are also several mechanisms to filter the results. Domain names in the
results are registered, and if the user adds the domain name to a black-list,
the results with this domain name is not shown any more. Similarly, the user
can choose to approve a particular domain name. The results with this domain
name is white-listed, and is listed separately.

If the user has seen a result without doing anything with it, it is automatically
marked as Seen. This is an indirect mechanism, for the situation where the user
does not really know if the results showing are important or not. When IIR is
showing result page p and the user goes to page p+1 or page p+x, results on
page p, the page the user is leaving, are updated with the result status Seen by
the IIR web client.

The user can choose to show results ordered by the proprietary IIR ranking,
or in the original sort order the results had when they were returned from the
search engine.

4.4.1 Result status
Each result can have one of several possible statuses, based on the mechanisms
described in sections 4.3 and 4.4.

Status Description

New
When the result is returned from the search engine, ranked and
presented to the user, it has the new status. This is the first time
the user sees this result.

Seen

A result gets the seen status when the user has seen the result,
but not acted upon it. Note that when referring to the result
status Seen, it is shown in italics. Seen results are always updated
automatically, results cannot be set as Seen directly by the user.

Saved
If a user finds a result relevant, the user can save it for further
inspection. This must be done specifically via the user interface.

Discarded
If a result is not found interesting, it can be filed as discarded.
This must be done manually by the user, via the user interface.

4.4 IIR FEATURES 29

White-listed

If a user white-lists a domain name, the results with this domain
name will get the status White-listed. This will happen when
the user white-lists a domain name by using the UI, but also
automatically filtered and saved as white-listed when reading
results from the API, see figure 4.2.

Black-listed

If a user black-lists a domain name, the results with this domain
name will get the status Black-listed. This will happen when
the user black-lists a domain name by using the UI, but also
automatically filtered and saved as black-listed when reading
results from the API, see figure 4.2.
This status is mainly for testing the prototype, in a fully imple-
mented system, the result would just be removed.

Automatically discarded

If a result in the current batch of results returned from the search
engine has been seen before, it gets auto-discarded. This will also
happen if the filtering component shown in 4.2 finds duplicates
in the result returned from the search engine.
This status is mainly for testing the prototype, in a fully imple-
mented system, the result would just be removed.

Table 4.2: A result’s possible statuses.

4.4.2 Ranking
Search engines are ranking results, to make sure the most relevant results are
shown first. This takes into account the user’s spelling errors and other issues,
using mechanisms described in section 2.1, and specifically 2.1.4.

Personal experience shows that sometimes this ranking does not show relevant
results according to the text being searched for. So as an experimental feature,
a simple IIR ranking of results is introduced. It is optional and can be turned
off. When turned off, IIR shows the filtered results in the order of the original
search engine ranking.

A numeric word rank is introduced for each result, where different ranking
scores are given according to how many of the search words are found in the
result.

The weighting of a result is based on criteria described in the following list.
The sum of the relevant numbers gives a total score for the result.

30 CHAPTER 4 ARCH ITECTURE AND DES IGN

Weighting Description
50 The title of the result contains the exact phrase searched for.

30
The description of the result contains the exact phrase searched
for.

15
If the exact phrase is not found in the title, the title is checked for
all words appearing, though not in the exact order.

10
If the exact phrase is not found in the description, the description
is checked for all words appearing, though not in the exact order.

1
If none of the above, each search word actually appearing in title
or description is given one point.

Table 4.3: Weighting scores for IIR search word ranking.

4.4.3 Result folders
The results will have different statuses, as described in table 4.2. A good way
to separate these different categories of results, is to place them in folders, as
shown in table 4.4.

Folder Description

New results

This is the main folder, which shows results for the latest QueryRun
only. New results from the search engine arrive in this folder, after
filtering and ranking shown in figure 4.2. This is also where user
actions shown in 4.3 are available, as well.

Seen results
This folder contains the results with the Seen status. Refer to page
28 for an explanation of the Seen status.

Saved results
When the user saves results, this folder is where the Saved results
can be found.

White-listed results
If the user white-lists domain names, this folder is where results
with the white-listed domain names are located.

Discarded results

Manually discarded results end up here. In the test phase, all types
of discarded results ended up in this folder; Manually discarded re-
sults, Auto-discarded results (duplicates and already seen results),
and Black-listed results.

Table 4.4: Folders to show results with different statuses.

4.5 CL IENT DES IGN 31

4.5 Client design
The design approach for the user interface is a straightforward four part layout.
Figure 4.4 shows a top area and a bottom area, with a two part main area in
the middle where most of the functionality is located.

Figure 4.4: The main user interface

Header and footer of the page
is mostly left alone after lo-
gin, the operational part of
the system is the middle left
and right area.

The middle left area contains
a list of the user’s registered
Queries, themiddle right area
contains all results and ma-
nipulation features for the re-
sults, as described in section
4.4.

4.6 System requirements
Armed with more knowledge about what IIR is going to solve, some require-
ments for the system can be defined.

The usage and features of the IIR prototype is quite limited, so at this stage the
IIR server will not need much in terms of computing infrastructure. A single
server will do, there will not be many users using the IIR prototype.

4.6.1 Web server hardware
The IIR prototype does not require much in terms of hardware, and should
even be able to run e.g. on a laptop, enabling IIR prototyping and development
on available laptops and desktop computers.

But deploying the solution for wider use will make more demands when it
comes to infrastructure. The best way of setting up the infrastructure might be
renting it in the cloud, either Infrastructure as a service (IaaS), or Platform as

32 CHAPTER 4 ARCH ITECTURE AND DES IGN

a service (PaaS), depending on the finished implementation[9]. By choosing a
cloud infrastructure, the finished IIR solution has room to grow.

Amazon Web Services¹ (AWS), Google Cloud Platform², or Microsoft Azure³
are all good platforms. This will ensure safe storage and scaling of the solution.
Microsoft Azure has for practical reasons been chosen as the platform for the
testing phase of this project.

4.6.2 Storage
The IIR system needs to store the user’s results, so it needs a database. What
needs to be stored is information about the user, the user’s Queries, the infor-
mation about all the user’s QueryRuns, and all the results the user interacts
with, as described in section 4.4.

Trying to speculate on how much data a user will accumulate can be difficult.
It depends among other things on how active the user is, i.e., how many
Queries the user has in the system, how many times each Query has been run
against the search engine, how many results are seen, saved, white-listed, or
discarded.

Result storage
The results would require the largest share of the storage, mostly because they
are so many, so calculating their storage is key.

From available test data, a quick preliminary calculation shows how much
storage could be needed for each result. A set of 302, 649 results uses a
storage of 282, 148, 976 bytes, which means that average size per result is
282, 148, 976/302, 649 = 932.3 bytes.

The result size of 932.3 bytes is used for calculations in sections IIR storage
and IIR testing scenario storage below.

IIR storage
Storage is a direct consequence of usage, so usage pattern is key here.

1. https://aws.amazon.com/
2. https://cloud.google.com/
3. https://azure.microsoft.com/

https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/

4.6 SYSTEM REQU IREMENTS 33

As an example, take one user’s single Query, and examine its possible usage.
Let the Query run daily for a year), creating a QueryRun daily, and let every
QueryRun e.g. return on average a thousand results. Even though IIR is not a
traditional search engine, let us assume that the user follows the usage patterns
of the Chitika study [10], and only looks at the first and maybe the second page
of results. When a QueryRun returns its results, the user saves 10 results and
discard 20 results, and white-lists 2 domain names and black-lists 4 domain
names. Then the user goes to page two, and finds nothing in page two. Then
the user stops using IIR (closes the browser).

This would result in

1. 5 saved results

2. 10 discarded results

3. Let us for simplicity assume that there were 5 results from the white-
listing action, though the number would depend on results and what
domain names actually were white-listed.

4. No black-listed results saved. These results would be deleted, and the
domain names saved to the black-list configuration for the Query.

5. 15 Seen results were stored when the user paged to the next page. When
the user closed the browser, no results were marked as Seen.

In the following, let Sq , Sqr and Sr denote storage for Query, QueryRun and
result. Let R denote number of results.

The estimated number of results for this single QueryRun is

RQueryRun = 5 Saved + 10 Discarded + 5 White-listed + 15 Seen = 35

When the Query is executed for a year with a daily QueryRun, and with the
same estimated usage of 60 results, the number of results is

RQuery = 365 × RQueryRun = 12 775

If a user has 100 Queries, the yearly number of results for this user would
be

100 × 12 775 = 1 277 500

With a size of 932.3 bytes per result, as outlined in section Result storage above,
the total storage per user could be 932.3 × 1 277 500 = 1 277 500 000 bytes,
which amounts to 1.2 Gigabytes of storage per user per year.

34 CHAPTER 4 ARCH ITECTURE AND DES IGN

Note that this is a maximised calculation for all Queries, most likely few users
are this active, or follow this pattern. Usage will also vary according to type of
Query, number of results paged by, saved or discarded, and how many times
the Query is run, and the size of each returned result will vary, as well.

Still, this is storage for a single user, so if this scales to thousands or even
millions of users, storage needs to be handled carefully.

IIR testing scenario storage
For test data, storage is different. 40 Queries have been set up, and were
executed daily over a period of 54 days (QueryRuns). Assume maximum 1000
results per Query per day, and a result storage of 932.3 bytes as outlined in
section Result storage above. This gives

40 × 54 × 1000 × 932.3 = 2 013 768 000

This means the maximum storage requirement is 2 013 768 000 bytes for the
prototype testing, i.e., 2 Gigabytes.

In chapter 5 there are concrete numbers for storage, and with a result size of
932.3 the total is 1 444 330 × 932.3 = 1346529859 bytes for the prototype
testing, i.e., 1.3 Gigabytes.

Note that this is an approximation, since the result size of 932.3 is an estimated
size.

4.7 Selecting search engine to work with
The three major general purpose web search engine APIs have been examined,
and the chosen candidate is the Bing Search API v2, for practical reasons.

The main argument is that Bing Search API v2 had an initial 5000 free searches
per month, which would come in handy for development and initial testing.
Bing Search API v2 also had the largest maximum number of results, 1000
results per query. Google Custom Search (GCS) also had free searches, but
they were not as many as Bing, and GCS was made for searching limited
number of sites anyway. The Yahoo BOSS API had costs associated from the
very first query.

This project also has been designed in such a way that it is possible to change
data source with a minimal amount of work. Ideally, the finished IIR solution

4.8 HYPOTHET ICAL SEARCH PROGRESS ION 35

could have attached any number of APIs or other data sources, so that different
result generators can be used. This means that the selected search engine could
be swapped out for another source at some future point. So for the purpose of
implementing the IIR prototype, the search engine selected was not a central
concern, but more a practical issue.

4.8 Hypothetical search progression
In section 3.2 Search example, a progression for search results returned from
the search engine was described, showing how search results accumulate over
time for the same search query.

Using the different statuses described in section 4.4.1, we can hypothesise about
how result statuses would be distributed for each consecutive search using a
generic search text.

This hypothetical search progression is based on the data collected from Bing
via Bing Search API v2. Data collection is described in greater detail in chapter
5, but for now it is important to recognise that the maximum number of results
for each search scenario in this section, figures 4.5 - 4.8, is 1000 results.

Each of the searches in the figures 4.5, 4.6, 4.7 and 4.8 below have a start and
an end scenario. For each figure, the start scenario is to the left, marked with
an a. It shows how the search results distribute when fresh from the search
engine.

The end scenario is to the right, marked with a b. It shows how the search
results distribute after the user has used the IIR web service, working with the
results. The end scenario can be regarded as a snapshot of the system just after
the user presses the search button again to get more results from the search
engine, but before the next search results arrive.

When the user searches again, all results still in the new column could theoret-
ically be found again in the next search’s new column. As an example consider
new results from 4.5b’s new column partly being found again in 4.6a’s new
column. This will happen for all "b" and next "a" figures shown below.

In figure 4.5a, the search query has been executed for the first time. Some
results are auto-discarded as duplicates when different results have the same
URL.

36 CHAPTER 4 ARCH ITECTURE AND DES IGN

The user then looks at the results, decides that some results can be saved,
and some discarded. The user has white-listed some domain name(s), and
black-listed others, which updates the relevant results with the corresponding
statuses white-listed and black-listed. The end scenario, after user browsing and
user actions, can be seen to the right in figure 4.5b.

Figure 4.5: Hypothetical search progression, search 1. Results for day one are shown
in grey. Start scenario is to the left, marked a, end scenario is to the right,
marked b.

When the search query is executed for the second time, new results pour in
and are compared to previous results, and also to white-listed and black-listed
domain names. This can be seen in figure 4.6a, where many results are auto-
discarded because they were seen in the first search, or they are automatically
white-listed or black-listed.

In the same way as for the first search, the user works with the results, saves or
discards some more results, and white- or black-lists even more domain names.
This can be seen in figure 4.6b.

The same kind of progression follows for the third search, as shown in figure
4.7a. Even more results are automatically given appropriate statuses in the
incoming results, based on results already seen or white- or black-listing.

After the user has worked with the third batch of results for a while, even more
results have been given appropriate statuses, as shown in figure 4.7b.

4.8 HYPOTHET ICAL SEARCH PROGRESS ION 37

Figure 4.6: Hypothetical search progression, search 2. Results for day one are shown
in grey. Results for day two are shown in green. Start scenario is to the
left, marked a, end scenario is to the right, marked b.

In the fourth search, shown in figure 4.8a, the new results are not that many,
since many of the results have been seen before.

After the user has worked with the results, shown in figure 4.8b, all new results
have been classified according to the statuses in table 4.2 in section 4.4.1.

In the following searches, the user can expect even fewer results with the new
status than what is shown in figure 4.8a (left). The number of results will most
likely vary according to updates in the search engine’s index.

This progression closely resembles the scenario in testing the prototype, and in
any connection to a data source that supplies IIR with maximum 1000 results,
or a similar small final number of results.

38 CHAPTER 4 ARCH ITECTURE AND DES IGN

Figure 4.7: Hypothetical search progression, search 3. Results for day one are shown
in grey. Results for day two are shown in green. Results for day three are
shown in blue. Start scenario is to the left, marked a, end scenario is to
the right, marked b.

Figure 4.8: Hypothetical search progression, search 4. Results for day one are shown
in grey. Results for day two are shown in green. Results for day three are
shown in blue. Results for day four are shown in red. Start scenario is to
the left, marked a, end scenario is to the right, marked b.

5
Data collection andanalysis
In this chapter data collection is described. Refer to section 5.1 for the back-
ground on why data collection was necessary.

5.1 Why data collection
Bing search API v2 was chosen as search tool for this thesis in section 4.7. After
some time had gone into working on this thesis, news broke that Microsoft
had decided to change the structure and price model of their search API. This
would result in Microsoft shutting down the v2 version of the search API, and
remaking it as a new version (v5), with new functionality, reworked structure
and increased cost. This new API offering is a part of Microsoft Cognitive
Services¹.

This meant that a decision needed to be made; either discard a lot of work
already done and start again with the new and radically updated version
of the search engine API², or continue to use the v2 search engine service

1. https://www.microsoft.com/cognitive-services
2. https://msdn.microsoft.com/en-US/library/mt707570.aspx

39

https://www.microsoft.com/cognitive-services
https://msdn.microsoft.com/en-US/library/mt707570.aspx

40 CHAPTER 5 DATA COLLECT ION AND ANALYS IS

until its termination. In cooperation with the supervisor, the latter option was
chosen.

Another point of view is that it is an advantage to having a fixed set of data as
input to the testing process, as long as the data set is large enough. This would
facilitate repeated tests of the IIR system. The data would be the same, so the
main variable in the system would be the behaviour of the IIR system.

As a consequence of these two circumstances stated above, data was collected
in the period from November 2016, beyond the official service termination 14th

of December 2016 and until 10th of January 2017.

As a side note, the Bing service was finally closed down 31st ofMarch 2017.

5.2 Queries
Friends have been recruited to contribute some information needs, to vary the
results found.

A total of 20 Queries was collected. These would be used as search queries for
the search API. Each Query was submitted both as a non-exact (free) query, and
as an exact phrase query, to see if this would give variations in the results.

This made a total of 40 queries, one free and one exact for each of the 20
contributed queries. The full list of searches is displayed and explained in table
A.1 in appendix A.

ID³ ID⁴ Search text Contributor
1 2 Messerschmitt KR200 restoration Person A
3 4 Web search API thesis Person A
5 6 Web search thesis Person A
7 8 Search API thesis Person A
9 10 Messerschmitt TG500 for sale Person A
11 12 winds of winter Person A
13 14 promise of spring Person A
15 16 terry pratchett Person A
17 18 liverpool leeds efl Person B
19 20 hillary clinton e-mail fbi Person B
21 22 macbook pro 2016 touch bar problems Person B
23 24 apple stock price Person C

3. Odd-numbered IDs are "free" searches
4. Even-numbered IDs are exact searches

5.3 THE ANATOMY OF A QUERY 41

25 26 samsung note 8 release date Person C
27 28 google self driving car Person C
29 30 mobile application health sensor data Person D
31 32 mobile phone body area network Person D
33 34 mobile phone sensor research health Person D
35 36 forest fairytales Person E
37 38 tudor politics Person E
39 40 jazz poetry Person E

Table 5.1: Summary of automated searches, run for 54days.

5.3 The anatomy of a query
There are four main parts to collecting the data, the Query, the QueryRun, the
Transaction and the Result.

Part Description

Query

This is where the textual query sent to the search engine is stored. In addition
to the actual query text, properties of a query include a numerical id, first run
date, latest run date and if the query is searches for an exact match or not.
See also section 3.1.

QueryRun
A QueryRun is created every time a Query is run, and contains properties like
ID, date of run and how many results collected for this run. See also section
3.1.

Transaction
This is the actual call to the Bing Search API. Each transaction would return
a set of maximum 50 results, a "page". There are 20 transactions run per
QueryRun.

Result
This contains the actual response from the search engine. All results gets a
Query ID and QueryRun ID in addition to essential properties returned from
Bing, such as title, URL and description. See also figure 5.2.

Table 5.2: The "moving parts" of the data collection system.

As described in section 3.1, a Query is a container for the search query, a
QueryRun represents a single run of a textual query, and is built from up to 20
API transactions, which could have a maximum of 50 results each.

Each transaction is called with an offset start value, like 51, 101, 151 etc., and
the maximum offset allowed would be 951, to make the potential maximum
number results of a thousand (1000) for the given Query.

42 CHAPTER 5 DATA COLLECT ION AND ANALYS IS

Figure 5.1: A Query consists of QueryRuns, which have of up to 20 API transactions,
which in turn could have a maximum of 50 results each.

5.4 Data collection environment
For the data collection a program was run in batch, on a daily schedule. A
collection of 40 searches (Queries) was run against the Bing Web Search API
every day at 12:00 CET.

5.4.1 Hardware
All batch runs are done on a Microsoft Windows 10 Pro desktop computer with
an Intel Core i7-5820K processor, 16 GB RAM and an SSD disk. It is connected
to a 60 Mbit (in the last stages of the run a 100 Mbit) network from Canal
Digital, a solid and trustworthy Internet Service Provider (ISP).

5.4.2 Database
The database is of the NoSQL⁵ variety, see more about the database in section
6.1.1. There are two main collections in the data collection database, queries
and results. Queries contains the search text, and for each time the query is
run, an entry is added to the sub-collection of QueryRuns. The other collection
contains the results which holds the results from the search, with added keys
from Query and QueryRun to connect the two collections.

5. http://wiki.c2.com/?NoSql

http://wiki.c2.com/?NoSql

5.4 DATA COLLECT ION ENV IRONMENT 43

Figure 5.2: Data collection database entities, and corresponding database collections.

Listing 5.1: Go struct describing the data collection Query
// Query i s the c on t a i n e r f o r the s ea r ch
type Query s t ruc t {

// Query ID
ID bson . Objec t Id ‘ bson : " _ id " ‘

// Simple numeric ID f o r the Query
SimpleID in t ‘ bson : " s impleId , omitempty " ‘

// Name o f the Query
Name s t r ing ‘ bson : " name , omitempty " ‘

// Ac tua l s ea r ch t e x t to send to s ea r ch eng ine
Query s t r ing ‘ bson : " query " ‘

// I f t rue , the s ea r ch t e x t w i l l be e n c l o s e d by
// quo ta t i on marks when s en t to the s ea r ch eng ine
I sExac tSearch bool ‘ bson : " i sExac tSearch " ‘

// When was the Query c r e a t e d
CreatedDate time . Time ‘ bson : " createdDate , omitempty " ‘

// When was the Query l a s t run aga in s t the s ea r ch eng ine
LastRunDate time . Time ‘ bson : " lastRunDate , omitempty " ‘

// Sub− c o l l e c t i o n con ta in ing QueryRuns
QueryRuns []QueryRun ‘ bson : " queryRuns , omitempty " ‘

}

Listing 5.2: Go struct describing the data collection QueryRun
// QueryRun con ta i n s in fo rmat ion on when the query i s run
type QueryRun s t ruc t {

// QueryRun ID
ID bson . Ob jec t Id ‘ bson : " _ id " ‘

// Date o f s ea r ch e x e cu t i on
Date time . Time ‘ bson : " date , omitempty " ‘

}

44 CHAPTER 5 DATA COLLECT ION AND ANALYS IS

Listing 5.3: Go struct describing the data collection Result
// R e s u l t i s the a c t ua l r e s u l t
type Resu l t s t ruc t {

// R e s u l t ID
ID bson . Ob jec t Id ‘ bson : " _ id " ‘

// Query ID
QueryID bson . Objec t Id ‘ bson : " queryId " ‘

// Query s imp l e ID
SimpleID in t ‘ bson : " s impleId , omitempty " ‘

// QueryRun ID
QueryRunID bson . Objec t Id ‘ bson : " queryRunId " ‘

// Bing meta−data , j u s t the a c t ua l URI run , and r e s u l t −t ype
MetaData b ingapi . MetaData ‘ bson : " metadata " ‘

// A Guid r e tu rned from Bing to i d e n t i f y the r e s u l t
IDBing s t r ing ‘ bson : " idb ing " ‘

// T i t l e o f r e s u l t from sea r ch eng ine
T i t l e s t r ing ‘ bson : " t i t l e " ‘

// D e s c r i p t i o n o f r e s u l t from sea r ch eng ine
Desc r i p t i on s t r ing ‘ bson : " de s c r i p t i on , omitempty " ‘

// DisplayURL o f r e s u l t from sea r ch eng ine
DisplayURL s t r ing ‘ bson : " d i sp layUr l , omitempty " ‘

// URL o f r e s u l t from sea r ch eng ine
URL s t r ing ‘ bson : " u r l " ‘

// URL hashed to make i t e a s i e r to compare
URLCRC s t r ing ‘ bson : " u r l c r c , omitempty " ‘

// Time o f s ea r ch e x e cu t i on
Time in t ‘ bson : " time , omitempty " ‘

// Index ho ld ing order o f r e tu rned r e s u l t from sea r ch eng ine
Index in t ‘ bson : " index , omitempty " ‘

}

5.4.3 The batch job
The batch runs were started from the Windows Task Scheduler which executed
a Windows script command file that executed the data collection.

A Go program was developed and set up to execute one Query at a time,
by referring to the Query’s numeric SimpleId. The Query was run (i.e., a
QueryRun), performing 20 transactions to the Bing search engine API per
Query. Each transaction would start at a 50 result offset from the previous,
yielding 50 results for each transaction, with a potential total of 1000 results
for the query.

5.4 DATA COLLECT ION ENV IRONMENT 45

This program would be called 40 times, each time with a different Query
SimpleId as parameter.

Listing 5.4: Running the queries in a command file
@echo o f f
bingv2batch − id 1
bingv2batch − id 2
bingv2batch − id 3
. . .
bingv2batch − id 40

After all the queries were finished, a backup would be created of the full
database by exporting the relevant collection to files, and then stored off-site.
The actual command file was much more comprehensive than implied in listing
5.4, with logging and compression.

5.4.4 Updating the database
Before starting batch runs, there is only the queries collection, with the queries
configured for the search. An example of one such query is outlined in listing
5.5.

Listing 5.5: The starting configuration of the query, before any searches are run
{

" _ id " : Ob jec t Id ("581647b0e1caad25dc08a1e5 ") ,
" s imple id " : 27 ,
" query " : " google s e l f d r i v i ng car " ,
" exac t search " : f a l s e

}

After running 3 batch runs, this record is expanded with information on the
queries that has been run, see listing 5.6. The QueryRun has an id and a date
for the run.

Listing 5.6: The same query after 3 runs, with more information from the runs
{

" _ id " : Ob jec t Id ("581647b0e1caad25dc08a1e5 ") ,
" s imple id " : 27 ,
" query " : " google s e l f d r i v i ng car " ,
" exac t search " : f a l s e ,
" queryruns " : [{

" _ id " : Ob jec t Id ("58187611e1caad4338e04ee1 ") ,
" date " : ISODate("2016−11−01T11:01:37.265+0000")

} , {
" _ id " : Ob jec t Id ("5819 c7a1e1caad23a4cff95f ") ,
" date " : ISODate("2016−11−02T11:01:53.541+0000")

} , {
" _ id " : Ob jec t Id ("581b1914e1caad3958a3b94a ") ,
" date " : ISODate("2016−11−03T11:01:40.096+0000")

}]
}

46 CHAPTER 5 DATA COLLECT ION AND ANALYS IS

When the query is run for the first time, the results collection is created, and
results from the search are inserted. See listing 5.7 for one such result.

There are 20 queries run twice, one free run and one exact run, as described in
section 5.2. Each query consists of 20 transactions (or "pages") with a maximum
of 50 results each, giving a potential maximum of 1000 results per query per
run.

With q as queries and r as results, this means a potential maximum of

40q × (20 × 50r) = 40q × 1000r = 40000

results for each day of the data collection period.

Preliminary tests have shown that results per run is not always close to the
maximum, but normally somewhere between 500 - 1000 results per query
per run, and even lower, depending on how the query is built, and the results
available from Bing.

This means that for every run there would be maybe somewhere between
20,000 and 40,000 results added to the results collection. With a run period
of 54 days this resulted in a collection of 1 444 330 results to run analysis and
testing on. With 40 Queries, average number of results per Query is approxi-
mately 36108, and average number of results per QueryRun is approximately
669.

The first run for query 27 had 823 results, and the first of these results are
shown in listing 5.6 (some fields edited for brevity).

Listing 5.7: The first out of the 823 results for query 27 on the first day
{

" _ id " : Ob jec t Id (" 58187612e1caad4338e05187 ") ,
" queryid " : Ob jec t Id (" 581647b0e1caad25dc08a1e5 ") ,
" queryrunid " : Ob jec t Id (" 58187611e1caad4338e04ee1 ") ,
" s imple id " : 27 ,
" metadata " : {

" u r i " : " h t tp s : // api . datamarket . azure . com/Data . ashx/Bing/Search [. . .] " ,
" r e s u l t t y p e " : " WebResult "

} ,
" idb ing " : " ed2d4424−9c8f−4dad−b94c−d734d24c9ccf " ,
" t i t l e " : " Google Se l f−Dr iv ing Car P ro j e c t " ,
" d e s c r i p t i on " : " Our s e l f −dr i v i ng ca r s are designed to nav igate [. . .] " ,
" d i s p l a yu r l " : " h t tp s : //www. google . com/ s e l f d r i v i n g c a r " ,
" u r l " : " h t tp s : //www. google . com/ s e l f d r i v i n g c a r / " ,
" u r l c r c " : BinData (0 , " QIuP+XXSfMoAGpcqluNqNEzGEPA=") ,
" index " : 10000

}

5.5 DATA COLLECT ION PROBLEMS AND ERRORS 47

5.5 Data collection problems and errors
When running a procedure over a stretch of time to collect data for analysis, the
main rule should be to not change the procedure during the data collection. This
would change the data collected and thereby the basis of the analysis.

That said, some problems were discovered during the data collection period
that could have potentially ruined the analysis.

Three distinct adjustments were done, to avoid bad data or wrong data. These
are outlined in sections 5.5.1, 5.5.2 and 5.5.3.

Other errors that occurred are described in the last part of this section. All error
codes are denoted in the data collection result tables in appendix A.

Note that when discussing days in this section (section 5.5), the whole data
collection period of day 1 - 71 are discussed, see figure 5.3 in section 5.6.2 for
more on this.

5.5.1 Typing error
Two of the queries were actually typed wrong, which meant that results from
these queries would be wrong. This especially goes for exact search. Queries
1 and 9 and their respective exact queries (2 and 10) had typos. These typos
were discovered after day 5 and were corrected before day 6.

See also figures A.3 and A.4 in appendix A.3.2. Errors are not so clearly visible,
but for the eagle-eyed, both figures have a graph that goes below 500 results
for the first five days.

5.5.2 Premature termination
Each of the 40 queries were run as a separate parametrised executable every
day of the test period. In some cases one of the 20 API transactions per query
run (see section 5.3 for details on how Query, QueryRun and transactions relate
to each other) would terminate prematurely, and this would make the whole
executable terminate, thus not yielding any results for that query that day (that
QueryRun).

The batch executable was changed after the 12th day and would be correct from
the 13th day onwards. After this, only the transaction that failed would give
zero results, but the rest of the transactions would be ok.

48 CHAPTER 5 DATA COLLECT ION AND ANALYS IS

Premature termination would be prevalent at the start of the period, but would
happen very few times after the initial period of day 1 - 12. In the tables in
appendix A.2, this is denoted by "—". As an example, see query 19 on December
1st - day 13 - in table A.13.

5.5.3 Exact search
On day 17 of the data collection period, more information on how to do exact
search was exposed. The API parameter used as exact search is used by Bing
as a way of preventing the search engine from altering the query, and not as a
method of making the search exact. Coincidentally, information was uncovered
on how the search engine would suppress more than two results from the same
top level URL as a default⁶.

DisableQueryAlterations Specifying this option prevents Bing from altering
the query string. Such alteration may have been done in order to correct
apparent spelling error in the original query string.

DisableHostCollapsing Specifying this option prevents Bing from suppressing
more than two results from the same top-level URL for a request.

To actually do an exact search using the API, the exact queries would have to
be surrounded by quotation marks in addition to the DisableQueryAlteration
parameter. The parameter DisableHostCollapsing was also added to all free
queries, to make the search engine return all possible results.

All this was corrected from day 18 onwards. This is visible in most result plots
from the run, but is especially in the combined plot for exact searches, as seen
in A.4.

5.5.4 Connection error
In some runs there were connection errors, one or more of the 20 transactions
did not finish. The error message was "request canceled [sic] (Client.Timeout
exceeded while awaiting headers)". Client time-out were set to 30 seconds,
something that should be enough for a single transaction.

In all cases except one, only one transaction was cancelled out of the 20
transactions for the query marked with CT. The exception was Query 10 on
day 48 of the run, where 9 out of 20 transactions failed.

6. https://msdn.microsoft.com/en-us/library/dd250969.aspx

https://msdn.microsoft.com/en-us/library/dd250969.aspx

5.6 BATCH RESULT ANALYS IS 49

This would probably be because of a connection problem between any of the
nodes from the machine running the queries to the API endpoint.

These types of errors are denoted with a CT in the tables in appendix A.2.

5.5.5 Parameter incorrect
In one particular query - Query 26 on day 38 - one of the 20 transactions
was perceived by Bing Search API as having incorrect parameters. The error
message was "The parameter is incorrect." This seems odd, knowing that this
exact transaction was run daily for weeks with no errors. There must be some
other reason for this than incorrect parameters, typically communication errors
where URI used or data sent were cut off or garbled.

These types of errors are denoted with a PI in the tables in appendix A.2.

5.5.6 Parse error
Parse errors would happen if one of the 20 transactions per query run failed,
and returned HTML containing an error message instead of the expected JSON
result. One such example would be if the Bing API suddenly decided that one
of the transactions was illegal, and returned a HTML based error message. The
reason for this is unknown, but - hazarding a guess - it could be the same
explanation as for incorrect parameters, see 5.5.5.

These types of errors are denoted with a PE in the tables in appendix A.2.

5.6 Batch result analysis
The following sections outline a short analysis of the results from the batch
run. More detail on results can be found in appendix A.

