
Faculty of Science and Technology
Department of Computer Science

ColdNotify
A Notification Service For A Distributed Arctic Observatory

—

Petter Kraabøl
INF-3990 Master’s Thesis in Computer Science – May 2019

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2019 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
One of the key challenges in the Distributed Arctic Observatory (DAO) project
is designing infrastructure to reliably interact with remote, configurable ob-
servation units that capture and provide observation data from challenging
environments. DAO’s infrastructure is a work in progress and researching al-
ternative strategies for interacting with observation units is necessary to gain
experience and knowledge about limitations and requirements.

In client-server models, a common approach to keeping clients up to date is
continuous polling, however, this may cause unnecessary stress and bandwidth
as DAO scales to hundreds or thousands of observation units. Another approach
to this is server-initiated publishing methods, where back-end applications
provide new data to observation units. This, however, requires per-application
implementations that have to keep track of which observation unit has received
what, handle unreachable units and potential state loss.

This thesis has explored how notification services can help back-end application
reliably interact with observation units in future deployments, to keep them
up to date with configurations, perform remote operations or gather data, as
DAO scales.

ColdNotify is an application-neutral notification service, based on Thialfi by
Google, that aims to reliably deliver notifications to observation units, despite
unreliable connectivity and state loss.

Acknowledgements
I would like to thank my supervisor Professor John Markus Bjørndalen and
co-supervisor Professor Otto Anshus for the idea of combining Thialfi, and their
Distributed Arctic Observatory (DAO) project.

Another thanks for the fellow students working on different areas of DAO, who
has provided feedback and discussion for design, implementation and more
around ColdNotify.

Contents
Abstract i

Acknowledgements iii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Contributions . 2

2 Notification Services 5
2.1 Related work . 6

2.1.1 AnNotify . 6
2.1.2 Thialfi by Google . 6
2.1.3 NotServers at Dropbox 7
2.1.4 Wormhole by Facebook 8
2.1.5 MQTT Protocol . 8

2.2 Use Cases for DAO . 8
2.2.1 Region-specific configuration 9
2.2.2 Observation data on demand 9

3 Design 11
3.1 Overview . 12
3.2 ColdNotify’s State . 12
3.3 Registrar . 13

3.3.1 Client communication 13
3.3.2 Notification channel namespaces 14
3.3.3 Registration-sync protocol 14

3.4 Matcher . 14
3.4.1 Communication . 14
3.4.2 Recovery . 15

4 Implementation 17

v

vi CONTENTS

4.1 The Registrar . 19
4.1.1 Client communication 20
4.1.2 Workers . 20

4.2 The Matcher . 21
4.2.1 Notification batching 21

4.3 Client library . 22
4.4 Publisher library . 24
4.5 Persistent State . 24
4.6 Failure Recovery . 25

4.6.1 Registrar recovery: registration-sync protocol 25
4.6.2 Matcher state recovery 26

4.7 Security . 26

5 Evaluations 27
5.1 Experiment Environment 28

5.1.1 ColdNotify Monitoring 28
5.1.2 Demo Application 28

5.2 Experiment: Notification Latency 29
5.2.1 Methodology . 29
5.2.2 Metrics . 29
5.2.3 Results . 30

5.3 Experiment: Scaling Clients 31
5.3.1 Methodology . 31
5.3.2 Metrics . 31
5.3.3 Results . 31

5.4 Failure recovery . 32
5.5 Experiment: Registrar Recovery 34

5.5.1 Methodology . 34
5.5.2 Metrics . 34
5.5.3 Results . 34

5.6 Experiment: Matcher Recovery 36
5.6.1 Methodology . 36
5.6.2 Metrics . 36
5.6.3 Results . 38

6 Discussion 39
6.1 A Notification Service For A Distributed Arctic Observatory . 40
6.2 Compared to Thialfi . 40

7 Conclusion 41

8 Future Work 43
8.1 Horizontal Scaling . 43
8.2 Notification Payloads . 44

CONTENTS vii

8.3 Persistent Storage . 44
8.4 Automatic Publishing . 45

A User Manual 49
A.1 Prerequisites . 49

A.1.1 Software . 49
A.1.2 Directory structure 50

A.2 Installation . 50
A.3 Usage with demo application 50

A.3.1 Publish notifications 51
A.4 View application state . 52
A.5 Client library usage . 53

A.5.1 Publisher library usage 54
A.6 Notes . 54

B Experiments 55
B.1 Tools . 55
B.2 Node analysis: latency comparison 55

List of Figures
2.1 A typical notification service with publishers and subscribers. 5
2.2 My interpretation of Thialfi’s architecture within data centers. 7

3.1 An overview of ColdNotify. Notifications are published to Cold-
Notify, which routes them to interested OUs. Application-specific
data is transferred directly between OUs applications and servers. 11

4.1 ColdNotify components and communication protocols. . . . 17
4.2 Communication model for client introduction, registration and

notification delivery. Rectangles represent messages and their
content, and parallelograms represent actions. 18

5.1 Notification latency and CPU usage from 1 000 to 25 000 no-
tifications per second. Latency increases on average by 1.51
milliseconds per notification rate (1.51 µs per concurrent no-
tification). 30

5.2 Notification latency and CPU usage with fixed numbers of on-
line clients. 32

5.3 Notification latency and resource usage with a continuously
increasing number of online clients from 0 to 1000 over 48.0
seconds. 33

5.4 Registrar recovery with 1 000 clients, 50 registrations each.
Recovery time is 2,41 seconds. 35

5.5 Registrar recovery with persistent state. 1 000 clients with 50
registrations each. Recovery time is 1,81 seconds. 35

5.6 Matcher recovery with 1 000 clients, 50 registrations each.
Recovery time is 1,81 seconds. 37

5.7 Matcher recovery with persistent state. 1 000 clients with 50
registrations each. Recovery time is 2,01 seconds. 37

8.1 Illustration of a horizontally scaled ColdNotify, deployment
with persistent storage. 44

ix

List of Tables
4.1 Client token is a combination of application domain, group

name, client ID, and registrar’s session ID. Each registrar (and
matcher) process has a unique session id to distinguish mul-
tiple registrars and matchers in a horizontally scaled version
of ColdNotify. 19

5.1 Experiments are run on a cluster of physical LAN nodes. Clients
are evenly distributed over 84 nodes. 27

A.1 ColdNotify’s Service repository contains scripts for setting up
ColdNotify, which assumes these directories. 50

A.2 Default port numbers . 51

B.1 Notification latency statistics for 25 notifications per second,
reported by 1 000 clients distributed over 84 nodes. Mean and
standard deviation (std) are given in milliseconds, sorted by
mean latency. 58

xi

1
Introduction
Distributed arctic observatory (dao) [22] is a platform for observing and gath-
ering climate and wildlife data in arctic environments at scale. Observation
units (ous) are physical devices, set out to measure and monitor their sur-
roundings through various sensors and deliver observation data to back-end
storage systems for processing.

One of the key challenges for the dao project is developing infrastructure that
helps automating data transfers, ou configurations, health checks, software
updates, and more, which used to be done by hand. Limited and unreliable
connectivity in arctic regions challenges the infrastructure design to provide re-
liable, fault-tolerant communication strategies, such thatous can communicate
with back-end applications.

ous may have multiple processes running locally for applications such as con-
figuring certain sensors and for doing local data processing. One approach
to keeping these applications up to date with configurations is to have them
poll back-end applications for changes at fixed intervals. However, as the num-
ber of ous and applications increase, more stress is added on the servers
and unnecessary bandwidth is used when requests return empty due to no
updates.

Publish-subscribes (pub/subs) messaging is a popular approach to solve this,
by letting clients subscribe to data streams (channels) which publishers can
push data through. Despite solving the polling problem, this requires a pub-

1

2 CHAPTER 1 INTRODUCT ION

/sub implementation that reliably delivers data to subscribers, even if they
temporarily go offline. Moreover, additional back-end applications may have
to re-implement the same functionality, and pub/sub implementations are
prone to flood clients as they come back online with data they have missed out
on.

Notification services can be seen as light-weight pub/sub services that notifies
subscribers, sometimes with just a ping, when an event has occurred. These
service are commonly used in distributed systems that are meant to scale, for
applications such as cache-invalidation, where content servers invalidate cache
on their cache servers using small notifications, and the cache servers will
refresh their data.

dao’s infrastructure is an early work in progress, such that exploring alter-
native communication methods key. This thesis provides an early exploration
of how dao, developed at the University of Tromsø (uit), can benefit of a
notification service as part of its infrastructure, that lets any back-end appli-
cation reliably notify ous applications with small notifications, regardless of
application-specific data structures.

I present the design and implementation of ColdNotify, a notification service
based on Google’s Thialfi [2], adapted to dao.

In the following chapters, I review relevant notification services and closely
related technologies, followed by a review of limitations and requirements
of implementing a notification service for dao. Furthermore, I describe the
design and implementation of ColdNotify and present its performance evalu-
ation during high loads and failure recoveries with synthetic ous. The final
chapters discusses future work and alternative implementations to expand on
ColdNotify’s features and requirements as the dao project evolves.

1.1 Contributions
• An application-neutral notification service for the dao project at uit.

• An implementation of Thialfi’s in-memory design (adapted to dao) that
relies on open-source software.

• Discussion of how notification services can benefit dao and their use
cases.

• Discussion of future work for further adapting a notification service as the

1.1 CONTR IBUT IONS 3

dao project evolves and new requirements and limitations are revealed.

2
Notification Services
Notification services are often used to tackle scaling challenges for pushing data
or providing cache-invalidation in distributed systems, ensuring that clients
(subscribers) stay up to date with servers (publishers). Rather than sending
arbitrary application data, like pub/sub services might provide, notification
services typically send small messages that serve as a ping to subscribers,
informing them that an event has occurred and leaves it up to them to act upon
this.

Similar to pub/sub services, clients subscribe to specific event channels, usu-
ally identified by a unique identifier to separate notification channels among
subscribers. Multiple clients may subscribe to the same notification channels,
such that a publisher can multicast notifications. In use cases such as cache-
invalidation, cache-servers can subscribe to channels identified by a directory

NotificationsNotification Service

Subscriber

Subscriber

Subscriber

Publisher

Publisher

Publisher

Publish

Figure 2.1: A typical notification service with publishers and subscribers.

5

6 CHAPTER 2 NOTIFICAT ION SERV ICES

or file name, such that content servers can publish notifications through these
channels, informing the cache server to refresh specific content.

The notification payload varies among notification services and their purpose.
Some service, like Siena [5], allows for small untyped application-specific
payloads that give more context to the event that occurred. Other services
may only provide a ping or application-neutral metadata, such as a sequence
number, version number or a timestamp to differentiate notifications.

2.1 Related work
This section reviews related work on notification services and similar technolo-
gies to get an overview of various design alternatives and how they can relate
to dao.

