
Faculty of Science and Technology
Department of Computer Science

Neo: Virtual Object Modeling using Commodity Hardware
—
Thomas Bye Nilsen
INF-3990 - Master’s Thesis in Computer Science
15th of May 2019

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2019 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“You are the universe expressing itself as a human for a little while.”
–Eckhart Tolle

“It pays to keep an open mind, but not so open your brains fall out.”
–Carl Sagan

“How come you feel so alone
Is it the rage inside?”

–Anders Fridén

Abstract
Recent developments in augmented reality technology have paved way for new
applications in a wide range of areas. These include the commercial markets,
medicine applications, military applications and education. The technology pro-
vides immersive images to enhance our perception of the world. Augmented
reality addresses challenges related to problem-solving by seamlessly integrat-
ing digital images into real-world images.

In the context of construction andmaintenance industry, project inspections can
be time-consuming and tedious. These inspections involve usages of expensive
and specialized hardware. Some inspections even use physical blueprints and
drawings along with standardized measurement tools. This approach can pose
practical challenges and be prone to errors.

In this thesis we present Neo, a surface reconstruction system on commodity
hardware. It utilizes augmented reality technology by scanning physical sur-
roundings and reconstructs them as virtual objects. They are displayed on top
of the camera’s live preview of the real world. By using a pipeline architecture
we model the physical surroundings in terms of their shapes and visual appear-
ances. Cyber-physical information about the reconstructed virtual models are
annotated in real-time. Evaluations of the system show us potentials to create
realistic copies of physical objects.

Acknowledgements
First and foremost I want to thank my supervisor Robert Pettersen for his
guidance, advice and continuous feedback throughout writing this thesis. I
also want to thank the members of the IAD research group for social meetups,
Monday meetings, inputs and feedback.

Further I want to thank my parents for their support and patience throughout
my time at University of Tromsø. I want to thank my friends for providing me
with friendships and social company. My classmates have been very important
for me to achieve this. A special thanks goes to Robert Nilsen and Therese
Wikbo. Long drives into the night are still to come.

I would also like to thank Nikolai Magnussen for dabbing throughout the year
and Ole Jakob Hegelund for supplying me with unhealthy amounts of Red
Bull.

Lastly, I would like to thank the staff at the Department of Computer Science
at University of Tromsø for providing a fantastic learning environment!

Let these words be remembered.

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

List of Code Listings xv

List of Definitions xvii

1 Introduction 1
1.1 Problem Definition . 2
1.2 Scope and Limitations . 2
1.3 Methodology . 3
1.4 Context . 4
1.5 Outline . 4

2 Background 7
2.1 Augmented reality . 7

2.1.1 AR tracking . 8
2.1.2 Physical environment 9
2.1.3 AR on smartphones 9

2.2 Mobile AR platforms . 10
2.2.1 Google Tango . 10
2.2.2 Google ARCore . 11
2.2.3 Apple ARKit 2 . 12

2.3 Related work . 12
2.3.1 Augmented reality in AEC/FM 12
2.3.2 Mesh generation . 13

3 Design and Architecture 15
3.1 Design components . 16

vii

viii CONTENTS

3.1.1 Plane detection . 16
3.1.2 Plane selection . 17
3.1.3 Triangle construction 18
3.1.4 Texture construction 18
3.1.5 Polygon construction 20
3.1.6 Polygon mesh . 20
3.1.7 Virtual copy construction 21
3.1.8 Managing virtual copies 22

3.2 Architecture . 22
3.2.1 Plane reconstruction 23
3.2.2 Curved surface reconstruction 23

4 Implementation 25
4.1 Environment . 25
4.2 3D reconstruction pipeline 26

4.2.1 Plane detection . 27
4.2.2 Plane selection . 27
4.2.3 Triangle . 27
4.2.4 Texture . 29
4.2.5 Polygon . 29
4.2.6 Virtual copy . 30
4.2.7 Polygon meshing . 31

4.3 Application . 32
4.3.1 Planar surface reconstruction 32
4.3.2 Polygon meshing . 33

5 Evaluation 35
5.1 Experimental environment 35

5.1.1 Android Platform 36
5.1.2 Tools . 36
5.1.3 Surfaces . 37
5.1.4 Scope/Limitation of experiments 38

5.2 Experiments . 39
5.2.1 Initialization gesture 41
5.2.2 Position coherence 44
5.2.3 Point cloud completion time 45
5.2.4 Area calculation . 46
5.2.5 Volume calculation 48
5.2.6 Texture quality . 49
5.2.7 Point cloud . 51

5.3 Qualitatively assessment of Neo 52
5.3.1 Planar surface . 53
5.3.2 Curved surface . 53

5.4 Summary . 54

CONTENTS ix

6 Conclusion 57
6.1 Achievements . 57
6.2 Findings . 58
6.3 Future work . 58

A Virtual space abstractions 61
A.1 World space . 61
A.2 Nodes . 62
A.3 Plane . 63
A.4 Triangle . 65
A.5 Polygon . 65
A.6 Virtual copy . 67
A.7 Graphical texture . 68
A.8 Properties of the virtual copies 69
A.9 Point cloud . 70
A.10 Polygon mesh . 71

A Source Code 73

Bibliography 75

List of Figures
2.1 RV continuum . 8
2.2 Android architecture. 11
2.3 Constructor Developer Tool app 13

3.1 Architecture of Neo . 15
3.2 Plane detection timeline . 16
3.3 Display plane . 17
3.4 Polygon triangulation . 18
3.5 Texture design . 20
3.6 Triangles to polygon . 21
3.7 Polygon triangulation pipeline 23
3.8 Polygon meshing pipeline 23

4.1 Android emulator . 26
4.2 Plane detection spotlight 27
4.3 Horizontal triangle . 28
4.4 Polygon vertices and centroid 30
4.5 Plane reconstruction UI . 33
4.6 Polygon reconstruction UI 34

5.1 Huawei P20 smartphone 36
5.2 Lux-meter . 37
5.3 Experimental tools . 38
5.4 Test surfaces . 38
5.5 Curved object . 39
5.6 Wood wall . 39
5.7 Initialization gesture . 42
5.8 Vertical color sheets . 43
5.9 Virtual spheres . 45
5.10 Distance measurement . 45
5.11 Area experiment setup . 47
5.12 Area measurement . 47
5.13 Uppermost polygon . 49
5.14 Polgyon textures . 50

xi

xii L IST OF FIGURES

5.15 Point clouds . 52
5.16 Triangulated virtual copy 53
5.17 Meshed virtual copy . 54

A.1 Convex plane . 64
A.2 Triangles . 66
A.3 Triangles in a convex polygon 67
A.4 Triangle tree . 67
A.5 Virtual copy’s tree of polygons 68
A.6 Texture operation . 69

List of Tables
5.1 Experimental surfaces . 37
5.2 Environmental conditions 1 42
5.3 Environmental condition 2 46
5.4 Area measurements . 48
5.5 Point cloud mesh quality 52

xiii

List of Code Listings
4.1 Traingle class . 28
4.2 Polygon class . 29
4.3 Virtual copy class . 30
4.4 Mesh point . 31
4.5 Polygon mesh computation 31

xv

List of Definitions
4.4.1 Initialization gesture . 26
4.4.2 Plane detection spotlight 26
4.4.3 Abstract sphere . 27

A.A.1 Node . 62
A.A.2 Plane . 63
A.A.3 Triangle . 65
A.A.4 Polygon . 66
A.A.5 Virtual copy . 67
A.A.6 Texture . 68
A.A.7 Point cloud . 70
A.A.8 Mesh point . 70
A.A.9 Polygon mesh . 71

xvii

1
Introduction
In recent years we have seen an increased interest in Augmented reality (ar)
technology. The technology has seen a growth in usage in several areas – com-
mercial business, entertainment, military applications andmedical applications.
One of the reasons for this is the support for ar on off-the-self mobile hardware,
as opposed to stationary hardware.

Another area that can benefit from ar technology is the Architectural, Engi-
neering, Construction, and Facility Management (aec/fm) industry. Today
the industry faces challenges related to constructing new buildings and per-
forming maintenance on existing buildings. Personnel in this area need access
to detailed information regarding construction projects. The access to the infor-
mation varies – physical blueprints, construction drawings and data in different
formats maintained by different systems. This poses several challenges to the
personnel working in these environments.

Performing construction site assessments can also be a tedious and time-
consuming process with visual inspections. The physical drawings can be out-
of-date and the measurement process using conventional tools can be prone
to errors [1]. Mentally bridging the gap between physical 2D drawings and
facility site objects can be a challenge of its own. Making informed decisions
require precise data with a certain level of detail.

Therefore, researchers are adopting emerging technologies in the aec/fm
industry. Digitized constructionmodels, or Building InformationModels (bims),

1

2 CHAPTER 1 INTRODUCT ION

have been used extensively during construction projects [2]. Rich information
about building sites helps personnel follow up on construction projects. In light
of the importance of performing construction projects and facility inspections
accurately, we see a need to remove error-prone labor and to improve the
effectiveness of construction projects.

Given the challenges on following up and inspecting construction projects,
we see a potential for using ar in the field of aec/fm. A motivation is that
commodity hardware is becoming increasingly available and cheaper.

This thesis presents Neo, an ar architecture providing surface reconstruc-
tion capabilities on off-the-shelve commodity hardware. The architecture is
intended to be realized on inexpensive mobil devices, addressing the issues
related to building-site inspections. We propose that Neo will overcome these
issues by utilizing ar in an agile and practical manner.

1.1 Problem Definition
Currently, the challenge of performing surface reconstruction is approached
using specialized hardware. The hardware can potentially be expensive and
require trained personnel. Some attempts require deploying markers in the
physical environment before running the system. We wish to investigate an
approach to the same problem using inexpensive commodity hardware in an
marker-less approach. We formalize the problem statement as follows:

This thesis will design, implement and evaluate surface reconstruction capability
on commodity hardware.

1.2 Scope and Limitations
This thesis shall specify requirements, design and implementation of a system
that performs surface reconstruction in real-time on commodity hardware. The
implementation will focus on commodity hardware that consists of a camera
and a touchscreen display. The system shall capture virtual 3D models based
on physical surroundings.

The system will render the virtual models in real-time on an overlay on the
display. It provides cyber-physical information about the reconstructed surfaces
by annotations. The information will be computed using the data captured
from the camera. We focus on mobile platforms because they have sufficient

1.3 METHODOLOGY 3

support for Mobile Augmented Reality (mar) applications.

We require the system to support small surface areas. These surfaces are limited
to be planar horizontal and vertical surfaces. We will consider simple curved
surfaces in a limited manner. We limit the curved surfaces to not contains holes.
The inner structures underneath surfaces are ignored as well.

We do not store the virtual models or process them any further beyond the
time of capturing. The issue of scalability will also remain beyond the scope of
this thesis. However, we defer these problem to future work.

1.3 Methodology
In the report final report of the Task Force on the Core of Computer Science, the
discipline of computer science is described. A commonly accepted definition
of computing as a science is “the discipline of computing is the systematic
study of algorithmic processes that describe and transform information: their
theory, analysis, design, efficiency, implementation, and application” [3]. This
description of computing as a discipline was presented in 1989 by the Task Force
on the Core of Computer Science, formed by ACM and the IEEE Computer Society.
The report also outlines three major paradigms as a part of the field.

Theory is rooted in mathematics. The objects of study and their relationships to
each other are characterized through a definition. Their behvaior is described
by forming hypotheses. These hypotheses are subsequently proven or falsified
to develop coherent, valid theories.

Abstraction is rooted in the experimental scientific method. It is based on
four steps – forming a hypothesis, specifications, design and experiments, and
finally analyzing the results.

Design is rooted in engineering and consists of four steps – state the require-
ments, specifications, design and implement the systems and finally test the
system. These steps are iterated if the system does not meet the require-
ments.

This thesis is rooted in design. We describe the requirements Neo needs to
meet in order to solve our problem statement. We specify the specifications
of Neo using knowledge about ar and commodity hardware. From this, we
design a prototype to develop and test. We perform experimental evaluation
to verify that our system solves the problem statement.

4 CHAPTER 1 INTRODUCT ION

1.4 Context
This project is written as a part of the Information Access Group at University
of Tromsø. The group targets research on large-scale information access appli-
cations. The targeted topics range from security, fault-tolerance and privacy.
The systems on which application run are public and private cloud comput-
ing environments. This section gives a brief summary of the research group’s
previous scientific work.

The group has done extensive research in sports science. One of the project is
Bagadus [4], a prototype system used for capturing soccer player statistics and
human expert annotations. The system allows for extracting video playbacks
from tagged game events or player statistics. The system employs stitching
of multiple video sources to form a full view of the soccer pitch. The system
integrates with the ZXY Sport Tracking by automating some of the manual
labor related to analyzing the athletes’ performance. The system is deployed
on Alfheim Stadium in Tromsø, Norway. The project was developed in collab-
oration with Simula Research Laboratory in the University of Oslo.

The ability to zoom in and pan on details using the video sub-system in Bagadus
is found in [5]. From the initial cylindrical view, the image can be zoomed in for
greater details. Another part of Bagadus, Muithu [6] is a touch-based system
used to perform real-time annotations on handheld devices. In the context
of Bagadus, the annotations capture events using the video-playback pipeline.
We relate Neo to the two project involving capturing imagery in real-time and
annotations using handheld devices with touch-displays.

1.5 Outline
The remainder of this thesis is structured as follows:

Chapter 2 contains the required background information regarding ar and
mobile platforms. We look at how mobile platforms use ar technologies.
Additionally, related work to our thesis is presented.

Chapter 3 outlines the design and architecture of Neo. By considering the
problem statement and using the abstractions provided in Appendix A, we
design the architectural components. Each of these components aims at solving
a sub-set of the overall problem. Then, we describe how the we connect the
components to solve the problem.

Chapter 4 describes the implementation of Neo, giving details of all the com-

1.5 OUTL INE 5

ponents in the architecture. We highlight the major implementation details of
our system.

Chapter 5 contains an experimental evaluation of the system. We perform
experiments on Neo to investigate the capabilities of Neo to solve our problem
statement. We perform qualitative and quantitative experiments using an
experimental environment. A discussion of the experimental results and a
summary follows.

Chapter 6 concludes our thesis and outlines future work.

2
Background
The field of Augmented reality (ar) have seen new development and innovation
over the recent years. One of these developments is that ar support is becoming
increasingly available on inexpensive commodity hardware. Hand-held devices,
in particular smartphones, have been equipped with enhanced hardware and
software supporting ar. Our thesis aims to determine the extent to which
surface reconstruction can be performed using commodity hardware, and
whether the reconstructed 3D models can be rendered on an overlay of the
physical world.

