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Abstract

Uncertainty in the value chain of fisheries exists and as a result,
a production model taking uncertainty into account is important for
such a business to be efficient. A way to better plan under uncer-
tain conditions is through the use of stochastic programming. The
literature for which this is applied to fisheries is limited. Construct-
ing, testing, and evaluating such a model’s applications for a fishery
processing plant producing dried and salted, and fresh fish is the
purpose of the thesis. This is done through a case study where the
method of stochastic optimization is applied. Initially, scenarios rep-
resenting the underlying distributions are generated through time
series models for the variables and parameters exhibiting uncertain
behaviour. These scenarios are used as input values for the math-
ematical program representing the value chain of the fishery. The
results yielded in this thesis indicate that it is indeed an increase in
efficiency to be had applying such a model, although the low value
of the stochastic solution (VSS) estimates makes it difficult to con-
clude with certainty. Consequently, it is suggested to increase the
complexity of the model to better represent the whole value chain
in greater detail which is expected to increase the VSS. Furthermore
should different scenario generating methods be evaluated for both
harvest and price to compare the stability of the results as per now
they are suspected to be to somewhat unstable as indicated by their
dispersion and central tendency results.
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Chapter 1

Introduction

Norwegian exports of fish and seafood is an important source to both
revenue and employment in Norway. Consequently, it is necessary
for a domestic producer to be efficient in the production process to
be able to compete in a globalized market with disadvantageous pro-
duction costs. Cod, haddock, and similar types are disembarked and
processed by autonomous fishing vessels and processing plants, and
in addition handled by integrated fisheries. A typical integrated fish-
ery manages the whole value chain from start to finish by having
its own fleet of fishing vessels, processing the raw material when
disembarked, and finally supplies and distributes it to the market.
They are faced by uncertainty throughout this chain, and to men-
tion some, both quality and the quantity of raw material is of impor-
tance in planning production. The operational analysis of fisheries
has been developed and built upon by the help of mathematical opti-
mization for some decades now, where the objective of the method is
to increase efficiency in the production leading to reduced costs and
greater revenue, ultimately increasing the profits. Although a deter-
ministic method such as linear programming (LP) might help solve
both smaller and larger problems given a determined situation, the
lack of being able to account for random events such as price fluctua-
tion and uncertainty of raw material procurement limits its accuracy,
although it is a readily available and practical tool for optimization.

The absence of including uncertainty in a linear programming
model can decrease its chance of yielding an accurate result (Kali
and Wallace, 1994). The problem of not considering uncertainty, and
thus risk, is the chance of overestimating profits and/or underesti-
mating costs of the process. This is due to the naive certainty in the
model. Consider the example where a production facility produces a
mix of several commodities. One these products would indeed yield
a higher gross profit margin per unit than the rest, albeit this might
be marginal. A deterministic optimization program could overvalue
the importance of this product as it only considers one possible out-
come of its input variables, e.g. price and quality of raw materials.
A stochastic approach i.e. an optimization model with uncertainty
does a better job in evaluating several likely and/or unlikely scenar-
ios than the deterministic. This method can assist the planning of
production yielding more efficient operations and ultimately lead to
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higher profits.
While the history and different thoughts of profit maximization

will not be touched upon in this thesis, some fundamentals surround-
ing this concept must be mentioned. In mainstream economics, no
doubt the largest following in economics and closely related today to
the neoclassical synthesis (Dequech, 2007), certain assumptions un-
derlies the models and the economic thought. Some of these, e.g.
perfect competition, intertemporal optimization, and rational par-
ticipants in the economy (Blanchard, 1997), tells us that in equilib-
rium in the economy, profit maximizing activity happens only when
the marginal cost is equal to the marginal revenue. This is due to
the simple fact that if a company is able to extract a profit in any
given market, another participant in the economy will acknowledge
this and enter it. Consequently, the prices will be reduced due to
the newly established competition. This will continue until equi-
librium where no new agents will find an incentive to enter. The
question whether this is true hinges on several of the assumptions.
It’s highly unlikely there exist such a market with full perfect com-
petition. Even highly functional and transparent financial markets
will have at least transaction costs. And while the knowledge of the
(ir)rational consumer has been greatly increasing together with the
increasing prevalence of experimental economics, especially the as-
sumption with regards to perfect information is greatly explored in
the literature. The prevalence of asymmetric and costly information
does indeed affect firms behaviour making them more risk averse
(Greenwald and Stiglitz, 1990, Stiglitz and Weiss, 1983). As a di-
rect result of this and other market failures, resources can be spent
to exploit these. Either through the use of new tools previously not
available, or through reduced cost and availability of already exist-
ing ones. And even if one were to operate in a completely perfect
market, as long as the weak axiom of profit maximization is not sat-
isfied, there are improvements to be made. An answer to why this
axiom is not met might be the fact that uncertainty in the variables
is interfering with the decision making (Dasgupta, 2009). These con-
cepts will be more formally defined in chapter 3.

With the above mentioned in mind, the need for a model taking
uncertainty into account is indeed important for a business to plan
its production in an efficient way and being competitive. The litera-
ture for which stochastic programming is applied to fisheries is lim-
ited with only a few examples and applications. Constructing, test-
ing, and evaluating a stochastic optimization model’s applications
to fisheries is the purpose of this master’s thesis. Consequently, a
relatively generic mathematical program is applied to a case study
company producing both dried and salted, and fresh fish. The dif-
ficulties they are faced with are uncertainty throughout their value
chain both with regards to the harvest, the prices, and the quality of
the fish. These uncertainties, with the exception for the quality for
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which there is little data, are modelled through the use of time series
models. The results of these statistical models are simulated and re-
turned as scenarios. The scenarios are in turn used as input values
for the mathematical program and allows for evaluation and testing
of the stochastic program. The outline of the thesis follows.

The thesis will start of in chapter 2 by describing the value chain
of a fishery and some of it’s logistical difficulties. Further, some
of the research and previous works in the field of optimization in
fisheries will be discussed. In chapter 3 the theoretical background
of profit maximization and mathematical programming will be ex-
plained. Chapter 3 will also elaborate on the theoretical background
for the time series scenario generating process and its foundations.
Chapter 4 presents the method of optimization and scenario genera-
tion for the analysis done in this thesis, and the tools for which this is
done. In chapter 5 the case study is presented and the results of ap-
plying the method to the case study is evaluated. chapter 6 contains
discussion, conclusion, and suggestions for further work.
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Chapter 2

Fisheries and Optimization
Research

In this chapter, the value chain of fisheries is presented, with vari-
ations. Furthermore a literature review follows which in no way is
intended to be exhaustive, but should suffice as a solid enough back-
ground covering the evolution of mathematical optimization applied
to fisheries since the early 1980’s.

2.1 Value Chain Fisheries

The value chain of a fishery can be quite different depending on how
the raw material is handled and what type of final products it is used
for. In addition, different strategies can be applied by different fish-
eries. In Figure 2.1, a typical value chain is depicted, with variations.

FIGURE 2.1: Value Chain of an Integrated Fishery
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First and foremost, the raw material is procured. For an inte-
grated fishery, the fish is harvested by its own fleet of fishing vessels
which can contain several different types depending on the scale of
operations and type of fish. For typically larger integrated fisheries
with larger production capabilities, trawlers are used. Trawlers ap-
plies the method of releasing a net dragging behind it either close to
the sea bottom or at the surface, and is capable of being at sea for
weeks on end due to their size. The size allows for greater storage
and freezing capabilities of the raw material. Other types of methods
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applied are longline fishing, which uses the more traditional way of
releasing a line with several hooks. While this type has been a tradi-
tional way of harvesting for years and is still used at a smaller scale,
the method have since been automatized generating large autoline
vessels capable of around the clock operations at open waters releas-
ing tens of thousands of hooks a day. Seine fishing is also a common
way of harvesting fish, especially herring and other types which op-
erates in shoals. There exists several ways of seine fishing, while the
main concept behind this method is to deploy a net surrounding the
shoal, and when surrounded the harvesting is done through suction
by using a pump pumping the fish from the ocean to the fishing ves-
sel. Depending on the type of fish and the products sold by the fish-
ery, much of the pre work can be done at the vessels already at sea.
Often both the head and guts are removed making the fish SLUH,
which is a Norwegian acronym for gutted without head. On larger
vessels the filleting process can start.

The next step is to embark the raw material from the vessel to
the landing facility. This can both be done at independent landing
facilities, or facilities in conjunction with processing plants which is
typical for integrated fisheries. The landing of fish is strictly regu-
lated. Both in the quality, quantity, size, and other factors regulated
by laws and regulations determining quotas, area of allowed harvest
defined by the latitude, size of fishing vessels, et cetera, as stated by
the Directive for Harvesting Cod, Haddock and Saithe north of 62◦N , the
Directive for Prohibiting Landing of Fish and Other Special Measures to
Combat Illegal, Unreported and Unregulated Fishing Activities, and the
Directive for Landings. The trade in Northern Norway is maintained
by The Norwegian Fishermen’s Sales Organization. The organiza-
tion makes sure fishermen gets paid fairly, and assists in controlling
the sustainability of the industry. They operate a marketplace where
fish is sold and bought. This is also true for the integrated fisheries.
Quality assurance is also handled by the organization.

When embarked, the production process can start. Typically, the
fish is sent through the process of filleting. This process can pro-
duce several types and classes of fillets from a single fish, ranging
in the quality of the meat from the different parts of the fish. These
products are sold either fresh or frozen. In addition, several different
types of dried fish is produced from typically whitefish like cod and
haddock, while pelagic fish such as saithe is also used. Depending on
the method of drying the fish, different produce is made e.g. stock-
fish and clipfish. In addition, fisheries may supply finished SLUH
or dried fish to other companies for re-branding or further process-
ing. Consequently, the fish might be shipped directly to buyer from
the embarking area after packaging without any further processing
of the raw material.

There exists several different storage strategies for smoothing out
the production of the fish. These can be deployed either to smooth
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out production for seasonal fluctuation in the harvest. In addition,
this allows potentially to store both raw material and finished prod-
ucts in high supply seasons with low product price, and transfer the
sales to low supply season with higher product prices. The latter
method is true both for fresh, frozen, and dried fish, and is made pos-
sible for fresh fish due to more efficient ways of freezing and double
freezing the fish.

The fisheries encounter uncertainty in several parts of their value
chain, and this uncertainty makes it more difficult to be as efficient
as possible. With regards to the amount i.e. the quantity of raw ma-
terial, this is mostly determined by seasonal fluctuations and quotas,
which determines a lot of the harvest for most of the different species
procured. Despite this, quite high fluctuations can occur even during
the busiest season due to the behaviour of the fish, spawn rates, and
the potential difficulties subject to weather conditions and other ran-
dom factors. Further, there exists uncertainty in the prices. Both the
prices paid for the raw material when embarked, and in the prices
for the final products. The former is controlled by The Norwegian
Fishermen’s Sales Organization, and requires a good knowledge of
the current trends and regulations set by official entities to plan for.
The latter is determined by the marked and can be considered a more
traditional market price in which it is determined by the supply and
demand of the respective products. The quality of the raw material
is also a stochastic variable which must be planned for. Traditionally
the fish with the highest quality is sold as fresh and frozen fillets,
while the lower quality fish is processed as stock- or clipfish. The
quality assurance and requirements are also regulated by The Nor-
wegian Fishermen’s Sales Organization for the regions in Northern
Norway.

