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To my friends and family.



“On two occasions I have been asked,
’Pray, Mr. Babbage, if you put into the machine wrong figures,

will the right answers come out?’”
–Charles Babbage



Abstract
In traditional software engineering methodologies, software correctness is
established through testing and progressive fault mitigation. Safety properties
are established by demonstrating that a sufficiently large number of test cases
fail to violate them.

In contrast, formal verification methods permit a systems design process where
desired safety properties are stated outright in the system specification, and
enforced by automated analysis tools. This is of particular interest in designing
distributed systems, where safety properties may be easy to formally define
and specify, yet hard to implement in practice.

Despite this promise, the use of formal methods has largely been confined
to academia and certain classes of safety-critical systems. Recently, however,
companies like Amazon and Microsoft have adopted formal verification tools
to verify distributed system designs.

In this thesis, we present a formal specification of the Chord distributed hash
table protocol, using the TLA+ specification language. We specify the protocol
at a coarse level with a relaxed failure model, and then increase the granularity
and introduce fail-stop failures, yielding a formal specification of Chord with
asynchronous messaging and fault-tolerance mechanisms.

We first model-check the specification under the constraint that no failures
occur, and show that it satisfies critical safety properties. We then show that the
introduction of failures leads the specification to admit several behaviors which
break the safety properties Chord promises, potentially leading to permanent
partitions in the network and performance degradation.

As part of this work, we provide an overview of formal verification methods; we
discuss certain formalisms and logics involved in modelling and proving algo-
rithms, show potential advantages of applying formal methods to distributed
systems design, and identify barriers keeping formal methods from widespread
use.
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1
Introduction
Diagnosing errors in distributed systems presents unique difficulties [9]. They
have causes of errors that are not immediately obvious: from race conditions,
and deadlocks, to unreliability in the underlying network. Since the state of the
system is distributed across multiple autonomous components, reconstructing
the state leading to a particular error can be difficult. For instance, logging
across distributed components may not be synchronous, and typically does not
capture enough information to fully reconstruct the order of events between
different hosts [10].

The difficulty in diagnosing errors in distributed systems at runtime dovetails
with a larger trend of new software development tools and methods which
verify systems’ correctness during development. These include unit testing
frameworks [11], programming languages with stronger compile-time con-
straints and guarantees (e.g. Mozilla’s Rust [12]) and static-analysis tools [13,
14].

Part of this trend is a resurgence of formal verificationmethods. Formal verifica-
tion methods model systems in a formal mathematical and logical framework,
and attempt to provide a complete description of a system in an unambiguous,
formal specification. Formal specifications can be thoroughly verified with au-
tomated tools, providing mathematically rigorous and reproducible analysis of
the system.

Formal verification systems consist of three components [15, 16]:

1
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• A framework to describe and model systems, typically featuring a descrip-
tion language for machine-interpretable system descriptions.

• A specification language, which similarly allows formal expression of the
properties and requirements that the system model should satisfy.

• A verification method that can determine whether a systemmodel satisfies
a set of requirements.

In turn, verification methods can be divided into:

• Proof-basedmethods, which argue that the system is correct by deduction:
by applying transformations and proof rules to derive the requirements
from the model, they lead to deductive proofs showing that the properties
must follow from the definition of the system. Proof assistants [17] allow
the resulting proofs to be verified automatically, alerting the designer to
any logical inconsistencies.

• Model-basedmethods, which demonstrate system properties by induction:
model checkers [16] enumerate possible states that the system can be
in, and verifies that none of these states leads to a violation of the
requirements. If the system is inconsistent with the specification, the
checker can provide a detailed counterexample showing the steps leading
to the inconsistency.

The idea of applying formal reasoning to verify software is far from a new
one. McCarthy argued for a mathematical theory of computation as early
as 1961 [18]. During the 1980s, a significant amount of research effort was
devoted to introducing formal verification methods into software development
processes.

Despite these efforts, practical usage of formal verification remained sparse. In
1996, Hoare [19] argued that it had fallen by the wayside as a way of building
reliable systems, as better software development and testing processes ended
up providing just as much practical confidence in systems’ correctness. In
his 2004 book, Gutmann outlines [20] the main challenges projects faced in
applying formal verification methods to software projects:

• Formal methods scale poorly to larger systems. In particular,model-based
methods are vulnerable to state space explosion, where the specification’s
complexity leads to so many possible states that checking them becomes
intractable. Proof-based methods suffer from a similar issue with proof
length, where proofs become vastly longer than the specification they’re
verifying.
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• While formal verification methods are occasionally claimed to guarantee

correct and flaw-free systems [21], they do not provide such guarantees
in practice. Formal specifications must make certain assumptions and
abstractions to be practically verifiable, potentially obscuring errors, and
model checkers and proof assistants can themselves have bugs which
lead to erroneous specifications being accepted.

• Formal verification is hard to fit into agile methodologies. Every feature
added to the system alters the design of the system, meaning the formal
specification of the design must be updated as well, in turn requiring the
specification to be verified from scratch.

• There is no practical link between the model and the actual imple-
mentation. The system is essentially implemented twice — as a formal
specification, then an implementation — and since there is no way to
guarantee that the implementation satisfies the specification, it is possi-
ble to introduce errors in the implementation that are not captured by
the specification, and vice versa.

With time, the scalability of formal verification methods have improved, with
increased computing power, the general availability of cloud computing [22]
services, and theoretical advances making verification of larger specifications
tractable. This has lead to certain companies adopting formal verification
for non-safety critical applications. In verifying formal specifications as part
of their workflow, Amazon engineers [23] reported discovering errors which
would otherwise have been extremely difficult to uncover and reproduce. In
one instance, they uncovered a bug in their DynamoDB [24] database service
with a 35-step error trace.

One the primary motivating factors Amazon cited for adopting formal verifica-
tion tools was Zave’s analysis [25] of the Chord [26, 27, 28] distributed hash
table. Advertised for “its simplicity, provable correctness, and provable perfor-
mance” [26], Chord received the SIGCOMM Test of Time award in 2011.

Questioning the “informal reasoning” [25] in the paper, Zave created a formal
specification of Chord’s network maintenance and fault-tolerance algorithms.
In doing so,Zave found several instances of the protocol being underspecified, to
the point of violating its claimed provable correctness. She outlined examples
of the protocol breaking its promised safety invariants, at worst leading to
unrecoverable splits in the network. Zave would later present a version [29] of
Chord with new fault-tolerance algorithms correcting these flaws, and show
its correctness with an Alloy proof.

One particularly interesting formal verification framework for distributed sys-
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tems design is the TLA+ specification language [30],which has been adopted by
Intel [31], Microsoft [32], and Amazon [23]. Designed by Leslie Lamport to for-
mally describe distributed and concurrent systems, the TLA+ language is based
on Lamport’s TLA [33] logic, additionally incorporating Zermelo–Fraenkel (zf)
set theory and first-order logic [4]. TLA+ supports both proof- and model-based
verification, with the TLC [34] model checker and TLAPS [35] proof assistant
both operating on TLA+ specifications.

1.1 Thesis statement
This thesis focuses on the argument that the validity of formal verification
hinges on the perceived correctness of the model-checker or proof assistant.
We argue that this criticismmight be addressed by showing that results from one
formal verification framework can be reproduced in other frameworks.

To this end, this thesis will specify the Chord protocol in the specification
language TLA+ [4], and show that the resulting specification admits the coun-
terexamples presented by Zave in her 2012 paper [25].

