Table of Contents

Acknowledgments ... 3
List of papers ... 5
Summary ... 6
Sammendrag ... 7
Abbreviations .. 8

1. Introduction ... 10
 1.1 Epidemiology of venous thromboembolism ... 11
 1.2 Pathophysiology of venous thromboembolism .. 13
 1.3 Risk factors of venous thromboembolism .. 16
 1.3.1 Hereditary risk factors .. 18
 1.3.2 Acquired risk factors ... 19
 1.3.3 Cardiovascular risk factors ... 22
 1.4 Association between arterial cardiovascular disease and venous thromboembolism 25
 1.4.1 Arterial cardiovascular disease and risk of venous thromboembolism 25
 1.4.2 Atherosclerosis and venous thromboembolism .. 26

2. Aims of the thesis .. 28

3. Methods .. 29
 3.1 Study population – The Tromsø Study and the HUNT Study .. 29
 3.2 Exposure assessment .. 30
 3.2.1 Ischemic stroke ... 30
 3.2.2 Cardiovascular risk factors ... 30
 3.2.3 Carotid atherosclerosis ... 31
 3.2.4 Family history of myocardial infarction .. 32
 3.2.5 Prothrombotic genotypes .. 32
 3.3 Outcome assessment .. 32
 3.3.1 Venous thromboembolism ... 32
 3.3.2 Myocardial infarction ... 34

4. Main results ... 36
 4.1 Paper I .. 36
 4.1.1 Erratum – Paper I .. 37
 4.2 Paper II ... 38
 4.3 Paper III .. 39
 4.4 Paper IV ... 40

5. General discussion ... 41
5.1 Methodological considerations ... 41
 5.1.1 Study design .. 41
 5.1.2 Bias .. 42
 5.1.3 Modifiable risk factors and regression dilution bias .. 46
 5.1.4 Confounding and mediation.. 47
 5.1.5 Interaction .. 50
 5.1.6 Missing data ... 51
 5.1.7 External validity ... 52
5.2 Discussion of main results .. 53
 5.2.1 Ischemic stroke and risk of venous thromboembolism ... 53
 5.2.2 Atherosclerosis and risk of venous thromboembolism.. 55
 5.2.3 Shared risk factors for arterial cardiovascular diseases and venous thromboembolism 56
 5.2.4 Possible mechanisms for the association between arterial cardiovascular diseases and
 venous thromboembolism .. 59
6. Conclusions .. 63
7. Final remarks and future perspectives .. 64
8. References ... 65
Paper I-IV ... 80
Acknowledgments

The work of this thesis was carried out at K. G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine at UiT – The Arctic University of Norway from August 2014 to February 2019. Initially, I was a part of the MD/Ph.D. program for medical students (2014-2017), and during the last six months, I have been working full-time as a Ph.D. student funded by an independent research grant from the Northern Norway Regional Health Authority.

First and foremost, I want to express my gratitude to my main supervisor, Professor John-Bjarne Hansen. Thank you for giving me the opportunity to join your excellent team, for the endless support and for believing in me throughout these years. Your knowledge, working capacity, enthusiasm, and dedication is truly impressive. You have created the perfect environment for scientific success and social collaboration. You have been a huge inspiration, and I hope to continue doing research at some point in my career. So for now, I would like to copy your saying: "takk for alt, det var gøy så lenge det varte".

Second, my sincere thanks go to my co-supervisor, Professor Sigrid Kufaaas Brækkan. Thank you for sharing your knowledge of epidemiology and statistics with us. You are always patient and kind, and you light up the office with your highly contagious enthusiasm and smile. Despite a busy schedule, your door is always open and you always have time for some questions and discussions. Lastly, you have shown me that it is possible to manage all aspects of life in a brilliant way, being a great mother, a super-athlete and an excellent researcher at the same time. A true role model.

I would also like to direct a special thanks to Ludvig Balteskard Rinde, my close friend, officemate and study partner for the last seven and a half years. I am grateful I got to share the medical studies and MD/Ph.D. program with you. I admire your working capacity and kind nature, and I will miss our scientific collaboration and our "unscientific" chats, gossips and laughs. These years would not have been the same without you!

I would like to thank my co-authors Ludvig B. Rinde, Willem M. Lijfering, Kristian Hindberg, Line H. Evensen, Vania M. Morelli, Ellisiv B. Mathiesen, Maja-Lisa Løchen, Inger Njølstad, Erin M. Hald, Tom Wilsgaard, Stein Harald Johnsen, Anders Vik, Kristian Hveem, Maiken E. Gabrielsen and Frits R. Rosendaal, for their contributions. Furthermore, I would like to thank the current and former members of TREC (Ludvig B. Rinde, Håkon S. Johnsen, Esben Bjøri, Benedikte Paulsen, Hanne Skille, Joakim K. Sejrup, Fridtjof Rinde, Line H. Evensen, Vania M. Morelli, Ina I. Høiland, Trond Børvik, Trond Isaksen, Kristian Hindberg, Erin M. Hald, Bjarne Østerud, Helle Jørgensen, Ellen Brodin, Anders Vik, Cathrine Ramberg, Nadezhda Latysheva, Dana Meknas, Robin Liang, Timofey Sovershaev, Line Wilsgård, Lynn Butler, Jacob Odeberg, Ellen-Sofie Hansen, Eike Struck, Marthe N. Thorsen, Omri Snir, Caroline Lind,
Gunhild Lerstad, Jostein Lappegård, Trygve S. Ellingsen, Gro Grimnes, Olga V. Gran, Lars D. Horvei, Hilde Jensvoll, Kristine Blix, Søren B. Jensen, Nadia Arshad, Irina Starikova, Simin Jamaly, Tove Skjelbakken, Jan Brox and Vladimir Tichelaar) for your contributions to a great social and scientific environment. I will always remember our scientific meetings, Sommarøya seminars, TRECxercise, wine lottery, office pranks (sorry Trond B!), parties and conference trips to Toronto, The Hague, and Berlin. The work would not have been as enjoyable without all of you!

Further, I would like to thank the participants of the Tromsø Study for your unique and valuable contributions, and UiT The Arctic University of Norway for organizing the MD/Ph.D. program.

This work would not have been possible without the help and support from my family and friends. To my mom and dad, Inger Karin and Lars, thank you for your unconditional love and support throughout life. You have created a safe and loving environment with a perfect combination of encouragement, challenge, and support. To Silje, my twin sister, my best friend and my biggest inspiration, thank you for the good conversations, for the love, for the fights, and for the adventures. You encourage me to be the best version of myself. You guys are, without a doubt, the greatest family I could ever ask for.

Finally, thank you to my boyfriend Henrik for your love and friendship. You have been an immense support, not only with regards to my research but in life in general. Thank you for your patience in our endless discussions about venous thromboembolism, and for listening to my oral presentations again and again – you probably know them all by heart.

Birgit
Tromsø, February 2019
List of papers

I. Ischemic stroke and risk of venous thromboembolism in the general population: the Tromsø study.
Journal of the American Heart Association. 2016 November; 5 (11): e004311

II. Repeated measurements of carotid atherosclerosis and future risk of venous thromboembolism: the Tromsø Study.
Journal of Thrombosis and Haemostasis. 2017 December; 15 (12): 2344-51

III. Atherosclerotic risk factors and risk of myocardial infarction and venous thromboembolism; time-fixed versus time-varying analyses. The Tromsø Study.
PLOS ONE. 2016 September; 11 (12): e0163242

IV. Impact of prothrombotic genotypes on the association between family history of myocardial infarction and venous thromboembolism
Manuscript, submitted
Summary

Extensive evidence support an association between arterial cardiovascular disease (CVD, i.e. myocardial infarction [MI] and ischemic stroke), and subsequent venous thromboembolism (VTE, i.e. deep vein thrombosis [DVT]) and pulmonary emboli [PE]). However, the mechanism behind the associations remains unclear. The aim of this thesis was to investigate the impact of ischemic stroke on VTE and to investigate potential shared risk factors for arterial CVD and VTE.

All papers in this thesis utilize data from the Tromsø Study. The study populations for Paper I, II and III were recruited from the fourth, fifth and sixth survey of the Tromsø study. In Paper IV, we recruited a subgroup participants with genetic information from the fourth survey of the Tromsø Study and from the second survey of the Nord-Trøndelag Health (HUNT) Study. Participants were followed from the first survey they attended to the date of an incident event (i.e. VTE, MI or ischemic stroke), the date of death or migration, or until end of follow-up in 2008/2012.

Ischemic stroke was associated with a transient increased risk of VTE, and the risk was particularly high for provoked events. The association persisted after adjusting for potential confounders, indicating that the stroke itself increased the VTE risk. We found no association between formation, presence or progression of atherosclerosis and VTE in time-varying analyses, indicating that atherosclerosis does not represent the missing link for the association between arterial CVD and VTE. Except for body mass index, none of the traditional cardiovascular risk factors increased the risk of VTE, and risk estimates for MI and VTE based on a single baseline measurement and repeated measurements corresponded well. Lastly, we showed that the association between a family history of MI (FHMI) and VTE is not explained by prothrombotic genotypes, and that the combination of FHMI and prothrombotic genotypes had an additive effect on VTE risk.

Our findings imply a strong and transient increased risk of VTE after ischemic stroke and that the association between arterial CVD and VTE cannot be explained by atherosclerosis. Of the well-known cardiovascular risk factors, only age, obesity and FHMI are associated with VTE. The association between arterial CVD and subsequent VTE is only partly explained by shared risk factors. The remaining association is likely mediated by risk factors following the arterial cardiovascular event, such as immobilization and infection, and direct effects of the arterial cardiovascular event, such as activation of the coagulation system.
Sammendrag

Det er gode holdepunkter for en sammenheng mellom arteriell kardiovaskulær sykdom (hjerteinfarkt og iskemisk hjerneslag) og påfølgende risiko for venøs tromboembolisme (VTE, fellesbetegnelsen på dyp venetrombose [DVT] og lungeemboli [LE]), men mekanismen for denne sammenhengen er ukjent. Formålet med denne avhandlingen har vært å undersøke hvordan hjerneslag påvirker risikoen for VTE og å undersøke potensielle felles risikofaktorer for kardiovaskulær sykdom og VTE.

Iskemisk hjerneslag ga en forbigående økt risiko for VTE, og risikoen var særlig høy for provosert VTE. Sammenhengen vedvarte etter justering for potensielle konfoundere, noe som indikerer at det var hjerneslaget, eller tilstander relatert til hjerneslaget, som økte risikoen for VTE. Det var ingen sammenheng mellom nydannelse, tilstedeværelse eller progresjon av aterosklerose og VTE i analyser med oppdaterte målinger, noe som tyder på at aterosklerose ikke kan forklare sammenhengen mellom kardiovaskulær sykdom og VTE. Foruten kroppsmasseindeks ga ingen av de tradisjonelle kardiovaskulære risikofaktorene økt risiko for VTE, og risikoestimater for hjerteinfarkt og VTE basert på én måling og repeterte målinger korresponderde godt. Vi viste også at sammenhengen mellom familærlig predisposisjon for hjerteinfarkt (FHMI) og VTE ikke kunne forklares av gener som øker trombosetendensen, og at kombinasjonen av FHMI og protrombotiske gener hadde additiv effekt på risiko for VTE.

Våre funn tyder på at det er en midlertidig økt risiko for VTE etter iskemisk hjerneslag, og at associasjonen mellom kardiovaskulær sykdom og VTE ikke kan forklares av aterosklerose. Blant velkjente kardiovaskulære risikofaktorene var det bare alder, overvekt og FHMI som hadde sammenheng med VTE. Felles risikofaktorer kan dermed bare delvis forklare sammenhengen mellom kardiovaskulær sykdom og VTE. Resten av sammenhengen kan trolig for klares av at komplikasjoner etter den kardiovaskulære hendelsen, som for eksempel immobilisering og infeksjoner, øker risikoen for VTE, eller at den kardiovaskulære hendelsen fører til aktivering av koagulasjonssystemet og dermed økt trombosetendens.
Abbreviations

AP attributable proportion due to interaction
APC activated protein C
BMI body mass index
CCA common carotid artery
CI confidence intervals
CRP C-reactive protein
CT computed tomography
CTPH chronic thromboembolic pulmonary hypertension
CVD cardiovascular disease
DALY disability-adjusted life-years
DVT deep vein thrombosis
ECG electrocardiography
ECM extracellular matrix
F factor
FHMI family history of MI
FVL factor V Leiden
HDL high-density lipoprotein
HR hazard ratio
HUNT Nord-Trøndelag Health Study
IMT intima media thickness
ICA internal carotid artery
ICD International Classification of Diseases
LDL low-density lipoprotein
LMWH low-molecular-weight heparin
MI myocardial infarction
MRI magnetic resonance imaging
OR odds ratio
PE pulmonary embolism
PTS post-thrombotic syndrome
PVD peripheral vascular disease
1. Introduction

Venous thromboembolism (VTE) is the collective term for deep vein thrombosis (DVT) and pulmonary embolism (PE). DVT is the formation of a thrombus (i.e. “blood clot”) in the deep veins, typically in the large and deep veins of the lower extremities. Other more unusual sites of thrombus formation are the deep veins of the upper extremities, the vena cava, the portal vein, the mesenteric veins and the venous sinuses in the brain. Classical signs and symptoms of DVT include pain, swelling, edema, and redness of the affected extremity. PE is usually a complication of DVT and occurs when a thrombus in a deep vein detaches from its original site and travels with the bloodstream to the lungs, where it lodges and interrupts normal blood flow. However, recent studies suggest that PE can also occur without an associated DVT. 1, 2 Classical signs and symptoms of PE include chest pain, tachypnea, dyspnea, and coughing. In severe cases, PE can lead to circulatory collapse and death. VTE is usually treated with anticoagulant agents. These drugs prevent further thrombus formation, while the already existing thrombus is degenerated by innate fibrinolytic systems in the body. Severe cases can be life-threatening (e.g. large PE), and treatment with thrombolytic agents, which breaks down the thrombus, may be necessary. Treatment type and duration depends on the type of VTE event and presence of provoking factors.

Arterial and venous thrombosis have traditionally been considered as two separate diseases, with different pathophysiology and treatments. In a case-control study from 2003, Prandoni and colleagues reported a higher prevalence of carotid plaques in patients with unprovoked VTE, compared with patients with provoked VTE and controls. 3 Although later prospective studies did not show any association between atherosclerosis and subsequent VTE, 4-6 the findings supported the hypothesis of an association between arterial and venous thromboembolic diseases. Several studies have reported an increased risk of VTE after myocardial infarction (MI). 7, 8 The risk of VTE seemed to be highest the first year following the MI, and the risk of PE was higher than the risk of DVT. 7 In addition, studies investigating the association between stroke and VTE found a high prevalence of VTE the first months after the stroke, 9-11 and identified risk factors included severe strokes and lower limb paresis. 12, 13 Furthermore, studies have reported an increased risk of arterial thrombotic disease (both MI and stroke) after VTE, 14-16 and the risk remained elevated for 20 years after the VTE event. 15 Thus, there is growing evidence of a bidirectional association between arterial and venous thromboembolic diseases. The mechanism behind the associations remains unclear, but shared risk factors, mediators and a direct causal interrelation have been proposed as possible mechanisms. 15

Of the traditional cardiovascular risk factors, only age and obesity have consistently been associated with VTE. 17-20 Diabetes, hypertension, dyslipidemia, and smoking have been associated with
VTE in some, but not all studies.20-25 It is uncertain if the conflicting results are a consequence of different study populations or different study designs. In addition, family history of MI (FHMI) have been shown to increase the risk of VTE in several studies,26-29 indicating that shared environmental risk factors or genetic disposition in certain families can cause both arterial cardiovascular disease (CVD) and VTE.

Cardiovascular diseases are the most common cause of death globally,30, 31 and stroke is an important cause of disability.32 The health burden of these diseases is immense,33, 34 and it is of great importance to identify possible mechanisms behind the association between arterial CVD and VTE. Topics of the present thesis will be the relationship between arterial CVD and VTE, and the association between cardiovascular risk factors and VTE.

