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Summary 

Obesity is a well-known risk factor for several severe diseases, including diabetes and 

cardiovascular disease. The metabolic syndrome is a concept related to obesity which 

includes additional risk factors for disease: increased waist circumference, high blood 

pressure, elevated fasting glucose, elevated triglycerides and lowered high-density lipoprotein 

cholesterol levels. 

Both obesity and the metabolic syndrome are known risk factors for chronic kidney disease 

and end-stage renal disease, but their effect on kidney function before reaching those disease 

states is less clear. The results from previous studies on these subjects are divergent and 

inconclusive. 

The concept of hyperfiltration, a state of elevated GFR (glomerular filtration rate, a measure 

of kidney function), may contribute to the inconsistency of research results on the subject. 

Hyperfiltration is present in diabetes, obesity and hypertension, and is a state of distress 

which may cause kidney damage in the long term. In the short and medium term, however, it 

may present as higher or increasing GFR. It may also cause albuminuria, which is an early 

marker of endothelial damage. 

In this thesis, the association between obesity, the metabolic syndrome, changes in GFR and 

hyperfiltration were explored in the population-based Renal Iohexol Clearance Survey. GFR 

was measured with an accurate method (iohexol clearance) in 1627 persons in 2007-09 and 

repeated in 1324 of the same persons in 2013-15. The relationship between changes in GFR 

and changes in albuminuria was also explored, to further explore the concept of 

hyperfiltration as an increase in GFR over time. 

We found that obesity was associated with hyperfiltration, but not with accelerated GFR 

decline. Increased albuminuria was associated with increased GFR. The metabolic syndrome 

was associated with accelerated GFR decline. The results point to hyperfiltration as an 
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important factor in the relationship between obesity and GFR, and that hyperfiltration is 

associated with albuminuria. 
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1 Background 

1.1 Obesity 

1.1.1 Prevalence 

Obesity is a growing problem globally. In large population surveys, body mass index (BMI, 

defined as body weight in kilos divided by height in metres squared) is the most commonly 

used measure to define obesity. The World Health Organisation (WHO) criteria classify a 

person with a BMI ≥25 kg/m2 as overweight, while a person with a BMI ≥30 kg/m2 is 

considered obese. In Norway, the estimated prevalence of overweight and obesity increased 

from 34.0% and 6.7%, respectively, in 1975 to 58.9% and 23.2%, respectively, in 20141. In 

2016, the Center for Disease Control National Center for Health Statistics estimated the 

prevalence of obesity in the United States to be 39.8%2. In the same year, WHO estimated 

that more than 1.9 billion people worldwide were overweight, of whom more than 650 

million people were obese3. 

1.1.2 Obesity as a risk factor 

The 2016 Global Burden of Disease Study ranked a high BMI as the second greatest risk 

factor for global disability-adjusted life years lost in women, and the sixth greatest in men4. 

An estimated 4 million deaths were attributable to high BMI in 2015 globally, and an 

estimated 120 million disability-adjusted life years lost5. The increased mortality in obesity is 

largely due to the increased risk of cardiovascular disease and diabetes, but obesity also 

increases the risk of several other diseases and conditions, including certain cancers, sleep 

apnoea, infertility and venous thromboembolism5-7. Compared to persons with a BMI of 20-

25 kg/m2, overweight persons have a more than 1.5 times higher prevalence of cardiovascular 
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disease and diabetes, while those with a BMI ≥30 kg/m2 have a more than 3.5 times higher 

prevalence of diabetes and hypertension8. 

1.1.3 Obesity measurements 

Obesity is most commonly measured using BMI. Its origin is with the Belgian scientist 

Adolphe Quetelet, who first used the formula in 18329, but its modern name came from Keys 

et al. in 197210. BMI is calculated from weight divided by height squared, so by definition it 

does not account for body shape or composition. However, it has become the leading method 

for the measurement of obesity in large populations due to its simplicity and almost universal 

availability. 

Several simple body measurement techniques other than the BMI have been proposed and 

used in population studies. Of these, waist circumference (WC) and its ratio to hip 

circumference, the waist-to-hip ratio (WHR), are the most commonly used. They capture 

different aspects of obesity than BMI in that they reflect the placement and distribution of 

mass in the body rather than the body weight itself. Several studies have pointed to these 

variables as better predictors of cardiovascular and diabetes risk than BMI11-14. However, 

large meta-analyses have not found clinically significant differences between WC, WHR and 

BMI in predicting these diseases15, 16. WC and WHR are still commonly used in population 

studies as a supplement to BMI. 

BMI, WC and WHR cannot be used to measure the actual amount of fat tissue in the body. 

Accurate measurements of fat mass include bioelectrical impedance, dual X-ray 

absorptiometry, computed tomography and magnetic resonance imaging. These methods 

(with the exception of bioelectrical impedance) allow for distinction between visceral 

(abdominal) fat, subcutaneous fat, and other contributors to body mass such as muscle and 

bone. Visceral fat, but not subcutaneous fat, has been associated with an increased risk of 
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myocardial infarction17, type 2 diabetes18, incident chronic kidney disease19 and metabolic 

syndrome20, independent of BMI. 

1.1.4 Categorisation 

Categorising continuous variables may be useful for the purposes of diagnosis, clinical 

decision making, public policy and communication to the public. WHO has standardised the 

categorisation of obesity measurements, as presented in Table 13. 

The categories of BMI are fairly well rooted in mortality risk. A large meta-analysis found the 

lowest mortality in the BMI range of 22.5–25.0 kg/m2, with the excess mortality risk 

increasing rapidly above a BMI of 30 kg/m2 21. It should be noted that while the BMI 

categories are often used universally, several studies suggest a different categorisation should 

be used for Asian population groups due to the higher risk of diabetes at a lower BMI than in 

European or African populations22. 

The categories of WC are based on a British cohort in a 1995 study by Lean et al.; the cut-off 

values were chosen based on their ability to identify participants with a high BMI and/or high 

WHR with high sensitivity and specificity23. The lower threshold identified subjects with a 

BMI ≥25 kg/m2 and the higher threshold identified subjects with a BMI ≥30 kg/m2. The same 

WC cut-off points were used as one of the five criteria of the metabolic syndrome, which will 

be covered in more detail in the next chapter of this thesis. The origin of the WHR categories 

appears to be a 1999 WHO consultation on diabetes, in which the WHR cut-off points were 

suggested as a criterion for the metabolic syndrome24. The authors offered no source or 

explanation for this choice of cut-off points, and neither the WC nor the WHR cut-off points 

appear to be rooted in epidemiological studies of mortality or morbidity. 
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Table 1. BMI, waist circumference and waist-hip ratio categories for European, 
African and Middle Eastern populations according to World Health Organisation and 
International Diabetes Federation criteria3. 

 World Health Organisation category Measurement range 

Body mass index 

Underweight <18.5 kg/m2 

Normal 18.5–24.9 kg/m2 

Overweight 25.0–29.9 kg/m2 

Obesity ≥30.0 kg/m2 

Waist circumference 

Normal 

<80 cm (female) 

<94 cm (male) 

Increased risk of metabolic 

complications 

≥80 cm (female) 

≥94 cm (male) 

Severely increased risk of metabolic 

complications 

≥88 cm (female) 

≥102 cm (male) 

Waist-hip ratio 

Normal <0.85 (female) 

<0.90 (male) 

Severely increased risk of metabolic 

complications 

≥0.85 (female) 

≥0.90 (male) 
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1.2 Metabolic syndrome 

1.2.1 Definition 

The concept of metabolic syndrome (MetS) stems from the long-known observation that 

obesity and a cluster of interrelated risk factors increase the risk for diseases such as diabetes 

and cardiovascular disease25. Many scientists have contributed to our understanding of the 

relationships between the various risk factors and diseases, but Reaven is often credited for 

the modern understanding of the syndrome, with insulin resistance as a core concept26. 

The currently used criteria for the syndrome were harmonized in 2009 from different 

definitions stemming from the WHO and the 2001 National Cholesterol Education Program 

Adult Treatment Panel III, respectively27. The thresholds for criteria are based on the 

diagnostic criteria for hypertriglyceridaemia (high triglycerides), hypoalphalipoproteinaemia 

(low high-density lipoprotein cholesterol), and pre-diabetes (high glucose), as well as the 

blood pressure treatment thresholds in diabetes, and the previously mentioned waist 

circumference thresholds. There is not yet a consensus on which waist circumference 

threshold should be used for MetS, and both are often presented in studies of MetS. The 

criteria are listed in Table 227. 
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Table 2. Criteria for the metabolic syndrome: Three out of 5 criteria must be fulfilled 
for diagnosis. 

Category Criteria 

Abdominal obesity 

Waist circumference: In the United States and Europe, two 

different thresholds are currently in use by researchers: 

≥80 cm (female), ≥94 cm (male) (strict definition) 

≥88 cm (female), ≥102 cm (male) (less strict definition) 

Other thresholds may apply to different ethnic groups 

Elevated blood pressure 

Systolic blood pressure ≥130 mm Hg and/or diastolic 

blood pressure ≥85 mm Hg, or use of antihypertensive 

medication 

Impaired glucose tolerance 

Fasting glucose ≥5.6 mmol/L, or use of anti-diabetic 

medication 

High triglycerides levels 

Fasting triglycerides ≥1.7 mmol/L, or use of triglycerides-

lowering medication 

Low high-density lipoprotein 

cholesterol levels 

Fasting high-density lipoprotein cholesterol < 1.29 mmol/L 

(female), <1.03 mmol/L (male), or the use of cholesterol-

altering medication 
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1.2.2 Prevalence and relevance 

The prevalence of MetS in the United States has increased in tandem with the obesity 

epidemic, from 22.7% of adults in 1988–94 to 34.2% in 2007-12 in the National Health and 

Nutrition Examination Surveys, using the less strict definition of MetS28, 29. By the same 

definition, 25.9% of participants in the North Trøndelag Health Study had MetS in 1995–

9730and 25.5% had MetS in the 2007–8 Tromsø Study31. MetS is associated with increased 

risk of diabetes (relative risk (RR): 3.0)32, cardiovascular disease (RR: 2.4)33, chronic kidney 

disease (estimated glomerular filtration rate <60 ml/min/1.73m2; RR: 2.5)34, various cancers35 

and all-cause mortality (RR: 1.6)33. 

1.2.3 Utility and controversy of the metabolic syndrome 

Critics of the concept argue that these associations do not yield much value because metabolic 

syndrome is composed of several well-known risk factors and does not necessarily provide 

additional risk information beyond its constituent components36. Proponents see it as a useful 

concept to alert and educate patients, healthcare providers and the general public about the 

high and interrelated risks of insulin resistance, obesity, hypertension and dyslipidaemia 

which affect a large segment of the population37. 

There has also been debate on whether obesity without MetS may constitute a separate, 

lower-risk “metabolically healthy” form of obesity, in which the risks normally associated 

with obesity are absent or greatly reduced38, 39. However, obesity appears to increase disease 

risk significantly even without MetS, although the risk is even higher when MetS is present 40-

42. 
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1.3 Kidney function and albuminuria 

1.3.1 Nephron number 

The functional unit of the kidney is the nephron. The number of nephrons in humans is set 

around birth and does not increase afterwards. There is a large variation between individuals 

in the number of nephrons present in a kidney; estimates vary between 200,000 to more than 

2,000,000 per kidney43. Low birth weight and family history of end-stage renal disease are 

risk factors associated with a lower nephron number43-46. Adult height and sex are also 

associated with nephron number and are more easily available to researchers and clinicians 

than birth weight: tall persons and males generally have higher nephron numbers, though 

Denic et al. found no sex difference in a multivariable adjusted regression analysis of kidney 

donors47. Height and sex are also associated with birth weight48, and these three variables may 

be seen surrogates for the complex interplay between the genetic, nutritional and intrauterine 

conditions which determine nephron number43-45, 49, 50. Low nephron numbers have been 

associated with hypertension and chronic kidney disease51, 52. Nephron numbers decrease 

gradually with age as nephrons develop sclerosis and cease functioning; donors aged 70-75 

years old had 48% fewer nephrons than those aged 18-29 in the study by Denic et al.47. 

1.3.2 The glomerular filtration rate 

Kidney function is usually assessed as the glomerular filtration rate (GFR), which is the total 

volume of blood filtered through all the glomeruli in the nephrons in both kidneys per minute, 

expressed as ml/min. By tradition, this whole-kidney GFR is adjusted for 1.73 m2 of body 

surface area (BSA) to reduce the spread in GFR seen in people of different sizes, although 

this is not without controversy, as we will see in chapter 1.3.3. 

In everyday clinical practice and in most population studies, GFR is estimated using the 

serum concentration of creatinine or cystatin C and an estimation equation. There are several 
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equations for estimated GFR (eGFR), but the Chronic Kidney Disease Epidemiology 

Collaboration (CKD-EPI) equation is currently the most commonly used equation for 

adults53, and the Schwartz equation is used for children54. The Berlin Initiative Study 1 

equation has been developed for the elderly,55 but there is no general agreement about which 

equation is best for this age group. A unified equation for all ages has been proposed, but has 

not yet been widely adopted56. 

1.3.3 Critiques of eGFR and body surface area standardisation 

All eGFR equations are hampered by the fact that they are estimates based on serum levels of 

creatinine and/or cystatin C, rather than actual measurements of GFR. Around 10–20% of 

CKD-EPI eGFR values differ by more than 30% from the measured GFR (mGFR) value, and 

the absolute differences (in ml/min/1.73m2) between eGFR and mGFR are larger in the higher 

ranges of GFR53, 57. Additionally, the serum concentrations of both creatinine and cystatin C 

are known to be influenced by non-GFR-related factors such as muscle mass, cardiovascular 

risk factors and inflammation, which lead to biased eGFR estimates and contribute to the 

imprecision of eGFR58-62. 

Another critique points to the traditional standardisation of GFR to a body surface area (BSA) 

of 1.73m2. The equation for estimating BSA was created by the Du Bois brothers in 191663. 

The choice of 1.73 m2 is based on the average BSA measured in volunteers in 192564; the 

average BSA today is significantly higher. One strand of the critique rejects the basis for any 

standardisation at all, because it leads to an underestimation of GFR in obese persons in 

particular65-67. A person who gains weight will have higher GFR due to increased metabolic 

needs of the heavier body, but does not grow any new nephrons to handle this task, so GFR 

per nephron (single-nephron GFR, see chapter 1.5) will increase. The corresponding increase 

in BSA, however, apparently mitigates some of the GFR increase if one adheres to the 
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tradition of BSA standardisation. Even if the premise of standardisation of GFR is accepted, 

BSA is a poor choice to improve comparability of GFR across body sizes. Other variables 

such as extracellular fluid or total body water have been proposed as better alternatives, but 

have not been widely used in research or clinical practice68, 69. 

1.3.4 Measuring GFR 

One way to allay the problems associated with eGFR is measuring GFR precisely with an 

exogenous marker. The gold standard is continuous infusion of the inert marker inulin, but it 

is cumbersome and expensive to use in practice. The contrast substrates iohexol and 

iothalamate are easier to use, and correlate very well with inulin clearance70-72. 

All GFR measurement options require the injection or infusion of the marker followed by one 

or multiple measurements of the marker concentration in blood or urine. Unfortunately, this 

causes the methods to be costly and more time-consuming than the serum-based estimates and 

are thus regarded by many as unfeasible for everyday clinical practice. 

mGFR is mostly used in settings where the precise GFR of a patient is central to the decision 

to treat or not to treat, or when evaluating whether potential kidney donors are eligible to 

donate a kidney. The Renal Iohexol Clearance Survey (RENIS) study, presented in detail in 

chapter 3.1, is the only large general population study using repeated GFR measurements over 

time. 

1.3.5 Albuminuria 

Albumin is a protein present in the blood, and is normally excreted in very low quantities in 

the urine in healthy individuals. The presence of elevated albumin levels in urine is termed 

albuminuria, and is interpreted as a marker of kidney disease and endothelial dysfunction. It is 

often measured using immunoturbidometric assays, but high albumin levels can also be 
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detected as proteinuria with a standard dipstick test. Both albumin and creatinine 

concentrations are measured (in mg and mmol, respectively), and albumin is standardised to 

creatinine as the albumin/creatinine ratio (ACR), which has a high correlation with the 

albumin excretion rate73. Persistent albuminuria (>3 months of ACR >3 mg/mmol) is 

sufficient for a chronic kidney disease (CKD) diagnosis independent of GFR74, and is a 

marker of increased risk at any CKD stage (see chapter 1.4.1). 

Albuminuria is associated with increased risk of severe CKD, cardiovascular disease and 

mortality, even at excretions lower than the currently used Kidney Disease: Improving 

Kidney Outcomes (KDIGO) standard of 3 mg/mmol75, 76. Both obesity and MetS are 

associated with increased albuminuria77-80. A recent report from the RENIS cohort found that 

even trace amounts of albuminuria were associated with more rapid subsequent mGFR 

decline81. 

1.4 Chronic kidney disease 

1.4.1 Definitions 

CKD is a prolonged state of reduced kidney function or kidney damage caused by a variety of 

diseases and risk factors. It was defined by the Kidney Disease Outcomes Quality Initiative 

study group in 2002 and further refined in 2012 by the KDIGO study group74, 82. According to 

the criteria, CKD is defined by a reduced eGFR and/or increased ACR for more than 3 

months. The cause of kidney disease is also formally a part of the definition, but does not 

seem to play an important role in the practical staging of CKD. The KDIGO classification of 

CKD is tabulated in Figure 174. 
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Figure 1. Classification (staging) of CKD by estimated GFR and ACR, 2012 KDIGO 
guidelines, kdigo.org 

 

The KDIGO CKD criteria have been criticised for not taking age into account. GFR declines 

slowly when people get older, and the prevalence of CKD thus increases rapidly with age, 

approaching 50% among persons aged over 7083. Most elderly persons diagnosed with CKD 

have an eGFR between 45 and 59 without albuminuria, and their prognosis is good84. Others 

argue that introducing age into the classification would confuse patients and healthcare 

workers, and that GFR-related drug dosage restrictions should be based on GFR regardless of 

age85. 
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1.4.2 Incidence and prevalence of CKD 

End-stage renal disease (ESRD) is the most severe end stage (stage G5) of CKD. The 

incidence of ESRD in the US rose from a standardised incidence rate (standardised to the age, 

sex and race distribution of the US in 2011) of 87 per million in 1980 to 357 per million in 

2015, however the standardised incidence rate seems to have plateaued in the last 5-10 

years86. 

The prevalence of all stages of CKD increased significantly in the United States in the 1980s 

and 90s, including both the moderate, usually asymptomatic stages (stages G1-3, Figure 1) 

and ESRD, but has remained fairly stable in the last two decades86. ESRD is a serious 

condition, which requires intrusive and costly renal replacement therapy (dialysis or 

transplantation). Dialysis has a very high mortality rate of 164 deaths per 1000 patient-years 

(age-sex-race-standardised), while transplant recipients have a much lower rate (29 per 1000 

patient-years). However, standardised death rates for both dialysis and transplant recipients 

declined by 29% and 40%, respectively, between 2001–16. In 2011–14, an estimated 14.8% 

of the adult United States population had CKD, including 0.2% with ESRD86.  

Globally, estimated deaths attributable to CKD rose from 937,700 in 2005 to 1,234,900 in 

2015 according to the Global Burden of Disease survey87. CKD attributable to hypertension 

was the largest driver of deaths, followed by diabetes. 

In Norway, the incidence of ESRD has stabilised, but the prevalence still increases because of 

better survival among those with ESRD88. In 2016, 554 persons (105.8 per million) began 

renal replacement therapy. The three main causes were vascular/hypertensive (34%), 

glomerulonephritis (17%) and diabetic nephropathy (16%). This suggests that a significant 

proportion of ESRD may be preventable because it is rooted in diseases that can be 

effectively treated or prevented by modifying lifestyle-associated risk factors. The prevalence 
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of persons in renal replacement therapy in Norway was 4969, or 948.9 per million 

inhabitants88. 