Our hypothesis is that the Chord protocol can be formally specified in TLA+ , and
the resulting specification can be model-checked to prove that it does not preserve
the safety invariants promised by Liben-Nowell et al. [36].

1.2 Scope and limitations
In reproducing Zave’s work, we adopt a similar scope and failure model for our
specification. Therefore, this thesis will only specify the algorithms necessary to
establish and maintain the Chord network, and ignore the storage and retrieval
of key-value pairs. It also assumes the same fail-stop failure model Stoica et al.
assume in their presentation of the protocol.

In particular,wewill not considerByzantine failure,denial-of-service attacks [37],
or deliberate attempts to disrupt the protocol [38]. While there are attempts to
make Chord resistant to Byzantine faults (such as the work of Fiat et al. [39]),
neither Stoica et al. nor Zave include them in their failure models.
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1.3 Context
This thesis is written within the context of the Corpore Sano1 center, which con-
ducts interdisciplinary research in the intersection between computer science,
sports science and medical research.

As part of this work, Corpore Sano has conducted several research projects
involving distributed systems, including the Fireflies [38] Byzantine fault-
tolerant overlay network protocol and the Diggi [40] framework for secure
distributed agent-based computation.

Corpore Sano also researches privacy and security measures for systems han-
dling sensitive medical data, and have proposed approaches for enforcing
privacy policies by associating programmable meta-code [41] with files, and
using trusted SGX enclaves to implement use-based privacy [42].

1.4 Methodology
In 1989, as part of an ACM task force on the Core of Computer Science, Denning
et al. [43] outlined their model of computer science as a composition of three
paradigms:

1. Theory, encompassing the mathematical underpinnings of computer
science: hypothesizing about theoretical objects and their relationships,
constructing formal theorems about them, and proving these theorems
through logical and mathematical reasoning.

2. Abstraction, which covers the scientific method — forming hypotheses,
constructing models and experiments— and concerns itself with creating
verifiable hypotheses about systems.

3. Design, which accounts for the engineering aspect — systems specifica-
tion, design, implementation, and testing — and emphasizes the ability
to build practical implementations of systems.

Denning et al. emphasize the overlapping nature of these paradigms. System
models build on theoretical foundations, the engineering process builds on
hypotheses verified with these models, and theoretical structures are ultimately
based in the realities of implementing systems.

1. https://corporesano.no/

https://corporesano.no/
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This overlap becomes apparent when examining formal verification methods.
Formal verification is tightly bound to the theoretical domain, with under-
pinnings in formal mathematics and logic. Simultaneously, it requires explicit
abstraction—we hypothesize that a formal description of a system is consistent
with certain properties — and allows formal, unambiguous specifications of a
system’s design.

Bearing this in mind, this thesis employs a systems research methodology
spanning all three paradigms. We construct theoretical models of the protocol,
form hypotheses about them, and verify these hypotheses. While we do not
implement the protocol itself, we construct formal specifications of the pro-
tocol, and perform experiments using these specifications to evaluate formal
verification tools.

1.5 Outline
The remainder of this thesis is structured as follows:

Chapter 2 gives a brief history of formal verification methods, using Lamport’s
Temporal Logic of Actions (tla) [33] as a focal point. This chapter will also
summarize the Floyd-Hoare [44] logic and Pnueli’s [45] temporal logic for
concurrent program analysis, in order to provide a theoretical foundation and
points of comparison when we finally describe the TLA logic.

Chapter 3 provides an outline of the Chord protocol, based on the papers and
technical reports published by Stoica et al. [26, 27, 28] and the analysis of the
protocol by Liben-Nowell et al. [36]. It also provides a summary of the protocol
analysis by Zave [25].

Chapter 4 describes the process of formally specifying the Chord protocol,
starting from a simplified specification under relaxed assumptions,which is then
gradually refined until we have a full specification of the Chord protocol which
models both multiple concurrent network events and fail-stop failures.

Chapter 5 gives the results of model-checking our specification, listing both the
properties demonstrated, and the time spent model-checking the specification
for a range of network sizes. It also lists Chord’s claimed safety properties, and
whether they hold in our specification. Finally, it discusses the results and their
implications.

Chapter 6 lists related work in formal verification of distributed systems, and
other attempts to formally verify the Chord protocol.
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Chapter 7 concludes this thesis, and proposes future work.





2
Background
In this chapter, we provide a brief history of formal verification methods, and
summarize the logics presented by Hoare [44] and Pnueli [45], with the
goal of providing a historical and theoretical background for Lamport’s tla
logic [33].

The idea of making formal arguments about programs’ correctness was enter-
tained by several early computer scientists: even as early as the 1800s, Charles
Babbage [46] wrote about the “Verification of the Formulae Placed on the
[Operation] Cards” of his analytical engine.

One especially important early result is Alan Turing’s examination of David
Hilbert’s Entscheidungsproblem. The Entscheidungsproblem (“decision prob-
lem”) [47] asks for a general procedure that determines whether a formula in a
first-order logic is also possible to prove within the axioms of that logic.

In 1936, Turing demonstrated [48] that solving this problem also requires a
solution to the halting problem, which asks for a general procedure to determine
whether a program runs forever or eventually halts. Turing showed that the
existence of such an algorithm would lead to a logical contradiction, proving
that there is no general solution to the halting problem. In his proof, Turing
introduced the idea of a Turing machine, a simple hypothetical machine that
was nonetheless capable of executing arbitrarily complex algorithms.

In proving the halting problem had no solution, Turing also showed that the

9



10 CHAPTER 2 BACKGROUND

Entscheidungsproblem did not have a general solution. This result implies that
there is no general verification method for programs [49] either: for every
verification method, there are certain propositions it cannot prove or refute.
This means that every logical framework for program verification has to decide
which kinds of systems and properties it can practically model and verify.

Turing would go on to do further work in proving programs’ correctness,
submitting a paper [50] in 1949 on verifying a routine for addition of numbers,
which outlined a general proof method for algorithms similar to the method
later presented by Floyd [51]. In 1947, Goldstine and von Neumann [46]
would also write a paper explaining how “assertion boxes” could be used to
reason around “operation boxes” in order to justify the results of a set of
operations.

However, it is unclear if Turing or von Neumann knew of each other’s work,
and neither paper seems to have been known to the later proponents of for-
mal verification. Formal verification of software would only become a topic
of discussion again in 1961, when McCarthy called for a mathematical the-
ory of computation [18], hoping to inspire formal semantics for describing
programming languages.

2.1 Floyd-Hoare logic
In 1967, Floyd [51] laid the groundwork for applying formal deduction to
computer programs by framing algorithms as flowcharts of interconnected
commands.

Floyd defines a flowchart as a directed graph of commands — such as variable
assignments, control flow statements, and the algorithm’s beginning and end
— connected by edges which define the allowed control flow.

Figure 2.1 shows an example of a flowchart over an algorithm to sum a series
of numbers together, which takes the n numbers a1, a2, · · · an , and stores their
sum in the variable S . The initial tag n ∈ N∗ constrains the parameter n to
the set of positive numbers N∗ = {1, 2, 3, · · · }, and forms the basis for proving
that the program ends with S taking on the sum of the numbers a (so long as
we disregard integer overflow).

Each edge of control is then additionally tied to a logical proposition, called
the edge’s tag, which constrains the preconditions or results from a command.
For instance, a tag may demand that only numbers are assigned to a variable,
or that a variable is non-negative before entering a loop.
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START

i ← 1

S ← 0

i > n?