\subsection*{1.1 Epidemiology of venous thromboembolism}

VTE is the third most common cardiovascular disease, after MI and stroke.18 The incidence in the general population is 1 to 2 per 1,000 per year,35, 36 and the incidence increases with increasing age to nearly 1\% per year in those > 80.35, 37 The incidence of VTE is increasing, mainly because of a substantial increase in incidence of PE.35, 38 In the Tromsø Study, the age-adjusted incidence rates (IR) of VTE increased from 158 per 100,000 person-years (PY) in 1996/1997 to 210 per 100,000 PY in 2010/2011, and IR of PE increased from 45 to 113 per 100,000 PY in the same period.35 However, the increasing incidence of PE, the minimal change in mortality and the decreased case-fatality points towards an increase in diagnosis of clinically insignificant PE or false-positive results,39 rather than a true increase in disease.40 Women of reproductive age have a higher incidence of VTE than men at the same age, whereas men have a higher incidence in the elderly.37, 41 This may relate to differential exposure to clinical risk factors by age and sex, such as pregnancy, puerperium, and use of oral contraceptives among younger women.37

Approximately two-thirds of VTE events are diagnosed as DVT alone, and one-third as PE with or without concurrent DVT.35, 42, 43 Studies including autopsy reports tend to report a higher proportion of PE.44 PE was previously believed always to be a complication of DVT, occurring when a part of a thrombus of the deep veins dislodged and embolized to the lungs. However, in up to 50\% of patients with PE, no DVT is found with ultrasound or magnetic resonance imaging (MRI).1, 2, 45 Possible explanations are that the thrombus can dislodge completely, that a PE can have a cardiac origin or that the PE originates from local thrombus formation in the lungs.2, 46, 47 VTEs are classified as provoked or unprovoked, depending on the presence of environmental provoking factors at the time of the VTE event. The estimated proportion of provoked events varies with definitions of unprovoked and
provoked events, but most population-based studies have estimated that 50-60% of VTE cases are associated with a provoking factor.35, 36, 43 An additional classification of provoking factors into minor transient, major transient and persistent provoking factors have been suggested (Table 1). Unprovoked events occur in the absence of any provoking factor.48 The risk of recurrent VTE is lowest for those who experienced a VTE triggered by a major transient risk factors and highest for patients with unprovoked VTEs or VTEs triggered by a persistent risk factor.44 Minor transient provoking factors are associated with a 3-10-fold increased risk of VTE and 15% will get a recurrent event after five years, while major transient risk factors are associated with a greater than 10-fold increased risk of incident VTE, and 3% recurrence after five years.49

In addition to short-term complications such as symptoms of DVT or PE and acute death, VTE has several long-term complications. A recurrent VTE may occur at any time after an incident VTE, and around 30% of VTE patients will experience a recurrent event within the first 10 years after an incident event.50-52 The risk of recurrence is highest the first 6-12 months following an incident VTE,41, 52 and independent risk factors of recurrence include male sex, increasing body mass index (BMI), neurological disease with paresis and active malignancy.43, 52-55 Furthermore, a meta-analysis concluded that recurrent VTEs tend to occur as the same type of clinical event as the initial event, i.e. patients with an incident PE tend to suffer from a recurrent PE.56 Chronic pain, venous stasis, skin changes, skin ulcers and heaviness are symptoms of the post-thrombotic syndrome (PTS), occurring in 20-50% of DVT patients.50, 51, 57 It is the most common complication of DVT and risk factors for developing PTS include increasing age and BMI, female sex, previous ipsilateral DVT and a proximal thrombus (as compared with more distal thrombi).57 Among patients with PTS, 4-10% develop severe

<table>
<thead>
<tr>
<th>Table 1. Categorization of provoked VTE events.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient risk factors</td>
</tr>
<tr>
<td>Minor</td>
</tr>
<tr>
<td>• Surgery with general anesthesia < 30 minutes</td>
</tr>
<tr>
<td>• Admission to hospital for less than three days with acute illness</td>
</tr>
<tr>
<td>• Confined to bed out of hospital for at least three days with acute illness</td>
</tr>
<tr>
<td>• Estrogen therapy</td>
</tr>
<tr>
<td>• Pregnancy and puerperium</td>
</tr>
<tr>
<td>• Leg injury with reduced mobility for at least three days</td>
</tr>
<tr>
<td>Major</td>
</tr>
<tr>
<td>• Surgery with general anesthesia > 30 minutes</td>
</tr>
<tr>
<td>• Confined to bed in hospital for at least three days with acute illness</td>
</tr>
<tr>
<td>• Cesarean section</td>
</tr>
<tr>
<td>Persistent risk factors</td>
</tr>
<tr>
<td>• Active cancer</td>
</tr>
<tr>
<td>• Non-malignant conditions (e.g. inflammatory bowel disease)</td>
</tr>
</tbody>
</table>

(Adapted from Kearon et al, J Thromb Haemost 2016).
A serious long-term complication of PE is chronic thromboembolic pulmonary hypertension (CTPH), caused by high blood pressure in the arteries of the lungs due to chronic obstruction. Pulmonary hypertension forces the right side of the heart to work harder than normal and can lead to right-sided heart failure. Hence, symptoms of CTPH include dyspnea, chest pain and symptoms of right-sided heart failure (e.g. dependent edemas, increasing abdominal circumference due to ascites and nocturia). CTPH affects 1-4% of patients within two years after a first episode of symptomatic PE, and risk factors for CTPH are previous PE, younger age, unprovoked PE and larger perfusion defect at presentation.58, 59

VTE has major consequences for the affected individual and for the society. In a large Norwegian population-based cohort study, participants with VTE had higher rates of work-related disability compared with participants without VTE (crude IR were 37.5 vs. 13.5 per 1,000 PY, respectively). In age- and sex-adjusted analyses, the hazard ratio (HR) of work-related disability after VTE was 1.62 (95% confidence interval [CI] 1.29-2.04), and the risk was especially high after DVT (HR 1.80, 95% CI 1.37-2.36).60 A systematic review on the global disease burden of VTE concluded that VTE was the leading cause of hospital-related disability-adjusted life-years lost (DALYs), being responsible for more DALYs lost than nosocomial pneumonia and adverse drug events.61 Furthermore, VTE is associated with high mortality and fatality. A recent study using data from the Tromsø study found an overall 1-year all-cause mortality rate of 29.9 (95% CI 25.7-34.8) per 100 PY in VTE patients, and a rate of 23.6 (95% CI 17.8-31.3) per 100 PY in cancer-free VTE patients.41 Reported 30-day all-cause mortality ranges from 6% to 10%, and 1-year all-cause mortality from 21% to 33%.36, 62 1-year all-cause mortality was approximately 60% in patients with cancer-associated VTE and 15% in cancer-free VTE patients, indicating that cancer itself is an important cause of death among VTE-patients.36, 41, 62 The 30-day case-fatality was higher in patients with PE than DVT (15% vs. 9%), and higher in patients with VTE provoked by cancer (25%) compared with individuals with VTE provoked by other factors than cancer (7%).43

1.2 Pathophysiology of venous thromboembolism

In 1856, Rudolph Virchow postulated that abnormalities in blood flow (stasis), hypercoagulability of the blood and injury to the vessel wall could lead to thrombus formation.63 These factors are collectively termed Virchow’s triad, and they remain important and relevant for our understanding of thromboembolic diseases.

Physiological hemostasis prevents blood loss after vessel damage. Primary hemostasis denotes the process of platelet activation and adhesion, and secondary hemostasis refers to the initiation of the coagulation cascade and fibrin formation. The coagulation cascade is a complex cascade of proteins
increasing (procoagulant proteins) and decreasing (anticoagulant proteins) the fibrin formation, which is the end product of the cascade and the main component of a venous thrombus. The coagulation cascade consists of the intrinsic, extrinsic and the common pathway (Figure 1). The pathways are multiple series of reactions where the activated form of a protein activates the next protein in the cascade. Tissue factor (TF), expressed in monocytes, monocyte-derived microvesicles and possibly by activated endothelial cells triggers the extrinsic pathway (TF and FVIIa), while cellular RNA and polyphosphate expressed by activated platelets and bacteria trigger the intrinsic pathway FXIIa, FXIa, FXIa, and FVIIIa). The common pathway consists of FXa, FVa, and thrombin (FIIa), which converts fibrinogen to fibrin. The coagulation cascade is regulated by different anticoagulant pathways. Tissue factor pathway inhibitor (TFPI) blocks FXa and the TF/FVIIa complex, activated protein C (APC) inactivates FVa and FVIIIa and antithrombin inhibits all procoagulant proteins. The coagulation cascade is thoroughly regulated, and disorders of the coagulation proteins can lead to excessive bleeding or thrombus formation. For example, an animal study showed that mice deficient in proteins of the extrinsic or common pathway die during embryonic development or shortly after birth. Further,

Figure 1. A simplified figure of activation of the coagulation cascade. Pathological activation of the extrinsic pathway (FVIIa and TF) is via expression of TF in monocytes, monocyte-derived microvesicles and possibly by activated endothelial cells. Cellular RNA and polyphosphate released by activated platelets and bacteria activate the intrinsic pathway (FXIIa, FXIa, FIXa and FVIIIa). (Adapted from Mackman, Journal of Clinical Investigation 2012)
mice lacking one of the three major anticoagulants do not survive, indicating that all of the pathways are required to regulate the clotting cascade.65

Under normal conditions, blood flows from arteries, through capillaries and returns to the heart via the veins. While the pressure is high in arteries, the veins are a low-pressure system in which the blood moves against gravity, and blood flow is maintained by skeletal muscle contractions squeezing blood through the veins while the venous valves prevent back-flow. In situations or conditions preventing normal function of the skeletal muscles and normal blood flow, a generalized venous stasis may occur. Immobilization, surgery, hospitalization, and pregnancy are all well-known risk factors for VTE that may cause reduced blood flow and stasis. A localized stasis in the venous valve pockets is likely to play an important role in the pathogenesis of VTE as autopsy and radiology studies have shown that venous thrombi originate in the venous valves.66 This is emphasized by the increased risk of DVT with increasing numbers of venous valves.67 Blood flowing past the venous valves creates a vortex flow in the valvular pockets, causing stasis and hypoxia in the bottom of the valves (Figure 2). Possibly, hypoxia activates the valvular endothelium, monocytes, and platelets, which further triggers the coagulation cascade.66, 68 In addition, platelets and leukocytes may be activated by malignancies or infection.69-71

![Figure 2. The pathophysiology of thrombus formation in the venous valves. Due to vortexes, blood is trapped in recesses of the valves pockets. The hypoxia that accrues promotes prothrombotic processes in the endothelial cells, platelets (Plt) and leukocytes (monocytes [Mc] in particular). Activated monocytes and platelets bud off microparticles (MP) containing TF, which triggers the extrinsic pathway of the coagulation cascade. (Figure by Roy Lyså)](image)

Plaque formation and plaque rupture play a key role in the pathogenesis of arterial CVD, but the role of vessel wall injury in the development of VTE is less clear. The vessel wall may be injured (for example due to trauma,72 surgery or central venous catheters) and cause thrombosis through exposure of TF and cellular RNA.73 However, a histological study found no evidence of endothelial damage for most thrombi.74 Although there is no direct injury, alterations in the valvular endothelium (due to hypoxia, as described above) and imbalance between pro- and anticoagulant factors may explain why
thrombi can occur. Brooks and colleagues showed that vascular endothelial proteins important for activation of protein C (endothelial protein C receptor and thrombomodulin) were increased in valvular pocket endothelium compared to endothelium of the vein lumen. Variations in the up and down-regulation of anticoagulant proteins in valvular pockets may be associated with thrombus formation. In addition, activated endothelial cells can downregulate the expression of endothelial protein C receptor and thrombomodulin, and upregulate expression of TF.

Hypercoagulability, or thrombophilia, is the term used for the increased tendency of thrombus formation. Thrombophilia can be inherited or acquired, and mechanisms include an increased concentration of procoagulant proteins, the presence of variant clotting proteins that are more procoagulant, decreased concentration or deficiency of anticoagulant proteins and/or decreased fibrinolysis. For example, a mutation in the F5 gene leads to a variant of FV (Factor V Leiden) that is more resistant to APC, and mutations causing antithrombin or protein C or S deficiency leads to reduced levels or functionality of the anticoagulant proteins (see Figure 1).

1.3 Risk factors of venous thromboembolism

A risk factor can be defined as any attributes, characteristics or exposures of an individual that increases the likelihood of developing a disease or injury. VTE is considered a multicausal disease, and several acquired and inherited risk factors have been described. The complex interactions between risk factors, causing VTE in some individuals, but not others, may be explained by the thrombosis potential model, first described in 1999. The model shows how combinations of different risk factors and provoking factors may cause the thrombosis potential to exceed the thrombosis threshold (Figure 3).

The person in Panel A has an underlying thrombophilic trait (e.g. FVL), and risk is increasing with increasing age. Early in life, there is a major transient provoking factor (e.g. surgery), but the thrombosis potential does not exceed the thrombosis threshold. Later in life, the same person experiences another major transient provoking factor (e.g. acute illness with immobilization), the thrombosis potential rises above the threshold, and the person experiences a VTE. The thrombosis potential remains increased following the incident VTE event, and a subsequent minor provoking factor (e.g. estrogen therapy) is enough to cause a recurrent VTE. Note that the combination of age and FVL exceeds the additive effects of age and FVL, indicating positive interaction between the two risk factors. In Panel B, there is no underlying thrombophilic trait, and neither a minor nor a major provoking factor is enough to push the potential over the threshold early in life. Later in life, however, the person gets a persistent provoking factor (e.g. cancer). Although the persistent provoking factor
alone is not enough for the potential to exceed the threshold for this person, an additional (minor or major) transient factor pushes the potential higher than the threshold, and the person experiences an incident VTE.

Figure 3. The thrombosis potential model. The blue line represents a risk factor that increases over time, e.g. age, and the green line represents risk factors that are stable over time, e.g. Factor V Leiden (FVL) or other thrombofilic traits. The yellow line represents the combination of age and FVL and red bars represent provoking factors. Early in life, the provoking factor is not enough to reach the thrombosis threshold and the subjects remains free of VTE. Later in life, provoking factors may cause the thrombosis potential to exceed the thrombosis threshold, dependent on the subject’s baseline potential (i.e. baseline risk). The subjects may experience an incident or recurrent VTE. (Adapted from Roach et al, Journal of Thrombosis and Haemostasis 2015 and Rosendaal, Lancet 1999)

Minor transient provoking factors are associated with low risk of incident VTE, but high risk of recurrent VTE, indicating that subjects who experience an incident VTE triggered by a minor risk factor have a higher baseline risk (i.e. their baseline thrombosis potential is closer to the thrombosis threshold) and thereby a higher risk of recurrent VTE. The same could be true for patients with unprovoked VTE. Conversely, major transient provoking factors are associated with a high risk of incident VTE because the trigger is strong enough to push the thrombosis potential over the thrombosis threshold, independent of the baseline risk. However, when the risk factor is removed and the thrombosis potential is back to normal, the risk of recurrence is low.
1.3.1 Hereditary risk factors

There is a high heritability of VTE. A family history of VTE is an independent risk factor for VTE, and family and twin studies indicate that genetic risk factors account for 50-60% of VTE risk. Inherited thrombophilia can be caused by two main mechanisms: gain-of-function of procoagulant factors and loss-of-function of anticoagulants. The following section will focus on the different mechanisms of inherited thrombophilia and exemplify how and to what extent well-known prothrombotic genotypes affect the risk of VTE.

Gain-of-function is caused by mutations in genes coding for procoagulant proteins, leading to increased production and concentration of a normal protein (e.g. prothrombin G20210A and non-O blood type), impaired down-regulation of a normal protein (e.g. FVL) or, rarely, synthesis of a hyperactive protein (factor IX Padua). The rs1799963 mutation in the F2 gene, more commonly known as prothrombin G20210A, leads to a high plasma level of prothrombin and possibly reduced inactivation of factor FVa by APC. The prothrombin G20210A variant is associated with a 1.5 to 3-fold increased risk of VTE, and it is present in 2% of the normal population. The non-O blood type is one of the most common genetic risk factors for VTE, and the risk is probably mediated through increased levels of von Willebrand factor (vWF) and FVIII. Non-O blood type is associated with 1.5 to 2-fold increased risk of VTE, and the variant is present in about 60% of the Norwegian population. An example of a mutation causing impaired down-regulation of a normal protein is the rs6025 mutation in the F5 gene, commonly known as FVL. The mutation leads to a missense mutation (the amino acid arginine is replaced by glutamine) in FV, leading to APC-resistance and consequently reduced inactivation of FVa. The mutation is present in about 5% of the healthy population, and is associated with a 2.2 to 3-fold increased risk of VTE. A mutation in the F9 gene, causing hyperfunctional FIX (8-fold the normal activity), was detected in an Italian family with juvenile VTE. The mutation has been named factor IX Padua, and has not been found in other cohorts of patients with VTE.