1.5 Kidney physiology in hyperfiltration and ageing 

1.5.1 Hyperfiltration 

1.5.1.1 Background 

While CKD is defined by a low GFR or kidney damage, a high GFR is not necessarily a sign 

of health. The theory of hyperfiltration, proposed by Brenner et al. in 1996 based on research 

from the 1980s and 90s89, considers GFR at the single-nephron level (GFR per nephron, or 

whole-kidney GFR divided by nephron number). Brenner et.al demonstrated that rats with a 

reduced nephron number had high single-nephron GFR (hyperfiltration) and/or higher 

intraglomerular pressure. This state of hyperfiltration was in turn associated with podocyte 

damage, mesangial expansion, albuminuria and finally glomerulosclerosis and GFR decline90. 

Nephron loss may further increase the stress in remaining nephrons, causing a vicious cycle. 

Hyperfiltration has been shown to occur in diabetes91, but Brenner et al. proposed it as a 

general mechanism behind many diseases or conditions with nephron loss, including 

hypertension and obesity92. In a recent study, Melsom et al. found that high mGFR adjusted 

height, sex and age predicted faster subsequent mGFR decline in two cohorts of different 

ethnic origin: Pima Indians with diabetes and the Norwegian RENIS cohort112. 

1.5.1.2 Mechanisms 

The mechanisms of hyperfiltration are not fully understood, but may include several 

interacting factors. Vascular resistance in the afferent and efferent arterioles regulates single-

nephron GFR. The antihypertensive drugs angiotensin converting enzyme inhibitors and 

angiotensin II receptor blockers both target angiotensin II and cause efferent arteriole 

vasodilation93. They have been shown to reduce GFR in the short term, but to slow GFR 
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decline in the longer term, possibly because of a reduction of hyperfiltration94. A similar 

pattern of reduced hyperfiltration is seen with the use of sodium-glucose cotransporter 2 

inhibitors95. These drugs block glucose reabsorption in the proximal tubule, causing the 

glucose to be excreted in the urine rather than reabsorbed. Because the blocked cotransporter 

also transports natrium (sodium), natrium reabsorption in the proximal tubule is reduced as 

well, increasing natrium concentrations in the macula densa. This causes afferent arteriole 

vasoconstriction by tubuloglomerular feedback, which is mediated by an increase in 

adenosine. Interestingly, a recent study found increased adenosine concentrations in the urine 

of patients with type 1 diabetes who were treated with the drug empagliflozin96. Other 

potential mechanisms involved in hyperfiltration include intrarenal nitric oxide signalling and 

mechanical stress from glomerular hypertension97-100.  

1.5.1.3 Epidemiology 

While creatinine-based eGFR is a poor method for hyperfiltration research due to its 

inaccuracy, large longitudinal population studies using the method have shown increased 

mortality and morbidity in persons with high creatinine-based eGFR53. Traditionally, this has 

been explained as a falsely elevated eGFR from low serum creatinine being the result of low 

muscle mass due to wasting from chronic disease, such as cancer or severe emphysema. 

However, studies that have measured muscle mass and accounted for concurrent disease still 

found higher mortality in hyperfiltration101. 

Several studies suggest associations between hyperfiltration and many well-known ESRD risk 

factors, including pre-diabetes and diabetes, hypertension, obesity, albuminuria and 

smoking92, 101-108. Some interventions which reverse these factors, such as treatment of 

hypertension with losartan, treatment of diabetes with sodium glucose co-transporter 2-
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inhibitors and significant weight loss after gastric bypass surgery, result in a GFR decrease 

which may represent the normalisation of previous hyperfiltration95, 109-111 

Obesity, MetS and hyperfiltration have only been studied to a limited extent, with divergent 

results. These conditions are by their nature particularly affected by the imprecision of eGFR 

because of altered muscle mass in obesity, and low-grade systemic inflammation in obesity 

and MetS. The customary adjustment for 1.73 m2 of BSA also distorts the estimation of 

hyperfiltration in the obese. These factors may explain the divergent results among different 

study populations69, 103, 113-121, and are discussed in detail in papers 1 and 2 in this thesis. 

1.5.1.4 Definition 

There is no consensus on a common definition of hyperfiltration based on whole-kidney GFR. 

Some have used an arbitrary, round GFR cut-off value103, while others have used percentiles 

in their study population57, 92, 104, 114. However, a simple absolute or BSA-adjusted whole-

kidney GFR cut-off does not adequately consider the varied nephron endowment of 

individuals, and is less likely to reflect single-nephron GFR. A meta-analysis by Chagnac et 

al. suggested that a common hyperfiltration definition should at the very least involve an 

adjustment of GFR for age and gender to at least partially account for nephron numbers122. 

However, the authors did not suggest a definition themselves. A recent study by Chakkera et 

al. compared different methods to establish hyperfiltration definitions more consistent with 

single-nephron GFR in kidney donors. The study is discussed in detail in chapter 5.2.4 of this 

thesis. 

1.5.2 The ageing kidney and GFR decline 

As mentioned in chapter 1.3.1, the number of nephrons declines gradually with age, as they 

cease to function and the glomeruli become sclerotic47, 123-125. Other changes to the kidneys in 

old age include increased atherosclerosis in renal vasculature, interstitial fibrosis, tubular 
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necrosis, an increased number of renal cysts, and a reduction in cortical volume124. The 

nephron loss causes whole-kidney GFR to decline slowly with age, while single-nephron 

GFR remains fairly constant with age in healthy kidney donors, except in the oldest age group 

(>75 years old)126. 

In longitudinal studies of whole-kidney GFR, the rate of decline varies greatly. Some risk 

factors for CKD and ESRD may attenuate GFR decline, or even increase GFR in the short-

term, but still increase the risk of ESRD in the long-term81, 127-130. This apparent paradox may 

in part be due to the negative effects of hyperfiltration. 

Because no new nephrons are created after birth, an increase in GFR must represent an 

increase in single-nephron GFR, while a decrease in GFR may be due to a lower single-

nephron GFR, a loss of nephrons, or both. This suggests a possible alternative definition of 

hyperfiltration: a significant increase in whole-kidney GFR over time. 

1.6 Obesity as a risk factor for CKD 

Obesity is known to increase risk of diabetes, hypertension and cardiovascular disease, and 

also CKD and ESRD131-135. While a large part of the association with CKD is due to the first 

three factors, obesity may also be associated with CKD and ESRD independent of these 

intermediaries39. In a large meta-analysis, Hsu et al. found a relative risk for ESRD ranging 

from 1.9 for those with a BMI from 25–29.9 kg/m2 to 7.1 in subjects with a BMI ≥40 kg/m2 

134. 

However, the relationship between obesity, hyperfiltration and GFR decline in the general 

population is less clear, with conflicting study results19, 69, 103, 136, 137. The inconsistency of the 

results may be due to a combination of the inherent inaccuracies of eGFR, the misleading 

BSA correction of GFR, and the nature of hyperfiltration. As we explored in the previous 
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chapter, hyperfiltration may cause GFR to stabilize or increase in the short term, concealing 

detrimental effects on the kidney because eGFR appears to be normal. The damage to the 

kidneys may be reflected in lower eGFR at a much later stage, when preventative efforts may 

be less effective. A distinct form of kidney damage from severe obesity is obesity-related 

glomerulopathy, likely related to obesity-related hyperfiltration138. 

In summary, obesity, MetS and CKD are widespread globally, and are major causes of 

shortened lifespans and decreased quality of life. While obesity and the metabolic syndrome 

have consistently been shown to increase the risk of ESRD in epidemiological studies with 

long follow-up periods, their relationship with hyperfiltration and the age-related decline in 

GFR are not very well understood. This is in large part because of methodological problems 

caused by the use of eGFR instead of actual GFR measurements. 

 

2 Aims 

The primary aim of this thesis was to explore the relationship between obesity, metabolic 

syndrome, hyperfiltration, and the subsequent GFR decline rate. Since albuminuria is an 

important early sign of kidney dysfunction, we also examined the association of 

hyperfiltration (defined as an increase in GFR) with an increase in albuminuria. 
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3 Methods 

3.1 Participants 

3.1.1 RENIS-T6 

RENIS began in 2007 as a sub-study of the 6th Tromsø study139. The purpose of the study was 

to measure GFR with an accurate method in a large population of fairly healthy participants, 

representative of the general population. The chosen age group, 50–62 years old, was chosen 

because many people of that age have risk factors for lifestyle-associated diseases such as 

diabetes, chronic kidney disease and cardiovascular disease, but are still fairly healthy and 

have yet to develop those diseases. By studying them during ageing, it is possible to see 

which factors influence the course of GFR over time. 

The 6th Tromsø study invited all citizens of Tromsø 60–62 years of age, and a random sample 

of 40% of those aged 50-59 years old140. This amounted to 5464 people, of whom 3564 (65%) 

completed both rounds of the main part of the study. 

The exclusion criteria for the first round of the RENIS study, named RENIS-T6, were 

diabetes, any renal disease except urinary tract infections, angina pectoris, myocardial 

infarction or stroke. Overall, 739 of those who completed the Tromsø study were excluded, 

leaving 2825 eligible people who were invited to RENIS. Of these, 2107 responded 

positively, but a further 125 were ultimately excluded because they reconsidered and 

withdrew, reported allergic reactions to iodine or latex or for other practical reasons. The 

selection process for the study population of RENIS is also shown in Figure 2. 

The predetermined target study population for RENIS-T6, based on power calculations, was 

1600. Participants had their appointments scheduled in a random order. When the number of 

investigations had reached 1632, the study was stopped, leaving the remaining 350 eligible 
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potential participants uninvited. Five investigations were technical failures, leaving 1627 as 

the final study population of RENIS-T6. The investigations took place at the Clinical 

Research Unit at the University Hospital of North Norway between November 2007 and June 

2009. All participants provided written informed consent to participate, and the Regional 

Ethics Committee of Northern Norway approved the study. The study was performed in 

compliance with the Declaration of Helsinki. 

3.1.2 RENIS-FU 

The second round of RENIS, RENIS-FU (Follow-Up), invited all participants from RENIS-

T6 to repeat the protocol between September 2013 and January 2015, except those who had 

died (n=23) and 7 individuals who had a possible allergic reaction to iohexol. A total of 1324 

participants (83% of those eligible) attended the follow-up. Eighty-eight participants were 

randomly selected to undergo two GFR measurements with a median (interquartile range) 35 

(22–49) days between the measurements, resulting in 3 total measurements for these persons. 

The extra measurement allowed for the estimation of an intra-individual variation coefficient. 

A flowchart for the study population selection for each paper is presented in Figure 2. 

3.1.3 Study population selection 

For the first paper of this thesis, the study population included all participants from RENIS-

T6, except those who had previously unknown diabetes (fasting plasma glucose ≥7.0 mmol/L 

and/or haemoglobin A1c ≥6.5%) and those who lacked waist or hip circumference 

measurements, leaving 1555 participants. For the second paper, only participants who 

participated in both RENIS-T6 and RENIS-FU were included (n=1324). The same exclusion 

criteria as in the first paper were applied, with the additional exclusion of two participants 

who lacked triglyceride measurements at baseline, leaving 1261 participants as the study 

population. In the third paper, participants who participated in both RENIS-T6 and RENIS-
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FU were included, except for those with previously unknown diabetes and those who had 

albuminuria (ACR >30 mg/g) at baseline, leaving 1246 persons in the study population. 
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Figure 2. Flowchart presenting the RENIS study population selection. 
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3.1.4 Participant instructions and body measurements 

All subjects showed up at their morning appointment (between 8 and 10 AM) after an 

overnight fast, having abstained from smoking for 12 hours. They were instructed not to eat 

unusually large portions of meat or take non-steroidal anti-inflammatory drugs during the last 

two days before the examination and to drink two glasses of water before arrival. Upon 

arrival, their height and weight were measured, as were their waist and hip circumferences.  

They answered a large questionnaire at home before arrival, which included questions on 

tobacco and alcohol use, medical history and drug use. A study nurse re-examined the 

questionnaire with the participants upon arrival, including a thorough review of all current 

medication usage and medical history to reduce the risk of misclassification 

 The protocol was the same for both rounds of RENIS, with the exception that in RENIS-T6 

the questionnaire, ACR, haemoglobin A1C, waist and hip circumferences and height were 

measured as part of the 6th Tromsø study, a median (interquartile range) 5.2 (3.0–6.2) months 

before RENIS-T6. 

Body weight was measured to the nearest 0.1 kg on a digital scale. Height was measured with 

a wall-mounted measuring tape to the nearest centimetre. Waist circumference was measured 

horizontally over the umbilicus at the point of expiration. Hip circumference was measured 

around the greatest protrusion of the buttocks. 

3.2 Laboratory measurements 

3.2.1 Albuminuria measurements 

Participants collected fasting morning samples of urine the last two days before the 

examination, and on the morning of the examination. Albumin and creatinine were measured 

in fresh (unfrozen) specimen, and the median ACR from the measurements for each 
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individual was used for the studies. The creatinine concentration was measured using 

colorimetric methods (Jaffe’s reaction), while albumin was measured using the 

immunoturbidimetric method. Both were done on an ABX Pentra Micro-albumin CP 

autoanalyser. Although the limit of detection of the assay is given as 4 mg/L in the 

documentation, the PENTRA instrument in practice detects albumin concentrations down to 1 

mg/L. This had consequences for paper 3, see chapter 4.3.1 of this thesis. 

3.2.2 Single-sample iohexol clearance measurements 

A Teflon catheter was inserted into the antecubital vein, and blood samples were drawn for 

analyses. Five millilitres of iohexol (Omnipaque, 300 mg I/ml) was injected, the syringe was 

weighed before and after injection, and the catheter was flushed with 30 ml of isotonic saline. 

After the iohexol injection, participants were served a light breakfast and were free to walk 

around or relax at will. 

After an individually pre-specified period of time, calculated using the Jacobsson’s method 

based on eGFR from creatinine141, a new blood sample was taken for iohexol analysis. The 

exact time from iohexol injection to blood sample extraction was measured using a 

stopwatch. High performance liquid chromatography was used to measure the iohexol 

concentration, as described by Nilsson-Ehle142. The analytic coefficients of variation were 

3.0% in RENIS-T6 and 3.1% in RENIS-FU. The mean coefficient of variation for the intra-

individual variation in GFR among the 88 participants who had two GFR measurements in 

RENIS-FU was 4.2%127. 

3.2.3 Other measurements 

Fasting serum glucose, total cholesterol, LDL cholesterol, HDL cholesterol and triglyceride 

concentrations were measured on a Modular P800 (Roche Diagnostics). The insulin 

concentration was measured with an enzyme-linked immunosorbent assay kit (DRG 
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Instruments, Marburg, Germany). The intra- and inter-assay coefficients of variation were 

4.7% and 6.3%, respectively. Insulin resistance was expressed by the homeostasis model 

assessment equation, multiplying fasting glucose (mmol/L) by fasting insulin (mU/L) and 

dividing the result by 22.5143. In RENIS-T6, haemoglobin A1c was measured as part of the 6th 

Tromsø study using a liquid chromatographic method. 

Serum creatinine was measured using an enzymatic assay standardised to the isotope dilution 

mass spectrometry method (CREA Plus, Roche Diagnostics). Cystatin C was analysed with a 

particle enhanced turbidimetric immunoassay with reagents from Gentian (Gentian, Moss, 

Norway) and a Modular E analyser (Roche Diagnostics). The cystatin C measurements were 

then recalibrated to the international reference standard using a Cobas 8000 (Roche 

Diagnostics). CKD-EPI equations were used to estimate GFR53. 

Office blood pressure was measured at the study site after two minutes of rest using an 

automated device (model UA799; A&D, Tokyo, Japan). Daytime ambulatory blood pressure 

was measured using weighted daytime (10:00–22:00) averages of blood pressure measured at 

20-minute intervals. Further details of the blood pressure measurements in RENIS have been 

described previously144. 

3.3 Statistical methods 

3.3.1 Hyperfiltration definition 

In paper 1, hyperfiltration was defined using two different approaches. In both cases multiple 

linear regression models were used, with the natural logarithm (ln) of unadjusted GFR 

(mL/min) as the dependent variable. In one definition, age, sex and height (all associated with 

nephron number) were added as independent variables, while in the second, the same 

variables were added along with body weight. 
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A participant was defined as having hyperfiltration if the regression residual was greater than 

the 90th percentile in the distribution of residuals in the regression analyses for the respective 

hyperfiltration definition. The definitions were exemplified and explained in more detail in 

the paper. In the third paper, hyperfiltration was defined as an increase in GFR during the 

follow-up period. 

3.3.2 Metabolic syndrome and obesity categorizations 

The metabolic syndrome was defined using the previously mentioned harmonised 

WHO/International Diabetes Federation definition (chapter 1.2.1 and Table 2 in this thesis). 

The obesity categorisations were also in line with the international standards described in 

chapter 1.1.4 and Table 1 of this thesis. 

3.3.3 Descriptive statistics 

The study population characteristics in all papers were presented as the mean (standard 

deviation) values, median (interquartile range) in cases of skewed data, or numbers 

(percentages) where appropriate. Differences in characteristics between categories were tested 

with paired t tests for mean values, Wilcoxon signed rank tests for median values, and 

McNemar tests for paired dichotomous variables, respectively. 

3.3.4 Regression analyses 

In the first paper, the main results were analysed with logistic regression models with 

hyperfiltration (two different definitions) as the dependent variable. In the second paper, the 

main results were analysed with linear regression models, with change in absolute 

(unadjusted) mGFR between the RENIS-T6 (baseline) and RENIS-FU (follow-up) 

measurements as the dependent variable. In the third paper, the main results were analysed in 

linear regression models with change in ACR between baseline and follow-up as the 

dependent variable. Logistic regression models were also used with incident albuminuria 
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(ACR >30 mg/g at follow-up) as a dichotomous dependent variable. The analyses were 

explained in greater detail in the respective papers. All analyses were performed using 

STATA MP 14 (www.stata.com). 

 

4 Main results 

4.1 Paper 1. Central obesity associates with renal 

hyperfiltration in the non-diabetic general population: a 

cross-sectional study 

A total of 1555 participants from RENIS-T6 were examined for associations between BMI, 

WC or WHR and two different definitions of hyperfiltration. The first hyperfiltration 

definition adjusted for age, sex and height was associated with all three obesity measures in 

logistic regression models. The associations remained significant after adjustments for 

potential confounders including the component risk factors of the metabolic syndrome. This 

definition is an attempt to adjust for some of the main factors known to influence nephron 

number. When another hyperfiltration definition was used, which adjusted for weight in 

addition to age, sex and height, only WHR remained significantly associated with 

hyperfiltration after controlling for confounders. These results suggest that obesity is 

associated with hyperfiltration in the general non-diabetic population, even when controlling 

for obesity-associated potential confounding factors. Furthermore, elevated WHR is 

associated with hyperfiltration even when using a weight-adjusted definition. 

http://www.stata.com/
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4.2 Paper 2. Metabolic syndrome but not obesity measures are 

risk factors for accelerated age-related glomerular filtration 

rate decline in the general population 

A total of 1261 persons who participated in both RENIS-T6 and RENIS-FU were examined 

for associations between obesity, MetS and changes in the decline rate of GFR during the 

mean 5.6 years between the two rounds of RENIS. Obesity, measured with BMI, WC or 

WHR, was not associated with a statistically significant change in the rate of GFR decline. 

MetS, however, was associated with a -0.30 ml/min/year faster GFR decline in multivariable 

adjusted linear regression models. The triglyceride criterion of MetS was the main driver of 

this result. 