2.2 Litterature Review

There has been done quite a significant amount of research on oper-
ational planning and optimization, and while linear programs have
been popular for several years, the stochastic approach have been
ever increasing. One reason is the increased computer power which
allows for more complex problems to be solved in a reasonable time,
and where the cost of solving it does not exceed the benefit. Opti-
mization such as different variants of LP has been applied to fisheries
(Millar and Gunn, 1992; Randhawa and Bjarnason, 1995). Both inte-
grated and stand-alone processing plants. As for application of lin-
ear programming as to do operational planning Mikalsen and Vass-
dal (1981) suggest a multi period LP-model where the objective is to
increase the profitability of the fish manufacturing sector with the
focus on storage management. This model is mainly constructed
around a stand-alone producing plant which acquires raw material
from the market. Consequently, an integrated fishing fleet and how
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this affects the product mix is not directly considered in this model.
Shadow prices can subsequently be found to do a sensitivity analysis
where the user of such a model, even though the model is determin-
istic, can derive decision rules ex post in contrast to the SLP where it
is based on ex ante analysis. The model constructed in this thesis will
be loosely based on the model of Mikalsen and Vassdal. A similar
approach is done by Gunn et al. (1991). They suggest a multi period
LP-model where maximization of net revenue is done subject to har-
vesting, production, and marketing. This model is constructed for
an integrated fishery, and consequently the effect of its own fleet is of
importance in optimizing the production. Furthermore, they touch
on the fact that uncertainty is not taken into account in their model.
They argue that this is already done by corporate personnel and a sen-
sitivity analysis is sufficient. Further, they argue that a model such as
theirs can be updated a long they way such as policies are updated
in response to new information. As this is all true, it can be argued
that this is just as true for a stochastic LP. A better question would
perhaps be if the extra work of implementing uncertainty is in fact
worth it. As far as their argument for not including uncertainty, this
seems to have been the consensus for quite some time in fish pro-
cessing optimization.

Begen and Puterman (2003) develops a LP-model for a salmon
producer with the desired result to increase profitability, reduce de-
cision making time, and over all streamline the production. While
this model is considered for salmon and thus is not directly transfer-
able to cod production, the overall idea is quite similar. Further, this
model focuses on the allocation of harvest to their various processing
plants. This is in contrast to the model being developed in this the-
sis, as this will only focus on the production value chain in one plant.
They do however make a good point with regards to modelling un-
certainty. They suggests an extension to their model making it a SLP-
model where catch size is considered the random variable. Begen
and Puterman were having a hard time modelling the uncertainty as
the producer they made the model for failed to supply enough data.
They further concluded that despite the few observations supplied,
the data does in fact reflect the producers buying preferences. This
makes it necessary to user other methods than time series models.
With regards to the method of stochastic programming applied for
fisheries, not much literature exists.

Bakhrankova et al. (2014) creates an integral stochastic program-
ming model for optimization of operational production planning for
fisheries. And as they state, research in supply chain management
under uncertainty has indeed been done before (Dabbene et al., 2008;
Schütz and Tomasgard, 2011), they point out that a stochastic mod-
elling of optimization has yet to be applied to fish processing. The
focus of their model is to determine whether a storage system based
on super-chilled storage is beneficial. This is analysed through the
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use of uncertainty in prices and incoming raw material (quantity).
Through the use of their SLP, they conclude that implementing super-
chilled storage indeed may increase profits. They state that it indeed
is necessary to account for uncertainty in determining whether this is
true or not. As far as uncertainty in quality is concerned, they don’t
touch on this except stating that further research should be done by
incorporating this as a stochastic variable as well. In contrast to the
model being developed for the thesis, this focuses mainly on the ef-
fect of the super-chilling technology. This will not be done in this
thesis. Furthermore, the scenario generation techniques in their pa-
per is unknown and seem purely to be based on the assumption that
after the second stage, each scenario considered is constant for the
duration of the planning horizon. It’s unclear why this is assumed as
there’s no elaboration with regards to the process of scenario genera-
tion besides the stated five different scenarios, which seem arbitrary.
This might be due to the fact that while their case study is a real com-
pany, the original data might be withheld for privacy reasons and
thus the scenarios implemented are just applied for illustration pur-
poses of the model’s functionality. The lack of focus on scenario gen-
eration in also seen in Simbolon et al. (2014) which presents a stochas-
tic programming model for inventory management and meeting de-
mand subject to uncertainty in quality. A chance constraint model
is constructed to account for this uncertainty, while the other input
factors are simulated through scenarios similar to Bakhrankova et
al. (2014). In addition Naibaho and Mawengkang (2016) applies a
nonlinear mixed integer stochastic programming model subject to
environmental restrictions with the aim of increasing the efficiency
and sustainability of a production process where a single processing
plant distributes its final products to several different distribution
centres.
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Chapter 3

Theory

The prospect of profits is widely considered a fundamental incen-
tive for establishing new business and to keep existing from closing
down. Both mainstream economics and other heterodox schools of
thought accept this, albeit under some different assumptions. While
how one best can achieve profits is different depending on situation
and sector, there exists some general fundamentals.

The idea of profit maximization has been a perpetual concept
since the early days of economics, and certainly even before it was
defined in mathematical terms. The concept is quite fundamental,
and states that if one can increase ones profits by selling more, it’s
necessary to do so to be able to possess profit maximizing behaviour.
This can be stated more formally by considering a general cost and
revenue function. The cost function can be defined asC(a) and repre-
sents the corresponding cost of producing the products contained in
the product vector a = {a1, a2, ..., ai}. The revenue function R(a) rep-
resents the revenue generated by selling the corresponding product
in the product vector. As long as the revenue is greater than the cost,
profits are increased. This can be showed more formally as stated by
Varian (1992), and while he was most certainly not the first to state
this relationship, two basic principles for maximizing profits follows
such that max

a
(R(a) − C(a)), and for the optimal solution vector a∗,

∂R(a∗)
∂ai

= ∂C(a∗)
∂ai
∀i ∈ N , which states that if marginal revenue exceeds

the marginal cost, the activity should be increased to further increase
profits. In equilibrium in a perfect competitive market, these condi-
tions will always hold and consequently no further profits can be ex-
tracted. While it is quite unlikely every business goes through such
a routine as constructing their own profit function, it is implicitly
done by weighing revenue against cost. Consequently, the principle
is the same. Furthermore, the Weak Axiom of Profit Maximization
(WAPM) (Samuelson, 1948) must hold, by definition, for a business
to be profit maximizing. The WAPM states that ptyt ≥ ptyt

′ ∀ t and
t′ ∈ T , and t 6= t′, i.e. as long as there exists a profit maximizing
production set for a given price today, no other output mix could
generate a greater revenue than this. While measuring whether the
WAPM holds or not is certainly not an easy task, especially due to
measuring errors, the idea behind this axiom is still important and
self explanatory: If there exists a better product mix than the one you
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already produce, why not adjust for it? As mentioned initially in the
introduction, this might be because of uncertainty (Dasgupta, 2009).
As a way of being able to plan production and sales better subject
to uncertainty, a stochastic optimization approach can be applied. In
this chapter, the theoretical background of stochastic optimization
will be explained, both in terms of the mathematical program, and
the process of scenario generation.

3.1 Mathematical Programming and optimiza-
tion

As discussed in chapter 2, mathematical programming and opera-
tional planning is indeed a well established and well tested method
of doing optimization in fisheries and other closely related produc-
tion processes. The method of mathematical programming allows
for a relatively good and not too inaccurate way of evaluating the
operational processes and its efficiency. And while mathematical
programming will give good approximations for complex processes,
the decision whether to apply a linear or a non-linear method is a
decision where costs must be weighted against the benefits, and con-
sequently the question is whether or not the more close to reality
non-linear program is indeed suited better for the problem at hand
rather than the linear one. In addition, benefits of including dynamic
variables must be evaluated. There exists several reasons for why
such a program can perform better in certain circumstances than a
static one. The two-stage one period suffers under the fact that it
is incapable of treating different production processes with different
time horizons correctly (Kali and Wallace, 1994). This is especially
true in operations research on fisheries. Further the dynamic prop-
erty is necessary to be able to model storage from one period to the
next and production over a certain time horizon (Bakhrankova et al.,
2014, Mikalsen and Vassdal, 1981).

3.1.1 Linear Programming

When constructing a stochastic programming model, one usually
starts with an underlying deterministic linear program (Griva et al.,
2009)

min cTx
s.t. Ax ≤ b, x ≥ 0

(3.1)

where cTx is the objective function, x is the vector of variables which
is to be determined. c and b are known vectors of coefficients e.g.
cost of producing product x and capacity restrictions, respectively.
A LP-model can either be in a general or canonical form such that
for the general form, the constraint can be greater or equal, less or
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equal, or equal to. In canonical form, only less or equal is permit-
ted. While the differences are important, simple mathematical steps
can be made to make them interchangeable. To be solvable, both
the requirements for feasibility and boundedness must be satisfied.
Consequently, the constraints must define a bounded convex poly-
hedron i.e. a convex set in n-dimensions. For simple models, obser-
vation is enough to find the complete vector x for which the problem
is minimized under a convex curve. When increasing in complex-
ity and moving the problem from the eucledian plane to the space
for n-dimensions, different algorithms can be applied to solve the
problems. The Simplex algorithm is a search algorithm allowing for
solving LP-models given feasibility and boundedness. The method
is divided into two step, and as stated by Dantzig (1998), the first
step consists of, starting at a random extreme point, searching for a
feasible solution. Should no such solution exist, the problem will be
defined as infeasible and no solution will be returned. For a feasi-
ble solution, the next step is initiated starting at the optimal feasi-
ble point. The second search will determine whether the problem
has a basic feasible solution, or if the problem is not downwards un-
bounded.

As discussed earlier, a LP-model can indeed be applied to com-
plex problems. On the other hand, the lack of taking uncertainty
into account reduces its accuracy. To expand on this, the LP can be
expanded into a stochastic program by including uncertainty in the
variables and/or the parameters.

3.1.2 Two-Stage Stochastic Program

An example of a non-deterministic model is a two-stage stochastic
linear program with recourse and can be stated as (Kali and Wallace,
1994)

min cTx+ E[Q(x, ξ̃)]
s.t.Ax = b, x ≥ 0

(3.2)

where
E[Q(x, ξ)] =

∑
j

pjQ(x, ξj) (3.3)

and

Q(x, ξ) = min{q(ξ)Ty|W (ξ)y = h(ξ)− T (ξ)x, y ≥ 0} (3.4)

Where ξ ∈ Ξ on the probability space (Ξ,F , P ), and the probability
distribution P on F is given. Consequently, for every subset A ⊂ Ξ
that is an event, A ∈ F , the probability P (A) is known. The func-
tion Q(x, ξ) is the recourse function, and Q(x, ξ̃) is the expected re-
course function. The objective function Equation 3.2 is the first stage
optimization, where the uncertainty is not yet realized and the first
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decision must be made. Next, the optimization of the recourse func-
tion Equation 3.4 is done and the proper adjustments are made. The
overall goal is to decide on an optimal set here and now to optimize the
two stages given the information we have. Thus, the recourse action
is not done in practice, as will be shown in the explicit representation
that follows in chapter 4.