5.6.1 Data collection periods
The gravest of the problems described in 5.5 were mainly located to the days
up to and including day 17 of the run period.

• Day 1-5: Typo on query 1,2,9 and 10

50 CHAPTER 5 DATA COLLECT ION AND ANALYS IS

• Day 1-12: Some queries terminated without giving results.

• Day 1-17: No exact search, and Bing was configured to hold back multiple
results from the same domain.

The test period can thus be divided into 4 parts: 1-5, 6-12, 13-17 and 18-71. From
day 18 in the batch run, queries ran much more stable and gave results, except
query 19, 25 and 39 which had one day each where they did not give any results
after day 18.

5.6.2 Data selected for analysis and testing
For the full 71 days of data collection, a total of 1 981 006 results were col-
lected.

Since the early days of data collection had many errors, the period selected
for analysis and testing was from day 18 to day 71, in total 54 days of data, see
figure 5.3.

Figure 5.3: This shows the full period, the error-prone period of the first 17 days, and
the period selected for analysis and testing.

A total of 1 444 330 results were collected in the selected period, for all 40
queries.

When referring to days of results in this thesis, the start is day 1 and end is day
54, unless otherwise noted.

The start day is referred to as day 1, but was really day 18 in the data collection
period. The last day of data collection period is referred to as day 54, but was
really day 71.

5.6.3 Short analysis of new results
Showing all queries in the same plot, can be used to see the trend in results.
Figure 5.4 shows that results follows the suggestion of the predicted graph
for results, outlined in figure 3.6 in chapter 3. The measured results shows

5.6 BATCH RESULT ANALYS IS 51

the same steep curve as in the graph. This means that the results have the
characteristics shown in figures 3.2 to 3.5, with the first day having many new
results, and the following day having few new results.

Note that figure 5.4 shows the percentage-wise number of new results for all
collected results for each Query per day of data collection, not for the end-user
experiences, as shown in figures 3.7 and 3.8.

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure 5.4: Plot of all 20 free queries (1,3,5 up until 39) from day 1.

This is visible in all plots, but is easiest to spot in the plot for all 20 free queries
(odd-numbered; 1, 3, 5 up until 39), as shown in figure 5.4. This plot shows the
percentage-wise number of new results each day compared to all the previous
days’ accumulated results.

The first day of data collection naturally gives a lot of new results, since this
is the first time any data is collected, and there’s nothing to compare it with.
With the data collected the first day, one would expect the same number of new
results the first day. This is not the case, and when analysing the data there
are some duplicate URLs, see section 5.6.5 on duplicates.

After the first couple of days of results, the curve is almost at the bottom, and
then flattens out. For each day there is normally a few new results, but it varies
from day to day. Some days more, some days less. Some queries seem to vary
wildly, but after the first or second day there is never more than 30% of new

52 CHAPTER 5 DATA COLLECT ION AND ANALYS IS

results, and predominantly less than 10%.

On day 11 and day 27 among others, there are small peaks in the new results.
One explanation could be adjustments to the Bing search engine content, since
all Queries peaked.

5.6.4 Result overlap between days
By examining the data collected from Bing Search API v2 for the two first days
of data collection, we can find how much overlap there was between them.
Overlap in this context represent how many results from day one reappeared
on day two.

The first 100 results for day one were compared to the first 100 results from day
two. Results were ranked somewhat differently from day one to day two, but
the top of the lists were very similar. It is therefore interesting to see how many
results were exactly the same, when counted from the top of the lists. This is
shown in column Equal rank in table 5.3. In the case of the Query "liverpool
leeds efl", a user would have to browse through the 20 first results on day two
before finding a result that is different from day one, see also figure 5.5.

Id Query Equal rank New results Overlap
11 winds of winter 29 1 99
15 terry pratchett 60 0 100
17 liverpool leeds efl 20 2 98
29 mobile application health sensor data 34 5 95
35 forest fairytales 2 6 94

Table 5.3: Overlap in the first 100 results. The table also shows number of equal
results day 2, that were also equal in rank.

Table 5.3 shows thatmost results from day one reappeared day two. The column
New results shows how many of the 100 first results on day two were different
from the 100 first results on day one.

Assuming the page size of 15 when viewing, column Equal rank shows that
for most of the Query more than one page were exactly equal from day one
to day two. If a user were to browse through these results, presented to them
with a page size of 15, the user would the second day (second search) see the
exact same results as the first day, if only looking at the first page. For "terry
pratchett" it would be 4 pages of 15 results each before changes emerges on
page 5.

The exception is Query 35 "forest fairytales", which had 2 results at the top
of the list on the first day that were equal to the second day. Still, out of the

5.6 BATCH RESULT ANALYS IS 53

100 first results both days, 94 of them were overlapping, the results just had
different rankings.

As an illustration of the column Equal rank in table 5.3, figure 5.5 shows a screen
capture of the Query 17 "liverpool leeds efl" comparison, displaying the first
30 results from day one and day two. The 20 first results were ranked equally
on both day one and day two, after which some results with different ranking
shows, but most of them are just ranked differently, therefore the results are
mostly the same, albeit in a slightly different sort order.

Figure 5.5: Screen capture of comparison between day one and day two for Query 17.

Queries analysed are those that are used as examples in this chapter and in
chapter 7. Other Queries have not been analysed, but it is reasonable to think
that they would show the same characteristics.

5.6.5 Duplicates
Duplicates in the data collection results stem from duplicates in the search
engine index. It can be difficult for the search engine to distinguish between
duplicates within the same site.

When analysing and finding the numbers for columns New and New d2 in table
A.3, only the individual result’s URL has been used as a basis for finding which
results are new.

Creating a checksum from the result’s URL should be enough to identify the

54 CHAPTER 5 DATA COLLECT ION AND ANALYS IS

result. Looking through some of the results, it is clear that duplicate URLs in
some cases occur where the accompanying title and/or description is different
from each other. These would be distinct results if the checksum is created
from a combination of the result’s URL, Title and Description. But then the
content should really be the same anyway, and the URLs may for instance be
indexed at different points in time.

One exception to this would be home pages for newspapers etc., see section
2.1.2.

It turns out that some URLs appeared as different results, with http and https
as the only difference, and some with and without a trailing "/" as the only
difference. So before taking a checksum of the URL, the following has been
done to make sure even more duplicates could be ignored.

• it has been made lower case,
so that HTTP://WWW.EXAMPLE.COM becomes http://www.example.com

• "https://" has been replaced with "http://",
so that https://www.example.com becomes http://www.example.com

• forward slash at the end of the URL has been removed,
so that http://www.example.com/ becomes http://www.example.com

This contributed to reducing the number of new results slightly, and would also
add to duplicates in the result. Note that the duplicates was not removed from
the result set, only its URL and checksum was updated.

When disregarding the first day of new results, the column New d2 % in table
A.3 shows that the percentage of new results for the full period never surpasses
3.2%.

It’s important to note that duplicates also occurred before turning DisableHost-
Collapsing on, on day 18 in the original data collection series. See section 5.5.3
for more on this.

But after disabling host collapsing it’s reasonable to assume that duplicates
increased slightly. This is difficult to quantify, since the data collection method
changed radically from the 18th day on.

Still, the upper limit of 1000 results per Query per run was never reached until
DisableHostCollapsing was turned on, and then only for a limited number of
queries.

5.7 BATCH RESULT PATTERNS 55

Every single result from the Bing search API contains a GUID⁷⁸, a unique
identifier, which is stored together with the result. These have been checked
for duplicates as well, to rule out any insufficiencies in the data collection
application. No duplicates were found.

5.7 Batch result patterns
Generally, free queries gave many results, and exact queries gave fewer results
than free queries. This is also reflected in the number of new results, with more
new results for free queries and fewer new results for exact queries. See also
section 5.6.3 for a more thorough discussion on new results.

Some groups of results tended to follow certain patterns, which are described
below.

5.7.1 Many free results - many exact
A "many-many" pattern can be seen in query 11 and 12, "Winds of winter".
Figure 5.6 shows a high number of results when searching freely, and when
searching for the exact phrase there are still quite a lot of results showing, as
seen in figure 5.7.

New results since the start of the period however, is sparse. This means that
the same results crop up again and again, and very few new results are found
for each day. Even fewer new results are found each day for the exact query,
due to fewer results in total for each day, as seen in figure 5.7.

7. Microsoft’s implementation of UUID
8. https://www.iso.org/standard/62795.html

https://www.iso.org/standard/62795.html

56 CHAPTER 5 DATA COLLECT ION AND ANALYS IS

"winds of winter"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

Figure 5.6: Plot of new results for free query "Winds of winter".

"winds of winter"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure 5.7: Plot of new results for exact query "Winds of winter".

The plots in figures 5.6 and 5.7 follows the series of results indicated by figures
3.2 to 3.5 in chapter 3, where the day’s new results are compared to the
accumulated previous days’ results.

5.7 BATCH RESULT PATTERNS 57

In contrast to this I can have a look at the results in a day to day fashion,
comparing to the previous day’s results only, as shown in figure 3.3 in chapter
3.

The day to day plots show more new results since the previous day’s query run
than the accumulated plots. This is evident in figures 5.8 and 5.9.

"winds of winter"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

Figure 5.8: Day to day results of free query "Winds of winter".

58 CHAPTER 5 DATA COLLECT ION AND ANALYS IS

"winds of winter"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure 5.9: Day to day results of exact query "Winds of winter".

This means that when not comparing results to preceding accumulated results,
the number of new results for each day is perceived as higher. This also means
that a day to day measure of new results does not exclude all the previous seen
results.

If the system was constructed to only look at the previous day’s result, the user
executing this query would have ended up with results that have been seen
before.

Another matter is the actual content of the results. The query was meant to
explore George R.R. Martin’s not yet released novel "The Winds of Winter",
but when looking at the actual content of the results, weather forecasts and
reports feature heavily.

The occurrence of not related results, points to the problem of optimising
queries when searching. This query in particular would benefit from adding
"George R.R. Martin" to it. The following theoretical rewrite of the query could
maybe have obtained better precision in the results.

"book" AND "Winds of Winter" AND
("George R.R. Martin" OR "George Martin" OR "Martin")

5.7 BATCH RESULT PATTERNS 59

5.7.2 Many free results - no exact
This pattern can be seen in query 29 and 30, "mobile application health sensor
data". In figure 5.10 I can see a high number of results when searching freely,
but when searching for the exact phrase there are no results, as seen in figure
5.11.

The number of results for exact query is zero because of the way the query
has been set up. The exact phrase "mobile application health sensor data" does
not have corresponding results in the API of the search engine, so nothing is
found.

This query could theoretically be rewritten as the following for better preci-
sion.

"mobile application" AND "health sensor data"
or

"mobile application" AND "health sensor" AND "data"

"mobile application health sensor data"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

Figure 5.10: Plot of free query "mobile application health sensor data".

60 CHAPTER 5 DATA COLLECT ION AND ANALYS IS

"mobile application health sensor data"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure 5.11: Plot of exact query "mobile application health sensor data".

5.8 Simulation of usage
We have compared one day’s results with the accumulated previous results,
as described in section 3.2 Search example, and seen as real data in figure 5.4.
This has shown that the curve of new results is declining rapidly from day
one.

During user testing, if all results from the first day of search were saved or
discarded by the user, we would get a curve like the expected results curve in
figure 3.6 in chapter 3.

However, when an end-user uses the system, the user wouldmost likely not take
the time to look through all 1000 of the first day’s results, to find interesting
or uninteresting results from the first day. So the user experience will likely
follow a different type of progression.

Using the collected data it is possible to theorise about this usage, to be able
to say something about the user’s search progress when the user is viewing a
certain number of results every day. The resulting graphs show how many days
before the curve drops off. This would indicate that I am getting closer to a
more manageable number of new results each day, and only the latest collected
information done by the search engine would emerge as results.

5.8 S IMULAT ION OF USAGE 61

Note that this simulation of usage is only for the collected data, which in
essence is data retrieval through the Bing Search API v2, where the maximum
number of results is 1000 for each search. This will simulate how the testers
theoretically could use IIR, see also section 7.7.

Looking at the plot in figure 5.12, one can see that with viewing 25 results per
day it will take a long time before there are fewer results. Many of the queries
would have 25 new results per day throughout the test period as in figure 5.12.
Viewing 25 per day is a low number, and users would probably view more than
25 results when searching.

winds of winter

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

Figure 5.12: Progression when viewing 25 results per day, for query 11, "winds of
winter".

The same reasoning can be used for 50 results per day, so the next step shown
here is 100 results per day.

With a 100/day progress the number of days before any changes to the results
is shown to be around 10 days, see figure 5.13. Sorting through 100 results per
day does not take a very long time and can be done easily.

62 CHAPTER 5 DATA COLLECT ION AND ANALYS IS

winds of winter

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

Figure 5.13: Progression when viewing 100 results per day, for query 11, "winds of
winter".

The next level shown, in figure 5.14, is viewing 250 results per day. If the user
can have the patience and view this amount of results per day, the time before
fewer results is seen to be 1-4 days.

winds of winter

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

Figure 5.14: Progression when viewing 250 results per day, for query 11, "winds of
winter".

With 500 results per day, as in figure 5.15, normally the second day will show
fewer results.

5.8 S IMULAT ION OF USAGE 63

winds of winter

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

Figure 5.15: Progression when viewing 500 results per day, for query 11, "winds of
winter".

The basis for this simulation is that even though there are only 1000 results for
each day, this is still much for a user to go through. So lowering the number
of results to a manageable number daily, e.g. 25, 50 or even 100 results, would
help in the user search. With fewer results shown, it would be much easier to
discover when the search engine supplies results that the user has not seen
before.

At the same time it is not the objective to get to zero results per day - finding
nothing would defeat the purpose of searching.

So as a general rule, viewing as many results as possible early on, would lead
to a manageable number of results much faster. After that, new results will
mostly stay fewer, and would be much easier to manage.

6
Implementation
This chapter outlines the implementation, including technology used, database
architecture, server runtime environment and more details on the user inter-
face.

6.1 Technology
Search engine API technology in general is created so that it can be used from
a wide range of technology platforms. The relevant APIs are called by using
the HTTP protocol, which makes them very easy to interface with almost any
software.

This means that using the API is not dependent upon the development envi-
ronment chosen, and so the process of choosing a development platform can
look at other factors concerning suitability.

Server technology could easily have been from the LAMP¹ stack, or the open
source ASP.NET² technology from Microsoft³. Both of these environments are
perfectly capable of solving the server role.

1. LAMP stack is a web platform that consists of Linux, Apache,MySQL, and PHP/Python/Perl
2. http://www.asp.net
3. http://www.microsoft.com

65

http://www.asp.net
http://www.microsoft.com

66 CHAPTER 6 IMPLEMENTAT ION

The chosen implementation platform, however, is the Go language[41], be-
cause of concurrency, performance and scalability, see section 6.1.2 for more
details.

6.1.1 MongoDB
When choosing a database, one of the issues is the amount of data to store.
Since the goal of this thesis is to create a proof of concept type solution, it is
not likely that significant amounts of data will be generated. Still, planning
ahead is good, so a database that is scalable is preferable.

MongoDB [3] is an open-source document database that provides high per-
formance, high availability, and automatic scaling, and this is the choice for
database technology.

6.1.2 Go programming language
Developed at Google in 2007 by Robert Griesemer, Rob Pike, and Ken Thompson,
the Go language was originally developed as a systems programming language,
and is now an open source general purpose programming language[38] [39].
It is strongly typed, has garbage collection and built-in support for concurrent
programming, among other features.

Go is chosen because it is well suited for concurrency, batch routines, database
access and for creating web services. A Go solution can also easily be deployed
on several different platforms, in our case Linux and Windows. Go is also
pleasant to work with, not to mention blazingly fast.

6.1.3 Go packages
The solution uses four packages outside the Go standard library.

Bingapi

This is a Go package for connecting to Bing Search API v2, made specially
for this thesis⁴, see section 6.5.2.

4. https://godoc.org/github.com/borglefink/bingapi

https://godoc.org/github.com/borglefink/bingapi

6.1 TECHNOLOGY 67

Gin

Gin⁵ is a HTTP web framework written in Go (Golang). It is a minimalistic
framework, with only the most essential features and libraries included,
making it great for developing high-performance REST APIs.

Gorilla web toolkit

Gorilla⁶ is a web toolkit for the Go programming language. Only secure-
cookie is in use from this toolkit, it encodes and decodes authenticated
and optionally encrypted cookie values.

mgo

mgo⁷ is a MongoDB driver for the Go language that implements a rich
and well tested selection of features under a very simple API following
standard Go idioms. With the mgo MongoDB driver, accessing MongoDB
from Go is quick and easy.

6.1.4 Web client
Go templates have been used to create web pages to send to the web client. To
present results to the user, the web client will of course use HTML, CSS and
JavaScript, and in addition JavaScript libraries like Angular.js⁸ and jQuery⁹.
Making the user interface look good is often a challenge, so to mitigate this,
Bootstrap¹⁰ is used.

6.1.5 Server
Server technology could easily have been from the LAMP¹¹ stack, or the open
source ASP.NET¹² technology from Microsoft¹³. Both of these environments
are perfectly capable of solving the server role.

The chosen server implementation platform, however, is the Go language,
because of concurrency, performance and scalability. A Go+MongoDB solution

5. https://gin-gonic.github.io/gin/
6. http://www.gorillatoolkit.org/
7. https://labix.org/mgo
8. https://angularjs.org
9. https://jquery.com
10. http://getbootstrap.com/
11. LAMP stack is a web platform that consists of Linux, Apache,MySQL, and PHP/Python/Perl
12. http://www.asp.net
13. http://www.microsoft.com

https://gin-gonic.github.io/gin/
http://www.gorillatoolkit.org/
https://labix.org/mgo
https://angularjs.org
https://jquery.com
http://getbootstrap.com/
http://www.asp.net
http://www.microsoft.com

68 CHAPTER 6 IMPLEMENTAT ION

can also easily be deployed on several different server platforms, both Unix-
and Windows-based operating systems.

6.2 Database architecture
The database needs to reflect the entities that the IIR system is managing.
A User can have many Queries, a Query can have many QueryRuns, and a
QueryRun can have many Results.

These are relations that fit a non-relational database quite well,with every entity
except results connected to a sub-entity, with a one-to-many type relationship,
see figure 6.1.

Figure 6.1: IIR database entities, and corresponding database collections.

Theoretically all these entities could fit into one collection, but every Userwould
contain all this user’s Queries, QueryRuns, and Results, which would reach
record size limitations rather quickly. So for scalability and for practical reasons,
they are divided into three collections; users, queries, and results.

The queries collection has user’s ID as a foreign key,and contains a sub-collection
of QueryRuns, where each QueryRun has its own ID. Each result has the user’s,
the Query’s and the QueryRun’s IDs as foreign keys. This makes it easy to
access a Query’s QueryRuns, and to fetch results across all QueryRuns.

The listings 6.1, 6.2, 6.3 and 6.4 are mostly self-explanatory, since they are
commented.

Note that all fields have tags to marshal Binary JavaScript Objects Notation¹⁴
(BSON) values into Go types. In the actual code these tags also contained
entries for JSON marshalling, but are omitted for brevity here.

14. http://bsonspec.org

http://bsonspec.org

6.2 DATABASE ARCH ITECTURE 69

Listing 6.1: Go struct describing the User
// User i s the logged−on use r
type User s t ruc t {

// User ID
ID bson . Objec t Id ‘ bson : " _ id " ‘

// User ’ s name
UserName s t r ing ‘ bson : " userName " ‘

// La s t used Query , f o r the u s e r to resume p r e v i ou s work a f t e r l o g i n
CurrentQueryID bson . Objec t Id ‘ bson : " currentQueryId , omitempty " ‘

}

Listing 6.2: Go struct describing the Query
// Query i s the c on t a i n e r f o r the s ea r ch
type Query s t ruc t {

// Query ID
ID bson . Objec t Id ‘ bson : " _ id " ‘

// User ID
UserID bson . Objec t Id ‘ bson : " userId , omitempty " ‘

// Cur r en t l y a c t i v e QueryRun
CurrentQueryRunID bson . Objec t Id ‘ bson : " currentQueryRunId , omitempty " ‘

// Simple numeric ID f o r the Query
SimpleID in t ‘ bson : " s impleId , omitempty " ‘

// Name o f the Query , f o r d i s p l a y in UI
QueryName s t r ing ‘ bson : " queryName " ‘

// Ac tua l s ea r ch t e x t to send to s ea r ch eng ine
Query s t r ing ‘ bson : " query " ‘

// I f t rue , the s ea r ch t e x t w i l l be e n c l o s e d by
// quo ta t i on marks when s en t to the s ea r ch eng ine
I sExac tSearch bool ‘ bson : " i sExac tSearch " ‘

// When was the Query c r e a t e d
CreatedDate time . Time ‘ bson : " createdDate , omitempty " ‘

// When was the Query l a s t run aga in s t the s ea r ch eng ine
LastRunDate time . Time ‘ bson : " lastRunDate , omitempty " ‘

// L i s t o f b lack− l i s t e d domain names
B l a c kL i s t [] s t r ing ‘ bson : " b l a ckL i s t , omitempty " ‘

// L i s t o f white− l i s t e d domain names
WhiteL i s t [] s t r ing ‘ bson : " wh i teL i s t , omitempty " ‘

// Sub− c o l l e c t i o n con ta in ing QueryRuns
QueryRuns []QueryRun ‘ bson : " queryRuns , omitempty " ‘

}

70 CHAPTER 6 IMPLEMENTAT ION

Listing 6.3: Go struct describing the QueryRun
// QueryRun con ta i n s in fo rmat ion on when the query i s run
type QueryRun s t ruc t {

// QueryRun ID
ID bson . Ob jec t Id ‘ bson : " _ id " ‘

// Updated when the us e r change the s ea r ch t e x t s en t to s ea r ch eng ine
Query s t r ing ‘ bson : " query " ‘

// Date o f s ea r ch e x e cu t i on
RunDate time . Time ‘ bson : " runDate , omitempty " ‘

}

Listing 6.4: Go struct describing the Result
// R e s u l t i s the a c t ua l r e s u l t
type Resu l t s t ruc t {

// R e s u l t ID
ID bson . Ob jec t Id ‘ bson : " _ id " ‘

// User ID
UserID bson . Objec t Id ‘ bson : " user Id " ‘

// Query ID
QueryID bson . Objec t Id ‘ bson : " queryId " ‘

// Query s imp l e ID
SimpleID in t ‘ bson : " s impleId , omitempty " ‘

// QueryRun ID
QueryRunID bson . Objec t Id ‘ bson : " queryRunId " ‘

// T i t l e o f r e s u l t from sea r ch eng ine
T i t l e s t r ing ‘ bson : " t i t l e " ‘

// D e s c r i p t i o n o f r e s u l t from sea r ch eng ine
Desc r i p t i on s t r ing ‘ bson : " de s c r i p t i on , omitempty " ‘

// URL o f r e s u l t from sea r ch eng ine
URL s t r ing ‘ bson : " u r l " ‘

// URL hashed to make i t e a s i e r to compare
URLHash s t r ing ‘ bson : " urlHash , omitempty " ‘

// DisplayURL o f r e s u l t from sea r ch eng ine
DisplayURL s t r ing ‘ bson : " d i sp layUr l , omitempty " ‘

// Index ho ld ing order o f r e tu rned r e s u l t from sea r ch eng ine
Index in t ‘ bson : " index , omitempty " ‘

// Domain name e x t r a c t e d from URL from sea r ch eng ine
DomainName s t r ing ‘ bson : " domainName , omitempty " ‘

// R e s u l t s t a t u s ; new , seen , saved , d i s ca rded , white− l i s t e d
Sta tus in t ‘ bson : " s t a t u s " ‘

// Simple I I R ranking
WordRank in t ‘ bson : " wordrank , omitempty " ‘

}

6.3 FRONT-END 71

6.3 Front-end
The implementation of the web client for this solution follows the design
described in section 4.5. The left side of the main area contains the queries,
the right side of the main area contains results and tools to filter results.

Figure 6.2: The main user interface, with the first query loaded

Angular and Bootstrap are libraries that work nicely together, and make the
front-end easy to create. The Angular version used is the 1.x version, since work
with the thesis started way before Angular v2.

The JavaScript code has been divided into controllers, services, and data con-
tainers, following the Angular 1 guidelines¹⁵ created by John Papa and others.
This makes the code follow good practices like the single responsibility principle
[33].

15. https://github.com/johnpapa/angular-styleguide/blob/master/a1

https://github.com/johnpapa/angular-styleguide/blob/master/a1

72 CHAPTER 6 IMPLEMENTAT ION

Figure 6.3: IIR client architecture.

Component Description

HTML / View
HTML is generated by Go Templates and contains Angular data-
binding to display and handle data in the user interface (UI).

queryCtrl
Handling most of the logic in the client, when clicking buttons or
filtering results

searchCtrl Handling the search button.
appData Data used by both Angular controllers.

uiService
Contains methods to update the user interface via the Document
Object Model (DOM)¹⁶. Used by both controllers. The only com-
ponent that uses jQuery.

commonService
Handles all the communications with the IIR server, used by both
controllers.

IIR Server This is the IIR server, the back-end, detailed in section 6.4.

Table 6.1: IIR client components.

Figure 6.3 shows the two main Angular controllers, their shared data and
routines, and how the client connects to the server, see component descriptions
in table 6.1. The communication with the server is handled by Angular’s $http

16. https://www.w3.org/TR/WD-DOM/introduction.html

https://www.w3.org/TR/WD-DOM/introduction.html

6.4 BACK-END 73

service¹⁷, primarily by HTTP POST¹⁸, and the data received from the IIR server
is formatted as JSON.

6.4 Back-end
The back-end is fully realised in Go. The architecture is inspired by a tutorial
called "Building a REST Service with Golang"[43] by Steven White, but is
further evolved and expanded upon.

The main program is setting up a closable session to MongoDB, and passing
this session along to the RegisterRoutes() method, that sets up handlers for all
requests to the server, and marks static files like JavaScript and CSS as special
requests.

The main program then hands the control to the http engine of gin-gonic
(see section 6.1.3), a wrapper for the Go http service. When the server gets a
request from the web client, control is passed to the registered handler for the
request.

Listing 6.5: Main program for IIR
package main

import (
" c o n t r o l l e r s "
" db "

)

func main () {
// connec t the database
var mgosession = db . GetMgoSession ()

// make sur e the database i s c l o s e d when the main f un c t i o n e x i t s
defer mgosession . Close ()

// r e g i s t e r a l l r ou t e s f o r h t t p r e q u e s t s
var routes = c on t r o l l e r s . Reg i s te rRoutes (mgosession)

// s t a r t the h t tp s e r v e r on the g i v en TCP por t
routes . Run(" :80 ")

}

Routes are registered by the RegisterRoutes() function, see listing 6.6 for more
details. Note the code is edited for brevity.

17. https://docs.angularjs.org/api/ng/service/%24http
18. https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5

https://docs.angularjs.org/api/ng/service/%24http
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5

74 CHAPTER 6 IMPLEMENTAT ION

When registering a route, an optional middleware¹⁹ can be added to it. Mid-
dleware used in IIR is a request logger and an authentication checker. When
the server gets a request, it is first logged, then authenticated, then - provided
the authentication is approved - the controller handle (function) for the route
is called.

Listing 6.6: Registering routes for the IIR web service
func Reg i s te rRoutes (mgosession *mgo . Sess ion) * gin . Engine {
var rou te r = gin .New()

route r . S t a t i c (" / s c r i p t s " , " . / pub l i c / s c r i p t s ")
rou te r . S t a t i c (" / s t y l e s " , " . / pub l i c / s t y l e s ")
rou te r . S t a t i c (" / images " , " . / pub l i c / images ")

rou te r . LoadHTMLGlob(" templates /**/* . html ")

var homeControl ler = newHomeController ()
rou te r .GET(" / " , [. . .] i d e n t i t y . Authent i ca t ion , homeControl ler . index)
rou te r .GET(" / about " , [. . .] i d e n t i t y . Authent i ca t ion , homeControl ler . about)

// r e g i s t e r i n g r ou t e s f o r r e s u l t C o n t r o l l e r
var r e s u l t C on t r o l l e r = newResul tContro l le r (mgosession)
rou te r . POST(" / r e s u l t l i s t " , i d e n t i t y . Authent i ca t ion ,

r e s u l t C on t r o l l e r . p o s tR e s u l t L i s t)

[. . . p lus more routes and c o n t r o l l e r s . . .]

return rou te r
}

Authentication is managed by an encrypted cookie, where Gorilla web toolkit’s
tool securecookie²⁰ (see also section 6.1.3) encodes and encrypts the user’s
authentication. The cookie exists as long as the user is logged on or the cookie
times out, and it is sent to the server with every request. The server decrypts
and decodes the cookie, and by this IIR knows who is logged on, and can
retrieve the appropriate queries and results.

The controller handle has a database session, and can retrieve data or update
the database. The controller returns in most cases JSON, with the exception of
web pages like the index page, the about page and the IIR manual page.

Controller Description

homeController
This controller handles the index page, and is also responsible for
showing the manual page and the about page.

loginController
Responsible for user login and logout, i.e., setting and removing
the encrypted authentication cookie.

queryController
For listing, creating, updating and deleting Queries in the IIR
database.

19. http://www.webopedia.com/TERM/M/middleware.html
20. http://www.gorillatoolkit.org/pkg/securecookie

http://www.webopedia.com/TERM/M/middleware.html
http://www.gorillatoolkit.org/pkg/securecookie

6.4 BACK-END 75

resultController
This controller is responsible for showing lists of results saved in
the IIR database.

searchController This is where the API search and automatic filtering happens.

updateResultController
Responsible for updating result status (seen, saved, discarded, and
white-listed).

userController Responsible for registering new users.

Table 6.2: IIR server main controllers.

The controllers mostly do housekeeping in one form or other, like creating,
updating or deleting users and Queries, and login and logout.

There are controllers worth extra mention; the queryController, the searchCon-
troller, and the updateResultController.

The queryController’s main responsibility is to read from the IIR database
and return a list of results to the web client. It also has the responsibility of
adding the white- and black-list settings to the current Query. The controller
also updates all results that are white-listed with the result status White-listed.
During the test phase of this project, it also set the black-listed results to
Black-listed, but normally these results would have been deleted.

The searchController fetches a new batch of results from the chosen data source.
It connects to the search engine API, and performs transactions, described in
section 6.5.1. In the testing period, due to the data collection situation described
in section 5.1, this was done by reading results from a separate source database.
This controller also does the automatic filtering of already seen results, white-
and black-listing, and updating the results with IIR rank, as described in section
4.3. This part of the code must be refactored if there is any change in data
provider. The code for filtering and ranking can be reused, but the connection
and data retrieval will most likely have to be rewritten. The API connection
and the initial filtering, like removing previously seen results, white-and black-
listing, is located to this one controller.

The updateResultController is responsible for handling the user’s saving and
discarding of results. Single results can be updated, but bulk updates are also
possible, see description of filtering in section 4.1.

76 CHAPTER 6 IMPLEMENTAT ION

6.5 Using Bing Search API
The part that communicates with the search API is the core of the web applica-
tion.

6.5.1 Interfacing with the API
The application needs to get as many results as possible, to have an increased
chance of finding new information on the subject being searched for. At the
same time each call to the search API can only return a certain amount of
results - a "page".

This means that the application needs to do multiple calls to the search API
for each search query, requesting each new "page", one by one. There is also a
limit to how many "pages" can be returned for each search API. Bing Search
API v2, for instance, uses maximum page size 50 and maximum number of
results 1000.

A page size of 50 and a total of 1000 results, will generate 20 calls ("Transac-
tions") to the API for each query. 20 pages are received, i.e., results 1-50, 51-100,
101-150 and so on until the last result "page", 951-1000. See figure 6.4.

All these calls are run concurrently, which means that the results most likely are
returned on a different order than the call order. This needs to be addressed
when the results are presented to the user.

6.5 US ING B ING SEARCH AP I 77

Figure 6.4: Search API call sequence diagram, implemented as 20 calls to the API
because of limited number of results per call.