2.1.1 AnNotify
AnNotify [17] is a private notification service that focuses on anonymity among
subscribers and has been used in cache systems. Notifications are routed
through mix networks (mixnets) to make them hard to trace, as they are being
delivered to subscribers. The notification service also focuses on low cost in
terms of bandwidth and processing power, while scaling to millions of clients,
which can be relevant for the ous limited hardware and bandwidth.

2.1.2 Thialfi by Google
In 2011, Google published their research and design of Thialfi [2], a client
notification service that promises eventual notification delivery to clients across
their applications, despite data-center failures and unreliable clients. Thialfi
is a general-purpose notification service that lets back-end applications notify
client applications when a data object has changed and provides only a version
number for this object. The version numbers are used to order notifications to
determine whether a client has already received a notification or not. When
clients are notified about an update, they are responsible for acting on these
and potentially download the actual data object directly from the back-end
application.

Google does not provide a formal model of Thialfi, however, Figure 2.2 shows
my interpretation of its architecture based on the paper [2] and a presentation
by one of the authors [1]. The design and implementation of ColdNotify closely

2.1 RELATED WORK 7

Bridge

Client application

Client library

Client application

Client library

Load balancer
D
at
a
ce
nt
er

1

Matcher Matcher

Registrar Registrar

Bigtable

Bigtable

Bigtable

Application back-end

Publisher library

Google Pub/Sub
infrastructure

Buffer

Client applications

Google servers

D
at
a
ce
nt
er

2

Da
ta

ce
nt
er

n

Client application

Client library

Application back-end

Publisher library

Optional
authentication

Replicatio
via RPC

Scanner

Figure 2.2: My interpretation of Thialfi’s architecture within data centers.

follows Thialfi’s design, due to its fault tolerance and handling of unstable
clients that may remain offline for long periods or lose state.

2.1.3 NotServers at Dropbox
Dropbox, a personal cloud storage service, initially used polling to synchro-
nize files across users’ devices. As the number of users increased, polling the
servers for updates was no longer viable, which lead to notification servers,
called NotServers [14], that notify devices when a file has been updated. This
eliminates polling, as devices will now request data only when notified by a
NotServer.

To deliver notifications, HTTP long polling is used, where clients send HTTP
requests to the NotServers, which are only returned when a notification is
available. New requests are subsequently made to receive new notifications.
To identify devices and provide separate notification channels, each device
includes a unique identifier in their requests [8].

As opposed to AnNotify, NotServers do not have the same level of requirements
for privacy. NotServer-client communication is unencrypted over HTTP, due
to computational expenses of TLS encryption and the lack of private or secret

8 CHAPTER 2 NOTIFICAT ION SERV ICES

content in notifications’ payload. Using SSL could also cause unnecessary
strain on ous, and the notifications themselves can therefore benefit from
being non-descriptive and seemingly pointless to external observers.

In 2012, NotServers could handle 170 thousand clients per instance and several
instances run on machines with shared memory.

2.1.4 Wormhole by Facebook
Wormhole [21] is a pub/sub service that monitors writes across distributed
database systems at Facebook. When content, such as a new user post, is written
to a database, interested applications (subscribers) receive relevant data from
Wormhole.

Wormhole handles a large bandwidth of several gigabytes per second across
trillions of messages every day, which is not applicable to dao, however, inte-
grating a notification service with the flow of application data to automatically
publish notifications is relevant. ColdNotify requires each back-end server to
deliberately publish notifications as events happen, however, exploring whether
Wormhole’s approach is suitable is appropriate in future work.

2.1.5 MQTT Protocol
Message Queuing Telemetry Transport (mqtt)[16] is a pub/sub protocol
designed for Internet of Things (iot) devices with limited network bandwidth
and power.

mqtt requires a message broker such as Eclipse Mosquitto [9] that handles all
communication between subscribers and publishers. While this thesis focuses
on a notification service,mqtt and existing brokers may be suitable alternative
for daos, however, this involves passing application-specific data through a
broker, which may add additional complexity for storing and data recovery
may not always be available, which is not an issue for ColdNotify. ColdNotify
also eliminates complexity for potentially protecting sensitive or private data
with different requirements to security.

2.2 Use Cases for DAO
This section describes where a notification service can fit into dao and its
applications. The two concrete use cases given below help define the design

2.2 USE CASES FOR DAO 9

and requirements that should be expected from ColdNotify, as they play an
important role in building the infrastructure of dao.

2.2.1 Region-specific configuration
Application processes running on ous typically have configuration files for how
the application should be run. This can for instance be an ou application that
observes animals, which has configurations for how to capture data, when to
capture, which sensors to use and maybe how to process the data locally.

These configurations might have to be tweaked over time and distributed toous
from remote servers. Moreover, ous observing animals might be distributed
over large areas, such that configurations might be region-specific, for instance
to account for local weather or to experiment with certain configurations within
a region.

To integrate a notification service into this process, ou applications can sub-
scribe to notification channels, identified by the configuration name. When
configurations are changed on the back-end application, it can publish a noti-
fication to the ous applications, via a notification service, letting them know
which configurations have changed. ous applications can act on these notifica-
tions by downloading configurations, based on which notification channel the
notification came through.

Grouping ous applications by regions is just one example. One might also have
applications where grouping by ou type (which sensors they have on board)
is more applicable.

This procedure of keeping subscribers (ous) in sync with shared data (configu-
rations) is similar to Thialfi and NotServers’ Different procedures often comes
down to how subscribers act upon notifications.

2.2.2 Observation data on demand
An alternative way to act on notifications is providing publishers with data.
A significant part of the dao project is to reliably gather observation data
from ous to use them for processing, and several dao projects at uit revolves
around this process.

If an ou subscribes to notification channels identified by the kind of data it
provides, back-end storage applications can for instance publish a notification
for humidity-data in region-1. The notification service will deliver the notifica-

10 CHAPTER 2 NOTIFICAT ION SERV ICES

tion to ous within region-1 that has subscribed to humidity, which can act on
this by preparing and sending data to the storage application.

This use case can be extended, where publishers may request health checks,
status reports, log files, etc.

3
Design
This chapter describes the design of ColdNotify to tackle limitations and re-
quirements that are suitable for dao and its ous. The design is closely related
to Thialfi’s in-memory design and follows the same naming scheme where
applicable. As several aspects of dao’s infrastructure and ou specifications
are a work in progress, certain design aspects of ColdNotify, like communi-
cation methods, energy usage and security, are either based on estimations,
assumptions or left out to be revised in future work.

NotificationsColdNotifyPublishBack-end server

Application data

Unregistrations

Registrations
OU

Figure 3.1: An overview of ColdNotify. Notifications are published to ColdNotify,which
routes them to interested ous. Application-specific data is transferred
directly between ous applications and servers.

11

12 CHAPTER 3 DES IGN

3.1 Overview
Figure 3.1 shows an abstraction of how ColdNotify is used within dao. Cold-
Notify follows Thialfi’s model, where notification channels are identified by
application-defined object names, such that a notification references a specific
object. As an example, a notification channel may be named camera-config and
notifications published through this channel indicates that a camera config
object has been updated. Furthermore, application-specified version numbers
are attached to each object notification, such ColdNotify can keep track of the
latest version numbers and which version was last sent to an ou.

ColdNotify does not handle any application-specific data, except the object
identifier and a version number. This eliminates additional complexity for data
recovery or potentially storing sensitive data which should be encrypted, and
makes the notification size small (10s of bytes), which is preferable for ous.
Granted, application-specific datamay be transferred as a result of a notification,
but the ou application will now be aware that an event has happened and can
act on this when suitable, for example by scheduling downloads when they
have enough battery or upgrade software during observation downtime.

Expanding the notification payload further is discussed as future work in Sec-
tion 8.2, as ou applications may benefit from notifications that can carry meta-
data, such as data size, level of importance or expiration date. Such metadata
can further help instruct the ou application to act on notifications.

To interact with ColdNotify, ou applications use a client library to register
for specified objects to and receive notifications. Back-end servers publish
notifications using a publisher library, which ensures that publish messages are
properly structured and can be read by ColdNotify.

3.2 ColdNotify’s State
ColdNotify’s state holds which clients are registered to which objects and the
last known version of each object. When a notification for an object is published
from a back-end application, ColdNotify finds a list of clients to notify. When a
client registers or unregisters for object notifications, ColdNotify has to make
changes to this list of clients. To do these lookups efficiently, ColdNotify’s state
is split into two views: one indexed by clients and the other indexed by objects
to provide a O(1) lookup time complexity.

The two views are held by two separate processes/servers: the registrar that
stores registrations indexed by clients, and the matcher that indexes by objects.

3.3 REGISTRAR 13

When a client now registers for an object (Figure 4.2), the registrar simply
looks up the client and adds the registration to their list of registrations. To
reflect this change in the matcher’s state, the registrar propagates (transfers)
the registration to the matcher, which looks up the object and adds the client
to the list of subscribers.

There is, however, a slight difference between the registrar’s and matcher’s
state regarding the object version. The registrar holds which version number
each client received last, while the matcher holds the most recent version
number from the publishers. This way, the registrar does not have to resend
notifications for a reconnecting client if the most recent version number in the
matcher’s state matches the version in the registrar’s state.

Thialfi uses a third component, the bridge, which extracts publish messages
from Google’s internal pub/sub infrastructure, converts them into a readable
format for the matcher and ensures that the matcher receives it. daos does
not have any internal infrastructure like this, such that publish messages are
sent directly to the matcher, eliminating the need for a bridge.

3.3 Registrar
3.3.1 Client communication
The registrar concurrently communicates with ou applications to register,
unregister and send notifications. To reliably communicate with ous, commu-
nication methods such as TCP sockets is preferred to deliver messages, but also
application-level acknowledgements, such as acknowledging that a registration
has successfully been stored in the registrar and matcher’s state.

ous are prone to disconnect, whether it is temporarily lack of connectivity,
powering cycling to save battery or running out of battery, which may leave
them offline for long periods. ColdNotify holds onto notifications for offline
ous, and delivers them when they come back online. To not flood ous with
every missed notifications on wakeup, ColdNotify will only send the most
recent notification per object. This means ColdNotify does not ensure that
all notifications are delivered to ou applications, but rather that they will
eventually learn the latest version number.

14 CHAPTER 3 DES IGN

3.3.2 Notification channel namespaces
To divide ou applications into groups, as described in Subsection 2.2.1, notifi-
cation channels are namespaced by group identifiers. Furthermore, groups are
namespaced by domain identifiers, which are unique to each application. As
ou applications connect to the registrar, they will introduce themselves with
which domain and group they belong to. Applications within the same domain
and group can now register for and receive the same object notifications.