No

Yes

HALT
S ← S + ai

i ← i + 1

n ∈ N∗

n ∈ N∗ ∧ i = 1

n ∈ N∗ ∧ i = 1 ∧ S = 0

n ∈ N∗∧ i ∈ N∗∧
i ≤ (n + 1) ∧ S =∑i−1

j=1 aj

n ∈ N∗ ∧ i ≤
n ∧ S =

∑i−1
j=1 aj

n ∈ N∗ ∧ i ≤
n ∧ S =

∑i
j=1 aj

n ∈ N∗∧
2 ≤ i ≤ (n + 1)∧
S =

∑i
j=1 aj

n ∈ N∗∧ i ∈ N∗∧
i = (n + 1) ∧ S =∑n

j=1 aj

Figure 2.1: An example of a Floyd logic flowchart, adapted from Floyd’s original paper
[51].
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Floyd then constructs a simplified flowchart programming language consisting
of single variable assignment, branching and joining commands. Then, it is
shown that the logical validity of each command is transitive; by letting the
consequent propositions constraining commands’ results also act as antecedent
constraints on the proceeding commands’ input, it is possible to compose larger
proofs spanning multiple commands, and by extension entire algorithms.

In this logic, verification takes place by proving that if each command’s an-
tecedents are satisfied, every command also satisfies its consequents. Then, by
transitivity, the entire algorithm can be shown to return correct answers if its
preconditions are satisfied. Hoare would later refer to this property as partial
correctness [44].

The logic also made it possible to demonstrate termination, showing that an
algorithm will eventually halt. This was accomplished by making every loop
contingent on a steadily decreasing function, and showing that each loop must
eventually terminate.

Two years later, Hoare [44] built on Floyd’s logic to construct a set of axioms
for applying formal deduction to algorithms. Hoare dispensed with the algo-
rithm flowcharts, instead opting for a notation with triples: theorems on the
form

P{Q}R

where Q is a (segment of a) program, and P and R are logical propositions, re-
spectively known as the precondition and postcondition. When the precondition
P is satisfied and Q is executed, the theorem states that R should be satisfied
when Q successfully terminates.

For instance, the summation algorithm shown earlier in Figure 2.1 can be
expressed by the triple

(n ∈ N∗){i := 1; S := 0;while (i ≤ n) do (S := S+ai ; i := i+1)}(S =
n∑

i=1

ai )

(2.1)

Hoare then outlines four axioms for analyzing algorithms:

The axiom of assignment The first axiom states that assignment of vari-
ables does not invalidate prior propositions: any proposition P(f ) about the
value of the variable f remains valid if we assign f to a new variable x , and
substitute all f in P(f ) with x to get the new proposition P(x ):

` P(f ){x := f }P(x ) (2.2)
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The consequence rule The second axiom provides a way to reason about
implications with Hoare triples, showing that modus ponens can be applied to
both pre- and post-conditions:

` P{Q}R ∧ (R → S ) ⇒` P{Q}S (2.3)

` P{Q}R ∧ (S → P) ⇒` S {Q}R (2.4)

The composition rule The third axiom allows program segments to be
composed into larger programs, akin to how Floyd’s flowcharts allowed proofs
for multiple commands:

` P{Q1}R1∧ ` R1{Q2}R ⇒` P{Q1;Q2}R (2.5)

The iteration rule The final axiom allows reasoning about looping algo-
rithms by examining loops on the form “while the proposition B is true,
repeatedly execute the segment S ”, written as “while B do S ”.

In essence, the iteration rule states that if the completion of the program S
implies that the proposition P is true, and P is true before S is executed,
then S can be repeated for any number of iterations without falsifying P .
Additionally, since the loop only completes while its associated proposition is
true, the postcondition can assume the proposition is false:

` P ∧ B{S }P ⇒` P{while B do S }¬B ∧ P (2.6)

Together, these four axioms form an axiomatic basis for inferring and proving
properties of sequential algorithms.

While Floyd-Hoare logic proved to be an important foundation for formal
verification, it suffered from several weaknesses:

• Constructing proofs in the logic turned out to be “tedious, difficult and
[a process which] required human ingenuity” [16]. Even short programs
could require long proofs to demonstrate partial correctness, limiting the
scalability of the approach.

• The definition of partial correctness hinged on the program eventu-
ally halting, rendering it unsuitable for programs meant to run indefi-
nitely [45], such as operating systems.
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• It did not account for programs running in parallel: concurrency failures,
such as deadlocks and livelocks, were not accounted for in the logic. Ow-
icki and Gries [52] proposed solving this by adding new axioms allowing
the addition of auxiliary variables to aid in the analysis, but noted that
the process of proving programs could become “much longer” depending
on the concurrency primitives used. A recent approach by Kojima and
Igarashi [53] adapts Hoare logic for parallel analysis of graphics process-
ing unit (gpu) kernels by augmenting triples with additional sets that
represent the active threads of execution.

2.2 Temporal logic
The key idea to resolving these issues turned out to be amove from propositional
to temporal logic: instead of working with propositions that were either true
or false, temporal propositions could be true some of the time.

In 1977, Pnueli [45] proposed a method for concurrent program analysis build-
ing on temporal logic. Instead of treating computation as a set of discrete steps,
the new logic viewed algorithms as sequences of atomic events separated by
continuous spans of time.

In Pnueli’s logic, a system < S ,R, s0 > consists of a set S of states the system
can take on, a relation R describing the allowed transitions between states,
and the initial system state s0.

Then, an execution of the system can be framed as a sequence of states

G ′ = s0, s1, s2, · · ·

where each pair of states (si , si+1) corresponds to a transition allowed by R.
To allow algorithm analysis in this framework, each state s is further broken
down into two components:

• The control componentπ , analogous to the processor’s instruction pointer,
which holds the processor’s current program location

• The data component u, which similarly holds the processor’s current
state (e.g. variables, memory)

This decomposition allows the transitions R to be expressed as a composition
of a next-state function N (π , u), which designates the next program location
π ′ given the previous location and data, and a transformation function T (π , u)
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which similarly describes which values u take on, given the algorithm step at
location π . To simplify the notation and the proof techniques, these functions
are assumed to be deterministic.

The same decomposition is key to extending the analysis to concurrent algo-
rithms; to simulate a system which multiple concurrent processors, we can
allow multiple control components in each state

s = < π1, π2, · · · , πn ; u >

where each πi is the control for processor i , and the state u is shared among
all processors.

Then, for each step of the system, an arbitrary processor i is selected, and the
statement at the location of πi is executed. The transition functions N and
T are still assumed to be deterministic and dependent on a single control πi ,
making each step of the system an atomic action.

This means that the designer must decide on the appropriate granularity for
the model. For a distributed system, it may be sufficient to partition the states
by communication between processes, with message sending and receipt as
separate steps, while a cache-coherence protocol may require steps at the
processor instruction level.

With this framework in place, the verification problem is reduced to showing
which system states a property holds in. By taking the transitive closure R∗

of R over the initial state s0, it is possible to find the set X of all reachable
states

X = {s |R∗(s0, s)}

An invariant i(s) of the system is a proposition that is true in every accessible
state:

i(s) is an invariant⇔ ∀s ∈ X : i(s)

Many important algorithm safety properties can be phrased as invariants. For
instance, partial correctness can be phrased as an invariant property nearly
directly from its definition, by asserting that the preconditions P holding for
the initial state implies that the postconditions R hold for the final state once
the algorithm has terminated:

∀s ∈ X : π = sexit ⇒ (P(s0) ⇒ R(sexit))
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Similarly, mutual exclusion can be captured by the assertion that one processor
executing the critical section C implies that no other processor can be in the
same section:

∀s ∈ X : (πa = C ) ⇒ ¬∃πb : πb = C ∧ a , b

However, invariants cannot express termination and liveness properties, and
do not lead to a definition of correctness that’s applicable to programs that run
indefinitely.