The other mechanism of inherited thrombophilia is loss-of-function of the anticoagulant proteins (see Figure 1). These mutations are associated with a higher risk of VTE than the gain-of-function mutations, but are less frequent. Deficiency in antithrombin, protein S or protein C is caused by reduced concentration and/or low protein activity. The prevalence of antithrombin deficiency is approximately 0.02% in the general population and up to 2% in VTE patients. The prevalence of protein S and protein C deficiency is about 0.2% in the general population and 2-3.4% in VTE patients. Deficiency of the anticoagulant proteins are associated with a 10 to 20-fold increased risk of VTE.
In 1965, Olav Egeberg described the first family with an identified thrombophilia, caused by antithrombin deficiency.102 During the 1980s and 1990s, more prothrombotic genetic variants, such as protein C and S deficiency, FVL and prothrombin G20210A, were discovered.87, 94, 103 Since then, genome-wide association studies (GWAS) have allowed identification of more single nucleotide polymorphisms (SNPs) associated with VTE.99, 104 Although the new SNPs display weaker associations with VTE, the SNPs may be of clinical significance if they interact with other risk factors of VTE, giving supra-additive risk estimates. For example, a recent study reported that the combinations of cancer and variants in the \textit{F5} gene (rs6025 and rs4524) yielded a synergistic increase of VTE risk.105 Furthermore, the combination of these may improve prediction models of VTE.106 In 2013, de Haan and colleagues proposed the inclusion of selected SNPs in a VTE prediction model. The genetic score based on the 5 SNPs most strongly associated with VTE performed as well as the score of 31 SNPs, and combining the genetic and non-genetic risk scores improved the diagnostic accuracy of the prediction model.106 Nonetheless, the authors concluded that subgroups of high-risk persons, in whom genetic profiling will be cost-effective, must be identified for the genetic risk scores to become clinically relevant.106

In total, 17 genes have been robustly demonstrated to be associated with VTE,107 however, they only explain 15-20% of the VTE heritability.85 This suggests that much remains to be done to understand the genetics and epigenetics of VTE.

\subsection*{1.3.2 Acquired risk factors}

There are several well-established acquired risk factors for VTE. These include, but are not limited to, age, obesity, cancer, hospitalization, surgery, trauma, acute medical conditions, immobilization, pregnancy and puerperium, and estrogen treatment.108-110 Cardiovascular risk factors and risk of VTE will be discussed in section 1.3.3.

\textbf{Advancing age} is a strong risk factor for VTE, and the incidence increases with increasing age. Studies have reported an annual incidence around 800 per 100,000 in those ≥ 80.35, 37 In a sex-adjusted analysis, people > 70 years had an 11-fold increased risk of VTE (HR 10.5, 95% CI 7.8-14.2) compared with those < 50 years of age.17 The reasons for the increased risk in the elderly is not fully understood. Although the increased risk cannot be attributed to a higher incidence of cancer,111 cumulative clustering of other risk factors with increasing age may explain some of the excess risk. Increased levels of D-dimer, C-reactive protein (CRP), vWF, tissue plasminogen activator, FVIII and fibrinogen in the elderly may indicate increasing activation of blood coagulation and inflammation.112-114 Further, the increased risk in the elderly may be attributed to age-related degeneration of venous valves and
decreased compliance of the vein walls.66 Lastly, some of the excess risks in the elderly may be due to reduced muscle strength and a less effective skeletal-muscle pump.115

\textbf{Obesity}, defined by the World Health Organization (WHO) as BMI $\geq 30 \text{ kg/m}^2$,116 is associated with a 2 to 3-fold increased risk of VTE compared with subjects with BMI $< 25 \text{ kg/m}^2$.17, 117 Using a population-based cohort, Heit and colleagues estimated that 33\% of unprovoked VTEs could be attributed to overweight and obesity.118 Other measures of obesity, such as waist circumference (WC), hip circumference and waist-hip ratio, were also associated with increased risk of VTE.119, 120 In fact, WC showed higher risk estimates for VTE and identified more subjects at risk of VTE than BMI.119, 121 In addition, weight gain itself has been shown to increase the risk of VTE, especially in already obese subjects.122 As obesity is associated with elevated iliofemoral venous pressure123 and because venous flow in the lower extremities differs significantly between healthy obese and non-obese individuals, obesity-induced stasis has been suggested as a mechanism behind the association between obesity and VTE.124 Other possible mechanisms include obesity-driven chronic inflammation and impaired fibrinolysis.125-127

In 1865, Armand Trousseau described an association between \textit{cancer} and VTE. Since then, many studies have confirmed the association. Subjects with cancer have a 4 to 7-fold increased risk of VTE compared with subjects without cancer,128-130 and overall, approximately 20\% of VTE cases could be attributed to malignancy.109 Risk of VTE is highest the initial 3-12 months after cancer diagnosis,128, 130, 131 and several scientists argue that therapeutic interventions (e.g. surgery or chemotherapy) and hospitalizations are possible explanations for this.128, 132 Risk of VTE seems to vary among different types of cancer and cancer stage, with risks being highest for patients with cancers of the pancreas, brain, and lung,130, 133 and for patients with more advanced cancer.128, 132, 134 Of note, HRs of VTE were substantially reduced when competing risk by death was taken into account.131 This suggested that the high risk of VTE in certain cancer types may be due to high mortality in these cancers and that the apparent high risk immediately after diagnosis is explained by poor prognosis.131 Furthermore, the risk of VTE was similar in the periods six months before and six months after cancer diagnosis, and as it is reasonable to assume that subjects were unexposed to treatment-related factors in the prediagnostic period, the study implies that cancer itself is an important risk factor for VTE.131 The pathophysiology of cancer-related VTE can be explained by Virchow’s triad. Cancer causes a hypercoagulable state with increased activation of the coagulation cascade,135 tumor invasion or cancer treatment can lead to vessel wall injury,136 and tumors can cause venous stasis by direct compression of blood vessels.137

\textbf{Hospitalization} is a strong risk factor for VTE. One study found that the age- and sex-adjusted incidence rate of VTE in hospitalized patients were 960 per 10,000 PY, while the incidence rate in the
community was 7.1 per 10,000 PY. Furthermore, calculations showed that 59% of VTE cases could be attributed to institutionalization, and hospitalization for surgery and for medical conditions accounted for similar proportions of the cases (24% and 22%, respectively). Several risk factors can be present during hospitalization, such as surgery, acute medical conditions, and immobilization. As previously mentioned, surgery is categorized as minor or major transient provoking factors, depending on the type of surgery and duration of general anesthesia. Major surgery, broadly defined as operations requiring ≥ 30 minutes of general anesthesia, carries a high risk of VTE. Procedures conferring highest risk of VTE were invasive neurosurgery (HRs ranging from 4 to 40) and orthopedic surgery (HRs ranging from 3 to 12). Several acute medical conditions are associated with increased risk of VTE, including myocardial infarction and stroke (discussed in section 1.4), infections, respiratory diseases, congestive heart failure, and autoimmune diseases. Institutionalization due to an acute medical condition was associated with an 8-fold increased risk of VTE (HR 8.0, 95% CI 4.5-14.2). Although risk assessment models (e.g. the Padua Prediction Score for medical patients), have been developed to help discriminate between patients at high and low risk of VTE, studies show that only 60-65% of surgical patients and 35-40% of medical patients with high risk of VTE received appropriate prophylaxis.

Immobilization leads to stasis, which is one of the main causes of VTE. Immobilization accompanies many surgical and medical conditions and probably mediates some of the association between these conditions and VTE. The definition of immobilization and strengths of risk estimates varies. In one study, immobilization, defined as total confinement to bed and/or armchair, was associated with a 6-fold increased risk of VTE (HR 5.6, 95% CI 2.3-13.7). However, another study found a 1.8-fold (HR 1.76, 95% CI 1.27-2.44) increased risk of VTE in patients with total body immobility. In the Tromsø study, immobilization, defined as bedrest for at least three days, Eastern Cooperative Oncology Group (ECOG) score of 4 or other specified immobilizing factors, was associated with a 38-fold increased risk of VTE. Immobilization and infection had synergistic effects on VTE, yielding an odds ratio (OR) of 141 (95% CI 66-298). In a study from 1972, Warlow and colleagues reported that stroke patients who did not receive anticoagulation had a venous thrombus in 60% of the paralyzed legs and in 7% of non-paralyzed legs. Although some degree of immobilization occur during prolonged travel, the association between VTE and prolonged travel is controversial. A case-control study reported that traveling for more than four hours was associated with a 2-fold increased risk of VTE, and the risk was similar in those traveling by plane, car, bus or train. This indicates that it is the immobilization, rather than the plain travel itself, that increases the risk of VTE.
1.3.3 Cardiovascular risk factors

Shared risk factors have been proposed as a possible mechanism for the association between arterial CVD and VTE. Many studies have investigated the association between traditional cardiovascular risk factors and VTE, but the results are conflicting. Only age, obesity and FHMI have consistently been associated with VTE. Age and obesity as risk factors for VTE have been discussed in detail, and the following section will focus on some of the remaining cardiovascular risk factors and risk of VTE.

Results regarding the association between sex and incident VTE are conflicting. While some studies have shown similar incidence and risk of VTE in men and women, others have found an overall higher incidence and risk of VTE among men. As previously mentioned, women of reproductive age have a higher incidence of VTE than men at the same age, whereas men have a higher incidence in the elderly. This may relate to differential exposure to clinical risk factors by age and sex, such as risk factors related to pregnancy and contraception, among younger women. In a population-based case-control study, Roach and colleagues showed that the risk of incident VTE was twice as high in men as in women when female reproductive risk factors were taken into account, supporting that male sex is a risk factor for incident VTE. Furthermore, because the age-specific incidence is different in men and women, the risk related to the sex would depend on the age distribution of the study population. Lastly, the sex difference in risk of VTE may partly be explained by an increased risk of VTE with increasing body height.

Evidence support that there is no association between hypertension and VTE. One case-control study reported a reduced risk of VTE in subjects with blood pressure in the highest quintile, and a cohort study reported a HR of 1.51 (95% CI 1.13-2.01) in men with diastolic blood pressure in the highest quartile. Nevertheless, most studies found no association between hypertension and VTE.

Dyslipidemia is the collective term for abnormal levels of lipids (i.e. high levels of low-density lipoprotein [LDL], low levels of high-density lipoprotein [HDL] and/or high levels of triglycerides) in the blood. Although some case-control studies have reported an association between dyslipidemia and VTE, the majority of studies show no association with VTE. The positive results in the case-control studies may be due to limitations of the study design, such as reverse causation, selection bias or unmeasured confounders.

Diabetes is a strong risk factor for arterial CVD, but not for VTE. A few studies have reported an association between diabetes and VTE, however, authors were not able to adjust for BMI. The majority of studies found no association between diabetes and VTE when analyses were adjusted for
The metabolic syndrome is a cluster of cardiovascular risk factors, including abdominal obesity, insulin resistance, hypertension and dyslipidemia, associated with increased risk of CVD and mortality. The syndrome has been associated with unprovoked VTE and recurrent VTE. However, two studies demonstrated that the risk of VTE was mediated by abdominal obesity and that none of the other components of the metabolic syndrome, alone or in cluster, was associated with increased risk of VTE.

Some studies found an association between current/former smoking and VTE, whereas several studies have failed to find an association between smoking and VTE. A meta-analysis from 2013 reported a 1.3-fold (95% CI 1.24-1.37) increased risk of VTE in current smokers compared with never smokers, and a dose-dependent association with 6% increased risk of VTE per additional pack-year, in models adjusted for BMI. The risk was increased for both unprovoked and provoked VTE. In contrast, a large Danish cohort study found an association between current smoking and provoked VTE, but not between smoking and unprovoked VTE or VTE provoked by provoking factors other than cancer. Furthermore, a study including participants from the Tromsø study reported an association between heavy smoking and provoked VTE. However, the association disappeared when a cause-specific model was applied (i.e. eliminating possible mediation by MI and cancer), suggesting that smoking-attributable diseases or other predisposing factors may mediate the apparent association between smoking and VTE. Proposed mechanisms for the association between smoking and VTE include a smoking-induced procoagulant state, increased inflammation, and reduced fibrinolysis.

Results regarding a possible association between physical activity and VTE are diverging. Some studies have shown a protective effect of physical activity on risk of VTE, and provoked VTE in particular. Some studies found an increased risk of VTE in those physically active, while other studies have failed to find an association. In several of the studies, authors were unable to adjust for BMI. The lack of standardized assessment methods and definitions of physical activity complicates the interpretation of the existing results. Plausible mechanisms for a beneficial effect of physical activity might be improved function of the calf muscle pump function and increased fibrinolysis.

Socioeconomic status, often measured by education, occupation and income, is closely related to health, and coronary heart disease in particular. However, few studies have investigated the association between education level and VTE, and results are conflicting.

Growing evidence suggests an association between FHMI and VTE. In 2008, Brækkan and colleagues were the first to address the association and found a 1.3-fold increased risk of VTE in a
multivariable-adjusted analysis (HR 1.27, 95% CI 1.01-1.60). One case-cohort and one case-control study confirmed the association with equal magnitude of risk estimates, but the study stratifying by ethnicity found no association between FHMI and VTE in blacks (not further specified). The association between FHMI and VTE could potentially be mediated by an increased risk of MI. To address this problem, the authors in one study applied a cause-specific model and found a 1.3-fold increased risk of VTE in analyses adjusted for cardiovascular risk factors. The risk was particularly high for unprovoked VTE and increased with increasing numbers of affected relatives, which pointed towards shared environmental or genetic risk factors. In contrast, subjects with a parental history of MI had a 3% increased risk of VTE (standardized incidence ratio of 1.03, 95% CI 1.01-1.04) in a large registry-based study. However, this study defined FHMI as MI in a first-degree relative regardless of the relative’s age at the event, whereas the other studies defined FHMI as MI in a first-degree relative below the age of 60. This, in addition to limited information on potential confounders, might explain the diverging results.

Results regarding the associations between many of the cardiovascular risk factors and VTE are inconsistent. Overall, the majority of studies that found an association between cardiovascular risk factors and VTE were retrospective, whereas most prospective studies reported no association. In most cohort studies, risk factors are assessed at baseline and related to outcomes occurring several years later. However, the status of a risk factors can change over time. For example, people can gain weight, stop smoking or get increased blood pressure during follow-up. Random measurement errors, temporary fluctuations, and changes in exposure over time generally lead to regression dilution bias, a phenomenon that results in an underestimation of the true association between exposure and outcome. As most of the cardiovascular risk factors are modifiable, changes during follow-up may have influenced the risk estimates of VTE cohort studies. Thus, we cannot exclude that there are weak associations between the cardiovascular risk factors and VTE, which we are unable to detect because of regression dilution bias. Regression dilution bias can be addressed by performing time-varying analyses (requires repeated measurements of all participants) or correct the risk estimates by a regression dilution ratio (requires repeated measurement of a subsample of the participants). Using the latter approach, a previous study reported that a single baseline measurement of cholesterol and diastolic blood pressure resulted in a 47% and 76% underestimation of the association with coronary heart disease risk in the third decade of follow-up, respectively.
1.4 Association between arterial cardiovascular disease and venous thromboembolism

1.4.1 Arterial cardiovascular disease and risk of venous thromboembolism

Arterial CVD and VTE have traditionally been considered as separate diseases. However, several studies performed during the last decades have pointed towards a potential bidirectional association between arterial CVD and VTE.11, 14-16, 185

A growing amount of evidence support an association between arterial CVD and subsequent VTE. Some studies investigating the association between MI and VTE show that patients with MI have a 1.3 to 1.5-fold higher risk of subsequent VTE.5, 7, 186 However, others have failed to find a relationship,187, 188 and one cohort study reported a reduced risk of VTE in patients with arterial events.6 When the positive associations were investigated in detail, the risk of VTE was higher when the MI occurred less than three months before the VTE diagnosis, as compared with more than three months.7, 185 Furthermore, the risk was higher for PE than DVT,7, 185 and reported risks for unprovoked and provoked events were similar.7, 186 The results from these studies must be interpreted with caution, as many of them are retrospective and therefore unable to determine causality,7, 185-188 or because they have limited validation of CVD, VTE, and potential confounders.7, 185, 186, 188