6.5.2 Go wrapper for Bing Search API
No Go package for connecting Bing Search API existed, so this had to be made
from scratch. The Bing Search API can return different types of results, like
web results, news, images, and videos. The Go package implemented could
handle all result types that the Bing Search API could return, but this thesis only
used the type "web results". See https://godoc.org/github.com/borglefink/
bingapi for details on the implementation. This Go package was used when
collecting data, as described in chapter 5.

6.5.3 Calling Bing Search API
The central code in calling the search API is shown below in listing 6.7. This
is a call to a search API, written as a Go package. Calls to the search API is
organised as a sequence of 20 API transactions, each with a "page" size of 50,
to return the full set of 1000 results for each query. The different stages of
the search are numbered as A to D, in ordered sequence. The connection to

https://godoc.org/github.com/borglefink/bingapi
https://godoc.org/github.com/borglefink/bingapi

78 CHAPTER 6 IMPLEMENTAT ION

the API and return of results are located in the searchController, described in
6.4.

Before the API in 6.7 is called, the URI needs to be constructed with the correct
parameters for the call to the API. The search function would then be called
with the URI, and would return a Go struct with all results.

Parameters used when calling the Bing Search API are listed in table 6.3. These
are mostly self explanatory, but more information on WebSearchOptions can be
found in section 5.5.3.

Parameter Value
Base URI https://api.datamarket.azure.com/Data.ashx/Bing/

SearchWeb/v1/Web
Query [text to search for]
Market ’en-US’
WebSearchOptions ’DisableHostCollapsing’

’DisableQueryAlterations’
$skip [number of results to skip]
$top [number of results to return]

Table 6.3: Parameters used in Bing Search API transactions

Listing 6.7: Main function for accessing the Bing Search API from Go
// s ea r ch − the main s ea r ch method ,
// f i l l s t a r g e t s t r u c t with data from Bing API .
func (c l i e n t C l i en t) search (u r i str ing , t a r g e t in ter face {}) error {

var h t t pC l i en t = \&ht tp . C l i en t {}
h t t pC l i e n t . Timeout = time . Duration (c l i e n t . ReqTimeout) * time . Mi l l i s e cond

var req , errReq = ht tp . NewRequest (c l i e n t . Method , ur i , n i l)
i f errReq != n i l {

return errReq
}

req . Header . Set (" User−Agent " , c l i e n t . UserAgent)
req . SetBas icAuth (c l i e n t . AccKey , c l i e n t . AccKey)

var res , errDo = h t t pC l i en t .Do(req)
i f errDo != n i l {

return errDo
}
defer r e s . Body . Close ()

return j son . NewDecoder(re s . Body) . Decode (t a r g e t)
}

6.6 DEVELOPMENT ENV IRONMENT 79

6.5.4 Search during the test phase
Because of the situation with Bing Search API being restructured, as outlined
in section 5.1, the test phase solution could not access a live API. Instead a
separate source database has been created, which contains the results collected
in the data collection phase. In the solution, when the user presses the search
button, the code that would have accessed the live API would instead read
results from the source database and insert them into the IIR database.

As mentioned in section 6.4, this functionality is located to a single Go controller.
Switching back to a live API access implementation will only concern this single
controller, the rest of IIR need not be changed.

The architecture of the source database is almost identical to the data collection
database architecture described in section 5.4.2. The only difference is that as
source database, the QueryRun has a boolean field, isDone, to make it easier
for the searchController to know which source data has been shown to the
user.

6.6 Development environment
Application development has mainly been done on 2-3 different machines with
the operating system Windows 10 Pro. Some of the development has also been
done on a Linux laptop (operating system Ubuntu, versions 14.04 - 16.10).

Several different open sourced editors have been used. Adobe’s Brackets²¹,
Microsoft’s Visual Studio Code²² (VSCode) and GitHub’s Atom²³ have been
utilised at different stages of development, but VSCode and Atom have been the
main editors. Especially VSCode has been nice for Go debugging. Both editors
available have been used in Windows and Linux operating systems.

As graphical user interface GUI forMongoDB (aside from theMongoDB CLI that
also have been in use),MongoChef²⁴ from Studio3T has been used onWindows.
Robomongo²⁵ has been used as well, both on Windows and Linux.

As repository, Bitbucket²⁶ has been invaluable for all code, and also for the
thesis itself.

21. https://brackets.io/
22. https://code.visualstudio.com/
23. https://atom.io/
24. https://studio3t.com/
25. https://robomongo.org
26. https://bitbucket.org

https://brackets.io/
https://code.visualstudio.com/
https://atom.io/
https://studio3t.com/
https://robomongo.org
https://bitbucket.org

80 CHAPTER 6 IMPLEMENTAT ION

6.7 Code summary
In listing 6.8 is a summary of the code used in the IIRsolution. Libraries like
jQuery, Angular and Bootstrap are excluded from the code summary. This is
also true for Go packages used, only IIR Go code is counted.
−−−

f i l e t y p e #f i l e s #l i n e s l i n e% s i z e s i z e%
−−−

. go 22 1 660 30.1 46 932 22.9

. html 21 895 16.2 38 218 18.7

. j s 13 2 031 36.8 61 182 29.9

. j son 1 26 0.5 484 0.2

. s c s s 4 906 16.4 14 278 7.0

. g i f 1 10 144 5.0

. png 3 31 929 15.6
−−−

Tota l : 65 5 518 100.0 204 735 100.0

Listing 6.8: This is a summary of code made by the utility countsource²⁷, showing
code used in the IIR solution.

See appendix F for more on code used with IIR.

27. https://github.com/borglefink/countsource

https://github.com/borglefink/countsource

7
Testing
Using user experience with the solution is a good way to get feedback on how
well it is perceived to work.

User testing as a measure of how successful the project is, also has drawbacks,
such as it being a subjective experience. User interface layout and functionality
may in some cases become the focus of attention, and actually prevent the user
from relating to results. If the user is having trouble looking beyond the user
interface, this will influence user experience assessments.

7.1 User testing
As mentioned in section 5.2, friends were recruited to contribute their queries
to the data collection phase. It would only be fitting if these friends could test
the results of their own queries. Ideally IIR would have been a live system, not
a static setup, so the testers could adjust their queries when they produced
too few relevant results. Due to circumstances described in 5.1, this was not
implemented.

User testing was carried out between April 1st and April 7th 2017.

Four people contributed to the testing, their ages ranging from 25 to 57. Three of
them are IT knowledgeable, having worked in the IT industry, one of them was

81

82 CHAPTER 7 TEST ING

not an IT professional, but is using a computer on a daily basis as their primary
tool. One tester is a female, three are men. This makes the age distribution
reasonably good, male/female balance not quite so even, and the number of
testers rather limited.

The solution was deployed on Microsoft Azure as a web site for the contributors
to use, and a Questback¹ questionnaire was created for giving feedback to the
author after testing the solution. The questionnaire is shown in appendix
D.

The testers would get 6 queries each to test, 3 free queries and 3 exact queries.
The testers were instructed to run each query at least 10 times, to simulate
a minimum of 10 days’ worth of searches. Furthermore the instructions were
to save some interesting results, and discard some uninteresting ones. They
could also optionally white-list domain names that would always give inter-
esting results, and black-list domain names that would never give interesting
results.

The aim of testing the solution was to get feedback from testers via the accompa-
nying questionnaire, but also to analyse how they used the solution, by running
some statistics on the results they leafed through, saved or discarded.

The author tested 8 + 8 = 16 Queries, and answered the questionnaire. The
author’s experiences are mainly found in section 8.5.3, and in chapter 9.

7.2 Manual for using IIR
To help users test the solution, a manual was made to explain certain aspects
and concepts. The full manual can be found in appendix C, it contains the
main points shown below.

• What is IIR, what does it do, and how can it help the user.

• Main features of the application.

• Terms like Query, QueryRun and Result explained.

• Result statuses explained.

• How result retrieval works.

• About folders and filters.

1. http://www.questback.com

http://www.questback.com

7.3 INSTRUCT IONS TO THE TESTERS 83

• Ranking the results.

• Reset ("panic button").

• Summary, simple instructions.

7.3 Instructions to the testers
The testers were given more explicit instructions on how to make the test phase
more enjoyable for them and for me to get more useful results for post-test
analysis. See the original instructions in appendix B.

• Use Google Chrome, it’s not tested with other browsers.

• Use a screen width larger than 1200px, Bootstrap development isn’t
finalised.

• Open the IIR solution at http://iir-test.northeurope.cloudapp.azure.com

• Log on with your user (select your name from the dropdown on the login
page), and you will see your queries displayed to the left.

• Read the online manual to be more aware what’s going on.

• Try out some functionality on one of the searches first, to get a feel for
the application. Then use the reset button at the bottom of the Discarded
results folder, and start for real.

Then:

• For each search, go through more than ten sets of results for the search,
really as many as you have the patience for. Upper limit is 54.

• Make sure you save some results you find interesting, and discard some
results you find uninteresting. Save or discard single results or filtered
results, use what you think works best.

• Optionally black-list domains that never have interesting results or white-
list domains that always have interesting results for the search you are
viewing.

After the list of instructions they were asked to open the Questback question-
naire and give feedback on the user experience of using IIR.

84 CHAPTER 7 TEST ING

When you are finished testing, there are a few questions I would
like you to answer. There is a Questback survey with a handful of
questions, and comment fields for feedback and suggesting improve-
ments.

7.4 Questionnaire
The testers would rate the following statements with a range of 5 possible
ratings from a value of 1 for "completely disagree" to a value of 5 for "completely
agree". This would place the value of 3 in the middle as a sort of "I do not
know" or "I do not care" kind of answer.

• It was useful to be able to save results I found interesting

• It was useful to be able to discard results and never see them again

• It was useful to be able to white-list domain names

• It was useful to be able to black-list domain names

• This kind of application is useful to have, as a tool for searching

In addition to rating the above statements, testers were asked to give their
comments on three feedback themes.

• How did you like having a system where you can save and discard results?

• Please add your comments on enhancements

• How useful do you think a fully implemented IIR system might be?

7.5 QUEST IONNA IRE RESULT 85

7.5 Questionnaire result
All participants filled out the questionnaire fully, rating the five statements and
giving responses in the open text fields.

7.5.1 Statement scores
The score for each statement in the questionnaire is listed below.

Statement B C D E Score

1
It was useful to be able to save results I found inter-
esting 5 3 5 5 4.5

2
It was useful to be able to discard results and never
see them again 5 2 5 5 4.25

3 It was useful to be able to white-list domain names 5 5 2 5 4.25
4 It was useful to be able to black-list domain names 5 4 5 5 4.75

5
This kind of application is useful to have, as a tool for
searching 4 2 5 5 4

Average score for each person, and total 4.8 3.2 4.4 5 4.35

Table 7.1: Statement score for the questionnaire. Possible score per statement is from
1 to 5. Columns B - E refers to test person B through E. Person A is the
author.

7.5.2 How did you like having a system where you can saveand discard results?
Person How did you like having a system where you can save and discard results?

B
I really enjoyed using the system. The thing I liked the most was being able to
blacklist different sites and having the opportunity to see all of my saved results.

C

The feature of saving results is useful. For this I have used a couple of services
like f.ex Pocket (either as an extension to chrome or as an app on my phone)
or just keep adding results to my bookmarks. Can’t say I have felt a need for
discarding results as Google usually brings up expected results for searches I
do. Usually I visually discard results when looking through the results and trust
that Google’s algorithm actually brings the most relevant results to the first few
result pages.

D I like the idea of being able to save/discard.

E

I liked being able to discard and, most of all, blacklist domain names especially
as they were repeated several times and made my search confusing. At the same
time I liked whitelisting those domain names that I wanted to look at leisurely.
That way I did not have to go back another day and start my search all over
again as I do with other search engines.

Table 7.2: Replies in the first comment field
.

86 CHAPTER 7 TEST ING

7.5.3 Please add your comments on enhancements
Person Please add your comments on enhancements

B
Only minor GUI stuff, I had some difficulty understanding how to use the
blacklist/white-list function at first. Overall did not use much time to get a hang
of the system.

C

Obviously the search results only get as good as the search engine the queries
are run against, so querying against google would enhance it a lot. Other than
that it might have been nice to filter the queries by date to f.ex get the most
current hits on a query.

D

- When hovering web page title, show full title as tool tip - Option to show more
of the web page "content"
- Show web page date somewhere (if the gray text after web "content" is a date,
it has a bug)
- Ability to see what the "score" is made up of on each hit (some sort of tool tip
perhaps). It may make a difference.
- List of domains to whitelist/ban, was not complete. I routinely felt I missed a
domain I wanted to white list/ban.
- Although this is a testing feature, it was unclear that the "New search result"
would fetch the next day’s result set. (Maybe I read the documentation to quickly)
- Nice to have an option to discard from "all queries". I.e. Never show me this link
again, regardless which query it appear in.

E
I was quite satisfied with the IIR system once I understood how I could use it. At
this point I haven’t got suggestions for enhancements.

Table 7.3: Replies in the second comment field

7.5.4 How useful do you think a fully implemented IIRsystemmight be?
Person How useful do you think a fully implemented IIR system might be?

B

I don’t see myself using it often. I’m mostly searching for sites that that I can’t
remember the URL of. But for searching for complex or uncommon stuff the
IIR can be super useful. And I think it can also be used in a commercial way
for companies to scan the internet over time for any negative review about the
company or any products they make, in order for them to fix the problems and
contact users before the problems scale to the media.

C

From my experience I usually don’t have the time or capacity to go through
saved results other than the most important things which I need to have easy
access to - and for this I use the good old bookmark functionality, which seems
good enough. For the ad-hoc searches done through the day Google gives me the
results I need the next day if I choose to search for the topic again, so I might not
utilize an application like IIR. The simplicity of the search screen and scrolling
through results from Google is more or less sufficient for me I think.

D
I think it potentially can be very useful. However, I felt I had to do a lot of clicking,
and as a normal user I expect I would be tired of it quickly. I say go for it. I will
use it if it exists.

7.5 QUEST IONNA IRE RESULT 87

E

Yes I find this application a useful tool for searching as it helps me narrow down
my search to exactly what I want to find. It saves my time and that is a very
significant thing about any system. It serves as a memory bank of my choices as
well.

Table 7.4: Replies in the third comment field

7.5.5 Questionnaire result summary
This section will summarise results from the questionnaire, and also look at
data behind the testing.

Scores
There were 4 users and 5 statements in the questionnaire to agree or disagree
with, in total 20 scores. Out of these 20 scores were 14 scores of 5, 2 scores of
4, 1 score of 3, and 3 scores of 2.

The questionnaire had a total score of 4.35 out of 5, see table 7.1. This is 87%
of the maximum score, which can be considered quite good.

Low scores are often interesting to examine.

Statement 1, about the usefulness of saving results, got a score of 4.5. One
tester gave it a 3, commenting that there are other mechanisms for saving
results, like Pocket[40].

Statement 2, with a score of 4.25, about the usefulness of discarding results
got a score of 2 from the same tester that scored 3 on statement 1, which
also is consistent with the comments about saving and discarding, see section
7.5.2.

Statement 3 about the usefulness of white-listing domain names, got a score
of 4.25. The comments seem to indicate that the tester giving a score of 2 felt
black-listing was more useful than white-listing.

Statement 4 about the usefulness of black-listing, got a score of 4.75, the
strongest individual score of all the statements.

Statement 5 about the usefulness of this kind of application, got the overall
lowest score of 4. The tester that gave the 2, commented that saving and
discarding results did not seem useful, as Google should be trusted to give
relevant results. The tester that gave a 4, did not really see the need personally
for such a system, but suggested that the system could still be useful.

88 CHAPTER 7 TEST ING

Comments
There were mostly positive comments on the question of saving and discarding
search results. White-listing and especially black-listing also got thumbs up. As
mentioned in section 7.5.5, one tester found it less useful. One tester found it
useful to be able to continue a search without starting from scratch.

On enhancements, many valid points were listed. Some of them were; using
another search engine source, being able to filter on date - and show - result
date, show more of the results on mouse hover, better functionality around
white- and black-listing.

On the usefulness of a fully implemented IIR system, opinions differed. Only
two out of four testers would use this kind of system themselves. One tester
found that it could be useful in some circumstances, and one tester found that
it was not really useful for them at all.

7.5.6 Author testing
The author/creator of the IIR system also tested the system and answered
the questionnaire. This would naturally not count as a part of the test result,
since the author is biased, even if attempting to be neutral. The author’s test
results are consequently kept out of the questionnaire score and comments. See
section 8.5.3 for a short discussion on the author’s experience using IIR. Most
of the author’s improvements have made it into chapter 9 Future work.

7.6 Testing statistics
Table 7.6 shows totals for each query, and indicates how the testers used the
system. The table columns are abbreviated to make the table more readable,
so they need some explaining.

Column Explanation
P Short for "Person", the tester.
Query The query tested, the *) marker signifies exact search.

QR
Total number of QueryRuns ("searches" done) for this query. Testers were in-
structed to do more than 10 searches per query.

WDN Total number of white-listed domain names.
BDN Total number of black-listed domain names.

New
Total number of new results across all QueryRuns that have the status New, see
also explanation in table 4.2 in chapter 4.

Saved
Total number of saved results. The user have explicitly pushed a save button to
make results appear here.

7.6 TEST ING STAT IST ICS 89

Seen Total number of seen results. See explanation in table 4.2 in chapter 4.

Wlist
Total number of white-listed results. When the user white-listed a domain name,
the new results in the current query would get the white-listed status. This would
also happen to the folowing query runs.

Blist
Total number of black-listed results, based on black-listing domain names, similar
to white-listing.

AutoD
Total number of results automatically discarded by IIR during search. Duplicates
of already seen, saved or discarded results would end up here.

Disc Total number of results, manually discarded by the user.
Total Total number of results in Query, fetched by searching.

Table 7.5: Explanation for columns in table 7.6

See also detailed test results for each query in appendix E.

90 CHAPTER 7 TEST ING
ID

Q
uery

P
Q
R

W
D
N

B
D
N

N
ew

Seen
Saved

W
list

B
list

A
u
toD

D
isc

Total
1

M
esserschm

itt
K
R
200

restoration
A

54
6

21
1
951

529
23

67
426

36
781

417
40

194
2

M
esserschm

itt
K
R
200

restoration
*)

A
54

5
0

0
4

5
9

0
20

409
24

20
451

3
W
eb

search
A
PI

thesis
A

54
0

27
5
758

640
29

0
225

42
837

1
430

50
919

4
W
eb

search
A
PI

thesis
*)

A
54

0
0

0
0

0
0

0
0

0
0

5
W
eb

search
thesis

A
54

1
29

2
631

584
11

2
232

46
945

1
738

52
143

6
W
eb

search
thesis

*)
A

54
1

7
0

72
10

3
11

15
396

18
15

510
7

Search
A
PI

thesis
A

54
1

18
1
543

565
12

2
135

42
184

1
462

45
903

8
Search

A
PI

thesis
*)

A
54

0
0

0
0

0
0

0
0

0
0

9
M
esserschm

itt
TG

500
for

sale
A

54
0

18
1
144

452
32

0
215

36
827

330
39

000
10

M
esserschm

itt
TG

500
for

sale
*)

A
54

0
5

0
5

9
0

4
13

397
6

13
421

11
w
inds

ofw
inter

A
54

4
22

9
048

787
2

62
847

41
288

531
52

565
12

w
inds

ofw
inter

*)
A

54
1

20
638

728
6

5
59

39
910

689
42

035
13

prom
ise

ofspring
A

54
0

0
0

0
5

0
0

49
998

2
695

52
698

14
prom

ise
ofspring

*)
A

54
0

6
103

0
15

0
13

42
020

2
465

44
616

15
terry

pratchett
A

54
4

18
709

506
33

58
211

42
545

1
375

45
437

16
terry

pratchett
*)

A
54

8
37

658
683

46
16

86
39

021
725

41
235

17
liverpoolleeds

efl
B

2
2

1
1
230

279
8

28
13

416
10

1
984

18
liverpoolleeds

efl
*)

B
1

0
0

11
45

1
0

0
214

3
274

19
hillary

clinton
e-m

ailfbi
B

1
2

1
545

315
9

22
10

74
2

977
20

hillary
clinton

e-m
ailfbi*)

B
1

0
0

21
0

5
0

0
480

0
506

21
m
acbook

pro
2016

touch
bar

problem
s

B
1

4
2

476
74

14
29

16
83

8
700

22
m
acbook

pro
2016

touch
bar

problem
s
*)

B
2

0
0

0
0

0
0

0
0

0
0

23
apple

stock
price

C
1

0
0

570
15

1
0

0
255

0
841

24
apple

stock
price

*)
C

1
0

0
160

30
4

0
0

104
0

298
25

sam
sung

note
8
release

date
C

1
1

1
734

0
2

13
9

146
1

905
26

sam
sung

note
8
release

date
*)

C
1

0
0

26
0

1
0

0
549

2
578

27
google

selfdriving
car

C
1

5
1

808
15

0
48

10
74

1
956

28
google

selfdriving
car

*)
C

1
0

0
580

0
0

0
0

136
0

716
29

m
obile

application
health

sensor
data

D
25

1
8

143
30

5
13

114
22

825
1
754

24
884

30
m
obile

application
health

sensor
data

*)
D

1
0

0
0

0
0

0
0

0
0

0
31

m
obile

phone
body

area
netw

ork
D

37
3

74
0

0
0

7
378

34
538

1
567

36
490

32
m
obile

phone
body

area
netw

ork
*)

D
1

0
0

0
0

0
0

0
0

0
0

33
m
obile

phone
sensor

research
health

D
54

0
14

2
495

223
8

0
230

47
696

2
344

52
996

34
m
obile

phone
sensor

research
health

*)
D

1
0

0
0

0
0

0
0

0
0

0
35

forest
fairytales

E
19

1
1

8
530

270
39

25
12

10
065

32
18

973
36

forest
fairytales

*)
E

17
0

13
1
108

158
11

0
82

6
623

111
8
093

37
tudor

politics
E

11
1

0
6
696

163
14

50
0

4
036

24
10

983
38

tudor
politics

*)
E

11
1

0
3
514

150
19

12
0

4
374

8
8
077

39
jazz

poetry
E

13
3

0
7
266

180
20

145
0

5
252

30
12

893
40

jazz
poetry

*)
E

11
1

0
3
960

270
13

15
0

4
408

25
8
691

Table
7.6:

Test
totals

for
query

1
-40.See

explanation
ofcolum

ns
in

table
7.5.

7.7 DATA ANALYS IS 91

7.7 Data analysis
Looking at table 7.6, especially looking at the column QR, we can see how
much testing was done by the testers. Testers were instructed to do the search
at least 10 times, covering 10 days worth of results. What the testers did varied
quite a lot, with only the author, and test persons D and E, actually searching
beyond the required 10 searches. The author searched all 54 days for all 16
queries, and test person D reached 54 days for one of his searches.

7.7.1 Test result plot details
Plots in appendix E are used as a basis for discussing the results in this
chapter.

It is important to note that these plots show the end state of user testing per
day. This means that the numbers plotted correspond to the hypothetical end
state shown in figures 4.5b, 4.6b, 4.7b and 4.8b in section 4.8.

7.7.2 Few QueryRuns
Test person C only ran a single search for each query available. This means
that trends over several days of search results could not be produced for query
23 - 28.

The same occurred for test person B’s queries 18 - 22, except that this tester ran
a second day of search for query 17, see figure 7.1. Figure 7.1 has only two nodes
for each measurement, nevertheless trends that were described in section 3.2
and detailed in section 4.8 seem to be there. The data for figure 7.1 can be
seen in table 7.7.

We can see both in the figure and in the table that more results were auto-
discarded the second day than the first (from 143 to 273), and the number
of new results were decreased from the first to the second day (from 796 to
434). There are some saved, discarded, white- or black-listed results, but the
number of Seen results increased from 24 to 255 from the first to the second day.
This means that the tester has been paging around in the results the second
day.

92 CHAPTER 7 TEST ING

0

100

200

300

400

500

600

700

800

900

1000

1 2

17. "liverpool leeds efl", free

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure 7.1: Detailed test results for query 17, only 2 days of results examined by tester.

Day Total New U.New Seen Saved W List B List A Disc M Disc
1 993 850 796 24 2 15 7 143 6
2 991 66 434 255 6 13 6 273 4

Sum 1 984 916 1 230 279 8 28 13 416 10

Table 7.7: Detailed test results for Query 17, "liverpool leeds efl".

A short explanation of the columns in table 7.7 may be needed. Gray columns
are; Day, Total, New results for Query 17 (from table A.13). The white columns
contain data from the user test, shown in figure 7.1; User’s New (New after
user actions), Seen, Saved, White-listed, Black-listed, Automatically Discarded,
and Manually Discarded results.

7.7 DATA ANALYS IS 93

7.7.3 Energetic usage pattern
This kind of usage can be seen in many of the author’s plots, but it is more
appropriate to look at test person D’s first query, see figure 7.2.

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

29. "mobile application health sensor data", free

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure 7.2: Detailed test results for query 29.

In figure 7.2 it is evident that a lot of work has gone into day one. According to
table 7.8, 821 results have been manually discarded from day one to the second
day, and on day two, most results have been auto-discarded as a consequence
of this work. This has led to much fewer new results each following day.

We can also see that manual discarding of results continued throughout the
period of 25 days (QueryRuns), and that almost all results each day were
auto-discarded, as a consequence of this.

94 CHAPTER 7 TEST ING

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

29. "mobile application health sensor data", free

New results Seen results Saved results

Whitelisted results Blacklisted results

Figure 7.3: Detailed test results for query 29, showing the lower part of figure 7.2.

In figure 7.3 it becomes clear that during the period of twenty-five days, the
results were saved, white- and black-listed, in addition to the manually dis-
carded results shown in figure 7.2, so that all results classified. This has led to
no results with the Seen status.

Day Total New U.New Seen Saved W List B List A Disc M Disc
1 1000 910 0 30 2 7 50 90 821
2 1000 78 0 0 0 0 4 922 74
3 1000 66 0 0 0 0 3 934 63
4 1000 64 60 0 0 0 4 936 0
5 1000 50 0 0 1 0 6 913 80
6 1000 15 0 0 0 0 0 976 24
7 1000 5 0 0 0 0 0 993 7
8 1000 37 0 0 0 0 1 962 37
9 1000 80 0 0 1 1 2 920 76
10 1000 3 0 0 0 0 0 997 3
11 1000 61 0 0 1 0 5 939 55
12 1000 25 24 0 0 0 1 975 0
13 1000 23 0 0 0 0 2 971 27
14 1000 42 0 0 0 0 1 956 43
15 1000 113 0 0 0 0 7 886 107
16 1000 57 0 0 0 0 4 943 53
17 1000 48 0 0 0 0 4 951 45
18 1000 73 0 0 0 0 3 927 70

7.7 DATA ANALYS IS 95

19 1000 43 0 0 0 2 1 957 40
20 989 14 0 0 0 0 0 975 14
21 970 48 0 0 0 0 7 922 41
22 962 29 0 0 0 2 4 933 23
23 1000 34 0 0 0 0 0 966 34
24 998 19 0 0 0 0 2 979 17
25 965 63 59 0 0 1 3 902 0

Sum 24 884 2 000 143 30 5 13 114 22 825 1 754

Table 7.8: Detailed test results for Query 29, "mobile application health sensor data".

A short explanation of the columns in table 7.8 may be needed. Gray columns
are; Day, Total, New results for Query 29 (from table A.19). The white columns
contain data from the user test, shown in figure 7.2; User’s New (New after
user actions), Seen, Saved, White-listed, Black-listed, Automatically Discarded,
and Manually Discarded results.

7.7.4 Relaxed usage pattern
Another pattern emerges in test person E’s first query, see 7.4.

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

35. "forest fairytales", free search

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure 7.4: Detailed test results for query 35.

96 CHAPTER 7 TEST ING

This is a period of nineteen days, where the tester has seen some results,
saved some, white-and blacklisted a few domain names, and discarded some
results.

The tester has processed few results for each day, but still the number of new
results shown in figure 7.4 decreases steadily, and the number of auto-discarded
results increases for each day in the period.

See figure 7.5 for clearer details on the lower part of figure 7.4. In figure 7.5
the user’s actions become more apparent. During the whole period of nineteen
days, the user has saved and manually discarded results. This points to the fact
that there are interesting results to find even towards the end of the nineteen
days. As the numbers in table 7.6 for Query 35 points to, the user has saved 39
results and manually discarded 32 results.

Figure 7.5 also contains white- and black-listed results including day one and
throughout the nineteen days period. Table 7.6 shows only a single domain
name white-listed, and a single domain name black-listed for Query 35. This
means that the user on day one in the period white-listed one domain name,
and black-listed another. These were applied as filtering, as described in section
4.3.1, and came into effect the whole rest of the period. Automatic white-listing
was applied on day 2, 3, 7, 8, and 15, and automatic black-listing on day 4, 11,
16, 17, and 18.

For each day, the number of seen results is constant, at 15, the same as the
number of results displayed per the page in the IIR web client. This means
that the user did not find it interesting to page around in the result list, which
probably would have been a double-digit number of pages. So when the search
button was pressed to find the next day’s results, the displayed results on
the shown page was saved as Seen. This is also why there is nothing for day
nineteen, the user just stopped looking at Query 35. This can be verified by
looking at the Seen column for Query 35 in table 7.6. The number of seen
results is 270, the page size is 15. This gives 270÷ 15 = 18, which is the exact
number of days before the user stopped testing Query 35.

The actions revealed in figure 7.5 shows that IIR helps the user by automatically
hiding from view, results that the user normally would have to relate to.

Day Total New U.New Seen Saved W List B List A Disc M Disc
1 999 930 889 15 3 7 7 69 9
2 999 37 744 15 7 7 0 219 7
3 997 29 658 15 7 7 0 309 1
4 999 58 612 15 0 0 1 371 0
5 999 29 576 15 4 0 0 404 0
6 998 12 549 15 0 0 0 434 0
7 997 8 523 15 0 1 0 458 0

7.7 DATA ANALYS IS 97

8 1000 23 474 15 0 1 0 510 0
9 1000 45 470 15 1 0 0 512 2
10 1000 3 444 15 10 0 0 529 2
11 999 175 473 15 0 0 1 510 0
12 999 48 407 15 0 0 0 577 0
13 996 29 406 15 0 0 0 575 0
14 997 42 340 15 0 0 0 642 0
15 999 58 291 15 3 2 0 683 5
16 999 22 205 15 1 0 1 774 3
17 998 17 175 15 2 0 1 802 3
18 999 35 162 15 1 0 1 820 0
19 999 17 132 0 0 0 0 867 0
Sum 18 973 1 617 8 530 270 39 25 12 10 065 32

Table 7.9: Detailed test results for Query 35, "forest fairytales".

A short explanation of the columns in table 7.9 may be needed. Gray columns
are; Day, Total, New results for Query 35 (from table A.22). The white columns
contain data from the user test, shown in figure 7.4; User’s New (New after
user actions), Seen, Saved, White-listed, Black-listed, Automatically Discarded,
and Manually Discarded results.

7.7.5 Other patterns
In other queries tested, we can see from most plots in appendix E that the
testers followed one or the other of the patterns described in sections 7.7.3 and
7.7.4, or a combination of these patterns.

In many plots, the curve for auto-discarded results closely follows the curve for
total number of results.

This can be seen both in energetic and relaxed usage patterns. Figure 7.6 shows
a relaxed usage pattern, where curves for auto-discarded and total converge
slowly, and then follow each other closely for the rest of the tested period.

98 CHAPTER 7 TEST ING

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

35. "forest fairytales", free search

Seen results Saved results

Whitelisted results Blacklisted results

Manually discarded results

Figure 7.5: Detailed test results for query 35, showing the lower part of figure 7.4.

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

36. "forest fairytales", exact

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure 7.6: Detailed test results for query 36.

7.7 DATA ANALYS IS 99

The same can be seen in the energetic patterned query shown in figure 7.7,
where curves for auto-discarded and total follow each other closely from the
second day of the tested period.

Convergence of result total and auto-discarded results may happen when the
user is very active and saves or discards almost all results for one day in the
period. It can also happen when the total number of results for one Query are
very low, and the user follows a relaxed pattern, as shown in figure 7.6.