3.3.3 Registration-sync protocol
Thialfi’s registration sync (reg-sync) protocol is important to ensure that ou ap-
plications and the registrar agrees on registrations and detects any mismatches
caused by state loss or communication failure. A registration state is stored
locally on the ou (handled by the client library), which keeps track of which
registrations are acknowledged by the registrar. The local registration state
and the registrar’s must stay in sync, such that online ous do not miss out on
notifications.

To detect registration mismatch, a registration digest is appended in ou-
registrar communication, such that either of them can verify the other’s state.
The digest is a summary of all active registrations and can for example be the
hash sum of all registrations. In the event of a mismatch, the registrar drops
all registrations that it has on the ou application, such that the client library
can resend all registrations.

3.4 Matcher
3.4.1 Communication
The matcher accepts incoming notifications from publishers and looks up the
list of ous that should be notified and sends this to the registrar. The matcher
does not request missing data, such as version numbers, from publishers, as
this would require publishers to accept incoming requests and keeps a registry
of version numbers, which is not always the case. If a registration is made for an
object with unknown version number, the matcher responds with an unknown
version, which always triggers a notification, such that subscribers can decide
how to act on this.

Similar to the registrar, the matcher has workers for resending missedmessages.
Any unpropagated notifications will be added to a list of pending notifications,

3.4 MATCHER 15

such that a worker can attempt to send them concurrently.

3.4.2 Recovery
In Thialfi’s in-memory design, if a matcher fails, all servers, including the
registrars within the data-center, are restarted and loses their state and lets the
reg-sync protocol reconstruct their state. ColdNotify takes a different approach
to handling matcher failures, by taking advantage of the similarity between
registrar and matcher’s state.

They both contain information about which object each client is registered to,
so the matcher will simply tell the registrar to re-propagate all registrations to
reconstruct its state. Even though the registrar keeps track of version numbers,
they only represent the last version that a subscriber received and not the latest
sent by a publisher, such that the version number will remain unknown until a
new publish message is received.

4
Implementation

ColdNotify Service

Publisher library HTTPS, gRPC gRPC

in-memory or external

Matcher

Storage

TCP Socket

in-memory or external

Registrar

Storage

Application-specific protocol

in-memory

Client library

Client app

in-memory

App server

Figure 4.1: ColdNotify components and communication protocols.

This chapter describes in detail how each component of ColdNotify, shown
in Figure 4.1, is implemented. The implementation closely follows Thialfi’s
in-memory design and naming scheme, but has over time discarded certain
features and components that are not suitable or applicable for dao.

ColdNotify is implemented in Go, to take advantage of concurrent goroutines
for handling ou connections The client library is written in Python and the
publisher library in Go. All communication between components are defined
using Google’s protocol puffers [12] to make sure any future packages for other
languages follow the same message structure. Furthermore, gRPC [10] is used
with protocol buffers to define RPC services. Appendix A includes instructions
for how to set up and run ColdNotify.

17

18 CHAPTER 4 IMPLEMENTAT ION

N
ot
ifi
ca
tio

n

For every client

Re
gi
st
ra
tio

n
In
tr
od

uc
tio

n

Client Registrar Matcher Application Server

[Register]
object id
version
digest

[Propagate]
session id
domain
group id
object id
client id

Compare digests
Save pending registration

Create client entry
Compare digests

Save client token
Compare digests

[Introduce ack]
client token

digest

[Introduce]
client id
domain
group
digest

Add registration

Update digest
Compare digests

Handle notification

Update object

[Publish]
domain
group id
object id

object version
source client

Update object version

[Propagate]
domain
group id
object id
client ids

object version
source client

[Notification]
object id

object version
digest

[Register ack]
object id

object version
digest

Compare digests
Handle notification

[Response]
Object versionSave registration

Update digest

Figure 4.2: Communication model for client introduction, registration and notification
delivery. Rectangles represent messages and their content, and parallelo-
grams represent actions.

4.1 THE REGISTRAR 19

Client Token
domain group client id registrar session id

Table 4.1: Client token is a combination of application domain, group name, client
ID, and registrar’s session ID. Each registrar (and matcher) process has
a unique session id to distinguish multiple registrars and matchers in a
horizontally scaled version of ColdNotify.

Figure 4.2 gives and overview of how each component communicates during
introduction, registration and notification delivery. Unregistration is similar to
registration, except that the registrar and matcher removes the registration and
only send an acknowledgement, with no version number, to the ous.

4.1 The Registrar
1

2 type Reg i s t r a r S e r v i c e s t r u c t {
3 sync .RWMutex
4 Sess ion Id s t r i n g
5 P e r s i s t e n t bool
6 Pend ingReg i s t ra t i ons map[s t r i n g]*matcher . Reg i s t r a t i on
7 pend ingReg i s t ra t ionsLock sync .RWMutex
8 C l i e n t s map[s t r i n g]* C l i en t
9 }

10

11 type C l i en t s t r u c t {
12 sync .RWMutex
13 Id s t r i n g
14 Group s t r i n g
15 Domain s t r i n g
16 Token s t r i n g
17 Diges t uint64
18 Online bool
19 Las tOnl ine time . Time
20 Pend ingNo t i f i c a t i on s map[s t r i n g]* Object
21 Reg i s t r a t i o n s map[s t r i n g]* Reg i s t r a t i on
22 }
23

Listing 4.1: Registrar state (simplified). Fields for storing TCP connections, matcher
RPC connection, etc. has been stripped.

20 CHAPTER 4 IMPLEMENTAT ION

4.1.1 Client communication
The registrar process faces the ous applications to handle registrations, un-
registrations and provide notifications over TCP sockets. Alternatively, ou-
registrar communication could be long-polled HTTP requests, like Dropbox’s
NotServers [14], where clients send a request to the server which is only
returned whenever a notification is available.

Using a TCP connection guarantees that the data is delivered and that there
is no corruption, however, application-level acknowledgements are used to
confirm that registrations and unregistrations has been confirmed by both the
registrar and matcher. If the registrar is unable to immediately propagate a
registration to the matcher, it’s added to a list of pending registrations, such that
a goroutine can retry sending them and eventually send an acknowledgement
back to the ou.

When a ou application connects to the registrar (introduction in Figure 4.2),
an entry for the client is created and indexed by a unique client token, corre-
sponding to Table 4.1. To ensure unique tokens, they consist of the domain
name, a group name and a unique client id within that group. It’s important
to note that each application running on an ou has their own TCP connection
with ColdNotify, with different domains.

4.1.2 Workers
The registrar process has concurrent workers (goroutines) propagate pending
registrations and does garbage collection of ous.

Some ous go offline and never come back, however, their registration data
will remain in the registrar’s and matcher’s state. This can happen when ous
are replaced, they break, or they may have connected to another registrar
in a horizontally scaled setup. The registrar keeps track of whether a ou is
online (connected) or offline and the date it last disconnected. By doing this,
a registrar worker checks for offline clients that have not been connected for
a long time (weeks, months), unregisters their registrations from the matcher
and deletes their state.

4.2 THE MATCHER 21

4.2 The Matcher
1 type MatcherService s t r u c t {
2 sync .RWMutex
3 Sess ion Id s t r i n g
4 P e r s i s t e n t bool
5 No t i f i c a t i o n I n t e r v a l time . Duration
6 Batching bool
7 Pending Pending
8 Objec t s map[s t r i n g]* Object
9 }

10

11 type Object s t r u c t {
12 sync .RWMutex
13 Id s t r i n g
14 Domain s t r i n g
15 Group s t r i n g
16 Vers ion s t r i n g
17 C l i e n t s [] s t r i n g
18 }
19

20 type Pending s t r u c t {
21 sync .RWMutex
22 n o t i f i c a t i o n s []* r e g i s t r a r . No t i f i c a t i o n
23 }
24

Listing 4.2: Matcher state (simplified)

The implemented matcher accepts publish notifications from back-end appli-
cations via HTTP POST requests and RPC calls. The RPC server is also used
by the registrar to keep the matcher’s state up to date with registrations and
unregistrations from ou applications.

4.2.1 Notification batching
When a notification is published by back-end applications, the matcher’s job is
to lookup which clients the registrar should notify. This essentially means that
one publish from back-end application for N ous requires 1 lookup for the
matcher, but requires N lookups, plus TCP communication, for the registrar.
To remove some stress from the registrar, notifications can be batched by the
matcher and sent in bulk. The real optimization by batching is when the
matcher receives multiple notifications for the same object within a short time
frame, as it will simply dismiss old notifications and only propagate the newest
to the registrar.

In practice, there is a list of pending notifications using a map (associative

22 CHAPTER 4 IMPLEMENTAT ION

array) as data structure, where the key uniquely identifies an object, regardless
of version, such that subsequent notifications for the same object overwrites its
predecessor. When batching is enabled, all notifications are added as pending
notifications, otherwise this list is only used for failed propagations. A goroutine
propagates the list of pending notifications to the registrar at a set interval,
usually in seconds or minutes.

An alternative to the current batching implementation is an auto-tuned batch-
ing algorithm [4], originally created for pub/sub systems that are more prone
to bandwidth congestion due to larger payloads. This algorithm can help
alleviate congestion caused by heavy load on the registrar or slow ous and
increase latency by dynamically tuning the batching size and propagation
interval according to the registrar’s load. The algorithm is based on additive in-
crease/multiplicative decrease (aimd)[7], which is commonly used to control
TCP congestion.

To implement a similar algorithm for ColdNotify, the registrar could respond
to the matcher with its metrics, for instance as CPU usage, such that the
matcher can dynamically change propagation interval and a batch size limit.
The experiment results in Section 5.2 shows how the registrar is affected during
high notification rates without batching.

4.3 Client library
1 c l a s s S ta te :
2

3 def _ _ i n i t _ _ (s e l f , memory : bool , f i lename : s t r = None) :
4 s e l f .memory : bool = memory
5 s e l f . f i lename : s t r = f i lename
6 s e l f . r e g i s t r a t i o n s : D i c t [s t r , R eg i s t r a t i on] = {}
7

8

9 c l a s s Reg i s t r a t i on (Sub jec t) :
10

11 def _ _ i n i t _ _ (s e l f , ob j e c t _ i d : s t r , ve r s ion : s t r , s t a t u s :
Reg i s t r a t i onS t a t u s) :

12 s e l f . ob j e c t _ i d : s t r = ob j e c t _ i d
13 s e l f . ve r s ion : s t r = ver s ion
14 s e l f . s t a t u s : Reg i s t r a t i onS t a t u s = s t a t u s

Listing 4.3: Client library registration state (simplified).

The majority of existing ou applications are written in Python, such that a
Python library for ColdNotify has been first priority. Listing 4.3 shows the client

4.3 CL IENT L IBRARY 23

library state, where registrations are indexed by their object name.

The client library takes an object-oriented approach, where a Notify singleton
is created by the ou application with parameters for domain name, group and
client identifier. Listing 4.4 shows how the Notify object from the client library
is used.