This chapter covers the basic principles of ar technology. First, key terms and
concepts are introduced. Then, we look at related work we draw inspiration
from.

2.1 Augmented reality
Azuma [7] and Milgram [8] define ar as the ability to combine real-world
imagery with computer-generated graphics in real time. The Reality-Virtuality
continuum [8] depicted in Figure 2.1 spans between the real world and a
completely synthetic and virtual world. ar is closer to the real world in the con-
tinuum because the real world is the predominating source of perception.

An ar experience involves immersing the user with virtual objects in the

7

8 CHAPTER 2 BACKGROUND

Figure 2.1: RV continuum coined by Milgram [8].

real world. In order to immerse the user, these objects need to be aligned and
positionedwith respect to physical surfaces. One of the goals of ar is to enhance
the user’s perception by integrating virtual objects with the surroundings.
Computer vision renders 3D virtual objects from the same viewpoint from
which the images of real scenes are being taken by a tracking camera [7].

Several different techniques are used to achieve this, namely tracking and
reconstruction. First, tracking involves recognizing fiducial markers, optical
images or feature points to estimate the device’s pose in the world space. Then,
based on data obtained from tracking, a world coordinate system is constructed.
The world coordinate system is used to logically define virtual objects to be
superimposed.

ar overcomes the problem of users having to mentally bridge the gap between
physical reality and relevant digital information. ar is used in several areas,
ranging from education, entertainment, medicine, military application and
architecture [9]. Relevant domain-specific information is annotated to enhance
the user’s perception.

There are three main paradigms that realize ar technology from a hardware
perspective [9]. The first paradigm involves a Head Mounted Device (hmd); a
device attached to a user’s head such as ar-glasses that can project computer
generated graphics on semitransparent mini-monitors placed between the eyes
and lenses. Examples on hmd hardware components are Google Glass [10]
and Microsoft Hololens [11]

The second paradigm uses mobile devices which encompasses all the needs of
ar; camera, display, computing power and software. This is contrary to the
first paradigm in which the user is to a greater extent immersed in ar because
the display is positioned close to the eye. The third paradigm is monitor-based,
and is comparable to the previous, but camera, device and computing power
is not necessarily encompassed into one single device.

2.1.1 AR tracking
There are two categories of tracking in ar, namely marker-based and marker-
less tracking [12]. Marker-based tracking involves attaching markers in the

2.1 AUGMENTED REAL ITY 9

physical world prior to augmentation. An example is Fiducial Marker Based
(fmb) tracking which requires the markers to be continuously visible through-
out the augmentation. These markers can be QR-codes [13].

Marker-less tracking on the other hand, is based on the natural characteristics
of the physical environment. These visual features are highly distinguishable
properties of physical objects’ appearances. Mathematical algorithms are used
to formally determine these features [12]. Recent development has led to a
shift from marker-based tracking to marker-less tracking [14].

2.1.2 Physical environment
A fundamental basis for conducting research of ar is an understanding of the
physical world in which ar is applied. The physical environment subjected for
ar can vary widely in characteristics depending on usage. The physical environ-
ments can contain an arbitrarily number of shapes of different categories, such
as planes and curved surfaces. For our contribution we expect such surfaces to
occur in the physical environment. Construction sites and common workplace
rooms are examples of such environments. The shapes of the surfaces in the
physical environment have certain characteristics associated with them, such
as colors of the surfaces and the surrounding light conditions. The surfaces
vary in size, color, orientation and position.

We base our perception of physical objects on their surface. From this we
gain a visual understanding of their size, color, orientation and position. When
we move the physical objects around we use the surfaces as a basis for their
placements on a location. Using this property we allow the surfaces along
with their characteristics, to be a basis for our understanding of the physical
environment.

2.1.3 AR on smartphones
In recent years ar on smartphones has become more available in mainstream
markets [15]. Smartphones are the dominant platform for providing Mobile
Augmented Reality (mar) experiences to users.

mar has been used in several areas. In 2016, the mobile application Pokémon
Go used ar technology to display virtual Pokémons combined with real-time
images of the real world [16], using location-based techniques to determine po-
sition of the phone before rendering the statically defined virtual objects.

ar Browser Software Development Kits (sdks) [12] use geo-located augmenta-

10 CHAPTER 2 BACKGROUND

tion similar to PokémonGo. However, they usemarker-based tracking. ARmedia
SDK [12] use feature-based visual tracking to understand the physical environ-
ment. It utilize Infrared camera (irc), depth perception and inertial sensors
for coherent augmentation [17]. Both planar images and more complex 3D
objects, regardless of their size and geometry, can be scanned. This is contrary
to earlier methods in which the physical environment was prepared prior to
augmentation.

Since Pokémon Go arrived, several commercial mobile ar applications have
been developed. Nike Fit uses ar to measure the end-users’ feet to find suitable
shoes [18]. Posten Norge uses ar to visualize the exact measurements of a
recipient’s package. The intention is to assist the recipient in figuring out
whether the package can fit into their means of transportation [19]. IKEA
Place uses ar to visualize furniture in a physical space [20]. The 3D models of
furniture are projected onto surfaces to see how they fit in with the rest of the
environment. Common for above-mentioned applications are that they aim to
solve practical every-day challenges using ar technology.

2.2 Mobile AR platforms
There are amultitude ofmobile platforms available for research and commercial
purposes. Android is one of the most widely used platforms on the markets. It
is an open source, Linux-based software stack created for mobile phones and
other embedded systems [21, 22]. The foundation for Android is the underlying
Linux kernel providing security, low-level memory management, network stack
and driver model. An overview of the Android architecture can be seen in
Figure 2.2

Applications running on top of the software stack utilize the Java Application
Programming Interface (api) framework. The feature-set of the Android Oper-
ating System (os) is exposed through the api. The Android Runtime (art) ex-
ecutes the Dalvik Executable format and Dex bytecode specification [24].

2.2.1 Google Tango
Google Tango is an ar computing platform developed by Google. It utilizes
computer vision to enable mobile devices to detect their position in physical
environment without using Global Positioning System (gps) or external sen-
sors [25]. It enables 3D mapping, indoor navigation, ar and physical space
measurement on inexpensive specialized hardware devices. It is built on the
concepts of motion tracking, depth perception and area learning. An ir depth

2.2 MOBILE AR PLATFORMS 11

Figure 2.2: High-level overview of the Android architecture [23].

sensor, a gyroscope, an acceleratormeter and image processing algorithms are
combined to make Tango understand the physical world [26]. As of writing,
Google Tango has been discontinued by Google, and Google is advocating
ARCore as its replacement.

2.2.2 Google ARCore
Google ARCore is a framework used to build ar applications on the Android
platform [27]. It uses marker-less tracking to calculate the smartphone’s pose.
The framework enables a smartphone to perform motion tracking, environmen-
tal understanding and light estimation. Google ARCore tracks visual features
in the physical world and build its understanding from them. Orientation and
distances are measured as well [27].

A key difference between Google ARCore and Google Tango is that the latter
requires specialized hardware [28]. As stated in [26], Google Tango is able
to acquire point clouds from surface scans and construct polygon meshes
from them. A point cloud is a set of points in a three-dimensional space that
represents a physical space [29]. When enough points are brought together,
interesting features can begin to arise. Google ARCore provides debugging
features for acquiring point clouds [30], however at the time of writing polygon
meshing are not supported.

12 CHAPTER 2 BACKGROUND

2.2.3 Apple ARKit 2
Apple ARKit 2 is an ar platform aimed for mobile iOS devices. It uses device
motion tracking, camera scene capture and image tracking to enable ar experi-
ence. ARKit 2 has extended the features provided by Apple ARKit 1 by enabling
image recognition. It also adds the ability to recognize known objects, like
sculptures and furniture [31]. While Apple ARKit is aimed specifically at the
iOS platform, Google ARCore supports the Apple platform as well [32].

2.3 Related work
This section contains work that is related to this thesis. We look at interesting
findings from the projects and position our contribution to theirs.

2.3.1 Augmented reality in AEC/FM
In the Architectural, Engineering, Construction, and Facility Management
(aec/fm) industry ar has been used to visualize 3D models acquired from
scans of physical surfaces. [33] proposes HD4AR, a model-based system used
to reconstruct models of physical construction objects based on photographs
and 3D point clouds. The construction objects can be walls, doors, ceilings and
floors.

When users want to query cyber-information of a construction object, pho-
tographs is submitted to the system. The system is able to recognize construc-
tion objects by applying feature detection between photographs and the point
cloud. From this, the camera’s pose is determined to find the position of the
user. The recognition of construction and annotated cyber-information are
overlaid on top of the photographs.

Users can query relevant information from an existing Building Information
Model (bim), a digital representation of a physical building [34]. By tapping
a photograph on a display, the information is annotated. Annotation of data
about the objects and use of point clouds are interesting for our thesis. However,
we do not involve bim models, we consider the virtual objects directly when
we want to query relevant cyber-information.

[35] uses the Kinect v2 sensor for RGBD data acquisition to create a model of
the Construction Information Technology (cit) Lab at Cambridge University.
A corresponding bim is manually created from the same room using a desktop
application. When the Kinect v2 device has reconstructed the environment to

2.3 RELATED WORK 13

its greatest extent, the corresponding bim was transparently overlaid. The
result shows the planned construction provided by the bim, combined with
the virtual models provided by the data acquisition of the physical construction
objects.

For the data acquisition and displaying virtual objects we use a similar approach.
The environment is scanned for both planar surfaces and point clouds using a
marker-less tracking approach. However, we do not involve back-end services
to accomplish similar results.

Constructor Developer Tool [36] is a Tango-based app that allows the mobile
device to scanmeshes of physical environment and export the data into different
file formats. Wayfair™ View [37] is another mobile application built on Google
Tango that can render 3D models of furniture in the physical world. Common
for these two applications is the ability to create a 3D model of the world.
Figure 2.3 shows the Constructor Developer Tool application in use.

We aim to accomplish similar effects as these applications, but we strive to
implement software that can run on off-the-self commodity hardware. Google
Tango requires specialized hardware and software.

Figure 2.3: a) Global view of the 3D mesh. b) Point cloud of the mesh. c) Zoom on
the textured triangulated surface. d) Colored wireframe model [26].

2.3.2 Mesh generation
[38] created a system for mesh generation using Mobile Edge Computing
(mec). As a part of the project, they use smartphones compatible with Google
Tango [25]. The smartphones collected point clouds and offloaded them to

14 CHAPTER 2 BACKGROUND

mec units. They used the Point Cloud Library (pcl) to reconstruct a mesh
from the point clouds.

pcl is a library used to perform surface reconstruction from point clouds [39].
It use a set of underlying libraries to triangulate and visualize reconstructed
surfaces, and is available on several platforms.

Our thesis aims to performmesh generation using a simpler point cloudmeshing
algorithm. We also aim to accomplish this on off-the-self commodity hardware,
and avoid the requirements of specialized hardware in Google Tango. However,
the principle remains the same; reconstructing physical objects with a wide
range of surfaces to consider.

3
Design and Architecture
This chapter outlines the overall architecture of Neo. The problem at hand is
to test the ability for commodity hardware to perform scanning of physical
surfaces. We design Neo to scan physical surfaces and reconstruct them as
virtual entities on commodity hardware. We design the individual components
to be modular which makes the application easier to develop, extend and
maintain.

On Figure 3.1 we see the how the commodity hardware gains an environmental
understanding from interpreting the raw imagery from the on-board camera.
We represents the interpretation of the surroundings as abstractions and uses
them to reconstruct the surfaces. Then, they are rendered on the display.

Camera input
Environmental

understanding

Surface

reconstruction

Model

rendering

Figure 3.1: High-level overview of the architecture.

The complexity of the problem requires a divide-and-conquer approach. From
the design components we design a pipeline architecture. A motivation for
using a pipeline architecture is to achieve a stepwise approach to solving the
problem. The complexity of problem requires it to be broken down into smaller,
manageable parts.

Each pipeline step has a well-defined area of responsibility to reduce com-

15

16 CHAPTER 3 DES IGN AND ARCHITECTURE

plexity and elevate the abstraction level. The loosely connected components
enable data to be processed independently. The modularity adheres to Single
responsible principle (srp) [40], and makes it easier to detect bottlenecks and
parallelize the execution of individual steps if need arise.

3.1 Design components
The design components are loosely connected abstractions, each of which
encapsulates data and operations on that data. They provide means of commu-
nication through well-defined interfaces. Separating data and operations on
them enables a clearly defined area of responsibility each component must pro-
vide. Each component consider only parts of the overall problem. A side-effect
of using srp is reuse of components. We design the components to enable
modularity between them.

We follow Dependency inversion principle (dip) [40] by designing the inter-
faces in the design components. The design is based on abstractions provided
in Appendix A. Changes in implementations in one design component do not
result in side-effects in other design components.

3.1.1 Plane detection
Plane detection is a procedure in which the planar surfaces of physical objects
are detected and represented as an abstraction. The representation of a plane
is adheres to Definition A.2. The notion of a plane is the abstraction through
which physical planar surfaces are interacted with. In particular, the vertices
and centroid have well-defined positions in the world space.

The process can be represented as a linear timeline where planes are defined
at arbitrary points in time. As soon as a plane is defined it is accessible as an
entity as illustrated in Figure 3.2.

t0 tn

p1 p2 p3 p4 p5 p6

Figure 3.2: The timeline of planes being detected as time indefinitely progresses.

As the camera hovers in proximity of physical surfaces, the plane detection
system improves its understanding. As time progresses, new planes are defined

3.1 DES IGN COMPONENTS 17

and existing planes expanded. The planes are visualized on an overlay on top of
the camera’s view of the physical environment. Figure 3.3 shows a display with
a graphical representation of a plane on it. Rendering a virtual plane is required
because the user should be able to see the current state of the plane detection.
Hovering the camera in uncharted areas expands the rendered plane.

Figure 3.3: The display renders a transparent polygon stretched along the physical
floor [42].

There exists an arbitrary number of planes at the same time, each of which
behaves independently. The planes can expand as time progresses indefinitely.
As stated in Definition A.2, a plane can subsume another plane. This occurs
when the one plane extends into the area covered by another plane.

We assume a plane following Definition A.2 is defined when its vertices fit the
edges and vertices of the physical object. Asserting for whether they fit or not is
made by visualizing the plane relative to the physical surface on the hardware
display. Because the plane detection process is a best-effort understanding of
the physical environment, we do not extend the logic any further. Determining
whether a plane is sufficiently defined is a qualitative decision based on its size
relative to the corresponding planar physical surface.

3.1.2 Plane selection
This pipeline step is invoked whenever a plane is selected at an arbitrary point
in time. The rendering of planes enables the end-user to see the plane’s size
and position, relative to the physical surface. When the user decides the plane
rendered on the screen fits the edges of the physical surface, the plane is
selected.