To solve both of these problems, Pnueli introduces the idea of temporal im-
plication, which he refers to as eventuality. These implications take the form
P R, and assert that the predicate P being true in one state will lead to R
becoming true in a later state:

P R ⇔ ∀t1∃t2 : (t2 ≥ t1)P(t1,ϕ) ⇒ R(t2,ψ )

For instance, demonstrating that an algorithm terminates is equivalent to prov-
ing that every processor eventually reaches an exit from its initial state:

(πi = s0) (πi = sexit)

With the logical framework for specifications in place, Pnueli examines possible
verification methods for the temporal logic.

To prove safety properties, Pnueli uses Burstall’s approach of state induc-
tion [54]: by showing that a property ϕ holds for the initial state s0, and
then showing that every transition from a state where ϕ is true leads to an-
other state where ϕ holds, it is possible to show by induction that ϕ holds for
every possible state of the system.

To prove liveness properties, Floyd’s method of guaranteeing loops’ termination
by making them dependent on monotonically decreasing functions is shown
to be applicable for temporal logic as well. It is also noted that the approach
can be extended to work with any kind of well-founded set [55].

However, the main body of the paper is devoted to a third proof method:
constructing a set of axioms for reasoning around eventuality, and using them
to construct deductive proofs. Pnueli argues that this approach leads to more
intuitive proofs.
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Axiom A1

∀s, s1 p(s) ∧ R(s, s1) → q(s1) ⇒ p q
Axiom A2

p → q ⇒ p q

(2.7)

Figure 2.2: The axioms of Pnueli’s temporal logic

Inference rule R1

p q,∀s, s1 r (s) ∧ R(s, s1) → r (s1) ⇒ (p ∧ r ) (q ∧ r )
Inference rule R2
p q, q r ⇒ p r
Inference rule R3

p1 q, p2 q ⇒ (p1 ∨ p2) q
Inference rule R4
p q ⇒ (∃up) q

(2.8)

Figure 2.3: The inference rules of Pnueli’s temporal logic

Pnueli suggests a minimal set of axioms and proof rules to this end, shown in
Figure 2.2 and 2.3 respectively.

The axioms establish the link between logical and temporal implication: the
first axiom states that p q can be shown by proving that every transition from
a state where p holds leads to one where q is true, while the second axiom
establishes that all logical implications are also temporal implications.

The rules are then used to derive more complex eventualities from simpler
ones: the first proof rule extends the state induction approach to eventualities,
showing that an inductive invariant will also hold across an eventuality. The
second rule captures Hoare’s composition rule, allowing a larger proof to be
composed from multiple smaller eventualities. In a similar fashion, the third
rule allows two eventualities with the same consequent to be joined with a
disjunct.

Pnueli found that this axiomatic system was sufficient to decide the validity
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of any eventuality in a finite-state system [56]. In other words, any liveness
property that could be expressed as a temporal implication could be verified
within the logic.

However, Pnueli found the system “weak”: while it was technically possible
to express safety and liveness properties through temporal formulas, doing so
turned out be challenging in practice.

Subsequent temporal logics attempted [57] to solve this problem by introduc-
ing additional temporal operators to allow more complex propositions about
sequences of states. In 1981, Pnueli presented [58] a linear time logic (ltl)
for program analysis featuring these operators, allowing propositions 2P over
every state,3P for eventual states, and ◦P for the next state of a behavior.

In 1982, a paper by Clarke and Emerson [59] and another by Queille and Sifakis
[60] independently proposed formal program analysis based on another class of
temporal logic, known as computation tree logic (ctl). Unlike ltls,which view
systems as the set of all of their possible executions [30], ctl logics consider
the branching structure of executions, allowing propositions about possible
states, e.g. “along some future [execution], P eventually holds” [16].

In their paper, Clarke and Emerson proposed model-checking specifications. By
expressing the system behavior itself as a temporal formula, it was possible to
generate a finite-state model of the system. Instead of carrying out deductive
proofs to determine whether a property is satisfied, this approach allowed
mechanical verification of properties by checking them against each state in
the model.

2.3 Temporal logic of actions
In 1994, Lamport published a summary of his temporal logic of actions [33]
(TLA), an ltl logic oriented around the concept of actions.

Actions are logical propositions over pairs of states, which represent changes
in the system state. Actions include primed and unprimed variables, which
respectively represent the state after and before the action. For instance, the
action

A , x ′ = x + 2 (2.9)

states that performing the action A should lead to a state where x is equal to
its value in the prior state plus 2.
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A pair of states (s, t) is an A step if state t can be reached by performing the
action A in state s. If there exists a state t such that (s, t) is an A step, A is
said to be an enabled action in state s . Actions serve a similar role to triples in
Floyd-Hoare logic, but do not include any operations or program segments, as
they are fully specified by their pre- and postconditions.

Similar to Pnueli’s temporal logic, system executions are described as sequences
of states, known as behaviors. However, unlike Pnueli’s logic, every tla behavior
is infinitely long: the termination of an algorithm is represented as an infinite
sequence of stuttering states, where no variables change. As an ltl logic, tla
views systems as the set of all of their possible behaviors.

Unlike Floyd-Hoare logic, tla represents both programs and properties as
temporal formulas. tla conventionally represents programs as a conjunction

Init ∧ 2[Next]Vars ∧ F (2.10)

where

• Init is the initial state predicate, a proposition which holds for every state
that is a valid initial state for the system.

• 2[Next]Vars is the next-state relation, which states that every state fol-
lowing the initial state must either satisfy the next-state action Next or
be a stuttering state:

2[Next]Vars , 2(Next ∨ (Vars ′ = Vars)) (2.11)

• Vars is the set of variables required to specify the system. Variables in
TLA have no types, and can assume any value. Type safety is a safety
property of a specification, not a syntactic requirement.

• F is the fairness condition of the specification.

To verify that a program satisfies a particular property, we verify that it satisfies
a particular temporal formula. Safety properties are verified by asserting that
the program satisfies a state predicate P for every state, using the always
operator 2:

P is always true ⇔ 2P (2.12)

Liveness properties are expressed through the eventually operator 3, which is
defined in terms of the always operator, as the assertion that the negation of a
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property does not hold forever [61]:

3F = ¬2¬F (2.13)

For instance, Pnueli’s temporal implication is represented by leads-to ; formu-
las, which assert that one proposition being true always eventually lead to a
state where another is true:

F ; G = 2(F ⇒ 3G) (2.14)

It is possible to assert that a proposition eventually holds and is true in every
subsequent state, through eventually-always 32 formulas

32F = 3(2F ) (2.15)

It is also possible to state that propositions are true infinitely often with always-
eventually formulas

23F = 2(3F ) (2.16)

To prove liveness properties, specifications must guarantee progress: by itself, a
next-state relation2[Next]Vars can be satisfied by an infinite series of stuttering
states. While Pnueli’s logic guarantees progress by assuming some form of
fair scheduling for processes, tla specifies liveness through weak and strong
fairness conditions.