4.3 Paper 3. Association of increasing GFR with change in 

albuminuria in the general population 

The relationship between the change in GFR and the simultaneous change in ACR during the 

mean 5.6 years between RENIS-T6 (baseline) and RENIS-FU (follow-up) was explored. The 

change in GFR was termed ΔGFR (defined as GFR at follow-up minus GFR at baseline). A 

positive ΔGFR signified an increase in GFR, and a negative ΔGFR signified a decline in 

GFR. The same principles applied to changes in ACR (ΔACR). 

There was a positive association between ΔGFR and ΔACR in multivariable adjusted linear 

regression analyses: ΔACR was 8.4% higher per standard deviation of ΔGFR. When 

participants were split into two groups based on those whose GFR increased during the study 

period (ΔGFR >0, n=343) and those whose GFR declined (ΔGFR <0, n=903), the group 

whose GFR increased experienced a 16.3% higher ΔACR (see chapter 4.3.1 for additional 

analyses of these data). When logistic regression was used to find the odds ratio of incident 

albuminuria (ACR >30 mg/g at follow-up), those with a higher ΔGFR had an odds ratio of 

2.13 for incident albuminuria per standard deviation. The group whose GFR increased during 
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the study period (ΔGFR >0) had an odds ratio of 4.98 of incident albuminuria compared to 

those whose GFR declined (ΔGFR <0). 

4.3.1 Additional analyses for Paper 3 

As mentioned in chapter 3.2.1, urinary albumin in both the Tromsø 6 and RENIS-FU 

examinations were analysed with the ABX Pentra Micro-albumin CP (Horiba ABX, 

Montpelier, France). Although the limit of detection of the assay is given as 4 mg/L in the 

documentation, the PENTRA instrument in practice reports albumin concentrations as low as 

1 mg/L. These results were used in paper 3 and in previous publications from the Tromsø 

Study. In paper 3, all urinary samples with undetectable albumin concentrations (i.e. <1 

mg/L) were assigned an ACR of 0.10 mg/mmol, which corresponds to the lowest ACR 

observed in samples with detectable albumin concentration. Because this is not formally 

correct, we have now repeated the analyses of the data in paper 3 using two methods: first, we 

treated all observations of albumin concentrations lower than 4 mg/L as left-censored and 

repeated the multiple linear regression of ACR in Table 2 of paper 3 using interval regression. 

Second, because there is no similar procedure for a dichotomous dependent variable, we used 

multiple imputation to impute the ACR for observations with albumin below 4 mg/L. This 

was done by extending the previously described RENIS multiple imputation model to include 

interval regression for the missing ACRs145. The 50 imputed datasets were then used to repeat 

the analyses in Table 3 of paper 3. 

For Table 2, the difference in GFR between baseline and follow-up predicted the absolute 

difference in ACR in all three models (p<0.05). When the difference between log-transformed 

ACR was used as the dependent variable, the results were similar to the original results, but 

borderline statistically significant in the fully adjusted model (p=0.05). However, the 

dichotomised variable for GFR increase (ΔGFR>0) was not a statistically significant predictor 
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of ACR increase. For the analyses with multiple logistic regression in Table 3, the results 

were similar to the original results in all models (p<0.05). 

 

5 Discussion 

5.1 Methodological considerations 

5.1.1 Selection bias 

Selection bias occurs when the study population and target population (from which the study 

subjects are recruited) differ with regard to exposures or outcomes of interest. The RENIS 

cohort was recruited from participants in the 6th Tromsø Study. In that study, approximately 

65% of those invited in the age group 50–62 years old participated. All Tromsø study 

participants in that age group were invited to RENIS, except those who had reported diabetes 

or a history of myocardial infarction, stroke or renal disease. The response rate was 75% for 

those invited to RENIS. Even though these percentages are high by international standards, 

they nevertheless leave room for significant selection bias. 

We know that those who chose not to participate in the Tromsø Study were more likely to be 

male and in the younger age group (50–55 years old)140. We do not know non-participants’ 

motivations, and can only speculate whether their choice not to participate makes them more 

or less likely to be obese, have metabolic syndrome, albuminuria, or differ from participants 

in other ways. A study of non-responders in the North Trøndelag Health Study found that the 

reasons for non-participation differed across age groups, with younger participants more 

likely to report being hindered by time constraints, while older participants were more likely 

to report poor physical health as a reason to not participate, or stated that they already 
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received frequent follow-up from the healthcare system and felt no need for any additional 

medical examination146. 

We do, however, know more about those who were eligible for participation in RENIS 

(n=2825), and whether they differed from those who actually participated RENIS-T6. They 

did not differ substantially, although there was a statistically significant difference of 0.1 

years of age and 0.1 kg/m2 of BMI between the groups68. 

The differences between those who participated in RENIS-T6 but did not participate in 

RENIS-FU and those who participated in both have been reported previously127. Again, the 

differences were small, except for a higher percentage of smokers among those lost to follow-

up. Smokers are at higher risk of poor health, which could potentially be a factor impeding 

them from participation, but because no survey of non-participants was performed, this 

remains unclear. Smokers were also more likely to be among the 23 persons who died 

between the two rounds. 

Healthy survival bias is a form of bias in which those who participate in the study show a 

different association between exposure and an outcome of interest because those most heavily 

afflicted by the exposure have already died. We excluded subjects with pre-existing diabetes, 

cardiovascular disease or renal disease to allow focus on GFR progression starting in the 

normal range. However, this selection may have resulted in a study population which was 

more robust to the negative effects of obesity: those who were predisposed to cardiovascular 

disease or diabetes were excluded or may have died at a younger age. This may have resulted 

in the attenuation of associations between obesity and GFR. The 23 subjects who died 

between RENIS-T6 and RENIS-FU were more likely to have had underlying risk factors 

which were not captured by the study’s exclusion criteria, such as cancer. Nevertheless, their 
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number was probably too low to cause significant bias that would have affected the results of 

this study. 

5.1.2 Information bias 

Information bias is that resulting from measurement errors. All measurements, whether serum 

analyses, or weight or circumference measurements, have a margin of error. The RENIS study 

has taken several measures against measurement errors, including the use of trained staff at 

the Clinical Research Unit, a detailed study protocol, and high-quality equipment. The 

iohexol clearance methods in particular were thoroughly and carefully executed, including 

weighing of the injection syringe before and after injection. Frozen samples from RENIS-T6 

were thawed and re-analysed in RENIS-FU to investigate drift between the two rounds, and 

all GFR variables were adjusted to account for this drift127. Any equipment-related 

measurement errors are likely to be random and unbiased, and more likely to dilute the 

strength of any associations found than spuriously cause or strengthen non-existent 

associations. Moreover, the intra-individual coefficient of variation for the GFR measurement 

(day-to-day variation in GFR which includes biological variation and measurement error) in 

RENIS FU was 4.2%, which is lower than in most previous studies of measured GFR71. This 

suggests a low level of measurement errors overall. 

In the case of categorical variables, information bias is often referred to as misclassification 

bias. To combat bias resulting from arbitrarily chosen cut-off points for continuous variables, 

whenever we used categorical values in the papers in this thesis, we also provided analyses 

with the same variables presented as continuous variables. We also provided results using 

alternative cut-offs when several cut-offs were in common use in the scientific literature. 
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5.1.3 Confounding 

Confounding occurs when an unknown or hidden variable accounts for all or part of an 

apparent association between two variables, and the association would have been reduced or 

nullified in the absence of the confounder. In the papers, we tried to reduce the risk of 

confounding by including physiologically plausible confounders as independent adjustment 

variables in the regression analyses. However, there is always a risk that the associations 

found are influenced by unmeasured or unknown variables rather than those included. 

5.1.4 External validity 

The study population of RENIS was exclusively middle-aged and anthropologically 

Caucasian, so generalisations to different populations should be made with caution. Weight 

distribution and muscle mass are known to diverge somewhat between different ethnic 

groups, and incidence of kidney disease also differs. However, it is not clear whether these 

differences are mainly due to environmental or genetic factors147-149. 

5.2 Discussion of the results 

5.2.1 The relationship between obesity and hyperfiltration 

As presented in chapter 1.5.1 in this thesis, there is currently no established definition of 

hyperfiltration57, 122. Because the theory of hyperfiltration is based on elevated single-nephron 

GFR, and because whole-kidney GFR is the only variable available for research, it follows 

that a definition of hyperfiltration should try to account for factors known to associate with 

nephron number in individuals. 

In the absence of kidney biopsies from the individuals in question (in which nephron number 

and density can be counted and extrapolated) one must rely on imperfect surrogate markers. 

Kidney biopsy studies have shown five main variables associated with nephron number: age, 
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height, sex, low birth weight and family history of ESRD in first-degree relatives (parents, 

children and siblings)44, 47, 126, 150. The current practice of adjusting GFR to BSA does thus 

partially account for nephron numbers, as women generally have lower BSA, and shorter 

people (who are more likely to have lower birth weight) generally have a lower BSA as well. 

However, this relationship is distorted in obesity, and there is no indication that obesity is 

associated with higher nephron numbers. A definition of hyperfiltration based solely on a 

single cut-off of unadjusted GFR or BSA-adjusted GFR should not be used57. 

In the first paper, we explored two hyperfiltration definitions: the first was based on a cut-off 

of GFR adjusted for age, sex and height in a regression analysis, while the second was based 

on the same method but with body weight included as well. The first definition is the one 

which is theoretically closer to a single-nephron GFR approach, and has been shown to 

predict high glomerular volume in kidney biopsies in a later publication by Chakkera et al57. 

All of the obesity measures (BMI, WC and WHR) were associated with this hyperfiltration 

definition, even when the analyses were adjusted for potential confounders that are also 

associated with obesity and hyperfiltration, such as glucose and hypertension. The 

associations were quite strong. 

The second definition of hyperfiltration, which was adjusted for body weight in addition to 

age, sex and height, can be useful for distinguishing between the various methods for 

assessing obesity in relation to hyperfiltration. By adjusting for body weight, the associations 

with obesity measures reflect whether the measures affect GFR in excess of what would be 

expected at a given body weight. Only WHR was significantly associated with this definition, 

which may suggest that a predominantly abdominal fat distribution may be influential in the 

relationship between obesity and hyperfiltration. 
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These findings suggest that obesity clearly increases the risk of having hyperfiltration, and the 

nature of the hyperfiltration definitions would imply a high single-nephron GFR as well, 

though that cannot be confirmed due to the lack of kidney biopsies in our study. 

Study limitations include the lack of gold-standard body fat measurements, and the lack of 

control measurements in individuals to estimate intra-individual variation in GFR (though the 

latter was done later as part of RENIS-FU). The choice of cut-off point is by nature arbitrary; 

however, we did explore alternative cut-offs based on the 95th percentile of residuals rather 

than the 90th, with similar results. 

5.2.2 Obesity, the metabolic syndrome and age-related GFR decline 

GFR declines gradually with age, but the rate of decline varies between individuals and may 

be affected by several factors. Factors that influence the GFR decline rate may either reflect 

changes in the loss rate of nephrons, changes in single-nephron GFR, or both. In a cross-

sectional study of kidney donors, Rule et al. approached single-nephron GFR in an innovative 

way and found that it was fairly stable across age groups126. Coupled with the knowledge that 

nephron numbers decline over time, this suggests that the decline in GFR in healthy persons 

is mostly due to the loss of nephron numbers. 

We found that obesity, measured with BMI, WC or WHR, did not associate with a change in 

the rate of GFR decline. However, having MetS at baseline was associated with a 

significantly steeper decline in GFR. These results do not necessarily suggest that obesity 

does not affect kidney function, nor that it is not harmful to the kidneys. As we found in the 

first paper, obesity is associated with hyperfiltration, and hyperfiltration may be harmful to 

the kidneys in the long-term112. The participants who have elevated BMI, WC or WHR may 

be at various stages of hyperfiltration; some might have increasing GFR (and thus increasing 

single-nephron GFR, see chapter 5.2.3 and paper 3), others may have plateaued and yet others 
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may have sufficient nephrons to adequately handle the burden of obesity and may have their 

GFR decline slowly and naturally due to nephron loss. 

Participants with MetS have several risk factors for CKD by definition. The association with 

steeper GFR decline may reflect that a number of them have an accelerated rate of nephron 

loss, as a significant lowering of single-nephron GFR is a less likely explanation. We also 

explored the interaction between MetS and obesity by looking for differences between those 

with BMI >30 kg/m2 and MetS compared to those with BMI >30 kg/m2 and no MetS, but the 

results were not statistically significant. 

Weaknesses of this study again include the lack of gold-standard body fat measurements. The 

concept of MetS is itself controversial and the components of the syndrome and their cut-off 

values are somewhat arbitrary. We did, however, explore the components in individual 

regression analyses both as categorical and continuous variables, and presented the results in 

the paper. 

5.2.3 Increased GFR and increased ACR 

As previously mentioned in the Background and Methods chapters, an increase in GFR in an 

individual indicates an increase in single-nephron GFR, because no new nephrons are created 

by the body in adulthood. In the third paper we approached this topic using a longitudinal 

increase in GFR as a marker of hyperfiltration. Participants who experienced such an increase 

in GFR were associated with a concurrent increase in ACR, and an increased risk of reaching 

the threshold for the diagnosis of albuminuria. Furthermore, changes in ACR and GFR were 

linearly associated, i.e. those whose GFR declined only slightly had a higher ACR increase on 

average than those whose GFR declined more steeply. Those whose GFR increased 

experienced an even higher ACR increase. 
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These associations are interesting and may seem counterintuitive apart from the perspective of 

hyperfiltration. Those whose GFR increased are experiencing an increase in their single-

nephron GFR, which may cause maladaptive changes in glomeruli which could lead to shear 

stress, podocyte damage and, eventually, albuminuria97. 

Some of the same mechanisms may be present in those whose GFR declined only slightly: 

they too would experience increased single-nephron GFR if their loss of nephrons was greater 

than the loss of GFR. 

Weaknesses of this study include the cross-sectional nature of the analyses, which excludes 

inferences of causation. Because many risk factors are known to associate with albuminuria, 

there is great risk of confounding as well. However, we attempted to mitigate this risk by 

adjusting for several known potential confounders in the regression analyses. The 

categorization of participants based on whether their GFR increased or decreased will 

invariably include misclassifications due to intra-individual variability in GFR. However, the 

intra-individual coefficient of variation was low, and any misclassification would probably 

dilute the strength of the associations rather than make them misleadingly powerful. 

5.2.4 Hyperfiltration and GFR decline 

A common topic for all three papers is the theory of hyperfiltration. In chapters 1.3 and 1.5, 

we explored reasons why it remains hard to find definitive proof for the theory in a clinical 

setting. In short, it is high single-nephron GFR, not whole-kidney GFR, which is at the heart 

of the theory, and the number of nephrons in individuals is usually unknown. However, 

researchers at the Mayo Clinic and Cleveland Clinic have compiled data from kidney donors 

who underwent both kidney biopsies and abdominal magnetic resonance imaging scans, and 

have recently published articles highly relevant to this topic57, 126. 
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Denic et al. estimated single-nephron GFR by extrapolating the density of nephrons in biopsy 

samples to the volume of the kidneys in the accompanying magnetic resonance imaging 

scan126. Kidney donors are a selected group of volunteers screened for health, but obesity and 

some cases of mild hypertension are not contraindications for donation. Interestingly, the 

factors associated with higher single-nephron GFR were obesity and elevated ACR, as well as 

a family history of ESRD (and a stature of >190 cm). 

Chakkara et al. used the same data to examine different definitions and cut-off points for 

hyperfiltration and compare them to glomerular volume (a structural biopsy finding indicative 

of glomerular hyperfiltration)57. They found that eGFR was inadequate for predicting 

glomerular volume. mGFR adjusted for age (but not corrected for BSA) had the highest 

correlation with glomerular volume but was also positively correlated with nephron number. 

The positive correlation with nephron number resulted in the disproportional representation of 

young, male donors in the hyperfiltration category. GFR adjusted for height, sex and age was 

almost equally correlated to the glomerular volume, but was not associated with nephron 

number. This conforms very well to the RENIS publications that explored different versions 

of this hyperfiltration definition and various risk factors for kidney and cardiovascular 

disease105, 107, 151, 152, including paper 1 of this thesis.  

Denic et al. also looked for associations between single-nephron GFR and the age of donors, 

and found that single-nephron GFR remained remarkably stable across age groups, with the 

exception of donors older than 75 years126. In other words, GFR decline with increasing age is 

due to the loss of nephrons, not lower single-nephron GFR. In biopsies, glomerular volume 

varies greatly within a single kidney, which may represent a mechanism for nephron loss over 

time: some nephrons in a kidney may face hyperfiltration, while others are spared153. 

Increasing the proportion of nephrons with hyperfiltration in a kidney (in obesity, for 
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example) might accelerate this ageing process. Melsom et al. found that higher baseline age-

sex-height-adjusted mGFR was associated with more rapid subsequent GFR decline, which 

may support this hypothesis112. 

The loss of nephrons with age even in healthy individuals may suggest that the process of 

nephron loss is natural, and that the accompanying loss of GFR should not be treated as a 

disease, as the current definition of CKD would imply84. However, the loss of nephrons due 

to ageing may still represent a loss of “renal reserve”, or less resilience to kidney-damaging 

incidents such as severe dehydration or nephrotoxic substances, which may cause acute 

damage to a large number of nephrons. Acceleration of the age-related GFR decline rate may 

thus be a symptom of a low nephron reserve154. 

 

6 Conclusions and perspectives 

We conclude that obesity was associated with hyperfiltration, but was not associated with 

steeper GFR decline during the following 5.6 years. Those who had MetS, however, had a 

significantly steeper GFR decline. The participants whose GFR increased in the study period 

had an increased risk of incident albuminuria. Changes in ACR and GFR correlated 

positively, and those with increased GFR experienced greater increases in ACR. 

The results demonstrate a complex relationship between obesity, MetS and GFR. Precise 

measurement of obesity with gold-standard methods would add validity to the findings, but 

were not available for the papers in this thesis. Overall, the findings can be interpreted as 

supportive of the theory of hyperfiltration, which has been extensively discussed in this thesis. 

However, the results should be cautiously interpreted. The study cohort was, by design, 

generally quite healthy at the beginning of this study, and the papers presented in the thesis 
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shine a light on hyperfiltration and the age-related GFR decline, not CKD or ESRD. 

Hyperfiltration has been most extensively described in diabetes, but all RENIS participants 

were non-diabetic. The results underline the value and necessity of using mGFR rather than 

eGFR when studying hyperfiltration and age-related GFR decline in the normal and high 

ranges of GFR. 

A longer follow-up period with additional GFR measurements and endpoint (disease or death) 

analyses to shed further light on the relationship between mGFR, ageing and disease are 

definitely warranted. Further research into the mechanisms responsible for the effect of 

obesity on kidney function are welcome, including the potential effects of fat tissue as an 

endocrine organ, or the role of inflammation in obesity and kidney disease. Studies with 

precise measurements of fat mass and kidney function would increase confidence in the 

assumption that it is indeed the fat mass in obesity that is the culprit, and allow the more 

precise differentiation between fat mass distributions. Studies incorporating several of these 

features are now being planned as an extension of RENIS. Longitudinal studies of mGFR in 

different populations would be very welcome to confirm or dispute the findings of our 

studies. 
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RESEARCH ARTICLE Open Access

Central obesity associates with renal
hyperfiltration in the non-diabetic general
population: a cross-sectional study
Vidar Tor Nyborg Stefansson1*, Jørgen Schei1, Trond Geir Jenssen1,3, Toralf Melsom1,2 and Bjørn Odvar Eriksen1,2

Abstract

Background: Obesity is a risk factor for end-stage renal disease. Renal hyperfiltration, defined as an abnormally
high glomerular filtration rate (GFR), is a link in the causal chain between diabetes and chronic kidney disease.
Whether obesity is associated with hyperfiltration in the non-diabetic general population, remains unresolved due
to a lack of consensus regarding the definition of hyperfiltration and the limited precision of high-range GFR
estimations with creatinine and/or cystatin C.