The selection is made by a touch gesture on the touchscreen. There are two
possible situations plane selection occurs in. Either the floor plane or any other
plane are defined. The floor plane is the plane which corresponds to the floor
in the physical environment. The floor plane is the plane used to compare the
difference in height to other planes. This is needed for determining the volume
of virtual copies.

18 CHAPTER 3 DES IGN AND ARCHITECTURE

Determining which physical surface is the floor plane is a qualitative decision
made by the user. From this, there is no formal definition of a floor plane. The
floor plane needs to be horizontal. Any other planes will behave equally as the
floor plane. In addition, it is possible to position nodes anywhere, relative to
the floor plane.

3.1.3 Triangle construction
As claimed in Definition A.4, there exists a set of homogeneous triangles that
makes up a polygon. The homogeneity is that all triangles follow the same
properties specified in Definition A.3. To construct a triangle adhering to
Definition A.3 using a general approach we assign values to its numerical
attributes. More precisely, a triangle can be constructed using any two adjacent
vertices and the centroid of a plane. Figure 3.4 shows a plane with five vertices
and a centroid. Using the centroid and two vertices we create a triangle.

A

B
C

A

B
C

Figure 3.4: Illustration of how a triangle can be created using the polygon’s vertices
and its centroid. The polygon’s centroid becomes one of the triangle vertex.

In the polygon to the left, A is considered a centroid. In the polygon to the
right, A is both the polygon’s centroid and a triangle’s vertex. To begin with,
the position of Vertex A is positioned at the plane’s centroid. Vertex B and C
are positioned on two adjacent vertices. Consequently, the triangle overlaps
a subset of the plane’s interior. In addition, a texture needed for rendering is
supplied upon rendering a triangle.

3.1.4 Texture construction
The foundation for drawing textures on a triangles are Definitions A.1, A.2
and A.3. For each invocation, exactly one triangle is considered. The live
camera preview draws the texture of its current view of the physical world,
given a position and direction in world space.

To create the texture of a triangle, we make use of the live camera preview.
The image contains at least a plane’s entire view surface. Consequently, there
exists a subset that can be used as textures to all triangles of a polygon. For

3.1 DES IGN COMPONENTS 19

each triangle, the image needs to be cropped to extract the texture contained
in the image.

At the time of capturing, it visualizes the physical surface as seen from the
camera. Any movements of the camera after creation will not change the
texture when the triangle has been rendered.

However, movements will change the texture’s appearance. This is because
the triangle remains stationary in the world, relative to movements of the
smartphone camera. This effect mimics the visual appearance of a physical
surface when an observer moves relative to it. In particular, the texture remains
stationary in the same way the visual appearance of a physical surface remains
stationary.

The quality of the texture depends on the angle of view relative to the surface.
If the screenshot of the physical surface is captured when the camera view is
perpendicular relative to the surface, the texture is not distorted. However, as
the angle between the camera and the surface approaches a straight alignment
relative to each other, the texture becomes distorted. The distortion originates
from the keystone effect, in which there is a misalignment between the surface
and the projection of an image [43]. Here, we capture an image from a
misaligned surface. However, the misalignment remains the same.

The width of the view also affects the quality. If the physical object is relatively
large, the texture quality closer to the edges can decrease. This effect comes
from the fact that the view of the surface becomes more distorted as the camera
views it from a near-parallel angle.

The illustrations in Figure 3.5 demonstrate how the effect behaves, as seen
from the camera’s position relative to the surface. The black line depicts the
ray coming from the camera. Here, the point at the surface seen by the user
intersects with the ray. Figure 3.5a depicts a situation in which the quality is
optimal with a distance of d. In this case, the portion of the surface covered by
the center of the line starting at the camera lens is optimal. A perpendicular
angle at which the camera views the surface is optimal.

Figure 3.5b shows that distortion can occur by capturing an image from a
sub-optimal angle. A sub-optimal angle of θ is an an angle whose value is
significantly different from 90 degrees at some distance d. Figure 3.5c shows
a Field of View (fov) in which the image quality decreases depending on the
size of the physical surface. The green area close to the straight ray coming
from the view point O has better quality than the red areas further away. The
distortion effect becomes greater as the surface is viewed from a more shallow
angle.

20 CHAPTER 3 DES IGN AND ARCHITECTURE

90°

(a) The point which the ray hits contains
the most optimal portion of the tex-
ture as seen from the camera.

θ

(b) θ is the angle between the surface and
the ray from the camera. θ is always
different from 90 degrees.

(c) The green area contains an optimal
texture quality when seen from the
camera, whereas the red area con-
tains a distorted texture.

Figure 3.5: Keystone effect arising from capturing images from different angles.

This effect appears on both horizontal and vertical surfaces. As a requirement
for optimal texture quality, the surface needs to be viewed at a 90 degree angle
at an appropriate distance. The distance and light conditions can vary between
the hardware being used.

3.1.5 Polygon construction
When a plane has been selected, it is possible to construct a polygon based
on its vertices and edges. The fact that the plane is a convex polygon in its
own right is fundamental to construct a distinct copy. The polygon shares the
geometrical properties of the plane. From the plane we create a polygon by
filling the interior of the plane with homogeneous triangles. The homogeneity
originates from using Definition A.3. The triangles are encapsulated under the
abstraction provided by the component. Figure 3.6 shows how a collection of
triangles are fed into the interior of the plane.

3.1.6 Polygon mesh
To begin with, we acquire a point cloud. It maintains a set of points in 3D
space which represents a position on any physical surface. A point in the point
cloud is considered if and only if its confidence value is greater than zero. It

3.1 DES IGN COMPONENTS 21

Figure 3.6: The transition from a plane into independent triangles. Together, the
triangles make up a convex polygon similar to the plane.

is a realization of Definition A.7. Further, we create a polygon mesh from the
point cloud.

3.1.7 Virtual copy construction
We assume a physical object of interest is to be modeled. To begin with, we
allow the commodity hardware to hover in proximity of surfaces. Depending
on the curvature of the surfaces, we utilize different design components. We
encapsulate the different design components under the same abstraction.

Planar surfaces After setting floor plane is defined, the smartphone camera
hovers in proximity of a flat physical surface.

The polygon construction pipeline steps produces a polygon that fills the plane.
Along with the geometrical properties of the polygon, the texture is also applied
such that the polygon is a best-effort representation of the physical surface.
This procedure is applied for each physical surface of interest. The construction
of virtual copies is performed by iteratively constructing polygons and then
encapsulating the polygons into one coherent entity.

Now there is a set of independent polygons, each of which positioned in the
world space at the same position as where they were constructed. To construct
a virtual copy, each polygon is assembled such that they all behave as one entity.
More precisely, all polygons should rotate, scale and move at the same time.
When one polygon is altered, the changes propagate to all other polygons in
the virtual copy. Transitively, the triangles in all the polygons are changed as
well.

In the physical world, all object’s surfaces move when at least one of them
moves. The same holds for rotation of objects. The virtual copies aim to mimic
the same behavior.

Curved surfaces For curved surfaces, a point cloud is required as input.
The mesh consists of points in a three-dimensions space and edges between

22 CHAPTER 3 DES IGN AND ARCHITECTURE

them. Its data is encapsulated into the notion of a virtual copy. The edges and
vertices are bundled into the scene. The polygon mesh’s edges and vertices
follow the same rotation, scaling and movements.

3.1.8 Managing virtual copies
This pipeline step enables the ability to manage the virtual copies in a physical
environment. To manage a virtual copy means to move it in all three directions,
scale it and rotate it. Displaying the virtual copies follows the same principle
as with plane rendering. Displaying and interacting with the virtual copies is
performed using the touchscreen.

3.2 Architecture
The design components defined in Section 3.1 provides data and operations
on them encapsulated into different abstractions. Using these components
enables us to represent models of physical objects as abstractions on commodity
hardware.

We pass data between the modular design components in a particular direction.
To create and manage a virtual copy depends on the data processed from other
components. This approach incrementally builds a virtual copy. It aims to
logically represent the appearance of a physical object.

A pipeline is well-suited for our application architecture because the surface
reconstruction requires several operations. Each step requires an input, pro-
cessing of data and yields output to the next step. Communication between
the steps are realized by interfaces provided by the steps. This is motivated
by encapsulating data and operations on the data. The order in which the
pipeline steps are invoked arises naturally by looking at the services provided
by them.

3.2 ARCHITECTURE 23

3.2.1 Plane reconstruction
The first pipeline step starts when the plane detection process starts. The steps
are invoked at arbitrary points in time. The pipeline is illustrated in Figure 3.7,
and shows hows how one virtual copy is created following the pipeline flow
from left to right.

Figure 3.7: Polygon triangulation pipeline.

Once a plane has been expanded to fit a planar surface, it is selected by
performing a touch gesture on the touchscreen. Then, a texture that visually
represents the plane is created. From the shape of the plane, a texture is cropped
to fit the triangles. When all triangles have been created using cropped parts
of the screen texture they are used to envelop the interior of a polygon. When
all necessary polygons have been created, a virtual copy is defined. To finalize
the functionality, the virtual copy can now be managed.

It is possible to repeat any of the preceding horizontal pipeline components
after invoking a component. For example, when a virtual copy has been created,
any other arbitrary number of virtual copies can be constructed. The modularity
of the components allows this.

3.2.2 Curved surface reconstruction
To create a virtual copy from the polygon mesh, four of the design components
similar to the pipeline described in Subsection 3.2.1 are used – plane detec-
tion, plane selection, virtual copy generation and virtual copy management.
Although some of their parameters are different, the principle remains. When
creating a virtual copy for a polygon mesh, the points and edges in the mesh
are encapsulated into the same abstraction.

Figure 3.8 shows the pipeline for creating a virtual copy from the polygon
mesh. After completion of one pipeline step, it is possible to invoke any other.
This is enabled by modularity of the design components.

Figure 3.8: Polygon meshing pipeline.

4
Implementation
To realize Neo’s architecture described in Chapter 3, an implementation is
described in this chapter. We implement a mobile application for the Android
platform, using Google ARCore to enable Augmented reality (ar) features on
off-the-shelf commodity hardware.

We begin by outlining the implementation details of the architectural com-
ponents. We use the Application Programming Interface (api) provided by
Google ARCore to enable ar features and Sceneform api for rendering graph-
ics on top of the camera’s view of the world. Then, we combine Neo’s software
components to implement the two pipelines.

4.1 Environment
To implement the architecture on commodity hardware we use the feature-
set provided by Android Operating System (os). The framework is accessible
through a Java apiwhich offers needed functionality. For commodity hardware
we rely on a smartphone with enhanced camera supporting ar. To utilize the
camera’s functionalities we use Google ARCore, and Sceneform api for graphics
rendering on top of the live camera preview.

We chose a Huawei P20 smartphone as commodity hardware for developing the
application. We also use a smartphone emulator provided by Android Studio

25

26 CHAPTER 4 IMPLEMENTAT ION

to ease the development process. The emulator provide a Virtual Reality (vr)
space in which the application can be tested. However, we assume only a
successful implementation when it runs on commodity hardware. Figure 4.1
shows the Android emulator.

Figure 4.1: Google Pixel 2 emulator provided by Android Studio.

Sceneform API is used as a rendering library. It is necessary to ensure the
provided hardware is able to run Google ARCore and Sceneform by testing
some of their fundamental functionalities. We test our choice of hardware and
development environment by running example projects provided by the Google
ARCore Software Development Kit (sdk) repository on Github [44].

4.2 3D reconstruction pipeline
The pipeline is implemented as a series of classes, each of which defines
operations and data required to perform surface reconstruction. The pipeline
steps employ classes and methods declared in the Android api and Google
ARCore.

We define some important concepts used througout this chapter.

Definition 4.4.1 - Initialization gesture

This is a hand gesture performed when holding the smartphone in prox-
imity of surfaces. It is needed for Google ARCore to detect and track physical
planes. This gesture is necessary to perform prior to scanning planes.

Definition 4.4.2 - Plane detection spotlight

The portion of a plane being rendered is covered by the plane detection
spotlight. When the smartphone hovers, the spotlight renders the planes that
are in the Field of View (fov). The plane detection spotlight can be adjusted.

4.2 3D RECONSTRUCT ION P IPEL INE 27

Its value is measured in meters.

Definition 4.4.3 - Abstract sphere

A sphere in a three-dimensional space with a position p and a radius
r .

4.2.1 Plane detection
After performing the initialization gesture the plane detection starts. It runs on
a separate worker thread and renders planes on the UI thread. As the phone
hovers in proximity of planes, Google ARCore recognizes them and renders
them in the plane detection spotlight. Figure 4.2 shows a red-yellow texture
projected onto the floor. This is the plane detection spotlight rendering the
interior of a plane.

Figure 4.2: The plane detection spotlight by Google ARCore used to render planes.

4.2.2 Plane selection
Selecting a plane is done by tapping on the portion of the screen that renders
it. The first plane to be tapped needs to be horizontal. This is referred to as
the floor plane. The floor plane is used to calculate the volume of a virtual
copy. All consecutive planes that are selected can have horizontal or vertical
orientation.

4.2.3 Triangle
The implementation of a triangle is a realization of Definition A.3. Each triangle
vertex is associated with a position, a normal and a UV coordinate. The normal

28 CHAPTER 4 IMPLEMENTAT ION

of a vertex is upward-facing relative to the plane from which the triangle is
created. A UV coordinate is a 2-tuple which signifies the position on a texture
rendered by a vertex. The UV coordinates maps the texture onto a triangle by
enclosing the texture within the vertices. Using three vertices along with UV
coordinates, the triangle’s interior renders the part of the texture contained
within the three vertices. The UV coordinates are each in the range 0 to 1.
Formally, one triangle’s texture is an element in the set of a polygon’s texture.
When it is applied to the triangle, it is cropped. An image of Triangle object
being rendered on the live camera preview is seen in Figure 4.3. The description
of a triangle is given in Code Listing 4.1.

Figure 4.3: A triangle being rendered on a wall with a texture that blends in with the
rest of the surface.

Node is an abstraction in Google ARCore that provides the dynamic behavior
we need. It offers functionality to achieve movements, scaling and rotations
using hand gestures on the touchscreen [45, 46]. The Node in Triangle is
used to connect the triangles together into a polygon. Movements, scaling and
rotations are propagated into the node from its parent.

Code Listing 4.1: Traingle class

public c lass Tr iang le {
s t a t i c c lass Po s i t i on {

private f l oa t x , y , z ;
}
private Po s i t i on p1 , p2 , p3 ;
private UV uv1 , uv2 , uv3 ;
private Texture t ex tu re ;
private Node node ;

}

4.2 3D RECONSTRUCT ION P IPEL INE 29

4.2.4 Texture
Creating a texture requires multiple procedures, all of which are described
below. Our motivation is the need to crop the screenshot such that it fits in a
polygon.