Several variations of the stochastic programming method exists.
The Chance-Constrained way, as first introduced in Charnes and
Cooper (1959), considers situation where penalties for not abiding
the constraints in the original program is difficult to define. The
chance-constrained method allows for defining probabilities for such
constraints holding. Consequently a program can be defined for
which a feasible solution for a given probability will exists, mak-
ing the program more flexible. Furthermore, the two-stage stochas-
tic program can be extended to a multistage stochastic program. A
multistage stochastic program expands on the two-stage such that
more complex and more realistic optimizations can be done. The de-
cision whether to apply a two-stage or multi-stage approach is conse-
quently a decision where the cost versus the benefits must be consid-
ered as a multi-stage program far exceeds the need for computational
capacity in comparison to the two-stage method.

For stochastic programs, Benders Decomposition (Benders, 1962)
can be applied which is a method suggested for large linear program-
ming models which exhibit block structures, i.e. partitioned matrices
where the matrix can be subdivided into smaller matrices defined
by the rows and columns in the original matrix (Anton and Rorres,
2011), which are typical for stochastic programs. The prevalence of
this in stochastic programming is due to the fact that variables and
parameters often are given as scenarios such that for a matrix of ran-
dom variables and parameters, Ξ, this can be partitioned into vectors
such that

Ξ =


ξ11 ξ12 · · · ξ1n

ξ21 ξ22 · · · ξ2n

...
... . . . ...

ξm1 ξm2 · · · ξmn

 =


ξ1
ξ2
...
ξm


Thus the Benders decomposition first solves for the main program
without reducing it, and if encountering infeasible solutions, row
generation is applied and the iterative search for a feasible solution is
repeated until found or returned infeasible. This process is know as
Benders Cut. While the method of Benders Decomposition should be
explained in greater detail, it is beyond the scope of this thesis and
it is noted that it is a widely applied method of solving stochastic
programs with relative high efficiency.
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3.2 Scenario Generation

Generating accurate scenarios is of great importance when construct-
ing a stochastic program (Kali and Wallace, 1994; Di Domenica et al.,
2009) Scenarios consists of probabilities of realisations on the under-
lying distribution of the random variable. This can be depicted as
a scenario tree. Examples of scenario trees, which in the context of
a two-stage optimization problem is referred to a scenario fan, can
be seen in figure Figure 3.1 for s scenarios and t time periods. Such
trees and fans consists of the set of nodes ni ∈ N which represents
events where a decision is made. The probability of each node is
p(nt), where

∑
t∈Ti p(nt) = 1, where Ti ∈ T and T is a family of sets

over N which contains the sets for each period t. Furthermore, the
trees consists of scenarios over two or multiple stages, where the first
stage is over one time period and is known with certainty, while the
next stages branches out. The general formulation of the probability
of a scenario s is Ps =

∏
s∈Sj

p(ns), where Sj ∈ S and S is another
family of sets over N which contains the sets of scenarios s. Con-
sequently, a scenario represents how likely, or unlikely, a vector of
realizations on the variable evaluated are. Combining several such
scenarios yields a scenario fan or a scenario tree where the combined
probability over all scenarios is unity.

FIGURE 3.1: Visual Scenario Representation

1 2 3 4 t

s

s− 1

s− 2

3

2

1

Top left: Deterministic behaviour for t periods. Bottom left:
Scenario fan for two-stage stochastic program for s scenar-

ios. Right: Multistage scenario tree

To generate a suitable scenario tree Di Domenica et al. (2009) runs
through several different methods in doing so. To mention some,
they suggest several econometric and time series models including
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autoregressive models (AR(p), ARIMA(p,d,q)) and vector autoregres-
sive models (VAR). Other statistical approaches are moment match-
ing (Høyland et al., 2003) and discretization (non-parametric meth-
ods), and discrete sampling (random sampling). Different forms of
Monte Carlo simulations and bootstrapping are used to generate sce-
narios. While the theoretical background of several of them should
be mentioned in greater detail, the shear amount of suitable methods
makes this unreasonable. Consequently only the theoretical back-
ground for the time series approach is presented, which will be fur-
ther expanded upon in chapter 4.

3.2.1 Econometric and Time Series Analysis

Time series methods and econometric analysis is a widely applied
technique for generating scenarios, especially in modelling supply
chains, electricity price and demand, hydro and wind power, and
in financial markets. With regards to examples in these fields of re-
search and application there exists too many to discuss even a frac-
tion, but to mention some, Zhou et al. (2009) applies the Autore-
gressive Moving Average (ARMA) model to simulate price scenar-
ios based on historical data through two stages. First the demand is
determined and is subsequently fitted to polynomials between the
demand and price. Through this method they conclude that even on
their limited time series they are able to generate realistic price sce-
narios. In Sharma et al. (2013) an algorithm is presented to generate
and reduce scenarios through the use of the ARMA-model and the
probability distance based scenario reduction method, respectively.
It is suggested that the use of the ARMA in their algorithm success-
fully can be used for different types of planning and operations. Why
is the ARMA and similar econometric models such as the GARCH
model so widely applied in these types of analysis? The answer lies
in the combination of the stochastic properties of the data combined
with the repeating patterns e.g. time of day where electricity de-
mand is higher, and other seasonal effects, such that next periods
unrealized value is dependant on the value of previous periods and
today.

As a closer look into the time series approach (Hill et al., 2008;
Shumway and Stoffer, 2010; Hull, 2006), consider first a k-period
time series which can be denoted as

yk = {yt1, yt2, ..., ytk}

consequently a time series is a collection of discrete observed values
for a given data measure object. For statistical analysis of time series,
the variables should exhibit stationary behaviour such that the re-
sults doesn’t suffer from spurious regression, which more often than
not will give significant results when there are none. For the time
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series to be stationary both the mean and the variance must be iden-
tical regardless of the time period they are observed. More formally,
it can be stated that the probabilistic behaviour of the observed vari-
ables, yk, is identical to that of the time shifted set yk+h such that
P{yk ≤ ck} = P{yk+h ≤ ck+h} ∀k, h ∈ Z+ which implies that the
mean must be constant over all time periods. To investigate whether
or not the time series is stationary often a visual test on the plot will
suffice. And while this might be true for the most obvious examples,
there exists several tests which can be applied to determine to a more
certain degree the stationary, or the non-stationarity, in the series. To
mention some, both the Augmented Dicky-Fuller and the KPSS test
can be done.

Unit Root Tests

The Augmented Dicky-Fuller (Dickey and Fuller, 1979) is a unit root
test where, ∆yt = α + γyt−1 +

∑m
s=1 as∆yt−s + vt for H0 : γ = 0,

and H1 : γ < 0. Reject the null if τ ≤ τ c. If H0 is not rejected, the
time series exhibits non-stationary properties and the time series yt
is integrated of order one I(1).

As a supplement to the unit root test, the KPSS (Kwiatkowski
et al., 1992) test was developed and can be used as a complemen-
tary test to the DF to check for stationarity in the time series. Its
intended use is to assist the tester where other unit roots tests fail
to give sufficient information. This stationary test tests for the null
hypothesis that the time series are integrated of order zero I(0) i.e.
is stationary. Consequently, for a decomposition of the series into
a deterministic trend, a random walk, and a stationary error (in the
authors notation), yt = ξt + rt + εt, respectively, where for the ran-
dom walk rt = rt−1 + ut and ut ∼ iid(0, σ2

u). Thus for the situation
where the variance is zero σ2

u = 0 the random walk can be stated as
rt = rt−1 ∀t and the time series yt can be concluded to be stationary.
Thus the null and alternative hypothesis can be stated as H0 : σ2

u = 0
and H1 : σ2

u > 0, respectively.

Stochastic Processes

For unobserved variables of a time series, i.e. variables which has not
yet been realized, and unless perfectly predictable, are random. This
process is called a stochastic process such that observed values of
the time series are the realized stochastic process. This is a common
feature in economic time series. While the time series observed in
economics are discrete, the values the stochastic variables can con-
tain are usually continuous state space processes i.e. the values of
the stochastic variable can be anywhere on the real number line such
that for a random variable, y1 ∈ R. This allows for the application of
models such autoregressive and moving average models..
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Autoregressive and Moving Average Models

More often than not, and despite the stochastic properties of the un-
realized variables, there exists patterns in the time series. Some of
these patterns can be evaluated through the use of autoregressive
and moving average models. For an autoregressive model, AR(p),
the current value of the series, yt, depend on the previous ones such
that yt =

∑p
j+1 φjyt−j + εt for a p amount of lagged variables for a

stationary series, yk. For a moving average model, MA(q), the cur-
rent realization of the variable, yt, depends on the previous values of
the white noise such that yt =

∑q
j=1 θjεt−j + εt for a stationary series.

Both of these effects can occur in time series, and consequently the
ARMA(p, q) model can be applied which combines the two effects
for stationary series. For a non-stationary series, which is quite typ-
ical for economic time series, a n-th order differenced version of the
model is used, namely theARIMA(p, d, q)-model, which will further
explored in subsection 4.2.1. Due to the nature of the AR and MA
processes, and their combined versions, they are able to give infor-
mation about upcoming periods based on information given in the
past. This is often referred to as forecasting, and is an essential part
of being able to generating scenarios through the use of these mod-
els. That is, e.g., given an AR(p) model yt =

∑p
j+1 φjyt−j + εt, the next

period value of the time series, yt+1, can be estimated by evaluating
the observed time series and its values for yt and et. These features
will be exploited to generate scenarios and will further be expanded
upon in section 5.2

3.3 Scenario Reduction

There exist several different ways of scenario reduction. For stochas-
tic programs, the shear number of scenarios necessary to yield as
good results as possible might be overwhelming even for powerful
computers. To be able to account for this, i.e. the cost of operat-
ing complex mathematical programs, scenario reduction can be ap-
plied (Römisch (2009), Heitsch and Römisch (2003)). This is allows
to greatly reduce the number of scenarios needed to estimate good
results, while making the scenarios as accurate and as close to the
observed time series properties as possible.
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Chapter 4

Method

Dominguez-Ballesteros et al. (1999) (as cited by Valente et al. (2001))
suggests the following modelling process of a mathematical program-
ming problem as depicted in figure 4.1. The conceptualisation stage

FIGURE 4.1: Modelling process

Conceptualisation Stage

Data Modelling Stage

Algebraic Form

Solution & Solution
Analysis

consists of collecting and assessing real world information and de-
velop a mathematical formulation of the problem. During the data
modelling stage one extracts data of the random processes and gen-
erate scenarios for the random variables. An algebraic form is then
formulated to make the problem readable for a computer solver. Fi-
nally, the model is processed and the results are produced and anal-
ysed. In this chapter a more specific description of the method for
the research question at hand follows.

4.1 Conceptualisation Stage

The model which is to be applied will be loosely based on the short
term production planning model developed by Mikalsen and Vass-
dal (1981). Their model is developed to assist decision makers in
planing how to most efficient store raw materials as to postpone pro-
duction, decide product mix, and take advantage of seasonal fluc-
tuating prices. Their model is a deterministic linear program and is
intended for a processing plant which acquires raw material in the
market.