Methods: 1555 middle-aged participants without diabetes, renal or cardiovascular disease were enrolled from the
general population in the Renal Iohexol Clearance Survey from the 6th Tromsø Study (RENIS-T6) between 2007 and
2009. Obesity was assessed using the body mass index (BMI), waist circumference (WC) and the waist-hip ratio (WHR).
GFR was measured by iohexol clearance. Dichotomous variables for hyperfiltration were based on two alternative
definitions using unadjusted GFR (mL/min) above the 90th percentile. The 90th percentile was age-, sex- and height-
specific in one definition and age-, sex-, height- and weight-specific in the other.

Results: In multivariable adjusted logistic regression models, only WHR was consistently associated with hyperfiltration
based on both definitions. For the definition based on the age-, sex-, height- and weight-specific 90th percentile,
the association with the WHR (odds ratios (95 % confidence intervals)) for hyperfiltration was 1.48 (1.08–2.02) per 0.10
WHR increase.

Conclusions: Central obesity is associated with hyperfiltration in the general population. The WHR may serve as a
better indicator of the renal effects of obesity than BMI or WC.

Keywords: Body mass index, Chronic kidney disease, Glomerular filtration rate, Glomerular hyperfiltration, Waist
circumference, Waist-hip ratio

Background
The prevalence of obesity, defined as a body mass index
(BMI) ≥ 30 kg/m2, has increased rapidly in high-income
nations over the last few decades and is steadily growing
in many lower-income countries as well [1]. Obesity is a
well-known risk factor for cardiovascular disease, hyper-
tension and diabetes [2, 3]. These diseases are, in turn,
well-established risk factors for chronic kidney disease
(CKD) and end-stage renal disease (ESRD) [4–7]. How-
ever, there is also evidence of a direct causal connection

between obesity and ESRD, independent of hypertension
and diabetes [8, 9].
Renal hyperfiltration (RHF), or an abnormally high

glomerular filtration rate (GFR), has been postulated
to represent an early stage in the development of
CKD [10], most clearly observed in diabetic nephrop-
athy [11]. RHF is also associated with several es-
tablished CKD risk factors, including hypertension
[12, 13] and smoking [14, 15]. A large longitudinal
study by Park et al. of 43,503 Korean health screening
participants found that a RHF definition based on
eGFR was associated with all-cause mortality, even
when adjusted for age, sex, muscle mass, diabetes and
hypertension [16]. Although several studies have been
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conducted on the relationship between obesity and
RHF [17–25], it remains unclear whether these two
conditions are also associated in the general non-
diabetic population. The most important reason has
been that there is currently no consensus on the def-
inition of the term “hyperfiltration”. Most investigators
who defined RHF in their studies used a single GFR cut-
off point and adjusted their definition for no other variable
than body surface area (BSA) [26]. Although there is no
generally accepted way of defining RHF, it has been sug-
gested that the definition should use age and sex-specific
cut-offs and also some measure of correction for body size
[26, 27].
Another methodological problem has been that previ-

ous epidemiological studies used GFR estimates based on
creatinine and cystatin C, rather than GFR measure-
ments [21–25]. Estimated GFR is inaccurate for high-
range GFR [28–30] and can be confounded by associa-
tions with non-GFR-related factors [31, 32]. Studies on
obesity and RHF using measured GFR (mGFR) have
been limited by small sample sizes [17–19] and the lack
of adjustment for confounding variables [20].
In the Renal Iohexol Clearance Survey in Tromsø 6

(RENIS-T6), we measured GFR with iohexol clearance
in 1627 middle-aged subjects from the general popula-
tion. The aim of the present study was to examine the
relationship between obesity and two alternative defini-
tions of RHF.

Methods
Subjects
RENIS-T6 was conducted from 2007 to 2009 as a sub-
study of the sixth Tromsø Study (Tromsø 6). The RENIS-
T6 cohort consisted of a representative sample of 1627
persons from the general population of Tromsø who were
between 50 to 62 years of age and without self-reported
diabetes mellitus, cardiovascular or kidney disease (Fig. 1);
the cohort has previously been described in detail [28].
Subjects were excluded from the present study if they

had previously undiagnosed diabetes mellitus (hemoglobin
A1c ≥ 6.5 % and/or fasting plasma glucose ≥ 7.0 mmol/L)
or if they lacked waist or hip circumference measurements.
Smoking status was ascertained as part of a detailed

questionnaire in the Tromsø 6 study. Previous smokers
were grouped with non-smokers for the purposes of this
study. Medication use was ascertained separately in the
RENIS-T6 study. Antihypertensive medication use was
categorized into six categories: beta-blockers, calcium
channel blockers, diuretics, angiotensin converting
enzyme-inhibitors, angiotensin-II receptor blockers, and
other antihypertensive medications.

Iohexol-clearance measurements
Examination of the subjects started between 08:00 and
10:00 AM. All subjects had fasted and abstained from
smoking since midnight, and they were instructed not to
use non-steroid anti-inflammatory drugs or eat large

Fig. 1 Inclusion of subjects in the RENIS-T6 cohort and the present study population
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quantities of meat during the preceding 48 h. Subjects
were instructed to drink two to three glasses of water
before arrival. A Teflon catheter was placed in an antecu-
bital vein and was flushed with 30 mL of isotonic saline.
Five milliliters of iohexol (Omnipaque, 300 mg/mL; Amer-
sham Health) was injected, and the syringe was weighed
before and after injection. GFR was measured as the
single-sample plasma clearance of iohexol, a method that
has been validated against gold standard methods [33],
and analyzed using high-precision liquid chromatography
as described by Nilsson-Ehle [34]. The analytical variation
coefficient for the study period was 3.0 %. Jacobsson’s
method was used to calculate the GFR [35]. Further pro-
cedural details have been described previously [28].

Laboratory measurements
Glucose, low-density and high-density lipoprotein choles-
terol, and triglycerides were measured on a Modular P800
(Roche Diagnostics, Basel, Switzerland). The insulin con-
centration was measured with an enzyme-linked immuno-
sorbent assay kit (DRG Instruments, Marburg, Germany),
with intra- and interassay coefficients of variation of 4.7 %
and 6.3 %, respectively. Insulin resistance was expressed
by the homeostasis model assessment (HOMA-IR), calcu-
lated by multiplying fasting glucose (mmol/L) by fasting
insulin (mU/L) and dividing the result by 22.5 [36].

Blood pressure measurement
Office blood pressure (BP) was measured at the study
site using an automated device (model UA799; A&D,
Tokyo, Japan) after 2 min of rest. Daytime ambulatory
BP was measured using weighted daytime (10:00–
22:00) averages of BP measured at 20-min intervals.
Further details of the BP measurements have been de-
scribed previously [37].

Body measurements
Waist and hip circumferences, along with height, were
measured as part of the main Tromsø 6 study at a me-
dian (interquartile range) of 5.2 (3.0–6.2) months before
the RENIS-T6 investigations. Body weight was measured
in the RENIS-T6 study to the nearest 0.1 kg on a SECA
digital scale (SECA, Hamburg, Germany). The same
weight scale was used for all subjects and was calibrated
just before the study began. Height was measured to the
nearest centimeter with a wall-mounted measuring tape.

BMI was defined as height in meters divided by weight
in kilograms squared. Waist and hip circumferences
were measured horizontally over the umbilicus after ex-
halation and at the greatest protrusion of the buttocks,
respectively. The WHR was calculated as the waist cir-
cumference divided by the hip circumference.
Subjects were classified into overweight and obesity cat-

egories based on cut-off values used by the World Health
Organization and the International Diabetes Federation for
European populations. BMI classes of 18.5–24.9, 25.0–29.9
and ≥ 30.0 define normal weight, overweight and obesity, re-
spectively. WC categories of > 94 cm for men and > 80 cm
for women represent “increased risk of metabolic compli-
cations”, while a WC of > 102 cm for men or > 88 cm for
women, or a WHR of ≥ 0.90 for men or ≥ 0.85 for women
represents “substantially increased risk” [38].
There were only four subjects with BMI <18.5, these

were grouped with the normal BMI (18.5–24.9) group for
the purposes of this study. Fifty-seven subjects had BMI
between 35.0 and 39.9, and 5 subjects had BMI ≥ 40.0,
these were included in the BMI ≥ 30.0 group.

Definitions of hyperfiltration
The dichotomous variables for hyperfiltration were de-
fined as unadjusted (absolute) GFR (mL/min) above the
90th percentile. We used two alternative definitions
where the 90th percentile was either age-/sex- and
height-specific (RHFHeight) or age-/sex-/height and
weight-specific (RHFWeight/height) (Table 1).
In both cases, the respective 90th percentiles were cal-

culated from multiple linear regression models, with the
natural logarithm (ln) of unadjusted GFR (mL/min) as
the dependent variable. For RHFHeight, sex, ln(age) and
ln(height) were used as independent variables, and for
RHFWeight/height ln(body weight) was added (Additional
file 1: Table S1). A subject was defined as having
RHFHeight or RHFWeight/height if her regression residual
was greater than the 90th percentile in the distribution
of residuals in the regression analyses for the respective
RHF definition (Table 1). This implies that the GFR cut-
off for RHF for each individual depended on sex, age
and height (RHFHeight) or sex, age, height and body
weight (RHFWeight/height). As an illustration, the GFR cut-
off points for RHF in a male and female study partici-
pant with average measurements of age, height and
weight are shown in Additional file 1: Table S2.

Table 1 Alternative definitions of renal hyperfiltration based on different adjustment variables in multiple linear regression

RHF definition Dependent variable Independent variables Definition of dichotomous RHF variable

RHFHeight Logarithm of absolute GFR (in mL/min) Sex and logarithms of height and age Residual > 90th percentile

RHFWeight/height Logarithm of absolute GFR (in mL/min) Sex and logarithms of weight, height and age Residual > 90th percentile

In both definitions, renal hyperfiltration was defined as residual > 90th percentile in multiple linear regression analysis with the independent variables
listed above
RHF Renal hyperfiltration, GFR Glomerular filtration rate
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Statistical analysis
The characteristics of the study population were tabu-
lated as the mean (standard deviation) or median (inter-
quartile range) for variables with skewed distributions.
Pearson’s χ2 test, Welch’s t-test and the Mann-Whitney

U test were used to calculate p-values for differences be-
tween the WHR groups, classified by the World Health
Organization cut-off for WHR.
Separate multiple logistic regression analyses were per-

formed with each of the two alternative RHF variables

Table 2 Characteristics of the study population classified by World Health Organization waist-hip ratio cut-off point

Normal waist-hip ratioa Increased waist-hip ratiob P-value

Subjects 432 27.8 % 1123 72.2 %

Male gender 142 32.9 % 618 55.0 % <0.001

Age 58.1 54.1–61.2 58.8 55.0–61.6 0.01

Waist-hip-ratio 0.824 0.046 0.941 0.055

Waist circumference (cm) 83.5 7.6 99.3 9.7 <0.001

Body Mass Index (kg/m2) 24.6 3.0 28.3 3.8 <0.001

Height (cm) 168.9 8.5 171.3 8.8 <0.001

Weight (kg) 70.2 10.8 83.1 13.8 <0.001

Daily smokers 89 20.6 % 222 19.8 % 0.71

Daytime ambulatory systolic BP (mmHg) 126.1 12.6 131.5 13.0 <0.001

Daytime ambulatory diastolic BP (mmHg) 79.9 8.6 82.9 8.6 <0.001

Nighttime ambulatory systolic BP (mmHg) 108.5 12.2 111.9 12.2 <0.001

Nighttime ambulatory diastolic BP (mmHg) 64.9 8.6 67.0 8.4 <0.001

Office systolic BP (mmHg) 123.3 17.1 131.8 17.1 <0.001

Office diastolic BP (mmHg) 79.9 10.0 84.7 9.3 <0.001

Hypertensionc 95 22.0 % 437 38.9 % <0.001

ACE-inhibitor use 6 1.3 % 22 2.0 % 0.45

Angiotensin II-receptor blocker use 13 3.0 % 116 10.3 % <0.001

Calcium-channel blocker use 7 1.6 % 71 6.3 % <0.001

Beta-blocker use 7 1.6 % 60 5.3 % 0.001

Diuretica use 17 3.9 % 119 10.6 % <0.001

Other anti-hypertensive medicine use 0 - 1 <0.1 % 0.54

Fasting glucose (mmol/L) 5.13 0.44 5.39 0.48 <0.001

Fasting insulin (mIU/L) 6.50 4.37–8.69 9.47 6.90–13.65 <0.001

HOMA-IR 1.47 0.98–2.01 2.30 1.60–3.37 <0.001

HbA1c (%) 5.46 0.30 5.57 0.34 <0.001

Cholesterol (mmol/L) 5.53 0.89 5.67 0.96 0.008

LDL cholesterol (mmol/L) 3.45 0.83 3.73 0.86 <0.001

HDL cholesterol (mmol/L) 1.75 0.44 1.45 0.39 <0.001

Triglycerides (mmol/L) 0.8 0.6–1.1 1.1 0.8–1.6 <0.001

Cholesterol-lowering drug use 21 4.9 % 79 7.0 % 0.12

Absolute GFR (ml/min) 93.8 16.0 104.0 20.4 <0.001

GFR (ml/min/1.73 m2) 90.1 13.0 92.0 14.8 0.02

RHFHeight 19 4.4 % 137 12.2 % <0.001

RHFWeight/height 30 6.9 % 123 11.0 % 0.02

Data represented as number of subjects (percentage), median (interquartile range) or mean (standard deviation)
BP Blood pressure, ACE Angiotensin converting enzyme, HOMA-IR Homeostatic model assessment of insulin resistance, LDL Low density lipoprotein, HDL High
density lipoprotein, HbA1c Hemoglobin A1c, GFR Glomerular filtration rate
aFemale < 0.85, male < 0.90
bFemale ≥ 0.85, male ≥ 0.90
cOffice systolic BP ≥140 mmHg, office diastolic BP ≥90 mmHg and/or use of antihypertensive medication
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(Table 1) as the dependent dichotomous variable and
categorical or continuous indices of obesity as the inde-
pendent variable. Adjustments were made for age, sex,
number of cigarettes smoked daily, ambulatory daytime
systolic and diastolic BP and their interaction, and individ-
ual categories of antihypertensive medication (Model 1).
Mathisen et al. found a statistically significant interaction
between these BP variables and GFR in the same study
population as the present study [37], which is why this
interaction model was included. Model 2 included Model
1 and a dichotomous variable for a metabolically un-
healthy lipid profile, defined as high-density lipoprotein
cholesterol levels < 1.03 mmol/L in men or < 1.29 mmol/L
in women, elevated triglyceride levels of ≥ 1.7 mmol/L,
and/or use of lipid-lowering medication. The variables in
Model 2 constitute two of the five established criteria used
to define metabolic syndrome [39]. Model 3 included
Model 1, fasting plasma glucose and insulin levels, and
HOMA-IR. Model 4 included all models. Additionally, lin-
ear regression analyses using absolute and BSA-adjusted
GFR as dependent variables and the same independent
variables as above were performed.
Fractional polynomial regression analyses [40] were

performed to see whether any obesity variables had non-
linear relationships with either RHF variable or with
mGFR as a continuous variable, adjusting for the same
variables as in Model 4.
Statistical significance was set at p < 0.05. Statistical

analysis was performed using STATA MP 14.0 software
(www.stata.com).

Results
Study population
Thirty-three of the 1627 study subjects in the RENIS-T6
cohort were excluded due to undiagnosed diabetes melli-
tus. Another 39 subjects were excluded because of miss-
ing WC measurements, leaving 1555 subjects eligible for
the current study (Fig. 1).
The analysis of the study population showed several

statistically significant associations between study vari-
ables and WHR categories (Table 2). A substantially
higher percentage of males than females were obese ac-
cording to the cut-off values. Subjects with a high WHR
were, on average, older, had a higher absolute and BSA-
adjusted GFR, higher BP, worse lipid and glucose pro-
files, and were more likely to use lipid- or BP-reducing
drugs. There was a clear relationship between a greater
WHR and higher GFR (Fig. 2). The vast majority of the
population was overweight or obese (Fig. 3).

Hyperfiltration and obesity
The RHF definitions (Table 1) resulted in overlap, with
115 hyperfiltrating subjects having RHF by both

definitions. Forty-one subjects had only RHFHeight, while
38 had only RHFWeight/height.
In the logistic regression analyses, there was a statisti-

cally significant association between RHFHeight and all
obesity variables, categorical and continuous, except for
the intermediate WC category, even in the fully adjusted
Model 4 (Table 3). This relationship remained significant
when body weight was added to the regression analyses
as an independent variable (Additional file 1: Table S3).
With RHFWeight/height, these relationships changed. Only

the WHR as a continuous variable was consistently associ-
ated with RHFWeight/height across all the models (p < 0.05).
In Model 1, the odds ratio (confidence interval) for
RHFWeight/height was 1.66 (1.24–2.21) for each 0.10 increase
in the WHR. The association was attenuated, but remained
significant, when metabolic risk factors were added as in-
dependent variables in Models 2, 3 and 4 (Table 3).
Linear regression analyses with absolute and BSA-

adjusted GFR as dependent variables and the same inde-
pendent variables as above showed significant positive
relationships between body size variables and absolute
GFR, but no statistically significant relationship with
BSA-adjusted GFR (Additional file 1: Table S4).
Interaction analyses were performed on the obesity

variables and sex as well as the obesity variables and the
dichotomous variable for an unhealthy lipid profile (de-
fined in Model 2); but no statistically significant interac-
tions were found. No statistically significant non-linear
relationship was found between any obesity variables
and the RHF variables or mGFR when analyzed in frac-
tional polynomial regression models.