To construct a texture we take a screenshot of the view from the camera. The
screenshot represents the visual appearance of the surface. The screenshot
is cropped to fit within a polygon created from a plane. In turn, all triangles
inside a polygon will have a sub-set of the texture applied to the triangle.

The world space is used to represent a plane. When constructing a polygon
with a texture, the plane’s properties are used. The points in the world space
we are interested in are a plane’s vertices and the center of a plane. We want
to apply the screenshot of a physical object onto a polygon created from the
same plane. To do this, we need to find which screen coordinates each of the
plane’s vertices correspond to.

We perform a linear transformation from three-dimensional world space to
two-dimensional screen space. From this, we find on-screen coordinates of
the plane’s vertices. By linearly transforming the world space to screen space,
we are able to crop the screenshot using the vertices’ positions in screen
space.

Each vertex in terms of the screen space is normalized to the range 0 to 1,
inclusively. Then, they are used as UV coordinates to crop the screenshot. The
cropped portion of the screenshot fills the interior of the polygon. Each UV
coordinate associated with a vertex which was transformed from world space
is associated with the triangle’s vertex. This logic is applied to all triangles in a
polygon.

4.2.5 Polygon
To realize a polygon we use Node from Google ARCore. A summary of the class
can be seen in Code Listing 4.2. As stated in Subsection 3.1.5, a convex polygon
consists of a set of triangles.

Code Listing 4.2: Polygon class

public c lass Polygon {
private Plane plane ;
private Node node ;

}

30 CHAPTER 4 IMPLEMENTAT ION

Plane is an abstraction provided by Google ARCore that represents a plane
in the physical world. To create a polygon that envelops a plane’s interior, the
Plane’s collection of vertices is iterated.

For each iteration, the two vertices vi and vi+1 and the center of the plane are
used to create a Triangle. The texture is cropped into individual portions when
creating triangles. By adding nodes from all triangles into the polygon’s set of
nodes, they will behave similarly to their parent. This parent-child relationship
provides the encapsulation needed. Figure 4.4 shows a polygon created from
triangles enclosed in a plane. The green spheres signify the vertices of the
plane. Each triangle is made up by two triangles and the white centroid in
center of the plane.

Figure 4.4: A polygon being created from triangles. Each triangle are made up by two
green spheres on the outer edge and the plane’s white centroid.

4.2.6 Virtual copy
To create a virtual copy, one or multiple all nodes from polygons are appended
to the set of virtual copy’s set of children. By adding polygons’ nodes to the the
set, we encapsulate polygons into a virtual copy. This is similar to how triangles
are encapsulated into polygons. The result is that a node in a virtual copy is
the root in a tree of nodes. Transitively, the movements will propagate to the
triangles as well. Each node provides movements, scaling and rotations we
need. An outlining of a virtual copy is summarized in Code Listing 4.3.

Code Listing 4.3: Virtual copy class

public c lass Vir tua lCopy {
private Node node ;

}

4.2 3D RECONSTRUCT ION P IPEL INE 31

4.2.7 Polygon meshing
To create a polygon mesh we implement it using PointCloud provided by
Google ARCore. From the point cloud we create MeshPoint. An outlining
can be seen in Code Listing 4.4. Each MeshPoint created from a point cloud
consists of two values – a 3-tuple position (x ,y, z) and a confidence value. The
confidence value is a number which signifies the reliability of the point.

Code Listing 4.4: Mesh point

public c lass MeshPoint {
s t a t i c c lass Po s i t i on {

f l oa t x , y , z ;
}

public Pos i ton p ;
public f l oa t conf idenceValue ;

}

We implement an algorithm for creating a polygon mesh from a point cloud.
The algorithm requires a collection of Triangles and radius as parameters.
The radius defines the granularity of the polygon mesh.

For each triangle, the center of its circumsphere in world space is found. Let
circumSphere be the position of the circumsphere. Then, two abstract spheres
are perpendicularly positioned on opposite sides of the triangle. The radius of
an abstract sphere is r.

If the triangle’s vertices intersect with the abstract spheres and if at least one of
the two abstract spheres do not contain vertices of other triangles, the triangle
is valid and straight edges can be drawn between the vertices. The algorithm
is summarized in pseudo-code in Code Listing 4.5.

Code Listing 4.5: Polygon mesh computation

public void mesh(L i s t<Tr iangle> t r i ang l e s , f l oa t r) {
// v a l i d t r i a n g l e s f o r the mesh
ArrayL i s t<Tr iangle> res = new ArrayL i s t<Tr iangle >();
for (Tr iang le t : t r i a n g l e s) {

Po s i t i on circumSphere = getCircumSphere (t) ;

// c e n t e r o f a b s t r a c t s ph e r e s

32 CHAPTER 4 IMPLEMENTAT ION

Po s i t i on centerA = getAbs t rac tSpherePos (t , 1) ;
Po s i t i on centerB = getAbs t rac tSpherePos (t , 2) ;

// i t e r a t e s the po in t c loud to t e s t f o r a l l p o i n t s
i f (noOtherPoints InSpheres (t , centerA , centerB)) {

re s . add(t) ;
}

}
}

4.3 Application
The mobile application consists of two Android activities. The activity objects
implement the two pipelines described in Chapter 3. Using the design compo-
nents outlined in Section 4.2 we build the mobile application. We use Android
activities because they provide abstractions needed to run applications on the
Android platform [47]. This section outlines how the pipeline steps are put
together to create a working Android application.

To begin with, the application assert for whether or not Google ARCore is
installed. It exits with an error message if it is not. Permission for using the
camera is prompted. If granting permission fails, the application exits with an
error message.

4.3.1 Planar surface reconstruction
A plane of interest is scanned by hovering the smartphone in proximity of it.
We capture a screenshot of the smartphone camera’s fov. Using the screenshot
we create a polygon rendered on top of the physical surface. The Polygon
facilitates Triangle objects to render a virtual representation of the physical
surface.

After Polygons have been created,we create a VirtualCopy to encapsulate the
Polygons into it. Finally,we are able to move, scale and rotate the VirtualCopy
objects.

The spotlight radius is set to 100 meters. This is needed because the spotlight
area must be larger than the area visible in the camera’s view. This means that
the outer edges of a Plane is rendered. This enables a precise visualization of
the extent of a Plane relative to the edges of a physical surface.

4.3 APPL ICAT ION 33

(a) Live camera images of the physical
surroundings with a simple ui.

(b) A drop-down menu when interacting
with Neo.

Figure 4.5: The user interface of Neo to reconstruct physical planes.

To use Neo we set a User Interface (ui) used for interactions. After starting
the ui the live camera preview and graphics rendering are enabled.

4.3.2 Polygon meshing
As the smartphone is being hovered in proximity of physical surfaces, Google
ARCore is acquiring a point cloud from the physical surroundings. To render
the points in the point cloud, MeshPoints in Code Listing 4.4 is used.

To generate a polygon mesh, the collection of mesh points is converted into
all possible triangles. Using this approach, all possible triangles are considered.
Each triangle consists of three vertices. Then they are passed into mesh()
in Code Listing 4.5. We assign the granularity constant meshGranularity a
value of 0.20m. It is used as the radius of the abstract spheres in the meshing
algorithm. This is a statically assigned variable because we limit ourselves to an
experimental setting. The granularity constant signifies the minimum distance
between two points needed before lines are drawn.

The output of the meshing algorithm is a polygon mesh consisting of points
described by MeshPoint in Code Listing 4.4 and straight edges between the
points. Using Sceneform api we render the edges and vertices of the mesh.
Figure 4.6 shows a screenshot of the ui when rendering mesh points. The
green spheres are MeshPoints and the orange sphere is a Node from Google
ARCore used for drag gestures of the polygon mesh.

34 CHAPTER 4 IMPLEMENTAT ION

Figure 4.6: The user interface of Neo to reconstruct curved surfaces.

We have used ProGAL api [48] for solving the problem of finding the circum-
sphere of a triangle. ProGAL is a library for performing computational geometry
with an emphasis on characterizing and representing protein structures. This
has increased the Trusted Computer Base (tcb) to a slight degree. However,
we claim that the usage is justifiable because it is used in the same field, namely
computational geometry.

5
Evaluation
To investigate whether our thesis is able to perform surface reconstruction we
designed Neo, a pipeline architecture described in Chapter 3. We implemented
it as a mobile application in Chapter 4. This chapter experimentally evaluates
its ability to perform surface reconstruction on commodity hardware.

Neo leverages low-level abstractions by encapsulating them into higher-level
modules. By capturing immersive images using the Google ARCore framework,
Neo facilitates them to create virtual copies projected onto live images of the
physical world.

5.1 Experimental environment
The motivation for performing the experiments is to evaluate the architecture.
There are several qualitative and quantitative experiment to conduct, each of
which seeks to describe how the architecture behaves under different conditions.
Along with the architecture, the tools and experimental setup stated in this
chapter allow the experiments to be reproduced. The experiments can be
replicated to other types of commodity hardware as well.

35

36 CHAPTER 5 EVALUAT ION

5.1.1 Android Platform
For development purposes and to perform experiments, a Huawei P20 was
used. Huawei provides support for Android and Google ARCore. It uses a Kirin
970 cpu consisting of 4 x Cortex A73 2.36GHz + 4 x Cortex A53 1.8GHz cores,
4GB RAM and 128GB ROM. The dual-lens rear camera consists of 12 MP (RGB,
f/1.8 aperture 1) + 20 MP (Monochrome, f/1.6 aperture 1) [51]. Figure 5.1
shows how an illustration of the phone.

Figure 5.1: A Huawei P20 hovering in proximity of a vertical surface. The way it is
held is applicable to all experiments in our evaluation.

5.1.2 Tools
A lux-meter is used to measure the illuminance emitted from a surface. Lux
is a SI-derived unit of illuminance emitted from a surface when one lumen is
evenly distributed over an area of one square meter [52]. We use it as quantity
of measuring the amount of artificial lightning emitted from a surface. Google
ARCore uses light conditions to build its understanding of the world [27].

We used a Hagner ScreenMaster to measure the illuminance of a surface. The
sensitivity is in the range 0.1 lx to 200 000 lx. The accuracy is greater than

1. Aperture is a hole within a lens, through which light travels into the camera body.

5.1 EXPER IMENTAL ENV IRONMENT 37

±3%. For the last digit it is ±1% [53]. Figure 5.2 shows the lux-meter used to
find the illuminance of a surface.

Figure 5.2: A lux-meter used to read illuminance of a surface. For the sake of com-
pleteness, we demonstrate how it reads illuminance in the image to the
left. An example reading of 33.0 lx is shown.

We used a tripod to position the smartphone in a stationary position. Figure 5.3a
shows the tripod with the smartphone attached to it. We used a dimmable
lamp to adjust the illuminance a surface emits. Figure 5.3b depicts the light
source used.

5.1.3 Surfaces
Table 5.1 lists the vertical surface used in the experiments, along with the labels
used for reference. They are used in the experiments regarding initialization
gesture, area calculation and volume calculation. Figure 5.4 shows the surfaces
used in the experiments. The surface area is the total area of the object.

Table 5.1: Surfaces used for initialization gesture experiment.

Label Surface Area
A Black plastic 123 cm x 115.5 cm
B Wooden wall 3m x 2.7m
C Styrofoam 120 cm x 120 cm
D Red and green color sheets 100 cm x 140 cm
E Orange tape with textures 73.5 cm x 45.5 cm

In Figure 5.5 we see the object we want to use as subject in the point cloud

38 CHAPTER 5 EVALUAT ION

(a) A tripodwith a Huawei P20 smartphone
attached to it.

(b) A lamp with a switch for dimming.

Figure 5.3: Experimental tools

A B C D E
Figure 5.4: The vertical surfaces subjected for experiments.

experiment.

5.1.4 Scope/Limitation of experiments
There are many ways the design and implementation can be tested. This is
based on the observation that Augmented reality (ar) is used in dynamic
environments [14].

The environments of the experiments are limited to a selection of cases in
which the application is expected to be used. Practicalities force us to limit the
tests to vertical surfaces. This is due to the challenges associated with hovering
a smartphone potentially high above a horizontal surface. Throughout the
project there have been no observations in which detection of vertical planes
has differed significantly from detection of horizontal planes.

We do not attempt to find the upper values of illuminance and distance due
to the practical challenges that come from setting up the experiments. As the

5.2 EXPER IMENTS 39

Figure 5.5: The car tire used to create point cloud meshes.

Figure 5.6: A wooden wall used to create polygon textures.

distance from the smartphone to the surface increases, the Field of View (fov)
increases as well. Objects from the surrounding environment might obscure
the tests which introduce noise into the results. Finding the upper limit of
illuminance is also challenging because it is difficult to reliably block solar rays.
The lamps we used as lightning sources did not provide an illuminance beyond
the capabilities of Google ARCore.

Although the fluctuations in the environmental conditions can be significant,
we try to the greatest extent to limit them. Although ar is used in dynamic
environments like construction sites [14], we limit them nonetheless. In experi-
ments where it is feasible we use a tripod to keep the environmental conditions
constant.

5.2 Experiments
This section describes the experiments and their results. The experiments
are conducted separately to ensure reliable results. For each experiment, its

40 CHAPTER 5 EVALUAT ION

setup is explained followed by the results and conclusion we can draw from
them.

To evaluate whether Neo can be used to perform surface reconstruction us-
ing commodity hardware, we seek to answer a series of questions in four
categories.

Environmental Conditions We need to measure the required conditions
for Google ARCore to detect planes, to retain position coherence and to find
point clouds. The conditions are determined by illuminance, angle and distance
between the smartphone and the surface texture. Neo and Google ARCore
should overcome challenging light conditions. Construction sites are examples
of dynamic places in which ar technology is used [14]. In our context, we want
to see the light conditions undergo significant changes which can be expected
at construction sites.

The results are used as parameters in the other experiments to eliminate
fluctuations that could occur from poor environmental conditions. We pass the
parameters to the experiments because Neo is dependent on Google ARCore’s
ability to understand the environment. To create virtual copies, planes need
to be detected. As for point cloud meshes, point clouds need to be created.
Specifically, we measure the completion time used to acquire references to
PointCloud objects and Plane objects because they represent Google ARCore’s
understanding of the physical environment. We arrive at the following questions
regarding the conditions:

Question 1. What are the required conditions for the initialization gesture to
complete?
Question 2. What are the required conditions to achieve position coherence of
virtual objects?
Question 3. What are the required conditions for acquiring a point cloud?

Geometrical properties We wish to find the accuracy of the measure-
ments provided by Neo, given a surface texture and illuminance. By comparing
Neo’s result to the real values, we see the viability to measure objects’ geomet-
rical properties. We pose the following questions:
Question 4. To which degree is it possible to measure the area of planar sur-
faces?
Question 5. How accurate is the architecture to measure volumes of virtual
objects?