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

15. "terry pratchett", free

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure 7.7: Detailed test results for query 15.

8
Discussion
This chapter examines choices made in setting up the IIR service, its envi-
ronment and technology, and inspects findings and implications. Some of the
limitations of this study will also be addressed.

8.1 Findings
This study set out to find if a system could be implemented to help the user find
search results they had not seen before. The research question, asked in section
1.2, was "How can a long term search service be created to discover previously
unseen search results, regularly concealed in traditional on-line search?".

The study has shown that search engines, by trying to give the most relevant
or concise answers, repeatedly give the same or similar results.

By analysing data collected from Bing, figure 5.4 in chapter 5 shows that the
first day of results has many new results, but the second and subsequent days
have many results that were seen the first day, and very few new results. The
same pattern is also shown in table 5.3 in chapter 5, when comparing the 100
first results from day one and day two in the data collected.

When looking at the testing phase, e.g. figure 7.4 in chapter 7, the progression
of user operated searches behave differently, since users do not interact with

101

102 CHAPTER 8 D ISCUSS ION

all results from day one, as the data collection analysis did. By examining the
test data it is clear that such an IIR system will work with minimal amount of
work from the user’s side. The more the user uses the system, the more results
are discarded as already seen or black-listed.

8.2 The approach to search
When researching ways of searching at the start of this project, different search
engines and various technologies were examined.

Collecting data by way of "web scraping"¹, parsing results directly from the
HTML returned from an on-line search, is not the way to go. Content based
companies do not like² that their content is "stolen"³, search engine companies
least of all - they live by showing ads.

Setting up a search engine for the project by using open source search engine
software like Lucene⁴, Sphinx⁵, Xapian⁶, Indri⁷, or Zettair⁸, would complicate
the project unnecessarily.

So, very early in the process it became clear that to limit the work of this thesis,
choosing a well known search engine with a useable API was the right way
to go. The API, at the time of choosing, that seemed to fit the task best was
Bing Search API v2, as described in 4.7. It had a maximum of 1000 results
returned as JSON per search, had 5000 free transactions per month, and had
a reasonable set of parameters that the API could be configured with.

As mentioned in section 2.4.2 On-line search vs search APIs, the on-line and
API versions of the search engines differ in which and how many results they
return. This will give different results when searching with our IIR system, but
this will only be evident in the very first batch of search results from a query.
The subsequent searches will differ substantially, because the IIR system will
compare the results with the database, and only present results that have not
already been seen, as described in chapter 3.

But there is another important difference between on-line search and API-based

1. http://wiki.c2.com/?WebScraping
2. https://techcrunch.com/2016/08/15/linkedin-sues-scrapers/
3. http://blog.icreon.us/advise/web-scraping-legality
4. https://lucene.apache.org/
5. http://sphinxsearch.com/
6. https://xapian.org/
7. https://www.lemurproject.org/indri/
8. http://www.seg.rmit.edu.au/zettair/

http://wiki.c2.com/?WebScraping
https://techcrunch.com/2016/08/15/linkedin-sues-scrapers/
http://blog.icreon.us/advise/web-scraping-legality
https://lucene.apache.org/
http://sphinxsearch.com/
https://xapian.org/
https://www.lemurproject.org/indri/
http://www.seg.rmit.edu.au/zettair/

8.3 IMPLEMENT ING THE PROTOTYPE 103

search. All the main search APIs have a limited number of results they are
willing to return to the consumer. In Bing’s case this was 1000 results. This
means that the search is only so good as the content that the search engine
returns as the 1000 results. There are generally a lot more results available
on the Internet, and in the search engine’s database. A quick search for "terry
pratchett" on Bing on-line search gave "618000 results". So the Bing Search
API has to decide which 1000 of the those 618000 results to return.

This situation reduces the usefulness of the service consuming the API. What
if we are looking for a result that is found as number 1001 - or number 600001.
The results are ranked in Bing, if the ranking Bing uses does not suit the user
running the query, the desired results may never be returned as one of the 1000
results.

Also, the Bing Search API v2 had limited parameter options, and no time period
selections. It had no parameter based domain name limitation features, but
this could probably be mitigated in a live search situation by experimenting
with adding domain names to the search text string at the time of building
the URI to send to the API. No such parametrisation was done due to the
data collection situation, see description in chapter 5 and discussion in section
8.4.

There has been a reduction in available search engine APIs since the start of
working with this thesis. Table 2.1 in chapter 2 shows that the big companies
seem to find less value in offering their search index to the public. At the time
of selecting API to work with, the top three search engines to choose from,
Google, Bing and Yahoo, had in total four possible API candidates, though in
reality Google’s two candidates were onlymeant for searching a limited number
of sites. Google has now announced the death of one of their two offerings,
Google Site Search, and Yahoo BOSS API was shut down in 2016. Bing is the
only major search engine that has kept their general purpose search engine
API, but in renewing it Bing created a problem for this thesis, as described in
section 5.1.

8.3 Implementing the prototype
The IIR solution was in total worked on over a period of two years. The
intention was to create IIR as an API based on-line system for user testing, and
a separate batch system for comparing IIR results with the raw results from
the API.

The server and search API parts of it was originally implemented in nodejs, and

104 CHAPTER 8 D ISCUSS ION

this was perfect for the web server part of the solution. However, nodejs with
its asynchronous nature, was not suited for the offline (batch) routine.

This led to re-implementing everything in Go, which was an good fit for both
the on-line and off-line system. There was no wrapper or adapter in Go for
connecting to the Bing Search API, so this had to be implemented as well,
as described in section 6.5.2. Using Go for the IIR server and utilities (see
appendix F) turned out to be a delight. The snappy, sub-millisecond localhost
web request and database access timings were especially nice.

8.3.1 Storage
If the user-base expands significantly, storage needs to be managed. In the IIR
implementation, everything is stored for all results, even duplicates, of which
are many. This has been necessary in the prototype, but in a fully implemented
system this should change.

All results stored in the IIR database that the user will never want to see
again, like auto-discarded and manually discarded results, could be stripped
of superfluous information. They could e.g. after some time be compacted, in
that only the URL hash, and possibly the URL itself remains.

Othermethods of compacting storage could be to experiment with compressing
text fields in results, like Title, Description, DisplayURL and URL.

It is difficult to estimate exactly how much storage can be recovered in this
way, especially since usage patterns probably will vary a lot between different
users. Section 4.6.2 does some calculation on this, but does not include the
suggestion mentioned in this section. The storage strategy will also depend on
the final implementation, see sections 9.3 and 9.4.

8.3.2 Usability
The IIR user interface had a limited number of features, but it had enough
features to make users find it usable, despite its limitations. This is after all a
prototype implementation, and feedback on how the UI works, is a part of the
evaluation of the prototype.

As discussed in section 8.5, some criticisms include "a lot of clicking", initial
difficulty understanding white- and black-listing. Much clicking was needed
to go through the instructed amount of results. This was also the author’s
experience, when testing the 16 Queries. The suggested solution for this is
creating rules. More on rules in section 9.1.2. The UI can be much improved

8.4 DATA COLLECT ION 105

upon, many suggestions have found their way into chapter 9.

8.3.3 Reliability
Users have to trust IIR, even after using it for a long time. The full IIR system
consist of several moving parts, the main two are the IIR web service (web
client and web server), and the connected data provider. If any of these should
fail, the IIR would fail. Through the testing phase this did not happen, but
then again the testing was done with collected data, not a full API-based IIR
system, as described in 6.5.4.

The IIR web client needs to be rock solid and bug-free to make the solution
work. It also needs either to support many different versions of web browsers,
or preferably demand that the user has a modern web browser. The IIR server
including database needs to be always online, to be able to support the web
client. The search API needs to always be on-line to support IIR. If the data
source is unavailable, IIR stops being useful, and can only show data stored in
IIR. The reliability of the system is dependent on these parts.

8.3.4 Scalability
Scaling of the solution will depend on several factors. One is the matter of
storage, discussed in section 8.3.1, and storage is dependent on how search is
finalised, see section 9.4.

Deploying the web service in the cloud as suggested in section 4.6.1 would
make it easy to scale the infrastructure. As Go is the chosen language, Google
seems like a good fit, though AWS and Azure probably could provide good
service as well.

As described in section 9.1.5, the application needs to handle the user’s growing
number of queries.

8.4 Data collection
In section 5.1 the reason for using data collection was explained, that version 2
of Bing Search API service would be terminated. This made the data collection
necessary, and data was collected in a period of 54 days.

The actual data collection was a satisfactory experience, once it was scripted

106 CHAPTER 8 D ISCUSS ION

and set up as a scheduled task. It performed very well, and got data collected
daily through the whole period.

But there were errors. Data collection errors are described in section 5.5. Most
of the errors experienced, shaved off a bit of the collected data. In most cases
only a "page" was missing, meaning somewhere between 0 and 50 results, for
the relevant query on the day the error happened.

8.4.1 Ranking
As described in section 4.4.2, IIR has an optional proprietary ranking of results,
based on if the searched for text query was found in the title or description in
each result. IIR ranking has the advantage that if your query text is exactly
what you are looking for, as in the "terry pratchett" query mentioned in section
8.2, the ranking gives all these results at the top of the result list.

On the other hand, the search engine’s ranking is made for actually helping
the user to find results, so in some cases the results ranked high by the search
engine would fall behind on the IIR ranking. One example of this is the search
for "messerschmitt KR200 restoration", where results that linked to selling
spare parts were ranked low, since they did not have the exact words in the
result.

This feature should have been tested properly, to see if IIR ranking has merit,
but because of time constraints, this was not done. This feature could be a
useful addition to the IIR features, but should perhaps have been implemented
as a part of a set of sorting mechanisms for the results. As an example of such
a set of sort orders; sort by IIR rank, sort by search engine rank, and sort by
modified date.

8.4.2 Query quality
The way the queries are created influence what results are returned from
the search engine API. Search engine techniques like stemming and similar
techniques, described in the section 2.1.2, influence what results the search
engine returns through the API.

Collecting data to use for search as described in chapter 5, gives a very static
set of results to search for and show in IIR. When using an on-line search
engine, the user will change the query when the relevant results are not found.
The user had originally the possibility to adjust the query text in IIR, but this
was abandoned in the final prototype because of the data collection situation.

8.5 TEST RESULTS 107

When using a static set of data collected for IIR, adjusting the query text is less
useful, since the changed search is performed on a stored (unchanging) set of
data retrieved based on the original search text.

8.5 Test results
IIR was tested by four users during the course of a week. The users had
contributed the search tests in advance, and the fact that they were testing
their own Queries, would make the results more relevant for them.

There are several issues with the test scenario.

Time The testers contributed their queries late October 2016, the test period
was the first week of April 2017. This is a time period of 5 whole months.
The contributed searches that were current, would be old news after 5
months. This is the case for some of the Queries, e.g. Query 17 "liverpool
leeds efl" and Query 19 "hillary clinton e-mail fbi". So in a way, the search
results would not be relevant for these testers after such a long time.

Few testers More people to test IIR would have been an advantage. There
is not much statistical significance in such a small number, and could
potentially skew the findings.

Collected data Ideally the testing should have been done on live data, by
connecting to a live search engine. If this was the case, the users could
adjust their queries, to get more relevant results for their queries if they
wanted.

Two of the testers did not follow the instructions given, or did not fully un-
derstand them. This was unfortunate, in that they did not generate enough
test data to analyse their testing process properly. Another consequence was
that their impression of the IIR system might be coloured by not having the
full experience of having a search progression over several days of data, like
the other testers did. The instructions were given in several different ways,
but maybe they could have been improved upon, or emphasised more. IIR is a
different approach to search, after all.

Another view could be that they really did not see the need for this type of
search, as one tester commented through the questionnaire. It could also be
that the searches they had contributed did not have that much relevance for
them at the time of the test, five months after contributing them.

Still, even for Query 17 that was run for two days, see figure 7.1 in chapter 7,

108 CHAPTER 8 D ISCUSS ION

there was the suggestion of a positive outcome. And for the testers that tested
more than ten days, there was a clear trend, whether they tested energetically
as shown in figure 7.2, or leisurely as shown in figure 7.4.

IIR also had a limited UI implementation, something that also could have
confused or discouraged the testers, as hinted at in the introduction to chapter
7.

8.5.1 Exact search
With exact search, the total number of results in a QueryRun is often a lot fewer
than the total number of search results from a "free" QueryRun. One could
imagine this as normal, but at the same time, it is unusual for a search engine
to return less than 1000 results, for a correctly worded Query. The reason for
this is unclear, one could speculate if this is one of the differences between
on-line and API based search.

In my opinion the exact versions of the Queries did not work that well. They
yielded markedly fewer results than the free queries, and contained many
results that were duplicates.

8.5.2 Analysing new results
When plots from the data collection show new results for the whole period
since the first day, it is clear that the first day of results have most of the new
results. The following days in the period have fewer new results, since all
previous runs are taken into account when finding new results.

When it comes to implementing a user based search via UI, this way of counting
new results has limitations. It relies on the user going through all the up to
1000 results from the first search. This would ensure that all the results from
the first search can be counted as seen.

In practice this would rarely be the case, as described in section 3.3. The user
would be going through some of the results from the first search, but not all.
This would mean that many of the results from the first search would not be
filtered out in the second and third search, and would appear in the second
and third search as well. So if the user does not take any action on these
reappearing results, they could possibly hide more relevant results, and in this
respect be regarded as "noise" in the result.

8.6 PROBLEMS , BUGS AND ERRORS 109

8.5.3 Author’s comments on testing IIR
It was nice to be able to sort of bookmark results. Discarding results and
never seeing them again is a very useful mechanism, and so is black-listing.
White-listing, not so much.

But the user interface needs a lot of work. As one of the testers commented,
"clicking" is a keyword here. Knowing the system more intimately than the
other testers made it easy to use the system more efficiently.

Most of the author’s suggestions have made it into chapter 9 Future work.

8.6 Problems, bugs and errors
Data collection errors were described in section 5.5. Themajor errors were fixed,
and data collection worked well afterwards. The minor errors that occurred
after the initial error period will change the number of results collected, but will
not significantly alter the number of results collected. Errors are not many, and
each time only 0-50 results out of a potential 1000 are missing. If considering
the number of results that overlap between days of the data collection period,
as described in section 5.6.4, the number of previously unseen results missing
could in fact be closer to zero.

No bugs have been reported in the IIR test phase.

There was one problem that was not reported by any of the testers, but was
discovered during the author’s testing. The test data collected were examined
for duplicates, as described in section 5.6.5. Search result URLs were lowercased
and then hashed and compared, and in this process the lower-cased URLs were
by mistake saved back to the database. This would not be a problem for most
URLs, but when testing I found that some results were not possible to preview
by opening them in the web browser. Some YouTube⁹ and Imgur¹⁰ links did
not work.

On closer inspection the problem turned out to be that identification keys, for
videos and images respectively, are case sensitive. An an example, try http:
//imgur.com/r/golang/wVOArpG (works) versus http://imgur.com/r/golang/
wvoarpg (not found). This issue would have little impact on how IIR works,
and the thesis as such.

9. http://www.youtube.com
10. http://imgur.com/

http://imgur.com/r/golang/wVOArpG
http://imgur.com/r/golang/wVOArpG
http://imgur.com/r/golang/wvoarpg
http://imgur.com/r/golang/wvoarpg
http://www.youtube.com
http://imgur.com/

110 CHAPTER 8 D ISCUSS ION

There is a slim chance that an URL in lower-case actually existed for the relevant
Query. The user would then accept that the lower-cased result URL was correct,
since the linkworks when opened. Themixed-case URLwould then be obscured
by the lower-cased link, and never appear as a consequence of this. If content
previews as described in section 9.1.1 had been implemented, the problem
of lower-cased URLs would in some cases have prevented content previews,
hindering users in deciding if these results were relevant or not.

8.7 Is it commercially viable?
In its current implementation IIR is set up to search on the user’s behalf by
reading from existing search engines via their web search APIs. These services
are not free, and some financial model needs to be researched to be able to
make a system like this available to the public.

In addition to the financial aspects, there is also a matter of storage, see
discussion in section 8.3.1. Storage is also mentioned in section 9.1.5.

9
Future work
Personal experience has shown that an application in most cases never reaches
a finished state, and there is always possibility for improvement.

The aim of a proof-of-concept type application is to show that something is
possible, or show how something can be solved. This kind of development
involves a good amount of trial and error, technical changes, code patching
and quick fixes. In the end, an answer emerges for how this application can be
implemented, but the proof-of-concept implementation itself is often riddled
with technical debt¹².

A full rewrite of the application is recommended now that different features
have been explored. The application is a fairly small one, and it is not deployed
to production, so a rewrite is feasible.

However, a refactoring³ of IIR is also possible. Details around refactoring are
discussed in section 9.2.

1. http://wiki.c2.com/?TechnicalDebt
2. https://martinfowler.com/bliki/TechnicalDebt.html
3. http://wiki.c2.com/?WhatIsRefactoring

111

http://wiki.c2.com/?TechnicalDebt
https://martinfowler.com/bliki/TechnicalDebt.html
http://wiki.c2.com/?WhatIsRefactoring

112 CHAPTER 9 FUTURE WORK

9.1 New features
This section discusses what new features would improve the existing solution.
All the described improvements should be considered experimental, and would
have to be specified, implemented and tested to see if they make sense in the
context of this application.

9.1.1 Content preview
The content for each result in the solution is limited to what the search engine
can provide.

This was in Bing Search API’s case a result title of 65 characters, and description
of 170 characters. This is in many cases not enough to assess if the result is
interesting or not, so the result becomes "more noise than nice".

One feature that could mitigate this would be to show a preview of the content
that the result’s URL refers to. This could possibly be solved as an <iframe/>⁴
html tag. There are some security concerns⁵ with using an <iframe/> tag,
though, like cross-site scripting (XSS), that needs to be handled.

9.1.2 Rules or filters
Through feedback from the testing phase, it became evident that creating some
kind of rules would benefit the solution. These would be filters that are applied
on new results before showing results to the user. This would automatically
save results that the user already knows would be interesting or discard results
that the user knows would be uninteresting, relieving the user of unnecessary
work. Rules would be applied while in the process of fetching new results from
the search engine.

The rule could be set up to act on the result’s fields, which would depend on
what fields would be available from the search engine. Examples of such filters
could be:

• "if result.title contains [notinterestingtext], discard result automatically"

• "if result.url contains [urltowhite-list], white-list result automatically"

4. https://www.w3.org/TR/html5/embedded-content-0.html#the-iframe-
element

5. https://www.w3.org/Security/wiki/Cross_Site_Attacks

https://www.w3.org/TR/html5/embedded-content-0.html#the-iframe-element
https://www.w3.org/TR/html5/embedded-content-0.html#the-iframe-element
https://www.w3.org/Security/wiki/Cross_Site_Attacks

9.1 NEW FEATURES 113

• "if result.domainname equals [urltoblack-list], discard result automati-
cally"

The rule would in its simplest form contain a criteria and an action. If the
criteria is true, the action would be performed.

The criteria could for instance contain some comparison between fields in
the result and a user specified text to compare against. Comparison operators
could as a start be equals and contains.

The fields to test against could be title, description, URL, domain name, and also
date, if available.

The possible actions could be to save or discard results.

A rule could also be set to global for this user, meaning that the rule could work
across all the user’s current and future queries. The user should use global
rules with caution, as these kind of filters could remove results that would have
been interesting in other or future queries.

Creating rules would also diminish the need for the user to white-list or black-
list domain names. The solution should instead help the user create a new rule
in an easy way.

Rules could also be used to add other features like custom ranking of results
instead of saving or discarding them.

9.1.3 White- or black-listing
White- or black-listing domain names could be toned down. Still, there should
be a way to suppress many domain names in one go. While testing the query
"Terry Pratchett" (simpleId 15), there were literally thousands of results like
the following, that clearly had nothing to do with "Terry Pratchett".

• http://ageing-body.review/skin/terry.pratchett.wrinkles
• http://ageing-body.review/skin/terry-pratchett-wrinkles
• http://ageing-calm.review/skincare/terry-pratchett-wrinkles
• http://ageing-data.review/antiageing/terry-pratchett-face-cream
• http://ageing-feel.review/antiageing/terry-pratchett-face-cream
• ... lots and lots more ...

The number of unique domain names for this particular case were somewhere
in the hundreds. To be able to add many of these to some sort of black-list at
the same time, would be very valuable. This could be implemented by creating

114 CHAPTER 9 FUTURE WORK

a special case of a rule, or one rule for each selected domain name, see section
9.1.2.

As found in the testing phase, there would be a problem with internationalised
domain names, like *.blogspot.com, *.blogspot.se, *.blogspot.in, etcetera. These
would show exactly the same content with only the root domain (.com, .se,
.in) as the difference between them. Handling these domain names may be
more difficult to do in a general way, without storing internationalised domain
names somewhere in the solution. Storing default internationalised domain
names is not be recommended for a more generic application like IIR, but some
mechanism for handling those domain names would help the solution.

9.1.4 Analysis of user interactions
There could be implemented analysis of the user’s interactions with IIR, and
automated creation of rules, described in section 9.1.2.

This could for instance be based on analysing the number of times the user
has discarded results for a domain name. Such an action could result in an
automatic creation of a rule that blocks this domain name.

Additionally, analysis could have been made on for how long a user previews
content, see section 9.1.1. This could be automatically saved if previewed longer
than a threshold.

If the user always finds results from a particular domain name interesting,
maybe a rule should automatically be created for that domain name, so that
results from that domain name are always saved.

9.1.5 Handling many queries and results
When the number of queries accumulate, the need arises to manage them in
some way.

Refer to figure 6.2 in chapter 6. The list of queries to the left should probably
only contain the latest active queries, and the less active queries should be
listed in some kind of archive.

When a query is selected, the folders that show results from all QueryRuns (seen,
saved, white-listed, discarded) should be enhanced with sorting, grouping,
search and selection criterias, to make navigation easier. This can e.g. be
realised as a separate viewmode, showing a data grid with columns, in addition
to the standard search result view mode like today.

9.2 REFACTOR ING 115

Since all Queries and their results take up storage, some scheme should be
devised for letting Queries expire, removing their uninteresting results while
keeping their interesting results. This could be done automatically after some
time of inactivity, or storage use could be brought to the attention of the user
at some stage, and the application could make the user decide what to do with
these inactive queries.

9.1.6 Miscellaneous features
As a help to handling storage, ref section 9.1.5, there should be a way of
presenting statistics to the user. The number of each status like seen, saved,
white-listed, discarded could be displayed, and estimated storage used, for
instance.

In addition to saving results to IIR, a feature could be implemented to save the
result to Pocket[40]. This would immediately update all Pocket-ready devices
or applications with the chosen result.

9.2 Refactoring
There are many important technical improvements that can and should be
done to this application. Refactoring is the process of changing a software
system without changing its external behavior[18], and all software has, at
some stage, need for refactoring.

Being a temporary type of implementation, many things can be done in higher
quality. As soon as a piece of code is written, many developers will already
refer to it as legacy code[17]. See also the introduction to this chapter on page
111.

9.2.1 Front-end
The UI should first and foremost be expanded to handle mobile clients. This
is work for a Bootstrap layout designer, but this should be reflected in client
code.

The JavaScript front-end will benefit from being rewritten in a AngularJS
version greater than 1.x. Version 2 was released fall 2016, and come March 2017
the version number is already 4. The newer versions are superior to version

116 CHAPTER 9 FUTURE WORK

1.x⁶ ⁷

Implementing the JavaScript part of the client using TypeScript⁸ gives many
benefits, arguably chief among them type safety in JavaScript.

Go templates for HTML should be rewritten to be more modular and support
Angular and Bootstrap better.

Error handling should be improved, see section 9.2.4.

9.2.2 Back-end
Smaller, shorter, more dedicated Gin controllers would make the back-end
more stable and easier to maintain.

Error handling should be improved, see section 9.2.4.

9.2.3 Unit testing
This proof of concept solution has no unit tests neither in server nor client. This
should be implemented, preferably from scratch with test-driven development
(TDD⁹), but tests should be added no matter which style of programming is
used.

9.2.4 Error handling
Error handling can be much improved. When the web service has a problem,
it should be able to recover from it and continue to serve users smoothly. If
the error was from a user error, the user should be notified. If a system error
occurred, the user should know about it if the user experience is interrupted
or influenced.

One relatively easy way of showing errors to the user is by using the JavaScript
library toastr¹⁰.

6. http://blog.angular-university.io/introduction-to-angular2-the-
main-goals/

7. https://www.quora.com/What-are-the-advantages-of-angular2-over-
angular1

8. https://www.typescriptlang.org/
9. https://www.agilealliance.org/glossary/tdd
10. https://codeseven.github.io/toastr

http://blog.angular-university.io/introduction-to-angular2-the-main-goals/
http://blog.angular-university.io/introduction-to-angular2-the-main-goals/
https://www.quora.com/What-are-the-advantages-of-angular2-over-angular1
https://www.quora.com/What-are-the-advantages-of-angular2-over-angular1
https://www.typescriptlang.org/
https://www.agilealliance.org/glossary/tdd
https://codeseven.github.io/toastr

9.3 CHANGE IN TYPE OF APPL ICAT ION 117

9.3 Change in type of application
Implementing the application, with thousands of users, puts demands on how
storage is dealt with, as implied in section 4.6.2.

Oneway of solving this is to create IIR as a desktop application,using the storage
space on the machine it is installed on. This way, all storage problems would
instantly go away. The user would then be responsible for limiting their usage,
removing queries, or expanding available storage for the application.

There are many downsides to having a desktop application, like software
maintenance, bugfixes and versioning. But mainly that all sorts of different
operating systems suddenly needs to be catered to. Windows, OSX, Linux, iOS
and Android are just the headlines.

Another way of storing data could have been to use Web Storage¹¹, but it is a
cookie like key-value type storage, that does not suit the IIR storage. There is
also a suggested storage limit per origin of 5 MB, which is too small. And there
would also be privacy and security concerns with this kind of solution.

So the recommendation for now is to keep the solution as a web based solution,
similar to how IIR was implemented.

9.4 Search Engine
All results in IIR were found during data collection through interfacing with a
search engine API. This has drawbacks, as discussed in section 8.2. More work
needs to be done in finding an appropriate way of gathering search results for
IIR.

Microsoft’s Bing Search API version 2 has been used in this thesis, and it
finally closed down March 31st 2017. Their replacement service is Bing Search
API version 5¹² and is a part of Microsoft Cognitive Services¹³. No in-depth
evaluation of v5’s suitability for IIR has been done, but at a glance it seems
better, with more meta data like date returned with its results.

11. https://www.w3.org/TR/webstorage/
12. https://www.microsoft.com/cognitive-services/en-us/bing-web-

search-api
13. https://www.microsoft.com/cognitive-services/en-us/apis

https://www.w3.org/TR/webstorage/
https://www.microsoft.com/cognitive-services/en-us/bing-web-search-api
https://www.microsoft.com/cognitive-services/en-us/bing-web-search-api
https://www.microsoft.com/cognitive-services/en-us/apis

118 CHAPTER 9 FUTURE WORK

Figure 9.1: Top 3 search engines shown, out of 15 listed, courtesy of eBizMBA (see
footnote).

Google would on the surface seem like a good candidate to use for interfacing
with, since their search engine is widely regarded as the top on-line search
engine¹⁴, see figure 9.1. But their web search API was deprecated in 2010, and
finally closed down in 2014¹⁵. The replacement service is called Google Custom
Search, and is meant for implementing search on a limited number of specific
websites¹⁶.

Search engine "web scraping"¹⁷ is not an option, since this violates the terms
of service.

One avenue that has not been explored but could turn out interesting, is creating
an IIR web crawler, to find results without using traditional search engines.
One way such a solution could work is by letting the user enter their query, and
then the web crawler could try to find information for the user, which could be
presented e.g. the next day. The user could be notified when there were new
results.

14. http://www.ebizmba.com/articles/search-engines
15. https://developers.google.com/web-search/docs/
16. https://developers.google.com/custom-search/
17. http://wiki.c2.com/?WebScraping

http://www.ebizmba.com/articles/search-engines
http://www.ebizmba.com/articles/search-engines
https://developers.google.com/web-search/docs/
https://developers.google.com/custom-search/
http://wiki.c2.com/?WebScraping

9.4 SEARCH ENG INE 119

This is not an ideal way of searching, it would take much longer time to get
answers, but there are a couple of benefits. Firstly, the user using IIR is in this
for the long haul, immediacy is not necessarily expected or required. Also, a
web crawler based solution could do the search for the user, without the user
needing to be logged in to IIR. In this way it would superficially resemble a
publish/subscribe¹⁸ type solution.

There could be other possible avenues to explore, like combining different
sources, using P2P solutions, DuckDuckGo, etcetera, but this will need to be
researched separately.

18. http://wiki.c2.com/?PublishSubscribeModel

http://wiki.c2.com/?PublishSubscribeModel

10
Conclusion
The research question of this thesis asked "How can a long term search service
be created to discover previously unseen search results, regularly concealed in tra-
ditional on-line search?" An Incremental Information Retrieval (IIR) prototype
was built to examine this scenario.

Experience shows that search engines give very similar results for the same
search query. In fact, this is the whole basis for search today, to find precise
answers to precise questions.

User testing demonstrated that the application had a good user satisfaction
with total score of 4.35 out of 5. What was also evident, was that long-term
type of search does not suit everyone. One tester gave a score of 2 on usefulness
where other testers gave 4 and 5.

This study shows that search engines generally show the same or similar set of
results every time a search is executed. The implementation of the IIR prototype
system also shows that by suppressing already seen results users can find new
and fresh results when running the same search query repeatedly.

It is important to note that this IIR system is not intended to replace ordinary
on-line search. Still, this kind of search has its place alongside the usual search
engines. It solves a problem that has not been solved today, and with growing
content on the Internet, this may be important.

121

Bibliography
[1] Anh, V. N., and Moffat, A. Pruned query evaluation using pre-

computed impacts. In Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval
(New York, NY, USA, 2006), SIGIR ’06, ACM, pp. 372–379.

[2] Baeza-Yates, R., and Ribeiro-Neto, B. Modern Information Retrieval:
The Concepts and Technology Behind Search. Addison Wesley, 2011.

[3] Banker, K. MongoDB in action: covers MongoDB version 3.0. Mongo DB
in action; 2nd ed. Manning Publ., Shelter Island, NY, 2016.

[4] Bar-Yossef, Z., Keidar, I., and Schonfeld, U. Do not crawl in the
dust: Different urls with similar text. ACM Trans. Web 3, 1 (Jan. 2009),
3:1–3:31.

[5] Brin, S., Motwani, R., Page, L., and Winograd, T. What can you
do with a web in your pocket? IEEE Data Eng. Bull. 21, 2 (1998), 37–47.

[6] Brin, S., and Page, L. Reprint of: The anatomy of a large-scale hyper-
textual web search engine. Computer networks 56, 18 (2012), 3825–3833.

[7] Cambazoglu, B. B., and Aykanat, C. Performance of query processing
implementations in ranking-based text retrieval systems using inverted
indices. Information Processing & Management 42, 4 (2006), 875–898.

[8] Chakrabarti, S., Van den Berg, M., and Dom, B. Focused crawl-
ing: a new approach to topic-specific web resource discovery. Computer
networks 31, 11 (1999), 1623–1640.

[9] Chang, W. Y., Abu-Amara, H., and Sanford, J. F. Transforming
enterprise cloud services. Springer Science & Business Media, 2010.

[10] Chitika. The value of google result positioning, June 2013.
http://chitika.com/google-positioning-value
Since Chitika Insights’ last report in May 2010 about the value of Google
result positioning, the Google search algorithm has changed hundreds of

123

http://chitika.com/google-positioning-value

124 B IBL IOGRAPHY

times. With these changes in mind, the Insights team sought to update
our Google result valuation statistics. Accessed: 2017.03.11.

[11] Cho, J., and Garcia-Molina, H. The evolution of the web and impli-
cations for an incremental crawler. Tech. rep., Stanford, 1999.