The fish processing value chain of an integrated fishery must be
evaluated. Some of the questions which has to be answered are
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whether or not procurement of raw material solely is from their own
fleet. Is the uncertainty in quantity and quality of fish a problem -
What about fluctuation in prices? Are products only delivered on
demand, or does there exist contractual agreements? The plants pro-
cessing cod are faced by decisions whether to process and sell it fresh,
frozen, or dried. This is based on raw material quality. Consequently,
the product mix together with how to produce the clipfish optimally
through different periods will be the main focus of the model. Both
of these factors are greatly impacted by the expected intake of raw
materials and the market price of the finished products. Thus both
price, and the amount of procured raw material will be modelled as
uncertain variables. The model will be constructed to be used on a
single processing plant, such that if a business is running several the
optimization model must be modified and repeated for each plant.
This is not unreasonable as difference in both technology and loca-
tion exists which affects production and storage and a model such
as this can easily be modified to accommodate for such differences.
It can also be advantageous as different processing plants in the en-
terprise can be compared. After reviewing these and several other
factors, a mathematical model is constructed.

As mentioned in chapter 3, when constructing a stochastic pro-
gramming model, the underlying deterministic program is first eval-
uated

min cTx
s.t. Ax ≤ b, x ≥ 0

(4.1)

which is defined in subsection 3.1.1. After construction this, and with
the knowledge in mind of the assessment of the integrated fishery,
the LP is expanded to a non-deterministic model.

To expand on the idea of the two-stage modelling, a scenario for-
mulation of the program can be a more practical way in solving an
optimization problem. As suggested by Higle (2005) the explicit rep-
resentation, or the deterministic equivalent problem (DTE), can be
stated as

min
∑
ξ∈Ξ

pξ(cxξ + gξyξ)

s.t.Tξxξ +Wξyξ ≥ rξ

xξ − x = 0 ∀ξ ∈ Ξ

xξ, yξ ≥ 0.

which now contains the non-anticipativity constraints xξ = x such
that in contrast to the recourse formulation, this allows for the pro-
gram to omit the recourse action all together. Consequently the sec-
ond stage function is maximized instantaneously. This is due to the
fact that for each ξ ∈ Ξ, pξ = P{ξ̃ = ξ}, i.e. for the expected value in
Equation 3.2, the objective in the above mentioned DTE represents
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the same expected value. With this formulation in mind the opti-
mization problem for an integrated fishery producing fresh cod and
stockfish is presented in chapter 5.

4.2 Data Modelling Stage

After observing the random variables during the conceptualisation
stage, data must be extracted to generate scenarios, and as men-
tioned in chapter chapter 3, there exists several methods of gener-
ating scenarios for a stochastic optimization problem, and preferable
several should be applied and compared to evaluate which yields
the most accurate and best result. In this thesis two different, but in
a sense somewhat similar, Monte Carlo approaches has been applied
through the use of ARIMA-modelling (Box et al., 2015; Whitle, 1951)
and its extensions. As the data set for price is quite small and in-
hibits a more stochastic behaviour, regular ARIMA-Monte Carlo sim-
ulations on the white noise is done. As for the intake of the raw
material, this is much more determined by seasonal fluctuations and
consequently conditional simulations is done by the use of a seasonal
ARIMA model (SARIMA). Both models are explained in more detail
below, while the explicit way of generating the scenarios are pre-
sented in chapter 5

4.2.1 ARIMA

The ARIMA(p,d,q) model can in backshift operator notation be ex-
pressed as

φ(B)∇dyt = θ(B)εt + µ (4.2)

Which expanded can be stated as

∆yt =

p∑
j+1

φjyt−j + εt +

q∑
j=1

θjεt−j (4.3)

for ∆yt = yt − yt−1 and the error term, εt, i.e. the stochastic process
or the white-noise which follows cor(y, ε) = 0 and εt ∼ N(0, σ2

ε ).
Consequently the ARIMA(p,d,q) model is a model combining both
autoregressive and moving average parameters, for an amount p and
q, respectively, such that for p, {φj}pj=1 and for q, {θj}qj=1, at a d-th
order of difference.

The method applied for estimating the ARIMA(p, d, q) model is
the standard method supplied by forecast::arima in R, which is
a log likelihood method that applies Kalman filtering (Gardner et al.,
1980), an algorithm used for measurements over time which goal is
to increase accuracy of the estimated coefficients and their relation-
ship. To evaluate the fit and accuracy of the returned model, the
Akaike’s Information Criterion (AIC) is used (Akaike, 1998). Thus
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the model with the lowest AIC value is the ARIMA(p,d,q) model for
which a given configuration of p, d, and q minimizes the sum of the
squared errors, or in this case the likelihood of the data. The AIC
can be defined as AIC = ln(SSE

T
) + 2K

T
, or for the log likelihood esti-

mation, AIC = −2log(L) + 2(p + q + k + 1), and is increasing in an
increase in parameters added to the model for which the SSE, or the
likelihood, is not reduced. Consequently the model with the lowest
AIC is kept while the others are rejected.

4.2.2 Seasonal ARIMA

The seasonal ARIMA (SARIMA), ARIMA(p, d, q)× (P,D,Q)s, can in
backshift operator notation be expressed as

Φ(Bs)φ(B)∇d∇D
s yt = Θ(Bs)θ(B)εt + µ (4.4)

Where in contrast to Equation 4.2, a seasonal difference of order D,
∇D
s yt = (1−Bs)Dyt, has been included such that for a seasonal effect s

in the time series, the additional parameters Φ and Θ for the seasonal
autoregressive and moving average effects are calculated. Further,
the seasonal difference ∇D

s is estimated. The seasonal ARIMA is cal-
culated in the same fashion as the non-seasonal one.

4.2.3 Random Number Generator

A pseudo random number generator (PRNG) is used to generate the
random errors for the Monte Carlo simulations. The algorithm im-
plemented is the default generator in R, the Mersenne Twister (Mat-
sumoto and Nishimura, 1998b). This algorithm inhibits the proper-
ties of high speed and efficient use of memory. As with most PRNGs,
the method depends on its initial seed provided either by the user,
or by the default value assigned to the seed. It has been shown that
PRNGs of this type based on a linear recurrence, e.g. linear difference
equation, can see some repetition when applied for parallel simula-
tions that require independent RNGs (Matsumoto and Nishimura,
1998a). In addition, it can exhibit slow performance such that it
may need several runs before generation random numbers passing
different randomness tests (Saito and Matsumoto, 2008). While for
this master’s thesis the Mersenne Twister should suffice, there ex-
ists several other PRNGs which produce closer to true random be-
haviour and should be examined in further trials of scenario gen-
eration. As an example, Gülpınar et al. (2004) suggests the low-
discrepancy Sobol sequences (Sobol’, 1967) for simulation and op-
timization approaches to scenario tree generation.
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4.2.4 Scenario Reduction

The scenario reduction algorithm implemented is a moment-matching
algorithm (Zhou et al., 2009) which considers the first four moments

where the four moments are defined as σ =
√

1
S

∑
t∈S(yt − µ)2, µ =

1
S

∑
t∈S yt, skew = 1

S

∑
t∈S
(
yt−µ
σ

)3, and kurt =
(
yt−µ
σ

)4, for the stan-
dard deviation, mean, skewness, and kurtosis, respectively. These
moments are first found for the historical data, which will be referred
to as the control, and compared to the same moments for each gener-
ated scenario which were generated by the scenario generating algo-
rithm. This moment matching method allows for a quick and simple
way to reduce the numbers of scenarios greatly while keeping the ac-
curacy of the distribution. However, to perform at the highest level,
the true underlying distribution must be known. Because the true
underlying distribution is unknown, valuable information can easily
be lost by applying this method.

4.2.5 Software for Scenario Generation and Reduction

In this thesis, the scenario generation and reduction is applied using
the object-oriented programming language R (R Core Team, 2015)
which allows for the use of several different packages for easy and
quick implementation of algorithms and functions. The tseries
(Trapletti and Hornik, 2015) package gives the user tools allowing
for easy data handling and manipulation of time series. In addi-
tion, tests for determining non-stationarity such as ADF and KPSS
are available. The Forecast package (Hyndman, 2015, Hyndman
and Khandakar, 2008) allows for calculations of the ARIMA-models
and methods of automatic forecasting. A more detailed explanation
of the implementation of the scenario generating and reduction algo-
rithms follows in chapter 5.

4.3 Algebraic Form and Solution & Solution
Analysis

Just a few decades ago one usually had to define an algebraic mod-
elling language form of the problem and forward it to an institution
which had a powerful enough machine to process the model. These
days, even complex problems can be solved by home computers.
Larger problems still benefit from increased computational power,
especially when considering large multi dimensional scenario trees.
There exists several different algebraic modelling languages which
is constructed to solve mathematical optimization problems. Some
of these are GAMS, AIMMS, AMPL, and Xpress-Mosel. The pro-
gramming language R is also able to do mathematical optimization.
In addition, MATLAB has the possibility of scenario generation and
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processing SLP-models. In this thesis, both the underlying determin-
istic and the stochastic program will be solved by the use of SAMPL,
which is an adapted version of AMPL for stochastic programming
containing the SAMPL engine FortSP (Valente et al., 2001). The solver
system FortSP allows for quick and simple ways in solving both de-
terministic and stochastic models through the use of solvers such
as CPLEX which for larger LP problems applies, among other, the
Simplex algorithm. In addition, the solver FortMP (Neumaier and
Shcherbina, 2004) is available for LP problems. For stochastic pro-
grams Benders decomposition (Benders, 1962) is used.
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Chapter 5

Analysis - The Case Study

The company used for the case study in this thesis is a larger inte-
grated fishery located in Northern Norway. The company consists
of their own fishing fleet, several production plants in Troms county,
and their own sales department. For this case study, a single produc-
tion plant is chosen where the fish species cod, saithe, and haddock
are both embarked and processed. The final products which are to
be evaluated in the mathematical program are fresh cod, and a type
of cod which are both dried and salted, in Norwegian called klipp-
fisk. For the remainder of this thesis, the product type of cod which
are dried and salted will be refered to as clipfish, and is not to be
mistaken with stockfish which is only dried and not salted. The case
study company mainly delivers the whole fish, usually without head
and guts (in Norway the status of this type of raw material and prod-
uct is denoted SLUH, which is an acronym for "gutted without head"
i.e. the entrails and heads are removed). The raw material is mainly
embarked in the SLUH state as this is already done at sea on the fish-
ing vessels. Consequently the workload at the processing plants is
reduced. This means that the fish sold as fresh is directly sent from
the boat, through packaging, to the market with no more process-
ing. Thus the variable costs of producing the fresh is far less than the
cost of producing the dried and salted fish. The case study company
deliver the fish in boxes of 20 and 25 KG, for three different size cate-
gories. For this mathematical program, only the packaging of 25 KG
is considered. Further, only cod as raw material is considered.

The clipfish is processed further through the more time consum-
ing process of drying and salting. During this process, the fish is
contained in salt for a total of 21 days to dehydrate it, and further
dried for 2-4 days. This can vary hugely depending on the size of
the raw material and how fast the fish matures due to the salt pro-
cess. To further increase the quality of the process, the fish could be
salted and dried for two months before shipping it. For the mathe-
matical program at hand, the time is set to four weeks. During this
process, the weight of the product is reduced by around 50%. The
clipfish is shipped in both pallets of 1000 KG, and boxes of 25 KG.
For the this mathematical program, only the packaging of the 25 KG
is considered. Both cod, haddock, and saithe can be used as raw ma-
terial to produce different types of clipfish. For this model, only cod
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FIGURE 5.1: Location of Processing Plant

Nergård Senja

Map package in R by Becker et al. (2016)

is considered.
With regards to frozen products, the processing plant at hand

does not supply much of this and is consequently omitted for this
case study. While the mathematical program that follows is a sim-
plified one, it can easily be adjusted for smaller time periods, differ-
ent packaging types, different products i.e. frozen products, and for
different species of fish. Further more, the program can easily be ad-
justed for different types of technology e.g. technology which could
reduce the cost of drying and salting, or reducing the time it takes to
go through such a process.