Furthermore, there seems to be a strong association between stroke and subsequent VTE. A study in which stroke patients were screened for thrombosis (using 125I fibrinogen) showed that around 50% developed DVT within 2 weeks in absence of thromboprophylaxis,189 and a small cohort study of 111 Asians detected DVT in 30% of patients after 10 days and in 45% of patients after 30 days.189 In the CLOTS trial, which investigated the effect of compression stockings in stroke patients, DVT was detected in 11.4% of patients after eight days, and 14.5% after 28 days.9 In a large case-control study, the OR of VTE was 1.31 (95% CI 1.17-1.48) in patients with a previous hospital diagnosis of stroke, and the risk was substantially higher if the stroke occurred within three months before the VTE (OR 4.41, 95% CI 2.92-6.65).7 Risk factors for developing VTE included severe stroke,11, 13 lower limb paresis,12, 190 age10, 190 and CRP.191 VTE after stroke is associated with high mortality. PE account for 13-25% of early deaths after stroke,189 and one study showed that sudden death occurred in 50% of PE patients with previous stroke.192 There are several evident limitations potentially explaining the imprecise results, including different study designs, small study populations with different ethnicity, limited validation of exposures, outcomes and potential confounders and missing information on the use of anticoagulant prophylaxis (yes/no, type and duration). Limiting data exists regarding the association between ischemic stroke and VTE in the general population.
Few studies have investigated the association between peripheral vascular disease (PVD) and VTE. An autopsy study, which found no association between coronary thrombosis and VTE, found an increased risk of VTE in relation to the presence of PVD (OR 1.7, 1.6-1.9).188 A retrospective cohort of 302 patients and controls investigated the risk of VTE after arterial events but did not give a specific risk estimate after PVD due to a low number of outcomes (n=1).193

1.4.2 Atherosclerosis and venous thromboembolism

Atherosclerosis is characterized by the presence of atherosclerotic plaques. The vessel walls have three concentric layers - \textit{intima}, \textit{media}, and \textit{adventitia}. The \textit{intima} is the innermost layer (i.e. closest to the vessel lumen) and consists of endothelial cells and underlying extracellular matrix (ECM). It is separated from the \textit{media}, which mainly consists of smooth muscle cells and ECM, by an elastic membrane. Atherosclerotic plaques are intimal lesions and are considered as a chronic inflammatory response of the arterial wall to endothelial injury.194, 195 The pathogenesis include endothelial dysfunction, accumulation of lipoproteins, platelet adhesion, monocyte adhesion and migration into the vessel wall, smooth muscle cell recruitment and proliferation, and excessive production of ECM.195, 196 Clinical consequences of atherosclerosis include mechanical obstruction in the vascular lumen, plaque rupture with acute vascular thrombosis and aneurysm formation due to weakening of the underlying vessel wall.194

Atherosclerosis is often measured by ultrasound assessments of total plaque area (TPA) and intima-media thickness (IMT) in the carotid artery. The prevalence of carotid atherosclerosis in the general adult population is approximately 25%,197 and the prevalence increases with increasing age.198 Although both TPA and IMT are independent risk factors for stroke and MI,198-201 a meta-analysis of population-based studies showed that the presence of carotid plaques had a higher diagnostic accuracy for the prediction of future arterial CVD, compared with IMT.202 Furthermore, studies have shown that there is no significant difference between the prevalence of atherosclerosis in the right and left carotid artery,203, 204 and that carotid atherosclerosis correlates well with the general extent of atherosclerotic disease in an individual.205, 206 Although the association between atherosclerosis and arterial CVD is well established, the association between atherosclerosis and VTE remains controversial.

In a case-control study from 2003, Prandoni and colleagues found a higher frequency of carotid plaques in patients with unprovoked VTE (47%) compared with patients with provoked events (27%) and controls (32%). The multivariable-adjusted OR for carotid plaques in patients with unprovoked VTE, compared with patients with provoked events and controls, were 2.3 (95% CI 1.4-3.7) and 1.8
(95% CI 1.1-2.9), respectively. In the following years, the association between atherosclerosis and VTE was confirmed by other case-control studies, with 91-300 participants. Unprovoked VTE was significantly associated with coronary artery calcium on CT angiography, increasing IMT and presence of plaques after adjusting for cardiovascular risk factors. Suggested mechanisms for the possible association between atherosclerosis and VTE are shared risk factors and common pathophysiological mechanisms, such as endothelial dysfunction, inflammation, platelet activation, and coagulation activation.

Prospective studies have not shown an association between subclinical atherosclerosis and VTE. In a study with nearly 16,000 participants aged 45-64 recruited from the general population, there was no association between atherosclerosis, as measured by IMT and TPA, and VTE in the adjusted models. In another cohort study, with participants above 65 years of age, any subclinical atherosclerosis was associated with a reduced risk of VTE (adjusted HR 0.60, 95% CI 0.39-0.90). This was mostly explained by an inverse association of high-risk carotid plaques and VTE. To ensure appropriate measurement and classification of atherosclerosis and to eliminate possible mediation of MI, Hald and colleagues calculated and compared risks of MI and VTE associated with atherosclerosis, and applied a cause-specific model. In a study of 6,300 participants aged 25-84 recruited from the general population, they found a strong association between carotid atherosclerosis and future MI, but not VTE. The follow-up time in the cohort studies ranged from 11.7 to 15.4 years. The association between the formation and progression of atherosclerosis and risk of VTE has not been investigated.

The evident discrepancy in results between the case-control and cohort studies can possibly be explained by differences in study design. In the case-control studies, atherosclerosis was measured after the VTE event occurred. Thus, it is not possible to determine the temporal sequence between atherosclerosis and VTE (an inherent limitation of case-control studies). Furthermore, the case-control studies were prone to selection bias, especially because the control groups were small (48 cases and 44 controls in the smallest study). In the cohort studies, measurements of atherosclerosis were performed before the outcome, and a temporal sequence could be established. However, atherosclerosis may develop over time and a true association between atherosclerosis and VTE may have been underestimated due to regression dilution bias.
2. Aims of the thesis

The aims of the thesis were:

• To investigate the overall and time-dependent risk of VTE by ischemic stroke in a population-based cohort with validated information on exposure, outcome and potential confounders (Paper I)

• To investigate the association between the presence, formation, and progression of carotid atherosclerosis and VTE using a prospective cohort with repeated measurements, in participants recruited from the general population (Paper II)

• To investigate whether the use of repeated measurements of atherosclerotic risk factors influenced the risk estimates for VTE and MI compared with baseline measurements only, in a prospective cohort recruited from the general population (Paper III)

• To investigate if the association between a family history of myocardial (FHMI) infarction and VTE were explained by the presence of prothrombotic genotypes and to assess the combined effects of FHMI and prothrombotic genotypes on the risk of VTE in a case-cohort study recruited from the general population (Paper IV)
3. Methods

3.1 Study population – The Tromsø Study and the HUNT Study

The Tromsø study is a single-center population-based cohort study with repeated health surveys of the inhabitants of the municipality of Tromsø. It was initiated in 1974 to determine the causes of the high cardiovascular mortality in Norway and to develop interventions to prevent MIs and strokes. Seven surveys have been conducted and the study now includes a wide range of examinations and diseases. The surveys used for the papers in this thesis were conducted in 1994-1995 (Tromsø 4), 2001-2002 (Tromsø 5) and 2007-2008 (Tromsø 6). To these surveys, the entire (Tromsø 4) or parts of the population (Tromsø 5 and 6) aged 25 years or older were invited to participate, and 27,158, 8,130 and 12,984 participants attended in Tromsø 4, 5 and 6, respectively. Attendances were high, ranging from 79% in Tromsø 5 to 66% in Tromsø 6. In the fourth survey, all inhabitants aged 55-74 years and a random 5-10% sample in the other age groups were invited to a second, more extensive examination. Subjects who attended the second visit in Tromsø 4, in addition to random samples within different age-groups of the fifth and sixth surveys, were eligible for the second visit of Tromsø 5 and Tromsø 6. In all papers, participants with a history of VTE before baseline were excluded.

The Nord-Trøndelag Health (HUNT) Study was primarily designed to determine the prevalence of hypertension, diabetes and undiagnosed tuberculosis, and to evaluate the quality of health care provided to these patients. The first survey was conducted in 1984-1986, and 74,599 participated (attendance of 88%). In 1995-1997, the second survey of the HUNT Study (HUNT 2) was conducted. The main objectives of this survey focused on important public health issues, such as cardiovascular disease, diabetes, obstructive lung disease, osteoporosis, and mental health. In HUNT 2, all individuals at the age of 20 and older living in Nord-Trøndelag County were invited, and 66,140 participated (71%). The third survey of the HUNT Study was completed in 2008, and the fourth survey started in 2017.

Paper I and III in the thesis were based on information from Tromsø 4-6, and the participants were followed from enrollment in 1994-1995 until December 31, 2010. In Paper I, participants who developed ischemic stroke during the study period contributed with unexposed person-time from inclusion to the date of ischemic stroke, and then with exposed person-time from the date of ischemic stroke and onwards. Paper II includes participants attending one or more extensive examination in Tromsø 4-6, and participants were followed from the date of enrollment until December 31, 2012. Paper III included subjects enrolled in the fourth survey who attended or was supposed to attend the fifth and sixth survey. Subjects who were re-invited after Tromsø 4, but failed to attend one or more
visits were excluded from the follow-up, while subjects who moved or died were included and censored at the date of migration or death. Paper IV was based on information from Tromsø 4 and HUNT 2, and participants were followed from inclusion (1994-1995 in Tromsø 4 and 1995-1997 in HUNT 2) until December 31, 2008, in HUNT 2 and December 31, 2012, in Tromsø 4.

3.2 Exposure assessment

3.2.1 Ischemic stroke

Ischemic stroke was defined according to the WHO definition (i.e. an acute disturbance of focal or global cerebral function with symptoms lasting ≥ 24 hours or leading to death of presumed vascular origin),\(^{212}\) when CT or MRI scans or autopsy had ruled out brain hemorrhage. The national 11-digit identification number allowed linkage to national and local diagnosis registries. Possible cases of incident ischemic stroke were identified by searching hospital discharge diagnosis registry at the University Hospital of North Norway (UNN) and the National Causes of Death Registry at Statistics Norway, which covers participants living in Norway at the time of death regardless of the place of death. The 9\(^{th}\) revision of the International Classification of Diseases (ICD-9) codes 340 to 438 was used from 1994 to 1998, and the 10\(^{th}\) revision of ICD codes (ICD-10) I60 to I69 were used thereafter. Manual text searches were used until 2001 when medical records became digital, and electronic text searches were used thereafter. To ensure case completeness, manual and/or electronic text searches were performed in all participants with ICD-9 codes 410-414, 427 and 789-799 and ICD-10 codes I20-I25, I47.1, I48, R96, R98, and R99. Medical records, autopsy records and death certificates were retrieved for case validation by an independent end-point committee.

3.2.2 Cardiovascular risk factors

Information on cardiovascular risk factors was collected by physical examination, non-fasting blood sampling, and self-administered questionnaires, and the collection of data was repeated at each survey. Height and weight were measured with participants wearing light clothing and no shoes. BMI was calculated by the weight in kilograms (kg) divided by height in meters (m) squared (kg/m\(^2\)). Overweight (BMI 25-29.9 k/m\(^2\)) and obesity (BMI ≥ 30 kg/m\(^2\)) was defined according to the WHO.\(^{116}\) Blood pressure was measured three times with an automatic device (Dinamap Vital Signs Monitor in Tromsø 4 and Dinamap 845XT [Criticron] in HUNT 2) in a sitting position after two minutes of rest. The average of the two last readings was used in the analyses. Subjects were defined as hypertensive if they had systolic blood pressure ≥ 140, or diastolic blood pressure ≥ 90 or if they reported current use
of antihypertensive medication. Total cholesterol, triglycerides, and HDL were measured in blood samples collected from an antecubital vein. Detailed information on handling and analyses of the blood samples have been published elsewhere. Hypercholesterolemia was defined as total cholesterol ≥ 6.5 mmol/L or use of lipid-lowering drugs. Low HDL cholesterol was defined as ≤ 1.03 mmol/L in men and ≤ 1.30 mmol/L in women, according to the National Cholesterol Education Program - Adult Treatment Panel III guidelines. The questionnaires were used to obtain information on current smoking (yes/no), diabetes mellitus, physical activity, education and medication use, including the use of antihypertensive medication and lipid-lowering drugs.

3.2.3 Carotid atherosclerosis

The ultrasound examination was a part of the second and extensive examination at each survey. High-resolution B-mode and color Doppler ultrasonography were used to scan the right carotid artery longitudinally from the level of the clavicle, through the carotid bulb (bifurcation segment) and the proximal internal carotid segment (ICA) as far downstream as possible. An Acuson Xp10 128 ART ultrasound scanner equipped with a 7.5-MHz linear-array transducer was used in Tromsø 4 and 5, and a GE Vivid 7 with a linear 12-MHz transducer was used in Tromsø 6. Still images were reported for each plaque and digitized using the Matrox Meteor II frame grabber card and Matrox Intelllicam (Matrox Imaging, Montreal, QC, Canada). With the use of Adobe Photoshop 7.0, measurements of plaque area were made by outlining the perimeter of the plaque, and the plaque area was calculated as pixel values. To ensure equal and standardized examination techniques and measurement procedures, all sonographers completed a two-month pre-study training protocol. In addition, subjects were randomly distributed among the different sonographers, who were blinded to data from the questionnaires and blood samples. Inter-observer reproducibility of the ultrasound examinations was found to be good.

A plaque was defined as a localized protrusion of the vessel wall into the lumen of at least 50% compared with the adjacent IMT. In each subject, a maximum of six plaques were registered in the near and far walls of the distal part of the common carotid artery (CCA), bifurcation, and ICA, respectively. TPA was calculated as the sum of all plaques. IMT was defined as the average of the mean IMT values of the near and far wall of the CCA and far wall of the bifurcation. To minimize variability in IMT during the cardiac cycle, the image capturing was standardized by recording images at the top of the R wave in an electrocardiographic (ECG) signal. Plaque initiation was defined as development of new plaques at follow-up in vessels without plaques at the previous examination, and plaque
progression as the difference in TPA between two measurements. Participants with negative progression were included in the no progression group.198, 215

3.2.4 Family history of myocardial infarction

To identify FHMI, subjects were asked to report whether their mother, father, sister, brother, child or none in the family had a history of MI before the age of 60 years in the self-administered questionnaires. A positive FHMI was regarded as \(\geq 1 \) first-degree relative with a history of MI before the age of 60 years. Parental FHMI was regarded as \(\geq 1 \) parent with a history of MI before the age of 60 years. The questionnaire picks out 80\% of the confirmed MI-positive family histories.216, 217

3.2.5 Prothrombotic genotypes

The following SNPs were genotyped and used in Paper IV: rs8176719 in \textit{ABO} (non-O blood type), rs6025 in \textit{F5} (FVL), rs1799963 in \textit{F2} (prothrombin G20210A), rs2066865 in \textit{FGG} and rs2036914 in \textit{F11}. In the Tromsø Study, rs8176719 (\textit{ABO}), rs6025 (\textit{F5}), rs1799963 (\textit{F2}) and rs2036914 (\textit{F11}) were genotyped with the Sequenom platform, and rs2066865 (\textit{FGG}) with the TaqMan platform, as previously described.218 The HUNT Study performed genotyping using the Illumina HumanCore Exome array.

Participants were considered carriers of the prothrombotic risk gene when one or two risk alleles were present. We did not differentiate in hetero- and homozygotes due to few homozygote study participants. The only genetic variant with a minor allele associated with a reduced risk of VTE was the rs2036914 in \textit{F11}, and in this case, we considered the common allele as the risk allele.219 For rs8176719 (\textit{ABO}), zero risk alleles were classified as O blood type, whereas one or two risk alleles were classified as non-O blood type. The 5-SNP score conceived by de Haan and colleagues was created by summarizing the number of risk alleles from the five sequenced SNPs.106

3.3 Outcome assessment

3.3.1 Venous thromboembolism

In the Tromsø Study, all incident VTE events were identified by searching the hospital discharge diagnosis registry, the autopsy registry and the radiology procedure registry at UNN. UNN is the only hospital in the Tromsø region, and provides all relevant radiological procedures and hospital care. The discharge diagnosis codes used from 1994-1998 were 325, 415.1, 451-453, 671.3, 671.4 and 671.9
from ICD-9. From 1999 to 2012, the relevant codes from ICD-10 were I26, I80-I82, I67.6, O22.3, O22.5, O87.1, and O87.3. Manual text searches were used until 2001 when medical records became digital, and electronic text searches were used thereafter. In the HUNT Study, incident VTE events were identified by searching the hospital discharge diagnosis registry and the radiology procedure registry at the two local hospitals in the county (Levanger Hospital and Namsos Hospital) and by searching the discharge diagnosis registry at the tertiary-care center of the region, St. Olav’s Hospital in Trondheim (Sør-Trøndelag County). The discharge diagnosis codes used were ICD-9 codes 415, 451-453, 325, 362.3, 433, 557.0, 634-638 (with decimals 6 and 7), 639.6, 639.8, 639.9, 671, 673, 674 and 997.2, and ICD-10 codes I26, I80-I82, I63.6, I67.6, K55, H34.8, O08, O22, O87 and O88.