1 from no t i f y import Not i fy , State , Connection
2

3 no t i f y = Not i f y (
4 domain= ’ animal . observer ’ ,
5 group_id= ’ region−1 ’ ,
6 c l i e n t _ i d= ’ observer−1 ’ ,
7 s t a t e=Sta te (f i lename= ’ r e g i s t r a t i o n −s t a t e . j son ’) ,
8 connect ion=Connection (
9 address= ’ r e g i s t r a r . c o l dno t i f y . dao ’ ,

10 port=443,
11 ca_ce r t= ’ s s l / c o l dno t i f y . c r t ’ ,
12 c e r t= ’ s s l / c l i e n t . c r t ’ ,
13 key= ’ s s l / c l i e n t . key ’
14)
15)
16

17 no t i f y . connect ()
18

19 no t i f y . r e g i s t e r (’ camera−con f i g ’) . sub s c r i be (
20 lambda n o t i f i c a t i o n : update_camera_config ()
21)
22

23 no t i f y . un r eg i s t e r (’ camera−con f i g ’)
24

25 no t i f y . d i sconnec t ()

Listing 4.4: How an ou application interacts with ColdNotify using the client library.

The Notify object run the TCP connection in a thread to not interrupt application
operationswhen communicatingwithColdNotify or using the reg-sync protocol.
To deliver notifications to the application, the client library follows the observer
pattern by using RxPY [18] by ReactiveX. The Notify. register function returns a
Subject[19] object that emits new notifications to subscribers.

The ou application’s object registration state can either be persistent or
memory-only. The registration state stores whether an object has been ac-
knowledged as registered or unregistered by ColdNotify. Until a registration
has been acknowledged, its status is either pending registration or pending
unregistration.

24 CHAPTER 4 IMPLEMENTAT ION

4.4 Publisher library
The publisher library lets back-end applications publish notifications to the
matcher over RPC and is significantly less complex than the client library. The
library is implemented in Go, however, implementations in other languages
should be straight forward, as the matcher’s rpc service is defined using pro-
tocol buffers. Applications can alternatively send notifications via HTTP POST
requests directly to the matcher and protocol buffers define these messages
too.

1 import " r epo s i t o r y / co l dno t i f y / pub l i she r "
2

3 // Pub l i she r s e r v i c e connects to matcher s e r ve r
4 pub l i she r . Se rv i ce = pub l i she r . NewService (
5 " matcher . c o l dno t i f y . dao :443 "
6)
7

8 e r r := pub l i she r . Pub l i sh (
9 domain , group , ob jec t Id , vers ion , source

10)
11 i f e r r != n i l {
12 // Appl i ca t ion− s p e c i f i c e r ro r handl ing
13 handlePub l i shError ()
14 }

Listing 4.5: Code for publishing a notification to ColdNotify using the publisher
library.

Listing 4.5 shows how Go applications publish notifications. Like Thialfi, the
publisher library supports a source field, which indicates which client is respon-
sible for an object change, such that it does not have to be notified. Most dao
applications will likely use this only in rare occasions, as most object changes
are made by the application server itself instead of ous.

If the matcher is unavailable, such that the publisher library is unable to
publish a notification, the error handling is left to the application. This seems
appropriate, as the application should be aware of whether a notification was
actually sent and handle new attempts in its own way.

4.5 Persistent State
Experiments in the next chapter will show that registrar and matcher state
losses are expensive, such that persistent state does greatly benefit ColdNo-
tify. Selecting a proper storage platform for persistent state is left as future

4.6 FA ILURE RECOVERY 25

work, such that the current implementation uses local files just to demonstrate
persistent storage.

Go can conveniently convert the registrar and matcher’s state, which are im-
plemented as structs, into JSON data and vise-versa using marshalling and
unmarshalling [11]. When persistent storage is enabled, the registrar and
matcher will check if a state file exists and load its JSON state into state. A
goroutine worker locks the state and overwrites the file at a specified interval
(seconds).

As ColdNotify scales, saving the entire state to file over and over will cause ad-
ditional resource usage and will be prone to race condition failures1. Corrupted
or invalid JSON files will not be loaded to state, however, finding a storage
system that let ColdNotify update individual parts of the state is beneficial.
Thialfi’s persistent storage design uses local memory as a cache, while most of
the state is only stored remotely in Bigtable.

4.6 Failure Recovery
4.6.1 Registrar recovery: registration-sync protocol
When the registrar is restarted as loses its state, the reg-sync protocol will be
initiated, such that ous resend their registrations.

To implement the registration-sync protocol, the 32bit CRC checksum of each
registration (object identifier) is summed as an unsigned 64bit integer and
used as the digest. CRC is a fast algorithm and can be used by ous with smaller
impact on CPU, compared to hashing algorithms such as SHA or MD5.

When a previously connected ou reconnects to the registrar and sends an
introduction message, the registrar will drop its registration state if there
is a digest mismatch. When this happens, the registrar will respond to the
introduction message with a digest of 0, and the reconnecting ou will initiate
the reg-sync protocol. As the client library resends registrations, the digest in the
registration acknowledgements will not match the ou’s, until all registrations
are sent. To account for this, the client library enables reg-sync mode, where
digest mismatch is ignored until all registrations has been resent and the

1. The registrar and matcher’s state uses a mutex lock for alternating their client and object
list respectively. However, the clients and objects within these lists have their own mutex
lock, such that registrations, unregistrations or notifications don’t lock the entire state of
the registrar and matcher. To safely save the registrar’s and matcher’s state to disk, all
clients and objects must be locked, which is not practical.

26 CHAPTER 4 IMPLEMENTAT ION

digests match again. During reg-sync mode, the registrar will also notice a digest
mismatch, however, the registrar only drops its state during introduction.

4.6.2 Matcher state recovery
As the matcher starts, a goroutine will connect to the registrar’s RPC server
and request all registrations. This happens regardless of failure or a regular
startup to account for any registrations that may have occurred if the registrar
process is started first.

This is a best-effort recovery, hence if the matcher is unable to contact the
registrar, it is assumed that the registrar is down and will perform the reg-
sync protocol among its clients, which will eventually be propagated to the
matcher.

4.7 Security
ColdNotify does support TLS communication between components, including
communication between matcher and registrar, as they may be running on
separate machines. The registrar and matcher verifies certificates on ou and
back-end applications to ignore unknown users. As discussed in Subsection 2.1.3,
encrypting communication plus ensuring components are legitimate, will affect
ColdNotify’s throughput and ous resources.

The current state of dao experiments with a virtual private network (vpn)
where allous and back-end servers are connected, such that all communication
will be encrypted regardless.

5
Evaluations
This chapter evaluates ColdNotify’s performance in experiments that show
resource usage and notification latency during high loads of clients and notifi-
cations. It also takes a look at how ColdNotify behaves during failure recovery,
in experiments where the registrar and matcher loses and rebuilds their state.
These experiments are similar to Google’s experiments for how Thialfi’s re-
source consumption and notification latency is affected by scaling, however, at
a smaller scale in terms of online clients.

Process Nodes CPU RAM
Registrar 1 Intel Xeon W3550 @ 3.07GHz 12GB (3 x 4GB)
Matcher 1 Intel Xeon W3550 @ 3.07GHz 12GB (3 x 4GB)
Back-end server 1 Intel Xeon W3550 @ 3.07GHz 12GB (3 x 4GB)
Clients 14 Intel Xeon W3550 @ 3.07GHz 12GB (3 x 4GB)
Clients 14 Intel Xeon E5630 @ 2.53GHz 12GB (6 x 2GB)
Clients 30 Intel Xeon E5520 @ 2.27GHz 12GB (6 x 2GB)
Clients 18 Intel Xeon E5-1620 0 @ 3.60GHz 32GB (4 x 8GB)
Clients 4 Intel Xeon W3550 @ 3.07GHz 12GB (3 x 4GB)
Clients 4 Intel Xeon W3550 @ 3.07GHz 8GB (4 x 2GB)

Table 5.1: Experiments are run on a cluster of physical LAN nodes. Clients are evenly
distributed over 84 nodes.

27

28 CHAPTER 5 EVALUAT IONS

5.1 Experiment Environment
All experiments take place on a cluster, described in Table 5.1 with synthetic
clients, acting as ous, that run a simple application for interacting with Cold-
Notify. The cluster consists of physical nodes connected in a LAN, such that
communication latency is mostly caused by each component, rather than the
network.

There are currently no large-scale deployments of ous to do real-world testing,
such that these experiments focuses on ColdNotify’s performance without
taking into account ou limitations, such as slower processors, less memory,
bandwidth, etc. Testing ColdNotify in real environments is left as future work
for when the dao project progresses to large-scale deployments.

Location for raw experiment data and tools for processing data are described
in Appendix B.

5.1.1 ColdNotify Monitoring
ColdNotify’s processes, the registrar and the matcher, run on separate nodes
to not interfere with each other’s resource usage. This separation is important
to identify how each experiment affects the two processes and gives an in-
dication to which process might benefit of being horizontally scaled to more
nodes.

The registrar and matcher are monitored using psutil 5.6.2 [20] to log CPU
percentage cpu_percent

cpu_count and memory (resident set size) percentage every 100
milliseconds.

5.1.2 Demo Application
An application server is implemented in Go, which publishes notifications to
ColdNotify over RPC at specified intervals. Clients are Python processes that
use the ColdNotify client library to register for objects and receive notifica-
tions.

Any application-specific operations is not part of these experiments, as they will
vary for each application. Therefore, the client application does not download
from, or interact with, the server, but is only instructed to register for objects
and log when a notification is received from the client library.

5.2 EXPER IMENT : NOTIFICAT ION LATENCY 29

5.2 Experiment: Notification Latency
This first experiment looks at how notification latency is affected when increas-
ing the notification rate.

5.2.1 Methodology
1 000 clients connect to the registrar and registers for the same object, such
that one published notification from the application server generates 1 000
notifications at the registrar.

The application server increases its publish rate from 1 to 25, in increments of
2. This makes the registrar send out 1 000 to 25 000 notifications per second to
clients.

The latency is measured from the notification is sent from the application server,
to when it’s received by the client application. To keep track of timestamps, the
application server sets the object version as the current time in milliseconds. As
the client application receives the notification, it compares the version against
the current timestamp to find the latency 1. The delivery latency is gathered
from each client’s log and combined to find the average and the standard
deviation from each notification rate.

5.2.2 Metrics
• Average end-to-end notification latency and standard deviation

• CPU usage in percentage for the registrar and matcher

• Memory usage in percentage for the registrar and matcher

1. Different hardware and potential clock skew between cluster nodes are not accounted
for. Further analysis of latencies reported by individual nodes are provided in ??, which
concludes that despite a varying mean latency among nodes, it does not affect the rate at
which notification latency changes.