Discussion
In this study of non-diabetic, middle-aged subjects from
the general population, higher WHR, but not BMI or

Fig. 2 Scatterplot with locally weighted scatterplot smoothing
(LOWESS) showing the relationship between the waist-hip ratio and
glomerular filtration rate
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WC, was consistently associated with RHF, regardless of
the RHF definition used. This finding suggests that ex-
cessive abdominal fat stores, as opposed to excess body
weight distributed more evenly in the body, may poten-
tially be more harmful to kidney function.
Most previous RHF studies with mGFR have found a

positive relationship between BMI and RHF that disap-
pears upon the adjustment of GFR to BSA [17–20].
The indexing of GFR to 1.73 m2 of BSA may be prob-
lematic in itself, particularly in the abnormal body
sizes encountered when studying obese subjects [41].
Kwakernaak et al. found that the WHR predicted a
lower BSA-adjusted mGFR when adjusted for BMI,
age, sex and BP [18]. However, the sample size was
small and consisted of kidney donors and volunteers,

who may not be representative of the general popula-
tion. Pinto-Sietsma et al. made a similar finding of
higher WHR associated with lower GFR in a larger
population, but the result was based on GFR estimated
by creatinine clearance [22].
The hypothesis of hyperfiltration as a precursor to

overt CKD, originally proposed by Brenner, is based on
hyperfiltration in individual glomeruli [10]. Because it is
not possible to measure single-nephron GFR directly in
living humans, an indirect measure of hyperfiltration
based on whole-kidney GFR must be used in epidemio-
logical studies. Whole-kidney GFR is a function of
single-nephron GFR and the total number of nephrons.
Nephron numbers vary by gender and birth weight and
decrease with age [42], and adult height has been shown

Fig. 3 Distribution of obesity in the RENIS-T6 cohort, by WHO categories for body mass index (BMI), waist circumference (WC) and the waist-hip
ratio (WHR)
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to correlate with birth weight [43]. Thus, gender, height
and age were included in both the RHF definitions
(Table 1). RHFHeight used the age-, sex- and height-
specific 90th percentile, and because an individual’s nor-
mal body weight is correlated with height, it provides an
indirect adjustment for a theoretical “normal” body size.
RHFHeight is thus defined as excessive GFR relative to
the mean GFR for a person with “normal” body weight.
Because GFR increases with increasing body weight and
increasing metabolic needs [44], it follows that RHFHeight

is associated with measures of obesity, as shown in
Table 3. However, when body weight was added as an in-
dependent variable to the same RHFHeight logistic regres-
sion models as in Table 3, the results were attenuated but
remained essentially similar (Additional file 1: Table S3),

indicating that an obese figure is associated with hyperfil-
tration independently of the effect of weight itself.
Another way to correct for interindividual variation in

weight is to include weight in the definition of hyperfiltra-
tion, as in RHFWeight/height. RHFWeight/height accordingly de-
fines hyperfiltration as excessive GFR relative to the mean
GFR for persons with a given height and weight, whether
obese or not. This definition may underestimate hyperfil-
tration in obese subjects, and RHFWeight/height can be
viewed as more conservative than RHFHeight. The associ-
ation of WHR with hyperfiltration even when using
RHFWeight/height is a strong indicator that central obesity
also entails hyperfiltration at the glomerular level.
The merits of different body size measurement methods

in the context of epidemiological research and risk

Table 3 Odds ratios for renal hyperfiltration using alternative renal hyperfiltration definitions and variable models

Model 1 Model 2 Model 3 Model 4

OR CI P OR CI P OR CI P OR CI P

RHFHeight

BMI < 25 kg/m2 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

BMI 25–30 kg/m2 2.54 (1.45–4.47) 0.001 2.40 (1.36–4.24) 0.002 2.27 (1.28–4.05) 0.005 2.22 (1.24–3.95) 0.007

BMI > 30 kg/m2 8.03 (4.50–14.33) <0.001 7.19 (3.99–12.94) <0.001 6.11 (3.27–11.44) <0.001 5.85 (3.12–10.99) <0.001

BMI per 5 kg/m2a 2.66 (2.13–3.32) <0.001 2.54 (2.02–3.19) <0.001 2.40 (1.87–3.09) <0.001 2.35 (1.83–3.03) <0.001

WC < 80/94 cm 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

WC 80–88/94–102 cm 1.89 (0.93–3.85) 0.08 1.82 (0.89–3.72) 0.10 1.63 (0.79–3.35) 0.18 1.62 (0.79–3.32) 0.19

WC > 88/102 cm 4.96 (2.59–9.49) <0.001 4.48 (2.32–8.62) <0.001 3.64 (1.86–7.14) <0.001 3.52 (1.79–6.91) <0.001

WC per 10 cma 1.99 (1.68–2.35) <0.001 1.92 (1.62–2.27) <0.001 1.80 (1.50–2.17) <0.001 1.78 (1.47–2.14) <0.001

WHR < 0,85/0,90 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

WHR > 0,85/0,90 2.91 (1.75–4.83) <0.001 2.66 (1.59–4.43) <0.001 2.24 (1.33–3.78) 0.002 2.17 (1.28–3.66) 0.004

WHR per 0.10a 2.67 (1.98–3.60) <0.001 2.49 (1.84–3.37) <0.001 2.20 (1.60–3.02) <0.001 2.14 (1.55–2.94) <0.001

RHFWeight/height

BMI < 25 kg/m2 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

BMI 25–30 kg/m2 0.84 (0.55–1.28) 0.42 0.79 (0.52–1.21) 0.28 0.72 (0.47–1.12) 0.14 0.70 (0.45–1.09) 0.11

BMI > 30 kg/m2 1.17 (0.72–1.90) 0.53 1.04 (0.63–1.71) 0.88 0.84 (0.49–1.45) 0.53 0.80 (0.46–1.39) 0.43

BMI per 5 kg/m2a 1.14 (0.92–1.42) 0.24 1.08 (0.86–1.36) 0.50 0.97 (0.75–1.26) 0.82 0.95 (0.73–1.23) 0.70

WC < 80/94 cm 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

WC 80–88/94–102 cm 1.23 (0.72–2.10) 0.44 1.20 (0.70–2.04) 0.50 1.12 (0.65–1.92) 0.69 1.11 (0.65–1.91) 0.70

WC > 88/102 cm 1.56 (0.95–2.56) 0.08 1.44 (0.87–2.38) 0.16 1.29 (0.76–2.19) 0.35 1.25 (0.73–2.13) 0.41

WC per 10 cma 1.21 (1.03–1.42) 0.02 1.17 (0.99–1.38) 0.07 1.11 (0.92–1.33) 0.28 1.09 (0.91–1.31) 0.35

WHR < 0,85/0,90 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)

WHR > 0,85/0,90 1.66 (1.07–2.55) 0.02 1.57 (1.01–2.42) 0.04 1.45 (0.93–2.27) 0.10 1.42 (0.90–2.22) 0.13

WHR per 0.10a 1.66 (1.24–2.21) <0.001 1.59 (1.18–2.13) 0.002 1.51 (1.11–2.06) 0.009 1.48 (1.08–2.02) 0.01

RHF Renal hyperfiltration, OR Odds ratio, CI Confidence interval, BMI Body mass index, WC Waist circumference, WHR Waist-hip ratio
Model 1: Adjustment for age, sex, number of cigarettes smoked daily, ambulatory daytime systolic and diastolic BP (and their interaction), and individual
categories of antihypertensive medication
Model 2: Model 1 and a dichotomous variable for a metabolically unhealthy lipid profile, defined as HDL-cholesterol levels < 1.03 mmol/L in men or < 1.29 mmol/L
in women, elevated triglyceride levels of ≥ 1.7 mmol/L, and/or use of lipid-lowering medication
Model 3: Model 1 plus fasting plasma glucose and insulin levels, and HOMA-IR
Model 4: All models combined
acontinuous variable
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estimates for disease have been debated, as have the
merits of various cut-off points [38]. BMI has become the
dominant measure of obesity, partly due to its well-
established association with several obesity-related dis-
eases and partly due to the near-universal availability of
height and weight as variables in both large population
studies and general clinical practice. WHR, which mea-
sures body fat distribution rather than absolute body size,
has been shown to be at least equal to, and often better
than, BMI as a predictor for obesity-related disease includ-
ing CKD [22, 45–47].
The mechanisms of the adverse renal effect of abdom-

inal adiposity are not fully understood, but some effects
are known. The most severe and well-established media-
tors are increased risks of diabetes mellitus, hyperten-
sion and dyslipidemia [48–50]. The effects of metabolic
risk factors can be observed in our results, with a grad-
ual attenuation of the odds ratio for RHF when variables
for an unhealthy lipid profile and insulin resistance were
included in the regression analyses.
Additionally, some other mechanisms are known,

including dysfunction in the renin-angiotensin-aldosterone
system, increased tubular sodium reabsorption, and the
effects of obesity-related hormones and cytokines such as
leptin, adiponectin and Tumor Necrosis Factor-α [48–50].
Weight loss interventions, especially bariatric surgery,

have been shown to reduce GFR in hyperfiltrating obese
subjects [51]. However, most studies of such interven-
tions have been small, and few studies have been pub-
lished on long-term effects beyond the first 2 years after
the interventions. A recent study by Zingerman et al.
suggested a possible reversal of RHF in obese patients
using acetazolamide, although the study did not include
a placebo arm [52].
The strength of the present study lies in the measure-

ment of GFR with a gold-standard method in a large,
representative, mostly healthy cohort in an age group
susceptible to early stages of chronic diseases. To our
knowledge, this is the largest cohort from the general
population that has been studied using precise GFR
measurements. The exclusion of subjects with diabetes,
cardiovascular disease and renal disease from the study
population allowed us to focus on the preliminary stages
of potential future CKD with less confounding from
these high-risk patient groups. These groups would have
been more likely to have passed the transient stage of
hyperfiltration into a state of normal-range GFR, per-
haps accompanied by slight albuminuria.
There are several limitations to this study. First, it was

a cross-sectional study and thus could not prove caus-
ation, only correlation. Second, the study population was
exclusively Caucasian and middle-aged, which may limit
the transferability of findings to other population groups.
Furthermore, while GFR was measured with a gold

standard method, obesity was measured indirectly with
anthropometric data, and not directly with gold standard
dual energy X-ray absorptiometry, computed tomog-
raphy or magnetic resonance imaging methods. Glucose
and HbA1c were only measured once to exclude dia-
betes, while regular clinical practice requires two mea-
surements for the diagnosis.

Conclusions
We conclude that the WHR is associated with RHF, in-
dependently of other risk factors and even using
RHFWeight/height, a conservative, body size-adjusted RHF
definition. Longitudinal studies are needed to explore
whether RHF predicts future non-diabetic CKD. Further
studies on whether the WHR predicts CKD better than
other obesity measurements are also warranted.

Additional file

Additional file 1: Table S1. Regression models for the alternative renal
hyperfiltration definitions. Table S2. mGFR cut-off points for renal
hyperfiltration in male and female subjects from the study cohort
with average height, weight and age. Table S3. Odds ratio for
RHFheight, with body weight added as an independent variable.
Table S4. Multiple linear regression with measured GFR and continuous
obesity variables. (XLSX 22 kb)
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Metabolic syndrome but not obesity measures are
risk factors for accelerated age-related glomerular
filtration rate decline in the general population

Vidar T.N. Stefansson1, Jørgen Schei1, Marit D. Solbu1,2, Trond G. Jenssen1,3, Toralf Melsom1,2 and
Bjørn O. Eriksen1,2
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Rapid age-related glomerular filtration rate (GFR) decline
increases the risk of end-stage renal disease, and a low
GFR increases the risk of mortality and cardiovascular
disease. High body mass index and the metabolic
syndrome are well-known risk factors for patients with
advanced chronic kidney disease, but their role in
accelerating age-related GFR decline independent of
cardiovascular disease, hypertension and diabetes is not
adequately understood. We studied body mass index,
waist circumference, waist-hip ratio and metabolic
syndrome as risk factors for accelerated GFR decline in
1261 middle-aged people representative of the general
population without diabetes, cardiovascular disease or
kidney disease. GFR was measured as iohexol clearance
at baseline and repeated after a median of 5.6 years.
Metabolic syndrome was defined as fulfilling three out
of five criteria, based on waist circumference, blood
pressure, glucose, high-density lipoprotein cholesterol
and triglycerides. The mean GFR decline rate was
0.95 ml/min/year. Neither the body mass index, waist
circumference nor waist-hip ratio predicted statistically
significant changes in age-related GFR decline, but
individuals with baseline metabolic syndrome had a
significant mean of 0.30 ml/min/year faster decline than
individuals without metabolic syndrome in a multivariable
adjusted linear regression model. This association was
mainly driven by the triglyceride criterion of metabolic
syndrome, which was associated with a significant 0.36
ml/min/year faster decline when analyzed separately.
Results differed significantly when GFR was estimated
using creatinine and/or cystatin C. Thus, metabolic
syndrome, but not the body mass index, waist
circumference or waist-hip ratio, is an independent risk
factor for accelerated age-related GFR decline in the
general population.
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A ge-related kidney function decline is an integral part
of aging.1 Consequently, the prevalence of chronic
kidney disease (CKD), defined as glomerular filtration

rate (GFR) < 60 ml/min per 1.73 m2, increases with age and
reaches almost 50% at 70 years.2 Additionally, the prevalence of
the most severe form of CKD, end-stage renal disease, increases
almost exponentially with age and leads to an impaired quality
of life, high mortality, and high health care costs.3–5

Obesity, the unhealthy accumulation of excess fat mass
usually assessed with anthropometric measurements such as
body mass index (BMI), waist circumference (WC), or the
waist-hip ratio (WHR), is an established risk factor for CKD
and end-stage renal disease.6,7 The rising prevalence of obesity
worldwide is alarming,8 but this prevalence also offers
potential for prevention. A high BMI increases the CKD risk
mainly due to the associated risk of diabetes, cardiovascular
disease (CVD), and hypertension.7,9 Whether increased BMI
also increases the CKD risk by accelerating age-related GFR
decline independent of these conditions is less clear. Several
studies have attempted to identify whether BMI or WC affects
the rate of GFR decline in people without preexisting CKD,
but these studies have not reached a firm conclusion.10–16

The most important reason for these divergent results may
be that they used estimated instead of measured GFR. Esti-
mated GFR (eGFR) based on serum cystatin C or creatinine is
imprecise for normal and high levels of GFR and is biased by
non-GFR-related factors.17–20

Another obstacle may be that obesity is a heterogeneous
condition. Recent reports have studied people with so-called
metabolically healthy obesity, defined as a BMI $ 30 kg/m2

without the metabolic syndrome (MS), and compared their
risk of kidney disease with the risk in metabolically unhealthy
obese people (obesity with MS), but the results of these studies
have also been divergent.21–24 Furthermore, the normalization
to body surface area incorporated in eGFR has been criticized
and is especially problematic in studies of obesity.25,26
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Figure 1 | Flowchart depicting the selection of subjects in the
Renal Iohexol-Clearance Survey (RENIS) cohort for the current
study. RENIS-FU, Renal Iohexol-Clearance Survey Follow-Up; RENIS-
T6, Renal Iohexol-Clearance Survey in Tromsø 6.
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Obesity and the components of MS are potentially
modifiable conditions. Understanding the factors that affect
the rate of GFR decline may enable targeted risk factor
interventions in susceptible individuals.27 Therefore, deeper
knowledge of the relationship between these risk factors and
the GFR decline rate is of great clinical interest.

In the present study, we aimed to investigate whether BMI,
WC, or WHR at baseline were associated with changes in the
subsequent age-related decline rate of measured GFR (mGFR)
using iohexol clearance. We also examined whether MS and
its individual components are related to the decline rate.

RESULTS
Population characteristics
This study was a follow-up to the Renal Iohexol-Clearance
Survey in Tromsø 6 (RENIS-T6), which included 1627 peo-
ple representative of the general population without baseline
self-reported CKD, CVD or diabetes. One thousand three
hundred and twenty-four subjects (81%) had a second GFR
measurement after a median (interquartile range [IQR])
observation period of 5.6 (IQR: 5.2–6.0) years. Among those
who had 2 measurements, 25 had diabetes at baseline
(defined as fasting plasma glucose $ 7.0 mmol/l, or glyco-
sylated hemoglobin $ 6.5%, or both); 36 had a missing WC
measurement; and 2 had missing triglyceride values at base-
line. These people were excluded, resulting in a study popu-
lation of 1261 people (Figure 1). As previously reported, there
were only small differences in the characteristics of the
included participants compared with the 19% who were lost
to follow-up.28

The mean � SD age at baseline was 58.0 � 3.9 years,
mean BMI was 27.1 � 3.8 kg/m2, and mean mGFR was
103.6 � 19.6 ml/min among subjects who had 2 GFR
measurements. Three hundred eighty-two subjects (30%) had
MS, fulfilling at least 3 of the following 5 criteria: WC > 94 cm
in men or > 80 cm in women; fasting plasma glucose $ 5.6
mmol/l; systolic blood pressure $ 130 mm Hg, diastolic blood
pressure $ 85 mm Hg, or use of antihypertensive medication,
or a combination of these; triglycerides $ 1.7 mmol/l or the
use of triglyceride-altering drugs; HDL cholesterol levels< 1.03
mmol/l in men or < 1.29 mmol/l in women or the use of
HDL-altering drugs.29 Most of the baseline characteristics
differed between the groups when the population was stratified
by MS status (Table 1), including the mean baseline mGFR,
which was 10.2 ml/min higher in the MS group (P < 0.001).
Twenty-five subjects had mGFR < 60 ml/min per 1.73 m2 at
baseline, increasing to 33 at follow-up (SupplementaryTable S1).

BMI, WC, WHR, and the GFR decline rate
The unadjusted mean � SD mGFR decline rate was 0.95 �
2.25 ml/min per year. In separate multivariable adjusted
linear regression models analyses, there was no statistically
significant linear relationship among the age-related mean
mGFR decline rate and BMI, WC, or WHR (Table 2).

In the same models, we examined whether mean mGFR
decline was associated with any of the constituent
1184
components of MS when analyzed as continuous variables.
Higher HDL cholesterol was linearly associated with a 0.58
ml/min/per year faster mean mGFR decline per mmol/l in the
fully adjusted model with BMI as an independent variable
(P ¼ 0.002) (not shown), and there were very similar results
in the analyses with WC and WHR. There was no statistically
significant linear or nonlinear relationship in generalized
additive models among the mean mGFR decline rate and
glucose, blood pressure, HDL, or triglycerides.

There was a statistically significant nonlinear relationship
between the mean mGFR decline rate and BMI in the fully
adjusted model, but the relationship lost its statistical signif-
icance when 1 subject with a very high BMI and steep mGFR
decline was removed from the dataset. No nonlinear rela-
tionship was found among the age-related mean mGFR
decline and WC, WHR, or body weight.

The metabolic syndrome
The dichotomous variable MS (yes or no) was included as an
independent variable in 3 new models. The new models were
based on the previously used models, but they excluded
variables that overlapped with the components of MS. In the
fully adjusted model, subjects with MS had a mean (95%
confidence interval [CI]) 0.30 (95% CI: 0.02–0.58) ml/min
per year faster decline (P ¼ 0.03) than those without the
Kidney International (2018) 93, 1183–1190



Table 1 | Baseline characteristics for subjects with and without the metabolic syndrome

Variable No metabolic syndrome Metabolic syndrome P value

Number of subjects 879 (69.7) 382 (30.3)
Male 388 (44.1) 235 (61.5) <0.001
Age (yr) 58.5 (54.5–61.4) 59.1 (55.0–61.5) 0.16
mGFR (ml/min) 100.5 � 19.0 110.7 � 19.2 <0.001
mGFR (ml/min per 1.73 m2) 92.9 � 14.3 95.1 � 14.1 0.01
mGFR decline rate (ml/min per yr) 0.82 � 2.21 1.23 � 2.33 0.004
mGFR decline rate (ml/min per 1.73 m2/yr) 0.74 � 2.04 1.03 � 1.96 0.02
mGFR decline >3 ml/min per 1.73 m2/yr 82 (9.3) 47 (12.3) 0.11
Height (cm) 170.1 � 8.6 172.5 � 8.5 <0.001
Weight (kg) 75.8 � 12.8 87.9 � 12.6 <0.001
Body mass index (kg/m2) 26.1 � 3.5 29.5 � 3.5 <0.001
Body mass index $30 kg/m2 105 (11.9) 155 (40.6) <0.001
Waist circumference (cm) 91.6 � 10.4 102.0 � 9.5 <0.001
Waist-hip ratio 0.89 � 0.07 0.95 � 0.06 <0.001
Daily smoker 164 (18.7) 66 (17.3) 0.56
Fasting plasma glucose (mmol/l) 5.2 � 0.4 5.7 � 0.4 <0.001
Hemoglobin A1c (%) 5.5 � 0.3 5.6 � 0.3 <0.001
LDL cholesterol (mmol/l) 3.6 � 0.8 3.9 � 0.9 <0.001
HDL cholesterol (mmol/l) 1.6 � 0.4 1.3 � 0.3 <0.001
Fasting triglycerides (mmol/l) 0.9 (0.7–1.2) 1.6 (1.1–2.0) <0.001
Cholesterol-lowering medication use 48 (5.5) 31 (8.1) 0.07
Urinary albumin-creatinine ratio 0.20 (0.10–0.51) 0.25 (0.10–0.61) 0.01
Heart rate (beats/min) 65.4 � 9.6 68.5 � 9.8 <0.001
Hypertensiona 271 (30.8) 253 (66.2) <0.001
Systolic blood pressure (mm Hg) 125.7 � 16.5 136.8 � 16.6 <0.001
Diastolic blood pressure (mm Hg) 81.3 � 9.4 87.8 � 8.9 <0.001
ACE inhibitor use 13 (1.5) 13 (3.4) 0.03
Calcium blocker use 31 (3.5) 29 (7.6) 0.002
ARB use 40 (4.6) 62 (16.2) <0.001
Beta blocker use 22 (2.5) 25 (6.5) <0.001
Diuretic use 50 (5.7) 53 (13.9) <0.001
Fulfilled metabolic syndrome criterion

Blood pressure criterion 402 (45.7) 336 (88.0) <0.001
Triglyceride criterion 28 (3.2) 181 (47.4) <0.001
HDL cholesterol criterion 43 (4.9) 144 (37.7) <0.001
Glucose criterion 105 (11.9) 258 (67.5) <0.001
Waist circumference criterion 624 (71.0) 376 (98.4) <0.001

ACE, angiotensin converting enzyme; ARB, angiotensin II receptor blocker; HDL, high-density lipoprotein; IQR, interquartile range; LDL, low-density lipoprotein; mGFR,
measured glomerular filtration rate. Results are expressed as n (%), mean � SD, or median (IQR).
aSystolic blood pressure $ 140 mm Hg, diastolic blood pressure $ 90 mm Hg, and/or use of antihypertensive medication.
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syndrome (Table 3). Sensitivity analyses were performed
using higher cut-offs for the waist criterion, >102 cm in men
or >88 cm in women (resulting in 384 fewer subjects ful-
filling the criterion, and 78 fewer subjects classified as having
the MS).29 This diluted the association between MS and GFR
decline, with a mean 0.14 (95% CI: �0.16 to 0.44) ml/min
per year faster decline in MS subjects (P ¼ 0.35) in fully
adjusted models.