Weak fairness conditions state that actions that are perpetually enabled must
eventually happen:

WFf (A) , (23〈A〉f ) ∨ (23¬Enabled 〈A〉f ) (2.17)

Strong fairness conditions require actions that are enabled infinitely often to
happen infinitely often as well:

SFf (A) , (23〈A〉f ) ∨ (32¬Enabled 〈A〉f ) (2.18)

Both weak and strong fairness conditions allow an arbitrary number of stutter-
ing steps. There is no way to write a formula hinging on whether a stuttering
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step has occurred, ensuring that TLA+ specifications are stuttering invariant:
safety and liveness properties will hold for a specification regardless how many
stuttering steps are inserted. Stuttering invariance makes it possible to repre-
sent concurrent programs as conjunctions of multiple specifications:

P1 , Init1 ∧ 2[Next1]Vars1 ∧ F1

P2 , Init2 ∧ 2[Next2]Vars2 ∧ F2

P1 ∧ P2 , Init1 ∧ Init2 ∧ [Next1 ∨ Next2]〈Vars1,Vars2 〉 ∧ F1 ∧ F2

(2.19)

The composition P1 ∧ P2 of the programs P1 and P2 is a new system where
each step obeys the next-state action of P1 or P2, and both programs’ initial
states and fairness conditions are preserved.

2.4 Summary
The idea of using formal logical reasoning to verify programs’ correctness is
nearly as old as computer science itself, with early computing pioneers like
Turing and von Neumann outlining their own procedures for proving that
programs had the desired result.

Floyd and Hoare proposed using propositional logic to reason about pre- and
post-conditions of operations, and composing smaller proofs about individual
operations into larger proofs over programs.

Later approaches adopted temporal logic to reason about concurrent programs,
and representing program executions as sequences of states. Pnueli [45] pro-
posed using ltl logic to construct deductive proofs over programs involving
temporal implication,while Clarke and Emerson [59] proposedmodel-checking
based on ctl logic.

Lamport’s tla is an untyped ltl temporal logic which attempts to minimize
the amount of temporal reasoning, in favor of reasoning about actions. In
the logic, programs and properties are both expressed as temporal formulas.
tla specifications are stuttering invariant, allowing composition of specifica-
tions.





3
The Chord protocol
This chapter provides a summary of the Chord distributed hash table protocol,
which we will later formally specify and verify. We also provide an outline of
Zave’s [25] analysis of the protocol, which identified inconsistencies and flaws
in the Chord protocol, and forms the basis for our formal analysis.

We base this description of Chord on the 2001 paper by Stoica et al. [26],
which appeared in SIGCOMM, their 2001 MIT technical report [27], and their
revised 2003 paper [28] in Transactions on Networking (ton), as well as the
2002 analysis by Liben-Nowell et al. [36] in Principles of Distributed Computing
(podc). Unless otherwise noted, we use the 2003 ton paper as the primary
source for algorithm pseudocode.

The Chord protocol implements a distributed hash table, using consistent
hashing [62] to distribute key-value pairs across the members of the network,
which organize themselves in a ring structure.

The stated design goals [26, 28] of the protocol are

• Load balancing: responsibility for keys is distributed evenly across nodes
to prevent undue load on a few servers.

• Decentralization: the protocol is fully peer-to-peer, with no central au-
thorities or special responsibilities conferred to certain nodes.

23
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Figure 3.1: An example of the identifier space with m = 3, yielding 23 = 8 potential
key and node identifiers.

• Scalability: the time to perform a lookup scales logarithmically with the
number of nodes in the network, and each node only needs to keep track
of a subset of nodes.

• Availability: lookups should function in spite of nodes joining and leaving
the network.

• Flexibility: there are no limits or constraints on which values can be used
as keys.

3.1 The identifier space
The key to achieving these properties is mapping keys to a flat identifier space.
An identifier space (alternatively identifier circle) I is a finite group of the
natural numbers modulo 2m , with a partial ordering [63] over the identifiers.
Figure 3.1 shows an example of an identifier space with m = 3.

The same identifier space is employed for both key-value pairs and members of
the network: key-value pairs are assigned key identifiers by hashing the key, and
nodes are assigned node identifiers by hashing their network address. To hash
keys and addresses, Chord implements a consistent hash function by hashing
the key with the SHA-1 [64] hash function, and interpreting the first m bits
of the hash as an unsigned integer, yielding numeric identifiers in the range
[0, 2m − 1].

Chord then assigns any given key k to the first node whose identifier is
greater than or equal to the key’s identifier, referring to it as the successor
node successor (k ) of the key k . To illustrate the relationship, Stoica et al. use
the analogy of finding the key on the identifier circle, and tracing the circle
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Figure 3.2: Keys (square) are assigned to their successor nodes (circles), which have
identifiers following them in the identifier order.

clockwise until the first node is found.

This relationship is continuously reevaluated as nodes join and leave the net-
work. A new member may have a node identifier closer to a key’s identifier
than its previous successor, in which case responsibility for the key must be
transferred to the new node. Similarly, a node leaving the network must first
delegate its keys to another node.

The consistent hashing limits the extent of these changes. After joining, a node
only needs to contact a single node to receive the keys it is responsible for.
Conversely, a leaving node only has to assign its keys to one other node. This
allows nodes to enter and leave the network with minimal disruption.

The main links between the nodes themselves are the successor pointers main-
tained by each node, which point to the nodes following them in the identifier
order, leading to the characteristic ring structure. Then, lookups can be imple-
mented in a recursive fashion, as shown in Figure 3.3, such that nodes only
need to maintain the key-value pairs they are the successors of.

However, under this algorithm, the lookup time scales linearly with the size of
the network: at worst, a query might lead to a successor node preceding the
initial n, meaning it has to traverse every node in the network. To achieve
logarithmic lookup time, Chord introduces a finger table for each node. The
finger tables essentially act as a skip list [65] over the ring, allowing lookups
to skip intermediate nodes which cannot be the successor of the key.

For each node n, the finger table consists of a set of finger pointers fi given
by fi = successor (n + 2i−1), as in Figure 3.4. By offsetting each pointer with
powers of 2, the lookup algorithm in Figure 3.5 can halve [27] the distance to
the target identifier, leading to a logarithmic lookup time.
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// Queries node n for the successor of the key id .
function n.find successor(id)

if id ∈ (n, successor ] then
return successor

else
// Forward the query to the successor of n.
return successor .find successor (id)

end if
end function

Figure 3.3: Simplified pseudocode for retrieving the successor node of a given identi-
fier (from Figure 3a of [28])

Figure 3.4: An example of a finger table.
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// Queries node n for the successor of the key id , using the finger table.
function n.find successor(id)

if id ∈ (n, successor ] then
return successor

else
n’ = closest preceding node(id)
return n ′.find successor (id)

end if
end function

// Attempts to find the closest predecessor for id in node n ’s finger table.
function n.closest preceding node(id)

for i = m downto 1 do
if finger [i] ∈ (n, id) then

return finger [i]
end if

end for
end function

Figure 3.5: Optimized algorithm for retrieving successor nodes with finger tables
(from Figure 5 of [28])

The papers differ on how the tables should be initialized and maintained. The
original technical report and the SIGCOMM paper [27, 26] suggest initializing
every finger pointer after joining the network, and updating finger tables mainly
as part of other network events. Nodes periodically verify that finger pointers
are valid by issuing find-successor queries.

The 2003 ton paper [28] proposes not looking up fingers when joining the
network, but instead initializing finger tables with empty1 pointers. Nodes
then gradually fill in the tables by scheduling their own find-successor queries.
In effect, this scheme leads to a form of eventual consistency for the finger
tables.