30 CHAPTER 5 EVALUAT IONS

5.2.3 Results

1 3 5 7 9 11 13 15 17 19 21 23 25
Notifications per second (thousands)

0

5

10

15

20

25
CP

U
pe

rc
en

ta
ge

Registrar CPU
Matcher CPU

0

10

20

30

40

50

60

La
te

nc
y

(m
illi

se
co

nd
s)

Notification Latency (1000 clients)
Latency

Figure 5.1: Notification latency and CPU usage from 1 000 to 25 000 notifications per
second. Latency increases on average by 1.51 milliseconds per notification
rate (1.51µs per concurrent notification).

Figure 5.1 shows the results as the notification rate increases by 1 000 up
until 25 000 notifications per second. The matcher process remains almost
unchanged by the notification rate with a mean slope of 0.02%, while the
registrar increases at a rate of 0.68% on average. The latencies have little
variation during each notification rate, however, they do vary between each
rate.

The size of a notification was 45 bytes2 and further analysis of experiment data
and client logs confirms that all notifications were successfully delivered.

The takeaway from this experiment is that each concurrent notification con-
tributes little (1.51µs) to the latency and how different the matcher and
registrar processes are affected. In horizontal scaling (discussed as future work
in Section 8.1) the registrar will benefit from distributing its load, while the
matcher has no immediate need for scaling.

The matcher can be configured to batch notifications and only propagate the
most up to date notifications to the registrar at a fixed interval. This may
decrease the notification rate and thereby resource usage if a back-end server
is rapidly publishing notifications for the same object.

2. Notification size depends on the length of version number, object identifier and registration
digest.

5.3 EXPER IMENT : SCAL ING CL IENTS 31

5.3 Experiment: Scaling Clients
In this experiment, ColdNotify is measured as the number of connecting clients
increase, with a fixed notification rate.

5.3.1 Methodology
The objective of this experiment is to measure how the number of connecting
clients impacts notification latency and resource utilization by the registrar
and matcher.

Each client registers for the same object and the back-end server publishes a
notification every second.

Two types of situations are measured in this experiment. One where ColdNotify
only has to send notifications at constant numbers of online clients, and one
where it has to handle clients continuously connecting at varying rate, while
sending notifications.

Latency is measured in the same way as in the previous experiment (Sec-
tion 5.2).

5.3.2 Metrics
• Average end-to-end notification latency and standard deviation

• CPU usage in percentage for the registrar and matcher

• Memory usage in percentage for the registrar and matcher

• Number of online clients connected to the registrar

5.3.3 Results
Figure 5.2 shows the resource usage and notification latency at fixed numbers
of clients. The resource usage scales similarly to the notification latency exper-
iment in Section 5.2. On average per client, the notification latency rises by
4.3µs, the registrar CPU usage rises by 0.0007%, and the matcher CPU usage
rises by 1e-05%. Further analysis shows that CPU usage for both the matcher
and the registrar goes to 0% between notifications, as there are no operations
on either processes. This indicates that resource usage in Figure 5.2 mostly, if not

32 CHAPTER 5 EVALUAT IONS

100 200 300 400 500 600 700 800 900 1000
Online clients

0

1

2

3

4

5

6

7

8

CP
U

pe
rc

en
ta

ge

Registrar CPU
Matcher CPU

0

1

2

3

4

5

6

7

8

La
te

nc
y

(m
illi

se
co

nd
s)

Scaling Clients (fixed)
Latency

Figure 5.2: Notification latency and CPU usage with fixed numbers of online clients.

entirely, caused by sending notifications and not idle client connections.

Figure 5.3 shows a continuous timeline as clients increase from 0 to 1000 over
48.0 seconds at an average rate of 20.77 clients per second. In this situation,
the registrar and matcher’s CPU usage is significantly higher than previously,
as each client concurrently registers 50 objects each, which on average equates
to a rate of 1 038,5 registrations per second.

Despite the increase in resource usage, the average latency contribution per
client is only increased from 4.3µs to 4.8µs per client.

5.4 Failure recovery
To evaluate ColdNotify’s failure recovery, the registrar and matcher are config-
ured to lose their state in the following two experiments. The objective of these
experiments is to measure recovery time and the impact of memory and CPU
usage for the registrar and matcher processes. Both experiments start with
1 000 online clients spread evenly over 84 nodes, each with 50 registrations
(50 000 registrations in total).

5.4 FA ILURE RECOVERY 33

0 10 20 30 40 50
Time (seconds)

0

5

10

15

20

25

30

35

40

CP
U

pe
rc

en
ta

ge

Registrar CPU
Matcher CPU

0

200

400

600

800

1000

Cl
ie

nt
s

Scaling Clients: resource usage
Clients

0 10 20 30 40 50
Time (seconds)

0

2

4

6

8

10

12

La
te

nc
y

(m
illi

se
co

nd
s)

Notification latency

0

200

400

600

800

1000
Cl

ie
nt

s

Scaling Clients: notification latency
Clients

Figure 5.3: Notification latency and resource usage with a continuously increasing
number of online clients from 0 to 1000 over 48.0 seconds.

34 CHAPTER 5 EVALUAT IONS

5.5 Experiment: Registrar Recovery
When the registrar server fails and loses its state, all clients are disconnected
from ColdNotify and their registrations are lost. The reg-sync protocol will be
initiated for each reconnecting client.

The matcher is affected by this failure, as the registrar follows the normal
procedure of checking the matcher’s state and potentially sending notifica-
tions for every registration. For this experiment, however, no notifications are
sent.

5.5.1 Methodology
1 000 online clients are connected to the registrar with 50 registrations each.
Both the registrar and matcher processes are monitored as the registrar loses
its state and starts recovery via the reg-sync protocol. Clients are instructed to
reconnect immediately on disconnects, such that all clients will reconnect at
the same time.

The recovery time is measured from the registrar process is started, until its
CPU usage idles at 0%. Results from previous experiments show that matcher
and registrar processes idle when there is no communication.

For comparison, a separate experiment with persistent state is made, where
the registrar process loads its previous state on startup.

5.5.2 Metrics
• CPU usage in percentage for the registrar and matcher

• Memory usage in percentage for the registrar and matcher

5.5.3 Results
Figure 5.4 shows the CPU percentage of the registrar and matcher as the
registrar recovers in 2,41 seconds. The first 1,5 seconds shows a large CPU
impact for the registrar, as the 1 000 clients reconnects at the same time.
During this phase, registration mismatches are detected and reg-syncs are
initiated to synchronize the 50000 registrations. Once all the clients have
connected, the registrar stabilizes and propagates remaining registrations to
the matcher.

5.5 EXPER IMENT : REGISTRAR RECOVERY 35

0.0 0.5 1.0 1.5 2.0 2.5
Time (seconds)

0

20

40

60

80

100

CP
U

pe
rc

en
ta

ge

Registrar CPU
Matcher CPU

0.0

0.5

1.0

1.5

2.0

2.5

RA
M

 p
er

ce
nt

ag
e

Registrar Recovery (1000 clients)
Registrar RAM
Matcher RAM

Figure 5.4: Registrar recovery with 1 000 clients, 50 registrations each. Recovery time
is 2,41 seconds.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (seconds)

0

20

40

60

80

100

CP
U

pe
rc

en
ta

ge

Registrar CPU
Matcher CPU

0.2

0.4

0.6

0.8

1.0

1.2

RA
M

 p
er

ce
nt

ag
e

Registrar Recovery with Persistent State (1000 clients)
Registrar RAM
Matcher RAM

Figure 5.5: Registrar recovery with persistent state. 1 000 clients with 50 registrations
each. Recovery time is 1,81 seconds.

36 CHAPTER 5 EVALUAT IONS

Enabling persistent state (Figure 5.5) eliminates the reg-sync protocol from
being initiated, thereby leaving the matcher untouched and decreasing the
recovery time to 1,81 seconds. However, the surge of reconnecting clients will
still take a hit at the CPU usage. With persistent storage, the average CPU
usage by registrar goes from 69,37% to 61,12%, and from 19,61% to 0,06% for
the matcher.

The registrar is currently set to accept new connections without delay, such
that limiting the connection rate can help ease recovery at the cost of longer
recovery time.

5.6 Experiment: Matcher Recovery
When the matcher process loses its state, ColdNotify loses the most recent
version of each object. The matcher does not request versions numbers from
back-end servers, but gets help from the registrar to partially recover its state,
which includes all registrations. Online clients remain unaffected by this, as
no new notifications are made, however, reconnecting clients will be notified
about unknown versions.

5.6.1 Methodology
1 000 are connected to the registrar and registers for 50 objects. The matcher’s
state now contains 50 objects, each with a list of 1000 registered clients. This
state is deleted and the matcher process is restarted, such that recovery time
is measured from the matcher process restarts, until it idles at 0% CPU usage.
No notifications are made during this recovery.

Similar to the registrar recovery experiment, a separate experiment is done with
persistent state, where the matcher loads its previous state on startup.

5.6.2 Metrics
• CPU usage in percentage for the registrar and matcher

• Memory usage in percentage for the registrar and matcher

5.6 EXPER IMENT : MATCHER RECOVERY 37

0.0 0.5 1.0 1.5 2.0
Time (seconds)

0

20

40

60

80

CP
U

pe
rc

en
ta

ge

Registrar CPU
Matcher CPU

0

1

2

3

4

5

RA
M

 p
er

ce
nt

ag
e

Matcher Recovery (1000 clients)
Registrar RAM
Matcher RAM

Figure 5.6: Matcher recovery with 1 000 clients, 50 registrations each.
Recovery time is 1,81 seconds.

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (seconds)

0

20

40

60

80

100

CP
U

pe
rc

en
ta

ge

Registrar CPU
Matcher CPU

0

1

2

3

4

5

6

RA
M

 p
er

ce
nt

ag
e

Matcher Recovery with Peristent State (1000 clients)
Registrar RAM
Matcher RAM

Figure 5.7: Matcher recovery with persistent state. 1 000 clients with 50 registrations
each.
Recovery time is 2,01 seconds.

38 CHAPTER 5 EVALUAT IONS

5.6.3 Results
Figure 5.6 shows the recovery timeline and the impact on the processes. The
1,81 second matcher recovery is faster than the registrar’s recovery, however,
both are impacted higher CPU usage. The registrar is instructed to resend all
50 000 registrations as fast as possible, making the CPU usage rise until the
matcher starts processing them.

The registrar has an increase in RAM usage, despite not storing any new data.
This is caused by memory allocation for goroutines that send registrations.
Further inspection shows that repeated matcher recoveries converge memory
usage to about 6,9%, which indicates that Go does free this extra allocated
memory during new allocations.