Texture quality We look at the texture quality to visually confirm Neo’s
ability to create realistic textures. We want to visually inspect if Neo can create

5.2 EXPER IMENTS 41

textures from different angles. From this, we get the following:
Question 6. What do the textures look like when created at different an-
gles?

Point cloud mesh quality We want to see if Neo is able to create polygon
meshes under different lightning conditions, given a physical object consisting
of a curved surface. Despite that the point cloud detection feature provided by
Google ARCore is a debugging feature at the time of writing [30], we still want
to evaluate its quality. Regardless of the size of the point cloud, all points still
represent a presence of a surface. We get the following question to answer:
Question 7. To which extent is the architecture able to create polygon meshes
from curved surfaces?

5.2.1 Initialization gesture
To answer question 1, we seek to find the optimal environmental conditions
for the mandatory initialization gesture. The experimental procedure is used to
measure the minimum required values for distance and illuminance. These en-
vironmental conditions are used to measure the shortest execution time.

Setup The surfaces we scan are surface A through E in Figure 5.4. We
use the light source and lux-meter to adjust and measure illuminance of the
surfaces.

Experiment procedure We measure the minimum required illuminance
and distance by hovering the smartphone close to the surface. The illuminance
is initially pitch dark. The smartphone is gradually hovered further away from
the surface while increasing the illuminance until there is a reference to a
Plane. We follow the gesture movements illustrated in Figure 5.7. The position
of the smartphone is perpendicular to the surface. We measure the distance
using a folding rule. We also measure the illuminance using the lux-meter at
that distance.

The minimum required values for illuminance and distance are derived from
the experimental procedure. Using these conditions we measure the time
Google ARCore use to detect a Plane.

Results Table 5.2 shows the results of the experiments. The columns for
distance and illuminance show the minimum required values to complete the
initialization gesture in the shortest possible time.

From these results there are several things worth noting. First, scanning surface

42 CHAPTER 5 EVALUAT ION

Figure 5.7: The initialization gesture provided by Google ARCore.

Table 5.2: Minimum required distance and illuminance for the initialization gesture
to complete in the shortest amount of time.

Label Minimum distance Minimum lux Completion time
A 49.0 cm 25.6 lx 8.26 sec
B 64.5 cm 3.8 lx 3.09 sec
C 71.0 cm 4.6 lx 4.21 sec
D 217.0 cm 6.9 lx ∞

E 29.0 cm 13.1 lx 5.18 sec

B led to the shortest completion time, possibly due to the surface’s contrasts
provided by the vertical lines between the wood boards. In addition, this surface
required the lowest illuminance at 3.8 lx. However, this comes at the cost of the
minimum distance of 64.5 cm. This is significantly greater than the minimum
distance required when using surface E.

As is the case with surface B, surface E has patterns in it. This enables the
procedure to complete within a reasonable amount of time. However, the
required illuminance of surface E is somewhat stronger than the required
illuminance of B. This might be due to the fact that the wooden wall has
narrow gaps between the wood boards. The gaps provide more contrast to the
surface to make the initialization gesture complete faster.

Surface A, the black plastic bag, required the longest completion time and
illuminance. This is possible due to the black-body phenomenon in which the
surface absorbs visible light [54]. However, as the light source kept getting
brighter, more light was reflected from it. These results indicate a limitation

5.2 EXPER IMENTS 43

with respect to which surface textures Google ARCore can scan. When looking
at the completion time and illuminance, an interesting observation is that the
distance required is the second lowest.

The completion time and illuminance required when scanning surface C, the
styrofoam plates, are among the lowest. However, the distance is relatively high
compared to the other surfaces. To complete the gesture, physical surroundings
in the camera’s fov was needed. The styrofoam surface contains relatively few
patterns which might be the cause of this.

Another observation worth discussing is the scan of surface D. Google ARCore
was not able to complete the gesture without the wooden floor in its fov.
This is depicted in Figure 5.8. In this situation, we also observe a limitation of
Google ARCore’s ability to interpret flat surfaces correctly. The plane detection
spotlight is horizontally projected onto surface D. The wooden floor might
be a reason as to why Google ARCore interprets the vertical surface to be
horizontal.

It seems to be the mix of green and red color that obscures Google ARCore’s
correct understanding of the physical surface. Both the initialization gesture
and interpretation of the surface D suffer from this.

Figure 5.8: The vertically aligned paper sheets and the plane detection spotlight
misinterpreting the surface to be horizontal. The wooden surface below
surface D is a horizontal floor.

To conclude, it seems to be a trade-off between distance, illuminance and
completion time required for the procedure to successfully complete. The
factor that has the most impact on these environmental factors is the surface
being scanned. From what we have seen, a surface’s color and texture highly
determine Google ARCore’s ability to understand flat surfaces.

It appears to be a connection between the amount of contrasts on the surface
and Google ARCore’s ability to complete the procedure. This is supported

44 CHAPTER 5 EVALUAT ION

by the experiment using surface C and D – the styrofoam plates and the
color sheets. The ability to complete the initialization gesture is dependent on
surface textures, their sizes, distance to them and illuminance. In some cases,
the surrounding environment has a significant impact.

5.2.2 Position coherence
In Question 2 we focus on the required conditions for Google ARCore to
retain coherent positions of virtual objects in the world space. We wish to
measure the minimum required illuminance for rendering to occur. At the
same time, we visually observe the ability to retain positions across periods of
low illuminance.

Setup We position two physical stripes on surface B at a distance of 2m
between them. Then, we position one virtual sphere on each of the stripes.
The visual appearances of the spheres relative to the stripes are used to ensure
the accuracy of the positioning. Figure 5.9a shows the 2m stretch between
the tapes. The stretch starts at the right-most edge of the stripe to the left and
stops at the left-most edge on the stripe to the right.

The initial illuminance must be above 3.8 lx, a value derived from Table 5.2. For
this experiment we choose 9.3 lx. The smartphone is positioned in a tripod at
a distance of 2.3m from the surface with both spheres in its fov. Figure 5.9b
shows the smartphone in the tripod.

Experimental procedure With the smartphone in the tripod at a distance
of 2.3m from the wall and the virtual spheres anchored to the wall, Neo
calculates the Euclidean distance between them. Then, the lightning source is
dimmed down until they are no longer rendered. The illuminance emitted from
the surface is measured at 2.3m from the wall. The illuminance is increased
until the spheres are rendered again. Then, the illuminance is measured again
at 2.3m from the wall. Finally, the Euclidean distance is calculated and their
positions relative to each other are visualized.

Results When the spheres stopped being rendered, the illuminance was
0.1 lx. When they were rendered again the illuminance was 5.2 lx.

We compare Figure 5.10a and Figure 5.10b. Before dimming the light, the
distance between the spheres is 2.0249m. After dimming the light, the distance
is 2.0570m. As the pictures show, Google ARCore is not quite able to retain
the same position on the wooden wall across significant changes in lightning
conditions. The spheres have drifted slightly apart from their initial positions.

5.2 EXPER IMENTS 45

(a) Close-up images of two spheres
positioned two meters apart from
each other.

(b) The Huawei P20 smartphone in
the tripod while rendering the
spheres.

Figure 5.9: Virtual spheres used in experiments.

(a) The spheres positioned on the wall
before dimming the light source.

(b) The spheres positioned on the wall after
dimming the light source.

Figure 5.10: Screenshots of the camera view as seen from the tripod.

The numerical distance between them also changed. The reason for this might
be the loss of visual features on which Google ARCore depends [27]. Any
obstruction in tracking can cause loss in its ability to retain coherency in
positioning of virtual objects. On the other hand, as the spheres visually drifted
apart from each other, the distance increased too.

5.2.3 Point cloud completion time
To answer Question 3 we setup the experiment to measure the shortest com-
pletion time to find a point cloud.

46 CHAPTER 5 EVALUAT ION

Table 5.3: Minimum require distance and illuminance required to complete to find a
point cloud scan in the shortest amount of time.

ID Test object Minimum distance Minimum lux Response time
1 Car tire 56 cm 56 lx 2.04 sec

Setup We use the car tire in Figure 5.5 because provides contrasts on its
surface. We use the wooden texture seen in surface B as background. The floor
has a similar wooden texture.

Experimental procedure Wemeasure the minimum required illuminance
and distance between the smartphone and the car tire. We position the smart-
phone close to the surface at a 45 degree angle in a pitch dark environment.
The light source is dimmed upwards while hovering the smartphone grad-
ually further away at a 45 degree incline. This is done until a reference to
a PointCloud is found. Using environmental conditions measured in this
procedure we measure shortest execution time Google ARCore use to find a
PointCloud reference.

Result The results in Table 5.3 shows that acquiring a PointCloud requires
less illuminance than finding a Plane reference, as seen in Table 5.2. From
this, it appears that Google ARCore’s understanding of curved surface and
flat surfaces do not differ significantly from each other. Although the surfaces
are different, it is worth pointing out this observation. A potential source of
inaccuracy is that the surrounding floor was in the camera’s fov.

5.2.4 Area calculation
In this experiment we answer Question 4 by measuring the area of a flat
surface, given a surface texture and illuminance. We compare the result to the
actual area of the surface.

Setup We use surface E in Figure 5.4. We set the surface’s illuminance to
30.1 lx to remove the difficulties in performing plane detection in a dimmed
environment. Intuitively, this seems like a appropriate value above 13.1 lx
derived from Table 5.2. The wooden wall surface is used as background to
create an environment with evenly distributed illumination. The real value of
the surface’s area is measured by hand. Its value is 0.332 15m2.

Experimental procedure After completing the initialization gesture we
hover the smartphone in proximity of the surface. Figure 5.11a shows how the
plane is expanding. The red-yellow texture of the surface is the plane detection

5.2 EXPER IMENTS 47

(a) The yellow texture drawn on the
surface is the plane detection spot-
light rendering a Plane’s extents.

(b) A polygon with texture rendered
on top of the surface from which
it is created.

Figure 5.11: Setup of area calculation experiment.

spotlight covering the interior of a plane. When the surface has been scanned
Neo creates a polygon, as depicted in Figure 5.11b.

Results After positioning the smartphone in the tripod, as seen in Figure 5.12,
there were relatively small fluctuations in the area measurements. There were
made three readings from the same position.

Figure 5.12: The smartphone stationary in the tripod while measuring the area of a
surface.

As seen in Table 5.4, there are small fluctuations in the area calculated, even
when the smartphone remains stationary in the tripod and the illuminance is
constant. This indicates that Google ARCore’s numeric values fluctuate close
to the real value. As seen here, this is the case for Euclidean distance. The
foundation for measuring distance is the concept of Nodes provided by Google

48 CHAPTER 5 EVALUAT ION

Table 5.4: Measuring the area of the polygon. The percentage signifies the increase
from the actual value.

Acutal area Area calculated Percentage increase
0.332 15m2 0.353 763 22m2 6.109515850 %
0.332 15m2 0.353 763 3m2 6.109537083 %
0.332 15m2 0.353 763 5m2 6.109590164 %

ARCore. Observing the fluctuations is interesting because the environmental
conditions on which Google ARCore depends are constant. For similar exper-
iments, the measured value might settle close to the actual value after some
time when Google ARCore has gained a greater understanding.

An observation is that the polygon does not fit the rectangular shape of the
physical surface. This is due to the lack of Google ARCore’s understanding
of the physical surface. This is a somewhat inaccurate measurement, mostly
due to the gap between the edges of the Plane and the edges of the surface.
An interesting observation is that the calculated area is greater than the real
value. This means that the plane provided by Google ARCore extends beyond
the edges of the surface. The origin of this problem is that Google ARCore
can interpret other surrounding surfaces as a part of the surface we initially
scan.

5.2.5 Volume calculation
To answer Question 5 we measure the volume of a physical object. The calcu-
lated volume provided by Neo is compared to the actual value of the object’s
volume.

Setup To calculate the volume of a virtual copy, we use the cardboard box
depicted in Figure 5.4 as surface E. For this experiment we consider the entire
object. The real value to which we compare the result is 0.068 678 4m3.

Experimental procedure After completing the initialization gesture, we
find the floor plane on which the cardboard box stands is set. Then, the
upper-most horizontal plane of the cardboard box is scanned. The result form
scanning the plane is depicted in Figure 5.13.

Result Neo calculates the volume to be 0.073 820 08m3. This is a 7.48 %
increase from the actual value. As seen on Figure 5.13, the polygon rendered
on top of the horizontal surface does not quite align to the edge of the surface.
The inaccuracy of the volume probably stems from that Google ARCore misin-

5.2 EXPER IMENTS 49

Figure 5.13: The uppermost horizontal polygon of the object. In addition, the volume
in cubic meters is displayed.

terprets the flat horizontal surface. This is an interesting finding, and is similar
to the observation made in the previous experiment regarding area calculation.
In both experiments, there is an increase in calculated value, compared to the
actual value. Figure 5.13 shows that the edges of the polygon extends beyond
the edges of the cardboard box. This misalignment is the most likely source of
the percentage increase.

5.2.6 Texture quality
To answer Question 6 we are interested in Neo’s ability to create realistic
textures of physical surfaces.

Setup We use surface B and surface in Figure 5.6 to create a polygon. We
consider only parts of the surface to focus only the visual effects. We do not
need to consider the entire surface.

Experimental procedure After completing the initialization gesture we
point the smartphone towards a surface. We hover the smartphone in proximity
of the surface to trigger Google ARCore to detect it. For each image capture
we create vertically aligned polygons from different angles. We inspect them

50 CHAPTER 5 EVALUAT ION

to qualitatively determine their appearance.

Results The results show the visual results from dynamically creating tex-
tures. We see that different visual effects occur when capturing the images
from different angles.

(a) A polygon created from the wooden
wall at a distance of 2.3 meters. The
angle is perpendicular.

(b) A polygon created from the wooden
wall at a non-perpendicular angle.

(c) A polygon created from the wooden
wall where the plane’s extends is out-
side the smartphone camera’s field of
view.

(d) The texture of a polygon whose tex-
ture consists of wooden boards. Com-
pared to the wooden boards on the
wall, they do not align correctly.

Figure 5.14: Polygons created from different angles and distances. Their visual ap-
pearances show different visual effects.

The images show different visual effects under different conditions. Figure 5.14a
displays a near-optimal texture quality compared to surface E. Figure 5.14b
shows the keystone effect being triggered from capturing the screenshot at
a non-perpendicular angle. Here, the edges of the triangles in the polygon’s
interior are visible. This implies that there is a shortcoming in Neo’s ability to
perform a successful texture construction. Compared to Figure 5.14a, it differs
largely in appearance. Despite the distortion, there is a clear resemblance of
the real surface.