3.2 Establishing and maintaining the network
To establish and maintain the network, Chord requires nodes to maintain
predecessor pointers, which point to the nodes immediately preceding them in

1. If a finger pointer is missing during a lookup, the table falls back to the closest available
finger.
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// Establishes a new Chord network in node n.
function n.create(n ′)

predecessor = nil
successor = n

end function

// Has node n attempt to join the network node n ′ is part of.
function n.join(n ′)

predecessor = nil
successor = n ′.find successor (n)

end function

Figure 3.6: The pseudocode for joining or establishing a Chord network (Figure 6 of
[28])

the identifier order. The network maintenance algorithms ensure that every
node’s successor pointer is eventually correct, so that every node is considered
the successor of exactly one other node [26].

Initially, the network is established by a single node setting itself as its successor,
as in Figure 3.6, creating a single-node ring. Then, subsequent nodes join the
network by calculating their node identifiers, polling a known member of the
network for the successor node of their identifier, and setting it as their initial
successor.

Once the node has found its initial successor, it starts integrating itself into
the network, and gradually brings the network closer to an ideal state. This
is achieved through the stabilize and notify algorithms, shown in Figure 3.7.
Nodes run stabilize periodically, querying their successor for its predecessor. If
the successor’s predecessor lies closer in identifier order, it is adopted as the
node’s new successor. After stabilizing, the node notifies its new successor of
its existence. Upon receiving the notification, the successor adopts the node as
its predecessor if it lies closer than the current predecessor.

3.3 Fault-tolerance
Chord assumes a fail-stop failure model [36], where nodes function correctly
until some point in time, where they stop servicing requests and are not
heard from again. Communication is assumed reliable [25], with no messages
dropped or altered in transit. The network availability is also assumed to be
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// Notifies n ’s successor of n ’s existence, and determines whether
// its predecessor is a better candidate for successor.
function n.stabilize()

x = n .successor .predecessor
if x ∈ (n, n .successor ) then

n .successor = x
end if
n .successor .notify(n)

end function

// Signals to node n that n ′ may be its predecessor.
function n.notify(n ′)

if n .predecessor = nil ∨ n ′ ∈ (n .predecessor, n) then
n .predecessor = n ′

end if
end function

Figure 3.7: The pseudocode for stabilization and notification protocols, which gradu-
ally improve the network topology.

symmetric [28] — if node 1 can send messages to node 2, then node 2 can
message node 1 in return — and transitive: if node 1 can message 2 and node
2 can message 3, then node 1 can message node 3.

An important part of this failure model is the assumption that nodes can reliably
detect whether another node has failed. In their simulation of the protocol,
Stoica et al. [28] implement failure detection through a timeout mechanism,
marking a node as failed if it does not respond to any queries within a set
time.

The key assumption Stoica et al. make in their fault-tolerance design is that
only the nodes’ successor pointers have to be correct for a lookup to make
progress [26]. The predecessor pointer is only used for network maintenance,
and errors in the finger table can be tolerated by falling back to the successor
pointers.

Thus, the main responsibility of the fault-tolerance algorithms is to handle the
case where a node’s immediate successor fails. Chord solves this by replacing
nodes’ successor pointers with successor lists, so that each node knows about
the r next nodes in the identifier order, not just the first.

Then, once a node discovers that its successor has failed, it discards it from
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// Replace a failed immediate successor (assumed to be n .successors[1])
// with the nearest live node from the list.
function n.fix successor()

if n .successors[1] has failed then
u = the smallest u such that n .successors[u] is live
n .successors = 〈su, su+1, · · · , sr 〉

end if
end function

// Remove a failed predecessor from node n.
function n.fix predecessor()

if n .predecessor has failed then
n .predecessor = nil

end if
end function

// Adopt the successor list from node n ’s immediate successor.
function n.fix successor list()
〈s1, s2, · · · , sr 〉 = n .successors[1].successors
n .successors = 〈n .successors[1], s1, s2, · · · , sr−1〉

end function

Figure 3.8: Pseudocode for the Chord fault-tolerance algorithms presented by Stoica
et al., from Figure 4 of the podc analysis [36].

its successor list, and adopts the next node in the list as its successor. Nodes
also periodically poll their predecessor to determine whether it is alive: if it
has failed, the node marks itself as no longer having a predecessor.

In order to construct the successor lists, each node periodically polls its successor
for its successor list. On receiving it, the node prepends its successor to the list,
and adopts it as its new successor list.

Neither the technical report nor the SIGCOMM paper provide pseudocode for
these algorithms, instead opting for informal outlines. Oddly, the TON paper
provides pseudocode only for the predecessor checking routine, and gives a
similar outline for the other two algorithms. Thus, we have to look to the podc
analysis for the fault-tolerance algorithm pseudocode in Figure 3.8.

The lookup, network maintenance and fault-tolerance algorithms collectively
make up the Chord protocol.
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3.4 Zave’s analysis
Having described the Chord protocol, we now give a brief outline of its analysis
by Zave [25]. “Inconsistencies and ambiguities” in the claimed invariants
and a “mix [of] correctness with performance analysis” in the proofs lead
her to question the protocol’s correctness, prompting a formal analysis of the
protocol. To formally specify the protocol, Zave uses the Alloy [66] specification
language, which models object structures and relationships with first-order
relational logic [67] extended with transitive closures.

Zave notes that the goal of the protocol is essentially a form of eventual consis-
tency for the pointers between nodes, or “eventual reachability”: eventually, all
errors in the ring structure is repaired, and every node can contact every other
node through lookups. Errors in the protocol could lead to certain nodes be-
coming unreachable, leading to permanent partitioning in the network.

However, it is unclear which safety properties must be satisfied for eventual
reachability to be possible, due to the proofs in the technical report [27] resting
on probabilistic arguments. To determine which safety properties are critical
to the network’s correctness, Zave examines Definition 5.6 of the analysis by
Liben-Nowell et al. [36], and excludes probabilistic and quantitative statements
about the protocol, leaving five claimed safety properties:

• Part (1): “the network is connected”, which Liben-Nowell et al. define
as “there is a path using successor lists and finger tables connecting any
two nodes”.

• Part (4a): “the cycle is non-loopy” (i.e. ordered over the identifiers)

• Part (4b): “for every node v in the appendage Au [rooted in a node u
that is part of the cycle], the path of successors from v to u is increasing.”

• Part (5c): “if node v is in the appendageAu , then u is the first live cycle
node following v .”

• Part (5d): “if the successor list of [the successor of node u] skips over a
live node v , then v is not in the [successor list of node u]”.

The original statement of the first property is quickly ruled out, since it only
holds for networks that are already in an ideal state: any network with an
appendage—which isn’t reachable from anymember of the main ring—would
be disqualified. Instead, the specification expresses network connectivity as a
combination of three smaller properties:
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• Part (1a): There is at least one ring.

• Part (1b): There is at most one ring.

• Part (1c): Every node is either part of the ring or an appendage of it.

Each of these properties are introduced into the protocol specification, as well
as fail-stop errors like those assumed by Stoica et al. [28]. After formally
verifying the specification, Zave finds that the protocol satisfies none of the
claimed properties. For every proposed safety property2, the protocol allows a
corresponding sequence of network events which violates it.