The analyses were repeated using the individual compo-
nents of MS as dichotomous independent variables. The
triglycerides component of MS was the only statistically sig-
nificant individual component variable (P ¼ 0.04 in the fully
adjusted models) (Table 3). A scatter plot with a locally
weighted scatterplot smoothing line of the unadjusted rela-
tionship between triglycerides and the mGFR decline rate is
shown in Supplementary Figure S1.

The same anthropometric and MS models were then used
in logistic regression analyses with mGFR decline > 3 ml/min
per 1.73 m2/yr as a dichotomous outcome variable. Not BMI,
WC, WHR, or MS was associated with an increased risk of the
Kidney International (2018) 93, 1183–1190
dichotomous variable rapid mGFR decline in the fully
adjusted models (Tables 2 and 3, respectively).

Analyses using eGFR
The analyses were repeated using eGFR based on the Chronic
Kidney Disease Epidemiology research group (CKD-EPI)
equations for creatinine, cystatin C, and both together.17

There were no statistically significant associations between
mean eGFR decline or the dichotomous rapid eGFR decline
variable, and BMI, WC, or WHR in the fully adjusted
models (Supplementary Tables S2 and S3). However, MS was
associated with accelerated mean creatinine-based eGFR
decline (P ¼ 0.007), but not mean cystatin C-based
decline (P ¼ 0.38), in fully adjusted models. Paradoxically,
the dichotomous variable cystatin C-based eGFR decline > 3
ml/min per 1.73 m2/yr was associated with MS (P ¼ 0.003 in
fully adjusted models), while the same dichotomous
creatinine-based variable was not (P ¼ 0.39). The use of
the CKD-EPI eGFR equation incorporating both cystatin C
and creatinine yielded statistically nonsignificant results
1185



Table 2 | Analyses of baseline anthropometric variables and changes in mGFR decline

Linear regression model analyses of anthropometric variables and change in mean yearly absolute mGFR decline (ml/min per yr)

Anthropometric variable

Model 1 Model 2 Model 3

Coef. 95% CI P value Coef. 95% CI P value Coef. 95% CI P value

Body mass indexa �0.09 (�0.22 to 0.03) 0.15 �0.08 (�0.24 to 0.07) 0.27 �0.08 (�0.23 to 0.07) 0.28
Waist circumferencea �0.13 (�0.26 to 0.01) 0.08 �0.12 (�0.28 to 0.05) 0.16 �0.12 (�0.28 to 0.05) 0.16
Waist-hip ratioa �0.05 (�0.20 to 0.10) 0.48 �0.01 (�0.18 to 0.16) 0.89 �0.01 (�0.18 to 0.16) 0.90

Logistic regression analyses of anthropometric variables and risk of rapid yearly mGFR decline (>3 ml/min per 1.73 m2/yr)

Model 1 Model 2 Model 3

OR 95% CI P value OR 95% CI P value OR 95% CI P value

Body mass indexa 1.10 (0.91–1.32) 0.32 1.04 (0.83–1.28) 0.75 1.03 (0.83–1.28) 0.79
Waist circumferencea 1.13 (0.93–1.38) 0.22 1.08 (0.85–1.36) 0.54 1.07 (0.85–1.36) 0.55
Waist-hip ratioa 1.18 (0.95–1.48) 0.14 1.13 (0.87–1.46) 0.37 1.12 (0.87–1.45) 0.39

CI, confidence interval; Coef., coefficient (ml/min per yr); mGFR, measured glomerular filtration rate; OR, odds ratio.
Model 1: Adjusted for baseline height, sex, and age. For rapid decline, the model is not adjusted for height.
Model 2: Model 1 þ adjusted for baseline smoking, triglycerides, high-density and low-density lipoprotein cholesterol, cholesterol-lowering medication use, systolic and
diastolic blood pressure, antihypertensive medication use, heart rate, fasting glucose, and nonsteroid anti-inflammatory drug use.
Model 3: Model 2 þ baseline urinary albumin-creatinine ratio.
aEach obesity variable is expressed per SD and was analyzed in a separate regression model.
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intermediary to the results using either biomarker separately.
The discrepancies between mGFR and eGFR decline are
further elucidated in Supplementary Figure S2, including a
scatterplot of the correlations between mGFR and eGFR
decline and a Venn diagram of the rapid decline variables.

Interaction analyses
There was no statistically significant interaction among par-
ticipants’ sex and BMI, WC, WHR, MS, or any of its com-
ponents, for the relationship with the mean mGFR decline.
We found no statistically significant interaction between BMI
categorized as <30.0 and $30.0 kg/m2 and MS, for the
relationship with the mean mGFR decline (P ¼ 0.12 in the
fully adjusted model). Finally, we tested pairwise interactions
between the dichotomous waist criterion and the other
criteria of MS, and we found no statistically significant
interactions in the fully adjusted models.
Table 3 | Regression analyses of baseline metabolic syndrome, i

Linear regression model analyses of baseline metabolic syndrome, its compo

Variable

Model 1

Coef. 95% CI P value Co

Metabolic syndromea �0.39 (�0.66 to �0.11) 0.006 �0
Waist circumference criteriona �0.24 (�0.56 to 0.07) 0.13 �0
Glucose criteriona -�0.10 (�0.38 to 0.18) 0.48 �0
Blood pressure criteriona �0.10 (�0.36 to 0.16) 0.47 �0
HDL cholesterol criteriona 0.12 (�0.23 to 0.47) 0.49 0
Triglycerides criteriona �0.44 (�0.77 to �0.10) 0.01 �0

Logistic regression analyses of baseline metabolic syndrome and the risk

Model 1

OR 95% CI P value O

Metabolic syndrome 1.34 (0.91–1.98) 0.14 1.3

CI, confidence interval; Coef., coefficient (ml/min per yr); HDL, high-density lipoprotein;
Model 1: Adjusted for baseline height, sex, and age. For rapid decline, the model is no
Model 2: Model 1 þ baseline smoking, low-density lipoprotein cholesterol, cholesterol-low
Model 3: Model 2 þ baseline urinary albumin-creatinine ratio.
aEach variable was analyzed in a separate linear regression model.

1186
DISCUSSION
In this middle-aged nondiabetic cohort from the general
population, BMI, WC, and WHR did not predict changes in
the age-related GFR decline. This suggests that increased
body fat alone is not an important determinant of age-
related GFR decline independent of CVD, diabetes,
obesity-related glomerulopathy, or other proposed mecha-
nisms in a healthy population. However, MS was indepen-
dently associated with a 0.30 ml/min per year faster mean
mGFR decline rate in the multivariable adjusted models
including the urinary albumin-creatinine ratio (ACR). This
result was mainly driven by the triglyceride criterion of MS
(Table 3). When using a less stringent WC criterion, as
suggested by the American Heart Association and the
National Heart, Lung, and Blood Institute, the association
between MS and GFR decline was diluted and not statisti-
cally significant.
ts components, and changes in mGFR decline

nents, and change in mean yearly absolute mGFR decline (ml/min per yr)

Model 2 Model 3

ef. 95% CI P value Coef. 95% CI P value

.32 (�0.60 to �0.04) 0.03 �0.30 (�0.58 to �0.02) 0.03

.18 (�0.50 to 0.14) 0.27 �0.17 (�0.49 to 0.15) 0.29

.06 (�0.33 to 0.21) 0.67 �0.06 (�0.35 to 0.22) 0.66

.03 (�0.30 to 0.23) 0.80 �0.03 (�0.29 to 0.24) 0.84

.21 (�0.14 to 0.56) 0.25 0.22 (�0.13 to 0.57) 0.23

.38 (�0.73 to �0.03) 0.03 �0.36 (�0.71 to �0.01) 0.04

of rapid yearly mGFR decline (>3 ml/min per 1.73 m2/yr)

Model 2 Model 3

R 95% CI P value OR 95% CI P value

2 (0.89–1.98) 0.17 1.27 (0.84–1.91) 0.25

mGFR, measured glomerular filtration rate; OR, odds ratio.
t adjusted for height.
ering medication use, resting heart rate, and nonsteroid anti-inflammatory drug use.
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To the best of our knowledge, all previous population-based
longitudinal studies of obesity and GFR decline used eGFR to
assess kidney function. Five previous longitudinal studies
reported on associations between increased BMI or WC, and
mean eGFR decline.10–14 Only 1 of the 5 studies found a sta-
tistically significant association in their fully adjusted models.
Halbesma et al.10 reported an association between a higherWC
and slower mean eGFR decline in the Prevention of Renal and
Vascular End-Stage Disease (PREVEND) study; however, this
association was only in male subjects, and it was for a model
that did not include possible confounding variables, such as
smoking and triglyceride levels.

Several studies investigated the association between BMI or
WC and the risk of more rapid annual decline in eGFR as a
dichotomous outcome, although variously defined.12–16 They
all reported an association between either BMI or WC and
either dichotomous rapid creatinine- or cystatin C-based
eGFR decline variable, but some reported mixed results with
negative findings as well.13–15 We found no statistically
significant association among BMI, WC, or WHR and the
dichotomous rapid mGFR or eGFR decline variables, defined
as >3 ml/min per 1.73 m2/yr, in the fully adjusted models. We
did find an association between MS and the dichotomous
rapid cystatin C-based eGFR decline, but there was no asso-
ciation with the dichotomous rapid mGFR decline variable in
the fully adjusted models (Supplementary Table S3, Table 3).

Creatinine- and cystatin C-based GFR estimates are known
to associate with non-GFR-related factors, and eGFR decline
may occur due to changes in those factors independently of
real changes in GFR. Indeed, we found a significant associa-
tion between BMI and faster cystatin C-based mean eGFR
decline (Supplementary Table S2), while the mean mGFR
decline was not associated with BMI. Previous studies, except
the study by Malkina et al.13 in the MESA cohort, included
diabetic subjects who may have different GFR trajectories
than nondiabetic subjects.

Our finding of the lack of a statistically significant asso-
ciation between the body fat variables and changes in mGFR
decline may also reflect a transient state of hyperfiltration in
which GFR rises or remains high through a state of nephron
overload.30 We have previously reported an association
between obesity and hyperfiltration in the RENIS-T6 baseline
cohort;31 the lack of a more rapid mGFR decline might
represent subjects remaining in this state of hyperfiltration for
a prolonged period of time.

To the best of our knowledge, no previous study has
examined the relationship between MS and changes in age-
related GFR decline. We found that the association between
MS and an accelerated age-related mGFR decline was mainly
driven by the triglyceride criterion of MS. High triglyceride
levels are known to be associated with an increased risk
of CKD,9,32 and may contribute to kidney dysfunction through
its proinflammatory and atherogenic effects; furthermore, tri-
glyceride levels can act as a marker for insulin resistance.33,34

Our finding suggests triglyceride-lowering interventions
could be a possible strategy for slowing age-relatedGFRdecline,
Kidney International (2018) 93, 1183–1190
but further confirmation in other studies would be necessary.
We have previously reported the lack of a relationship between
baseline blood pressure and the GFR change rate.35 The other
constituent components ofMSwere not significantly associated
with changes in the mGFR decline; instead, higher HDL
cholesterol, when analyzed as a continuous variable, was
associated with an accelerated mGFR decline.

HDL cholesterol is known to be inversely associated with
obesity, the risk of CKD, and CVD. Therefore, our finding
is surprising and seemingly counterintuitive. However, a
U-shaped relationship between HDL cholesterol levels and
risk of CKD has been described before, with both low and
high levels being associated with increased risk.36 Impor-
tantly, our cohort consists of fairly healthy people without
diabetes or CKD, and the association between lipid abnor-
malities and age-related mGFR decline need not mirror the
associations among lipid abnormalities, CKD, and CVD.

Several recent studies have examined differences in the risk
of incident CKD between obese people (BMI $ 30 kg/m2)
with and without MS, who were labeled “metabolically
unhealthy obesity” and “metabolically healthy obesity,”
respectively.21–24 Some did not find any increased risk of
eGFR-defined CKD in people with metabolically unhealthy
obesity compared with metabolically healthy obese peo-
ple,21,22 while others found that a residual increased risk of
CKD remains.23,24 We found no statistically significant dif-
ference in mGFR decline between people with metabolically
healthy and unhealthy obesity in our study population, but
the power of the test of interaction between BMI and MS may
have been insufficient to detect smaller differences in the
mGFR decline rate between the subgroups.

The strength of this longitudinal study lies in the use of 2
measurements of GFR with a gold-standard method in a large
cohort covering an age group susceptible to early stages of
chronic diseases. To the best of our knowledge, this is the
largest cohort from the general population that has been
studied using precise GFR measurements. We excluded
people with self-reported CVD, renal disease, and those with
self-reported or lab-revealed diabetes at baseline to focus on
age-related GFR decline in relatively healthy individuals.

Only middle-aged white people participated in the study,
which limits the generalizability of the findings to other
population groups. Because the use of mGFR is costlier than
eGFR, our cohort was smaller than in eGFR-based studies.
This limits our ability to study GFR decline in subgroups.
Also, a larger cohort would have increased the power of the
statistical tests, especially for the dichotomous outcome. We
used BMI, and WHR as anthropometric approximations of
body fat in place of gold-standard computed tomography,
dual X-ray absorptiometry, or magnetic resonance imaging
methods, which is another study limitation. However,
Madero et al.37 recently found no significant difference
among these methods and BMI or WC when determining the
risk of eGFR decline and CKD. Finally, because our study had
an observational design, inferences regarding causality should
not be made.
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We conclude that MS is associated with an accelerated age-
related mGFR decline during 5.6 years of follow-up. We
found no statistically significant association among the mean
age-related mGFR decline and baseline BMI, WC, or WHR.
Additional GFR measurements over a longer observation
period are required to study obesity and any long-term,
nonlinear trajectories in the GFR decline.

MATERIALS AND METHODS
Participants
RENIS-T6 was a substudy of the population-based sixth Tromsø
Study in the municipality of Tromsø, Norway, conducted from 2007
to 2009. The study included a representative sample of 1627 people,
ages 50 to 62 years, from the general population without self-
reported CVD, kidney disease, or diabetes. A follow-up study,
RENIS-FU, was conducted from 2013 to 2015; 1324 of the subjects
in the cohort (81%) participated with a median (IQR) follow-up of
5.6 years (IQR: 5.2–6.0). The studies have previously been described
in detail.28,38

We included all subjects who participated in both rounds, except
the following: people with diabetes at baseline, defined as fasting
glucose $ 7.0 mmol/l, or glycosylated hemoglobin $ 6.5%, or both,
and people with missing measurements for any of the study variables.

All subjects provided written informed consent to participate,
and the Regional Ethics Committee of Northern Norway approved
the study. The study was performed in compliance with the Decla-
ration of Helsinki.

Data collection and measurements
RENIS-T6 and RENIS-FU were conducted with a standardized
procedure and specifically trained clinical staff responsible for
measurements. Details have been previously described.28

Body weight was measured in the RENIS-T6 study to the nearest
0.1 kg on a SECA digital scale (SECA, Hamburg, Germany). The
same weight scale was used for all subjects and was calibrated just
before the study began. Height was measured to the nearest centi-
meter with a wall-mounted measuring tape. BMI was defined as the
height in meters divided by weight in kilograms squared. The waist
and hip circumferences were measured horizontally over the
umbilicus after exhalation and at the greatest protrusion of the
buttocks, respectively. The WHR was calculated as the WC divided
by the hip circumference.

GFR was measured using single-sample plasma clearance of
iohexol, which has previously been described in detail.35,38 The
serum iohexol (Omnipaque, 300 mg/ml, Amersham Health,
London, UK) concentration was measured by high-performance
liquid chromatography, previously described by Nilsson-Ehle.39

GFR was calculated by Jacobsson’s method.40 The analytical coeffi-
cient of variation was 3.0% in RENIS-T6 and 3.1% in RENIS-FU,
and the mean coefficient of variation (95% CI) for the intra-
individual variation in GFR was 4.2% (3.4%–4.9%).28

Study subjects collected 3 samples of their first-void morning
spot urine on the 3 days preceding the GFR measurements. The
urinary creatinine and albumin concentrations were measured in
unfrozen urine using an ABX PENTRA autoanalyzer and kits from
ABX Diagnostics (Horiba ABX SAS, Montpellier, France). The uri-
nary ACR was calculated for each urine specimen, and the median
ACR from the 3 samples was used. The ACR was set at 0.1 mg/mmol
in samples with no detectable urinary albumin concentration, which
corresponded to the lowest ACR in samples with detectable albumin.
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Serum samples for fasting glucose, triglycerides, and cholesterol
levels were measured on a Modular P800 (Roche Diagnostics,
Mannheim, Germany) on the day of the subject’s appointment.
Serum creatinine was analyzed with an enzymatic assay standardized
to the isotope dilution mass spectrometry method (CREA Plus,
Roche Diagnostics). Cystatin C was measured using a particle-
enhanced turbidimetric immunoassay with reagents from Gentian
(Gentian, Moss, Norway) and a Modular E analyzer (Roche
Diagnostics). The cystatin C measurements were recalibrated to the
international reference standard using a Cobas 8000 (Roche
Diagnostics). Further details have previously been provided.19 eGFR
was calculated using the CKD-EPI equations.17

Blood pressure and resting heart rate were measured 3 times in a
seated position after 2 minutes of rest using an automated device
(model UA799; A&D, Tokyo, Japan). The average of the second and
third measurements was used in the analyses. Subjects with a con-
ventional systolic blood pressure $ 140 mm Hg, diastolic blood
pressure $ 90 mm Hg, or taking antihypertensive medications were
categorized as having hypertension.