The medical record for each potential case of VTE was reviewed by trained personnel. In the Tromsø Study, a VTE was verified and recorded when clinical signs and symptoms of DVT or PE were combined with objective confirmatory tests (i.e. compression ultrasound, venography, spiral computed tomography [CT], perfusion-ventilation scan, pulmonary angiography, and autopsy), and resulted in a diagnosis made by a physician that required anticoagulant treatment (i.e. low-molecular-weight heparin [LMWH], vitamin K antagonists or similar agents, thrombolytic therapy or vascular surgery). DVTs were recorded in the upper and lower extremities, including the inferior vena cava, and at unusual sites (i.e. the mesenteric veins, portal vein and in the venous sinuses). VTE cases from the autopsy registry were recorded when the death certificate indicated VTE as the cause of death or as a significant condition contributing to death. In the HUNT study, a VTE diagnosis required positive objective confirmatory tests (ultrasoundography, venography, CT, perfusion ventilation scan or echocardiogram).

VTEs were classified as DVT or PE, and if DVT and PE occurred simultaneously it was recorded as a PE. Furthermore, the VTEs were classified as unprovoked or provoked, depending on the presence of provoking factors at the time of diagnosis. In the Tromsø Study, provoking factors included surgery, trauma or acute medical conditions (i.e. MI, ischemic stroke or major infections) within the last three months, active cancer, immobilization (i.e. bed rest for more than three days, wheelchair use or long-distance travel exceeding four hours within the last 14 days prior to the event) or any other factors described by a physician in the medical records (e.g. intravascular catheter). In the HUNT Study, provoking factors were active cancer at the event or within six months after the event, trauma, surgery or marked immobilization (paresis, paralysis, prolonged bedrest due to an acute medical illness or travel for more than eight hours) within the last three months, pregnancy or puerperium at the time of the event and oral contraceptives used at the time of the event or up to one month prior to the event. In Paper I, acute medical conditions were not included as a provoking factor.
3.3.2 Myocardial infarction

Incident MI events were validated according to modified WHO MONICA/MORGAM criteria, including clinical signs and symptoms, findings in electrocardiograms, values of cardiac biomarkers and autopsy reports when applicable.220 We included all events classified as definite, probable and possible MI (Table 2).221 The unique nation 11-digit identification number allowed linkage to national and local diagnosis registries. Possible cases of incident MI were identified by searching the hospital discharge diagnosis registry at the UNN by searching for ICD-9 codes 410-414, 430-438 and 798-799 in the period 1994-1998, and ICD-10 codes I20-I25, I60-I69, and R96, R98 and R99 thereafter. Manual text searches were used until 2001 when medical records became digital, and electronic text searches were used thereafter. In addition, the National Causes of Death Registry at Statistics Norway was searched, allowing identification of fatal MI events that occurred as out-of-hospital deaths, including deaths that occurred outside the municipality of Tromsø. Medical records, autopsy records and death certificates were retrieved for case validation by an independent end-point committee.
Table 2. Classification algorithm for myocardial infarction (MI) in the Tromsø Study.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Definite MI** | Defined by one of the following conditions:
 • Typical, atypical or inadequately described symptoms *and* a definite new infarction in ECG recordings
 • Typical symptoms *and* significantly higher myocardial enzyme and/or troponin levels
 • Atypical or inadequately described symptoms *and* significantly higher myocardial enzyme and/or troponin levels *and* a probable new infarction on ECG recordings
 • Postmortem evidence of recent MI or thrombosis |
| **Probable MI** | Defined by one of the following conditions:
 • Typical, atypical or inadequately described symptoms *and* a probable new infarction in ECG recordings *and* moderately increased myocardial enzyme and/or troponin levels
 • Typical symptoms *and* moderately higher myocardial enzyme and/or troponin levels
 • Atypical or inadequately described symptoms *and* significantly higher myocardial enzyme and/or troponin levels
 • Atypical or inadequately described symptoms *and* moderately higher myocardial enzyme and/or troponin levels *and* probable new infarction on ECG recordings
 • Sudden death with no evidence of non-coronary cause of death |
| **Possible MI** | An event that can be dated and for which secondary data of typical history in combination with ECG findings and/or echocardiography and/or autopsy are consistent with MI but for which no primary data source is available |
| **Unstable angina** | Angina at rest of minimal exertion and ST-depression or negative T-wave in ECG |
| **Unclassifiable** | Increase in troponins or enzymes in relation to cardiac revascularization procedures (percutaneous coronary intervention or coronary artery bypass grafting) or otherwise unclassifiable |
| **Silent MI** | Defined as one of the following, in combination with the absence of clinical symptoms:
 • New diagnostic Q-wave in incidental ECG
 • Evidence of MI on echocardiography and/or multigated acquisition scan
 • Evidence of MI at autopsy |
| **No MI** | The conclusion after the validation procedure is that the event does not fulfill the criteria for an acute coronary event |

(Adapted from Skjelbakken et al, J Am Heart Assoc, 2014)
4. Main results

4.1 Paper I
Ischemic stroke and risk of venous thromboembolism in the general population: the Tromsø Study

Even though clinical data support a relation between stroke and VTE, the strength and time dependence of the association remains to be settled at the population level. We therefore aimed to investigate the association between ischemic stroke and VTE in a prospective population-based cohort. Participants (n=30,002) were recruited from 3 surveys of the Tromsø Study (conducted in 1994-1995, 2001-2002 and 2007-2008) and followed to December 2010. All incident events of ischemic stroke and VTE during follow-up were recorded. Cox regression models with age as time-scale and ischemic stroke as a time-dependent variable were used to calculate HR of VTE, adjusted for cardiovascular risk factors. During a median follow-up time of 15.7 years, 1,360 participants developed ischemic stroke and 722 had an incident VTE event. 57 participants experienced an ischemic stroke and a subsequent VTE event. The risk of VTE was highest the first month (HR 19.7, 95% CI 10.1-38.5) and from one to three months after the ischemic stroke (HR 10.6, 95% CI 5.0-22.5), but declined rapidly thereafter. The risk estimates were approximately the same for DVT and PE with HRs of 19.1 (95% CI 7.8-38.5) and 20.2 (95% CI 7.4-55.1), respectively. Ischemic stroke was associated with a higher risk of provoked VTE (HR 22.6, 95% CI 12.5-40.9) than unprovoked VTE (HR 7.4, 95% CI 2.7-20.1) the first three months. In conclusion, the risk of VTE was increased during the first three months after an ischemic stroke. The particularly high risk of provoked VTE suggests that additional predisposing factors related to the stroke itself, such as immobilization, may potentiate the risk of VTE in patients with ischemic stroke.
4.1.1 Erratum – Paper I

In November 2016, we published the paper *Ischemic stroke and risk of venous thromboembolism in the general population. The Tromsø Study* in the Journal of American Heart Association.

Recently, we were made aware that figure 2 in the paper was incorrect. In the figure, the values on the y-axis range from 1 to 100, while the values were supposed to range from 1 to 10. As a consequence, the cumulative incidence displayed in the figure is higher than it should be. Except for the corrected y-axis, the new figure is identical to the published figure, and the implication of the results remains the same.

The text describing the figure and the cumulative incidence is also incorrect, and a higher cumulative incidence than actually observed is reported. The correct text should be: The cumulative incidences of VTE in subjects without and with ischemic stroke are shown in Figure 2. There was a notable increase in the cumulative incidence of VTE during the initial 3 months following an incident stroke as displayed by the substantially steeper slope in the incidence curve for subjects with ischemic stroke compared to those without ischemic stroke. The cumulative incidence of VTE was 1.5% during the first 3 months in subjects with ischemic stroke, compared with 0.02% in the general population during the same time period. The incidence curves for VTE remained essentially parallel in the period more than 6 months after the incident ischemic stroke event (Figure 2).

Corrected figure:
4.2 Paper II

Repeated measurements of carotid atherosclerosis and future risk of venous thromboembolism: the Tromsø Study

Whether a relationship between atherosclerosis and subsequent VTE exists is controversial. Previous case-control studies have reported an association between carotid plaques and VTE, whereas cohort studies have not shown any association between carotid atherosclerosis and subsequent VTE. Because atherosclerosis may develop over time, regression dilution bias can lead to underestimation of a true association in cohort studies. We aimed to investigate the association between carotid atherosclerosis and VTE by using repeated measurements of IMT and TPA in participants recruited from the general population. Participants were recruited from the fourth (1994-1995), fifth (2001-2002) and sixth (2007-2008) surveys of the Tromsø Study. In total, 10,426 participants were included, for whom measurements of carotid IMT and TPA and potential confounders were updated at each available survey. Time-varying Cox regression models were used to calculate HR of VTE across levels of IMT and TPA, adjusted for age, sex and BMI. During a median follow-up of 10.8 years, there were 368 incident VTE events. Participants with increasing IMT were older and had a less favorable cardiovascular risk profile. There was no association between TPA and risk of VTE, and increasing IMT was not associated with increased risk of VTE (HR 0.96, 95% CI 0.86-1.07). Neither plaque formation nor plaque progression was associated with VTE (HRs of 1.00, 95% CI 0.98-1.02 and 0.96, 95% CI 0.84-1.11, respectively). Additional adjustments for traditional cardiovascular risk factors had a negligible effect on the risk estimates. In conclusion, our study shows that carotid IMT and TPA were not associated with an increased risk of VTE using a time-varying analysis with repeated measurements. Furthermore, there was no association between plaque formation of plaque progression and subsequent VTE. The findings suggest that atherosclerosis is not an intermediate for the association between arterial cardiovascular disease and VTE.
4.3 Paper III

Atherosclerotic risk factors and risk of myocardial infarction and venous thromboembolism; time-fixed versus time-varying analyses. The Tromsø Study

Single measurements of modifiable risk factors may underestimate associations with outcomes in cohorts due to regression dilution bias, especially if follow-up is long. We aimed to compare risk estimates of MI and VTE by atherosclerotic risk factors during long follow-up using time-fixed and time-varying analysis. The study included 5,970 subjects enrolled in the fourth survey of the Tromsø Study (1994-1995). Atherosclerotic risk factors, including blood pressure, lipid levels, BMI, diabetes, and smoking status, were measured at baseline, and subjects still alive at the fifth (2001-2002, n=5,179) and sixth (2007-2008, n=4,391) survey were re-measured. Time-fixed and time-varying Cox regression models were used to estimate HR for MI and VTE adjusted for age and sex. Until December 2012, there were 714 and 214 incident MI and VTE events, respectively. During a median follow-up time of 15.7 years, we found that variations in BMI, blood pressure and lipid levels were small. For these risk factors, risk estimates of MI and VTE were similar in the time-fixed and time-varying analyses. For MI, variables that changed considerably over time yielded the greatest changes in risk estimates. For example, HR for smoking was 1.80 (95% CI 1.55-2.10) in the time-fixed and 2.08 (95% CI 1.78-2.42) in the time-varying analysis. For VTE, there was a significant association with BMI and hypertension in both the time-fixed and the time-varying model. However, the association with hypertension disappeared when adjusting for BMI in addition to age and sex. For BMI, the risk of VTE was slightly lower in the time-varying analysis compared with time-fixed analysis. Our findings suggest that for MI and VTE, risk estimates based on baseline and repeated measurements correspond well. Furthermore, misclassification is a problem only in situations where the association is between exposure and outcome is strong and the exposure varies greatly during follow-up. Of the traditional atherosclerotic risk factors, only BMI was associated with VTE, suggesting that underestimation of risks by regression dilution bias is not explaining the lack of association between atherosclerotic risk factors and VTE.
4.4 Paper IV

Impact of prothrombotic genotypes on the association between family history of myocardial infarction and venous thromboembolism

A family history of myocardial infarction (FHMI) increases the risk of venous thromboembolism (VTE). We aimed to investigate the effect of prothrombotic genotypes on the association between FHMI and VTE in a case-cohort recruited from a general population. In a case-cohort analysis, cases with a first VTE (n=1,493) and a sub-cohort (n=13,072) were sampled from the Tromsø study (1994-95) and the Nord-Trøndelag Health (HUNT) Study (1995-1997). DNA-samples obtained at baseline were genotyped for rs8176719 (ABO), rs6025 (F5), rs1799963 (F2), rs2066865 (FGG) and rs2036914 (F11). Participants not officially registered as inhabitants in Tromsø or Nord-Trøndelag at baseline (n=3) were excluded. Furthermore, we excluded participants with missing information on SNP variables (n=175), FHMI (n=2,769) and BMI (n=52). Cox regression models were used to estimate hazard ratios (HRs) for VTE and all analyses were adjusted for age, sex, and BMI. There were 1,169 incident VTEs during a median follow-up time of 12.3 years. FHMI was associated with a 1.3-fold increased risk of VTE (HR 1.32, 95% CI 1.16-1.50) and 1.5-fold increased risk of unprovoked VTE (HR 1.47, 95% CI 1.22-1.78). The risk of VTE by FHMI did not alter in analysis adjusted for the five genotypes. The combination of FHMI and the different prothrombotic genotypes did not result in an excess VTE risk. For instance, having both FHMI and non-O blood type (rs8176719) was associated with a 1.8-fold increased risk of VTE (HR 1.78, 95% CI 1.49-2.13), which approximated the sum of having only FHMI (HR 1.35, 95% CI 1.07-1.71) or non-O blood type (HR 1.38, 95% CI 1.19-1.59). Thus, FHMI and the prothrombotic genotypes had an additive effect (i.e. no biological interaction) on the risk of VTE. In conclusion, our findings suggest that the association between FHMI and VTE is not explained by rs8176719 (ABO), rs6025 (F5), rs1799963 (F2), rs2066865 (FGG) and rs2036914 (F11). FHMI combined with prothrombotic genotypes had an additive effect on VTE risk.
5. General discussion

5.1 Methodological considerations

5.1.1 Study design

The papers in this thesis are based on data from the Tromsø Study and the HUNT Study, two prospective population-based cohort studies.

In Paper I-III, we used a cohort study design. In a cohort study, a predefined population is followed from the date of inclusion in the study until an outcome of interest occurs, or until migration, death or end of study period. An advantage with cohort studies is that it is possible to relate one or more characteristics to future outcomes, and thus study the natural history of risk factors and diseases in individuals. Temporality is, among others, one of the criteria needed to provide epidemiologic evidence for causality. Other criteria for determining a causal relationship are strength of the association, consistency with other studies, a plausible mechanism between cause and effect and biological gradient (dose-response relationship). Thus, results from one cohort study is not enough to conclude on causality. Although a randomized controlled trial (RCT) would be the best study design to determine causality, it requires large amounts of resources, carries considerable ethical considerations and it may be impossible to carry out. For instance, it would be unethical and impossible to inflict carotid atherosclerosis on people in order to study the association between atherosclerosis and VTE.

Another advantage of the cohort study design, as compared with other observational study designs, is that several exposures and outcomes can be investigated simultaneously. The nature of the Tromsø Study allowed us to investigate the association between risk factors and two different outcomes (MI and VTE). Furthermore, if cohort studies are based on a defined and well-characterized population, the incidence rates can be extrapolated beyond the study group to similar populations elsewhere (discussed in section 5.1.7). This is in contrast to case-control studies and the majority of RCTs with highly selected study participants.

Some limitations of the cohort study design merit consideration. First, cohort studies are inefficient for studying incidence and associations of rare outcomes because it would require large populations and/or many years of follow-up, and thus be very resource-demanding. However, the outcomes used in the papers of the present thesis (MI and VTE) are common in the general population. Second, change in exposure during follow-up can lead to regression dilution bias and underestimation of associations. Third, cohort studies, as well as other types of observational study designs, are prone
to bias and confounding. Advantages and limitations of the cohort study design will be discussed in the following sections.

In Paper IV, we used a case-cohort study design with subjects recruited from Tromsø 4 and HUNT 2. A case-cohort study is a variant of a cohort study, in which participants (cases and a sub-cohort) are recruited from a parent cohort after baseline. Case-cohort studies are often used when large cohorts are needed to observe enough cases, but it is not feasible to collect data on covariates for the whole cohort. As genotyping is time-consuming and expensive, the case-cohort design is optimal for investigating the aims in Paper IV.