3.5 Summary
The Chord protocol implements a distributed hash table by assigning identifiers
to key-value pairs and network members from a flat identifier space. To look
up a key-value pair, nodes recursively query each other to determine which
node is responsible for a given key’s identifier. Chord uses consistent hashing
to assign identifiers, which lets a minimal number of keys change hands when
a node enters or leaves the network.

Chord attempts to establish eventual reachability, so that every node in the
network eventually becomes part of one ring. To do so, Chord nodes attempt
to improve the network topology gradually, by periodically querying their
neighbors for nodes that might be better neighbor candidates.

The protocol assumes a fail-stop failure model with reliable communication
between nodes. To implement fault-tolerance, Chord nodes maintain lists of
the nodes immediately following them in the identifier space, and periodically
request updates to the list from their neighbors. This allows nodes to recover
from the failure of their immediate neighbors.

In analyzing the Chord protocol, Zave finds inconsistencies in its definition,
and questions its correctness. In formally verifying the protocol, she discovers
that it does not satisfy any of its claimed safety properties.

2. (4a) could be satisfied by the “strong stabilization” algorithm outlined by Liben-Nowell
et al. [36], which claims to restore identifier ordering. However, this scheme is “far slower”
than the original protocol, and ultimately dismissed as implementations using it “might
not perform well enough to be useful”.



4
Specification
This chapter outlines the process of formally specifying the Chord protocol, as
an example of how formal methods can be used to uncover flaws in existing
systems. Our method is based on Zave’s [25] work in uncovering protocol flaws
in the Chord [26] peer-to-peer distributed lookup protocol.

While Zave employed the Alloy specification language [66], we will specify
the protocol in TLA+ — using the TLC model checker (tlc) [34] to verify our
specification. Since Alloy builds on a relational rather than a temporal logic, it
does not have a built-in notion of time, which means that Zave’s specification
has to explicitly express how events are correlated in time [68]. In contrast,
TLA+ makes time implicit, potentially making it easier to describe systems that
are dynamic over time [69].

We will begin by formulating a synchronous version of the Chord specification,
where no failures occur and only one event takes place at a time. This simpler
statement of the protocol allows us to determine appropriate abstractions, and
lets us model important safety invariants. Next, we revise the specification
to introduce asynchronous messaging, letting the specification capture mul-
tiple concurrent network events. Finally, we introduce fail-stop failures and
the Chord fault-tolerance mechanisms into the specification, completing the
specification. We will review Zave’s 2012 analysis [25], and show that our speci-
fication admits her counterexamples to the claimed safety invariants presented
in [36].

33
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4.1 Goals
Before we start the work of formally specifying the protocol, we must decide
which properties we want to demonstrate through the formal analysis.

As TLA+ is designed for checking safety and liveness properties, we disregard
probabilistic and quantitative claims about the protocol, like the upper bounds
on time complexity promised by the SIGCOMM Chord paper [26]. As outlined
in Section 1.2, we adopt the same scope for our specification as Zave does.
Zave omits finger tables because they are “not relevant to correctness” [25],
and does not model the storage and retrieval of keys. This limits the scope
of our specification to the core events of joining, network maintenance, and
fault-tolerance.

This leaves us with four main requirements:

• Type safety: at no point should the protocol permit nodes to have successor
or predecessor pointers linking to invalid destinations, or nodes outside
the identifier space.

• Deadlock freedom: until the network is in the ideal state, there should
always be at least one node with an enabled action allowing the protocol
to proceed.

• Network safety: the protocol should not allow actions that partition the
network, or leave it in a state where it cannot become ideal.

• Network liveness: after all nodes have finished joining, the protocol should
eventually have arranged the network into an ideal state.

With these requirements in mind,we can decide on the appropriate abstractions
for our specification.

4.2 Assumptions and abstractions
To model the protocol, we must first decide on the specification’s level of
atomicity. For our initial version of the specification,wemake joining, stabilizing
and notifying completely atomic, allowing only one event to proceed at any
given time.

Enforcing this assumption in practice would seriously limit the protocol’s ability
to deal with churn [70, 71] from multiple nodes independently arriving and
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leaving. It would also require a central authority to govern progress, contrary
to the initial design goal of a peer-to-peer system with no nodes being assigned
any special authority. However, this initial abstraction allows us to write a
specification close to the proposed pseudocode, which can be progressively
verified while iterating towards more granular actions. In our final specification,
we only allow actions that change the state of at most one node at a time, and
model asynchronous message passing between nodes.

Once we have demonstrated that the protocol functions in the pure-join case
with no failures, we introduce the failure model used by Stoica et al. and Zave
(see Section 1.2) with fail-stop failures as part of the specification.

To make type safety and communication easier to model, we will treat the
process identifier, the node’s identifier and its network address as one and the
same, as Zave does. In the specification, each of the N nodes is identified by an
integer in the range 1 . . .N . We assume that nodes learn each others’ network
addresses as part of exchanging identifiers.

This simplification is reasonable so long as we are certain no two nodes will
receive the same identifier, which demands that the consistent hashing scheme
used:

• Has a large enough identifier space that a large number of participants
do not make identifier collisions significantly more likely.

• Distributes identifiers sufficiently uniformly that nodes are unlikely to
get similar identifiers, even if they are geographically close.

The SIGCOMM Chord paper justifies both of these assumptions with a prob-
abilistic argument, arguing that SHA-1 is a cryptographic hash with good
distributional properties that satisfy the latter requirement. While the SHA-1
hash function is no longer recommended [72] due to its vulnerability to fixed-
prefix collision attacks, Chord only uses it to provide unique identifiers, and
does not rely on any of its cryptographic properties.

One notable consequence of treating the node identifier as its network address
is that each node is only allowed to run one instance of the stabilization
protocol, since we specify network actions as operations on a single identifier.
This is not important for our particular analysis, but precludes modelling any
schemes with multiple virtual participants per node, such as the load balancing
scheme described in Section 6.2 of [26].

Next, to determine the necessary conditions for maintaining the network safety
invariants, we start by examining only the initial network configurations where



36 CHAPTER 4 SPEC IFICAT ION

module SynchronousChord
Models synchronous Chord with no node failures and synchronous communication.

extends Integers , FiniteSets , Sequences , TLC
The model uses a single constant: the number of nodes N .

constants N
assume FiniteNodesAssumption

∆
= N ∈ Nat \ {0}

Use ascending natural numbers for the node identifiers.

ProcSet
∆
= 1 . . N

variables Successor ,
Predecessor ,
HasJoined ,
HasPredecessor

vars
∆
= 〈Successor , Predecessor , HasJoined , HasPredecessor〉

Init
∆
=
∧ Successor = [self ∈ ProcSet 7→ 1]
∧ Predecessor = [self ∈ ProcSet 7→ 1]
∧ HasJoined = [self ∈ ProcSet 7→ self = 1]
∧ HasPredecessor = [self ∈ ProcSet 7→ self = 1]

Figure 4.1: The variables and initial state for the synchronous Chord specification.

nodes join an existing single-node network, and then gradually loosen the
constraints to determine which invariants the initial state must satisfy.

Finally, since we are checking a liveness property — whether the stabilization
algorithm leads to an ideal network configuration — our specification must
guarantee that at least one node is making progress at any given time. We en-
code this in the specification through a weak fairness progress condition.

4.3 Specifying synchronous Chord
With these abstractions in place, we can outline an initial specification of
synchronous Chord, where nodes do not fail, and only one network event —
joining, stabilizing or notifying — takes place at a time.

The necessary variables and initial state for this specification are shown in
Figure 4.1. The only constant that needs to be supplied at model-checking time
is the number of nodes N .