Enabling persistent state should not affect recovery process, as the matcher
always request registrations from the registrar on startup, in case it has missed
some. However, Figure 5.7 shows an extended recovery time, which is caused
by loading the previous state from file and continuously locking state to write
to disk. During these two tests, enabling persistent state made the matcher
CPU average go from 40,23% to 34,76%, and the registrar from 46,12% to
40,61%.

Implementing a Merkle tree strategy for recovering the matcher could be
done, where the matcher provides its hashes to the registrar when requesting
recovery3. This, however, requires the registrar to transpose its own state, such
that it matches the matcher’s structure to generate its own Merkle tree. This is
not a scalable solution and the problem is left unsolved for now.

3. Building a Merkle tree of the matcher state is done by treating each object entry as a data
block. A block’s hash will be hash(id + domain + дroup) + ΣNi=1hash(clienti).

6
Discussion
Experiments show that ColdNotify scales in terms of resource usage and notifi-
cation latency at increased notification rate and connecting clients. When only
increasing the notification rate, each concurrent notification adds on average
1.51µs latency to every delivery, while increasing clients adds 4.3µs.

Even though these experiments give a performance measure of ColdNotify, they
tell little about real-world latencies or throughput, as these depend on how fast
ous can receive notifications, which varies by network latency, software, and
hardware. Such testing environments were not available at the time, hence
testing ColdNotify in real environments is left for future work.

Despite this, clients that use ColdNotify are reliably notified that a remote
event has occurred, despite state loss and offline clients. TCP communication,
application-level acknowledgments and the registration-sync protocol ensure
that clients and ColdNotify are always in sync with registrations. Using Thialfi’s
design

39

40 CHAPTER 6 DISCUSS ION

6.1 A Notification Service For A Distributed
Arctic Observatory

Developing ColdNotify in the current state of dao is challenging, as there are
currently no real-world deployments of ous, other than prototypes local to
the university. Despite this, an application-neutral notification service, which
ColdNotify aims to be, benefits from being able to provide notifications for most
existing and future applications without relying on their data structures or data
transfer methods. The small notifications (10s of bytes) are beneficial to ous
with limited connectivity, where low-bandwidth communication technologies
such as LoRaWAN or NB-IoT are used.

Real-world deployments of ous and new dao applications may reveal addi-
tional challenges, requirements or edge-cases to ColdNotify, such as battery
drain caused by TCP connections with application-layer acknowledgements,
notification payloads, or the notification channel structure. This is similar to
what the Thialfi team experienced, as limitations were revealed over time as
it was adapted by various applications. Thialfi has over time made compro-
mises by exposing a pub/sub API, because version-only notifications were not
applicable for some applications[1].

As dao evolves, edge-cases might appear where other types of infrastructure
services are more suitable or may be used alongside ColdNotify, for instance
pub/sub services or mqtt.

6.2 Compared to Thialfi
Directly comparing ColdNotify to Thialfi’s results are difficult, as Thialfi’s
experiments are configured with large amounts of clients, different notification
rates and a heartbeat rate, which is not part of ColdNotify.

When Thialfi goes from 1 000 notifications per second to 13 000 with 1,4 million
clients, the CPU usage is increased by a factor of 5.5, whereas ColdNotify
(registrar and matcher combined) has a factor of 10.98 with 1 000 clients.

In terms of notification latency, Thialfi’s results show that median latency is
stable at around 0,6-0,7 seconds, regardless of notification rate, with batching
done by the bridge server. For ColdNotify on the other hand, without batching,
notification latency for 13000 notifications per second is 18.4ms on average
and the median is 5.1ms.

7
Conclusion
ColdNotify is an implementation ofGoogle’s notification service,Thialfi,adapted
for dao at uit. Its design ensures that ous are eventually notified, even if the
notification service loses its state or is temporarily unable to reach offline ous.
Small notification messages make for a lighter wake-up for ous, instead of
being flooded with data, allowing them to schedule downloads for later.

Notification services eliminate the need for polling to relieve stress on back-end
servers as the number of clients scale, and is being used in several distributed
systems that face similar scaling challenges. As ColdNotify does not handle
application-specific data, it is a general, application-neutral, notification service
that can be used by distinct applications, which deprecates any per-application
implementation to reliably keep their clients in up to date.

Experiments show that ColdNotify can recover within seconds and send out
thousands of notifications per secondwithminor latency caused by the registrar
and matcher due to their transposed state for a O(1) lookup of clients and
objects respectively. The implementation of ColdNotify relies on open-source
software and can be adapted for horizontal scaling and persistent memory in
future work as the dao project progresses.

This thesis is an early exploration of using notification services in dao, as
several aspects of the project is a work in progress and real-world deployments
are yet to be made. The thesis can also be seen as the starting point for
discussions on how notification systems can benefit dao, which is important

41

42 CHAPTER 7 CONCLUS ION

for making future decision to infrastructure, which is a critical part of dao’s
goal to observe and measure arctic climates. Future work advises to revisit and
explore new use cases and requirements as dao deploys ous and applications
adapt ColdNotify.

8
Future Work
8.1 Horizontal Scaling
Experiments show that high CPU usage is caused by concurrent communication
between clients, registrar and the matcher, which makes failure recovery expen-
sive, especially for the registrar during registrar recovery. Support for horizontal
scaling where clients are spread over multiple registrars will benefit recovery
time and CPU usage per process. Multi-registrar deployments using reverse
proxy to distribute loads with Nginx, Consul [13] and Registrator [15] in Docker
has been experimented with, but left for future work (see Section A.6).

Scaling the matcher is slightly more complicated, as it requires state replication
between each matcher node. Published notifications must be received by every
matcher, such that the registrar can contact any matcher for registrations and
unregistrations without keeping track of whichmatcher is responsible for which
object. Thialfi uses state replication by best-effort RPC calls, which may be a
viable solution for ColdNotify.

Figure 8.1 provides an model for how a horizontally scaled ColdNotify with
persistent storage could look like.

43

44 CHAPTER 8 FUTURE WORK

Observation Unit

Client library

Observation Unit

Client library

Load balancer

D
at
a
ce
nt
er

1

Matcher Matcher

Registrar Registrar

Storage

Application back-end

Publisher library

Observation units

Backend systems

D
at
a
ce
nt
er

2

Da
ta

ce
nt
er

n

Observation Unit

Client library

Application back-end

Publisher library

Load Balancer

Storage

Figure 8.1: Illustration of a horizontally scaled ColdNotify, deployment with persistent
storage.

8.2 Notification Payloads
ColdNotify remains a version-number-only notification service, but support for
allowing small payloads have been discussed. As applications adapt ColdNotify,
requirements for notification payload may appear, such that applications can
execute remote-commands on ous using notifications, include instructions for
how to respond to a notification, or provide metadata about the changed data,
such as size or expiration date.

As noted in Section 6.1, the Thialfi team subsequently added payloads via a
pub/sub API for specific applications, which may become relevant for Cold-
Notify. mqtt may be used alongside ColdNotify to provide pub/sub for such
applications.

8.3 Persistent Storage
Even thought the matcher and registrar can recover with 1 000 clients and
50000 registrations in less than three seconds, having persistent storage will
make recovery faster and is beneficial to application-specific notification pay-
loads. While the Thialfi paper suggests HBase [3] as an open source alternative
to BigTable [6], which Thialfi uses, other database systems or storage methods
can be suitable for the scale of dao.

8.4 AUTOMAT IC PUBL ISH ING 45

The current implementation supports persistent storage by dumping the state
as JSON to a file,whichmay be viable in small scales. Furtherwork for persistent
storage involves finding a suitable database system. daomight over time settle
on specific common database systems for all applications and services, which
can be beneficial over having a separate database system that only serves
ColdNotify.

8.4 Automatic Publishing
Currently, publishers must deliberately publish notifications to ColdNotify using
a publisher library. Exploring alternative designs more similar to Wormhole,
where ColdNotify observes data flows, can make publishing automatic and
transparent to back-end applications as they write objects to databases.

Bibliography
[1] Atul Adya. “Lessons from an Internet-Scale Notification System.” LADIS

2013. url: http://2013.ladisworkshop.org/node/12.
[2] Atul Adya et al. “Thialfi: A Client Notification Service for Internet-scale

Applications.” In: Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles. SOSP ’11. Cascais, Portugal: ACM, 2011,
pp. 129–142. isbn: 978-1-4503-0977-6. doi: 10.1145/2043556.2043570.
url: http://doi.acm.org/10.1145/2043556.2043570.

[3] Apache HBase. 2018. url: https : / / hbase . apache . org (visited on
09/15/2018).

[4] S. Balasubramanian et al. “Auto-Tuned Publisher in a Pub/Sub Sys-
tem: Design and Performance Evaluation.” In: 2018 IEEE International
Conference on Autonomic Computing (ICAC). Sept. 2018, pp. 21–30. doi:
10.1109/ICAC.2018.00012. url: https://doi.org/10.1109/ICAC.2018.
00012.

[5] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. “Achiev-
ing Scalability and Expressiveness in an Internet-scale Event Notification
Service.” In: Proceedings of the Nineteenth Annual ACM Symposium on
Principles of Distributed Computing. PODC ’00. Portland, Oregon, USA:
ACM, 2000, pp. 219–227. isbn: 1-58113-183-6. doi: 10.1145/343477.
343622. url: http://doi.acm.org/10.1145/343477.343622.

[6] Fay Chang et al. “Bigtable: A Distributed Storage System for Structured
Data.” In: Proceedings of the 7th USENIX Symposium on Operating Systems
Design and Implementation - Volume 7. OSDI ’06. Seattle, WA: USENIX
Association, 2006, pp. 15–15. url: http://dl.acm.org/citation.cfm?
id=1267308.1267323.

[7] Dah-Ming Chiu and Raj Jain. “Analysis of the Increase and Decrease
Algorithms for Congestion Avoidance in Computer Networks.” In: Com-
put. Netw. ISDN Syst. 17.1 (June 1989), pp. 1–14. issn: 0169-7552. doi:
10.1016/0169-7552(89)90019-6. url: http://dx.doi.org/10.1016/
0169-7552(89)90019-6.

[8] Idilio Drago et al. “Inside Dropbox: Understanding Personal Cloud Stor-
age Services.” In: Proceedings of the 2012 Internet Measurement Con-
ference. IMC ’12. Boston, Massachusetts, USA: ACM, 2012, pp. 481–494.

47

http://2013.ladisworkshop.org/node/12
https://doi.org/10.1145/2043556.2043570
http://doi.acm.org/10.1145/2043556.2043570
https://hbase.apache.org
https://doi.org/10.1109/ICAC.2018.00012
https://doi.org/10.1109/ICAC.2018.00012
https://doi.org/10.1109/ICAC.2018.00012
https://doi.org/10.1145/343477.343622
https://doi.org/10.1145/343477.343622
http://doi.acm.org/10.1145/343477.343622
http://dl.acm.org/citation.cfm?id=1267308.1267323
http://dl.acm.org/citation.cfm?id=1267308.1267323
https://doi.org/10.1016/0169-7552(89)90019-6
http://dx.doi.org/10.1016/0169-7552(89)90019-6
http://dx.doi.org/10.1016/0169-7552(89)90019-6

48 BIBLIOGRAPHY

isbn: 978-1-4503-1705-4. doi: 10.1145/2398776.2398827. url: http:
//doi.acm.org/10.1145/2398776.2398827.