Because assessments of risk factors were done at baseline, before the outcome occurred, there is a temporal sequence of exposure and outcome in the case-cohort studies. As with cohort studies, incidences, absolute risks, and relative risks can be calculated. The sub-cohort is reflecting the source population, and every person in the cohort has an equal chance of being included in the study as a control, regardless of how much time that person contributed with and whether the person developed the disease.224 Thus, with appropriate sampling and analyses, the risk estimates in a case-cohort study are similar to risk estimates derived from the full cohort.225 For Paper IV, all incident cases of VTE (n=1,493) and a randomly selected sub-cohort (n=13,072) from Tromsø 4 and HUNT 2 were included in the study (Figure 4). As every person had an equal chance of being included in the sub-cohort, the sub-cohort included 217 cases. After exclusion of participants not officially registered as inhabitants in Tromsø or Nord-Trøndelag, and participants with missing values for at least one of the risk alleles studied, FHMI or BMI, the study consisted of 11,618 participants with 1,169 VTE events. Because of the size of the sub-cohort, we did not make adjustments to the partial likelihood in the Cox regression analyses.226

5.1.2 Bias

Bias is the term for systematic errors in epidemiological research that results in incorrect estimates of the true association between an exposure and an outcome. Depending on the types of systematic errors, bias can lead to overestimation or underestimation of risk estimates. There are several types of biases, and they can be classified as either selection bias or information bias.222
Selection bias is a result of systematic errors in the recruitment of participants, and occur when individuals have different probabilities of inclusion in the study sample according to relevant study characteristics, i.e. the exposure and outcome of interest.\(^{227}\) This type of bias is less likely to occur in cohort studies compared to case-control studies, because participants, exposed or unexposed, are recruited before the outcome develops. Nevertheless, cohort studies are prone to a type of selection bias called non-response bias (or participation bias). Non-response bias is introduced if participation rates differ between study participants with certain traits that affect the outcome (i.e. the study participants are systematically different from the target population).\(^{228,229}\) In general, participation in epidemiological studies have declined over the past years, and attendees are more likely to be female, have higher socioeconomic status, higher education, and be married.\(^{228}\) In accordance to this, participation in the Tromsø Study have declined from around 83% in Tromsø 1-3 to 77% in Tromsø 4, 79% in Tromsø 5 and 66% in Tromsø 6, and non-attendees tended to be younger, were more often men and unmarried. In both the Tromsø Study and the HUNT Study, people < 40 years of age and > 80 years of age had lowest attendance.\(^{210,211}\) After HUNT 2 was completed, a non-participation study was conducted. A random sample of non-participants was contacted by telephone or letter to investigate the reasons for non-attendance. In the younger age groups, the main reasons to not participate were lack of time or having moved out of the county. In the older age-groups, many reported to have regular follow-up by a general practitioner or at the hospital and therefore did not need to attend a health survey. Approximately 10% could not attend because they were immobilized due to disease.\(^{211}\) Reduced attendance in population-based studies preclude generalizability to whole populations, and results regarding the youngest and oldest populations must thus be interpreted with caution. Furthermore, there is a strong relationship between socioeconomic status and MI,\(^{179}\) and low attendance among those with low socioeconomic status may have affected associations between cardiovascular risk factors and MI. However, non-response bias is of greater concern when estimating absolute risks (compared with relative risks), and most studies have found little evidence of substantial bias as a result of non-participation.\(^{222,228}\) Nonetheless, it is important to maintain a high degree of participation, and the challenge for future surveys of the Tromsø Study will be to develop methods to increase recruitment and feasibility to optimize participation.

Another type of selection bias in cohort studies is bias due to differential loss to follow-up. This type of bias would occur when the different exposure groups have a different probability of completing the study and is always of concern in cohort studies.\(^{230}\) In survival analysis, subjects are censored when they are lost to follow-up, for example, due to migration or death, because it is unknown if the outcome occurs in that person or not. An assumption of censored survival time is that participants who remain in the study have the same risk of the outcome as those who are no longer under follow-up.
(called non-informative or independent censoring). In all papers in the present thesis, participants were censored when they moved from the municipality of Tromsø or when they died. As there is no reason to suspect that participants that moved from Tromsø had a different risk of MI or VTE than those who stayed, simple censoring at the date of migration is adequate. Conversely, death prevents the outcome of interest to occur, and the censoring becomes informative. This situation, in which death is a competing event, is called competing risk by death and is of special concern when investigating older populations and exposures related to high mortality, such as cancer. The absolute risk and cumulative incidence of an event are dependent on the rate of the event and the mortality rate. Hence, competing risk by death must be taken into account when dealing with absolute risks and cumulative incidences in prognostic research. However, when investigating causality between an exposure and an outcome (etiological research), the exposed and unexposed individuals alive and actually at risk of developing the event of interest are compared. Censored participants contribute with exposed or unexposed person-time before the censoring event, and do not affect the hazard ratio after being censored. As the papers included in the present thesis investigated etiological associations between risk factors (i.e. stroke, atherosclerosis, cardiovascular risk factors, and FHMI) and VTE or MI, competing risk of death was not taken into account.

In Paper III, we included participants who attended all three surveys, or was supposed to attend all three surveys, but died or moved during follow-up. This was to avoid selective inclusion of participants who survived the entire study period as these would more likely be healthier than those who died. However, we had to exclude participants without repeated measurements to investigate our aim, and we cannot rule out that those who were excluded differed from those who were included. Although the main aim of the study was to compare different methods, we cannot be certain that the selection did not affect the estimates.

Systematic errors in a study’s data collection may lead to information bias. Misclassification bias is a type of information bias which occurs if included participants are incorrectly placed in different exposure or outcome categories. There are two types of misclassification: differential misclassification and non-differential misclassification. Differential misclassification occurs when the probability of misclassification differs with regards to exposure or outcome status, whereas non-differential misclassification occurs when all participants have the same probability of misclassification. As perfect tools to gather information rarely exists, most studies must assume a certain degree of misclassification. Differential misclassification can lead to both over- and underestimation of the true association, whereas non-differential misclassification consistently results in an underestimation of the true association. Consequently, non-differential misclassification is generally more “accepted” than differential misclassification. In cohort studies, differential outcome misclassification can occur
if exposure status affects the probability of getting diagnosed with a disease. To avoid differential outcome misclassification bias in our studies, the end-point committee was blinded to the participants’ baseline risk.

Several of the variables used in our studies are self-reported through questionnaires (e.g. smoking, physical activity, and diabetes) and are potentially prone to misclassification. For example, self-reported information on smoking have shown to yield reliable estimates of true the smoking prevalence, whereas the reliability and validity of self-reported physical activity are worse. Although self-reported diabetes have been shown to be reliable, the prevalence of self-reported diabetes in the Tromsø study is lower than expected. In 2016, WHO estimated that the prevalence of diabetes in Norway was 6.6%, however, the prevalence of self-reported diabetes ranged from 2% in Tromsø 4 (1994-1995) to 5% in Tromsø 6 (2007-2008). The increasing prevalence is likely a result of a true increase in the prevalence of diabetes during the last decades and increasing awareness of diabetes in the population and among doctors. The discrepancy between the self-reported prevalence and true prevalence of diabetes is probably due to underdiagnosing of type 2 diabetes due to few symptoms. As awareness and testing of diabetes has increased during the last decades, the discrepancy between self-reported and true prevalence has decreased. Nevertheless, the degree of misclassification related to self-reported variables will be similar in those who experience the outcome and those who do not (i.e. non-differential) because baseline measurements are collected before the outcome occurs. This will lead to an underestimation of true results.

Validation of the FHMI variable in the Tromsø Study showed high concurrence between reported and confirmed diagnoses, and another study validating self-reported FHMI found high specificity (97%) and lower sensitivity (68%) of a positive FHMI. Furthermore, measurement errors in the physical examinations may occur, for instance, if blood pressure was measured with a defect sphygmomanometer. However, as participants answered the questionnaires and underwent the physical examinations at the start of the study, and were thus unaware of future disease, the misclassification of the self-reported variables are non-differential. To minimize non-differential misclassification, examinations were standardized, e.g. blood pressure was measured three times and the average of the last two was used, and height was measured without shoes.

Medical surveillance bias can occur if an exposure leads to closer surveillance and an increased probability of detection of an outcome. This is of special concern if the outcome of interest is subclinical and exposed individuals are more likely to be examined. For instance, patients with suspected PE are examined with CT, which may also detect (subclinical) pulmonary diseases. The pulmonary diseases may be just as prevalent in the unexposed, and the apparent association is caused
by increased surveillance of patients with PE. Medical surveillance bias may be of concern in Paper I, as it is plausible that stroke patients were more closely monitored for VTE and had a higher probability of getting a VTE diagnosis compared with participants without stroke. Although VTE was thoroughly validated and the diagnosis required signs and symptoms of VTE and objective confirmatory tests, it is likely that stroke patients with signs of VTE were more likely to undergo diagnostic tests for VTE compared with unexposed participants with similar signs. This may have overestimated the incidence rate and HR among the exposed.

5.1.3 Modifiable risk factors and regression dilution bias

Regression dilution bias is a potential limitation of a cohort study with a single measurement. Regression dilution bias is caused by random (non-differential) measurement errors, temporary fluctuations and true changes in variables over time, and results in an underestimation of the true association between exposure and outcome. In agreement with this, previous studies have shown that the use of single baseline measurements of cardiovascular risk factors greatly underestimated the true association with coronary heart disease. Methods to reduce random measurement errors during study conduction include using standardized measurement approaches and using the average of several measurements. In study analyses, regression dilution bias can be addressed by performing time-varying analyses if repeated measurements are available for the entire or parts of the cohort.

The main aim of Paper III was to investigate whether the use of repeated measurements of cardiovascular risk factors influenced the risk estimates for VTE and MI compared with baseline measurements only, and if the lack of association between cardiovascular risk factors and VTE in previous cohorts could be explained by regression dilution bias. We concluded that risk estimates for MI and VTE based on baseline measurements and time-fixed analyses corresponded well with risk estimates based on repeated measurements and time-varying analyses. Only BMI was associated with VTE, indicating that possible underestimation of risks due to regression dilution bias did not explain the lack of association between cardiovascular risk factors and VTE. The risk estimates based on a single baseline measurement were generally reliable, and dilution of risk estimates was a problem in situations where the association between exposure and outcome is strong, and when the exposure status varies greatly during follow-up.

In Paper I and II, information on possible confounders was updated at each survey for those who participated in more than one survey. Repeated measurements of carotid atherosclerosis also allowed us to assess if the initiation or progression of atherosclerosis increased the risk of VTE. As we
did not have updated measurements for any of the participants of the HUNT study, we used single baseline measurements and traditional time-fixed analyses for Paper IV. Furthermore, genotypes are not modifiable, and, as Paper III suggested, risk estimates of VTE based on single measurements and repeated measurements corresponded well for BMI.

5.1.4 Confounding and mediation

Confounding is often considered as one of the main categories of bias. The concept of confounding refers to a situation where the association between an exposure and an outcome can be attributed to the influence of a third, known or unknown, variable (Figure 5). A variable is a confounder if (i) it is an independent risk factor for the outcome, either causal or a surrogate for a causal factor, (ii) it is associated with the exposure, and (iii) is not an intermediate variable between the exposure and the outcome. When investigating the presumably causal association between a risk factor \(a \) and an outcome \(c \), an additional variable \(b \) would be a confounder if it is an independent risk factor for \(c \), associated with \(a \) and not an intermediate between \(a \) and \(c \). For instance, age is an obvious confounder for the association between grey hair and mortality. Confounders are of special concern in etiological research, in which causal relationships are investigated. Mediation closely resembles confounding, but the criteria for mediation is that the mediator is a presumed causal effect of the risk factor of interest (i.e. \(a \) causes \(b \), see Figure 5). Adjusting for a mediator in regression analysis will show the direct effect of a risk factor on an outcome, by removing the indirect effect caused by the mediator. However, the mediator does not act as a confounder for the association, it is the reason why the risk factor and the outcome are associated, and exposure \(a \) is still causally related to outcome \(c \). Mathematically, there is no difference between a confounder and a mediator, and it is not always clear whether a variable is a confounder or a mediator. If an association between a risk factor and an outcome diminishes after adjusting for a variable, we cannot conclude that the

![Figure 5. The concept of confounding and mediation.](image)
unadjusted association was an artifact due to confounding. The variable could have been a mediator in the causal pathway between the risk factor and an outcome, and adjusting for the variable would underestimate the true association between the risk factor and the outcome. Mediation analyses can be performed to investigate to what extent an association is mediated through a third variable. Although it might be difficult, it is important to use non-statistical arguments to decide whether the third variable is a confounder or a mediator.

In RCTs, participants are randomly assigned to treatment groups, balancing potential confounding factors between the groups. Observational studies do not randomize the exposure, and failing to adjust for confounding in the analyses can result in associations that are overestimated, underestimated or even reversed, compared with the true association. Strategies to minimize confounding include, among others, stratified analyses in which different strata of an exposure are analyzed separately, and regression modeling with confounders included in a multivariable model. In stratified analyses, participants are divided into strata (i.e. sub-groups) of the confounder, and the effect of the risk factor is measured within each sub-group. Disadvantages of stratification include reduced statistical power due to fewer participants in each sub-group, and possible additional confounding if other characteristics are imbalanced between the sub-groups. In Paper I-IV, we used multivariable analyses to determine the independent contribution of each risk factor, thereby estimating the effect of a risk factor on the outcome, adjusted for confounders. It is important to note, that even though preventive measures to minimize confounding were applied, we can never rule out that unknown confounding factors may be present and lead to residual confounding.

In all papers, analyses were adjusted for age, an important confounder for the association between the risk factors and outcomes studied. In the analyses, age was used as time-scale, with the participants’ age at study enrollment being defined as entry time, and age at the VTE or censoring event (i.e. migration, death or study end) being defined as exit time. This is considered the superior way of eliminating confounding by age, as compared to age adjustments, if the hazard of the outcome is expected to change more as a function of age than as a function of time-on-study.

In Paper I, we adjusted for additional risk factors in different models. Sex and BMI are known risk factors of both stroke and VTE, and thus important confounders. This is emphasized by the substantially attenuated HRs after adjustment. As previously discussed, whether other cardiovascular risk factors are independent risk factors of VTE or not is controversial. Adjusting for these risk factors...
had a marginal impact on the association between stroke and VTE, suggesting that they are not confounders or mediators for the association. Unfortunately, we did not have information on immobilization or infections, which we believe are mediators for the association between stroke and VTE (Figure 6). If we were able to adjust for these variables, we could estimate the direct effect of stroke on VTE. However, it is important to remember that stroke and VTE can be causally related, even though potential mediators exist. Immobilization and infections would not act as confounders for the association, but they would be the reason why stroke and VTE are associated.

In Paper II, we adjusted for age (as time-scale), sex and BMI. These are independent risk factors of both atherosclerosis and VTE. Other cardiovascular risk factors were added in the multivariable model, however, they did not alter the estimates. In Paper III, the main aim of the study was to compare different analyses, not to evaluate the magnitude of the risk estimates. Thus, the analyses were adjusted for age (as time-scale) and sex. We found an apparent association between blood pressure and VTE, which diminished after further adjustments for BMI, indicating that the association was confounded by BMI.

In Paper IV, we used a case-cohort design in which the sub-cohort was randomly selected from the full cohort. We adjusted all analyses for age (as time-scale), sex and BMI, all of which are possible confounders for the association between FHMI and VTE. The main aim of the study was to assess if the association between FHMI and VTE was explained by prothrombotic genotypes, i.e. if prothrombotic genotypes was a confounder, causing clustering of MI in families and VTE (Figure 7). However, when we included the prothrombotic genotypes in a multivariable analysis (together with other confounders), the association between FHMI and VTE was not affected, suggesting that the prothrombotic genotypes are not confounders and that something else drives the association.
5.1.5 Interaction

To investigate whether the effect of one risk factor on an outcome differs across the strata of another risk factor, the presence of interaction between the risk factors can be examined.251 Interaction is also known as effect modification, and the third variable is often called the effect modifier.227 Statistical interaction can be evaluated on an additive (absolute risk) and a multiplicative (relative risk) scale, depending on the statistical model being used. Furthermore, HRs derived from multiplicative models, e.g. Cox regression models, can be used to examine the presence of interaction on an additive scale (i.e. biological interaction).252 In Cox regression analyses, the presence of interaction on a multiplicative scale can be assessed by entering a product term into the regression model.251 If statistical interaction is present, data should be stratified on the effect-modifying variable. Even if there was no statistical interaction on a multiplicative scale, there might be interaction on an additive scale.251

An important assumption of the Cox regression model, which is used in all papers of this thesis, is the proportional hazard assumption. This assumption indicates that exposure to a certain risk factor is associated with a fixed relative increase in the risk of the outcome of interest compared with a reference hazard (i.e. among the unexposed). In other words, the Cox models assume that at any given time, the hazard in the exposed individuals is a multiple of the underlying hazard.227 When using age as time-scale, a test for proportional hazard assumption will determine if the risk of an outcome among the exposed individuals is constant over time (i.e. increasing age), compared with the unexposed. Thus, a test for the proportional hazard assumption will also test for interaction with age.