Statistical analyses
The study population characteristics are presented as the mean� SD,
median (IQR), or total number (percentage), and the participantswere
categorized into 2 groups according to the criteria for MS. MS was
defined as the presence of at least 3 of the following 5 criteria:WC> 94
cm inmenor> 80 cm inwomen; fasting plasma glucose$ 5.6mmol/l;
systolic blood pressure $ 130 mm Hg, diastolic blood pressure $ 85
mm Hg, or use of antihypertensive medication, or a combination of
these; triglycerides $ 1.7 mmol/l or the use of triglyceride-altering
drugs; HDL cholesterol levels < 1.03 mmol/l in men or < 1.29
mmol/l inwomenor the use ofHDL-altering drugs.29No subjects used
antidiabetic medication, nor medications that altered the HDL
cholesterol or triglycerides levels. The P values for differences between
the 2 groups were calculated using Pearson chi-squared test, Welch
unequal variances t test, or Mann-Whitney U test as appropriate.
Sensitivity analyses were done using an alternative WC criterion with
cut-off values of>102 cm in men or>88 cm in women, which are the
cut-offs used by the American Heart Association and the National
Heart, Lung, and Blood Institute.29

The GFR decline rates (both mGFR and eGFR) were defined as
the difference between GFR at baseline and follow-up, divided by
observation time in years. Associations between predictors and the
decline rates were tested using multivariable adjusted linear regres-
sion models. We analyzed the associations among the GFR decline
rates and BMI, WC, WHR, MS, and components of MS, in separate
models. Nonlinear associations were analyzed using generalized
additive models.41

Rapid GFR decline (both mGFR and eGFR) was defined as >3
ml/min per 1.73 m2/yr; this cut-off was chosen because it has been
used in previous studies.14,16,42

We adjusted for the following baseline variables: model 1: age,
sex, and height; model 2: model 1 þ number of cigarettes smoked
daily, systolic and diastolic blood pressure, heart rate, individual
dichotomous variables for the use of angiotensin converting enzyme
inhibitors, angiotensin II receptor blockers, calcium channel
blockers, beta blockers, diuretics, cholesterol-lowering drugs and
nonsteroid anti-inflammatory drugs, fasting glucose, triglycerides,
HDL and low-density lipoprotein cholesterol; and model 3: model
2 þ the ACR. For the MS analyses and analyses of its components,
the variables already included in the MS criteria were removed from
the analyses.
Kidney International (2018) 93, 1183–1190
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Statistical analysis was performed with Stata MP 14.2 (Stata
Corp., College Station, TX; www.stata.com), except generalized
additive models which were analyzed with the gam-procedure in
R 3.3 (www.r-project.org).
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SUPPLEMENTARY MATERIAL
Figure S1. The glomerular filtration rate (GFR) change plotted against
fasting serum triglycerides (n ¼ 1261). The blue line is an unadjusted
locally weighted scatterplot smoothing fit to the data. The vertical red
line indicates a triglyceride value of 1.7 mmol/l, the threshold for the
triglycerides criterion of the definition of the metabolic syndrome.
The upper panel shows the whole cohort. The lower panel is a
magnification of the area for GFR change rates between �1.5 and 0.5
ml/min per year.
Figure S2. Scatter plots with annual change in measured glomerular
filtration rate (mGFR) versus annual changes in estimated glomerular
filtration rate (eGFR) based on creatinine, cystatin C, or both. The red
line indicates perfect correlation. Also, a Venn diagram details the
number of subjects with rapid measured, or estimated GFR decline
(>3 ml/min per 1.73 m2/yr), or both, and the overlap between these
categorical variables.
Table S1. The metabolic syndrome and glomerular filtration rate
(GFR) <60 ml/min per 1.73 m2 at follow-up.
Table S2. Linear regression model analyses of anthropometric
variables, metabolic syndrome (MS), and change in yearly mean
estimated glomerular filtration rate (eGFR) decline.
Table S3. Logistic regression analyses of anthropometric variables,
metabolic syndrome (MS), and odds ratio of rapid estimated
glomerular filtration rate (eGFR) decline (>3 ml/min per 1.73 m2/yr).
Supplementary material is linked to the online version of the paper at
www.kidney-international.org.
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Association of Increasing GFR with Change in
Albuminuria in the General Population

Toralf Melsom,*† Vidar Stefansson,* Jørgen Schei,*† Marit Solbu,*† Trond Jenssen,*‡ Tom Wilsgaard,§ and Bjørn O. Eriksen*†

Abstract
Background and objectives Hyperfiltration at the single-nephron level has been proposed as an early stage of
kidney dysfunction of different origins. Evidence supporting this hypothesis in humans is lacking, because there
is no method of measuring single-nephron GFR in humans. However, increased whole-kidney GFR in the same
individual implies an increased single–nephron GFR, because the number of nephrons does not increase with
age. We hypothesized that an increase in GFRwould be associated with an increased albumin-to-creatinine ratio
in a cohort of the general population.

Design, setting, participants, & measurements We measured GFR by iohexol clearance at baseline in 2007–2009
and follow-up after 5.6 years in a representative sample of 1246 persons (aged 50–62 years)whowere nondiabetic
from the general population of Tromso, northern Norway. Participants were without cardiovascular disease,
kidney disease, or diabetes at baseline. We investigated the association between change in GFR and change in
albumin-to-creatinine ratio. Increased GFRwas defined as a positive change in GFR (change in GFR.0 ml/min)
from baseline to follow-up. An albumin-to-creatinine ratio .30 mg/g was classified as albuminuria.

ResultsChange in GFRwas positively associated with a change in albumin-to-creatinine ratio in the entire cohort
in the multiple linear regression. The albumin-to-creatinine ratiofollow-up-to-albumin-to-creatinine ratiobaseline
ratio increased by 8.0% (95% confidence interval, 1.4 to 15.0) per SD increase in change inGFR.When participants
with increased GFR (n=343) were comparedwith those with a reducedGFR (n=903), the ratio increased by 16.3%
(95% confidence interval, 1.1 to 33.7). The multivariable adjusted odds ratio for incident albuminuria (n=14) was
4.98 (95% confidence interval, 1.49 to 16.13) for those with an increased GFR (yes/no).

Conclusions Increasing GFR is associated with an increase in albumin-to-creatinine ratio and incident
albuminuria in the general nondiabetic population. These findings support single-nephron hyperfiltration as a
risk factor for albuminuria in the general population.

Clin J Am Soc Nephrol 11: 2186–2194, 2016. doi: 10.2215/CJN.04940516

Introduction
The global death rates from CKD increased by 37%
from 1990 to 2013 (1). Reduced eGFRs below 60 ml/min
per 1.73 m2 and even small increments in urinary
albumin excretion are independent risk factors for
cardiovascular disease (CVD) and all-cause mortality
(2). Recent cohort studies of the general population
have found that elevated and increasing eGFRs also
predict CVD and death (3,4). This apparent increased
risk associated with a high or increasing eGFR has
been explained by confounding because of muscle
wasting and thus, lower serum creatinine levels in
individuals with chronic illness. However, an abnor-
mally high GFR or glomerular hyperfiltration may
be a pathologic state in response to metabolic distur-
bances and a cause of albuminuria (5,6).

This hypothesis is on the basis of experimental
studies in animals that show that hyperfiltration at the
single-nephron level is a risk factor for albuminuria
and subsequent glomerulosclerosis (5). Because single-
nephron GFRs cannot be measured in humans,

investigators have used elevated whole–kidney GFR
as a proxy for single-nephron hyperfiltration. Whole-
kidney GFR increases in a large proportion of patients
with diabetes before albuminuria develops (7,8). Re-
cently, we reported that having prediabetes predicted
both an increased whole–kidney GFR and an increased
albumin-to-creatinine ratio (ACR) at follow-up in a lon-
gitudinal study of the general population (9). Several
other CKD risk factors, such as hypertension, obesity,
and smoking, have been associated with elevated
whole–kidney GFR in cross-sectional studies (10–15).
However, whether hyperfiltration is a risk factor for
albuminuria in the general population remains unclear.
The primary reason for this uncertainty may be that
assessing hyperfiltration defined as the elevated
whole–kidney GFR in a cross-sectional design may
not represent hyperfiltration at the single-nephron
level, because there is a large variation in nephron
number between individuals ranging from 200,000 to
1,800,000 (16). However, an increase in the whole-
kidney GFR of the same individual implies an increased
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single–nephron GFR as well as hyperfiltration in all or at
least a large proportion of the nephrons, because the number
of nephrons does not increase with age. Accordingly, we
tested the hypothesis that an increase in GFR from baseline
to follow-up would be associated with increases in the ACR
and albuminuria in a cohort representative of the general
population.
Because the eGFRs on the basis of serum creatinine and

cystatin C are imprecise and biased in the normal GFR
range (15,17–19), we measured GFR using iohexol clear-
ance in the Renal Iohexol Clearance Survey in Tromsø 6
(RENIS-T6) Study at baseline and after a median of 5.6
years of follow-up (the Renal Iohexol Clearance Survey
in Tromsø 6 Follow-Up [RENIS-FU] Study).

Materials and Methods
Study Participants
The RENIS-T6 Study was conducted from 2007 to 2009

as a substudy of the population–based sixth Tromsø
Study in the municipality of Tromso, northern Norway
(20). The RENIS-T6 Study included a representative
sample of 1627 persons aged 50–62 years old from the

general white population without self–reported kidney
disease, CVD, or diabetes (Figure 1).
In the RENIS-FU Study, we invited all 1627 participants

from the RENIS-T6 Study,with the exceptions of seven persons
who had a possible adverse reaction to iohexol in the RENIS-T6
Study and 23 persons who had died during the follow-up
period (Figure 1). In total, 1324 (83%) participants were exam-
ined with an updated GFR measurement between September
of 2013 and January of 2015. In this study, we excluded par-
ticipants who had diabetes (fasting glucose$7.0 mmol/L [126
mg/dl], hemoglobin A1c [HbA1c] $6.5%, or the use of anti-
diabetic medication; n=25) or albuminuria (ACR.30 mg/g) at
baseline (n=17). Finally, we excluded 36 participants who had
diabetes at follow-up (Figure 1).
The Regional Ethics Committee of Northern Norway

approved the study, and all participants provided written
informed consent.

Data
The RENIS-T6 Study and the RENIS-FU Study were

conducted at the Clinical Research Unit at the University
Hospital of Northern Norway with a standardized proce-
dure, and the same staff members were responsible for all

Figure 1. | Inclusion of participants. The Renal Iohexol Clearance Survey in Tromsø 6 (RENIS-T6) Study and the Renal Iohexol Clearance
Survey in Tromsø 6 Follow-Up (RENIS-FU) Study.
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measurements. The participants met with study staff between
8:00 a.m. and 10:00 a.m. after an overnight fast, including
abstinence from tobacco. Participants with intercurrent dis-
ease (e.g., respiratory or urinary infection) had their appoint-
ments rescheduled.
Both visits included a health questionnairewith questions on

alcohol and tobacco use and all current medications. Regular
alcohol use was categorized as consuming alcohol more than
once aweek (yes/no), and current smokingwas categorized as
daily tobacco use (yes/no).

Measurements
The GFR was measured using single–sample plasma clear-

ance of iohexol as described in detail elsewhere (9,20). The
participants were instructed to avoid large meals with meat
and nonsteroidal anti–inflammatory drugs 2 days before the
investigation. The serum iohexol (300 mg/ml; Omnipaque;
Amersham Health, London, United Kingdom) concentration
was measured using HPLC as described by Nilsson-Ehle (21).
The analytic coefficients of variation during the study period
were 3.0% in the RENIS-T6 Study and 3.1% in the RENIS-FU
Study. The GFR was calculated as described by Jacobsson
(22). In the RENIS-FU Study, we obtained a repeated GFR
measurement after 2 weeks and within 2 months from a ran-
dom sample of 86 participants. The mean coefficient of vari-
ation for the intraindividual variation in GFR was 4.2% (95%
confidence interval, 3.4% to 4.9%) as recently reported (23).
Three samples of first void morning spot urine were

collected on separate days at baseline and follow-up. Urinary

albumin excretion and urinary creatinine were measured in
unfrozen urine (24). The ACR in milligrams per millimole
was calculated for each urine specimen, and the median
ACR value was used in the analyses. Albuminuria was de-
fined as an ACR.30 mg/g according to Kidney Disease
Improving Global Outcomes 2012 (25).
Serum fasting lipids, fasting glucose, and HbA1c were

analyzed as previously reported (26). Ambulatory BP re-
cordings began after the baseline GFR measurement and
continued for 24 hours (12).

Statistical Analyses
The study population characteristics are presented as the

mean (SD) values, medians (interquartile ranges [IQRs]) in
cases of skewed data, or numbers (percentages). Differences
in characteristics between baseline and follow-up variables
were tested with paired t tests for mean values, Wilcoxon
signed rank tests for median values, and McNemar tests for
paired dichotomous variables. The differences between
participants in the follow-up investigation and persons
lost to follow-up were tested with two–sample t tests,
Wilcoxon rank sum tests, two-sample tests of proportions,
or Fisher exact test as appropriate.
The 14 missing values in ambulatory BP were replaced

by the office BP values.
The change in GFR (DGFR) from baseline to follow-up

was calculated for each person (DGFR = GFRfollow-up 2
GFRbaseline in milliliters per minute; not indexed by body
surface area). We defined an increased GFR within the

Table 1. Population characteristics at baseline and follow-up in the Renal Iohexol Clearance Survey in Tromsø 6 Follow-Up Study

Characteristics Baseline Follow-up P Value

N (%) 1246 1246
Men, n (%) 620 (49.8) 620 (49.8)
Age, yr 57.9 (3.9) 63.5 (4.0)
Height, cm 170.9 (8.6) 170.7 (8.7) ,0.001
Body weight, kg 79.1 (13.6) 78.9 (13.9) 0.33
Body mass index, kg/m2 27.0 (3.7) 27.0 (3.9) 0.45
Current smoker, n (%) 225 (18.2) 162 (13.1) 0.01
Use of alcohol more than once a week, n (%) 358 (28.7) 420 (33.7) ,0.001
LDL cholesterol, mg/dl 141.3 (32.8) 138.6 (34.8) 0.01
HDL cholesterol, mg/dl 59.9 (17.8) 63.3 (18.2) ,0.001
Fasting glucose, mg/dl 95.4 (8.3) 98.0 (8.8) ,0.001
Hemoglobin A1c, % 5.51 (0.33) 5.59 (0.29) ,0.001
Fasting triglycerides, mg/dl 88.5 (61.9–123.9) 88.5 (71.0–115.0) 0.09
Urinary albumin-to-creatinine ratio, mg/g 1.85 (0.89–4.46) 2.96 (0.89–5.02) ,0.001
Conventional systolic BP, mmHg 128.7 (17.3) 130.4 (16.9) ,0.001
Conventional diastolic BP, mmHg 83.2 (9.7) 81.9 (9.2) ,0.001
Ambulatory systolic BP, mmHg 129.5 (13.0)
Ambulatory diastolic BP, mmHg 82.0 (8.7)
Antihypertensive medication, n (%) 206 (16.6) 373 (29.9) ,0.001
ACE inhibitor 21 (1.7) 40 (3.2) ,0.001
A2 blocker 96 (7.7) 183 (15) ,0.001

Measured GFR,a ml/min 103.4 (19.4) 98.1 (19.5) ,0.001
Measured GFR,a ml/min per 1.73 m2 93.6 (14.1) 88.9 (14.2) ,0.001

Estimates are given as the means (SDs), medians (interquartile ranges), or numbers (percentages). Not including the Renal Iohexol
Clearance Survey in Tromsø 6 Follow-Up Study participants with diabetes at baseline or follow-up or participants with albuminuria at
baseline. ACE, angiotensin-converting enzyme.
aGFR was measured by plasma iohexol clearance.
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same individual as DGFR.0 ml/min. In sensitivity analyses,
we defined increased GFR as a DGFR greater than the 95th
percentile for the intraindividual day to day variation in the
GFR measurement. The ACR was log transformed (natural
logarithm) because of its skewed distribution, and the
change in albumin-to-creatinine ratio (DACR) was calculated
as log ACRfollow-up 2 log ACRbaseline.
We used multiple linear regression to assess the association

between DGFR and DACR and multivariable logistic regres-
sion to estimate the odds ratios for incident albuminuria at
follow-up. We adjusted for variables that have been associated
with both GFR and risk of albuminuria. In model 1, we ad-
justed for sex and baseline age. Model 2 included the variables
in model 1 as well as baseline daytime diastolic ambulatory
BP, body mass index, fasting glucose, current smoking, regu-
lar use of alcohol, and use of an angiotensin–converting en-
zyme inhibitor (ACE-i) or angiotensin receptor blocker (ARB).
Model 3 included the variables in model 2 and added base-
line triglycerides, LDL cholesterol, HDL cholesterol, C-reactive
protein, fasting insulin, regular physical exercise (yes/no), and
changes in BP, fasting glucose, body weight, smoking habit,
and use of antihypertensive medications from baseline to
follow-up.
We repeated the logistic regression analyses using exact

logistic regression (27). Possible nonlinear associations
between DGFR and DACR were explored using multiple
fractional polynomials (28).
Stata software, version 14 (StataCorp., College Station,

TX) was used for statistical analysis. Statistical significance
was set at P,0.05.

Results
Patient Characteristics
In total, 1246 participants who were nondiabetic and

without albuminuria at baseline of the RENIS-T6 Study

had a follow-up GFR measurement in the RENIS-FU Study
after a median (IQR) observation time of 5.6 years (IQR,
5.2–6.0) (Figure 1).
All population characteristics changed from baseline to

follow-up, except for body weight and fasting triglycerides
(Table 1). The percentage of persons receiving antihyper-
tensive medication increased from 16.6% to 29.9%.
The characteristics of the included participants compared

with the 288 lost to follow-up are presented in Supplemen-
tal Table 1. The differences were small, except for the per-
centage of current smokers (18 versus 28; P,0.01).

Distribution of DACR and DGFR
The distributions of DACR and DGFR are shown in Fig-

ure 2. One hundred seventy-six (14.2%) participants had
undetectable urinary albumin concentration at both base-
line and follow-up, corresponding to the spike at zero in
Figure 2. The mean (SD) annual DGFRwas20.94 (2.2) ml/min
per year. In total, 343 (27.6%) participants (167 women and
176 men) had an increased GFR defined as DGFR.0 ml/min
from baseline to follow-up.

The Association between DGFR and DACR
DGFR as a continuous variable in the entire study pop-

ulation and DGFR dichotomized as an increased GFR
(yes/no) were both positively associated with DACR in
the multiple linear regression (Table 2). There were no
significant nonlinear associations between DGFR and
DACR analyzed with multiple fractional polynomials
and no statistically significant age or sex interactions.
When analyzing DACR in relation to the annual rate of
GFR change instead of the total change in the study pe-
riod, the ACRfollow-up-to-ACRbaseline ratio increased by
8.4% (95% confidence interval, 1.8 to 15.5) per SD change
in annual GFR in the fully adjusted model (P=0.01). The

Figure 2. | Distribution of change in GFR and ACR. Frequency histogram of change in GFR (DGFR) and change in albumin-to-creatinine ratio
(DACR) from baseline to follow-up. DGFR = GFRfollow-up 2 GFRbaseline in milliliters per minute. DACR = log ACRfollow-up 2 log ACRbaseline.
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marginal association between DACR and annual DGFR in
this model is shown in Figure 3.

Odds Ratios of Incident Albuminuria
Fourteen persons developed incident albuminuria at

follow-up, eight of the 343 persons (2.3%) with an increased
GFR (DGFR.0 ml/min) developed incident albuminuria
at follow-up, and six of the 903 persons (0.7%) with a de-
creased GFR (DGFR#0 ml/min) developed incident albu-
minuria at follow-up.
The odds ratios of incident albuminuria are presented in

Table 3. Of the independent variables, only DGFR, increas-
ing GFR (yes/no), and baseline fasting glucose were asso-
ciated with new onset albuminuria. Similar results were
obtained using exact logistic regression.
The results in Tables 2 and 3 were similar after adjusting

for HbA1c instead of fasting glucose and after adjusting
for ambulatory systolic instead of diastolic BP.