[9] Eclipse. Eclipse Mosquitto An open source MQTT broker. 2018. url:
https://mosquitto.org (visited on 10/01/2018).

[10] Cloud Native Computing Foundation. gRPC. url: https://grpc.io
(visited on 05/05/2019).

[11] Andrew Gerrand. JSON and Go. Jan. 2011. url: https://blog.golang.
org/json-and-go (visited on 05/10/2019).

[12] Google. Protocol Buffers. 2018. url: https://developers.google.com/
protocol-buffers (visited on 11/10/2018).

[13] Hashicorp. Consul. url: https://www.consul.io (visited on 03/10/2019).
[14] Rian Hunter. “Dropbox Notification Servers.” In: ACM Reflections |

Projections 2012. University of Illinois: ACM@UIUC, Oct. 2012. url:
https://www.youtube.com/watch?v=FBRIeoEr8GU.

[15] Glider Labs. Registrator. url: https : / / github . com / gliderlabs /
registrator (visited on 03/10/2019).

[16] OASIS. MQTT. 2019. url: https://mqtt.org/ (visited on 10/01/2018).
[17] Ania M. Piotrowska et al. “AnNotify: A Private Notification Service.” In:

Proceedings of the 2017 on Workshop on Privacy in the Electronic Society.
WPES ’17. Dallas, Texas, USA: ACM, 2017, pp. 5–15. isbn: 978-1-4503-
5175-1. doi: 10.1145/3139550.3139566. url: http://doi.acm.org/10.
1145/3139550.3139566.

[18] ReactiveX. RxPY. url: https://github.com/ReactiveX/RxPY (visited
on 05/08/2019).

[19] ReactiveX. Subject. url: http://reactivex.io/documentation/subject.
html (visited on 05/08/2019).

[20] Giampaolo Rodola. psutil. url: https://github.com/giampaolo/psutil
(visited on 04/26/2019).

[21] Yogeshwer Sharma et al. “Wormhole: Reliable Pub-Sub to Support Geo-
replicated Internet Services.” In: 12th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 15). Oakland, CA:
USENIX Association, 2015, pp. 351–366. isbn: 978-1-931971-218. url:
https://www.usenix.org/conference/nsdi15/technical-sessions/
presentation/sharma.

[22] University of Tromsø - The Arctic University of Norway. Distributed
Arctic Observatory (DAO). url: https://site.uit.no/dao (visited on
01/20/2019).

https://doi.org/10.1145/2398776.2398827
http://doi.acm.org/10.1145/2398776.2398827
http://doi.acm.org/10.1145/2398776.2398827
https://mosquitto.org
https://grpc.io
https://blog.golang.org/json-and-go
https://blog.golang.org/json-and-go
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://www.consul.io
https://www.youtube.com/watch?v=FBRIeoEr8GU
https://github.com/gliderlabs/registrator
https://github.com/gliderlabs/registrator
https://mqtt.org/
https://doi.org/10.1145/3139550.3139566
http://doi.acm.org/10.1145/3139550.3139566
http://doi.acm.org/10.1145/3139550.3139566
https://github.com/ReactiveX/RxPY
http://reactivex.io/documentation/subject.html
http://reactivex.io/documentation/subject.html
https://github.com/giampaolo/psutil
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/sharma
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/sharma
https://site.uit.no/dao

A
User Manual
This appendix describes how to set up and run ColdNotify locally with demo
application.

A.1 Prerequisites
A.1.1 Software

• Go with $GOPATH variable for compiling Go applications
https://golang.org

• Certstrap for generating SSL files
https://github.com/square/certstrap

• Python 3.7 with pip
https://www.python.org

• Pipenv (recommended for installing client dependencies)
https://github.com/pypa/pipenv

49

https://golang.org
https://github.com/square/certstrap
https://www.python.org
https://github.com/pypa/pipenv

50 APPENDIX A USER MANUAL

Repository Directory
Service ∼/coldnotify/service
Client library ∼/coldnotify/client
Demo client ∼/coldnotify/demo
Registrar $GOPATH/src/vvgitlab.cs.uit.no/coldnotify/registrar
Matcher $GOPATH/src/vvgitlab.cs.uit.no/coldnotify/matcher
Publisher library $GOPATH/src/vvgitlab.cs.uit.no/coldnotify/publisher
Demo server $GOPATH/src/vvgitlab.cs.uit.no/coldnotify/demoserver

Table A.1: ColdNotify’s Service repository contains scripts for setting up ColdNotify,
which assumes these directories.

A.1.2 Directory structure
Scripts for generating SSL certificates and installing Go applications are lo-
cated in the service directory, which assumes a directory structure described
in Table A.1.

A.2 Installation
1 # Go to s e r v i c e d i r e c t o r y
2 $ cd ~/co l dno t i f y / s e r v i c e
3

4 # I n s t a l l SSL c e r t i f i c a t e s (no passwords)
5 $ sh . / s s l . sh
6

7 # I n s t a l l r e g i s t r a r , matcher and demo se rve r to $GOPATH/bin
8 $ sh . / i n s t a l l . sh

Listing A.1: Installing ColdNotify components and ssl certificates

ssl .sh generates SSL files using certstrap to ~/coldnotify/service/ssl and copies
them to each directory. install .sh installs Go applications to $GOPATH/bin,
which should be added to $PATH.

A.3 Usage with demo application
Now that ColdNotify components are installed, commands in Listing A.2 shows
how to run ColdNotify, the demo server and a demo client. Default server ports
are listed in Table A.2.

A .3 USAGE WITH DEMO APPL ICAT ION 51

Server Default Port
Registrar TCP 55000
Registrar RPC 55001
Registrar HTTPS 55002
Matcher RPC 51000
Matcher HTTPS 51001
Demo server HTTPS 3000

Table A.2: Default port numbers

1 # Reg i s t r a r , matcher and demo se rve r assumes a . / s s l d i r e c t o r y
with c e r t i f i c a t e s

2 $ cd ~/co l dno t i f y / s e r v i c e
3

4 # Running the r e g i s t r a r with p e r s i s t e n t s t a t e
5 $ r e g i s t r a r −matcher l o c a l ho s t :51000 −p e r s i s t e n t
6

7 # Running the matcher with p e r s i s t e n t s t a t e
8 $ matcher − r e g i s t r a r l o c a l ho s t :55001 −p e r s i s t e n t
9

10 # Running the demo se rve r
11 $ demoserver −matcher l o c a l ho s t :51000
12

13

14 # Run demo c l i e n t s from the demo d i r e c t o r y
15 $ c d ~/co l dno t i f y /demo
16

17 # With Pipenv :
18 $ p i p e n v run python . −− r e g i s t r a r l o c a l ho s t −− r e g i s t r a r −port

55000 −−s e r ve r l o c a l ho s t :3000
19

Listing A.2: ColdNotify usage with default ports

Use the −h flag to see each program’s usage and how they can be config-
ured.

A.3.1 Publish notifications
The demo server accepts POST requests to publish notifications. Curl example
is given in Listing A.3.

52 APPENDIX A USER MANUAL

1 # ht tp s : // l o c a l ho s t :3000/ no t i f y /{ group }/{ ob j e c t }/{n}/{ ra t e }
2 # Publ i sh 10 n o t i f i c a t i o n s at a ra t e of 1 per second
3 $ cu r l −k −X POST ht tp s : // l o c a l ho s t :3000/ no t i f y /group−1/ob jec t

−1/10/1

Listing A.3: Publish notifications with POST requests to the demo server with curl

A.4 View application state
1 # Reg i s t r a r
2 $ cu r l −k h t tp s : // l o c a l ho s t :55002
3

4 # Matcher
5 $ cu r l −k h t tp s : // l o c a l ho s t :51001
6

7 # Demo se rve r
8 $ cu r l −k h t tp s : // l o c a l ho s t :3000

Listing A.4: View registrar, matcher and demo state with curl

The registrar, matcher and demo server will return their current state in JSON
format if a GET request is sent to their HTTP server root path (Listing A.4).
When using the −persistant flag for matcher and registrar, the state is saved to
matcher.json and registrar.json respectively.

A .5 CL IENT L IBRARY USAGE 53

A.5 Client library usage
1 from no t i f y import Not i fy , State , Connection
2

3 no t i f y = Not i f y (
4 domain= ’demo . dao ’ ,
5 group_id= ’ group−1 ’ ,
6 c l i e n t _ i d= ’ c l i e n t −1 ’ ,
7 s t a t e=Sta te (f i lename= ’ r e g i s t r a t i o n −s t a t e . j son ’)
8 connect ion=Connection (
9 address= ’ l o c a l ho s t ’ ,

10 port=55000,
11 ca_ce r t= ’ s s l / c o l dno t i f y . c r t ’ ,
12 c e r t= ’ s s l / c l i e n t . c r t ’ ,
13 key= ’ s s l / c l i e n t . key ’
14)
15)
16

17 no t i f y . connect ()
18

19 no t i f y . r e g i s t e r (’ ob jec t −1 ’) . sub s c r i be (
20 lambda n o t i f i c a t i o n : p r i n t (n o t i f i c a t i o n)
21)
22

23 no t i f y . r e g i s t e r (’ ob jec t −2 ’) . sub s c r i be (
24 lambda n o t i f i c a t i o n : p r i n t (n o t i f i c a t i o n)
25)
26

27 no t i f y . un r eg i s t e r (’ ob jec t −1 ’)
28

29 no t i f y . d i sconnec t ()

Listing A.5: Client library usage

54 APPENDIX A USER MANUAL

A.5.1 Publisher library usage
1 import " v v g i t l a b . cs . u i t . no/ co l dno t i f y / pub l i she r "
2

3 // Pub l i she r s e r v i c e connects to matcher s e r ve r
4 pub l i she r . Se rv i ce = pub l i she r . NewService (
5 " l o c a l ho s t :51000 "
6)
7

8 domain := "demo . dao "
9 group := " group−1"

10 ob j e c t I d := " ob jec t −1"
11 ver s ion := " 123456789 "
12 source := " "
13

14 e r r := pub l i she r . Pub l i sh (
15 domain , group , ob jec t Id , vers ion , source
16)
17 i f e r r != n i l {
18 // Appl i ca t ion− s p e c i f i c e r ro r handl ing
19 handlePub l i shError ()
20 }

Listing A.6: Publisher library usage

A.6 Notes
The service directory contains several configuration files for deployment exper-
iments, such as docker-compose for Docker, Nginx and HAProxy for reverse
proxies, Consul and Dockerfiles for creating Docker images. Potential future
work can build on these configurations to deploy and horizontally scale Cold-
Notify.