[12] Clarke, C. L., and Cormack, G. V. Dynamic inverted indexes for a
distributed full-text retrieval system. Ws ec u R eport CS-95-0 10 (1995).

[13] Clarke, C. L., Cormack, G. V., and Tudhope, E. A. Relevance rank-
ing for one to three term queries. Information processing & management
36, 2 (2000), 291–311.

[14] Cormack, G. Information Retrieval–Implementing and Evaluating Search
Engines. MIT Press, Cambridge, 2010.

[15] eBizMBA Inc. Top 15 most popular search engines | april 2017, April
2017.
http://www.ebizmba.com/articles/search-engines
Here are the top 15 Most Popular Search Engines as derived from our
eBizMBA Rank which is a continually updated average of each website’s
Alexa Global Traffic Rank, and U.S. Traffic Rank from both Compete and
Quantcast.

[16] Edwards, J., McCurley, K., and Tomlin, J. An adaptive model for
optimizing performance of an incremental web crawler. In Proceedings of
the 10th international conference on World Wide Web (2001), ACM, pp. 106–
113.

[17] Feathers, M. Working Effectively with Legacy Code. Robert C. Martin
Series. Pearson Education, 2004.

[18] Fowler, M., and Beck, K. Refactoring: Improving the Design of Existing
Code. Component software series. Addison-Wesley, 1999.

[19] Frakes, W. Stemming algorithms. In Information retrieval (1992),
Prentice-Hall, Inc., pp. 131–160. http://orion.lcg.ufrj.br/Dr.Dobbs/
books/book5/chap08.htm.

[20] Gantz, J., and Reinsel, D. Idc: The digital universe in 2020: Big data,
bigger digital shadows, and biggest growth in the far east.

[21] Ghorab, M. R., Zhou, D., O’connor, A., and Wade, V. Personalised
information retrieval: Survey and classification. User Modeling and User-
Adapted Interaction 23, 4 (September 2013), 381–443.

http://www.ebizmba.com/articles/search-engines
http://orion.lcg.ufrj.br/Dr.Dobbs/books/book5/chap08.htm
http://orion.lcg.ufrj.br/Dr.Dobbs/books/book5/chap08.htm

B IBL IOGRAPHY 125

[22] Hannak, A., Sapiezynski, P., Molavi Kakhki, A., Krishnamurthy,
B., Lazer, D., Mislove, A., and Wilson, C. Measuring personaliza-
tion of web search. In Proceedings of the 22Nd International Conference on
World Wide Web (New York, NY, USA, 2013), WWW ’13, ACM, pp. 527–538.

[23] Harry, D. How search engines rank web pages | search en-
gine watch. https://searchenginewatch.com/sew/news/2064539/how-
search-engines-rank-web-pages, 2013. Accessed: 14.05.2017.

[24] Hauff, C., Hiemstra, D., and de Jong, F. A survey of pre-retrieval
query performance predictors. In Proceedings of the 17th ACM conference
on Information and knowledge management (2008), ACM, pp. 1419–1420.

[25] Henzinger, M. Finding near-duplicate web pages: A large-scale evalu-
ation of algorithms. In Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval
(New York, NY, USA, 2006), SIGIR ’06, ACM, pp. 284–291.

[26] Internet-Live-Stats. Internet usage & social media statistics.
http://www.internetlivestats.com/. Internet Live Stats is part of the
Real Time Statistics Project (Worldometers and 7 Billion World). We are
an international team of developers, researchers, and analysts with the
goal of making statistics available in a dynamic and time relevant format
to a wide audience around the world. Accessed: 11.05.2017.

[27] Karlsen, R., Morell, J. E. B., and Salcedo, V. T. Are trustworthy
health videos reachable on youtube? BIOSTEC 2017 (2017), 17.

[28] Kliman-Silver, C., Hannak, A., Lazer, D., Wilson, C., and Mis-
love, A. Location, location, location: The impact of geolocation on web
search personalization. In Proceedings of the 2015 Internet Measurement
Conference (New York, NY, USA, 2015), IMC ’15, ACM, pp. 121–127.

[29] Kritzinger, W. T., and Weideman, M. Search engine optimiza-
tion and pay-per-click marketing strategies. Journal of Organizational
Computing and Electronic Commerce 23, 3 (2013), 273–286.

[30] Kumar, H., and Kang, S. Another face of search engine: Web search
api’s. In Proceedings of the 21st International Conference on Industrial, Engi-
neering and Other Applications of Applied Intelligent Systems: New Frontiers
in Applied Artificial Intelligence (Berlin, Heidelberg, 2008), IEA/AIE ’08,
Springer-Verlag, pp. 311–320.

[31] Kumaran, G., and Carvalho, V. R. Reducing long queries using query
quality predictors. In Proceedings of the 32nd international ACM SIGIR

https://searchenginewatch.com/sew/news/2064539/how-search-engines-rank-web-pages
https://searchenginewatch.com/sew/news/2064539/how-search-engines-rank-web-pages
http://www.internetlivestats.com/

126 B IBL IOGRAPHY

conference on Research and development in information retrieval (2009),
ACM, pp. 564–571.

[32] Lu, Y., Chau, M., and Chau, P. Y. K. Are sponsored links effective?
investigating the impact of trust in search engine advertising. ACM Trans.
Manage. Inf. Syst. 7, 4 (Jan. 2017), 12:1–12:33.

[33] Martin, R. Agile Software Development: Principles, Patterns, and Practices.
Alan Apt series. Pearson Education, 2003.

[34] Mayr, P., and Tosques, F. Google web apis - an instrument for
webometric analyses? CoRR abs/cs/0601103 (2006).

[35] Munzert, S., Rubba, C., Meiÿner, P., and Nyhuis, D. Automated
data collection with R: A practical guide to web scraping and text mining.
John Wiley & Sons, 2014.

[36] Page, L., Brin, S., Motwani, R., and Winograd, T. The pagerank
citation ranking: Bringing order to the web. Technical Report 1999-66,
Stanford InfoLab, November 1999. Previous number = SIDL-WP-1999-
0120.

[37] Pasi, G. Contextual search: Issues and challenges. In Proceedings of the
7th Conference on Workgroup Human-Computer Interaction and Usability
Engineering of the Austrian Computer Society: Information Quality in e-
Health (Berlin, Heidelberg, 2011), USAB’11, Springer-Verlag, pp. 23–30.

[38] Pike, R. Go at google: Language design in the service of software
engineering, October 2012.
https://talks.golang.org/2012/splash.article
This is a modified version of the keynote talk given by Rob Pike at the
SPLASH 2012 conference in Tucson,Arizona,on October 25, 2012. Accessed:
2017.05.03.

[39] Pike, R. The go programming language faq, what is the purpose of the
project?, October 2012.
https://golang.org/doc/faq#What_is_the_purpose_of_the_project
No major systems language has emerged in over a decade, but over
that time the computing landscape has changed tremendously. [...] We
believe it’s worth trying again with a new language, a concurrent, garbage-
collected language with fast compilation. Accessed: 2017.05.03.

[40] Read it Later, I. Pocket. https://getpocket.com/, 2007. The applica-
tion allows the user to save an article or web page to remote servers for
later reading. Accessed: 10.05.2017.

https://talks.golang.org/2012/splash.article
https://golang.org/doc/faq#What_is_the_purpose_of_the_project
https://getpocket.com/

B IBL IOGRAPHY 127

[41] Robert Griesemer, R. P., and Thompson, K. The go programming
language, May 2017.
https://golang.org/doc
The Go programming language is an open source project to make pro-
grammers more productive. Accessed: 2017.05.03.

[42] Sullivan, D. How search engines rank web pages. Search Engine Watch
31 (2003).

[43] White, S. Building a rest service with golang, December 2014.
Building a REST Service with Golang, in 3 parts.
https://stevenwhite.com/building-a-rest-service-with-golang-1
https://stevenwhite.com/building-a-rest-service-with-golang-2
https://stevenwhite.com/building-a-rest-service-with-golang-3
https://github.com/swhite24/go-rest-tutorial
Accessed: 2017.05.09.

[44] Williams, H. E. Query rewriting in search engines | hugh e.
williams. https://hughewilliams.com/2012/03/19/query-rewriting-
in-search-engines/, March 2012. Accessed:14.05./2017.

https://golang.org/doc
https://stevenwhite.com/building-a-rest-service-with-golang-1
https://stevenwhite.com/building-a-rest-service-with-golang-2
https://stevenwhite.com/building-a-rest-service-with-golang-3
https://github.com/swhite24/go-rest-tutorial
https://hughewilliams.com/2012/03/19/query-rewriting-in-search-engines/
https://hughewilliams.com/2012/03/19/query-rewriting-in-search-engines/

A
Data collection results
This appendix contains a summary of the results from the data collection phase,
described in chapter 5.

The queries were run from 1st of November 2016 up until 10th of January 2017,
71 days in total. We keep the results from 18th of November up until 10th of
January 2017, 54 days in total. See also figure 5.3 in chapter 5.

A.1 Queries and the reasoning behind them
As mentioned earlier, friends were recruited to contribute their searches, to
vary the results found. All query "owners" are listed in the column P in the
table below as person A - E.

129

130 APPEND IX A DATA COLLECT ION RESULTS

ID¹ ID² P Search text Comments

1 2 A
Messerschmitt KR200
restoration

Interested in this topic.

3 4 A Web search API thesis
Interesting to see if results could shed light on other
theses around this kind of web search.

5 6 A Web search thesis
Interesting to see if results could shed light on other
theses around this kind of web search.

7 8 A Search API thesis
Interesting to see if results could shed light on other
theses around this kind of web search.

9 10 A
Messerschmitt TG500
for sale

Interested in this topic.

11 12 A winds of winter

"The Winds of winter" is the title of George R.R.
Martin’s 6th book in the "A song of ice and fire"
series. Not yet published, and has been "delayed for
years".

13 14 A promise of spring

George R.R. Martin’s 7th book in the "A song of ice
and fire" series is called "A Dream of Spring", and is
not yet published. What would happen if I wanted
to find this, but erroneously searched for "A Promise
of spring"?

15 16 A terry pratchett
Favourite author Terry Pratchett sadly died in spring
2015, see quotes at the start of this thesis.

17 18 B liverpool leeds efl

Liverpool would play Leeds United in the Football
League Cup Quarter-final in the middle of the test
period (29/11 2016), and it would be interesting to
see if this match would generate more results.

19 20 B hillary clinton e-mail fbi
The US election would happen during the test period,
so "Hillary Clinton" would generate more results.

21 22 B
macbook pro 2016 touch
bar problems

Just before the start of the test period, Apple released
their latest MacBook Pro with touch bar.

23 24 C apple stock price Interested in this topic.

25 26 C
samsung note 8 release
date

Samsung Note 7 exploded in users’ hands, and was
removed from the market.

27 28 C google self driving car Interested in this topic.

29 30 D
mobile application
health sensor data

Interested in this topic.

31 32 D
mobile phone body area
network

Interested in this topic.

33 34 D
mobile phone sensor re-
search health

Interested in this topic.

35 36 E forest fairytales Interested in this topic.

37 38 E tudor politics
The Elizabethan era, and before that the reign of
Henry VIII, are interesting topics.

39 40 E jazz poetry
Performances with the combination of jazz and po-
etry is not that widespread.

Table A.1: Queries, query "owners" and a short reasoning behind the queries.

1. Odd-numbered IDs are "free" searches
2. Even-numbered IDs are exact searches

A .2 FULL DATA COLLECT ION RESULTS 131

A.2 Full data collection results
This section contains tables of results from the data collection phase.

A.2.1 Full data collection results, totals
The table in figure A.3 needs some explanation. The numbers columns in table
A.2 and table A.3 are divided into three types.

Type A Statistics for the full result.
Type B Statistics for new results.
Type C Statistics for new results, if using new results from day 2 - 54.

The reasoning behind type C is that day 1 in the data collection period always
contains almost entirely new results, and this skews the average number of
new results per day. So these statistics shows how many new results appear
after day one.

Column Type Explanation
ID ID, also called SimpleId, of the Query.
Query Query text search for.
Exact Is this query an exact query or not?
Results A Total number of results, collected for this query in the 54 day period.
Avg A Average number of results per day in the 54 day period.
Min A Minimum number of daily results in the period.
Max A Maximum number of daily results in the period.
New B Total number of new results in the period.
New % B Total number of new results in the period, percentage-wise.
Avg B Average number of new results per day in the 54 day period.
Min B Minimum number of new daily results in the period.
Max B Maximum number of new daily results in the period.
New d2 C Total number of new results in the period from day 2.
New d2 % C Total number of new results in the period from day 2, percentage-wise
Avg d2 C Average number of results per day in the 53 day period, from day 2.

Table A.2: Explanation for columns in table A.3

132 APPEND IX A DATA COLLECT ION RESULTS

ID
Q
uery

Exact
R
esu

lts
A
vg

M
in

M
ax

N
ew

N
ew

%
A
vg

M
in

M
ax

N
ew

d2
N
ew

d2
%

A
vg

d2
1

M
esserschm

itt
K
R
200

restoration
—

40
194

566.1
612

846
1596

4.0
22.5

0
509

534
1.3

7.6
2

M
esserschm

itt
K
R
200

restoration
Yes

20
451

288.0
285

478
42

0.2
0.6

0
18

9
0.0

0.1
3

W
eb

search
A
PI

thesis
—

50
919

717.2
646

1000
3111

6.1
43.8

0
770

1087
2.1

15.5
4

W
eb

search
A
PI

thesis
Yes

0
0.0

0
0

0
0.0

0.0
0

0
0

0.0
0.0

5
W
eb

search
thesis

—
52

143
734.4

809
998

3164
6.1

44.6
0

871
1090

2.1
15.6

6
W
eb

search
thesis

Yes
15

510
218.5

126
411

114
0.7

1.6
0

62
25

0.2
0.4

7
Search

A
PI

thesis
—

45
903

646.5
620

941
2582

5.6
36.4

0
655

955
2.1

13.6
8

Search
A
PI

thesis
Yes

0
0.0

0
0

0
0.0

0.0
0

0
0

0.0
0.0

9
M
esserschm

itt
TG

500
for

sale
—

39
000

549.3
532

967
1097

2.8
15.5

0
419

344
0.9

4.9
10

M
esserschm

itt
TG

500
for

sale
Yes

13
421

189.0
150

291
24

0.2
0.3

0
14

0
0.0

0.0
11

w
inds

ofw
inter

—
52

565
740.4

883
1000

2668
5.1

37.6
0

915
810

1.5
11.6

12
w
inds

ofw
inter

Yes
42

035
592.0

596
905

1717
4.1

24.2
0

481
635

1.5
9.1

13
prom

ise
ofspring

—
52

698
742.2

863
1000

2685
5.1

37.8
0

931
906

1.7
12.9

14
prom

ise
ofspring

Yes
44

616
628.4

455
912

2492
5.6

35.1
0

777
931

2.1
13.3

15
terry

pratchett
—

45
437

640.0
388

995
2401

5.3
33.8

0
717

777
1.7

11.1
16

terry
pratchett

Yes
41

235
580.8

586
963

1752
4.2

24.7
0

511
660

1.6
9.4

17
liverpoolleeds

efl
—

51
214

721.3
866

999
3614

7.1
50.9

0
850

1160
2.3

16.6
18

liverpoolleeds
efl

Yes
33

504
471.9

114
901

277
0.8

3.9
0

60
78

0.2
1.1

19
hillary

clinton
e-m

ailfbi
—

50
729

714.5
0

1000
2576

5.1
36.3

0
903

824
1.6

11.8
20

hillary
clinton

e-m
ailfbi

Yes
27

647
389.4

431
620

68
0.2

1.0
0

26
28

0.1
0.4

21
m
acbook

pro
2016

touch
bar

problem
s

—
40

435
569.5

0
900

3099
7.7

43.6
0

617
1290

3.2
18.4

22
m
acbook

pro
2016

touch
bar

problem
s

Yes
0

0.0
0

0
0

0.0
0.0

0
0

0
0.0

0.0
23

apple
stock

price
—

39
449

555.6
393

983
1736

4.4
24.5

0
586

524
1.3

7.5
24

apple
stock

price
Yes

36
366

512.2
264

1000
1098

3.0
15.5

0
194

482
1.3

6.9
25

sam
sung

note
8
release

date
—

47
934

675.1
0

995
2893

6.0
40.7

0
759

973
2.0

13.9
26

sam
sung

note
8
release

date
Yes

42
507

598.7
235

946
181

0.4
2.5

0
29

62
0.1

0.9
27

google
selfdriving

car
—

51
224

721.5
851

997
2540

5.0
35.8

0
882

752
1.5

10.7
28

google
selfdriving

car
Yes

40
914

576.3
614

906
1669

4.1
23.5

0
580

609
1.5

8.7
29

m
obile

application
health

sensor
data

—
53

117
748.1

878
1000

2894
5.4

40.8
0

910
846

1.6
12.1

30
m
obile

application
health

sensor
data

Yes
0

0.0
0

0
0

0.0
0.0

0
0

0
0.0

0.0
31

m
obile

phone
body

area
netw

ork
—

52
870

744.6
882

1000
2206

4.2
31.1

0
876

510
1.0

7.3
32

m
obile

phone
body

area
netw

ork
Yes

0
0.0

0
0

0
0.0

0.0
0

0
0

0.0
0.0

33
m
obile

phone
sensor

research
health

—
52

996
746.4

825
1000

3019
5.7

42.5
0

932
823

1.6
11.8

34
m
obile

phone
sensor

research
health

Yes
0

0.0
0

0
0

0.0
0.0

0
0

0
0.0

0.0
35

forest
fairytales

—
52

958
745.9

877
1000

2542
4.8

35.8
0

930
832

1.6
11.9

36
forest

fairytales
Yes

28
986

408.3
0

934
704

2.4
9.9

0
247

248
0.9

3.5
37

tudor
politics

—
52

314
736.8

815
1000

2894
5.5

40.8
0

905
1044

2.0
14.9

38
tudor

politics
Yes

39
589

557.6
526

966
1278

3.2
18.0

0
535

338
0.9

4.8
39

jazz
poetry

—
51

367
723.5

0
1000

2640
5.1

37.2
0

940
802

1.6
11.5

40
jazz

poetry
Yes

42
083

592.7
574

951
2102

5.0
29.6

0
663

791
1.9

11.3
Su

m
1
444

330
65

475
21

779

Table
A
.3:

Totals
and

averages
for

query
1
-40,for

the
54

day
run

period
from

day
18.

A .2 FULL DATA COLLECT ION RESULTS 133

A.2.2 Full data collection results, details
Each and every table in this section contains Date of run, Day in period and
two query results side by side. These are the free and the exact version of the
same query.

For each query the columns ID, all results and New results are shown. All results
have column name Free for free queries, and Exact for exact queries. Percentage
of new results are also shown in the column New %.

If a query run terminated prematurely without any results, a "—" is shown, if
a run ended normally but did not give results, a zero (0) is shown. Only the
IDs of the queries are shown, see preceding tables A.1 and A.4 for description
of the queries and error codes.

For each table is a sum of results and new results for the whole period. See
chapter 5 for more details on data collection.

In the tables of results there are some codes next to some of the numbers, that
needs explaining. Below is a short reference. These errors are also discussed
in more detail in section 5.5.

Code Meaning Explanation

CT Client Timeout
Message "Client.Timeout exceeded while awaiting headers".
See chapter 5.5.4 for an explanation.

PE Parse Error
HTML was returned instead of the expected JSON result.
See chapter 5.5.6 for an explanation.

PI Parameter Incorrect
Message "The parameter is incorrect".
See chapter 5.5.5 for an explanation.

— Run failed
Run terminated before any results could be stored for the
query run.
See chapter 5.5.2 for an explanation.

Table A.4: Error codes for the QueryRuns.

134 APPEND IX A DATA COLLECT ION RESULTS

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 1 632 509 80.5 2 338 18 5.3
2016.11.19 2 1 681 118 17.3 2 CT 323 0 0.0
2016.11.20 3 1 690 12 1.7 2 340 0 0.0
2016.11.21 4 1 744 27 3.6 2 400 3 0.8
2016.11.22 5 1 763 33 4.3 2 400 0 0.0
2016.11.23 6 1 784 35 4.5 2 CT 380 0 0.0
2016.11.24 7 1 784 0 0.0 2 393 0 0.0
2016.11.25 8 1 755 4 0.5 2 CT 380 0 0.0
2016.11.26 9 1 772 31 4.0 2 CT 380 0 0.0
2016.11.27 10 1 722 17 2.4 2 404 1 0.2
2016.11.28 11 1 832 86 10.3 2 CT 285 0 0.0
2016.11.29 12 1 714 13 1.8 2 CT 380 0 0.0
2016.11.30 13 1 721 4 0.6 2 CT 361 0 0.0
2016.12.01 14 1 736 22 3.0 2 418 11 2.6
2016.12.02 15 1 770 50 6.5 2 478 0 0.0
2016.12.03 16 1 784 19 2.4 2 CT 417 1 0.2
2016.12.04 17 1 836 20 2.4 2 410 0 0.0
2016.12.05 18 1 823 27 3.3 2 CT 405 0 0.0
2016.12.06 19 1 826 31 3.8 2 CT 416 0 0.0
2016.12.07 20 1 846 22 2.6 2 CT 394 0 0.0
2016.12.08 21 1 844 15 1.8 2 356 0 0.0
2016.12.09 22 1 802 46 5.7 2 361 0 0.0
2016.12.10 23 1 771 6 0.8 2 360 0 0.0
2016.12.11 24 1 794 7 0.9 2 359 0 0.0
2016.12.12 25 1 836 24 2.9 2 378 1 0.3
2016.12.13 26 1 781 10 1.3 2 392 0 0.0
2016.12.14 27 1 804 56 7.0 2 388 0 0.0
2016.12.15 28 1 773 9 1.2 2 397 0 0.0
2016.12.16 29 1 769 3 0.4 2 400 0 0.0
2016.12.17 30 1 720 10 1.4 2 392 0 0.0
2016.12.18 31 1 700 1 0.1 2 386 0 0.0
2016.12.19 32 1 676 9 1.3 2 386 0 0.0
2016.12.20 33 1 703 10 1.4 2 389 0 0.0
2016.12.21 34 1 726 27 3.7 2 358 2 0.6
2016.12.22 35 1 739 10 1.4 2 358 0 0.0
2016.12.23 36 1 708 9 1.3 2 361 0 0.0
2016.12.24 37 1 719 4 0.6 2 371 2 0.5
2016.12.25 38 1 719 9 1.3 2 372 0 0.0
2016.12.26 39 1 720 7 1.0 2 360 0 0.0
2016.12.27 40 1 696 18 2.6 2 380 0 0.0
2016.12.28 41 1 719 38 5.3 2 380 0 0.0
2016.12.29 42 1 762 12 1.6 2 380 0 0.0
2016.12.30 43 1 759 0 0.0 2 380 0 0.0
2016.12.31 44 1 759 1 0.1 2 400 1 0.2
2017.01.01 45 1 698 36 5.2 2 364 2 0.5
2017.01.02 46 1 687 9 1.3 2 380 0 0.0
2017.01.03 47 1 680 7 1.0 2 380 0 0.0
2017.01.04 48 1 612 28 4.6 2 372 0 0.0
2017.01.05 49 1 734 25 3.4 2 368 0 0.0
2017.01.06 50 1 639 15 2.3 2 371 0 0.0
2017.01.07 51 1 693 19 2.7 2 365 0 0.0
2017.01.08 52 1 701 21 3.0 2 370 0 0.0
2017.01.09 53 1 733 15 2.0 2 357 0 0.0
2017.01.10 54 1 803 0 0.0 2 378 0 0.0
Sum 1 40194 1596 2 20451 42

Table A.5: Full and new results, for queries 1 - 2, "Messerschmitt KR200 restoration".

A .2 FULL DATA COLLECT ION RESULTS 135

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 3 CT 908 770 84.8 4 CT 0 0 0.0
2016.11.19 2 3 964 216 22.4 4 0 0 0.0
2016.11.20 3 3 964 10 1.0 4 0 0 0.0
2016.11.21 4 3 965 70 7.3 4 0 0 0.0
2016.11.22 5 3 991 85 8.6 4 CT 0 0 0.0
2016.11.23 6 3 992 32 3.2 4 0 0 0.0
2016.11.24 7 3 991 4 0.4 4 CT 0 0 0.0
2016.11.25 8 3 994 57 5.7 4 0 0 0.0
2016.11.26 9 3 CT 944 23 2.4 4 0 0 0.0
2016.11.27 10 3 CT 895 7 0.8 4 0 0 0.0
2016.11.28 11 3 994 107 10.8 4 0 0 0.0
2016.11.29 12 3 995 22 2.2 4 0 0 0.0
2016.11.30 13 3 993 23 2.3 4 0 0 0.0
2016.12.01 14 3 CT 944 37 3.9 4 0 0 0.0
2016.12.02 15 3 994 75 7.5 4 0 0 0.0
2016.12.03 16 3 990 46 4.6 4 0 0 0.0
2016.12.04 17 3 995 28 2.8 4 0 0 0.0
2016.12.05 18 3 CT 942 114 12.1 4 0 0 0.0
2016.12.06 19 3 995 49 4.9 4 0 0 0.0
2016.12.07 20 3 994 38 3.8 4 0 0 0.0
2016.12.08 21 3 986 24 2.4 4 0 0 0.0
2016.12.09 22 3 993 109 11.0 4 0 0 0.0
2016.12.10 23 3 CT 930 47 5.1 4 0 0 0.0
2016.12.11 24 3 981 12 1.2 4 CT 0 0 0.0
2016.12.12 25 3 995 70 7.0 4 0 0 0.0
2016.12.13 26 3 980 154 15.7 4 0 0 0.0
2016.12.14 27 3 964 70 7.3 4 0 0 0.0
2016.12.15 28 3 998 53 5.3 4 CT 0 0 0.0
2016.12.16 29 3 998 3 0.3 4 0 0 0.0
2016.12.17 30 3 947 12 1.3 4 0 0 0.0
2016.12.18 31 3 997 8 0.8 4 CT 0 0 0.0
2016.12.19 32 3 985 30 3.0 4 0 0 0.0
2016.12.20 33 3 998 43 4.3 4 0 0 0.0
2016.12.21 34 3 985 101 10.3 4 0 0 0.0
2016.12.22 35 3 999 45 4.5 4 0 0 0.0
2016.12.23 36 3 998 23 2.3 4 0 0 0.0
2016.12.24 37 3 998 8 0.8 4 0 0 0.0
2016.12.25 38 3 998 10 1.0 4 0 0 0.0
2016.12.26 39 3 998 63 6.3 4 0 0 0.0
2016.12.27 40 3 995 8 0.8 4 0 0 0.0
2016.12.28 41 3 999 70 7.0 4 0 0 0.0
2016.12.29 42 3 CT 950 25 2.6 4 0 0 0.0
2016.12.30 43 3 1000 1 0.1 4 0 0 0.0
2016.12.31 44 3 998 4 0.4 4 0 0 0.0
2017.01.01 45 3 646 77 11.9 4 0 0 0.0
2017.01.02 46 3 683 44 6.4 4 0 0 0.0
2017.01.03 47 3 690 16 2.3 4 0 0 0.0
2017.01.04 48 3 830 44 5.3 4 0 0 0.0
2017.01.05 49 3 731 40 5.5 4 0 0 0.0
2017.01.06 50 3 821 15 1.8 4 0 0 0.0
2017.01.07 51 3 900 20 2.2 4 0 0 0.0
2017.01.08 52 3 810 26 3.2 4 0 0 0.0
2017.01.09 53 3 859 23 2.7 4 0 0 0.0
2017.01.10 54 3 835 0 0.0 4 0 0 0.0
Sum 3 50919 3111 4 0 0

Table A.6: Full and new results, for queries 3 - 4, "Web search API thesis".

136 APPEND IX A DATA COLLECT ION RESULTS

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 5 963 871 90.4 6 277 62 22.4
2016.11.19 2 5 986 78 7.9 6 278 0 0.0
2016.11.20 3 5 CT 937 10 1.1 6 CT 284 1 0.4
2016.11.21 4 5 995 84 8.4 6 251 3 1.2
2016.11.22 5 5 CT 939 27 2.9 6 250 0 0.0
2016.11.23 6 5 984 40 4.1 6 259 0 0.0
2016.11.24 7 5 982 1 0.1 6 259 0 0.0
2016.11.25 8 5 994 56 5.6 6 259 0 0.0
2016.11.26 9 5 993 84 8.5 6 250 2 0.8
2016.11.27 10 5 992 13 1.3 6 259 2 0.8
2016.11.28 11 5 997 125 12.5 6 126 4 3.2
2016.11.29 12 5 997 42 4.2 6 221 0 0.0
2016.11.30 13 5 993 25 2.5 6 231 0 0.0
2016.12.01 14 5 994 34 3.4 6 238 0 0.0
2016.12.02 15 5 996 73 7.3 6 186 0 0.0
2016.12.03 16 5 993 53 5.3 6 155 2 1.3
2016.12.04 17 5 998 32 3.2 6 176 1 0.6
2016.12.05 18 5 995 67 6.7 6 187 3 1.6
2016.12.06 19 5 985 23 2.3 6 191 0 0.0
2016.12.07 20 5 992 31 3.1 6 205 2 1.0
2016.12.08 21 5 983 32 3.3 6 211 0 0.0
2016.12.09 22 5 979 23 2.3 6 226 1 0.4
2016.12.10 23 5 994 20 2.0 6 237 2 0.8
2016.12.11 24 5 992 15 1.5 6 239 1 0.4
2016.12.12 25 5 993 27 2.7 6 224 2 0.9
2016.12.13 26 5 894 15 1.7 6 299 6 2.0
2016.12.14 27 5 956 283 29.6 6 308 1 0.3
2016.12.15 28 5 937 136 14.5 6 372 1 0.3
2016.12.16 29 5 996 33 3.3 6 391 0 0.0
2016.12.17 30 5 974 12 1.2 6 387 0 0.0
2016.12.18 31 5 809 59 7.3 6 395 2 0.5
2016.12.19 32 5 947 15 1.6 6 CT 385 0 0.0
2016.12.20 33 5 974 26 2.7 6 386 3 0.8
2016.12.21 34 5 CT 920 81 8.8 6 324 1 0.3
2016.12.22 35 5 962 73 7.6 6 297 1 0.3
2016.12.23 36 5 968 33 3.4 6 286 1 0.3
2016.12.24 37 5 982 12 1.2 6 297 0 0.0
2016.12.25 38 5 987 63 6.4 6 384 3 0.8
2016.12.26 39 5 987 23 2.3 6 393 2 0.5
2016.12.27 40 5 988 19 1.9 6 411 0 0.0
2016.12.28 41 5 998 73 7.3 6 372 1 0.3
2016.12.29 42 5 996 50 5.0 6 373 0 0.0
2016.12.30 43 5 974 20 2.1 6 354 1 0.3
2016.12.31 44 5 979 17 1.7 6 354 0 0.0
2017.01.01 45 5 984 49 5.0 6 353 0 0.0
2017.01.02 46 5 996 16 1.6 6 CT 319 0 0.0
2017.01.03 47 5 984 9 0.9 6 335 1 0.3
2017.01.04 48 5 921 37 4.0 6 325 0 0.0
2017.01.05 49 5 880 23 2.6 6 310 1 0.3
2017.01.06 50 5 879 28 3.2 6 302 0 0.0
2017.01.07 51 5 899 23 2.6 6 300 1 0.3
2017.01.08 52 5 949 19 2.0 6 284 0 0.0
2017.01.09 53 5 850 31 3.6 6 287 0 0.0
2017.01.10 54 5 927 0 0.0 6 248 0 0.0
Sum 5 52143 3164 6 15510 114

Table A.7: Full and new results, for queries 5 - 6, "Web search thesis".