Figure 5.14c displays a case in which the texture closer to the edge of the
smartphone’s display lack the correct pixels. Although the assumption that the
camera’s fov contains the entire plane is violated, it is interesting to see the

5.2 EXPER IMENTS 51

immediate effects when it does not hold. The portions of the texture closer
to the vertical edges of the screen are distorted because they lack the pixels
that would normally be contained in the camera’s fov. Here, the smartphone
camera is moved closer to the surface after expanding the Plane.

Figure 5.14d displays the case where the keystone effect comes into play. the
polygon is created at a distance of 3m. The wooden boards depicted on the
polygon’s texture do not align with the wooden boards on the wall. This effect
becomes stronger on the texture further away from the center of the camera’s
fov.

5.2.7 Point cloud
To answer Question 7 we measure the quality of a point cloud. First, we
formally define its quality. By taking into consideration the number of points
and the sum of their confidence values we arrive at the following formula:

f (x ,y) = − log
1
x
· y (5.1)

where

y =
x∑
i=1

α2
i (5.2)

Here, x ,y ≥ 1 and αi is the confidence value for the point pi .

Setup For this experiment we scan the car tire depicted in Figure 5.5 in
two scenarios. We do not render the edges between the points to generate
a polygon mesh to better visualize the distribution of points. Regardless of
enabling mesh rendering, the numeric results remain the same.

Experimental procedure First, we scan the object indoors with wooden
texture in the background. Then we scan it outdoors with gray concrete and
wooden panels as texture background. The illuminance is 43.3 lx, a reasonable
value more than 2.04 lx derived from Table 5.3.

Result The results are listed in Table 5.5. Notice the difference in illuminance
between test 1 and 2. From the difference in quality, it is reasonable to claim
that illuminance can affect the quality of the point cloud. An enforcement of

52 CHAPTER 5 EVALUAT ION

Table 5.5: Required minimum values for distance and illuminance to detect acquire a
point cloud.

ID Lux Quality
1 43.3 lx 25307.66
2 4590 lx 84504.42

(a) A point cloud from a car tire captured
indoors with 43.3 lx as seen at a dis-
tance of ~50 cm.

(b) A point cloud from the same car tire
captured outdoors with 4590 lx as
seen at a distance of ~50 cm.

Figure 5.15: Screenshots of the point clouds created from scanning the car tire.

this claim comes from visually comparing Figure 5.15a and Figure 5.15b. A
source of noise in the result is seen in Figure 5.15b – there exist points not
attached to the car tire.

5.3 Qualitatively assessment of Neo
We have seen promising results in our experimental evaluation. After finding
affirmative answers to the questions regarding environmental conditions, accu-
racy and texture quality, we want to see if our architecture and implementation
meet our expectations. This section look at qualitative assessments of Neo by
capturing two virtual copies, each of which with different curvatures.

5.3 QUAL ITAT IVELY ASSESSMENT OF NEO 53

(a) A virtual copy that envelops the card-
board box.

(b) A virtual copy placed beside the card-
board box. Notice its orientation and
size relative to the cardboard box.

Figure 5.16: Creating a virtual copy from a cardboard box.

5.3.1 Planar surface
To confirm that creating a virtual copy with planar surfaces is possible, we scan
all five visible surfaces of the cardboard box depicted in Figure 5.4. Figure 5.16a
shows a virtual copy that envelops the cardboard box. Figure 5.16b shows the
virtual copy placed beside the cardboard box. Notice that it has been scaled
and rotated. The textures of the polygons contain parts of the concrete floor.
This demonstrates shortcoming in the texture creation.

5.3.2 Curved surface
To complete our evaluation, we demonstrate Neo’s ability to create a polygon
mesh from a point cloud. After scanning an object we arrive at the two illustra-
tions in Figure 5.17. The yellow sphere is rendered to make the polygon mesh
manageable. In Figure 5.17a we see the mesh mostly extending to the ground.
An important observation is the straight lines extending vertically from the
ground. In Figure 5.17b we see the mesh following the curvature of the wooden
column.

Some lines are drawn stretching from the ground to the wooden column that
do not align with a surface. This is due to the granularity parameter. It needs
to be adjusted to a lower value for the mesh to be more realistic.

54 CHAPTER 5 EVALUAT ION

(a) A polygon mesh created from acquir-
ing a point cloud surrounding a con-
crete column.

(b) A polygon mesh created from ac-
quiring a point cloud surrounding a
wooden column.

Figure 5.17: Creating meshes from two columns.

5.4 Summary
Throughout our evaluation we have used Neo and Google ARCore in different
environmental conditions. We began by evaluating the required conditions to
track planes, the ability to retain coherency of tracking and to acquire a point
cloud. Here, we measured the minimum required distance and illuminance. We
saw that the environmental conditions were dependent on the surface texture.
We also saw the need to have the surrounding environment in the camera’s
fov.

To measure minimum required distance and illuminance we devised a set
of experimental procedures. These parameters were used in the remaining
experiments to overcome challenging environmental conditions.

We used Neo to measure area and volumes of virtual copies. In all tests we
a slightly higher value in the computed result when comparing to the actual
value. The shortcomings came from Google ARCore’s ability to misinterpret the
physical surfaces. Consequently, the planes represented by Google ARCore were
expanded beyond the boundaries of the physical surfaces and Neo computed
a result unequal to the actual value.

Neo created textures of polygons by capturing the camera’s view of the physical
surfaces. We saw interesting effects arising from capturing the images from
different angles and distances.

5.4 SUMMARY 55

We developed a means of measuring a point cloud in terms of quality. Exper-
iments on a point cloud concluded that illuminance impacts the results to a
significant degree. Lastly, we saw the architecture of Neo in a practical scenario
by scanning two physical objects and displaying their virtual copy.

The methodology and equipment have provided useful results. We have seen
both abilities and limitations of Neo and Google ARCore. As stated earlier,
there are many ways in which our architecture can be evaluated. We have
chosen a sub-set of interesting ways to test it. Despite the limitations, Neo
and Google ARCore have shown promising results. We saw best-practices of
using Google ARCore. We observed that high-contrast surfaces with a certain
amount of illuminance give the best environmental conditions.

We set out to investigate our thesis. Our problem statement is to investigate
the ability to perform perform surface reconstruction on commodity hardware.
To draw a conclusion, we see from the evaluation that Neo is able to create
virtual models of physical objects. In our experimental evaluation we have seen
under which conditions it is feasible for Neo to accomplish this.

6
Conclusion
This chapter will conclude our thesis, summarize our contributions and results
and relate to future work. We reiterate our thesis statement:

This thesis will design, implement and evaluate surface reconstruction capability
on commodity hardware.

6.1 Achievements
In this thesis we designed and implemented Neo, a pipeline architecture for
surface reconstruction using commodity hardware. We began by introducing
a set of abstractions which provide us with a useful interpretation of lower-
level mechanisms and concepts. Using these abstractions we created design
components, each of which is separate entities. We chained the design com-
ponents together to create two separate pipelines. These pipelines perform
surface reconstructions on different surfaces. We implemented Neo on the
Android platform using Google ARCore to enable Augmented reality (ar)
features.

57

58 CHAPTER 6 CONCLUS ION

6.2 Findings
We saw that a pipeline architecture was suitable to approach the thesis state-
ment. We assigned each architectural component a well-defined set of tasks
withmodularity in mind. From a high-level point of viewwe saw that a stepwise
approach to the thesis statement.

From the evaluation in Chapter 5 we observed the ability of Neo to perform
surface scans and visualizing them according to the characteristics of ar.
Rendering the virtual copies bears some resemblance to the related work. Both
qualitative and quantitative testing metrics were used. We also saw some
limitations which pave the way for opportunities and future work.

The evaluation procedures we devised showed the environmental conditions
used in the experiments. These procedures were useful to find a best-practice
usage of Neo and Google ARCore.

6.3 Future work
Neo has potential to be further developed. This section highlights the aspects
that can be subject for future work.

Surface reconstruction accuracy As seen in Chapter 5, the polygons are
not perfectly aligned to the surface from which it is created. Notably, they
extend beyond the extents of the edge of a planar surface. A suggestion for
a future project is to improve Google ARCore’s understanding of the physical
environment. As an alternative, Neo can be improved by selecting a subset of
the planes provided by Google ARCore. As long as the planes are aligned with
the extends of a surface, selecting the sub-set is achievable.

Virtual copy storage The virtual copies can be stored in a repository along
with metadata to be used for modeling purposes. The data can be shared
among several participants for collaboration. The virtual copies can be fetched
to be modeled on a desktop computer, using Virtual Reality (vr) or other types
of commodity hardware supporting ar.

Texture quality We saw in Chapter 5 that the textures were not completely
optimal. We suggest that efforts should be taken to improve their quality.
Similar to [4], we suggest that an approach based on stitching would be
beneficial. Multiple images of a surface stitched together would improve the
quality because they can be taken at a near-perpendicular angle. This approach

6.3 FUTURE WORK 59

could address the issues related to keystone effect.

Polygon mesh The polygon meshes we have created have only consisted
of the edges and vertices. We suggest to extend the polygon meshes to include
a solid surface as well.

BIM integration We see potential to integrate Neo into an existing Building
Information Model (bim) application. It is possible to overlay the virtual copies
of physical objects with a bim and comparison of the information about the
objects. The integration could simplify inspection routines on construction
projects.

Scalability Our implementation of Neo aims at processing few surfaces with
small area. We propose to scale the processing capabilities to handle larger
surfaces and areas. This approach could involve storage and offloading to
external computing units.

A
Virtual space abstractions
This chapter details important Augmented reality (ar) abstractions used
throughout the thesis. The abstractions formally represent high-level concepts,
each of which maintains a set of properties. We remove the lower-level details
by considering them as coherent entities. Some concepts contains properties
which are made up of lower-level concepts.

A.1 World space
The foundation for creating virtual copies is based on observations of physical
objects. Formally, physical objects and abstractions representing them occur in
the world space. The world space is a Euclidean IR3 vector space. Interactions
with the abstractions representing the physical world occur here. The world
space is a vector space in which copies of physical objects have the potential to
be created and manipulated. More precisely, copies of the physical objects are
created by explicitly describing them using the abstractions provided.

Furthermore, we define a point of origin in the vector space world_origin =
(0, 0, 0). Its position relative to physical objects is arbitrarily chosen. This means
that several positions in the physical world are candidates for being marked as
the origin. We assume that the position of world_origin is automatically chosen
and will never change.

61

62 APPENDIX A V IRTUAL SPACE ABSTRACT IONS

A.2 Nodes
We define the concept of a node. It represents a point of reference in a Euclidean
vector space. A node N has certain assumptions and properties associated with
it. Formally, we define N as follows:

Definition A.A.1 - Node

1. N can have either zero or one parent. Such a parent N.parent has the
same properties as N . By default, N.parent is undefined.

2. N has a 3-tuple position N.world_position ∈ R3. The position is relative
to world_origin.

3. N has a IR3 Euclidean vector space. We refer to this space as the Local
Vector Space (lvs) of N . The 3-tuple origin N.lvs.origin of this local
vector space is positioned at N.world_position. The value of N.lvs.origin
is always (0, 0, 0).

4. N has a 3-tuple position N.local_position ∈ R3. This is a position in the
N.parent.lvs vector space.N.local_position is relative toN.parent.lvs.origin.

5. N has a world scaling factor N.world_scaling_factor ∈ R. The default
value is 0.

6. N has a local scaling factor N.local_scaling_factor ∈ R. The default value
is 0.

7. N has a rotation quaternion N.world_rotation. It is defined as the 4-tuple
(x ,y, z,w). Its default value is (0, 0, 0, 0).

8. N has a rotation quaternion N.local_rotation. It is defined as the 4-tuple
(x ,y, z,w). The rotation is relative to the rotation quaternion of N.parent.
If no such parent exists the rotation quaternion defaults to the value of
N.world_rotation. It has the default value of (0, 0, 0, 0).

9. N has a set of child nodes N.children = {N1,N2, . . . ,Nn} where n ≥ 0.
N.children can be an empty set.

10. Assuming N .parent is defined, N will follow the movements, rotation
and scaling of N .parent .

A .3 PLANE 63

A.3 Plane
In addition to nodes we need to detect surfaces of physical objects. Given
any physical object of interest, we assume its physical surfaces together make
up the object. Although the inner structures, if any, are a part of the physical
object they are omitted. The material and density are also ignored. Although
the surfaces of the physical object can extend arbitrarily in any direction, it
is allowed to partially or fully omit some surfaces. It is possible to detect the
entire physical object or only smaller sections of it. It is assumed that physical
surfaces are limited to be either horizontal or vertical. We define a plane as
a two-dimensional planar surface object with an arbitrary number of vertices
and straight edges. It is a logical representation of a surface of a physical object.
More formally, we define a plane P to have the following properties:

Definition A.A.2 - Plane

1. P is an approximate logical representation of a flat physical surface.

2. P is either horizontal or vertical relative to the physical world’s upward
direction.

3. The area of P can only grow in size; it can never shrink.

4. P has a 3-tuple position in world space center_point ∈ R3.

5. P is co-planar because all its vertices are contained within it.

6. P hasm edges andm vertices wherem ≥ 3.

7. The plane Pi can be subsumed by Pj .

8. P has a 3-tuple coordinate P .center_coordinate ∈ R3 which is relative
to world_origin.

9. P has a model matrix matrix_model given below.

model_matrix =


a b c d
e f д h
i j k l
m n o p


The scalars in the matrix are provided by the underlying plane detection
system.

64 APPENDIX A V IRTUAL SPACE ABSTRACT IONS

10. P has a set of coordinates P.local_coordinates = {x1, z1,x2, z2 . . . xm, zm}
wherem ≥ 3 which defines the vertices of the plane. The elements in
P.local_coordinates are relative to P.center_point such that the y compo-
nent is always zero. Implicitly, they are omitted from the set.

11. P has a set of coordinates P.world_coordinates = {x1,y1, z1,x2,y2, z2 . . .
xm,ym, zm} where m ≥ 3. The elements in P.world_coordinates are
transformed from P.local_coordinates.

12. Given any 2-tuple (x j , zj) ∈ P.local_coordinates, a 3-tuple (xi ,yi , zi) ∈
P.world_coordinates is given by the following linear transformation:


xi
yi
zi
1

 =

a b c d
e f д h
i j k l
m n o p



x j
0
zj
1


where i = j and i, j ≤ m.

13. All elements in the sets P.local_coordinates and P.world_coordinates can
be changed at any moment. Due to the linear transformation, any
changes in j−th 2-tuple in P.local_coordinates imply that i-th 3-tuple
in P.world_coordinates is subject for change.