In Paper IV, we investigated the presence of additive interaction between FHMI and the different SNPs on the risk of VTE. Synergism refers to the (positive) interaction of two or more variables that combined gives a greater effect than the sum of the individual variables. The presence of synergism between two exposures was assessed by calculating the relative excess risk due to interaction (RERI), the attributable proportion due to interaction (AP) and the synergy index (SI) according to Andersson \textit{et al.}253 RERI was calculated as $HR_{11} - HR_{10} - HR_{01} + 1$, where HR_{10} is the hazard ratio for the first risk factor (i.e. FHMI) in the absence of the second risk factor (i.e. prothrombotic risk alleles), HR_{01} is the hazard ratio for the second risk factor in the absence of the first risk factor, and HR_{11} is the hazard ratio when both risk factors are present. AP was calculated as $RERI/HR_{11}$ and can be interpreted as the proportion of cases in the combined group that is due to the interaction between the two exposures. Lastly, the SI was calculated as $[HR_{11} - 1] / [(HR_{10} - 1) + (HR_{01} - 1)]$. SI can be interpreted as the excess risk from exposure to both risk factors when interaction is present, relative to the risk from exposure when interaction is absent.252 RERI and AP equal to 0 and SI equal to 1.0 mean no interaction.253, 254
5.1.6 Missing data

Despite careful planning and execution of studies, missing data are common in epidemiological research, and may introduce bias.255 Data can be missing if participants do not respond to questions in the questionnaires, if the equipment used for physical examinations fails, by loss or errors in laboratory handling of blood samples, if participants are lost to follow-up, or for other known or unknown reasons. The prime concern is always whether the available data is biased or not.255 If an observation is missing independent of the unobserved value and other available data, the observation is missing completely at random. This would be the case if a blood sample is lost by accident. If the data missing is independent on the missing value itself, but not to other variables, the data is missing at random. This would be the case if the elderly were more likely to have measured blood pressure than the younger population. Finally, data could be missing not at random if it is dependent on the unobserved values, for instance, if a question in a questionnaire is (systematically) not answered because it is too difficult. Data missing not at random can cause bias.255 There is no optimal way to handle missing data, but different approaches exist. Firstly, participants with missing data on covariates can be omitted from the analysis. Secondly, participants with missing information can be excluded from the study. This gives complete case analyses but can lead to decreased statistical power and selection bias if participants excluded differ from those not excluded (which will be the case unless the data are missing completely at random). Lastly, it is possible to estimate (impute) what the missing values were, based on other known covariates in the study.255, 256 Imputation requires that the data is missing at random.

In the present thesis, missing data were handled by omitting participants with missing values for variables in the statistical analysis of that specific variable, or by excluding participants with missing information from the study. When using the first approach, the number of study participants in each analysis varied slightly depending on variables included (< 2%). In Paper II, participants who attended the ultrasound examination, but had missing information on IMT or TPA (n=490) were excluded. It is uncertain why these measures were missing and how they affected risk estimates. Given the data were missing at random or completely at random, e.g. due to defect equipment a certain day, the results would not be affected. However, if the data were not missing at random, i.e. dependent on unobserved values, results could be biased. This would be the case if, for instance, those with missing information were too sick to move to the examination bench, or to obese to obtain valid measurements.

In Paper IV, we excluded participants with missing values for at least one of the risk alleles studies (n=175) and those with missing information on FHMI (n=2,769). As with all laboratory testing, there are risks of errors in measurements and handling of the blood samples used for genotyping. The
missing values for the SNPs are most likely missing completely at random, i.e. independent of the genotypes and other available variables, and exclusion of these participants would not bias the results. Assuming the participants with missing information on the FHMI variable did not answer the question, simply because they did not know or because they did not have FHMI, the values would be missing at random or not at random, respectively. The latter alternative could give biased results, and to investigate this possibility, we performed a sensitivity analysis in which participants with missing information on FHMI were included in the study and categorized as not having FHMI. The association between FHMI and VTE, albeit slightly attenuated, remained when participants with missing data on FHMI were classified as having no FHMI, indicating that those with missing information did not substantially differ from those without missing information.

5.1.7 External validity

External validity is the extent to which a study can be generalized to a population.\(^{257}\) External validity is of great importance in research where the purpose is to improve public health.\(^{258}\) Internal validity refers to the extent to which bias and confounding are minimized so that any difference between groups can be truthfully attributed to the exposure.\(^{257}\) Both internal and external validity are essential for epidemiological research. There is not external validity without internal validity, but the presence of external validity does not guarantee internal validity (i.e. the participants are representative of the population, but there is confounding in the study).\(^{230}\) Although RCTs are considered to be the best study design for minimizing the effect of bias and confounding, and thus maximizing internal validity, the external validity is usually limited due to strict inclusion and exclusion criteria.\(^{246}\) Cohort studies are non-experimental, and the absence of random allocation reduces the internal validity. However, high-quality cohort studies with well-defined inclusion and exclusion criteria, as well as high attendance, enhances the chance of high external validity.

In the surveys of the Tromsø Study used in the present thesis, the entire or parts of the population were invited to participate, and the attendances were high, ranging from 79% in Tromsø 5 to 66% in Tromsø 6.\(^{210}\) To HUNT 2, all individuals at the age of 20 and older living in Nord-Trøndelag County were invited to participate, and the attendance was 71%. The distribution of risk factors and incidence of VTE in the Tromsø and HUNT Study are similar to other Western populations, indicating a high degree of external validity. As previously noted, the participation rates were lower among those < 40 years of age, those > 80 years of age, and among men compared with women, threatening the generalizability in these subgroups. In Paper II, we used data from participants attending the second and extensive examination. All inhabitants aged 55-74 years and a smaller random sample in other age...
groups were invited. This weakens the generalizability of the results to the underrepresented age-groups. Further, cohort studies are prone to non-response bias. Participants may be more health conscious than those who did not participate, and institutionalized elderly and ill patients are unlikely to attend health examinations. Consequently, participants in cohort studies are usually healthier than the general population, and it is likely to assume that this applies to our studies as well. However, as discussed previously, non-participation does not seem to introduce substantial bias. The population in Tromsø and Nord-Trøndelag are homogenous Caucasian populations, with a small Sami minority in Tromsø, and our results are likely to be generalizable to other Caucasian populations. However, the incidence of VTE and MI, as well as the distribution of SNPs, differs between ethnicities, and generalizing our results to populations with other ethnic compositions must be done with caution.

5.2 Discussion of main results

5.2.1 Ischemic stroke and risk of venous thromboembolism

Prior to the present thesis, evidence for an association between stroke and VTE was mainly derived from small cohort studies on selected populations and trials assessing the protective effect of different treatment strategies. The reported incidence of DVT after stroke ranges from 4-11% during the first 14 days after the stroke, and 15-45% 20-30 days after the stroke. However, these studies screened stroke patients for DVT, and many reported a high proportion of asymptomatic DVTs and distal DVTs. The clinical significance of asymptomatic and distal DVTs is uncertain. For instance, proximal DVT is more commonly associated with PE than distal DVT, and an RCT comparing placebo to LMWH treatment in patients with distal DVT found no difference in thrombus extension or symptomatic PE (the trial was terminated early due to slow recruitment and expiry of study drug). Current guidelines from the American College of Chest Physicians recommend that patients with isolated distal DVT without severe symptoms or risk factors for extension are followed up with serial imaging after two weeks, and recommend anticoagulation only if the thrombus extends. Although symptomatic PE occurs in only 1-5% of patients during the first 14 days after an acute stroke, PE may account for up to 25% of deaths after acute stroke.

The only previous population-based study investigating the association between stroke and VTE was a large registry-based case-control study from Denmark, including almost 6,000 patients and 60,000 controls. The study revealed that patients with a history of stroke had a 4.4-fold (95% CI 2.9-6.7) increased risk of VTE during the first three months after the stroke. The risk decreased but remained slightly elevated (HR 1.18, 95% CI 0.95-1.46), after the initial three months. However, the
events in this study were found by searching hospital registries for VTE-related ICD codes without further validation, and the study lacked information on possible confounders, including BMI. Thus, we cannot exclude that the entire, or parts of the association was non-causal and due to confounding factors.

In Paper I, we reported that subjects who developed ischemic stroke had an increased risk of VTE, compared with those without ischemic stroke in the general population. VTE events were thoroughly validated and potential confounders were collected at baseline and updated during follow-up for participants attending more than one survey. The risk of VTE was substantially increased the first month after the ischemic stroke, with a multivariable-adjusted HR of 19.7 (95% CI 10.1-38.5). The risk of VTE declined to 10.6 (95% CI 5.0-22.5) one to three months after the ischemic stroke and remained slightly elevated after three months (HR 1.5, 95% CI 1.1-2.2). Analyses stratified on types of VTE displayed a higher risk of provoked than unprovoked events, and provoking factors included, among others, immobilization within the last 14 days prior to the event. Risk estimates for DVT and PE were approximately the same (HR 19.1 and 20.2, respectively). The association between ischemic stroke and VTE remained significant after adjustment for age, sex, BMI and other cardiovascular risk factors.

Our results are in accordance with a registry-based cohort study assessing the association between stroke and VTE in the general population published in 2016. The study followed 200,000 stroke patients and a comparison cohort of almost 1 million members of the general population for five years and computed cumulative risks, rates, and HRs of VTE. Reported 5-year cumulative incidence of VTE was 2.1% (95% CI 2.1-2.2) in the stroke cohort, 2.3% (95% CI 2.2-2.4) in patients with ischemic stroke and 1.9% (95% CI 1.9-2.0) in the comparison cohort. 5-year VTE rates were 7.2 per 1,000 PY in the stroke cohort and 5.0 per 1,000 PY in the comparison cohort, yielding a HR of 1.5 (95% CI 1.5-1.6). The HR of VTE during the initial three months after the stroke was 4.8 (95% CI 4.4-5.2). The HRs were higher for PE (5.8, 95% CI 5.2-6.6) than DVT (4.2, 95% CI 3.7-4.7), and higher for provoked events (5.0, 95% CI 4.6-5.5) than unprovoked events (2.1, 95% CI 1.4-3.0). Provoking factors were defined as previous cancer or fracture, trauma, surgery, infection, pregnancy, delivery or immobilization within 90 days before the event. Of note, the stroke patients and VTE events were detected by searching registries, and the study had limited information on possible confounders, such as BMI. The specific type of strokes were registered (ischemic, hemorrhagic or subarachnoid hemorrhagic), but remained unspecified for 45%. The ischemic strokes were associated with a higher cumulative incidence of VTE than the hemorrhagic strokes, but the HRs were based on the entire stroke cohort. These limitations could, at least to some extent, explain why our study yielded higher risk estimates for VTE.
No recent studies have investigated VTE risk in stroke patients in the absence of anticoagulant treatment. As current knowledge and guidelines support routine thromboprophylaxis in hospitalized patients with reduced mobility and ischemic stroke,275 it would be unethical to perform RCTs to assess the risk of VTE without prophylactic treatment. Although only 37-50\% of patients with ischemic stroke received appropriate thromboprophylaxis (based on predefined criteria),145, 146 it is reasonable to believe that VTE risk would be substantially higher if none received anticoagulation. Furthermore, standard management of stroke patients include lipid-lowering treatment with statins and antiplatelet therapy with aspirin and/or other antiplatelet agents.276 Statins have been shown to reduce the risk of VTE in some,277-279 but not all studies.280, 281 A large meta-analysis published in 2012 did not support a large protective effect, but the authors concluded that a moderate reduction in risk could not be ruled out.282 Aspirin has previously been associated with decreased risk of recurrent VTE,283, 284 but not with decreased risk of incident VTE.285 However, results from a recent RCT found that a more intensive antiplatelet therapy reduced the risk of incident VTE.286 Treatment with anticoagulation, and possibly statins and aspirin, would underestimate the observed association between stroke and subsequent VTE.

5.2.2 Atherosclerosis and risk of venous thromboembolism

Atherosclerosis is an independent risk factor for stroke and MI,198-201 and after Prandoni and colleagues reported a higher frequency of carotid plaques in patients with unprovoked VTE compared with controls, it was hypothesized that atherosclerosis might be the missing link between arterial CVD and VTE. The association between atherosclerosis and VTE was later investigated in several studies, with different results depending on study design. Case-control studies reported an association between atherosclerosis and VTE, and unprovoked VTE in particular.3, 207-209 In contrast, three large population-based cohorts found no association, and a cause-specific model excluded MI as a potential confounder or mediator.4-6 Several factors may explain the divergent results between cohort and case-control studies. Firstly, recruitment of controls that are not fully representative of the source population from which the cases were derived can lead to overestimation of the true effect. None of the case-control studies selected controls from the general population.3, 207-209 Secondly, carotid atherosclerosis was defined in different ways in the different studies. For instance, a plaque was defined as a protrusion into the lumen of at least 1.5 mm in some studies,3, 5, 209 and as a localized thickening of the vessel wall of > 50\% compared to adjacent IMT in other studies.4, 208 Lastly, case-control studies are inherently prone to reverse causation, and it is not possible to determine if atherosclerosis caused VTE or vice versa. Although this is an unlikely explanation in the three studies in which assessment of atherosclerosis was performed in close proximity to the VTE diagnosis,3, 207, 208
it might be the case in the study where assessment of atherosclerosis was done within three years from the VTE diagnosis.²⁰⁹ Hald and colleagues calculated and compared risks of MI and VTE associated with atherosclerosis to ensure that the measurement and classification of atherosclerosis were appropriate. They found an association between atherosclerosis and MI with a similar magnitude as shown earlier, but no association between atherosclerosis and VTE.⁴ The remaining concern was that atherosclerosis might have developed over time and that a true association with moderate effect size could have been underestimated due to regression dilution bias. The main argument against the cohort studies has, indeed, been the long time between the baseline measurements and outcome.²⁸⁷

In Paper II, we assessed if the negative results in cohort studies were due to regression dilution bias by using repeated measurements of participants recruited from the general population. VTE events were thoroughly validated and potential confounders were updated during follow-up for participants attending more than one survey. In time-varying analyses, we found no association between the initiation, presence or progression of atherosclerosis and VTE, and adjustment for potential confounders did not alter the results. Our study confirms the results from previous cohort studies and provides further evidence of a non-causal relationship between atherosclerosis and VTE.

A recently published study using data from the Tromsø Study assessed whether an incident VTE was associated with subsequent formation and progression of carotid atherosclerosis.²⁸⁸ Participants attending two or more ultrasound examinations in the Tromsø Study were eligible for the study, and 150 subjects with incident VTE were identified. Subjects with carotid plaque(s) at the first visit had 4.1 mm² (95%CI -1.7 to 10.0) larger change in TPA between the first and second visit compared with subjects without VTE. The association persisted after adjusting for potential confounders, including CRP, and after restricting the analyses to VTE diagnosed in the first half of the time interval between ultrasound examinations. No association between VTE and subsequent novel plaque formation was found.²⁸⁸ The results must be interpreted with caution due to limited statistical power, and larger studies are warranted. Nonetheless, increased risk of plaque progression after VTE could potentially explain the previously diverging results between study designs (i.e. case-control studies detected an increase in atherosclerosis after VTE) and to some extent mediate the association between VTE and subsequent risk of arterial CVD.

5.2.3 Shared risk factors for arterial cardiovascular diseases and venous thromboembolism

Of the traditional cardiovascular risk factors, only age and obesity has consistently been associated with VTE. Whether other risk factors, such as diabetes, hypertension, dyslipidemia, and
smoking, increases the risk of VTE is controversial. As previously mentioned, the majority of studies that found an association between cardiovascular risk factors and VTE were retrospective, whereas most prospective studies reported no association. While case-control studies are limited by possible reversed causation and high risk of recall and selection bias, cohort studies are limited by potential regression dilution bias due to a long time between exposure and outcome.

In Paper III, we reported that risk estimates for VTE and MI based on a single baseline measurement corresponded well with risk estimates based on repeated measurements. Except for BMI, none of the atherosclerotic risk factors increased the risk of VTE, neither in the time-fixed model based on baseline measurements nor in the time-varying analyses based on repeated measurements. The results suggest that regression dilution bias does not explain the lack of association between cardiovascular risk factors and VTE in the cohort studies.