B
Experiments
Python scripts and raw data from all experiments are located in service/
experiments.

B.1 Tools
A Python script for starting several clients are located in service/tools/spawn.py,
which assumes the directory structure described in Table A.1.

service/tools/ utilization .py takes a process id (pid) as argument −−pid and is used
to measure CPU and memory usage of the registrar and matcher processes.
When measuring from process startup, for instance in failure recovery, the
registrar and matcher should be run with the −delayed flag to get the pid before
continuing by pressing enter.

B.2 Node analysis: latency comparison
As described in 5.1, experiments are run on a cluster and clients are distributed
across nodes. However, these nodes use different hardware which could lead to
clock skew, and some resources may have been used by other users, which can
affect the latency. This appendix provides further analysis for latencies from

55

56 APPENDIX B EXPER IMENTS

the experiment in Section 5.2.

Table B.1 a full list of all 84 nodes, with latency samples, mean and standard
deviation. Each node has either 11 or 12 client processes. The mean latency
varies from 16.5061 to 93.8596 ms, which makes a difference of 77.3535
ms.

While I could have selected nodes with similarmean latencies when distributing
clients, or accounted for their difference by weighing the results, I’ve decided
to leave it as is. The purpose of the notification latency experiment is to show
that latency increases with the notification rate, which will happen regardless
of varying mean latencies.

nodes samples mean std mean diff std diff
all 909000 41.7885 89.5064 – –
compute-2-11 10908 16.5061 43.9771 -25.2824 -45.5293
compute-1-0 10908 16.8841 54.3984 -24.9044 -35.108
compute-2-4 10908 17.9078 45.3958 -23.8807 -44.1106
compute-0-10 10908 19.4775 43.6221 -22.311 -45.8843
compute-2-25 10908 19.5442 49.4574 -22.2443 -40.049
compute-1-2 10908 20.5416 44.1103 -21.2469 -45.3961
compute-2-2 10908 22.7073 57.0382 -19.0812 -32.4682
compute-1-3 10908 23.0788 47.1773 -18.7097 -42.3291
compute-2-16 10908 23.4845 53.61 -18.304 -35.8964
compute-2-15 10908 23.6292 68.8781 -18.1593 -20.6283
compute-0-5 10908 23.6693 61.593 -18.1192 -27.9134
compute-0-14 10908 24.5036 58.1932 -17.2849 -31.3132
compute-0-16 10908 24.8976 68.056 -16.8909 -21.4504
compute-3-16 10908 25.7823 52.9117 -16.0062 -36.5947
compute-4-0 9999 25.8744 72.8868 -15.9141 -16.6196
compute-2-20 10908 26.1269 60.7071 -15.6616 -28.7993
compute-4-7 9999 26.6025 72.423 -15.186 -17.0834
compute-1-8 10908 27.0414 63.2928 -14.7471 -26.2136
compute-2-29 10908 27.165 75.5463 -14.6235 -13.9601
compute-1-13 10908 27.5178 64.3998 -14.2707 -25.1066
compute-0-13 10908 28.0464 73.4001 -13.7421 -16.1063
compute-2-27 10908 28.087 64.3927 -13.7015 -25.1137
compute-2-22 10908 29.0173 80.8961 -12.7712 -8.6103
compute-1-6 10908 29.8243 67.7261 -11.9642 -21.7803
compute-2-13 10908 29.8476 76.1949 -11.9409 -13.3115
compute-2-18 10908 29.9574 63.2939 -11.8311 -26.2125
compute-1-4 10908 30.2715 55.5916 -11.517 -33.9148
compute-0-17 10908 30.7156 79.2593 -11.0729 -10.2471

B.2 NODE ANALYS IS : LATENCY COMPAR ISON 57

compute-0-19 10908 30.8516 72.851 -10.9369 -16.6554
compute-3-17 10908 31.5037 69.5971 -10.2848 -19.9093
compute-3-3 10908 33.4858 75.6081 -8.3027 -13.8983
compute-2-1 10908 33.6759 58.9069 -8.1126 -30.5995
compute-3-5 10908 33.7741 61.7439 -8.0144 -27.7625
compute-1-7 10908 34.1233 79.5197 -7.6652 -9.9867
compute-0-11 10908 34.3494 63.7026 -7.4391 -25.8038
compute-1-11 10908 35.7925 72.7198 -5.996 -16.7866
compute-2-5 10908 36.1079 61.2947 -5.6806 -28.2117
compute-2-8 10908 36.4116 78.0112 -5.3769 -11.4952
compute-2-24 10908 36.4261 61.3333 -5.3624 -28.1731
compute-3-12 10908 36.8006 78.6013 -4.9879 -10.9051
compute-2-9 10908 37.3541 73.8244 -4.4344 -15.682
compute-2-3 10908 37.5826 82.1783 -4.2059 -7.3281
compute-0-9 10908 37.9536 68.1201 -3.8349 -21.3863
compute-3-8 10908 38.3192 72.3996 -3.4693 -17.1068
compute-2-21 10908 38.3457 61.7817 -3.4428 -27.7247
compute-4-2 9999 38.616 79.995 -3.1725 -9.5114
compute-2-26 10908 38.6955 92.9784 -3.093 3.472
compute-3-6 10908 38.8825 65.2931 -2.906 -24.2133
compute-4-6 9999 39.3987 99.3588 -2.3898 9.8524
compute-0-15 10908 40.2257 75.668 -1.5628 -13.8384
compute-2-23 10908 40.7126 74.6248 -1.0759 -14.8816
compute-4-3 9999 40.7829 74.0251 -1.0056 -15.4813
compute-4-5 9999 41.3784 99.7846 -0.4101 10.2782
compute-4-4 9999 41.5085 69.8404 -0.28 -19.666
compute-3-11 10908 42.3631 109.0728 0.5746 19.5664
compute-0-3 10908 43.0743 81.3351 1.2858 -8.1713
compute-0-18 10908 44.0458 65.8095 2.2573 -23.6969
compute-2-0 10908 44.0898 82.5228 2.3013 -6.9836
compute-2-28 10908 45.1225 86.2896 3.334 -3.2168
compute-3-0 10908 45.5671 90.2499 3.7786 0.7435
compute-2-12 10908 48.9945 85.8791 7.206 -3.6273
compute-0-12 10908 49.2746 90.3613 7.4861 0.8549
compute-3-4 10908 49.3857 93.0677 7.5972 3.5613
compute-3-13 10908 51.2845 104.3961 9.496 14.8897
compute-4-1 9999 51.595 93.2518 9.8065 3.7454
compute-2-10 10908 54.8355 86.5318 13.047 -2.9746
compute-2-19 10908 56.0881 101.2795 14.2996 11.7731
compute-1-9 10908 56.5069 89.3606 14.7184 -0.1458
compute-1-10 10908 57.196 170.8147 15.4075 81.3083

58 APPENDIX B EXPER IMENTS

compute-3-10 10908 59.107 85.8713 17.3185 -3.6351
compute-2-14 10908 61.8954 99.7928 20.1069 10.2864
compute-0-4 10908 62.1732 172.5843 20.3847 83.0779
compute-2-7 10908 66.269 100.2271 24.4805 10.7207
compute-2-6 10908 66.3355 93.0805 24.547 3.5741
compute-3-1 10908 67.2957 119.8354 25.5072 30.329
compute-1-1 10908 67.739 128.5559 25.9505 39.0495
compute-3-15 10908 68.841 114.9061 27.0525 25.3997
compute-3-14 10908 72.0003 142.3691 30.2118 52.8627
compute-2-17 10908 74.8515 114.8214 33.063 25.315
compute-3-9 10908 81.7678 120.8075 39.9793 31.3011
compute-3-2 10908 84.775 120.5013 42.9865 30.9949
compute-3-7 10908 86.9977 140.477 45.2092 50.9706
compute-1-5 10908 92.7536 172.7505 50.9651 83.2441
compute-1-12 10908 93.8596 156.5089 52.0711 67.0025

Table B.1: Notification latency statistics for 25 notifications per second, reported by
1 000 clients distributed over 84 nodes. Mean and standard deviation (std)
are given in milliseconds, sorted by mean latency.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions

	2 Notification Services
	2.1 Related work
	2.1.1 AnNotify
	2.1.2 Thialfi by Google
	2.1.3 NotServers at Dropbox
	2.1.4 Wormhole by Facebook
	2.1.5 MQTT Protocol

	2.2 Use Cases for DAO
	2.2.1 Region-specific configuration
	2.2.2 Observation data on demand

	3 Design
	3.1 Overview
	3.2 ColdNotify's State
	3.3 Registrar
	3.3.1 Client communication
	3.3.2 Notification channel namespaces
	3.3.3 Registration-sync protocol

	3.4 Matcher
	3.4.1 Communication
	3.4.2 Recovery

	4 Implementation
	4.1 The Registrar
	4.1.1 Client communication
	4.1.2 Workers

	4.2 The Matcher
	4.2.1 Notification batching

	4.3 Client library
	4.4 Publisher library
	4.5 Persistent State
	4.6 Failure Recovery
	4.6.1 Registrar recovery: registration-sync protocol
	4.6.2 Matcher state recovery

	4.7 Security

	5 Evaluations
	5.1 Experiment Environment
	5.1.1 ColdNotify Monitoring
	5.1.2 Demo Application

	5.2 Experiment: Notification Latency
	5.2.1 Methodology
	5.2.2 Metrics
	5.2.3 Results

	5.3 Experiment: Scaling Clients
	5.3.1 Methodology
	5.3.2 Metrics
	5.3.3 Results

	5.4 Failure recovery
	5.5 Experiment: Registrar Recovery
	5.5.1 Methodology
	5.5.2 Metrics
	5.5.3 Results

	5.6 Experiment: Matcher Recovery
	5.6.1 Methodology
	5.6.2 Metrics
	5.6.3 Results

	6 Discussion
	6.1 A Notification Service For A Distributed Arctic Observatory
	6.2 Compared to Thialfi

	7 Conclusion
	8 Future Work
	8.1 Horizontal Scaling
	8.2 Notification Payloads
	8.3 Persistent Storage
	8.4 Automatic Publishing

	A User Manual
	A.1 Prerequisites
	A.1.1 Software
	A.1.2 Directory structure

	A.2 Installation
	A.3 Usage with demo application
	A.3.1 Publish notifications

	A.4 View application state
	A.5 Client library usage
	A.5.1 Publisher library usage

	A.6 Notes

	B Experiments
	B.1 Tools
	B.2 Node analysis: latency comparison