5.1 Mathematical Program

5.1.1 Deterministic Program

First, the underlying deterministic program is defined. The variables
and coefficients are as follows

Sets
T Family of sets of time periods, indexed by Ti

For T1, production period, excluding incoming, indexed by t
For T2, production period with incoming, indexed by t

K Set of the different types of raw materials, indexed by k
F Family of sets of finished products, indexed by Fi

For F1, fresh products, indexed by f
for F2, dried and salted products, indexed by f

Decision variables
Xtk Product k in time period t
Ztf Sales of product f in time period t
Parameters and known variables
Ytk Incoming raw material k at time period t
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ptf Market price of product f at time period t
ptk Procurement price of raw material k at time t
vk Variable costs for type k
wkf Amount of raw material k needed for finished product f
j Amount of time to produce clipfish in weeks.
NTTi Amount of time periods in set Ti
Dtf Exogenously defined demand and strategic variable.
Ctf Production capacity.
akf Loss of weight by drying and salting.

The objective equation, Π(x), can be stated as

max(
∑
t∈T1

∑
f∈F

ptfZtf −
∑
t∈T1

∑
f∈F

vfXtf −
∑
t∈T1

∑
k∈K

ptkYtk) (5.1)

To operate properly, the program must contain several restrictions,
both to define upper and lower bounds for the decision variables,
and conversion equations to direct the raw material to different use
and storage for finished products.

First define the balance equation such that for incoming raw ma-
terial Ytk product Xtk is produced. As this is an integrated fishery,
Ytk is defined as a time-dynamic variable and is not decided by the
model as the total amount of raw materials procured are given by the
harvest of the fishing vessels at time t. The conversion equation can
be stated as ∑

f∈F1

wkfXtkf = Ytk, t ∈ T2, k ∈ K (?)

Consequently, the procured raw material is converted to the finished
fresh product. The parameter wkf defines the amount needed of raw
materials in KG for one unit of finished product.

Next it’s necessary to add to the balance equation the activity of
producing the clipfish. The clipfish production consists of a a much
more time consuming process in which the cod is salted for a longer
period, then dried through the use of a dryer-system which objective
is to remove the excess water from the product. This process can de-
pend on technology used, and quality required and preferred. There
is no discrimination between size of the fish in this model. The al-
ternative to send the raw material to clipfish production is added to
Equation ? such that∑

f∈F2

akfwkfXtkf +
∑
f∈F1

wkfXtkf = Ytk, t ∈ T2, k ∈ K (5.2)

At the stage of salting and drying, a significant amount of weight
is lost due to the process of removing the water. In addition, the
time required for the process must be included. This is defined by
the coefficient akf and signifies how much raw material is needed
for one KG of finished clipfish product. Further the flow to the sales
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department must be defined. For fresh cod, this goes instantaneously
and can be stated as

Ztf = Xtf , t ∈ T1, k ∈ K, f ∈ F1 (5.3)

Consequently, the final product Xtk is both the same as the one sold,
Ztk, and is sold as soon at it has gone through the production line.
This is especially true for fresh fish which is delivered almost directly
from boat to market. Given a storage system where fish is sent to
storage as a frozen product either to keep for periods with higher
price or to fill the demand for frozen products, this could be defined
here.

For the dried and salted products i.e. the clipfish, the production
process is significantly higher than the one for fresh, thus a balance
equation which allows for the product to be made and sold in differ-
ent time periods must be defined such that

Z(t+j)f = Xtf , t ∈ {1, .., (NTT2 − j)}, k ∈ K, f ∈ F2 (5.4)

Where j is defined as the amount of time needed for production of
the dried and salted products. This balance equation allows for the
incoming raw material i.e. from the previous year, be considered in
the evaluation of product mix as well while not exceeding the current
one year period.

Now that the connection between the input, Ytk, production, Xtk,
and output Ztk is constructed, upper and lower bounds must to be
defined. First and foremost, the non-negative constraints must be
included to make the problem downwards bounded. This can be
stated as

Xtf , Ztf ≥ 0 (5.5)

While the model by now is both bounded and feasible and thus no
more theoretical restrictions is required, there might exist several
contractual or strategic reasons to include upper and lower bound
for the decision variables. Consequently, the constraint for the pro-
duction variables, i.e. Ztf for f ∈ F1 and f ∈ F2, can be stated as

Dmin
tf ≤ Ztf ≤ Dmax

tf , f ∈ F , t ∈ T1 (5.6)

where the parameterDtf represent an exogenously given contractual
demand and/or strategical decisions and allows for the production
of the specific products to be constrained. In addition, constraints for
upper and lower bounds on production capacity can be stated as

Cmin
tf ≤ Xtf ≤ Cmax

tf , f ∈ F , t ∈ T1 (??)

By this, and since Xtf = Ztf ∀f ∈ F1 , it follows that for the program
to be feasible it’s necessary for Cmin

tf � Dmax
tf and/or Dmin

tf � Cmax
tf

as this program does not allow for additional storage possibilities.
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Thus for simplicity the exogenously given demand and production
capabilities is contained in the same parameter such that Dtf = Ctf
in this program and Equation ?? is omitted.

To summarize, the full underlying deterministic program objec-
tive function Π(x) can be stated as

max(
∑
t∈T1

∑
f∈F

ptfZtf −
∑
t∈T1

∑
f∈F

vfXtf −
∑
t∈T1

∑
k∈K

ptkYtk) (4.2)

Subject to∑
f∈F2

akfwkfXtkf +
∑
f∈F1

wkfXtkf = Ytk, t ∈ T2, k ∈ K (4.3)

Ztf = Xtf , t ∈ T1, k ∈ K, f ∈ F1 (4.4)

Z(t+j)f = Xtf , t ∈ {1, .., (NTT2 − j)}, k ∈ K, f ∈ F2 (4.5)

Dmin
tf ≤ Ztf ≤ Dmax

tf , f ∈ F , t ∈ T1 (4.7)

Xtf , Ztf ≥ 0, f ∈ F , t ∈ T2 (4.6)

5.1.2 Stochastic Program

Some new variables, coefficients, and restrictions must be added to
the underlying deterministic program such that the stochasticity can
be included. This includes both making the decision variablesX and
Z be dependant on the different scenarios. Further, it’s necessary to
include a probability parameter πs which allows for stating the prob-
ability of each scenario occurring. Furthermore, both the price and
incoming raw material must be adjusted for the scenario set. For the
two-stage explicit representation, i.e. the deterministic equivalent
problem (DTE), these are

Sets
S Set of scenarios, indexed by s
Decision variables
Xtks Product k in time period t and scenario s
Ztfs Sales of product f in time period t and scenario s
Parameters and known variables
Ytks Incoming raw material k at time period t and scenario s
ptfs Market price of product f at time period t and scenario s
πs Probability of scenario s occurring

And the non-anticipativity to ensure the two-stage formulation of
the problem

Z1fs, X1fs = Z1f1, X1fs (5.7)
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Consequently, the complete DTE for the objective function ΠS(x) can
be stated as

max
∑
s∈S

πs(
∑
t∈T1

∑
f∈F

ptfsZtfs −
∑
t∈T1

∑
f∈F

vfXtfs −
∑
t∈T1

∑
k∈K

ptkYtks) (5.8)

Subject to

∑
f∈F2

akfwkfXtkfs +
∑
f∈F1

wkfXtkfs = Ytks, t ∈ T2, k ∈ K, s ∈ S (5.9)

Ztfs = Xtfs, t ∈ T1, k ∈ K, f ∈ F1, s ∈ S (5.10)

Z(t+j)fs = Xtfs, t ∈ {1, .., (NTT2 − j)}, k ∈ K, f ∈ F2, s ∈ S (5.11)

Dmin
tf ≤ Ztfs ≤ Dmax

tf , f ∈ F , t ∈ T1, s ∈ S (5.12)

Xtfs, Ztfs ≥ 0, f ∈ F , t ∈ T2, s ∈ S (5.13)

Z1fs, X1fs = Z1f1, X1fs (4.8)

As a summary and to expand on the data used for the mathemat-
ical program, a quick run-through follows.

5.1.3 Parameters and Data

The numerical values for the parameters are set by cost estimates
done by the case study company, with exception of the parameter
for market price, ptfs, and the variable for procured raw material,
Ytks, which will be estimated in section 5.2. The variable production
cost estimates for the fresh and clipfish are 3.5NOK and 7.5NOK,
respectively, such that v1 = 3.5 and v2 = 7.5. The procurement price
of the raw material, ptk, is a dynamic deterministic variable in this
model where the historical data is used as a proxy for the unreal-
ized stochastic time series. The coefficient for depreciation of raw
material weight through the salting and drying process, akf , is esti-
mated to be 0.5 for the clipfish. The size of the products supplied the
market, wkf , are both set to 25 KG. The maximum capacity for pro-
ducing clipfish, Dmax

t2 , is estimated to be 6000 KG per week, and the
minimum requirement, Dmin

t2 is set to 200 KG, and for the fresh fish,
Dmin
t1 is set to 500 KG. The model is maximized over the full year, i.e.

t = 52, where the length of production of clipfish is set to 4 weeks,
such that sales are available at the fifth week such that j = 5.



5.2. Scenario Generation 31

5.2 Scenario Generation

As mentioned in chapter 4, the applied methods for scenario gener-
ation is both the ARIMA(p, d, q) and the seasonal version ARIMA
(p, d, q) (P,D,Q)s for price and quantity scenarios, respectively. The
data used for the price scenarios can be seen to the right in Figure 5.2
and contains the mean price of the three different categories of fresh
cold sold in packages of 25 kg products, i.e. 1-2 kg, 2-4 kg and 4-6,
all in cases of 25 kg. While only a yearly time series of price doesn’t
do much in revealing seasonal fluctuations and other important in-
formation describing how the prices evolve, for this thesis only the
price for one year is available. The time series should be expanded
in the future to be able to model the price process more accurately.
Despite of this, the price seems to be adjusting downwards for the
periods where the supply is highest, which is in line with economic
theory. None the less, it’s difficult to conclude based on the short
time series.

The data for the quantity scenarios can be seen to the left in Fig-
ure 5.2 and is the weekly SLUH quantity in KG embarked by the
fleet. As this is the total quantity, the three size categories of cod has
been added up and is assumed equal for the upcoming estimations.
The historical data clearly shows a seasonal harvest, where the most
activity is limited to the first 20 weeks of the year.

FIGURE 5.2: Historical Data for Harvest and Price of
Cod
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5.2.1 Price Scenarios

An ARIMA(p, d, q) fit to the historical data can be made through
the use of the Forecast::auto.arima algorithm in R which is
an iterative process evaluating several different configurations of the
ARIMA(p,d,q) model. The model with the lowest (AIC) is returned.