Sensitivity Analyses
In separate analyses, we excluded individuals with a

measured GFR ,60 ml/min per 1.73 m2 (n=27) at baseline
to investigate a subgroup without possible acute kidney
disease or CKD. We also excluded participants ever on
angiotensin blockers (at baseline or follow-up). The associa-
tion between DGFR and albuminuria remained essentially
unchanged. All analyses were repeated using a more conser-
vative definition of increased GFR (defined as a .11 ml/min
increase, which is above the 95th percentile of the day to day
variation in the GFR measurement). Using this definition, the
number of persons with an increased GFR was reduced from
343 (27.5%) to 91 (7.3%). The associations with DACR and
incident albuminuria became stronger, although not signifi-
cant for DACR (Supplemental Table 2). Finally, we obtained
similar results when we included the 36 participants with
diabetes at follow-up.

Discussion
Hyperfiltration followed by albuminuria has been pro-

posed as a common pathway resulting in CKD (6); how-
ever, evidence supporting this hypothesis in persons
without diabetes has been lacking. An obstacle to studies
on hyperfiltration in humans has been the lack of consensus
regarding how to measure hyperfiltration. Most investiga-
tors have defined hyperfiltration as an elevated whole–
kidney GFR .120–150 ml/min per 1.73 m2, often without
adjusting for age (29). This definition may be poorly corre-
lated with single-nephron hyperfiltration because of the in-
terindividual variation in nephron endowment and
because of the fact that the number of functional nephrons
decreases with age as a result of age-related glomeruloscle-
rosis (30,31).
We found that an increase in GFR within the same

individual was associated with increases in ACR and
incident albuminuria in a representative sample of the
general middle–aged, nondiabetic population. This finding
has important implications, because it supports the hy-
pothesis of hyperfiltration as a common early stage of
CKD and because an elevated ACR is a risk factor for
CVD and mortality in the general population (2). Al-
though only 14 persons developed incident albuminuria
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in this low-risk population, the association with an in-
creased GFR was strong, with an odds ratio of 4.98 (95%
confidence interval, 1.49 to 16.13) for those with an in-
creased GFR in the fully adjusted model (P,0.01).
We are not aware of previous longitudinal studies on

the risk of albuminuria associated with changes in GFR
or hyperfiltration in the general population. However, a
cross-sectional study of a general nondiabetic population
reported an association between microalbuminuria and
hyperfiltration defined as an elevated 24-hour urinary
creatinine clearance (CrCl) (32). In a longitudinal study
of 534 patients with hypertension, the risk of albuminuria
increased across groups defined as persons with stable GFR
(CrCl), incident hyperfiltration (CrCl.150 ml/min per
1.73 m2), persistent hyperfiltration, and regression of hyper-
filtration to normofiltration from baseline to follow-up (33).
Although partially consistent with our findings, the studies
are not comparable because of the different study popula-
tions and different methods of measurement of GFR.
Several studies on patients with types 1 and 2 diabetes

have investigated the role of hyperfiltration in predicting
albuminuria using different cutoff levels for hyperfiltration
with or without adjustment for age and sex (8). The results
have been inconsistent (8). Notably, the majority of the
studies that measured GFR but not those that estimated
GFR by creatinine or cystatin C observed an increased risk
of developing albuminuria in persons with hyperfiltration
(8,34). Recently, Ruggenenti et al. (35) reported that per-
sistent hyperfiltration defined as a GFR.120 ml/min per
1.73 m2 measured by plasma iohexol clearance at baseline
and after 6 months but not hyperfiltration at baseline only
predicted albuminuria after 4 years of follow-up in pa-
tients with type 2 diabetes.

Several other risk factors for CKD, such as obesity,
prediabetes, metabolic syndrome, hypertension, and
smoking, have been associated with hyperfiltration de-
fined as having an elevated whole–kidney GFR (9,12–
15,36–38). These conditions may cause albuminuria in
part through mechanisms other than hyperfiltration,
thus introducing a spurious association between hyperfil-
tration and albuminuria. However, our results remained
similar after adjusting for these possible confounders, in-
cluding the use of antihypertensive medication at baseline
and follow-up.
Our findings should be interpreted with caution. Rather

than being a causal factor, an increasing GFR could be a
risk marker of an unmeasured pathologic process that leads
to albuminuria, such as endothelial dysfunction or oxida-
tive stress. In addition, hemodynamic effects without any
long–term effects on ACR may have caused the observed
association between DACR and DGFR. However, animal
models have shown that single-nephron hyperfiltration
and the coexisting glomerular hypertrophy induce shear
stress and a loss of podocytes, which subsequently lead to
albuminuria and glomerulosclerosis (39,40).
In humans, the number of functional glomeruli decreases

with normal aging but is not closely correlated with the
age-related decline in kidney volume, most likely because
of the compensatory hyperfiltration and hypertrophy of the
remaining nephrons (41). Indeed, we observed that the
GFR increased along with an increasing ACR in a consid-
erable proportion of healthy persons during the 5.6 years
of follow-up. Moreover, not only an increased GFR but
also increased glomerular volume have been associated
with albuminuria in healthy adults, possibly caused by a
loss of podocytes (42,43).

Figure 3. | Association of annual change rate inGFRwith change in albumin-to-creatinine ratio. Themarginal effect of annualGFR change on
DACR (DACR = logACRfollow-up 2 log ACRbaseline). Adjusted for sex, baseline age, ambulatory daytime diastolic BP, body mass index, fasting
glucose, current smoking, regular alcohol consumption, triglycerides, LDL cholesterol, HDL cholesterol, use of angiotensin–converting en-
zyme inhibitors or angiotensin receptor blockers, C-reactive protein, fasting insulin, regular physical exercise (yes/no), and changes in BP,
fasting glucose, body weight, smoking habit, and use of antihypertensive medication from baseline to follow-up. Vertical lines are 95%
confidence intervals. DACR, change in albumin-to-creatinine ratio.
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Our results and these morphologic data indicate that an
increased GFR in aging individuals represents hyperfiltra-
tion, which may be maladaptive over time. Individuals
with a reduced nephron number because of reduced
nephron endowment or nephron loss by glomerular injury
may be more vulnerable to this process, because these
individuals exhibit a higher single-nephron GFR, a higher
glomerular volume, and a greater risk of kidney failure
(44). There is also evidence indicating that treatment that
causes an initial drop in GFR, such as ACE-is for hyper-
tension, sodium-glucose cotransport inhibitors in diabetes,
and bariatric surgery in obesity (45–47), mediates a long–
term renoprotective effect (35,47–49).
Recent population studies have reported an independent

association between a longitudinal increase in eGFR and
risk of CVD and death (3,4). Whether this is a true associ-
ation or caused by confounding from lower serum creati-
nine levels in persons with chronic illness is unknown.
However, in a previous study from the RENIS-T6 Study
cohort, we reported a cross–sectional independent associ-
ation between a high GFR (by iohexol clearance) and ca-
rotid atherosclerosis and left ventricular hypertrophy (50).
The association between increased GFR and incident albu-
minuria in this study suggests that hyperfiltration may
be a marker of increased cardiovascular risk.
This study has limitations. Only middle–aged white

individuals participated, which limits the generalizabil-
ity to other groups. Although we used a longitudinal
study design, the analyses were partly cross-sectional,
and we cannot exclude reverse causality between
changes in GFR and albuminuria. There were few cases
of incident albuminuria in this study of relatively
healthy individuals. An elevated ACR below this cutoff
is a risk factor for CVD and mortality in both high– and
low–risk groups, but its role in predicting CKD in the
general nondiabetic population is unclear (2). We did not
have information regarding possible confounders, like
vitamin D levels, changes in protein intake, and the dos-
age of ACE-i or ARB. However, participants met in the
morning after an overnight fast at baseline and follow-
up, and we obtained similar results after excluding those
ever on an ACE-i or ARB.
The major strength of this study is the GFR measure-

ments. The RENIS-T6 Study is the only longitudinal study
with repeated measurements of GFR in a representative
sample of the general population. Moreover, the intra-
individual variation in the GFR measurement was lower
than in most previous studies (51). We investigated the role
of increased GFR within the same individuals, which is
likely to represent hyperfiltration at the single-nephron
level. Urine was collected on 3 separate days at both base-
line and follow-up, albumin and creatinine were assessed
in unfrozen specimens, and we adjusted for several vari-
ables, such as ambulatory BP and changes in antihyper-
tensive medication during follow-up.
An increase in GFR was associated with increasing

albuminuria in the general nondiabetic population. These
findings support the idea that single-nephron hyperfiltra-
tion is a common risk factor for albuminuria, a well known
CVD and CKD risk factor. Whether hyperfiltration is a risk
factor for subsequent GFR decline, CVD, and mortality
should be investigated.

T
ab

le
3
.

O
d
d
s
ra
ti
o
s
fo
r
in
ci
d
en

t
al
b
u
m
in
u
ri
a
an

al
yz
ed

w
it
h
m
u
lt
ip
le

lo
gi
st
ic

re
gr
es
si
o
n

In
d
ep

en
d
en

tV
ar
ia
bl
e

M
od

el
1

M
od

el
2

M
od

el
3

O
R

95
%

C
I

P
V
al
ue

O
R

95
%

C
I

P
V
al
ue

O
R

95
%

C
I

P
V
al
ue

In
cr
ea
si
ng

G
FR

,a
ye

s/
no

3.
55

1.
21

to
10

.3
5

0.
02

4.
22

1.
41

to
12

.6
7

,
0.
01

4.
98

1.
49

to
16

.1
3

0.
00

1
D
G
FR

,p
er

SD
1.
79

1.
21

to
2.
67

0.
00

4
1.
94

1.
23

to
2.
79

0.
00

3
2.
13

1.
38

to
3.
32

0.
00

1
A
ge

,p
er

yr
0.
96

0.
85

to
1.
12

0.
55

0.
98

0.
84

to
1.
13

0.
74

0.
97

0.
83

to
1.
13

0.
68

M
en

0.
87

0.
28

to
2.
57

0.
81

0.
51

0.
15

to
1.
79

0.
29

0.
41

0.
10

to
1.
61

0.
20

B
as
el
in
e
am

bu
la
to
ry

d
ia
st
ol
ic
B
P,

pe
r
SD

1.
28

0.
72

to
2.
27

0.
38

1.
10

0.
57

to
1.
95

0.
85

B
as
el
in
e
B
M
I,
pe

r
SD

1.
27

0.
75

to
2.
16

0.
91

1.
47

0.
80

to
2.
70

0.
20

B
as
el
in
e
fa
st
in
g
gl
u
co
se
,p

er
SD

2.
05

1.
17

to
3.
60

0.
01

2.
52

1.
31

to
4.
84

,
0.
01

Sm
ok

in
g
at

ba
se
lin

e,
ye

s/
no

2.
81

0.
81

to
9.
72

0.
10

2.
49

0.
52

to
11

.8
9

0.
25

B
as
el
in
e
re
gu

la
r
al
co
ho

lu
se
,y

es
/
no

1.
50

0.
47

to
4.
74

0.
50

1.
11

0.
30

to
4.
08

0.
90

B
as
el
in
e
tr
ig
ly
ce
ri
d
es
,p

er
SD

1.
00

0.
60

to
1.
70

.
0.
99

B
as
el
in
e
L
D
L
ch

ol
es
te
ro
l,
pe

r
SD

0.
94

0.
50

to
1.
70

0.
80

B
as
el
in
e
H
D
L
ch

ol
es
te
ro
l,
pe

r
SD

0.
94

0.
36

to
1.
90

0.
90

In
ci
d
en

ta
lb
u
m
in
u
ri
a
d
efi

ne
d
as

al
bu

m
in
-t
o-
cr
ea
ti
ni
ne

ra
ti
o
.
30

m
g/

g.
M
od

el
1:
ad

ju
st
ed

fo
r
ag

e
an

d
se
x.

M
od

el
2:
in
d
ep

en
d
en

tv
ar
ia
bl
es

ad
ju
st
ed

fo
r
ea
ch

ot
he

r
an

d
th
e
us

e
of

an
gi
ot
en

si
n–

co
nv

er
ti
ng

en
zy

m
e
in
hi
bi
to
r
or

an
gi
ot
en

si
n
re
ce
pt
or

bl
oc

ke
r
at

ba
se
lin

e.
M
od

el
3:

th
e
sa
m
e
as

m
od

el
2
an

d
ad

ju
st
ed

fo
r
ba

se
lin

e
tr
ig
ly
ce
ri
d
es
,L

D
L
ch

ol
es
te
ro
l,
H
D
L
ch

ol
es
te
ro
l,
C
-r
ea
ct
iv
e

pr
ot
ei
n,
ph

ys
ic
al
ex
er
ci
se
,f
as
ti
ng

in
su

lin
,a
nd

ch
an

ge
si
n
d
ia
st
ol
ic
B
P,

fa
st
in
g
gl
uc

os
e,
bo

d
y
w
ei
gh

t,
sm

ok
in
g
st
at
us

,a
nd

us
e
of

an
ti
hy

pe
rt
en

si
ve

m
ed

ic
at
io
n
fr
om

ba
se
lin

e
to

fo
llo

w
-u
p.

O
R
,o
d
d
s

ra
ti
o;

95
%

C
I,
95

%
co
nfi

d
en

ce
in
te
rv
al
;D

G
FR

,m
ea
su

re
d
G
FR

at
fo
llo

w
-u
p
2

m
ea
su

re
d
G
FR

at
ba

se
lin

e
(m

ill
ili
te
rs

pe
r
m
in
u
te
);
B
M
I,
bo

d
y
m
as
s
in
d
ex

.
a I
nc

re
as
ed

G
FR

fr
om

ba
se
lin

e
to

fo
llo

w
-u
p
(D
G
FR

.
0
m
l/
m
in
).
A
d
ju
st
ed

fo
r
th
e
va

ri
ab

le
s
be

lo
w

bu
ts

ep
ar
at
el
y
fr
om

D
G
FR

pe
r
SD

.

2192 Clinical Journal of the American Society of Nephrology



Acknowledgments
We thank the staff at the Clinical Research Unit, University

Hospital ofNorthNorway for their assistance in planning the study,
performing the procedures, and collecting data according to the
Good Clinical Practice standard.
We thank the Northern Norway Regional Health Authority for

funding support. The Renal Iohexol Clearance Survey in Tromsø 6
Study and the Renal Iohexol Clearance Survey in Tromsø 6 Follow-
Up (RENIS-FU) Study were funded by the Northern Norway Re-
gional Health Authority. The RENIS-FU Study was also supported
by a grant from Boehringer Ingelheim.
The results presented in this paper have not been published in

whole or in part, except in poster abstract format at Kidney Week
2015, American Society of Nephrology, November 3–8, 2015.
The funding source had no role in the design and conduct of the

study.

Disclosures
None.

References
1. Naghavi M, Wang H; GBD 2013 Mortality and Causes of Death

Collaborators: Global, regional, and national age-sex specific
all-cause and cause-specific mortality for 240 causes of death,
1990-2013: A systematic analysis for the Global Burden of Dis-
ease Study 2013. Lancet 385: 117–171, 2015

2. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey
AS, de Jong PE, Coresh J, Gansevoort RT; Chronic KidneyDisease
Prognosis Consortium: Association of estimated glomerular fil-
tration rate and albuminuria with all-cause and cardiovascular
mortality in general population cohorts: A collaborative meta-
analysis. Lancet 375: 2073–2081, 2010

3. Turin TC, Coresh J, Tonelli M, Stevens PE, de Jong PE, Farmer CK,
Matsushita K, Hemmelgarn BR: Change in the estimated glo-
merular filtration rate over time and risk of all-cause mortality.
Kidney Int 83: 684–691, 2013

4. Coresh J, Turin TC, Matsushita K, Sang Y, Ballew SH, Appel LJ,
Arima H, Chadban SJ, Cirillo M, Djurdjev O, Green JA, Heine
GH, Inker LA, Irie F, Ishani A, Ix JH, Kovesdy CP, Marks A,
Ohkubo T, Shalev V, Shankar A, Wen CP, de Jong PE, Iseki K,
Stengel B, Gansevoort RT, Levey AS; CKD Prognosis Consortium:
Decline in estimated glomerular filtration rate and subsequent
risk of end-stage renal disease and mortality. JAMA 311: 2518–
2531, 2014

5. Brenner BM, Lawler EV, Mackenzie HS: The hyperfiltration theory:
A paradigm shift in nephrology. Kidney Int 49: 1774–1777, 1996

6. Ruggenenti P, Remuzzi G: Time to abandon microalbuminuria?
Kidney Int 70: 1214–1222, 2006

7. Nelson RG, Bennett PH, Beck GJ, Tan M, Knowler WC, Mitch
WE, Hirschman GH, Myers BD; Diabetic Renal Disease Study
Group: Development and progression of renal disease in Pima
Indians with non-insulin-dependent diabetes mellitus. N Engl J
Med 335: 1636–1642, 1996

8. Jerums G, Premaratne E, Panagiotopoulos S, MacIsaac RJ: The
clinical significance of hyperfiltration in diabetes. Diabetologia
53: 2093–2104, 2010

9. Melsom T, Schei J, Stefansson VT, Solbu MD, Jenssen TG,
Mathisen UD, Wilsgaard T, Eriksen BO: Prediabetes and risk of
glomerular hyperfiltration and albuminuria in the general non-
diabetic population: A prospective cohort study.Am J Kidney Dis
67: 841–850, 2016

10. MelsomT,MathisenUD, IngebretsenOC, Jenssen TG,Njølstad I,
Solbu MD, Toft I, Eriksen BO: Impaired fasting glucose is asso-
ciated with renal hyperfiltration in the general population. Di-
abetes Care 34: 1546–1551, 2011

11. Okada R, Yasuda Y, Tsushita K,Wakai K, Hamajima N,Matsuo S:
Glomerular hyperfiltration in prediabetes and prehypertension.
Nephrol Dial Transplant 27: 1821–1825, 2012

12. MathisenUD,MelsomT, IngebretsenOC, Jenssen TG,Njølstad I,
Solbu MD, Toft I, Eriksen BO: Ambulatory blood pressure is

associatedwithmeasured glomerular filtration rate in the general
middle-aged population. J Hypertens 30: 497–504, 2012

13. Wuerzner G, Pruijm M, Maillard M, Bovet P, Renaud C, Burnier
M, Bochud M: Marked association between obesity and glo-
merular hyperfiltration: A cross-sectional study in an African
population. Am J Kidney Dis 56: 303–312, 2010

14. Pinto-Sietsma SJ, Mulder J, Janssen WM, Hillege HL, de Zeeuw
D, de Jong PE: Smoking is related to albuminuria and abnormal
renal function in nondiabetic persons.Ann InternMed 133: 585–
591, 2000

15. Mathisen UD, Melsom T, Ingebretsen OC, Jenssen T, Njølstad I,
Solbu MD, Toft I, Eriksen BO: Estimated GFR associates with
cardiovascular risk factors independently of measuredGFR. J Am
Soc Nephrol 22: 927–937, 2011

16. HoyWE, Douglas-Denton RN, HughsonMD, Cass A, Johnson K,
Bertram JF: A stereological study of glomerular number and
volume: Preliminary findings in a multiracial study of kidneys at
autopsy. Kidney Int Suppl 83: S31–S37, 2003

17. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI,
Greene T, Kusek JW, Manzi J, Van Lente F, Zhang YL, Coresh J,
Levey AS; CKD-EPI Investigators: Estimating glomerular filtration
rate from serum creatinine and cystatin C.N Engl J Med 367: 20–
29, 2012

18. Rule AD, Bailey KR, Lieske JC, Peyser PA, Turner ST: Estimating
the glomerular filtration rate from serum creatinine is better than
from cystatin C for evaluating risk factors associatedwith chronic
kidney disease. Kidney Int 83: 1169–1176, 2013
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