14. The vertices of P will never move towards P.center_point. Implicitly, the
area of P can only increase.

15. P is not self-intersecting and always convex.

Figure A.1 shows how a plane can look like. Notice that the plane is a convex

Figure A.1: An example of a convex plane with five vertices.

A .4 TR IANGLE 65

polygon. A plane is not limited to a fixed number of vertices, although this
particular plane contains five edges and five vertices.

A.4 Triangle
The cardinality of Pi .world_coordinates and Pi .local_coordinates can be
larger than 9 – the number of coordinates needed to construct one single
triangle. This implies that it is possible to construct a polygon that is not lim-
ited to a triangular shape. This property allows planes with an arbitrary number
of vertices and edges. We also observe that the edges between the vertices are
not curved; they are straight lines. For a plane that follows Definition A.2 it is
possible to constructm triangles that together make up a convex polygon. A
definition of a triangle T below is given below.

Definition A.A.3 - Triangle

1. It is classified as either an equilateral, isosceles or scalene triangle.

2. The three vertices are denoted T.a, T.b and T.c.

3. There exists exactly one straight line between any two vertices.

4. There exists a node T.node at vertex T.a.

5. Each vertex has a 3-tuple normal normal ∈ R3 and a 3-tuple position
position ∈ R3. The position is relative to the origin in T.node.lvs.

6. Each vertex has a 2-tuple UV-coordinate pair uv ∈ [0, 1]. The UV-
coordinate describes the texture mapping from a bitmap texture to a
triangle.

7. T has a texture associated used for rendering.

Figure A.2 shows the different triangles. Each triangle is a valid element in the
interior of a Plane.

A.5 Polygon
The foundation for creating polygons is the notion of planes that follows
Definition A.2. P is a convex polygon in its own right. Generally, polygon is an

66 APPENDIX A V IRTUAL SPACE ABSTRACT IONS

Scalene

Equilateral

isosceles

Figure A.2: Examples of triangles we consider, each in their own category.

object that is a independent copy of a plane under Definition A.2. Logically,
they are two different objects. However, they share the fact that they represent
physical surfaces. Because all triangles in a polygon follow Definition A.3, the
polygons are homogeneous themselves. A way of interpreting a polygon is by
considering as a set of such triangles. However, the abstraction provided by a
polygon makes it possible to consider the set of triangles as one entity.

By using the Definition A.1 and Definition A.3 a definition of a polygon G is
given below:

Definition A.A.4 - Polygon

1. G hasm edges and vertices.

2. G is convex and not self-intersecting.

3. G has a set of triangles G.triangles = {t1, t2, t3, · · · , tm} wherem ≥ 1.

4. G has a node G.center_node positioned at the center of itself.

5. G has a volume G .area ∈ R.

By extending Figure A.1, 5 lines stretching from P .center_point have been
added. Similar to Figure A.1, it is still a polygon. However, this image shows
how the edges between vertex a and b of any triangle make up the interior of
the polygon. As illustrated, the union of all the triangles makes up the polygon.
Although there are a fixed number of triangles in this example, this logic is
applicable to any number of edges and vertices.

Figure A.3 shows how the polygon on Figure A.1 can be made from independent
triangles. Notice that the order of vertices b and c is clockwise for each triangle

A .6 V IRTUAL COPY 67

when viewed from a.

Figure A.3: A set of triangles that fills the interior of a convex plane.

Logically, G .center_node maintains a tree of triangles. After merging m tri-
angles into its collection of nodes, Figure A.4 displays the underlying tree
structure.

t
1

G.center_node

t
2 t

3 t
m

...

Figure A.4: Tree structure maintained by a polygon.

A.6 Virtual copy
A virtual copy is a best-effort estimation of the geometrical and graphical
properties of a physical object. Its attributes are derived from the properties
listed in Definitions A.1, A.2 and A.3. More formally, we give a definition of a
virtual copy C below.

Definition A.A.5 - Virtual copy

1. C has a set of polygons C.polygons = {G1,G2,G3, · · · ,Gn} where n ≥ 1.

2. C is made up of all the triangles that make up the elements in C.polygons.

68 APPENDIX A V IRTUAL SPACE ABSTRACT IONS

3. C has a node C .center_node.

4. C has a volume C .volume ∈ R.

The underlying tree structure of a virtual copy is illustrated in Figure A.5.
triangle

g
1

C.center_node

g
2

g
3

g
m

...

Figure A.5: Logical tree structure of a virtual copy. Each leaf node is a polygon дi
maintaining a tree of triangles.

A.7 Graphical texture
The graphical texture is used to draw a triangle. While the numerical attributes
in Definition A.3 logically defines a triangle, we also need a way to define how it
is rendered. To give a best-effort representation of physical objects, their visual
appearance in the physical world is used. The portion of a physical surface
that is covered by a triangle is used as a graphical texture. More precisely, the
image of the physical object provided by the live camera feed is used to draw
the triangle.

Formally, let the screen texture texture be a visual representation of a smart-
phone’s screen captured at any given moment in time. The following definition
of it is given below.

Definition A.A.6 - Texture

1. texture consists of a bitmap. The bitmap contains pixels that make up a
polygon as seen from the camera’s view. They visually represent a planar
physical surface.

2. texture is assumed to completely envelop the extends of the plane.

A .8 PROPERT IES OF THE V IRTUAL COPIES 69

(a) The triangle and bitmap before be-
ing cropped. uv1, uv2 and uv3 sig-
nify the coordinate on the bitmap.
Here, the positions of the UV coor-
dinates are arbitrarily chosen.

(b) The triangle with a cropped por-
tion of the bitmap as its texture.

Figure A.6: Texture operation

Figure A.6a shows how the image 1 to be cropped. Figure A.6b shows the
triangle’s texture that fit within its interior.

A.8 Properties of the virtual copies
There are multiple mathematical properties of a virtual copy that can be found.
Some interesting properties are area of a polygon and the volume of a virtual
copy. These properties can be found using the notions of nodes and planes.

Implicitly, the formula can only be applied to convex planes. To find the area
of a polygon Gi with m sides, we apply Gauss’s area formula described in
Equation A.1. Let xi and yi be two elements in Gi .world_coordinates for
1 ≤ i ≤ m and A be the area of Gi .

A =
1
2
|

m∑
i=1

xiyi+1 + xmy1 −
m∑
i=1

xi+1yi − x1ym | (A.1)

LetGi be a polygon that represents the uppermost surface of a physical object.
Its orientation in world space must be horizontal. Furthermore, let f loor_node
be a node that is anchored on a floor plane. Assume that the vertical surfaces
of the physical object are planar. From this, the height of the physical object is

1. Original photo is found on https://commons.wikimedia.
org/wiki/File:Flickr_-_Nicholas_T_-_Bus_Stop.
jpg. It is licensed under Creative Commons Attribution 2.
0 Generic.

Original photo is found on https://commons.wikimedia.org/wiki/File:Flickr_-_Nicholas_T_-_Bus_Stop.jpg. It is licensed under Creative Commons Attribution 2.0 Generic.
Original photo is found on https://commons.wikimedia.org/wiki/File:Flickr_-_Nicholas_T_-_Bus_Stop.jpg. It is licensed under Creative Commons Attribution 2.0 Generic.
Original photo is found on https://commons.wikimedia.org/wiki/File:Flickr_-_Nicholas_T_-_Bus_Stop.jpg. It is licensed under Creative Commons Attribution 2.0 Generic.
Original photo is found on https://commons.wikimedia.org/wiki/File:Flickr_-_Nicholas_T_-_Bus_Stop.jpg. It is licensed under Creative Commons Attribution 2.0 Generic.

70 APPENDIX A V IRTUAL SPACE ABSTRACT IONS

given by Equation A.2.

dy = Gi .center_node .world_position.y − f loor_node .world_position.y
(A.2)

The absolute value of the subtraction is used in case world_oriдin is posi-
tioned above f loor_node. Finally, the volume of a virtual copy is given by
Equation A.3.

V = Ady (A.3)

If one or more vertical surface(s) are not planar, the formula fails to give an
accurate estimate of the volume. This formula does not require the vertical
planes beneathGi to be defined. The height between the floor andGi is already
given by Equation A.2.

The values computed in Equations A.1, A.2 and A.3 are estimates of the real
values. The parameters of the formulas originate from the underlying plane
detection framework. From this fact, the numbers provided are the best effort
there is to compute the values.

A.9 Point cloud
A point cloud is a set of points in world space. Such a point is a position in the
world space located on a physical surface. The definition of a point cloud and
a point is given in Definitions A.7 and A.8, respectively.

Definition A.A.7 - Point cloud

1. Point has a set of points points = {c1, c2, c3, . . . cn} for n points where
n > 0.

2. Insertions and deletions of points is maintained by the underlying plane
detection system.

Definition A.A.8 - Mesh point

1. p has a 3-tuple position in world space world_position ∈ R3.

A .10 POLYGON MESH 71

2. p represents a position in the world space that is located on a physical
surface.

3. p has a confidence value α ∈ [0, 1].

4. p is visualized if α > 0.

5. p has a unique ID id.

The point is attached on a physical surface. The point itself does not contain
information about the texture, shape or the extends of the physical surface.
As the number of points in a point cloud grows large they will create a set of
vertices in a polygon mesh.

Because the point has no surface, it does not depend on the any alignment of
the surface to which it is attached. This property allows for attaching points on
surfaces not limited to horizontal and vertical surfaces. The surfaces represent
any smooth manifolds in the physical world. For non-planar surfaces, the points
can visualize how physical surfaces curve.

It is the underlying plane detection system that maintains the point cloud. It is
a best-effort understanding of the positions of physical surfaces. As the camera
hardware hovers in proximity of a physical surface, it manages the point clouds
by tracking individual feature points on the surface. The tracking of feature
points is continuous, which is similar to the plane detection.

A.10 Polygon mesh
A polygon mesh is a set of edges and vertices that define the shape of a
polyhedral object. The mesh’s vertices are a point cloud’s points and the
edges are straight lines between them. The polygon mesh is a best-effort
representation of a collection of curved physical surfaces. Formally, a polygon
mesh is defined below.

Definition A.A.9 - Polygon mesh

1. M has a set of mesh points M.points = {p1,p2,p3, · · · , tj } where j ≥ 3.

2. M has a node G.center_node positioned at a Plane.

72 APPENDIX A V IRTUAL SPACE ABSTRACT IONS

3. M can be moved, scaled and rotated following the logic from Defini-
tion A.5.

Bibliography
[1] L. Hou, Y. Wang, X. Wang, N. Maynard, I. T. Cameron, S. Zhang, and

Y. Jiao, “Combining photogrammetry and augmented reality towards an
integrated facility management system for the oil industry,” Proceedings
of the IEEE, vol. 102, no. 2, pp. 204–220, 2014.

[2] K. Ammari and A. Hammad, “Collaborative bim-based markerless mixed
reality framework for facilities maintenance,” Computing in Civil and
Building Engineering, pp. 657–664, 2014.

[3] P. J. DENNING,D. E. COMER,D. Gries,M. C. MULDER,A. Tucker, J. Turner,
and P. R. YOUNG, “The final report of the task force on the core of
computer science presents a new intellectual framework for the discipline
of computing and a new basis for computing curricula. this report has
been endorsed and approved for release by the acm education board,” 05
2019.

[4] H. K. Stensland,V. R. Gaddam,M. Tennøe,E. Helgedagsrud,M. Næss,H. K.
Alstad, A. Mortensen, R. Langseth, S. Ljødal, O. Landsverk, C. Griwodz,
P. Halvorsen, M. Stenhaug, and D. Johansen, “Bagadus: An integrated
real-time system for soccer analytics,” ACM Trans. Multimedia Comput.
Commun. Appl., vol. 10, pp. 14:1–14:21, Jan. 2014.

[5] V. R. Gaddam, R. Langseth, H. K. Stensland, P. Gurdjos, V. Charvillat,
C. Griwodz, D. Johansen, and P. Halvorsen, “Be your own cameraman:
Real-time support for zooming andpanning into stored and live panoramic
video,” in Proceedings of the 5th ACM Multimedia Systems Conference,
MMSys ’14, (New York, NY, USA), pp. 168–171, ACM, 2014.

[6] M. Stenhaug, Y. Yang, C. Gurrin, and D. Johansen, “Muithu: A touch-based
annotation interface for activity logging in the norwegian premier league,”
inMultiMedia Modeling (C. Gurrin, F. Hopfgartner, W. Hurst, H. Johansen,
H. Lee, and N. O’Connor, eds.), (Cham), pp. 365–368, Springer Interna-
tional Publishing, 2014.

73

74 BIBL IOGRAPHY

[7] J. Carmigniani and B. Furht, Augmented Reality: An Overview, pp. 3–46.
07 2011.

[8] P. Milgram, H. Takemura, A. Utsumi, and F. Kishino, “Augmented reality:
A class of displays on the reality-virtuality continuum,” Telemanipulator
and Telepresence Technologies, vol. 2351, 01 1994.

[9] A. Sanna and F. Manuri, “A survey on applications of augmented reality,”
Advances in Computer Science : an International Journal, vol. 5, no. 1,
pp. 18–27, 2016.

[10] M. C. Leue, T. Jung, and D. tom Dieck, “Google glass augmented reality:
Generic learning outcomes for art galleries,” in Information and Communi-
cation Technologies in Tourism 2015 (I. Tussyadiah and A. Inversini, eds.),
(Cham), pp. 463–476, Springer International Publishing, 2015.

[11] G. Evans, J. Miller, M. I. Pena, A. MacAllister, and E. Winer, “Evaluating the
microsoft hololens through an augmented reality assembly application,”
inDegraded Environments: Sensing, Processing, and Display 2017, vol. 10197,
p. 101970V, International Society for Optics and Photonics, 2017.

[12] D. Amin and S. Govilkar, “Comparative study of augmented reality sdks,”
International Journal on Computational Science & Applications, vol. 5, no. 1,
pp. 11–26, 2015.

[13] T.-W. Kan, C.-H. Teng, and W.-S. Chou, “Applying qr code in augmented
reality applications,” in Proceedings of the 8th International Conference
on Virtual Reality Continuum and Its Applications in Industry, VRCAI ’09,
(New York, NY, USA), pp. 253–257, ACM, 2009.

[14] H.-L. Chi, S.-C. Kang, and X. Wang, “Research trends and opportunities
of augmented reality applications in architecture, engineering, and con-
struction,” Automation in construction, vol. 33, pp. 116–122, 2013. pp. 119.

[15] H. Chen, Y. Dai, H. Meng, Y. Chen, and T. Li, “Understanding the char-
acteristics of mobile augmented reality applications,” in 2018 IEEE In-
ternational Symposium on Performance Analysis of Systems and Software
(ISPASS), pp. 128–129, IEEE, 2018.