32 Chapter 5. Analysis - The Case Study

For the case study at hand, an ARIMA(0,1,1) is returned with coeffi-
cient θ = −0.4290 and can be expressed as

∆yt = εt − 0.4290εt−1

This result is further supported by the ACF and PACF plots as seen in
Figure 5.3 which contains significant spikes at lag one which is sug-
gestive of a MA(1) model. The fitted model is seen in figure 5.5. The

FIGURE 5.3: ACF and PACF Plot for Price Time Series
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mean of the residuals in the model is µε = 0.17 and are close to a nor-
mal distribution with σ = 3.64. The correlation between the observed
time series and the residuals is cor(y, ε) = 0.45 and by inspection of
the ACF the errors are not autocorrelated as seen in Figure 5.4. Based

FIGURE 5.4: Residual ACF and PACF Plot for Price
Time Series
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on the low number of observations available it’s difficult to conclude
how close these estimates are to the true distribution. For the price
simulations the errors will be assumed to contain the stochastic prop-
erties cor(εt, εt−1) = 0 and εt ∼ N(0, σ2

ε ).
The method applied for scenario generation is through the use of

Monte Carlo simulations on the stochastic part of the model (Conejo
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FIGURE 5.5: Fitted ARIMA(0,1,1) model to historical
price data for cod 2015
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et al., 2010), ε ∼ N(0, σ2
ε ), and the method can be illustrated through

the algorithm seen in appendix B.1.1. The algorithm is implemented
in R version 3.2.3. The code can be found in appendix A.1.1. An illus-
trative example can be seen to the left in Figure 5.6 for 20 generated
scenarios.

The scenario reduction algorithm implemented is the moment
matching (Zhou et al., 2009) algorithm presented in subsection 4.2.4
which considers the first four moments of the generated scenarios
and compares them to the observed data (the control). Consequently
the same moments for each generated scenario are calculated and
matched with the control. The moment-matching scenario reduction
algorithm is illustrated in appendix B.1.2. The algorithm is imple-
mented in R and the code can be found in appendix A.1.2. For com-
putational simplicity the last moment i.e. the kurtosis is omitted
which may affect the results. An illustrative example can be seen
in Figure 5.6 for 20 scenarios where out of initially 50 000 generated
scenarios on average 90 moment-matched scenarios are returned.

FIGURE 5.6: Raw generated price scenarios (left) and
reduced price scenarios (right) for cod prices 2015
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5.2.2 Quantity Scenarios

To construct conditional simulations Sak and Hörmann (2012) sug-
gests an algorithm which they illustrate and implements in R as the
function arima.condsim. Their approach is based on forecasting,
while instead of basing the simulations on the mean-square predic-
tion error, the recursive properties of the ARIMA equation is used.
Consequently a random realization on the time series, yt+1, is cre-
ated conditionally on the historical data with a random shock, εt+1 ∼
N(0, σ). This is repeated for each time period for as long as desired
by the user where yt+2 is simulated conditionally on the observed
historical time series and yt+1 and εt+1, et cetera. To use their method
an ARIMA-model must be fitted. This is done in the same fashion
as with the price scenarios in subsection 5.2.1. The returned best fit
ARIMA with the lowest AIC is an ARIMA(1, 0, 1)× (0, 0, 1)52. When
operating with an ARIMA(p, d, q) where p > 0 and q > 0, its diffi-
cult in determining by inspection of the ACF and PACF plot what is
the correct numbers for the respective processes, but the plots does
indeed suggest a seasonal effect, as seen in Figure 5.7. Consequently,
the returned model with the lowest AIC is accepted. However, by

FIGURE 5.7: ACF and PACF Plot for Quantity Time
Series
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inspection the data doesn’t seem stationary as the model suggests.
This is confirmed by the Augmented Dicky-Fuller test where the
null hypothesis H0 : γ = 0 is failed to be rejected for the computed
χ2 = −2.875. The time series is shown to be non-stationary and in-
tegrated of order one I(1). This is further confirmed by the KPSS-
test. Consequently the differenced model is used. The coefficients
for the ARIMA(1, 1, 1) × (0, 1, 1)52 are φ = 0.4389, θ = −0.9703, and
Θ = −0.9985. In expanded form the seasonal ARIMA can be stated
as

∆yt = 0.4389yt−1+εt−0.9703εt−1−0.9985εt−52+(−0.9985×−0.9703)εt−53
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The ACF and PACF for the residuals can be seen in Figure 5.8.
And while most of the significant lags are eliminated, the ACF plot
still suggest a barely significant lag at lag 60. The residuals are none
the less assumed to behave like white noise for the upcoming simula-
tions. The result of implementing the conditional simulation method

FIGURE 5.8: Residual ACF and PACF Plot for Quantity
Time Series
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in R yields the scenarios depicted to the left in Figure 5.9. The mean
of the historical data is superimposed for comparison, and it’s clear
the simulations are following the conditional path set during imple-
mentation.

Some Ad hoc modifications to the conditional simulation has been
made. First, the returned generated scenarios has been changed to
only contains positive numbers as there is no such thing as a nega-
tive harvest. Furthermore, as the busiest, and thus the most volatile,
season for harvesting cod is mostly contained in the period between
week 1 and week 20, the simulated scenarios has been smoothed and
made less volatile for the remaining 32 weeks of the year to better re-
flect the reduction in variance for these periods. The results of this
process can be seen to the right in Figure 5.9. The modified algorithm
implementation can be found in appendix A.1.3. The original algo-
rithm and implementation in R can be found in Sak and Hörmann
(2012).

5.3 Scenario Stability

To determine whether or not the previously generated scenarios are
somewhat yielding accurate and close to true estimates, various tests
should be performed to establish their stability. This will also help es-
tablish the amount of scenarios necessary for relatively stable results.
The amount of scenarios necessary can be approximated by observ-
ing the convergence of the objective value (Carrión et al., 2007), i.e.
such that the value of the maximized objective function, max Π(x, ξ),
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FIGURE 5.9: Unmodified (left) and modified (right)
conditional scenarios on quantity in KG
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is iteratively generated in a progressively fashion for the same seeded
Mersenne Twister starting with one scenario and ending in a prede-
fined number of scenario. This allows investigating for what amount
of scenarios stops changing the objective value in a critical way. This
process of iteratively checking for a objective value stability can be
seen in Figure 5.10 for both the quantity and price scenarios, in black
and red, respectively. As seen in the figure, both are exhibiting quite

FIGURE 5.10: Objective Function Convergence
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unstable behaviour for the first 40 scenarios or so, which is to be ex-
pected as for few scenarios, more extreme results will occur. When
increasing the amount of scenarios to 100, both seems to be starting
to converge to a more stable objective function value. The difference
between the highest and the lowest value for the whole process, i.e.
for the objective function value for all the different cases, is 11.77%
and 8.27% for quantity and price, respectively. For the values be-
tween 80 and 100, and 90 and 100, the difference is 0.86% and 0.67%,
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and 0.25% and 0.24%, respectively, for quantity and price. Conse-
quently it can be a fair assumption that the objective value is closing
in on its true value for the respective seed for the PRNG already at
100 scenarios, and while more scenarios preferably should be used
to asses the convergence, this amount is kept for computational sim-
plicity, even though the solution time is close to instantaneous at this
point.

The combined stochastic program with stochastic variables both
in price and quantity, the results can be found in Figure 5.11. For
the current implementation of this model, the time it takes to solve
is unreasonable high. Both the read time and solution time can be
observed to the left in Figure 5.11 for a model with t = 20. For 100
scenarios, the program contains 800000 variables. As seen, the read
time far exceeds the solution time. The dotted lines shows the or-
dinary least squares trends. For the solution time, its close to linear
with an O(n) efficiency. As for the read time, the efficiency is atleast
O(n2) due to its nested implementation. While not a big increase
for smaller problems, the difference can be great for large numbers
of variables. The lower efficiency in the read time can suggest an
inefficient implementation of the model by the user. This is further
confirmed by testing the combined program for t = 8 with 100 sce-
narios. This program should consist of roughly the same amount of
variables as the single stochastic programs, around 25000, and still
suffers the unreasonable slow read time. Consequently, the conver-
gence is only observed up to 50 scenarios, and can be seen to the
right in Figure 5.11. As expected, it’s still unstable at this point. Con-
sequently, and due to its instability, the combined model will not be
evaluated further in this thesis.

FIGURE 5.11: Combined Model Time and Conver-
gence

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

Scenario

T
im

e 
U

sa
ge

Read Time
Solution Time
Fitted Read
Fitted Solution

0 10 20 30 40 50

10
50

00
00

0
11

50
00

00
0

12
50

00
00

0

Scenario

O
bj

ec
tiv

e 
V

al
ue



38 Chapter 5. Analysis - The Case Study

To further test the stability of the generated scenarios, the in-
sample and out-of-sample stability can be evaluated (Kaut and Wal-
lace, 2003). The in-sample stability can be defined as Π(x∗k; ξ̂tk) ≈
Π(x∗l ; ξ̂tl), i.e. for K different scenario trees generated by the same
scenario generating method where k, l ∈ K, and the optimal solution
vector x∗k, for it to have in-sample stability, they should be fairly sim-
ilar in their objective value. For the out-of-sample stability, the true
distribution must be known such that Π(x∗k; ξ̃t) ≈ Π(x∗l ; ξ̃t). To ob-
serve the out-of-sample stability is difficult as the true distribution of
the random variables are difficult to obtain, although it follows that if
the scenarios are perfect in-sample stable, they must also exhibit out-
of-stable stability. While the in-sample stability is a good measure
even when evaluating stand alone scenario generating methods, the
relative measures towards other methods increase the usefulness of
the tests. Consequently both the original quantity and price scenar-
ios are compared to their reduced versions, i.e. compared to the ad
hoc and moment-matched versions, respectively. The in-sample sta-
bility tests are done by generating 50 separate situations containing
100 scenarios each for the 4 types of generating procedures for a total
of 4 × 50 × 100 scenarios. For each separate situation, a new seed
is given to the Mersenne Twister such that different sets of random
white noise is used. The objective value for each situation is then esti-
mated and analysed. The distribution of the two scenario generating
methods, and their reduced versions, can be seen in Figure 5.12.

FIGURE 5.12: In Sample Stability Distribution
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The stability is measured through several different test statistics
for central tendency and dispersion, most of them quite self explana-
tory and can be seen in Table 5.1 and Table 5.2 for quantity and price
scenarios, respectively. The relative range deviation, RRD, and rel-
ative standard deviation (coefficient of variation), RSD, are defined
as RRD = Range

µ
and RSD = σ

µ
. Consequently they measure the

distance of range and standard deviation from the mean as a frac-
tion, and is expressed in percentages. Scenarios exhibiting stable be-
haviour will have low values of RRD and RSD, and further these
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measures of dispersion allows for an easy cross comparison of the
raw and reduced scenarios.

TABLE 5.1: In-Sample Test Statistics for Quantity Sce-
narios

Test Statistics Raw Scenarios Reduced Scenarios
Min 212 898† 175 043
Max 220 586 181 965
Range 7 688 6 922
Mean 216 720 179 170
Standard Deviation 1 874 1 560
RRD 3.55% 3.86%
RSD 0.86% 0.87%
†Numbers in NOK thousands

The in-sample stability for the quantity scenarios can be found
in Table 5.1. Both the RSD amd RMD are similar for both the raw
and the reduced version, and consequently they exhibit close to sim-
ilar stability. As for the range of the test in itself, depending on the
situation, it can be both acceptable and too high. As the scenario
generation is not compared to other fundamental different types of
generators, possibility of improvements can not be stated with cer-
tainty, but it is likely that a different scenario generating procedure
could yield more stable results. The mean value of the two deviates
quite a lot. The reason behind this is the highly volatile periods af-
ter week 20 in the raw version, and consequently the harvest of cod
is overestimated for the periods 20 to 52. Also, by examining the
distributions in Figure 5.12, the objective function values of the raw
quantity scenarios seems to be greatly overestimated.