A .2 FULL DATA COLLECT ION RESULTS 137

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 7 CT 838 655 78.2 8 0 0 0.0
2016.11.19 2 7 894 95 10.6 8 0 0 0.0
2016.11.20 3 7 870 62 7.1 8 0 0 0.0
2016.11.21 4 7 874 57 6.5 8 0 0 0.0
2016.11.22 5 7 884 20 2.3 8 CT 0 0 0.0
2016.11.23 6 7 896 3 0.3 8 0 0 0.0
2016.11.24 7 7 893 18 2.0 8 0 0 0.0
2016.11.25 8 7 908 50 5.5 8 0 0 0.0
2016.11.26 9 7 877 51 5.8 8 0 0 0.0
2016.11.27 10 7 880 0 0.0 8 0 0 0.0
2016.11.28 11 7 864 123 14.2 8 0 0 0.0
2016.11.29 12 7 894 30 3.4 8 0 0 0.0
2016.11.30 13 7 877 20 2.3 8 0 0 0.0
2016.12.01 14 7 844 34 4.0 8 0 0 0.0
2016.12.02 15 7 829 47 5.7 8 0 0 0.0
2016.12.03 16 7 823 31 3.8 8 0 0 0.0
2016.12.04 17 7 842 26 3.1 8 0 0 0.0
2016.12.05 18 7 831 78 9.4 8 0 0 0.0
2016.12.06 19 7 867 29 3.3 8 0 0 0.0
2016.12.07 20 7 833 42 5.0 8 0 0 0.0
2016.12.08 21 7 900 18 2.0 8 0 0 0.0
2016.12.09 22 7 874 35 4.0 8 0 0 0.0
2016.12.10 23 7 919 52 5.7 8 0 0 0.0
2016.12.11 24 7 893 19 2.1 8 0 0 0.0
2016.12.12 25 7 CT 847 92 10.9 8 0 0 0.0
2016.12.13 26 7 833 173 20.8 8 0 0 0.0
2016.12.14 27 7 865 38 4.4 8 0 0 0.0
2016.12.15 28 7 840 16 1.9 8 0 0 0.0
2016.12.16 29 7 890 5 0.6 8 0 0 0.0
2016.12.17 30 7 834 13 1.6 8 0 0 0.0
2016.12.18 31 7 887 7 0.8 8 0 0 0.0
2016.12.19 32 7 861 47 5.5 8 0 0 0.0
2016.12.20 33 7 CT 716 26 3.6 8 0 0 0.0
2016.12.21 34 7 823 88 10.7 8 0 0 0.0
2016.12.22 35 7 867 22 2.5 8 0 0 0.0
2016.12.23 36 7 862 13 1.5 8 0 0 0.0
2016.12.24 37 7 871 11 1.3 8 0 0 0.0
2016.12.25 38 7 871 5 0.6 8 0 0 0.0
2016.12.26 39 7 801 76 9.5 8 0 0 0.0
2016.12.27 40 7 802 6 0.7 8 0 0 0.0
2016.12.28 41 7 938 39 4.2 8 0 0 0.0
2016.12.29 42 7 941 3 0.3 8 0 0 0.0
2016.12.30 43 7 909 25 2.8 8 0 0 0.0
2016.12.31 44 7 863 65 7.5 8 0 0 0.0
2017.01.01 45 7 869 4 0.5 8 0 0 0.0
2017.01.02 46 7 876 36 4.1 8 0 0 0.0
2017.01.03 47 7 888 8 0.9 8 0 0 0.0
2017.01.04 48 7 CT 756 36 4.8 8 0 0 0.0
2017.01.05 49 7 791 32 4.0 8 0 0 0.0
2017.01.06 50 7 740 33 4.5 8 0 0 0.0
2017.01.07 51 7 686 19 2.8 8 0 0 0.0
2017.01.08 52 7 CT 620 21 3.4 8 0 0 0.0
2017.01.09 53 7 839 28 3.3 8 0 0 0.0
2017.01.10 54 7 813 0 0.0 8 0 0 0.0
Sum 7 45903 2582 8 0 0

Table A.8: Full and new results, for queries 7 - 8, "Search API thesis".

138 APPEND IX A DATA COLLECT ION RESULTS

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 9 782 419 53.6 10 CT 261 14 5.4
2016.11.19 2 9 784 12 1.5 10 261 0 0.0
2016.11.20 3 9 795 29 3.6 10 260 0 0.0
2016.11.21 4 9 905 12 1.3 10 269 0 0.0
2016.11.22 5 9 CT 868 39 4.5 10 276 0 0.0
2016.11.23 6 9 901 3 0.3 10 280 0 0.0
2016.11.24 7 9 901 2 0.2 10 280 0 0.0
2016.11.25 8 9 731 19 2.6 10 280 0 0.0
2016.11.26 9 9 567 18 3.2 10 271 0 0.0
2016.11.27 10 9 566 0 0.0 10 280 0 0.0
2016.11.28 11 9 780 73 9.4 10 240 0 0.0
2016.11.29 12 9 532 5 0.9 10 280 0 0.0
2016.11.30 13 9 548 3 0.5 10 277 0 0.0
2016.12.01 14 9 797 11 1.4 10 272 1 0.4
2016.12.02 15 9 748 43 5.7 10 281 4 1.4
2016.12.03 16 9 672 6 0.9 10 282 0 0.0
2016.12.04 17 9 693 10 1.4 10 281 0 0.0
2016.12.05 18 9 673 27 4.0 10 289 0 0.0
2016.12.06 19 9 682 6 0.9 10 284 0 0.0
2016.12.07 20 9 686 9 1.3 10 291 0 0.0
2016.12.08 21 9 665 4 0.6 10 271 0 0.0
2016.12.09 22 9 697 17 2.4 10 269 0 0.0
2016.12.10 23 9 745 18 2.4 10 276 0 0.0
2016.12.11 24 9 747 3 0.4 10 278 0 0.0
2016.12.12 25 9 767 16 2.1 10 279 0 0.0
2016.12.13 26 9 752 3 0.4 10 272 0 0.0
2016.12.14 27 9 610 14 2.3 10 255 0 0.0
2016.12.15 28 9 603 16 2.7 10 265 0 0.0
2016.12.16 29 9 604 4 0.7 10 279 1 0.4
2016.12.17 30 9 589 8 1.4 10 264 0 0.0
2016.12.18 31 9 669 1 0.1 10 CT 150 0 0.0
2016.12.19 32 9 636 2 0.3 10 255 0 0.0
2016.12.20 33 9 619 1 0.2 10 251 0 0.0
2016.12.21 34 9 967 22 2.3 10 239 0 0.0
2016.12.22 35 9 767 6 0.8 10 241 0 0.0
2016.12.23 36 9 543 4 0.7 10 236 0 0.0
2016.12.24 37 9 635 3 0.5 10 240 0 0.0
2016.12.25 38 9 597 0 0.0 10 240 0 0.0
2016.12.26 39 9 630 57 9.0 10 219 0 0.0
2016.12.27 40 9 630 1 0.2 10 220 0 0.0
2016.12.28 41 9 665 7 1.1 10 220 0 0.0
2016.12.29 42 9 666 0 0.0 10 220 0 0.0
2016.12.30 43 9 951 26 2.7 10 195 0 0.0
2016.12.31 44 9 953 0 0.0 10 200 0 0.0
2017.01.01 45 9 950 3 0.3 10 203 1 0.5
2017.01.02 46 9 859 27 3.1 10 220 0 0.0
2017.01.03 47 9 859 0 0.0 10 198 0 0.0
2017.01.04 48 9 808 8 1.0 10 206 0 0.0
2017.01.05 49 9 668 31 4.6 10 211 2 0.9
2017.01.06 50 9 681 9 1.3 10 CT 210 1 0.5
2017.01.07 51 9 645 6 0.9 10 232 0 0.0
2017.01.08 52 9 737 26 3.5 10 216 0 0.0
2017.01.09 53 9 720 8 1.1 10 CT 195 0 0.0
2017.01.10 54 9 755 0 0.0 10 201 0 0.0
Sum 9 39000 1097 10 13421 24

Table A.9: Full and new results, for queries 9 - 10, "Messerschmitt TG500 for sale".

A .2 FULL DATA COLLECT ION RESULTS 139

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 11 PE 949 915 96.4 12 PE 860 481 55.9
2016.11.19 2 11 999 85 8.5 12 831 65 7.8
2016.11.20 3 11 999 35 3.5 12 660 32 4.8
2016.11.21 4 11 999 59 5.9 12 633 36 5.7
2016.11.22 5 11 CT 948 62 6.5 12 CT 596 40 6.7
2016.11.23 6 11 998 4 0.4 12 658 9 1.4
2016.11.24 7 11 997 0 0.0 12 651 18 2.8
2016.11.25 8 11 999 52 5.2 12 624 14 2.2
2016.11.26 9 11 1000 43 4.3 12 842 31 3.7
2016.11.27 10 11 999 3 0.3 12 601 5 0.8
2016.11.28 11 11 999 55 5.5 12 740 115 15.5
2016.11.29 12 11 1000 36 3.6 12 871 34 3.9
2016.11.30 13 11 999 22 2.2 12 825 18 2.2
2016.12.01 14 11 999 51 5.1 12 872 31 3.6
2016.12.02 15 11 1000 74 7.4 12 780 45 5.8
2016.12.03 16 11 1000 29 2.9 12 776 29 3.7
2016.12.04 17 11 1000 39 3.9 12 864 28 3.2
2016.12.05 18 11 1000 55 5.5 12 756 19 2.5
2016.12.06 19 11 999 14 1.4 12 713 12 1.7
2016.12.07 20 11 983 22 2.2 12 653 27 4.1
2016.12.08 21 11 997 18 1.8 12 820 18 2.2
2016.12.09 22 11 980 11 1.1 12 773 33 4.3
2016.12.10 23 11 997 32 3.2 12 837 21 2.5
2016.12.11 24 11 996 29 2.9 12 823 13 1.6
2016.12.12 25 11 1000 55 5.5 12 786 20 2.5
2016.12.13 26 11 980 31 3.2 12 836 19 2.3
2016.12.14 27 11 946 110 11.6 12 864 19 2.2
2016.12.15 28 11 951 94 9.9 12 866 31 3.6
2016.12.16 29 11 981 17 1.7 12 847 7 0.8
2016.12.17 30 11 959 29 3.0 12 812 23 2.8
2016.12.18 31 11 945 17 1.8 12 806 6 0.7
2016.12.19 32 11 937 13 1.4 12 807 7 0.9
2016.12.20 33 11 950 49 5.2 12 777 23 3.0
2016.12.21 34 11 976 68 7.0 12 708 18 2.5
2016.12.22 35 11 951 19 2.0 12 712 17 2.4
2016.12.23 36 11 956 31 3.2 12 795 20 2.5
2016.12.24 37 11 981 2 0.2 12 733 12 1.6
2016.12.25 38 11 979 0 0.0 12 803 27 3.4
2016.12.26 39 11 985 82 8.3 12 817 28 3.4
2016.12.27 40 11 985 0 0.0 12 905 10 1.1
2016.12.28 41 11 988 37 3.7 12 873 25 2.9
2016.12.29 42 11 988 0 0.0 12 853 5 0.6
2016.12.30 43 11 988 53 5.4 12 726 23 3.2
2016.12.31 44 11 987 0 0.0 12 729 3 0.4
2017.01.01 45 11 985 12 1.2 12 825 25 3.0
2017.01.02 46 11 984 61 6.2 12 875 22 2.5
2017.01.03 47 11 984 3 0.3 12 876 1 0.1
2017.01.04 48 11 895 27 3.0 12 701 21 3.0
2017.01.05 49 11 944 30 3.2 12 758 12 1.6
2017.01.06 50 11 911 19 2.1 12 818 53 6.5
2017.01.07 51 11 894 19 2.1 12 830 20 2.4
2017.01.08 52 11 895 13 1.5 12 791 18 2.3
2017.01.09 53 11 941 32 3.4 12 736 28 3.8
2017.01.10 54 11 883 0 0.0 12 711 0 0.0
Sum 11 52565 2668 12 42035 1717

Table A.10: Full and new results, for queries 11 - 12, "winds of winter".

140 APPEND IX A DATA COLLECT ION RESULTS

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 13 998 931 93.3 14 871 777 89.2
2016.11.19 2 13 967 54 5.6 14 867 30 3.5
2016.11.20 3 13 998 35 3.5 14 893 41 4.6
2016.11.21 4 13 998 33 3.3 14 887 32 3.6
2016.11.22 5 13 CT 947 50 5.3 14 901 35 3.9
2016.11.23 6 13 998 26 2.6 14 893 3 0.3
2016.11.24 7 13 997 18 1.8 14 899 26 2.9
2016.11.25 8 13 997 32 3.2 14 902 33 3.7
2016.11.26 9 13 1000 37 3.7 14 891 33 3.7
2016.11.27 10 13 1000 2 0.2 14 895 23 2.6
2016.11.28 11 13 999 213 21.3 14 901 195 21.6
2016.11.29 12 13 1000 31 3.1 14 887 55 6.2
2016.11.30 13 13 1000 27 2.7 14 883 24 2.7
2016.12.01 14 13 999 35 3.5 14 893 31 3.5
2016.12.02 15 13 999 60 6.0 14 897 44 4.9
2016.12.03 16 13 992 34 3.4 14 886 22 2.5
2016.12.04 17 13 997 35 3.5 14 904 25 2.8
2016.12.05 18 13 1000 24 2.4 14 910 21 2.3
2016.12.06 19 13 999 25 2.5 14 PE 855 5 0.6
2016.12.07 20 13 1000 13 1.3 14 891 16 1.8
2016.12.08 21 13 932 28 3.0 14 900 24 2.7
2016.12.09 22 13 995 34 3.4 14 889 24 2.7
2016.12.10 23 13 999 15 1.5 14 912 30 3.3
2016.12.11 24 13 977 12 1.2 14 896 9 1.0
2016.12.12 25 13 1000 41 4.1 14 905 39 4.3
2016.12.13 26 13 945 42 4.4 14 782 69 8.8
2016.12.14 27 13 992 53 5.3 14 817 62 7.6
2016.12.15 28 13 925 97 10.5 14 809 23 2.8
2016.12.16 29 13 998 17 1.7 14 799 14 1.8
2016.12.17 30 13 985 17 1.7 14 792 22 2.8
2016.12.18 31 13 971 23 2.4 14 455 45 9.9
2016.12.19 32 13 971 10 1.0 14 479 14 2.9
2016.12.20 33 13 959 37 3.9 14 809 36 4.4
2016.12.21 34 13 895 50 5.6 14 860 52 6.0
2016.12.22 35 13 958 26 2.7 14 858 25 2.9
2016.12.23 36 13 986 18 1.8 14 846 18 2.1
2016.12.24 37 13 1000 38 3.8 14 847 4 0.5
2016.12.25 38 13 1000 44 4.4 14 728 56 7.7
2016.12.26 39 13 1000 48 4.8 14 856 40 4.7
2016.12.27 40 13 999 4 0.4 14 844 15 1.8
2016.12.28 41 13 1000 13 1.3 14 659 82 12.4
2016.12.29 42 13 1000 3 0.3 14 650 0 0.0
2016.12.30 43 13 1000 44 4.4 14 704 51 7.2
2016.12.31 44 13 997 13 1.3 14 701 8 1.1
2017.01.01 45 13 996 4 0.4 14 700 26 3.7
2017.01.02 46 13 998 54 5.4 14 702 37 5.3
2017.01.03 47 13 998 4 0.4 14 726 11 1.5
2017.01.04 48 13 949 22 2.3 14 823 53 6.4
2017.01.05 49 13 953 43 4.5 14 906 42 4.6
2017.01.06 50 13 886 24 2.7 14 856 22 2.6
2017.01.07 51 13 863 22 2.5 14 745 18 2.4
2017.01.08 52 13 924 42 4.5 14 818 32 3.9
2017.01.09 53 13 868 28 3.2 14 856 18 2.1
2017.01.10 54 13 894 0 0.0 14 881 0 0.0
Sum 13 52698 2685 14 44616 2492

Table A.11: Full and new results, for queries 13 - 14, "promise of spring".

A .2 FULL DATA COLLECT ION RESULTS 141

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 15 PE 944 717 76.0 16 PE 892 511 57.3
2016.11.19 2 15 995 63 6.3 16 963 20 2.1
2016.11.20 3 15 966 45 4.7 16 791 24 3.0
2016.11.21 4 15 953 34 3.6 16 653 30 4.6
2016.11.22 5 15 952 59 6.2 16 698 44 6.3
2016.11.23 6 15 951 1 0.1 16 609 12 2.0
2016.11.24 7 15 951 15 1.6 16 633 29 4.6
2016.11.25 8 15 940 51 5.4 16 619 28 4.5
2016.11.26 9 15 935 60 6.4 16 596 37 6.2
2016.11.27 10 15 935 2 0.2 16 615 27 4.4
2016.11.28 11 15 925 75 8.1 16 910 89 9.8
2016.11.29 12 15 955 25 2.6 16 667 31 4.6
2016.11.30 13 15 965 17 1.8 16 665 13 2.0
2016.12.01 14 15 943 33 3.5 16 668 20 3.0
2016.12.02 15 15 947 64 6.8 16 801 14 1.7
2016.12.03 16 15 946 39 4.1 16 889 9 1.0
2016.12.04 17 15 932 29 3.1 16 924 9 1.0
2016.12.05 18 15 974 39 4.0 16 897 34 3.8
2016.12.06 19 15 927 46 5.0 16 907 19 2.1
2016.12.07 20 15 953 26 2.7 16 898 16 1.8
2016.12.08 21 15 955 40 4.2 16 888 31 3.5
2016.12.09 22 15 953 40 4.2 16 893 10 1.1
2016.12.10 23 15 937 43 4.6 16 650 32 4.9
2016.12.11 24 15 941 30 3.2 16 586 18 3.1
2016.12.12 25 15 894 49 5.5 16 697 53 7.6
2016.12.13 26 15 885 18 2.0 16 658 21 3.2
2016.12.14 27 15 710 21 3.0 16 691 52 7.5
2016.12.15 28 15 947 88 9.3 16 672 14 2.1
2016.12.16 29 15 935 11 1.2 16 671 8 1.2
2016.12.17 30 15 840 33 3.9 16 659 13 2.0
2016.12.18 31 15 853 27 3.2 16 673 18 2.7
2016.12.19 32 15 853 11 1.3 16 670 15 2.2
2016.12.20 33 15 856 39 4.6 16 651 37 5.7
2016.12.21 34 15 787 39 5.0 16 648 43 6.6
2016.12.22 35 15 797 15 1.9 16 637 14 2.2
2016.12.23 36 15 538 36 6.7 16 657 25 3.8
2016.12.24 37 15 538 9 1.7 16 628 8 1.3
2016.12.25 38 15 550 9 1.6 16 874 31 3.5
2016.12.26 39 15 821 60 7.3 16 929 19 2.0
2016.12.27 40 15 820 0 0.0 16 944 1 0.1
2016.12.28 41 15 802 30 3.7 16 955 32 3.4
2016.12.29 42 15 798 0 0.0 16 896 10 1.1
2016.12.30 43 15 724 59 8.1 16 808 22 2.7
2016.12.31 44 15 388 23 5.9 16 834 19 2.3
2017.01.01 45 15 731 23 3.1 16 904 36 4.0
2017.01.02 46 15 756 40 5.3 16 644 20 3.1
2017.01.03 47 15 756 0 0.0 16 944 18 1.9
2017.01.04 48 15 734 28 3.8 16 812 17 2.1
2017.01.05 49 15 767 44 5.7 16 797 15 1.9
2017.01.06 50 15 768 36 4.7 16 817 29 3.5
2017.01.07 51 15 699 14 2.0 16 824 17 2.1
2017.01.08 52 15 728 26 3.6 16 745 22 3.0
2017.01.09 53 15 649 20 3.1 16 758 16 2.1
2017.01.10 54 15 738 0 0.0 16 826 0 0.0
Sum 15 45437 2401 16 41235 1752

Table A.12: Full and new results, for queries 15 - 16, "terry pratchett".

142 APPEND IX A DATA COLLECT ION RESULTS

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 17 993 850 85.6 18 CT 274 60 21.9
2016.11.19 2 17 991 66 6.7 18 294 1 0.3
2016.11.20 3 17 999 41 4.1 18 278 0 0.0
2016.11.21 4 17 998 71 7.1 18 291 6 2.1
2016.11.22 5 17 999 61 6.1 18 297 0 0.0
2016.11.23 6 17 997 15 1.5 18 297 0 0.0
2016.11.24 7 17 997 4 0.4 18 297 2 0.7
2016.11.25 8 17 999 65 6.5 18 265 2 0.8
2016.11.26 9 17 997 71 7.1 18 183 4 2.2
2016.11.27 10 17 998 6 0.6 18 183 0 0.0
2016.11.28 11 17 993 143 14.4 18 240 6 2.5
2016.11.29 12 17 991 88 8.9 18 681 20 2.9
2016.11.30 13 17 CT 942 14 1.5 18 541 1 0.2
2016.12.01 14 17 992 46 4.6 18 494 11 2.2
2016.12.02 15 17 996 84 8.4 18 625 11 1.8
2016.12.03 16 17 999 20 2.0 18 625 3 0.5
2016.12.04 17 17 999 12 1.2 18 601 0 0.0
2016.12.05 18 17 931 150 16.1 18 880 38 4.3
2016.12.06 19 17 929 56 6.0 18 863 2 0.2
2016.12.07 20 17 970 63 6.5 18 822 4 0.5
2016.12.08 21 17 935 49 5.2 18 739 3 0.4
2016.12.09 22 17 949 228 24.0 18 641 19 3.0
2016.12.10 23 17 974 152 15.6 18 480 2 0.4
2016.12.11 24 17 953 44 4.6 18 481 0 0.0
2016.12.12 25 17 981 134 13.7 18 835 20 2.4
2016.12.13 26 17 929 47 5.1 18 820 2 0.2
2016.12.14 27 17 978 65 6.6 18 706 0 0.0
2016.12.15 28 17 968 56 5.8 18 686 0 0.0
2016.12.16 29 17 987 8 0.8 18 696 2 0.3
2016.12.17 30 17 970 18 1.9 18 690 1 0.1
2016.12.18 31 17 934 38 4.1 18 682 0 0.0
2016.12.19 32 17 911 20 2.2 18 680 0 0.0
2016.12.20 33 17 919 54 5.9 18 678 3 0.4
2016.12.21 34 17 887 117 13.2 18 688 5 0.7
2016.12.22 35 17 911 39 4.3 18 674 0 0.0
2016.12.23 36 17 903 26 2.9 18 701 1 0.1
2016.12.24 37 17 909 9 1.0 18 694 1 0.1
2016.12.25 38 17 928 59 6.4 18 639 4 0.6
2016.12.26 39 17 884 35 4.0 18 687 9 1.3
2016.12.27 40 17 884 0 0.0 18 693 3 0.4
2016.12.28 41 17 889 34 3.8 18 722 0 0.0
2016.12.29 42 17 889 1 0.1 18 734 0 0.0
2016.12.30 43 17 940 100 10.6 18 824 9 1.1
2016.12.31 44 17 938 21 2.2 18 829 1 0.1
2017.01.01 45 17 981 37 3.8 18 856 6 0.7
2017.01.02 46 17 952 96 10.1 18 114 3 2.6
2017.01.03 47 17 952 0 0.0 18 901 0 0.0
2017.01.04 48 17 880 33 3.8 18 784 2 0.3
2017.01.05 49 17 900 37 4.1 18 788 6 0.8
2017.01.06 50 17 891 36 4.0 18 884 2 0.2
2017.01.07 51 17 875 41 4.7 18 861 0 0.0
2017.01.08 52 17 866 29 3.3 18 866 2 0.2
2017.01.09 53 17 935 25 2.7 18 848 0 0.0
2017.01.10 54 17 922 0 0.0 18 872 0 0.0
Sum 17 51214 3614 18 33504 277

Table A.13: Full and new results, for queries 17 - 18, "liverpool leeds efl".

A .2 FULL DATA COLLECT ION RESULTS 143

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 19 977 903 92.4 20 506 26 5.1
2016.11.19 2 19 976 28 2.9 20 520 0 0.0
2016.11.20 3 19 980 60 6.1 20 520 0 0.0
2016.11.21 4 19 990 77 7.8 20 520 3 0.6
2016.11.22 5 19 991 87 8.8 20 519 0 0.0
2016.11.23 6 19 991 11 1.1 20 520 0 0.0
2016.11.24 7 19 991 5 0.5 20 520 0 0.0
2016.11.25 8 19 1000 67 6.7 20 524 1 0.2
2016.11.26 9 19 1000 63 6.3 20 519 1 0.2
2016.11.27 10 19 1000 1 0.1 20 520 0 0.0
2016.11.28 11 19 968 108 11.2 20 440 1 0.2
2016.11.29 12 19 996 27 2.7 20 520 0 0.0
2016.11.30 13 19 996 9 0.9 20 498 0 0.0
2016.12.01 14 19 — — 0.0 20 483 1 0.2
2016.12.02 15 19 997 100 10.0 20 462 3 0.6
2016.12.03 16 19 994 68 6.8 20 466 1 0.2
2016.12.04 17 19 996 28 2.8 20 474 0 0.0
2016.12.05 18 19 992 77 7.8 20 514 2 0.4
2016.12.06 19 19 988 33 3.3 20 528 1 0.2
2016.12.07 20 19 977 31 3.2 20 534 1 0.2
2016.12.08 21 19 960 16 1.7 20 539 0 0.0
2016.12.09 22 19 955 34 3.6 20 516 0 0.0
2016.12.10 23 19 983 24 2.4 20 500 0 0.0
2016.12.11 24 19 982 18 1.8 20 497 0 0.0
2016.12.12 25 19 973 42 4.3 20 468 0 0.0
2016.12.13 26 19 936 11 1.2 20 464 0 0.0
2016.12.14 27 19 960 83 8.6 20 472 0 0.0
2016.12.15 28 19 927 42 4.5 20 456 0 0.0
2016.12.16 29 19 972 12 1.2 20 471 0 0.0
2016.12.17 30 19 951 26 2.7 20 456 0 0.0
2016.12.18 31 19 973 16 1.6 20 456 1 0.2
2016.12.19 32 19 975 4 0.4 20 459 1 0.2
2016.12.20 33 19 935 37 4.0 20 474 3 0.6
2016.12.21 34 19 928 58 6.2 20 571 12 2.1
2016.12.22 35 19 923 11 1.2 20 571 0 0.0
2016.12.23 36 19 959 27 2.8 20 569 0 0.0
2016.12.24 37 19 955 3 0.3 20 560 0 0.0
2016.12.25 38 19 934 26 2.8 20 541 1 0.2
2016.12.26 39 19 960 26 2.7 20 601 3 0.5
2016.12.27 40 19 960 0 0.0 20 600 0 0.0
2016.12.28 41 19 961 24 2.5 20 610 1 0.2
2016.12.29 42 19 963 14 1.5 20 620 0 0.0
2016.12.30 43 19 949 44 4.6 20 580 1 0.2
2016.12.31 44 19 950 7 0.7 20 580 0 0.0
2017.01.01 45 19 940 0 0.0 20 575 0 0.0
2017.01.02 46 19 944 41 4.3 20 560 0 0.0
2017.01.03 47 19 944 0 0.0 20 560 0 0.0
2017.01.04 48 19 860 25 2.9 20 487 2 0.4
2017.01.05 49 19 895 20 2.2 20 469 2 0.4
2017.01.06 50 19 941 24 2.6 20 480 0 0.0
2017.01.07 51 19 816 18 2.2 20 474 0 0.0
2017.01.08 52 19 893 28 3.1 20 441 0 0.0
2017.01.09 53 19 889 32 3.6 20 432 0 0.0
2017.01.10 54 19 883 0 0.0 20 431 0 0.0
Sum 19 50729 2576 20 27647 68

Table A.14: Full and new results, for queries 19 - 20, "hillary clinton e-mail fbi".

144 APPEND IX A DATA COLLECT ION RESULTS

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 21 700 617 88.1 22 0 0 0.0
2016.11.19 2 21 706 9 1.3 22 0 0 0.0
2016.11.20 3 21 698 16 2.3 22 0 0 0.0
2016.11.21 4 21 672 78 11.6 22 0 0 0.0
2016.11.22 5 21 608 92 15.1 22 0 0 0.0
2016.11.23 6 21 612 14 2.3 22 0 0 0.0
2016.11.24 7 21 612 3 0.5 22 0 0 0.0
2016.11.25 8 21 681 73 10.7 22 0 0 0.0
2016.11.26 9 21 897 100 11.1 22 0 0 0.0
2016.11.27 10 21 900 9 1.0 22 0 0 0.0
2016.11.28 11 21 655 145 22.1 22 0 0 0.0
2016.11.29 12 21 622 23 3.7 22 0 0 0.0
2016.11.30 13 21 618 7 1.1 22 0 0 0.0
2016.12.01 14 21 649 14 2.2 22 0 0 0.0
2016.12.02 15 21 723 109 15.1 22 0 0 0.0
2016.12.03 16 21 683 28 4.1 22 0 0 0.0
2016.12.04 17 21 657 13 2.0 22 0 0 0.0
2016.12.05 18 21 664 89 13.4 22 0 0 0.0
2016.12.06 19 21 765 43 5.6 22 0 0 0.0
2016.12.07 20 21 674 23 3.4 22 0 0 0.0
2016.12.08 21 21 735 28 3.8 22 0 0 0.0
2016.12.09 22 21 764 90 11.8 22 0 0 0.0
2016.12.10 23 21 744 38 5.1 22 0 0 0.0
2016.12.11 24 21 724 17 2.3 22 0 0 0.0
2016.12.12 25 21 781 156 20.0 22 0 0 0.0
2016.12.13 26 21 726 19 2.6 22 0 0 0.0
2016.12.14 27 21 859 37 4.3 22 0 0 0.0
2016.12.15 28 21 809 36 4.4 22 0 0 0.0
2016.12.16 29 21 712 3 0.4 22 0 0 0.0
2016.12.17 30 21 827 15 1.8 22 0 0 0.0
2016.12.18 31 21 870 3 0.3 22 0 0 0.0
2016.12.19 32 21 869 20 2.3 22 0 0 0.0
2016.12.20 33 21 806 52 6.5 22 0 0 0.0
2016.12.21 34 21 753 176 23.4 22 0 0 0.0
2016.12.22 35 21 752 15 2.0 22 0 0 0.0
2016.12.23 36 21 809 38 4.7 22 0 0 0.0
2016.12.24 37 21 822 1 0.1 22 0 0 0.0
2016.12.25 38 21 822 3 0.4 22 0 0 0.0
2016.12.26 39 21 845 253 29.9 22 0 0 0.0
2016.12.27 40 21 846 0 0.0 22 0 0 0.0
2016.12.28 41 21 867 25 2.9 22 0 0 0.0
2016.12.29 42 21 867 0 0.0 22 0 0 0.0
2016.12.30 43 21 848 134 15.8 22 0 0 0.0
2016.12.31 44 21 848 4 0.5 22 0 0 0.0
2017.01.01 45 21 846 11 1.3 22 0 0 0.0
2017.01.02 46 21 817 148 18.1 22 0 0 0.0
2017.01.03 47 21 817 2 0.2 22 0 0 0.0
2017.01.04 48 21 782 27 3.5 22 0 0 0.0
2017.01.05 49 21 734 62 8.4 22 0 0 0.0
2017.01.06 50 21 854 80 9.4 22 0 0 0.0
2017.01.07 51 21 880 25 2.8 22 0 0 0.0
2017.01.08 52 21 790 76 9.6 22 0 0 0.0
2016.01.09 53 21 — — 0.0 22 0 0 0.0
2017.01.10 54 21 814 0 0.0 22 0 0 0.0
Sum 21 40435 3099 22 0 0

Table A.15: Full and new results, for queries 21 - 22, "macbook pro 2016 touch bar
problems".