[16] J. Paavilainen, H. Korhonen, K. Alha, J. Stenros, E. Koskinen, and F. Mayra,
“The pokémon go experience: A location-based augmented reality mobile
game goes mainstream,” in Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems, CHI ’17, (New York, NY, USA),
pp. 2493–2498, ACM, 2017.

B IBL IOGRAPHY 75

[17] “Augmented reality sdk comparison : Vuforia sdk vs armedia
sdk.” https://socialcompare.com/en/comparison/vuforia-ar-sdk-vs-
armedia-sdk-3h8ymnz0. [Online; accessed 12-May-2019].

[18] “Nike fit mobile application.” https://www.engadget.com/2019/05/09/
nike-fit-augmented-reality-right-fit-size-shoes/. [Online; ac-
cessed 11-May-2019].

[19] “Posten labs ar.” https://www.posten.no/labs. [Online; accessed 11-May-
2019].

[20] “Ikea place mobile application.” https://highlights.ikea.com/2017/
ikea-place/. [Online; accessed 11-May-2019].

[21] M. Lettner, M. Tschernuth, and R. Mayrhofer, “Mobile platform architec-
ture review: android, iphone, qt,” in International Conference on Computer
Aided Systems Theory, pp. 544–551, Springer, 2011.

[22] “Android platform architecture.” httpshttps://www.sciencedirect.
com/topics/engineering/blackbody://developer.android.com/guide/
platform, 2018. [Online; accessed 26-April-2019].

[23] “Android architecture.” https://developer.android.com/guide/
platform/images/android-stack_2x.png. [Online; accessed 12-May-
2019].

[24] “Art and dalvik.” https://source.android.com/devices/tech/dalvik/
index.html, 2018. [Online; accessed 26-April-2019].

[25] M. Froehlich, S. Azhar, andM. Vanture, “An investigation of google tango®
tablet for low cost 3d scanning,” 07 2017.

[26] A. Diakité and S. Zlatanova, “First experiments with the tango tablet for
indoor scanning,” ISPRS Annals of Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. III-4, pp. 67–72, 06 2016.

[27] “Arcore environmental understaning.” https://developers.google.com/
ar/discover/, 2018. [Online; accessed 25-April-2019].

[28] “Arcore developer preview 2’.” https://www.blog.google/products/
arcore/arcore-developer-preview-2/, 2016. [Online; accessed 2-May-
2019].

[29] “Point cloud.” https://www.sciencedirect.com/topics/engineering/

https://socialcompare.com/en/comparison/vuforia-ar-sdk-vs-armedia-sdk-3h8ymnz0
https://socialcompare.com/en/comparison/vuforia-ar-sdk-vs-armedia-sdk-3h8ymnz0
https://www.engadget.com/2019/05/09/nike-fit-augmented-reality-right-fit-size-shoes/
https://www.engadget.com/2019/05/09/nike-fit-augmented-reality-right-fit-size-shoes/
https://www.posten.no/labs
https://highlights.ikea.com/2017/ikea-place/
https://highlights.ikea.com/2017/ikea-place/
httpshttps://www.sciencedirect.com/topics/engineering/blackbody://developer.android.com/guide/platform
httpshttps://www.sciencedirect.com/topics/engineering/blackbody://developer.android.com/guide/platform
httpshttps://www.sciencedirect.com/topics/engineering/blackbody://developer.android.com/guide/platform
https://developer.android.com/guide/platform/images/android-stack_2x.png
https://developer.android.com/guide/platform/images/android-stack_2x.png
https://source.android.com/devices/tech/dalvik/index.html
https://source.android.com/devices/tech/dalvik/index.html
https://developers.google.com/ar/discover/
https://developers.google.com/ar/discover/
https://www.blog.google/products/arcore/arcore-developer-preview-2/
https://www.blog.google/products/arcore/arcore-developer-preview-2/
https://www.sciencedirect.com/topics/engineering/point-cloud
https://www.sciencedirect.com/topics/engineering/point-cloud
https://www.sciencedirect.com/topics/engineering/point-cloud

76 BIBL IOGRAPHY

point-cloud, 2016. [Online; accessed 2-May-2019].

[30] “Google arcore point cloud’.” https://developers.google.com/
ar/reference/java/arcore/reference/com/google/ar/core/Frame#
acquirePointCloud(), 2018. [Online; accessed 3-May-2019].

[31] “Apple arkit.” https://developer.apple.com/arkit/. [Online; accessed
11-May-2019].

[32] “Google arcore for ios.” https://developers.google.com/ar/reference/
ios/. [Online; accessed 11-May-2019].

[33] H. Bae, M. Golparvar-Fard, and J. White, “High-precision vision-based
mobile augmented reality system for context-aware architectural, engi-
neering, construction and facility management (aec/fm) applications,”
Visualization in Engineering, vol. 1, p. 3, Jun 2013.

[34] “Bim model.” https://www.autodesk.com/solutions/bim. [Online; ac-
cessed 10-May-2019].

[35] M. Kopsida and I. Brilakis, “Markerless bim registration for mobile aug-
mented reality based inspection,” in 16th International Conference on
Computing in Civil and Building Engineering (ICCCBE2016), 2016.

[36] “Constructor developer tool.” https://play.google.com/store/apps/
details?id=com.projecttango.constructor, 2017. [Online; accessed 29-
April-2019].

[37] “Wayfair’s augmented reality technology now available in its
popular mobile shopping app on the asus zenfone ar.” https:
//investor.wayfair.com/investor-relations/press-releases/press-
releases-details/2017/Wayfairs-Augmented-Reality-Technology-
Now-Available-in-its-Popular-Mobile-Shopping-App-on-the-ASUS-
ZenFone-AR/default.aspx, 2017. [Online; accessed 29-April-2019].

[38] D. Varga and S. Laki, “Scalable surface reconstruction in the mobile edge,”
in Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos,
SIGCOMM ’18, (New York, NY, USA), pp. 84–86, ACM, 2018.

[39] R. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” 05 2011.

[40] R. C. Martin, Agile software development: principles, patterns, and practices.
Prentice Hall, 2002.

https://www.sciencedirect.com/topics/engineering/point-cloud
https://www.sciencedirect.com/topics/engineering/point-cloud
https://www.sciencedirect.com/topics/engineering/point-cloud
https://developers.google.com/ar/reference/java/arcore/reference/com/google/ar/core/Frame#acquirePointCloud()
https://developers.google.com/ar/reference/java/arcore/reference/com/google/ar/core/Frame#acquirePointCloud()
https://developers.google.com/ar/reference/java/arcore/reference/com/google/ar/core/Frame#acquirePointCloud()
https://developer.apple.com/arkit/
https://developers.google.com/ar/reference/ios/
https://developers.google.com/ar/reference/ios/
https://www.autodesk.com/solutions/bim
https://play.google.com/store/apps/details?id=com.projecttango.constructor
https://play.google.com/store/apps/details?id=com.projecttango.constructor
https://investor.wayfair.com/investor-relations/press-releases/press-releases-details/2017/Wayfairs-Augmented-Reality-Technology-Now-Available-in-its-Popular-Mobile-Shopping-App-on-the-ASUS-ZenFone-AR/default.aspx
https://investor.wayfair.com/investor-relations/press-releases/press-releases-details/2017/Wayfairs-Augmented-Reality-Technology-Now-Available-in-its-Popular-Mobile-Shopping-App-on-the-ASUS-ZenFone-AR/default.aspx
https://investor.wayfair.com/investor-relations/press-releases/press-releases-details/2017/Wayfairs-Augmented-Reality-Technology-Now-Available-in-its-Popular-Mobile-Shopping-App-on-the-ASUS-ZenFone-AR/default.aspx
https://investor.wayfair.com/investor-relations/press-releases/press-releases-details/2017/Wayfairs-Augmented-Reality-Technology-Now-Available-in-its-Popular-Mobile-Shopping-App-on-the-ASUS-ZenFone-AR/default.aspx
https://investor.wayfair.com/investor-relations/press-releases/press-releases-details/2017/Wayfairs-Augmented-Reality-Technology-Now-Available-in-its-Popular-Mobile-Shopping-App-on-the-ASUS-ZenFone-AR/default.aspx

B IBL IOGRAPHY 77

[41] D. R. J. Mitchell, Managing Complexity in Software Engineering. Peter
Petergrinus Ltd., 1990. pg. 5.

[42] “Warehouse floor image.” https://c.pxhere.com/photos/e9/b7/
industrial_hall_toore_warehouse_industry_industrial_door_
spiral_gates_fast_closing_doors_hall_doors-518913.jpg!d. [Online;
accessed 12-May-2019].

[43] M. D. Yadav and M. S. Agrawal, “Keystone error correction method in
camera-projector system to correct the projected image on planar sur-
face and tilted projector,” International Journal of Computer Science &
Engineering Technology, vol. 4, no. 2, pp. 142–146, 2013.

[44] “Google arcore sdk for android.” https://github.com/google-ar/arcore-
android-sdk. [Online; accessed 5-May-2019].

[45] “Google arcore node.” https://developers.google.com/ar/reference/
java/sceneform/reference/com/google/ar/sceneform/Node. [Online;
accessed 12-May-2019].

[46] “Google arcore basetransformablenode.” https://developers.
google.com/ar/reference/java/sceneform/reference/com/google/
ar/sceneform/ux/BaseTransformableNode. [Online; accessed 12-May-
2019].

[47] “Introduction to activities.” https://developer.android.com/guide/
components/activities/intro-activities. [Online; accessed 13-May-
2019].

[48] “Progal api.” http://hjemmesider.diku.dk/~rfonseca/ProGAL/. [Online;
accessed 6-May-2019].

[49] “Enable arcore.” https://developers.google.com/ar/develop/java/
enable-arcore, 2018. [Online; accessed 25-April-2019].

[50] “Enable sceneform.” https://developers.google.com/ar/develop/java/
sceneform/, 2018. [Online; accessed 25-April-2019].

[51] “Huawei p20 specifications.” https://consumer.huawei.com/en/phones/
p20/specs/, 2018. [Online; accessed 5-May-2019].

[52] “Lux.” https://www.britannica.com/science/lux, 2018. [Online; ac-
cessed 5-May-2019].

https://c.pxhere.com/photos/e9/b7/industrial_hall_toore_warehouse_industry_industrial_door_spiral_gates_fast_closing_doors_hall_doors-518913.jpg!d
https://c.pxhere.com/photos/e9/b7/industrial_hall_toore_warehouse_industry_industrial_door_spiral_gates_fast_closing_doors_hall_doors-518913.jpg!d
https://c.pxhere.com/photos/e9/b7/industrial_hall_toore_warehouse_industry_industrial_door_spiral_gates_fast_closing_doors_hall_doors-518913.jpg!d
https://github.com/google-ar/arcore-android-sdk
https://github.com/google-ar/arcore-android-sdk
https://developers.google.com/ar/reference/java/sceneform/reference/com/google/ar/sceneform/Node
https://developers.google.com/ar/reference/java/sceneform/reference/com/google/ar/sceneform/Node
https://developers.google.com/ar/reference/java/sceneform/reference/com/google/ar/sceneform/ux/BaseTransformableNode
https://developers.google.com/ar/reference/java/sceneform/reference/com/google/ar/sceneform/ux/BaseTransformableNode
https://developers.google.com/ar/reference/java/sceneform/reference/com/google/ar/sceneform/ux/BaseTransformableNode
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/activities/intro-activities
http://hjemmesider.diku.dk/~rfonseca/ProGAL/
https://developers.google.com/ar/develop/java/enable-arcore
https://developers.google.com/ar/develop/java/enable-arcore
https://developers.google.com/ar/develop/java/sceneform/
https://developers.google.com/ar/develop/java/sceneform/
https://consumer.huawei.com/en/phones/p20/specs/
https://consumer.huawei.com/en/phones/p20/specs/
https://www.britannica.com/science/lux

78 BIBL IOGRAPHY

[53] “Hagner screenmaster.” http://www.hagner.se/combination-
instruments-1/screenmaster/. [Online; accessed 5-May-2019].

[54] “Black-body radiation.” https://www.sciencedirect.com/topics/
engineering/blackbody. [Online; accessed 5-May-2019].

http://www.hagner.se/combination-instruments-1/screenmaster/
http://www.hagner.se/combination-instruments-1/screenmaster/
https://www.sciencedirect.com/topics/engineering/blackbody
https://www.sciencedirect.com/topics/engineering/blackbody

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Code Listings
	List of Definitions
	1 Introduction
	1.1 Problem Definition
	1.2 Scope and Limitations
	1.3 Methodology
	1.4 Context
	1.5 Outline

	2 Background
	2.1 Augmented reality
	2.1.1 ar tracking
	2.1.2 Physical environment
	2.1.3 ar on smartphones

	2.2 Mobile ar platforms
	2.2.1 Google Tango
	2.2.2 Google ARCore
	2.2.3 Apple ARKit 2

	2.3 Related work
	2.3.1 Augmented reality in aecfm
	2.3.2 Mesh generation

	3 Design and Architecture
	3.1 Design components
	3.1.1 Plane detection
	3.1.2 Plane selection
	3.1.3 Triangle construction
	3.1.4 Texture construction
	3.1.5 Polygon construction
	3.1.6 Polygon mesh
	3.1.7 Virtual copy construction
	3.1.8 Managing virtual copies

	3.2 Architecture
	3.2.1 Plane reconstruction
	3.2.2 Curved surface reconstruction

	4 Implementation
	4.1 Environment
	4.2 3D reconstruction pipeline
	4.2.1 Plane detection
	4.2.2 Plane selection
	4.2.3 Triangle
	4.2.4 Texture
	4.2.5 Polygon
	4.2.6 Virtual copy
	4.2.7 Polygon meshing

	4.3 Application
	4.3.1 Planar surface reconstruction
	4.3.2 Polygon meshing

	5 Evaluation
	5.1 Experimental environment
	5.1.1 Android Platform
	5.1.2 Tools
	5.1.3 Surfaces
	5.1.4 Scope/Limitation of experiments

	5.2 Experiments
	5.2.1 Initialization gesture
	5.2.2 Position coherence
	5.2.3 Point cloud completion time
	5.2.4 Area calculation
	5.2.5 Volume calculation
	5.2.6 Texture quality
	5.2.7 Point cloud

	5.3 Qualitatively assessment of Neo
	5.3.1 Planar surface
	5.3.2 Curved surface

	5.4 Summary

	6 Conclusion
	6.1 Achievements
	6.2 Findings
	6.3 Future work

	A Virtual space abstractions
	A.1 World space
	A.2 Nodes
	A.3 Plane
	A.4 Triangle
	A.5 Polygon
	A.6 Virtual copy
	A.7 Graphical texture
	A.8 Properties of the virtual copies
	A.9 Point cloud
	A.10 Polygon mesh

	A Source Code
	Bibliography