TABLE 5.2: In-Sample Test Statistics for Price Scenarios

Test Statistics Raw Scenarios Reduced Scenarios
Min 177 508† 173 161
Max 195 338 179 375
Range 17 830 6 213
Mean 186 025 175 889
Standard Deviation 3 652 1 369
RRD 9.58% 3.53%
RSD 1.96% 0.78%
†Numbers in NOK thousands

The in-sample stability of the price scenarios can be seen in Ta-
ble 5.2. Contrary to the quantity scenarios, for price the reduced sce-
narios greatly outperforms the raw, both in terms of RRD and RSD.
While the same holds here with regards to the immediate interpre-
tation of the isolated range of the reduced scenarios. Whether this is
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acceptable or not, depends on the situation for which the stochastic
program is intended. It is also reasonable here to assume there exists
scenario generating methods exhibiting greater stability, while at this
time no further tests are conducted.

5.4 Results

Both the underlying and the stochastic program has been calculated.
The results of these estimation can be found in Table 5.3. The value of
the stochastic solution (VSS) (Birge, 1982) is also found. The VSS can
be viewed as a measurement of the increased expected value of using
the stochastic program instead of the of the deterministic one. The
expected value problem (EEV) can be found by solving the determin-
istic program with the optimized values for the stochastic program,
i.e. the arg max Πs(x). Consequently the objective value for this pro-
gram will always be lower than for the stochastic program such that
max Πs(x) > max Π(x)EEV . The measured VSS for these programs
are 3.71% and 1.29%, for price and quantity, respectively. The impli-
cation of this is that solving the stochastic program yields an increase
in the expected profits of 3.71% and 1.29%, respectively. These val-
ues for VSS are quite low. The reason for this might be because of the
simplicity of the mathematical program solved in this case, and is ex-
pected to increase in an increase in complexity in the mathematical
program, as seen in Bakhrankova et al. (2014) where VSS for all vari-
ations of stochasticty are super 10%. With small values of the VSS, it’s
difficult to conclude whether or not the value of solving the stochas-
tic program is sufficient, and must be evaluated at an ad hoc basis. In
addition to the VSS, the volatility of the value of the objective func-
tion must be taken into consideration.

TABLE 5.3: Objective Values

Category Stochastic Price Stochastic Quantity
Deterministic Program 174 448† 183 468
Stochastic Program 174 665 178 831
EEV 168 424 176 558
VSS 6 241 (3.71%) 2 273 (1.29%)
†Numbers in NOK thousands

In most frameworks, there exists a need to know if the modi-
fied value chain is able to yield increased profits to at least a given
level, for which the given level can be the depreciation rate of the
real capital invested, or other recurring costs for which the profits
must surpass to be a valuable investments. While in an ideal sit-
uation, the in-sample stability as discussed in the previous section
should be such that when in-sample stability is found, so is the out
of-sample stability as well. This is quite unlikely, and consequently



5.4. Results 41

the central limit theorem (Hill et al., 2008) argues that the distribu-
tion of the maximized objective values found in the sensitivity anal-
ysis will, for sufficiently high enough simulations, approximate the
normal distribution. This theorem can be used to calculate the proba-
bility for the program to yield at least the required value to generate
profits negating the investment cost, i.e. given a yearly cost of the
new physical capital δc for some technology, c, then the probability
P (Π(x)c < Π(x)) i.e. the probability to obtain a profit which is higher
than the critical profit required to out earn the new cost of the newly
invested physical capital or technology.

FIGURE 5.13: Normal Approximations of Stability
Tests for Quantity on the left, Price on the Right
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The normal approximations and their respective probability spaces
for the stochastic model objective values can be seen in Figure 5.13
for quantity and price, respectively. Consequently the probability
of obtaining atleast the calculated stochastic values presented in Ta-
ble 5.3 are P (max Π(x)s < Π(x)) = 58.6% for quantity, and for price
P (max Π(x)s < Π(x)) = 81.42%. Furthermore, the confidence inter-
vals can be calculated such that for the probability of obtaining the
measured mean, Π(x)± tα/2 µ√

n
, such that for quantity, the confidence

interval is [178 726′, 179 613′] and for price, [175 499′, 176 277′], for α =
0.05. If these results are satisfactory highly depends on the dispersion
of the results, and consequently the stability of the scenario generat-
ing method is of great importance when using a stochastic program
for evaluating upgrades in technology, e.g. technology for reducing
the time taken to dry the fish in a satisfactory way, or technology
upgrades for freezing investigated by Bakhrankova et al. (2014). A
comparison of their results is not very productive as their method
of generating scenarios differs greatly from the method applied in
this thesis, in addition the complexity and included variables of their
program far exceeds the mathematical program here.
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In addition to an analysis of upgrades and investments explained
above, the model can be used for different types of sensitivity anal-
ysis. And while the complexity of such an analysis will indeed in-
crease in the numbers of variables included in the model, extracting
usable data is simple enough with a framework which allows for it.
The difficulty lies in interpreting the results and the external effects
outside the model which may affect the decisions. Due to the small
number of decision variables and the deterministic behaviour of the
price of clipfish, for this program, most of the time periods is op-
timized to be either-or in what to most optimally produce. There
exists some periods though where a critical price is reached and the
production efforts are allocated for a different product. As an exam-
ple, consider Figure 5.14 for t = 33. The figure shows the critical price

FIGURE 5.14: Critical Price
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for which production should be shifted from full clipfish production,
subject to the strategic restriction for production of fresh cod, to only
production of fresh cod. However, these results must be used with
caution. While the critical prices would show the optimal alloca-
tion of production for the model, the model considers the price and
quantity path simulated by the scenario generator. Consequently, ex-
ternal effects such as policy change, bad harvest or low stock size of
fish, bad weather, et cetera, is not considered by these paths unless
it’s repeating consistently on a yearly basis. For the mentioned ex-
ternal effects, this is unlikely. While announced policy changes are
slow, they may take effect quite fast even before implemented (Lucas,
1976). This effect makes it difficult to adjust decisions, while it is cru-
cial that it be taken into consideration using the stochastic program
as a decision maker for production. For both the weather and other
factors causing slow harvest e.g. low spawn rates, the other strate-
gic decisions must be made on an ad hoc basis. Consequently, the
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stochastic program should be used as a supplement in decision mak-
ing, and further must be updated on a regular basis to take trends
and other factors into consideration.

FIGURE 5.15: Long Term Production
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With regards to the long term production, for the whole time du-
ration the model doesn’t perform as well due to the low harvest dur-
ing the last 30 weeks of the year and with only a single input factor,
namely cod. For the most active period, the production of both the
fresh and the clipfish is depicted in Figure 5.15. The plot includes
the incoming harvest for the last 4 weeks of the previous year. As
seen the production cap for clipfish is reached immediately when
the harvest is sufficiently high. The production is kept at this level
for the duration of the model, only declining when the access for raw
material declines. The main reason behind these results are the de-
terministic behaviour of the clipfish prices, making them yield high
enough profits to outperform the fresh according to the mathemati-
cal model. These results are expected to be different if randomness
were to be added to these prices as well. If one were to consider the
hypothetical case where the clipfish in fact should be produced at
capacity every period, the fish processor should consider investing
in higher production capabilities for the clipfish. A model like this
is able in a quick and simple way to evaluate the payoff through its
shadow price. The shadow prices, i.e. the marginal profit potential
given a slack in the constraints, can be used to analyse the benefits
of relaxing the constraints. The shadow price, also known as the La-
grangian multiplier, can be more formally defined as ∂Π(x)

∂ai

∣∣∣
x∗

= λi

i.e. the marginal change in the objective function evaluated at the
optimal production vector, x∗, subject to a change in the constraint,
ai. Such a slack in the constraints is only possible if the capacity is
expanded. For the model in Figure 5.15, the shadow price is found to
be λ = 6342 NOK. Consequently for a marginal increase in capacity
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clipfish production, the company would be 6342 NOK better off per
year after the first KG increase. The evolution of the objective value
and the marginal change can be seen in Figure 5.16 where the objec-
tive value is measured on the left y-axis, and the marginal change
on the right. The x-axis shows the capacity restraint, Dmax

t2 which
as mentioned earlier is set to 6000 KG per week. For this program,
the processing plant should continue to increase its capacity until the
marginal cost of the increased capacity equals the marginal change
in the objective value. As seen in the figure, the marginal change is
positive for all capacity increases, although in a decreasing manner
such that ∂Π(x)

∂Dt2,max
> 0 and ∂2Π(x)

∂D2
t2,max

< 0. As a direct consequence of
this, an increase in the capacity should be considered only when the
marginal benefits intersects the marginal costs. Such an analysis is
not conducted in this thesis.

FIGURE 5.16: Marginal Change in Objective Function
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Chapter 6

Conclusion

In this thesis, a stochastic optimization approach through scenario
generation and mathematical programming has been applied to an
integrated fishery. The results presented in Bakhrankova et al. (2014)
and in this thesis indicate that such a method indeed might be viable
both for complex problems, and smaller ones. As for the specific
results obtained in this thesis, it’s difficult to conclude on this basis
alone. Further tests must be conducted both in terms of scenario gen-
eration, and in terms of an increased complexity on the mathemat-
ical program combined with the stochastic variables. With regards
to applicability, and due to its low complexity, the model is far from
implementable in its current form. Furthermore, even with an in-
creased and closer to reality complexity, such a method of optimizing
and analysing the value chain might be problematic, as suggested by
Mikalsen and Vassdal (1981). They underline the problem of being
able to both understand the process in applying such a method, and
even interpreting the results yielded by a complete model. While
this was especially true back then, 20-30 years ago, when the com-
putational power mostly were accessible through centralized data
centres, this still applies today. And despite the more than dou-
bling of computer power per year (Schaller, 1997; Mack, 2011) since
then which allows for millions of variables to be solved on simple
computer set-ups, the framework for doing mathematical optimiza-
tion is still a complicated one. Sensitivity analysis and best/worst
case analysis is difficult when the amount of parameters and deci-
sion variables increase in numbers (Huang and Loucks, 2000). Con-
sequently a method such as this might not be suitable for smaller
fisheries without a centralized organisation or without external as-
sistance in implementation, framework development, and mainte-
nance. This might make the benefits of applying such a model be out-
weighed by the costs. This is further underlined by the fact that the
case study for this thesis were unable to supply detailed enough data
for a more complex and accurate model in the time required. Despite
this, taking uncertainty into account is indeed important for a fish-
ery processing plant to be able to produce according to the WAPM.
Stochastic programming has in this thesis been shown, albeit with
some uncertainty, to be a tool allowing for production closer to ones
profit maximizing production set. The results is expected to further
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be increase by increasing the complexity in the mathematical model
and accuracy of the scenarios generated.