A .2 FULL DATA COLLECT ION RESULTS 145

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 23 841 586 69.7 24 298 194 65.1
2016.11.19 2 23 959 26 2.7 24 423 18 4.3
2016.11.20 3 23 938 42 4.5 24 399 16 4.0
2016.11.21 4 23 964 39 4.0 24 387 17 4.4
2016.11.22 5 23 800 22 2.8 24 471 16 3.4
2016.11.23 6 23 735 11 1.5 24 508 10 2.0
2016.11.24 7 23 927 22 2.4 24 264 43 16.3
2016.11.25 8 23 893 20 2.2 24 512 10 2.0
2016.11.26 9 23 771 44 5.7 24 615 19 3.1
2016.11.27 10 23 775 3 0.4 24 652 19 2.9
2016.11.28 11 23 656 26 4.0 24 PE 904 46 5.1
2016.11.29 12 23 589 7 1.2 24 652 30 4.6
2016.11.30 13 23 842 14 1.7 24 740 22 3.0
2016.12.01 14 23 822 23 2.8 24 752 39 5.2
2016.12.02 15 23 657 15 2.3 24 662 14 2.1
2016.12.03 16 23 695 55 7.9 24 679 18 2.7
2016.12.04 17 23 702 32 4.6 24 726 16 2.2
2016.12.05 18 23 733 19 2.6 24 816 16 2.0
2016.12.06 19 23 715 25 3.5 24 842 6 0.7
2016.12.07 20 23 717 20 2.8 24 850 20 2.4
2016.12.08 21 23 686 26 3.8 24 695 20 2.9
2016.12.09 22 23 662 35 5.3 24 673 14 2.1
2016.12.10 23 23 966 25 2.6 24 614 18 2.9
2016.12.11 24 23 625 10 1.6 24 599 11 1.8
2016.12.12 25 23 706 12 1.7 24 601 12 2.0
2016.12.13 26 23 902 19 2.1 24 539 17 3.2
2016.12.14 27 23 425 27 6.4 24 608 20 3.3
2016.12.15 28 23 672 50 7.4 24 740 31 4.2
2016.12.16 29 23 968 14 1.4 24 728 13 1.8
2016.12.17 30 23 677 20 3.0 24 807 14 1.7
2016.12.18 31 23 644 11 1.7 24 836 16 1.9
2016.12.19 32 23 651 19 2.9 24 956 15 1.6
2016.12.20 33 23 680 17 2.5 24 823 14 1.7
2016.12.21 34 23 393 20 5.1 24 900 11 1.2
2016.12.22 35 23 689 35 5.1 24 690 19 2.8
2016.12.23 36 23 696 21 3.0 24 389 14 3.6
2016.12.24 37 23 734 20 2.7 24 974 22 2.3
2016.12.25 38 23 745 4 0.5 24 305 26 8.5
2016.12.26 39 23 682 35 5.1 24 881 23 2.6
2016.12.27 40 23 682 0 0.0 24 708 3 0.4
2016.12.28 41 23 692 24 3.5 24 859 20 2.3
2016.12.29 42 23 670 20 3.0 24 807 11 1.4
2016.12.30 43 23 983 21 2.1 24 973 16 1.6
2016.12.31 44 23 978 12 1.2 24 1000 22 2.2
2017.01.01 45 23 965 8 0.8 24 767 16 2.1
2017.01.02 46 23 402 23 5.7 24 933 17 1.8
2017.01.03 47 23 419 1 0.2 24 863 10 1.2
2017.01.04 48 23 649 37 5.7 24 832 18 2.2
2017.01.05 49 23 637 28 4.4 24 722 8 1.1
2017.01.06 50 23 655 29 4.4 24 699 18 2.6
2017.01.07 51 23 649 19 2.9 24 398 7 1.8
2017.01.08 52 23 720 27 3.8 24 407 6 1.5
2017.01.09 53 23 699 16 2.3 24 441 7 1.6
2017.01.10 54 23 715 0 0.0 24 447 0 0.0
Sum 23 39449 1736 24 36366 1098

Table A.16: Full and new results, for queries 23 - 24, "apple stock price".

146 APPEND IX A DATA COLLECT ION RESULTS

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 25 905 759 83.9 26 578 29 5.0
2016.11.19 2 25 947 46 4.9 26 717 10 1.4
2016.11.20 3 25 942 54 5.7 26 720 0 0.0
2016.11.21 4 25 956 63 6.6 26 718 3 0.4
2016.11.22 5 25 966 61 6.3 26 737 3 0.4
2016.11.23 6 25 963 13 1.3 26 742 1 0.1
2016.11.24 7 25 963 4 0.4 26 761 2 0.3
2016.11.25 8 25 940 58 6.2 26 777 7 0.9
2016.11.26 9 25 909 75 8.3 26 816 3 0.4
2016.11.27 10 25 898 10 1.1 26 780 0 0.0
2016.11.28 11 25 877 92 10.5 26 580 4 0.7
2016.11.29 12 25 — — 0.0 26 777 1 0.1
2016.11.30 13 25 935 49 5.2 26 740 2 0.3
2016.12.01 14 25 892 41 4.6 26 812 12 1.5
2016.12.02 15 25 933 86 9.2 26 779 5 0.6
2016.12.03 16 25 947 45 4.8 26 764 0 0.0
2016.12.04 17 25 915 30 3.3 26 785 0 0.0
2016.12.05 18 25 896 107 11.9 26 778 1 0.1
2016.12.06 19 25 905 46 5.1 26 789 3 0.4
2016.12.07 20 25 897 33 3.7 26 819 3 0.4
2016.12.08 21 25 888 15 1.7 26 PI 789 3 0.4
2016.12.09 22 25 907 42 4.6 26 871 3 0.3
2016.12.10 23 25 914 31 3.4 26 919 2 0.2
2016.12.11 24 25 933 21 2.3 26 946 2 0.2
2016.12.12 25 25 901 61 6.8 26 491 6 1.2
2016.12.13 26 25 797 14 1.8 26 604 0 0.0
2016.12.14 27 25 853 120 14.1 26 918 1 0.1
2016.12.15 28 25 927 36 3.9 26 935 5 0.5
2016.12.16 29 25 927 23 2.5 26 905 1 0.1
2016.12.17 30 25 903 19 2.1 26 910 0 0.0
2016.12.18 31 25 902 8 0.9 26 920 2 0.2
2016.12.19 32 25 926 15 1.6 26 944 1 0.1
2016.12.20 33 25 925 52 5.6 26 837 2 0.2
2016.12.21 34 25 850 52 6.1 26 861 1 0.1
2016.12.22 35 25 847 21 2.5 26 718 5 0.7
2016.12.23 36 25 872 17 1.9 26 829 0 0.0
2016.12.24 37 25 888 6 0.7 26 854 1 0.1
2016.12.25 38 25 885 46 5.2 26 876 2 0.2
2016.12.26 39 25 900 67 7.4 26 875 5 0.6
2016.12.27 40 25 900 0 0.0 26 900 3 0.3
2016.12.28 41 25 937 39 4.2 26 902 2 0.2
2016.12.29 42 25 939 5 0.5 26 894 0 0.0
2016.12.30 43 25 995 118 11.9 26 936 4 0.4
2016.12.31 44 25 994 10 1.0 26 940 0 0.0
2017.01.01 45 25 992 12 1.2 26 710 3 0.4
2017.01.02 46 25 877 89 10.1 26 235 2 0.9
2017.01.03 47 25 878 4 0.5 26 929 1 0.1
2017.01.04 48 25 910 62 6.8 26 635 2 0.3
2017.01.05 49 25 887 74 8.3 26 722 5 0.7
2017.01.06 50 25 872 48 5.5 26 671 2 0.3
2017.01.07 51 25 849 42 4.9 26 724 1 0.1
2017.01.08 52 25 788 17 2.2 26 637 21 3.3
2017.01.09 53 25 769 35 4.6 26 881 4 0.5
2017.01.10 54 25 816 0 0.0 26 820 0 0.0
Sum 25 47934 2893 26 42507 181

Table A.17: Full and new results, for queries 25 - 26, "samsung note 8 release date".

A .2 FULL DATA COLLECT ION RESULTS 147

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 27 956 882 92.3 28 716 580 81.0
2016.11.19 2 27 947 50 5.3 28 692 25 3.6
2016.11.20 3 27 958 50 5.2 28 713 8 1.1
2016.11.21 4 27 950 41 4.3 28 742 32 4.3
2016.11.22 5 27 940 57 6.1 28 742 53 7.1
2016.11.23 6 27 935 13 1.4 28 741 6 0.8
2016.11.24 7 27 941 3 0.3 28 736 12 1.6
2016.11.25 8 27 926 36 3.9 28 744 21 2.8
2016.11.26 9 27 934 40 4.3 28 776 31 4.0
2016.11.27 10 27 932 1 0.1 28 774 8 1.0
2016.11.28 11 27 966 64 6.6 28 808 111 13.7
2016.11.29 12 27 995 34 3.4 28 776 15 1.9
2016.11.30 13 27 952 30 3.2 28 783 13 1.7
2016.12.01 14 27 986 34 3.4 28 777 24 3.1
2016.12.02 15 27 989 91 9.2 28 756 28 3.7
2016.12.03 16 27 981 34 3.5 28 746 25 3.4
2016.12.04 17 27 978 41 4.2 28 725 19 2.6
2016.12.05 18 27 946 44 4.7 28 752 28 3.7
2016.12.06 19 27 950 26 2.7 28 747 14 1.9
2016.12.07 20 27 945 23 2.4 28 735 15 2.0
2016.12.08 21 27 975 22 2.3 28 732 8 1.1
2016.12.09 22 27 922 32 3.5 28 733 10 1.4
2016.12.10 23 27 947 21 2.2 28 684 16 2.3
2016.12.11 24 27 954 27 2.8 28 735 7 1.0
2016.12.12 25 27 985 33 3.4 28 759 11 1.4
2016.12.13 26 27 947 37 3.9 28 751 15 2.0
2016.12.14 27 27 900 32 3.6 28 726 54 7.4
2016.12.15 28 27 894 119 13.3 28 700 33 4.7
2016.12.16 29 27 938 12 1.3 28 702 2 0.3
2016.12.17 30 27 917 11 1.2 28 682 3 0.4
2016.12.18 31 27 928 1 0.1 28 686 0 0.0
2016.12.19 32 27 928 5 0.5 28 680 2 0.3
2016.12.20 33 27 907 32 3.5 28 677 6 0.9
2016.12.21 34 27 966 60 6.2 28 661 50 7.6
2016.12.22 35 27 916 23 2.5 28 637 7 1.1
2016.12.23 36 27 941 12 1.3 28 649 12 1.8
2016.12.24 37 27 967 11 1.1 28 648 2 0.3
2016.12.25 38 27 974 53 5.4 28 672 25 3.7
2016.12.26 39 27 983 40 4.1 28 614 35 5.7
2016.12.27 40 27 982 1 0.1 28 775 4 0.5
2016.12.28 41 27 979 14 1.4 28 895 59 6.6
2016.12.29 42 27 980 0 0.0 28 899 16 1.8
2016.12.30 43 27 996 77 7.7 28 847 48 5.7
2016.12.31 44 27 996 5 0.5 28 833 8 1.0
2017.01.01 45 27 997 10 1.0 28 833 15 1.8
2017.01.02 46 27 984 41 4.2 28 835 19 2.3
2017.01.03 47 27 982 5 0.5 28 832 9 1.1
2017.01.04 48 27 959 33 3.4 28 852 21 2.5
2017.01.05 49 27 877 38 4.3 28 906 28 3.1
2017.01.06 50 27 903 41 4.5 28 898 19 2.1
2017.01.07 51 27 924 24 2.6 28 858 12 1.4
2017.01.08 52 27 851 31 3.6 28 856 24 2.8
2017.01.09 53 27 912 43 4.7 28 855 21 2.5
2017.01.10 54 27 906 0 0.0 28 831 0 0.0
Sum 27 51224 2540 28 40914 1669

Table A.18: Full and new results, for queries 27 - 28, "google self driving car".

148 APPEND IX A DATA COLLECT ION RESULTS

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 29 1000 910 91.0 30 0 0 0.0
2016.11.19 2 29 1000 78 7.8 30 0 0 0.0
2016.11.20 3 29 1000 66 6.6 30 0 0 0.0
2016.11.21 4 29 1000 64 6.4 30 0 0 0.0
2016.11.22 5 29 1000 50 5.0 30 0 0 0.0
2016.11.23 6 29 1000 15 1.5 30 0 0 0.0
2016.11.24 7 29 1000 5 0.5 30 0 0 0.0
2016.11.25 8 29 1000 37 3.7 30 0 0 0.0
2016.11.26 9 29 1000 80 8.0 30 0 0 0.0
2016.11.27 10 29 1000 3 0.3 30 0 0 0.0
2016.11.28 11 29 1000 61 6.1 30 0 0 0.0
2016.11.29 12 29 1000 25 2.5 30 0 0 0.0
2016.11.30 13 29 1000 23 2.3 30 0 0 0.0
2016.12.01 14 29 1000 42 4.2 30 0 0 0.0
2016.12.02 15 29 1000 113 11.3 30 0 0 0.0
2016.12.03 16 29 1000 57 5.7 30 0 0 0.0
2016.12.04 17 29 1000 48 4.8 30 0 0 0.0
2016.12.05 18 29 1000 73 7.3 30 0 0 0.0
2016.12.06 19 29 1000 43 4.3 30 0 0 0.0
2016.12.07 20 29 989 14 1.4 30 0 0 0.0
2016.12.08 21 29 970 48 4.9 30 0 0 0.0
2016.12.09 22 29 962 29 3.0 30 0 0 0.0
2016.12.10 23 29 1000 34 3.4 30 0 0 0.0
2016.12.11 24 29 998 19 1.9 30 0 0 0.0
2016.12.12 25 29 965 63 6.5 30 0 0 0.0
2016.12.13 26 29 932 16 1.7 30 0 0 0.0
2016.12.14 27 29 982 127 12.9 30 0 0 0.0
2016.12.15 28 29 966 75 7.8 30 0 0 0.0
2016.12.16 29 29 1000 12 1.2 30 0 0 0.0
2016.12.17 30 29 987 21 2.1 30 0 0 0.0
2016.12.18 31 29 987 3 0.3 30 0 0 0.0
2016.12.19 32 29 976 15 1.5 30 0 0 0.0
2016.12.20 33 29 1000 18 1.8 30 0 0 0.0
2016.12.21 34 29 988 30 3.0 30 0 0 0.0
2016.12.22 35 29 962 25 2.6 30 0 0 0.0
2016.12.23 36 29 952 16 1.7 30 0 0 0.0
2016.12.24 37 29 999 2 0.2 30 0 0 0.0
2016.12.25 38 29 999 7 0.7 30 0 0 0.0
2016.12.26 39 29 1000 110 11.0 30 0 0 0.0
2016.12.27 40 29 1000 9 0.9 30 0 0 0.0
2016.12.28 41 29 1000 20 2.0 30 0 0 0.0
2016.12.29 42 29 1000 23 2.3 30 0 0 0.0
2016.12.30 43 29 1000 51 5.1 30 0 0 0.0
2016.12.31 44 29 1000 13 1.3 30 0 0 0.0
2017.01.01 45 29 1000 4 0.4 30 0 0 0.0
2017.01.02 46 29 1000 62 6.2 30 0 0 0.0
2017.01.03 47 29 1000 12 1.2 30 0 0 0.0
2017.01.04 48 29 925 60 6.5 30 0 0 0.0
2017.01.05 49 29 926 30 3.2 30 0 0 0.0
2017.01.06 50 29 928 42 4.5 30 0 0 0.0
2017.01.07 51 29 878 22 2.5 30 0 0 0.0
2017.01.08 52 29 966 35 3.6 30 0 0 0.0
2017.01.09 53 29 914 34 3.7 30 0 0 0.0
2017.01.10 54 29 966 0 0.0 30 0 0 0.0
Sum 29 53117 2894 30 0 0

Table A.19: Full and new results, for queries 29 - 30, "mobile application health sensor
data".

A .2 FULL DATA COLLECT ION RESULTS 149

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 31 996 876 88.0 32 0 0 0.0
2016.11.19 2 31 996 44 4.4 32 0 0 0.0
2016.11.20 3 31 995 22 2.2 32 0 0 0.0
2016.11.21 4 31 997 67 6.7 32 0 0 0.0
2016.11.22 5 31 999 57 5.7 32 0 0 0.0
2016.11.23 6 31 997 0 0.0 32 0 0 0.0
2016.11.24 7 31 997 2 0.2 32 0 0 0.0
2016.11.25 8 31 999 34 3.4 32 0 0 0.0
2016.11.26 9 31 1000 56 5.6 32 0 0 0.0
2016.11.27 10 31 1000 0 0.0 32 0 0 0.0
2016.11.28 11 31 998 47 4.7 32 0 0 0.0
2016.11.29 12 31 998 12 1.2 32 0 0 0.0
2016.11.30 13 31 997 8 0.8 32 0 0 0.0
2016.12.01 14 31 998 40 4.0 32 0 0 0.0
2016.12.02 15 31 997 84 8.4 32 0 0 0.0
2016.12.03 16 31 997 61 6.1 32 0 0 0.0
2016.12.04 17 31 998 18 1.8 32 0 0 0.0
2016.12.05 18 31 996 45 4.5 32 0 0 0.0
2016.12.06 19 31 992 26 2.6 32 0 0 0.0
2016.12.07 20 31 995 18 1.8 32 0 0 0.0
2016.12.08 21 31 999 17 1.7 32 0 0 0.0
2016.12.09 22 31 977 20 2.0 32 0 0 0.0
2016.12.10 23 31 998 26 2.6 32 0 0 0.0
2016.12.11 24 31 989 8 0.8 32 0 0 0.0
2016.12.12 25 31 996 29 2.9 32 0 0 0.0
2016.12.13 26 31 917 16 1.7 32 0 0 0.0
2016.12.14 27 31 965 134 13.9 32 0 0 0.0
2016.12.15 28 31 963 63 6.5 32 0 0 0.0
2016.12.16 29 31 996 10 1.0 32 0 0 0.0
2016.12.17 30 31 962 22 2.3 32 0 0 0.0
2016.12.18 31 31 921 13 1.4 32 0 0 0.0
2016.12.19 32 31 963 2 0.2 32 0 0 0.0
2016.12.20 33 31 982 12 1.2 32 0 0 0.0
2016.12.21 34 31 973 30 3.1 32 0 0 0.0
2016.12.22 35 31 970 22 2.3 32 0 0 0.0
2016.12.23 36 31 984 10 1.0 32 0 0 0.0
2016.12.24 37 31 993 1 0.1 32 0 0 0.0
2016.12.25 38 31 993 2 0.2 32 0 0 0.0
2016.12.26 39 31 999 44 4.4 32 0 0 0.0
2016.12.27 40 31 996 0 0.0 32 0 0 0.0
2016.12.28 41 31 999 8 0.8 32 0 0 0.0
2016.12.29 42 31 995 0 0.0 32 PI 0 0 0.0
2016.12.30 43 31 999 25 2.5 32 0 0 0.0
2016.12.31 44 31 997 5 0.5 32 0 0 0.0
2017.01.01 45 31 998 0 0.0 32 0 0 0.0
2017.01.02 46 31 1000 27 2.7 32 0 0 0.0
2017.01.03 47 31 990 3 0.3 32 0 0 0.0
2017.01.04 48 31 894 23 2.6 32 0 0 0.0
2017.01.05 49 31 895 55 6.1 32 0 0 0.0
2017.01.06 50 31 882 12 1.4 32 0 0 0.0
2017.01.07 51 31 943 11 1.2 32 0 0 0.0
2017.01.08 52 31 908 20 2.2 32 0 0 0.0
2017.01.09 53 31 964 19 2.0 32 0 0 0.0
2017.01.10 54 31 928 0 0.0 32 0 0 0.0
Sum 31 52870 2206 32 0 0

Table A.20: Full and new results, for queries 31 - 32, "mobile phone body area network".

150 APPEND IX A DATA COLLECT ION RESULTS

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 33 1000 932 93.2 34 0 0 0.0
2016.11.19 2 33 999 42 4.2 34 0 0 0.0
2016.11.20 3 33 997 21 2.1 34 0 0 0.0
2016.11.21 4 33 997 68 6.8 34 0 0 0.0
2016.11.22 5 33 997 63 6.3 34 0 0 0.0
2016.11.23 6 33 997 7 0.7 34 0 0 0.0
2016.11.24 7 33 997 3 0.3 34 0 0 0.0
2016.11.25 8 33 998 46 4.6 34 0 0 0.0
2016.11.26 9 33 995 117 11.8 34 0 0 0.0
2016.11.27 10 33 996 8 0.8 34 0 0 0.0
2016.11.28 11 33 999 60 6.0 34 0 0 0.0
2016.11.29 12 33 998 28 2.8 34 0 0 0.0
2016.11.30 13 33 998 42 4.2 34 0 0 0.0
2016.12.01 14 33 998 54 5.4 34 0 0 0.0
2016.12.02 15 33 1000 92 9.2 34 0 0 0.0
2016.12.03 16 33 998 51 5.1 34 0 0 0.0
2016.12.04 17 33 1000 30 3.0 34 0 0 0.0
2016.12.05 18 33 993 106 10.7 34 0 0 0.0
2016.12.06 19 33 954 53 5.6 34 0 0 0.0
2016.12.07 20 33 996 25 2.5 34 0 0 0.0
2016.12.08 21 33 977 23 2.4 34 0 0 0.0
2016.12.09 22 33 999 63 6.3 34 0 0 0.0
2016.12.10 23 33 998 43 4.3 34 0 0 0.0
2016.12.11 24 33 999 20 2.0 34 0 0 0.0
2016.12.12 25 33 979 69 7.0 34 0 0 0.0
2016.12.13 26 33 996 24 2.4 34 0 0 0.0
2016.12.14 27 33 966 249 25.8 34 0 0 0.0
2016.12.15 28 33 983 18 1.8 34 0 0 0.0
2016.12.16 29 33 1000 14 1.4 34 0 0 0.0
2016.12.17 30 33 987 13 1.3 34 0 0 0.0
2016.12.18 31 33 988 5 0.5 34 0 0 0.0
2016.12.19 32 33 948 5 0.5 34 0 0 0.0
2016.12.20 33 33 986 36 3.7 34 0 0 0.0
2016.12.21 34 33 949 45 4.7 34 0 0 0.0
2016.12.22 35 33 982 25 2.5 34 0 0 0.0
2016.12.23 36 33 999 9 0.9 34 0 0 0.0
2016.12.24 37 33 999 2 0.2 34 0 0 0.0
2016.12.25 38 33 999 5 0.5 34 0 0 0.0
2016.12.26 39 33 1000 92 9.2 34 0 0 0.0
2016.12.27 40 33 1000 5 0.5 34 0 0 0.0
2016.12.28 41 33 1000 17 1.7 34 0 0 0.0
2016.12.29 42 33 1000 0 0.0 34 0 0 0.0
2016.12.30 43 33 999 68 6.8 34 0 0 0.0
2016.12.31 44 33 999 9 0.9 34 0 0 0.0
2017.01.01 45 33 999 6 0.6 34 0 0 0.0
2017.01.02 46 33 999 63 6.3 34 0 0 0.0
2017.01.03 47 33 999 12 1.2 34 0 0 0.0
2017.01.04 48 33 932 32 3.4 34 0 0 0.0
2017.01.05 49 33 898 41 4.6 34 0 0 0.0
2017.01.06 50 33 932 57 6.1 34 0 0 0.0
2017.01.07 51 33 909 37 4.1 34 0 0 0.0
2017.01.08 52 33 825 30 3.6 34 0 0 0.0
2017.01.09 53 33 932 34 3.6 34 0 0 0.0
2017.01.10 54 33 932 0 0.0 34 0 0 0.0
Sum 33 52996 3019 34 0 0

Table A.21: Full and new results, for queries 33 - 34, "mobile phone sensor research
health".

A .2 FULL DATA COLLECT ION RESULTS 151

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 35 999 930 93.1 36 379 247 65.2
2016.11.19 2 35 999 37 3.7 36 472 2 0.4
2016.11.20 3 35 997 29 2.9 36 509 10 2.0
2016.11.21 4 35 999 58 5.8 36 515 20 3.9
2016.11.22 5 35 999 29 2.9 36 457 10 2.2
2016.11.23 6 35 998 12 1.2 36 475 1 0.2
2016.11.24 7 35 997 8 0.8 36 504 1 0.2
2016.11.25 8 35 1000 23 2.3 36 501 11 2.2
2016.11.26 9 35 1000 45 4.5 36 419 15 3.6
2016.11.27 10 35 1000 3 0.3 36 445 1 0.2
2016.11.28 11 35 999 175 17.5 36 934 64 6.9
2016.11.29 12 35 999 48 4.8 36 403 3 0.7
2016.11.30 13 35 996 29 2.9 36 443 8 1.8
2016.12.01 14 35 997 42 4.2 36 390 3 0.8
2016.12.02 15 35 999 58 5.8 36 350 18 5.1
2016.12.03 16 35 999 22 2.2 36 440 3 0.7
2016.12.04 17 35 998 17 1.7 36 457 10 2.2
2016.12.05 18 35 999 35 3.5 36 664 10 1.5
2016.12.06 19 35 999 17 1.7 36 429 5 1.2
2016.12.07 20 35 997 17 1.7 36 312 4 1.3
2016.12.08 21 35 966 34 3.5 36 368 4 1.1
2016.12.09 22 35 992 27 2.7 36 447 8 1.8
2016.12.10 23 35 982 25 2.5 36 481 6 1.2
2016.12.11 24 35 993 28 2.8 36 356 0 0.0
2016.12.12 25 35 997 50 5.0 36 696 5 0.7
2016.12.13 26 35 924 48 5.2 36 745 9 1.2
2016.12.14 27 35 982 87 8.9 36 741 35 4.7
2016.12.15 28 35 946 17 1.8 36 783 6 0.8
2016.12.16 29 35 998 8 0.8 36 794 1 0.1
2016.12.17 30 35 982 12 1.2 36 810 3 0.4
2016.12.18 31 35 981 4 0.4 36 815 2 0.2
2016.12.19 32 35 986 20 2.0 36 811 0 0.0
2016.12.20 33 35 973 29 3.0 36 826 14 1.7
2016.12.21 34 35 984 20 2.0 36 798 16 2.0
2016.12.22 35 35 967 38 3.9 36 754 8 1.1
2016.12.23 36 35 980 25 2.6 36 — — 0.0
2016.12.24 37 35 995 5 0.5 36 702 7 1.0
2016.12.25 38 35 995 3 0.3 36 745 2 0.3
2016.12.26 39 35 998 87 8.7 36 652 31 4.8
2016.12.27 40 35 998 19 1.9 36 638 1 0.2
2016.12.28 41 35 997 20 2.0 36 616 4 0.6
2016.12.29 42 35 997 1 0.1 36 616 0 0.0
2016.12.30 43 35 998 45 4.5 36 514 18 3.5
2016.12.31 44 35 998 24 2.4 36 504 1 0.2
2017.01.01 45 35 998 23 2.3 36 464 5 1.1
2017.01.02 46 35 998 37 3.7 36 421 19 4.5
2017.01.03 47 35 997 5 0.5 36 433 4 0.9
2017.01.04 48 35 877 29 3.3 36 411 5 1.2
2017.01.05 49 35 906 31 3.4 36 419 14 3.3
2017.01.06 50 35 936 29 3.1 36 383 4 1.0
2017.01.07 51 35 904 29 3.2 36 465 5 1.1
2017.01.08 52 35 918 17 1.9 36 436 16 3.7
2017.01.09 53 35 882 32 3.6 36 419 5 1.2
2017.01.10 54 35 963 0 0.0 36 425 0 0.0
Sum 35 52958 2542 36 28986 704

Table A.22: Full and new results, for queries 35 - 36, "forest fairytales".

152 APPEND IX A DATA COLLECT ION RESULTS

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 37 1000 905 90.5 38 645 535 82.9
2016.11.19 2 37 1000 68 6.8 38 611 11 1.8
2016.11.20 3 37 999 44 4.4 38 620 14 2.3
2016.11.21 4 37 1000 43 4.3 38 667 24 3.6
2016.11.22 5 37 1000 89 8.9 38 901 17 1.9
2016.11.23 6 37 1000 6 0.6 38 966 7 0.7
2016.11.24 7 37 1000 0 0.0 38 811 6 0.7
2016.11.25 8 37 1000 36 3.6 38 774 14 1.8
2016.11.26 9 37 1000 71 7.1 38 732 18 2.5
2016.11.27 10 37 1000 3 0.3 38 737 1 0.1
2016.11.28 11 37 984 213 21.6 38 613 71 11.6
2016.11.29 12 37 1000 50 5.0 38 699 2 0.3
2016.11.30 13 37 1000 46 4.6 38 735 8 1.1
2016.12.01 14 37 1000 48 4.8 38 814 17 2.1
2016.12.02 15 37 1000 82 8.2 38 889 46 5.2
2016.12.03 16 37 1000 17 1.7 38 881 8 0.9
2016.12.04 17 37 998 31 3.1 38 785 17 2.2
2016.12.05 18 37 997 48 4.8 38 837 25 3.0
2016.12.06 19 37 997 13 1.3 38 893 4 0.4
2016.12.07 20 37 1000 20 2.0 38 890 8 0.9
2016.12.08 21 37 994 35 3.5 38 832 8 1.0
2016.12.09 22 37 1000 34 3.4 38 815 15 1.8
2016.12.10 23 37 999 46 4.6 38 814 6 0.7
2016.12.11 24 37 996 18 1.8 38 770 10 1.3
2016.12.12 25 37 995 63 6.3 38 849 22 2.6
2016.12.13 26 37 947 34 3.6 38 880 27 3.1
2016.12.14 27 37 958 119 12.4 38 718 42 5.8
2016.12.15 28 37 943 14 1.5 38 722 5 0.7
2016.12.16 29 37 962 19 2.0 38 723 5 0.7
2016.12.17 30 37 950 25 2.6 38 728 6 0.8
2016.12.18 31 37 943 7 0.7 38 741 10 1.3
2016.12.19 32 37 934 31 3.3 38 776 5 0.6
2016.12.20 33 37 947 30 3.2 38 774 17 2.2
2016.12.21 34 37 945 55 5.8 38 773 22 2.8
2016.12.22 35 37 942 15 1.6 38 783 9 1.1
2016.12.23 36 37 939 32 3.4 38 764 5 0.7
2016.12.24 37 37 952 4 0.4 38 856 8 0.9
2016.12.25 38 37 953 4 0.4 38 878 15 1.7
2016.12.26 39 37 995 101 10.2 38 789 20 2.5
2016.12.27 40 37 990 6 0.6 38 719 2 0.3
2016.12.28 41 37 990 35 3.5 38 625 12 1.9
2016.12.29 42 37 989 3 0.3 38 636 7 1.1
2016.12.30 43 37 951 52 5.5 38 608 18 3.0
2016.12.31 44 37 949 7 0.7 38 623 5 0.8
2017.01.01 45 37 949 16 1.7 38 623 16 2.6
2017.01.02 46 37 976 73 7.5 38 526 13 2.5
2017.01.03 47 37 976 1 0.1 38 545 4 0.7
2017.01.04 48 37 878 18 2.1 38 603 18 3.0
2017.01.05 49 37 886 33 3.7 38 603 16 2.7
2017.01.06 50 37 815 29 3.6 38 622 10 1.6
2017.01.07 51 37 882 23 2.6 38 PI 551 8 1.5
2017.01.08 52 37 898 34 3.8 38 573 15 2.6
2017.01.09 53 37 998 45 4.5 38 654 24 3.7
2017.01.10 54 37 918 0 0.0 38 593 0 0.0
Sum 37 52314 2894 38 39589 1278

Table A.23: Full and new results, for queries 37 - 38, "tudor politics".