Our results are in agreement with the majority of previously published cohort studies. Further, the results are in accordance with those from a large meta-analysis published in 2017, investigating the association between cardiovascular risk factors and VTE. The study by Mahmoodi and colleagues was based on data from 9 large cohorts and included approximately 250,000 participants with 5,000 VTE events. In models adjusted for age, sex, and BMI, there was no association between VTE and hypertension, hyperlipidemia or diabetes. Current smoking was associated with a 1.2-fold increased risk of VTE (HR 1.19, 1.08-1.32), and subgroup analyses revealed that smoking was associated with provoked VTE (HR 1.36, 95% CI 1.22-1.52), but not unprovoked VTE (HR 1.08, 95% CI 0.90-1.29). The increased risk of provoked VTE is potentially mediated by cancer, which is a well-known risk factor for VTE, or hospitalization and immobilization due to other smoking-related diseases, such as MI and chronic respiratory illnesses. This is supported by the lack of association between smoking and VTE in cause-specific analyses, eliminating the mediating effect of cancer and MI. In order to assess whether the long follow-up in the included studies could have diluted the associations, sensitivity analyses with follow-up restricted to five years were performed. Results in the sensitivity analyses were comparable to the original analyses with long follow-up. Surprisingly, the meta-analysis found an inverse association between systolic blood pressure and VTE. The authors discuss that competing risk of comorbid conditions, such as atrial fibrillation, might explain the results as atrial fibrillation is strongly associated with hypertension and routinely treated with anticoagulant drugs. Nonetheless, the study concluded that previously reported associations between cardiovascular risk factors and VTE are likely to be non-causal due to confounding.

Previous studies have shown an association between FHMI and VTE. The family history itself is not a risk factor but indicates clustering of genetic and environmental risk factors of VTE in
certain families. Age and BMI explains some of the association between FHMI and VTE, but other cardiovascular risk factors have little impact on the association. Due to the particularly increased risk of unprovoked VTE, and that the risk of VTE increased with increasing numbers of affected relatives, it was hypothesized that the association between FHMI and VTE was caused by shared genetic risk factors. In accordance with previous studies, we found a 1.3-fold increased risk of VTE in individuals with a FHMI in Paper IV. However, the association between FHMI and VTE could not be explained by rs8176719 (ABO), rs6025 (F5), rs1799963 (F2), rs2066865 (FGG), and rs2036914 (F11), as adjustments for these prothrombotic genotypes had a negligible effect on the risk estimates. Furthermore, combinations of FHMI and the prothrombotic genotypes had additive effects on the risk of VTE. For instance, having both FHMI and rs8176719 (ABO) was associated with a 1.8-fold increased risk of VTE, which was equal to the sum of having only FHMI or rs8176719 (ABO). Similar results were found for FHMI in combination with the other individual SNPs and the combined 5-SNP score. Our results suggest that FHMI and the prothrombotic genotypes are unrelated risk factors of VTE and that these prothrombotic genotypes do not affect the association between FHMI and VTE.

The mechanism(s) for the association between FHMI and VTE remains unknown. Two risk factors acting through the same pathophysiological pathway can have both synergistic and additive effects on an outcome. For instance, obesity and rs6025 (F5), which are associated with hypercoagulability, had synergistic effects on VTE risk. Similarly, the risk of VTE in obese women using oral contraceptives has been shown to exceed the sum of the effects of the individual risk factors. However, a cohort study of 66,000 genotyped participants found additive effects on VTE risk when different prothrombotic genotypes, all causing hypercoagulability, were combined. Consequently, our results do not allow us to determine the mechanisms behind the association between FHMI and VTE and do not exclude the possibility that other unrecognized genetic variants can partly explain the association between FHMI and VTE.

Even though the genotypes studied in Paper IV do not explain the association between FHMI and VTE, results from Paper IV and previous studies indicate that genetic risk factors are one of the main contributors to the association. In addition, environmental risk factors clustering within families may potentially act as confounders or mediators for the association. Although the association between FHMI and VTE is independent of traditional cardiovascular risk factors, other environmental risk factors related to both MI and VTE, such as stress and socioeconomic status, might partly explain the association.

On the basis of the papers in the present thesis and results from previously published studies, it is possible to conclude that, of the well-known cardiovascular risk factors, only age, obesity and FHMI are shared risk factors between arterial CVD and VTE. In addition, the association between smoking
and VTE observed in some studies seems to be mediated by cancer and other smoking-related diseases, such as MI and chronic respiratory diseases.

5.2.4 Possible mechanisms for the association between arterial cardiovascular diseases and venous thromboembolism

The underlying mechanism explaining the observed association between arterial CVD and VTE is unknown, but different mechanisms have been suggested. In essence, the association can be non-causal due to shared risk factors (i.e. confounders), or causal (Figure 8, Panel A). If a causal relationship exists, the effect of arterial CVD on VTE can be indirect (i.e. mediated through other factors) or direct (Figure 8, Panel B). Furthermore, the association between arterial CVD and VTE can be due to confounders, mediators and a direct effect, and thus be partially non-causal and partially causal (Figure 8, Panel C).

The association between arterial CVD and VTE would be non-causal if shared risk factors explained the association. As previously discussed, a confounding variable for the association between

![Figure 8](image)

Figure 8. Possible mechanisms for the association between arterial CVD and VTE. Panel A represents a non-causal relationship caused by shared risk factors (i.e. confounders), and Panel B represents a causal relationship. The association that remains after removing the indirect effect caused by mediator(s) represents the direct effect of arterial CVD on VTE. Panel C demonstrate the combined non-causal and causal relationship with shared risk factors, mediators and a direct effect of arterial CVD on VTE.
arterial CVD and VTE is a variable that is an independent risk factor for VTE, associated with arterial CVD and not an intermediate variable between the arterial CVD and VTE. In the papers included in the present thesis, we demonstrated that there is no association between atherosclerosis and VTE and that BMI is the only traditional cardiovascular risk factor associated with VTE. Thus, atherosclerosis and the other cardiovascular risk factors (e.g. hypertension, dyslipidemia, diabetes) do not meet the criteria to be confounders, and cannot explain the association. This is emphasized by the small effects of adjusting for cardiovascular risk factors and FHMI on the risk estimates for VTE. If the association between arterial CVD and VTE was explained entirely by cardiovascular risk factors, adjusting for these risk factors would completely attenuate the association. Consequently, some of the association is likely to be caused by other, unknown, shared risk factors (i.e. residual confounding), synergistic effects of known and unknown risk factors, or by indirect or direct factors.

Furthermore, if shared risk factors were important for the association between arterial CVD and VTE, there would be a permanent, and not transient, increased risk of VTE. In fact, the VTE risk would be expected to increase over time after diagnosis of arterial CVD, as risk factors tend to accumulate over time and age. However, studies investigating the risk of VTE by time since an arterial CVD event demonstrated that the VTE risk was substantially increased during the first three to six months after the arterial event, but declined rapidly thereafter. This suggests that mechanisms related to the arterial event itself increase the risk of VTE.

Several lines of evidence point towards a causal relationship between arterial CVD and subsequent VTE. From a clinical and pathophysiological perspective, it is likely to assume that the majority of the association between arterial CVD and VTE is caused by mediators. For instance, we know that hospitalization and immobilization are important risk factors for VTE, and a potential consequence of arterial CVD. In accordance with this, some studies have shown that arterial events are especially associated with subsequent provoked VTE events. Further, Barsoum and colleagues found a significant association between MI and VTE in crude analyses (OR 1.84, 95% CI 1.25-2.71) in a case-control study, but the OR was attenuated to 1.64 (95% CI 1.05-2.57) after they adjusted for hospitalization for major surgery or medical illness, and nursing home confinement in addition to age and BMI. Neurological deficits with accompanying immobilization are common complications of stroke, and a risk factor for VTE. In a population-based case-crossover study, Morelli and colleagues investigated stroke and other triggers for incident VTE. Stroke was registered in 4.2% of the hazard periods (90 days before the VTE event), compared with 0.2% of the control periods (18 to 6 months), resulting in a 20-fold increased risk of VTE (95% CI 8.3-48.1). The risk was attenuated to 6-fold (95% CI 1.6-22.1) when immobilization and infection were taken into account, and a mediation analysis revealed that 68% of the total effect of stroke on VTE risk was mediated by immobilization.
and infection. In a study by Sørensen and colleagues, the risk estimates of VTE four months to five years after MI and stroke were 1.01 (95% CI 0.78-1.31) and 1.18 (95% CI 0.95-1.46), respectively. After five years, the risk was similar for MI and stroke patients (RR of 1.3). The higher long-term risk in stroke patients might reflect the increased risk of prolonged immobilization due to paralysis or paresis. Supporting this hypothesis, studies have shown that different measures of stroke severity are strongly associated with VTE risk, and that most DVTs after stroke affects the paretic leg.

However, studies have demonstrated an increased risk of unprovoked VTE after arterial CVD as well, and some studies found similar risk estimates for unprovoked and provoked VTE. Thus, it is unlikely that hospitalization and immobilization explain the entire association between arterial CVD and VTE. Other medical complications are frequent among MI and stroke patients, and potential mediators for the association between arterial CVD and VTE include infections due to prolonged hospital stays, heart failure, and surgery (e.g. coronary artery bypass grafting). Infections have been shown to increase the VTE risk independent of immobilization, suggesting that other factors, such as local inflammation and activation of coagulation, contribute to the increased risk of VTE. While both heart failure and atrial fibrillation has the potential to induce stasis and subsequent VTE, it has also been suggested that atrial fibrillation can lead to right-sided atrial thrombi that can dislodge and cause PE. This hypothesis is supported by the particularly increased risk of PE after MI, and it might (partly) explain why up to 50% of patients with PE do not have concurrent DVT.

The direct effect of arterial CVD on VTE would be the association that persists after adequate adjustments for confounders and mediators. However, indirect and direct effects can be hard to distinguish from each other, especially for multifactorial diseases without a specific and known mechanism, such as VTE. For the association between arterial CVD and VTE, the direct effect would be the basic pathophysiological mechanisms in which arterial CVD leads to coagulation activation and thrombus formation. For instance, studies have demonstrated alterations in concentrations of pro- and anticoagulant proteins in the acute phase of ischemic stroke, and a bidirectional association between inflammation and coagulation can possibly induce thrombus formation. However, it might be difficult to differentiate whether these alterations are a result of the arterial event itself or other medical complications following the arterial event.

Finally, the association between arterial CVD and VTE might be a result of medical surveillance bias. As previously discussed, it is a type of bias that can occur if an exposure leads to closer surveillance and an increased probability of detection of an outcome. We cannot exclude that patients with MI and stroke are under stronger surveillance, and are more likely to undergo diagnostic procedures for DVT.
and PE, than the general population. Including only symptomatic VTE events will, to some extent, reduce the risk of this bias.

The association between arterial CVD and VTE is a result of a complicated interplay between non-causal and causal mechanisms. To unravel the total causal effect of arterial CVD on VTE, analyses must be adjusted for confounders, and to investigate the direct effect of arterial CVD on VTE, analyses must be adjusted for confounders and mediators (see Figure 8). However, this might be difficult as there may be reasonable doubt as to whether a variable is in the causal pathway between arterial CVD and VTE or not, and because a variable might be a confounder and a mediator. For instance, one can argue that obesity increases the risk of both arterial CVD and VTE, and thus be a confounder for the association. Conversely, one can also argue that obesity is a result of an inactive lifestyle, a possible consequence of an arterial event. In this case, obesity is in the causal pathway between MI and VTE, and can thus be classified as a mediator. Nevertheless, the most important initiative to improve patient care is to acknowledge arterial CVD as a risk factor for VTE, to avoid complications of arterial CVD related to increased VTE risk, and to give appropriate anticoagulation in situations where thromboprophylaxis is warranted. As current data on the prediction of VTE in stroke patients are scarce, better knowledge regarding risk factors and triggers for VTE in stroke patients are important to develop future risk assessment models.
6. Conclusions

- Subjects who developed ischemic stroke had an increased risk of VTE compared with those without stroke in the general population. The risk of VTE was especially high during the first three months after ischemic stroke and declined rapidly thereafter. Ischemic stroke yielded higher risk of provoked VTE than unprovoked VTE, and adjustments for cardiovascular risk factors did not attenuate risk estimates. This suggests that mechanisms or conditions related to the stroke itself contribute substantially to the association between ischemic stroke and VTE.

- Carotid atherosclerosis, measured by IMT and TPA in time-varying analyses, was not associated with future risk of VTE. Furthermore, there was no association between plaque initiation or plaque progression and VTE. Our findings suggest that atherosclerosis is not an intermediate for the association between arterial CVD and VTE.

- We found that risk estimates for VTE and MI based on a single baseline measurement and time-fixed analyses corresponded well with risk estimates based on repeated measurements and time-varying analyses. Except for BMI, none of the cardiovascular risk factors were associated with VTE, suggesting that the lack of association between cardiovascular risk factors and VTE in previous prospective cohort studies cannot be explained by regression dilution bias. For MI, the difference between risk estimates from the time-fixed and time-varying analyses was greatest for variables that changed much during follow-up and for variables with strong associations with MI.

- The known association between FHMI and VTE was not explained by rs8176719 (ABO), rs6025 (F5), rs1799963 (F2), rs2066865 (FGG) or rs2036914 (F11). Combinations of FHMI and the prothrombotic genotypes displayed an additive effect on VTE risk, indicating no biological interaction between the risk factors.
7. Final remarks and future perspectives

The findings in this thesis support a strong association between stroke and subsequent VTE. The risk is especially high during the first three to six months after the stroke, indicating that factors related to the stroke itself increase the risk of VTE. Thus, it is important to avoid complications of the stroke related to increased VTE risk, such as immobilization and infections, and to use thromboprophylaxis. Current international and national guidelines recommend prophylactic-dose LMWH or intermittent pneumatic compression stockings in patients with acute ischemic or hemorrhagic stroke and restricted mobility. Unfortunately, evidence suggests that these guidelines are not routinely followed. Although rates are somewhat higher in most European countries, only 37-50% of stroke patients worldwide receive appropriate thromboprophylaxis. To improve patient care, it is important to increase the rates of appropriate use of thromboprophylaxis in stroke patients and to develop prediction models to accurately discriminate between patients at high and low risk of VTE.

Our results support the findings from previous cohort studies reporting that there is no association between atherosclerosis and VTE. Thus, atherosclerosis cannot explain the association between arterial CVD and VTE. Furthermore, we have reported that, among the well-known cardiovascular risk factors, only age, obesity and FHMI are associated with VTE. In addition, there seems to be an association between smoking and provoked VTE which is mediated by cancer and other smoking-related diseases. The association between arterial CVD and VTE persists in analyses adjusted for cardiovascular risk factors, suggesting that there is a causal relationship between arterial CVD and VTE. Further research to unravel the mechanisms behind the association between arterial CVD and VTE are warranted to understand the complex interplay between shared risk factors, mediators and direct effects.

MI, stroke, and VTE are the three most common cardiovascular diseases, with a high risk of mortality and disability. Shared risk factors are important targets for interventions, as there is great potential to decrease the burden of several diseases. Obesity is, as discussed in this thesis, a shared risk factor for arterial CVD and VTE. In 2016, more than 1.9 billion adults were overweight and over 650 million adults were obese, and the prevalence of both overweight and obesity is increasing. A high proportion of arterial CVD and VTE events can be attributed to obesity, and interventions to reduce obesity are important to reduce the large impact of MI, stroke, and VTE at an individual and population level.
8. References

42. White RH. The epidemiology of venous thromboembolism. *Circulation*. 2003;107:i4-8

63. Virchow R. Phlogese und Trombose im Gefässystem. In: Gesammelte Abhandlungen zur wissenschaftlichen Medicin. 1856;III; 458-635

69

87. Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 3'-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. *Blood*. 1996;88:3698-3703

101. Tregouet DA, Morange PE. What is currently known about the genetics of venous thromboembolism at the dawn of next generation sequencing technologies. *Br J Haematol*. 2018;180:335-345

239. Haut ER, Pronovost PJ. Surveillance bias in outcomes reporting. JAMA. 2011;305:2462-2463

256. van der Heijden GJ, Donders AR, Stijnen T, Moons KG. Imputation of missing values is superior to complete case analysis and the missing-indicator method in multivariable diagnostic research: a clinical example. J Clin Epidemiol. 2006;59:1102-1109

Paper III
Paper IV