For increasing the accuracy of the scenarios, different scenario
generating methods should be explored and compared to the ARIMA
method applied in this thesis. While the in-sample stability might
suggest good results in some cases, it is dangerous to conclude based
on only these results alone. And as suggested by Di Domenica et
al. (2009), super 3% RRD and the calculated RSDs turns out to be
more unstable compared to the conditional moment matching and
the bootstrapping methods they applied for an extended Newsven-
dor model. While the methods should not be compared across dif-
ferent mathematical programs, and certainly not based on the low
complexity of the program for this thesis, the results show that com-
parisons of different methods should be done to be able to find the
most stable way of generating scenarios. And while this is impor-
tant, many methods of generating scenarios are heuristic in its nature
which underlines the importance of developing a framework which
allows for simple comparisons of methods. Furthermore, the time se-
ries approach for quantity is heavily reliant on the assumption that
the specified quotas, i.e. the total allowable catch (TAC) for a defined
vessel group, is relative stable over the horizon of the scenarios gen-
erated and the underlying characteristics of the data they are based
upon. And while the TAC has been fairly stable for the time hori-
zon used for scenario generation in this thesis, it saw a small decline
in 2015, while set at 2015-levels for 2016. As these quotas are set by
the Directorate of Fisheries subject to stock sizes, spawn rates, and
other bilateral agreements, they are uncertain and must be taken into
consideration when evaluating the scenarios subject to the scenario
generating method (Millar and Gunn, 1992; Heen et al., 2014).

For the stochastic program to be applicable to a real setting, its
complexity must be heavily expanded upon. Consequently, the true
value chain must be reflected in the program in a much more real-
istic way. To do this, the variable costs must be divided into several
subgroup to measure more precisely across the different sections of
the value chain. Furthermore, the value chain must be divided into
a more correct depiction of a real value chain. As for the model in
this thesis, only the production part of the chain is considered for a
predefined variable cost. Suggestions to expansion of the value chain
should include, but not limited to, both work hours and time usage
at landing site, both for landing to further process the raw material,
and directly packaging and shipping. Further, the work hours and
wage should be defined for the production processes at the different
stages of drying and salting, which would further be increased in
performance to take account of variable electricity cost. To be able to
asses storage possibilities and system, this must be included as well
where power cost must be estimated. In addition, and as a result of
the difficult task of monitoring the quality of the fish, modelling this
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uncertainty through chance constraints (Simbolon et al., 2014) should
be considered if no further efforts are done to improve on this.

More efficient implementation of the combined model must be
carried out to better test a full size model. As for now, the implemen-
tation of the combined model is to slow and unstable to evaluate.
This is most likely due to inefficient implementation by the author,
and not the algorithm applied for solving the problem itself. De-
spite the inefficient implementation, more complex problems require
a great deal more implementation efforts. This is further underlined
in Bakhrankova et al. (2014) which for simplicity omitted a more re-
alistic way of generating scenarios, and further states that to increase
the realism in the scenarios would require much more work with re-
gards to programming and implementation to the point where new
algorithms must be defined in a more heuristic manner. Further-
more, and which would be true both for the model with stochastic
income of raw material and the combined model, it’s necessary to
omit the lower constraint on the production i.e. Dmin

tk as the last 32
weeks risk yielding fairly low estimates in some scenarios and time
periods. This is indeed a weakness in the model, and it should be
considered dividing it up in two parts such that one plans produc-
tion for the most active weeks i.e. week 1 to week 20, and another
one for the rest. While to divide the model into longer stretches for
analysis is straight forward, the accuracy of the results might suffer.
To adjust for this, its suggested to introduce the whole spectre of raw
materials, i.e. cod, haddock, and herring, and their respective final
products as well. This will allow for a full sized model. In addition,
and as seen in Figure 5.16, and while there exists diminishing returns
increasing the capacity, the potential gain is infinite. This is due to the
lack of penalty restriction in the model e.g. overproduction and al-
ternative costs not already included in the model. Consequently the
marginal increase in reducing the constrictions of producing clipfish
will be reduced and yield more accurate results.
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Appendix A

Source Code

A.1 R Code

A.1.1 Price Scenario Generation ARIMA(0, 1, 1)

prisscens<-function(model, data, uker, scens)
{
first.white <- residuals(model)[length(data)]
e<-replicate(scens, rnorm(uker+1, 0, sqrt(model$sigma2)))
e[1,1:scens] <- first.white
ad<-diff(data)

y <- matrix(0, uker, scens)

mu<-mean(ad)
theta<-coef(model)[1]
i<-0
for(i in 1:scens)
{
i<-i+1

y[,i] <- e[2:(uker+1),i]
y[,i] <- y[,i] + theta*e[1:uker,i]
y[,i] <- y[,i] + mu

}

rawscens<-diffinv(y, differences = 1, xi =
matrix(data[1], 1, scens))

rawscens<-rawscens[-1,];rawscens[1,]<-data[1]
return(rawscens)

}

A.1.2 Scenario Reduction
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scenred<-function(scengenmatrix, control, int)
{

bestatt<-matrix(,nrow(scengenmatrix),ncol(scengenmatrix))
i<-0
upper<-(1+int)
lower<-(1-int)
for(i in 1:ncol(scengenmatrix))
{
i=i+1

if(mean(scengenmatrix[,i])<=mean(control)*upper &&
mean(scengenmatrix[,i])>=mean(control)*lower &&
skewness(scengenmatrix[,i])<=skewness(control)*upper &&
skewness(scengenmatrix[,i])>=skewness(control)*lower &&
sd(scengenmatrix[,i])<=sd(control)*upper &&
sd(scengenmatrix[,i])>=sd(control)*lower)
{

bestatt[,i]<-scengenmatrix[,i]
}

}
bestatt<-bestatt[,!apply( bestatt,2,function(x) all(is.na(x)))]

return(bestatt)
}

A.1.3 Conditional Simulation ARIMA(1, 1, 1)(0, 1, 1)s

arima.condsimsmooth <- function(object, x, n.ahead, n ,adjer)
{

L <- length(x); coef <- object$coef;
arma <- object$arma; model <- object$model;
p <- length(model$phi); q <- length(model$theta)
d <- arma[6]; s.period <- arma[5];
s.diff <- arma[7]
diff.xi <- 0;
dx <- diff(x, lag = s.period, differences=s.diff)
diff.xi[1] <- dx[length(dx) - d + 1];
dx <- diff(dx, differences = d)
diff.xi <- c(diff.xi[1], x[(L - s.diff * s.period + 1):L])
start.period<-20
end.period<-52
interval.red<-2
res[, r] <- abs(xc)
p.startIndex <- length(dx) - p
start.innov <- NULL
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start.innov <- residuals(object)[(L - q + 1):(L)]

res <- array(0, c(n.ahead, n))
for(r in 1:n){
innov = rnorm(n.ahead, sd = sqrt(object$sigma2)/adjer)
e <- c(start.innov, innov)
xc <- array(0, dim = p + n.ahead)

for(i in 1:p) xc[i] <- dx[[p.startIndex + i]]
k <- 1
for(i in (p + 1):(p + n.ahead)){
xc[i] <- e[q + k]
xc[i] <- xc[i] + sum(model$theta * e[(q + k - 1):k])
xc[i] <- xc[i] + sum(model$phi * xc[(i - 1):(i - p)])

k <- k + 1
}

xc <- as.vector(unlist(xc[(p + 1):(p + n.ahead)]))
xc <- diffinv(xc, differences = d, xi = diff.xi[1])[-c(1:d)]
xc <- diffinv(xc, lag = s.period, differences = s.diff,

xi = diff.xi[2:(s.diff * s.period + 1)])
xc <- xc[-(1:(s.diff * s.period))]

}
res[start.period:end.period,1:n]<-

res[start.period:end.period,1:n]/interval.red
res[1, 1:n]<-x[1]

return(res)
}

A.2 SAMPL Code

A.2.1 Underlying Deterministic Program

param NT;
param NP;

set product := 1..NP;
set time := 1..NT;
set time1 within{time} := 5..NT;

param sellprice{time, product};
param varcost{product};
param procurprice{time};
param rawmatRequired{product};
param rawmat{time};
param stockfishred;
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param minstock;
param maxstock;
param minfresh;

var sellprod{t in time, f in product} >= 0;
var makeprod{t in time, f in product} >= 0;

maximize profits: sum{t in time1, f in product
}rawmatRequired[f]*sellprice[t,f]*sellprod[t,f]
- sum{t in time1, f in product}
rawmatRequired[f]*varcost[f]*makeprod[t,f]
- sum{t in time1}procurprice[t]*rawmat[t];

subject to
balance{t in time}:
stockfishred*rawmatRequired[2]*makeprod[t,2]
+ rawmatRequired[1]*makeprod[t,1]
= rawmat[t];

salesfresh{t in time1}:
sellprod[t,1] = makeprod[t,1];

salesstock{t in 1..NT-4}:
sellprod[t+4,2] = makeprod[t,2];

upperstock{t in time, f in product}:
makeprod[t,2] <= maxstock;

upperfresh{t in time, f in product}:
makeprod[t,1] >= minfresh;

A.2.2 Stochastic Program

param NT;
param NP;
param NS;

set product := 1..NP;
set time := 1..NT;
set time1 within{time} := 5..NT;
set scen := 1..NS;

param sellprice{time, product, scen};
param varcost{product};
param procurprice{time};
param rawmatRequired{product};
param rawmat{time};
param prob{scen} := 1/NS;
param stockfishred;
param minstock;
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param maxstock;
param minfresh;

var sellprod{t in time, f in product, s in scen} >= 0;
var makeprod{t in time, f in product, s in scen} >= 0;

maximize profit: sum{s in scen} prob[s] *
(sum{t in time1, f in product}
rawmatRequired[f]*sellprice[t,f,s]*sellprod[t,f,s]
- sum{t in time1, f in product}
rawmatRequired[f]*varcost[f]*makeprod[t,f,s]
- sum{t in time1}procurprice[t]*rawmat[t]);

subject to
balance{t in time, s in scen}:

stockfishred*rawmatRequired[2]*makeprod[t,2,s]
+ rawmatRequired[1]*makeprod[t,1,s]
= rawmat[t];

salesfresh{t in time1, s in scen}:
sellprod[t,1, s] = makeprod[t,1,s];

salesstock{t in 1..NT-4, s in scen}:
sellprod[t+4,2,s] = makeprod[t,2,s];

nanat1{t in time1, f in product, s in 5..NS}:
makeprod[1,f,1] = makeprod[1,f,s];

nanat2{t in time, f in product, s in 5..NS}:
sellprod[1,f,1] = sellprod[1,f,s];

upperstock{t in time, f in product, s in scen}:
makeprod[t,2,s] <= maxstock;

upperfresh{t in time, f in product, s in scen}:
makeprod[t,1,s] >= minfresh;
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Algorithms

B.1 Algorithms

B.1.1 Scenario Generating Algorithm for Price Scenar-
ios

generate a best fit ARIMA(p, d, q);
initialize scenario counter s ∈ {1, ..., Ns} and time periods
t ∈ {1, ..., Nt};

initialization;
while s ≤ Ns do

generate random errors εt ∼ N(0, σ2);
generate yts with the simulated εt;
update counters;
if s = Ns then

return scenario matrix S ∈ Rt×s;
else

repeat process;
end

end
Algorithm 1: Scenario Generation Algorithm
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B.1.2 Scenario Reduction Algorithm

for the control time series, c;
for Ns = ncol(S);
initialize scenario reduction counter r ∈ {1, ..., Ns};
initialization;
while r ≤ Ns do

update counters;
if µr = µc &σr = σc & skewr = skewc & kurtr = kurtc then

store scenario r;
repeat for scenario r + 1;

else
discard scenario r;
repeat for scenario r + 1;

end
when r = Ns, return reduced scenario matrix R ∈ Rt×r;

end
Algorithm 2: Scenario Reduction Algorithm
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