A .2 FULL DATA COLLECT ION RESULTS 153

Date Day in period ID Free New New % ID Exact New New %
2016.11.18 1 39 999 940 94.1 40 776 663 85.4
2016.11.19 2 39 999 76 7.6 40 784 43 5.5
2016.11.20 3 39 CT 949 26 2.7 40 768 26 3.4
2016.11.21 4 39 998 35 3.5 40 760 21 2.8
2016.11.22 5 39 1000 33 3.3 40 792 36 4.5
2016.11.23 6 39 999 11 1.1 40 799 30 3.8
2016.11.24 7 39 999 6 0.6 40 790 20 2.5
2016.11.25 8 39 1000 26 2.6 40 779 13 1.7
2016.11.26 9 39 1000 50 5.0 40 831 24 2.9
2016.11.27 10 39 CT 950 3 0.3 40 786 8 1.0
2016.11.28 11 39 1000 172 17.2 40 826 188 22.8
2016.11.29 12 39 1000 44 4.4 40 747 41 5.5
2016.11.30 13 39 1000 23 2.3 40 758 25 3.3
2016.12.01 14 39 — — 0.0 40 899 58 6.5
2016.12.02 15 39 1000 64 6.4 40 802 42 5.2
2016.12.03 16 39 998 35 3.5 40 779 22 2.8
2016.12.04 17 39 998 28 2.8 40 819 12 1.5
2016.12.05 18 39 1000 35 3.5 40 896 26 2.9
2016.12.06 19 39 999 15 1.5 40 859 6 0.7
2016.12.07 20 39 981 21 2.1 40 810 11 1.4
2016.12.08 21 39 917 39 4.3 40 865 15 1.7
2016.12.09 22 39 996 48 4.8 40 881 45 5.1
2016.12.10 23 39 999 25 2.5 40 899 22 2.4
2016.12.11 24 39 978 16 1.6 40 899 10 1.1
2016.12.12 25 39 999 57 5.7 40 793 35 4.4
2016.12.13 26 39 926 61 6.6 40 807 32 4.0
2016.12.14 27 39 546 82 15.0 40 757 49 6.5
2016.12.15 28 39 957 75 7.8 40 710 13 1.8
2016.12.16 29 39 999 21 2.1 40 707 4 0.6
2016.12.17 30 39 976 11 1.1 40 732 25 3.4
2016.12.18 31 39 981 9 0.9 40 787 2 0.3
2016.12.19 32 39 979 26 2.7 40 684 29 4.2
2016.12.20 33 39 948 38 4.0 40 705 21 3.0
2016.12.21 34 39 997 30 3.0 40 759 33 4.3
2016.12.22 35 39 978 29 3.0 40 767 12 1.6
2016.12.23 36 39 920 19 2.1 40 759 34 4.5
2016.12.24 37 39 996 13 1.3 40 794 6 0.8
2016.12.25 38 39 995 1 0.1 40 820 44 5.4
2016.12.26 39 39 1000 63 6.3 40 844 24 2.8
2016.12.27 40 39 998 13 1.3 40 796 4 0.5
2016.12.28 41 39 999 27 2.7 40 624 55 8.8
2016.12.29 42 39 995 5 0.5 40 678 15 2.2
2016.12.30 43 39 997 31 3.1 40 882 31 3.5
2016.12.31 44 39 997 2 0.2 40 890 8 0.9
2017.01.01 45 39 999 35 3.5 40 951 23 2.4
2017.01.02 46 39 999 29 2.9 40 574 34 5.9
2017.01.03 47 39 999 1 0.1 40 657 13 2.0
2017.01.04 48 39 928 40 4.3 40 696 38 5.5
2017.01.05 49 39 853 55 6.4 40 704 32 4.5
2017.01.06 50 39 937 23 2.5 40 735 23 3.1
2017.01.07 51 39 905 27 3.0 40 662 23 3.5
2017.01.08 52 39 955 21 2.2 40 709 11 1.6
2017.01.09 53 39 956 25 2.6 40 707 22 3.1
2017.01.10 54 39 894 0 0.0 40 789 0 0.0
Sum 39 51367 2640 40 42083 2102

Table A.24: Full and new results, for queries 39 - 40, "jazz poetry".

154 APPEND IX A DATA COLLECT ION RESULTS

A.3 Plots for results
For completeness and reference, all plots are shown in this section (A.3.1). For
values in each plot, refer to the corresponding table in the previous section, see
A.2.2.

A.3.1 Summary plots for all queries
In figures A.1 and A.2 are two summary plots, made to get an overview of
trends in the results in the data collection period.

What is shown here is the percentage of new results for each day since the
start of the period, as described in chapter 3.

Combining the queries in one plot, make trends in results emerge clearly. They
follow the same pattern; first day has many results, the days following have
fewer results.

In figure A.1 all 20 free queries are shown, the queries that were numbered
with odd numbers from 1 - 39.

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.1: Combined plots for all free searches.

A .3 PLOTS FOR RESULTS 155

In figure A.2 all 20 exact queries are shown, the queries that were numbered
with even numbers from 2 - 40.

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.2: Combined plots for all exact searches.

Some days havemore new results than others. The search engine is continuously
collecting results, see 2.1.1 Building and updating the index, to be able to provide
topical results to its users.

One key difference between the free search plot (A.1) and the exact search
plot (A.2) is that there are fewer results overall in the exact search plot. This
is because there were fewer results in total for exact results, and by that also
fewer new results. As an example of this, see for instance figure A.6 in section
A.3.3, and compare the left (free) and the right (exact) plot.

A.3.2 Summary plots for all queries, including days witherrors
The full period was originally a period of 71 days, but the first 17 days contained
data collection errors as described in section 5.5.

The summary plots below illustrate why day 18 was selected as the starting
point for the data selected for analysis. See figures A.3 and A.4 below.

156 APPEND IX A DATA COLLECT ION RESULTS

The numbers shown here is the number of results per day, and also in the same
plot, the number of new results per day. The data points at the top signifies all
results for that query that day. The data points at the bottom are the number
of new results for that query that day.

Data in figures A.3 and A.4 are actual number of results per day, not percentage
of new results as in section A.3.1.

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

Figure A.3: Combined plots for free searches for the full data collection period. Y-axis
shows number of results, not percentage.

A .3 PLOTS FOR RESULTS 157

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

Figure A.4: Combined plots for exact searches for the full data collection period. Y-axis
shows number of results, not percentage.

All 40 queries are shown, divided into free and exact searches.

In the left plot all 20 free queries are shown, the queries that were numbered
with odd numbers from 1 - 39. We can see a clear change at day 18, which is
when DisableHostCollapsingwas introduced, see section 5.5.3. After this change,
the number of returned results went up, closer to the maximum for many of
the queries.

In the right plot all 20 exact queries are shown, the queries that were numbered
with even numbers from 2 - 40. We can see a clear change at day 18 here, as
well. This is when the query searched for was changed to include quotation
marks, to make it an exact query. See section 5.5.3 for more on this. After this
change, the number of returned results went down, due to fewer exact hits for
the query text.

A.3.3 Summary plots for each query
The following plots shows data collection results for the selected period. Plots
are shown first as percent-wise plots, then the raw data plots are shown. The

158 APPEND IX A DATA COLLECT ION RESULTS

left plot is always the free query, the right plot is always the exact query. See
example below.

Figure A5 left Free query "Messerschmitt KR200 restoration", showing new
results percentage-wise.

Figure A5 right Exact query "Messerschmitt KR200 restoration", showing new
results percentage-wise.

Figure A6 left Free query "Messerschmitt KR200 restoration", showing total
number of results, and number of new results.

Figure A6 right Exact query "Messerschmitt KR200 restoration", showing total
number of results, and number of new results.

"Messerschmitt KR200 restoration"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"Messerschmitt KR200 restoration (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.5: Percentage-wise plots for queries 1 and 2.

"Messerschmitt KR200 restoration"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"Messerschmitt KR200 restoration"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.6: Data plots for queries 1 and 2.

A .3 PLOTS FOR RESULTS 159
"Web search API thesis"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"Web search API thesis (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.7: Percentage-wise plots for queries 3 and 4.

"Web search API thesis"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"Web search API thesis"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.8: Data plots for queries 3 and 4.

"Web search thesis"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"Web search thesis (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.9: Percentage-wise plots for queries 5 and 6.

160 APPEND IX A DATA COLLECT ION RESULTS

"Web search thesis"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"Web search thesis"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.10: Data plots for queries 5 and 6.

"Search API thesis"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"Search API thesis (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.11: Percentage-wise plots for queries 7 and 8.

"Search API thesis"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"Search API thesis"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.12: Data plots for queries 7 and 8.

A .3 PLOTS FOR RESULTS 161
"Messerschmitt TG500 for sale"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"Messerschmitt TG500 for sale (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.13: Percentage-wise plots for queries 9 and 10.

"Messerschmitt TG500 for sale"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"Messerschmitt TG500 for sale"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.14: Data plots for queries 9 and 10.

"winds of winter"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"winds of winter (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.15: Percentage-wise plots for queries 11 and 12.

162 APPEND IX A DATA COLLECT ION RESULTS

"winds of winter"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"winds of winter"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.16: Data plots for queries 11 and 12.

"promise of spring"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"promise of spring (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.17: Percentage-wise plots for queries 13 and 14.

"promise of spring"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"promise of spring"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.18: Data plots for queries 13 and 14.

A .3 PLOTS FOR RESULTS 163
"terry pratchett"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"terry pratchett (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.19: Percentage-wise plots for queries 15 and 16.

"terry pratchett"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"terry pratchett"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.20: Data plots for queries 15 and 16.

"liverpool leeds efl"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"liverpool leeds efl (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.21: Percentage-wise plots for queries 17 and 18.

164 APPEND IX A DATA COLLECT ION RESULTS

"liverpool leeds efl"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"liverpool leeds efl"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.22: Data plots for queries 17 and 18.

"hillary clinton e-mail fbi"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"hillary clinton e-mail fbi (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.23: Percentage-wise plots for queries 19 and 20.

"hillary clinton e-mail fbi"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"hillary clinton e-mail fbi"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.24: Data plots for queries 19 and 20.

A .3 PLOTS FOR RESULTS 165
"macbook pro 2016 touch bar problems"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"macbook pro 2016 touch bar problems (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.25: Percentage-wise plots for queries 21 and 22.

"macbook pro 2016 touch bar problems"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"macbook pro 2016 touch bar problems"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.26: Data plots for queries 21 and 22.

"apple stock price"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"apple stock price (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.27: Percentage-wise plots for queries 23 and 24.

166 APPEND IX A DATA COLLECT ION RESULTS

"apple stock price"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"apple stock price"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.28: Data plots for queries 23 and 24.

"samsung note 8 release date"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"samsung note 8 release date (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.29: Percentage-wise plots for queries 25 and 26.

"samsung note 8 release date"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"samsung note 8 release date"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.30: Data plots for queries 25 and 26.

A .3 PLOTS FOR RESULTS 167
"google self driving car"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"google self driving car (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.31: Percentage-wise plots for queries 27 and 28.

"google self driving car"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"google self driving car"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.32: Data plots for queries 27 and 28.

"mobile application health sensor data"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"mobile application health sensor data (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.33: Percentage-wise plots for queries 29 and 30.

168 APPEND IX A DATA COLLECT ION RESULTS

"mobile application health sensor data"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"mobile application health sensor data"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.34: Data plots for queries 29 and 30.

"mobile phone body area network "

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"mobile phone body area network (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.35: Percentage-wise plots for queries 31 and 32.

"mobile phone body area network "

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"mobile phone body area network "

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.36: Data plots for queries 31 and 32.

A .3 PLOTS FOR RESULTS 169
"mobile phone sensor research health "

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"mobile phone sensor research health (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.37: Percentage-wise plots for queries 33 and 34.

"mobile phone sensor research health "

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"mobile phone sensor research health "

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.38: Data plots for queries 33 and 34.

"forest fairytales"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"forest fairytales (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.39: Percentage-wise plots for queries 35 and 36.

170 APPEND IX A DATA COLLECT ION RESULTS

"forest fairytales"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"forest fairytales"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.40: Data plots for queries 35 and 36.

"tudor politics"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"tudor politics (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.41: Percentage-wise plots for queries 37 and 38.

"tudor politics"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"tudor politics"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.42: Data plots for queries 37 and 38.

A .3 PLOTS FOR RESULTS 171
"jazz poetry"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

"jazz poetry (exact)"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Pe
rc

en
ta

ge
 o

f
ne

w
 r

es
ul

ts

0

10

20

30

40

50

60

70

80

90

100

Figure A.43: Percentage-wise plots for queries 39 and 40.

"jazz poetry"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

free / all
free / new

"jazz poetry"

Days
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

R
es

ul
ts

0

100

200

300

400

500

600

700

800

900

1000

exact / all
exact / new

Figure A.44: Data plots for queries 39 and 40.

B
IIR testing instructions
The testers were given these instructions on how to test the solution.

173

174 APPEND IX B I IR TEST ING INSTRUCT IONS

IIR – Incremental Information Retrieval

Test instructions for André, Easterine, Jørgen and Stephan.

Introduction
TL;DR: Weeeell, it’s not that important.

Ideally, I wanted to be able to provide a live API testing environment for you guys, I really did. But Microsoft

cut that short by closing down Bing v2, which I used initially. They reworked their search API, giving it a new

price and service structure.

So, I had the choice of starting again, rewriting the Go version of the Bing Search API that I had created, to

support the new version - or continuing, collecting my data from the last spasms of the Bing v2 API.

I chose the latter option, too much work had gone into it to stop. I gathered data from 1st of November 2016

until the end of January 2017. From these data, 54 consecutive days’ worth of data is used, from 18th of

November till 10th of January. My aim is to get some usage statistics from your test usage.

Short “user guide” for testing
All of you have 3 searches each, which has been run as free search and exact search – which totals 6

searches each. What I want you to do, is to:

1) Use Google Chrome, it’s not tested with other browsers

2) Use a screen width larger than 1200px, Bootstrap development isn’t finalised.

3) Open the IIR solution at http://iir-test.northeurope.cloudapp.azure.com

4) Log on with your user (select your name from the dropdown on the login page), and you will see

your queries displayed to the left.

5) Read the online manual to be more aware what’s going on.

6) Try out some functionality on one of the searches first, to get a feel for the application. Then use the

reset button at the bottom of the Discarded results folder, and start for real.

THEN:

7) For each search, go through more than ten sets of results for the search, really as many as you have

the patience for. Upper limit is 54, of course.

8) Make sure you save some results you find interesting, and discard some results you find

uninteresting. Save or discard single results or filtered results, use what you think works best.

9) Optionally black-list domains that never has interesting results or white-list domains that always has

interesting results for the search you are viewing.

Questions
When you are finished testing, there are a few questions I would like you to answer. There is a Questback

survey with a handful of questions, and comment fields for feedback and suggesting improvements.

Open the Questback survey at https://response.questback.com/erlendjohannessen/dz8mxj8c5j, and use the

password DvZoBrzlQ8 to start the survey.

Happy hunting! �

31st of March 2017,

Erlend

Figure B.1: Instructions to testers for testing IIR

C
IIR online manual
The following is a printout of the manual for the Incremental Information
Retrieval system. It was created as an on-line help page in the IIR solution, so
that it would always be available if the users (testers) had questions.

The testers were also encouraged to read the manual before starting test of a
new query.

175

176 APPEND IX C I IR ONL INE MANUAL

Manual

When searching the internet today we want immediate answers. We often search for a person, or a solution to a problem, or some topic we are interested in. The result quality off this
kind of search is pretty good, most of the time we get the answers we need. The results, though, seem to be minor variations on the same results.

But what if the search for information is of a different nature, more like exploring. A typical case would be when a person has a hobby, and wants to search for information about it. Very
soon all the quickly accessed information has already been seen, and is not that interesting in the context of new information.

IIR will help you ignore what you have already seen, and give you relevant results that you haven't seen before.

IIR
This application is a sort of search engine. When searching, it connects to a regular search engine, does the given search, and then manipulates the results coming out of that search
engine. The goal of this application is to help the user to ignore results that have been seen before.

The application includes the following features.
Shows results from the search in a standard search result card fashion.
Duplicate results are automatically discarded.
Results that have already been seen is automatically discarded.
Results the user page by without interacting with, is marked as seen.
The user can save results for later inspection.
Results are ranked (sorted) according to how many of search words found.
Results can be sorted by the search engine's original sort order.
Always approve certain internet domain names (e.g. www.alwaysinteresting.com)
Always suppress certain internet domain names (e.g. www.neverinteresting.com)

Terms
When IIR is used for searching, every result is saved so that the application can know if it has been seen before or not. That also means that each search needs to be kept separate
from each other. So, there are three main terms that needs an explanation; Query, QueryRun, and Result.

Query
This acts as a container for a web search. The query contains the actual text, e.g. “apples”, sent to the search engine. If one wanted to search for “pears”, for instance, a new Query
needs to be created.
QueryRun
Within each Query there is a set of QueryRuns. Every time a search is run against the search engine, a QueryRun is created. This is in our case once each day for a period of 54 days.
Result
Within each QueryRun there is a set of results. This is the actual response from the search engine. Every result has a title, an URL and a description. There can be up to 1000 results
per QueryRun.

Result status
Each result can have one of several statuses.

New
When results come back from the search engine, they have the new status.
Seen
If a result is browsed past without doing anything to it, it is archived as seen.
Saved
The user can at any time save a result for further inspection.
Whitelisted
The user can approve a domain name (e.g. www.alwaysinteresting.com). All results from this domain will get the status whitelisted.
Blacklisted
If the user finds a domain name (e.g. www.neverinteresting.com) that never give relevant results for this Query, it can be blacklisted. Results from this domain will always be discarded,
and will appear in the discarded folder.
Discarded
The user can at any time discard a result. This result will never again appear in a list of new results after being discarded.

How result retrieval works
When searching, events happen the following order:

1. The search button is clicked
2. New search results are retrieved, and are checked and filtered:

a. Duplicates are set to discarded – we only want one instance of each result
b. If the user have seen a result before (i.e. status is either seen, saved, whitelisted or discarded), the result is discarded
c. Results where the domain name is in the blacklist is automatically discarded.
d. Results where the domain name is in the whitelist is automatically whitelisted.
e. Results get a ranking score based on how many of the search words are found in title and description

Figure C.1: IIR on-line manual, page 1

177
3. After filtering, the remaining results are presented to the user in the New results folder sorted by descending rank (and then by title)

Folders and filters
The folders are a way of categorising the results by status. In the New results and Seen results folder there is a filter where the user can save or discard results. This can also be done
for individual results.

Below the search filter is a row of domain names. When clicking on the domain name, the results will be filtered by this domain name.

By clicking on the uparrow, the domain name is whitelisted, and results will from now on automatically be moved to the Whitelisted results folder. By clicking on the downarrow, the
domain name is blacklisted, and all results from this domain will from now on automatically be discarded when searching.

When navigating to another page by clicking the paging buttons or searching for more results, the results that are now visible will get the seen status, and will henceforth be available in
the Seen results folder. The seen mechanism only works in the New results folder, when showing other folders this mechanism is turned off.

Ranking
All results are given a simple rank, based on the search text and how it appears in the results. The result title and description of the result are analysed when read, and are given
numeric values, which are summarised to givc the full rank for the result. These are:

50
The title of the result contains the exact phrase search for.
30
The description of the result contains the exact phrase search for.
15
If the exact phrase is not found in the title, the title is checked for all words appearing, though not in the exact order.
10
If the exact phrase is not found in the description, the description is checked for all words appearing, though not in the exact order.
1
If none of the above, each search word actually appearing in title or description is given one point.

The maximum rank is 80, which means that the exact phrase searched for is found both in title and in description. Furthermore, a result without any points does not contain any of the
words searched for (though the result might still be interesting).

Reset
At the bottom of the discarded results folder there is a button that will reset the current query. All results are removed, and the Query can be started again.

So...
All the user needs to do is

1. click the search button to make search results appear,
2. save or discard results, either by filter or just individual search results,
3. optionally white or blacklist domain names, and
4. optionally page through to some other pages.

...then redo from the start for the next set of results.

Figure C.2: IIR on-line manual, page 2

D
Questionnaire
The questionnaire contains the statements that was scored, and the comment
fields used by the testers for comments on IIR. See section 7.5 for answers to
the questionnaire.

In order to show the questionnaire on a single page, some compacting was
applied to it, see figure D.1.

179

180 APPEND IX D QUEST IONNA IRE

Evaluation of Incremental Information
Retrieval service
The Incremental Information Retrieval (IIR) service was built upon a static set of data, collected from 18th
of November 2016 until 10th of January 2017. Please give your evaluation by responding to the
statements below, and add comments about usefulness and possible improvements.

It was useful to be able to save
results I found interesting

1 Disagree completely Agree completely 5

It was useful to be able to
discard results and never see
them again

It was useful to be able to
whitelist domain names

It was useful to be able to
blacklist domain names
This kind of application is
useful to have, as a tool for
searching

In today's search engines we are not able to discard and save results. How did you like being able to do
this in the IIR system?

2) * How did you like having a system where you can save and discard results?

Was there anything you felt was missing from the application? Something that would enhance the use of
the application? Please add your comments below.

3) * Please add your comments on enhancements

IIR is not a fully implemented system. The full system would have the possibility of reformulating search
queries, while keeping the seen/saved/discarded results, including blacklist and whitelist. How useful do
you think such a system might be?

4) * How useful do you think a fully implemented IIR system might be?

Figure D.1: IIR questionnaire

E
Detailed test results
The following plots are detailed representations of how the users tested their
queries. See section 7.6 for the summary of statistics. Each query has a corre-
sponding detailed plot of test results. The x-axis shows days tested, and the
number of days depends on how the user tested the query.

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

1. "Messerschmitt KR200 restoration", free

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

2. "Messerschmitt KR200 restoration", exact

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure E.1: Detailed test results for queries 1 and 2.

181

182 APPEND IX E DETA ILED TEST RESULTS

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

3. "Web search API thesis", free

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure E.2: Detailed test results for query 3, query 4 had no results.

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

5. "Web search thesis", free

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

6. "Web search thesis", exact

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure E.3: Detailed test results for queries 5 and 6.

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

7. "Search API thesis", free

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure E.4: Detailed test results for query 7, query 8 had no results.

183

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

9. "Messerschmitt TG500 for sale", free

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

10. "Messerschmitt TG500 for sale", exact

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure E.5: Detailed test results for queries 9 and 10.

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

11. "winds of winter", free

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

12. "winds of winter", exact

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure E.6: Detailed test results for queries 11 and 12.

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

13. "promise of spring", free

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

14. "promise of spring", exact

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure E.7: Detailed test results for queries 13 and 14.

184 APPEND IX E DETA ILED TEST RESULTS

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

15. "terry pratchett", free

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

16. "terry pratchett", exact

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure E.8: Detailed test results for queries 15 and 16.

0

100

200

300

400

500

600

700

800

900

1000

1 2

17. "liverpool leeds efl", free

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure E.9: Detailed test results for query 17, only 2 days of results examined by tester.
Query 18 - 28 had only one day of results from testing.

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

29. "mobile application health sensor data", free

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure E.10: Detailed test results for query 29, query 30 had no results.

185

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637

31. "mobile phone body area network", free

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure E.11: Detailed test results for query 31, query 32 had no results.

0

100

200

300

400

500

600

700

800

900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

33. "mobile phone sensor research health", free

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure E.12: Detailed test results for query 33, query 34 had no results.

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

35. "forest fairytales", free search

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

36. "forest fairytales", exact

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure E.13: Detailed test results for queries 35 and 36.

186 APPEND IX E DETA ILED TEST RESULTS

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11

37. "tudor politics", free

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11

38. "tudor politics", exact

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure E.14: Detailed test results for queries 37 and 38.

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13

39. "jazz poetry", free

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11

40. "jazz poetry", exact

Total results New results

Seen results Saved results

Whitelisted results Blacklisted results

Auto-discarded results Manually discarded results

Figure E.15: Detailed test results for queries 39 and 40.

F
IIR code and utilities
This appendix contains a summary of all code used in the project. A command
line interface (CLI) utility called countsource¹ has been used to count the
number of source code lines. All command line utilities are written in Go², only
the web service contains more diverse code, since it also contains web client
code and images.

F.1 bingv2batch
This is the data collection application, that was used to collect data through
Bing Search API. See also chapters 4 and 5.

−−−

f i l e t y p e #f i l e s #l i n e s l i n e% s i z e s i z e%
−−−

. go 17 1 004 90.7 30 184 90.7

.md 2 103 9.3 3 093 9.3
−−−

Tota l : 19 1 107 100.0 33 277 100.0

Listing F.1: Data collection application code.

1. https://github.com/borglefink/countsource
2. https://golang.org

187

https://github.com/borglefink/countsource
https://golang.org

188 APPEND IX F I IR CODE AND UT IL IT IES

F.2 bingv2analysis
This is a CLI utility made to analyse data from the data collection phase. It
has produced most of the plots for this thesis, used in appendix A and chapter
5, among others. It has been created using the Go package plot³. This utility
has also created miscellaneous LaTeX tables, based on the collected data, see
appendix A.

−−−

f i l e t y p e #f i l e s #l i n e s l i n e% s i z e s i z e%
−−−

. go 9 1 756 100.0 49 893 100.0
−−−

Tota l : 9 1 756 100.0 49 893 100.0

Listing F.2: Data collection analysis CLI.

F.3 bingv2analysispercent
This is a CLI utility very similar to bingv2analysis. The difference is that all
plots created from this utility shows percentages, used in appendix A. Also, no
LaTeX tables produced.

−−−

f i l e t y p e #f i l e s #l i n e s l i n e% s i z e s i z e%
−−−

. go 8 1 549 100.0 42 878 100.0
−−−

Tota l : 8 1 549 100.0 42 878 100.0

Listing F.3: Data collection analysis CLI, to create percentage-wise plots.

3. github.com/gonum/plot

github.com/gonum/plot

F.4 B INGV2CONVERT 189

F.4 bingv2convert
Utility to prepare the data for the IIR web service. Used early and midway
through the project. Abandoned in the end, when a different data usage
strategy was chosen for the IIR web service, but was very useful for creating
test data.

−−−

f i l e t y p e #f i l e s #l i n e s l i n e% s i z e s i z e%
−−−

. go 7 813 100.0 22 617 100.0
−−−

Tota l : 7 813 100.0 22 617 100.0

Listing F.4: Data collection conversion if collected data into IIR web service data.

F.5 iirweb
This is the actual web service.

−−−

f i l e t y p e #f i l e s #l i n e s l i n e% s i z e s i z e%
−−−

. go 22 1 660 30.1 46 932 22.9

. html 21 895 16.2 38 218 18.7

. j s 13 2 031 36.8 61 182 29.9

. j son 1 26 0.5 484 0.2

. s c s s 4 906 16.4 14 278 7.0

. g i f 1 10 144 5.0

. png 3 31 929 15.6
−−−

Tota l : 65 5 518 100.0 204 735 100.0

Listing F.5: Summary of code used in IIR web service.

F.6 iiranalysis
Made to read test result data from the test database and create a CSV file, used
for creating plots to show / analyse results.

−−−

f i l e t y p e #f i l e s #l i n e s l i n e% s i z e s i z e%
−−−

. go 11 685 100.0 18 955 100.0
−−−

Tota l : 11 685 100.0 18 955 100.0

Listing F.6: Test results analysis code.

190 APPEND IX F I IR CODE AND UT IL IT IES

F.7 Summary
The IIR project contains quite a lot of code, and there has been a substantial
amount of coding work put into this thesis.

Code Lines of code
bingv2batch 1 107
bingv2analysis 1 756
bingv2analysispercent 1 549
bingv2convert 813
iirweb 5 518
iiranalysis 685
Total 11 428

Table F.1: Summary of number of code lines

Side note:
At the start of the project, the web service was written with nodejs⁴ including
expressjs⁵, handlebarsjs⁶ and mongoosejs⁷. This nodejs based code actually
adds to the server side code, but is not included here.

4. https://nodejs.org
5. https://expressjs.com
6. https://handlebarsjs.com
7. https://mongoosejs.com

https://nodejs.org
https://expressjs.com
https://handlebarsjs.com
https://mongoosejs.com

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Listings
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Research question
	1.3 Approach
	1.3.1 Description
	1.3.2 Selecting search method

	1.4 Contributions
	1.5 Limitations
	1.6 Outline

	2 Background
	2.1 How search engines work
	2.1.1 Building and updating the index
	2.1.2 Indexing
	2.1.3 Querying
	2.1.4 Ranking

	2.2 Using traditional on-line search
	2.3 Web scraping
	2.4 Search engine APIs
	2.4.1 Search engine API status
	2.4.2 On-line search vs search APIs

	2.5 Related work

	3 Problem overview
	3.1 Query and QueryRun
	3.2 Search example
	3.2.1 Results graph

	3.3 User search
	3.4 Goal

	4 Architecture and design
	4.1 Design goal
	4.2 Architecture
	4.3 How IIR search works
	4.3.1 Search details

	4.4 iir features
	4.4.1 Result status
	4.4.2 Ranking
	4.4.3 Result folders

	4.5 Client design
	4.6 System requirements
	4.6.1 Web server hardware
	4.6.2 Storage

	4.7 Selecting search engine to work with
	4.8 Hypothetical search progression

	5 Data collection and analysis
	5.1 Why data collection
	5.2 Queries
	5.3 The anatomy of a query
	5.4 Data collection environment
	5.4.1 Hardware
	5.4.2 Database
	5.4.3 The batch job
	5.4.4 Updating the database

	5.5 Data collection problems and errors
	5.5.1 Typing error
	5.5.2 Premature termination
	5.5.3 Exact search
	5.5.4 Connection error
	5.5.5 Parameter incorrect
	5.5.6 Parse error

	5.6 Batch result analysis
	5.6.1 Data collection periods
	5.6.2 Data selected for analysis and testing
	5.6.3 Short analysis of new results
	5.6.4 Result overlap between days
	5.6.5 Duplicates

	5.7 Batch result patterns
	5.7.1 Many free results - many exact
	5.7.2 Many free results - no exact

	5.8 Simulation of usage

	6 Implementation
	6.1 Technology
	6.1.1 MongoDB
	6.1.2 Go programming language
	6.1.3 Go packages
	6.1.4 Web client
	6.1.5 Server

	6.2 Database architecture
	6.3 Front-end
	6.4 Back-end
	6.5 Using Bing Search API
	6.5.1 Interfacing with the API
	6.5.2 Go wrapper for Bing Search API
	6.5.3 Calling Bing Search API
	6.5.4 Search during the test phase

	6.6 Development environment
	6.7 Code summary

	7 Testing
	7.1 User testing
	7.2 Manual for using IIR
	7.3 Instructions to the testers
	7.4 Questionnaire
	7.5 Questionnaire result
	7.5.1 Statement scores
	7.5.2 Replies in comment field 1
	7.5.3 Replies in comment field 2
	7.5.4 Replies in comment field 3
	7.5.5 Questionnaire result summary
	7.5.6 Author testing

	7.6 Testing statistics
	7.7 Data analysis
	7.7.1 Test result plot details
	7.7.2 Few QueryRuns
	7.7.3 Energetic usage pattern
	7.7.4 Relaxed usage pattern
	7.7.5 Other patterns

	8 Discussion
	8.1 Findings
	8.2 The approach to search
	8.3 Implementing the prototype
	8.3.1 Storage
	8.3.2 Usability
	8.3.3 Reliability
	8.3.4 Scalability

	8.4 Data collection
	8.4.1 Ranking
	8.4.2 Query quality

	8.5 Test results
	8.5.1 Exact search
	8.5.2 Analysing new results
	8.5.3 Author's comments on testing iir

	8.6 Problems, bugs and errors
	8.7 Is it commercially viable?

	9 Future work
	9.1 New features
	9.1.1 Content preview
	9.1.2 Rules or filters
	9.1.3 White- or black-listing
	9.1.4 Analysis of user interactions
	9.1.5 Handling many queries and results
	9.1.6 Miscellaneous features

	9.2 Refactoring
	9.2.1 Front-end
	9.2.2 Back-end
	9.2.3 Unit testing
	9.2.4 Error handling

	9.3 Change in type of application
	9.4 Search Engine

	10 Conclusion
	Bibliography
	A Data collection results
	A.1 Queries and the reasoning behind them
	A.2 Full data collection results
	A.2.1 Full data collection results, totals
	A.2.2 Full data collection results, details

	A.3 Plots for results
	A.3.1 Summary plots for all queries
	A.3.2 Summary plots for all queries, with errors
	A.3.3 Summary plots for each query

	B IIR testing instructions
	C IIR online manual
	D Questionnaire
	E Detailed test results
	F IIR code and utilities
	F.1 bingv2batch
	F.2 bingv2analysis
	F.3 bingv2analysispercent
	F.4 bingv2convert
	F.5 iirweb
	F.6 iiranalysis
	F.7 Summary