Since nodes cannot fail, the only variables needed to specify the protocol are
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Figure 4.2: Intervals of Chord identifiers can straddle zero, requiring special checks.

a single successor and predecessor pointer for each node, which we model
as functions from the node identifier to the pointer destination. While the
Chord papers use nil to represent uninitialized successor/predecessor pointers,
our specification uses separate Boolean variables. A type invariant verifies
whether the successor and predecessor point to valid identifiers (see Safety
invariants).

In our first version of the synchronous specification, the initial state Init has
node 1 forming a single-node ring, with every other node attempting to join its
network. Once we have verified the specification for this case, we will expand
the set of permissible initial states.

4.3.1 Dealing with identifier order
The first obstacle to a formal specification of the protocol is the identifier
space. Recall that the identifier space spans the integers modulo 2m , forming
a finite cyclic group. The protocol depends heavily on an intuitive understand-
ing of intervals over this space. For instance, the find-successor algorithms
in Figure 3.3 and 3.5 both require determining whether the identifier id lies
inside the interval (n, successor ].

For the natural numbers, this test is trivially implemented as

id ∈ (n, successor ] ⇔ id > n ∧ id ≤ successor (4.1)

but this fails when applied to the identifier space, since the identifier ordering
is only partial.

Using our earlier circle with m = 3, we imagine an interval from node 5 to
node 1, with a single key 0 assigned to node 1. From the protocol definition,
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it is clear that key 0 belongs to node 1, since it lies in the interval (5, 1], as
shown in Figure 4.2. However, since 0 ≥ 5, we find that id ≥ n, and the test
in Equation 4.1 fails.

Since TLA+ does not provide any standardmodules for reasoning about intervals
in finite cyclic groups, we use the method described by Giesen [73], whose
key insight is that interval membership is essentially symmetric. If a point lies
inside an interval in a cyclic group, the point and interval endpoints can be
offset by any amount, with the point remaining inside:

x ∈ [a, b](mod N ) ⇒
(x + i) ∈ [a + i, b + i] (mod N ) ∀i ∈ [0,N − 1]

(4.2)

This allows the problem to be restated as

x ∈ [a, b](mod N ) =
(x − a) ∈ [a − a, b − a](mod N ) =
(x − a) ∈ [0, b − a](mod N ) ⇒

(x − a) (mod N ) ≤ (b − a) (mod N )

(4.3)

which can be expressed in TLA+. This solution does assume that the result of
x (mod N ) is positive, even for negative x ; thankfully, this definition of modulo
is both the one outlined in Specifying Systems [4] and the one implemented by
the TLC model checker.

A subtle pitfall with this solution arises from the interpretation of intervals
of the form (a, a) (mod N ). From the definition of an open interval (a, b) =
{x : a < x < b}, we expect (a, a) to be the empty set, since no x satisfies
a < x < a. If we extend the earlier test for closed intervals from Equation 4.3
to open ones by excluding the interval’s endpoints, e.g.

x ∈ (a, b)(mod N ) =
(x − a) (mod N ) ≤ (b − a) (mod N ) ∧ x , a ∧ x , b

(4.4)

we see that no x can lie inside (a, a), as it is either the case that (x − a) > 0,
in which case it is greater than (b − a) = 0, or (x − a) = 0, which implies that
x = a.

However, this interpretation leads to trouble when specifying Chord actions for
small networks. For instance, consider a Chord ring consisting of a single node,
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module SynchronousChord

BetweenInclusive is true if x ∈ [a, b] (mod N ).

BetweenInclusive(x , a, b)
∆
= ((x − a)%N ) ≤ ((b − a)%N )

BetweenHalfOpen is true if x ∈ (a, b] (mod N ).

BetweenHalfOpen(x , a, b)
∆
=

∧ ((x − a)%N ) ≤ ((b − a)%N ) ∧ x 6= a

BetweenExclusive is true if x ∈ (a, b) (mod N )

BetweenExclusive(x , a, b)
∆
=

∨ ∧ ((x − a)%N ) ≤ ((b − a)%N ) ∧ x 6= a ∧ x 6= b

Caveat: in the case where a = b, as in a one-node ring,

we want to interpret (a,b) as spanning the entire interval:

∨ ∧ a = b

Figure 4.3: TLA+ operators for determining whether an identifier lies inside an iden-
tifier interval.

such that its successor and predecessor pointers both point at itself. To query
it for the successor of a key, using the algorithm from Figure 3.3, we must first
determine whether the key id lies in the interval (n, successor ].

Since the node is its own successor, the resulting interval is (n, n], which we
established was empty. Therefore, no key can be inside it, and the node must
forward the query to itself, leading to an infinite loop.

We could resolve this by introducing special cases for single-node networks in
the specification, at the cost of a longer andmore complex specification. Instead,
we choose to treat open intervals (a, a) as encompassing every identifier, leading
to the TLA+ operators in Figure 4.3. This solves the problem outlined above,
as every key lying in the interval (n, n] means that a single-node ring will
correctly point to itself as the successor node of all keys.

4.3.2 Defining connectivity
Reachability is key to the Chord protocol. Since each node only has knowledge
of a subset of the network, the stabilization protocol must ensure that there is a
path to any node in the ring using only finger tables and successor lists.

Thus, we would like to formally specify which nodes are reachable from any
given node, both in order to help us define network safety invariants, and to
ensure we do not “cheat” and permit actions that rely on state the node cannot
know about.
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module SynchronousChord
ReachableSuccessors(x )

∆
=

let recursive Reachable( , )
Reachable(n, i)

∆
=

if i = 0 ∨ ¬HasJoined [n]
then {}
else Reachable(Successor [n], i − 1) ∪ {Successor [n]}

in Reachable(x , N )

Figure 4.4: A TLA+ operator determining which nodes are reachable by following
successor pointers from a given node x .

Since we initially only use a single successor pointer, specified as a relation
from the node’s identifier to the destination node’s identifier, we define the set
of nodes reachable from node n to be the set

Reachable(n) = {n, successor (n), successor (successor (n)), · · · } (4.5)

We specify this in TLA+ through a recursive function, seen in Figure 4.4. We
use the LET RECURSIVE-IN pattern to define the recursive function, as TLA+

does not allow operators to be directly defined recursively [4]. Additionally, to
avoid evaluating recursive operators for potentially infinite sets, tlc requires
a finite bound on the recursion. Since the number of nodes N is known, we
know that at most N nodes can be reached, and we limit the function to N
iterations.

4.3.3 Actions
With these fundamental definitions in place, we can now begin our first attempt
to specify the actions making up the protocol. By omitting communication from
the initial specification, we can specify actions purely in terms of their pre- and
postconditions:

• Joining the network leaves a node with the closest possible neighbor
from the candidates currently in the ring as its initial successor.

• Stabilizations require that a node’s successor’s predecessor lies closer
than its successor, and has the node adopt it as its new successor.

• Similarly, notifications require that the predecessor’s successor lies closer
than the current predecessor, and makes it the new predecessor.
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module SynchronousChord
Join(self )

∆
=

The only precondition for joining is that the node has not joined

a network before:

∧ ¬HasJoined [self ]
After joining, the node adopts the closest successor from the

nodes that are currently in the ring:

∧ HasJoined ′ = [HasJoined except ! [self ] = true]
∧ Successor ′ = [Successor except ! [self ] =

choose succ ∈ {Successor [self ]}
∪ ReachableSuccessors(Successor [self ]) :
∧ ¬∃ candidate ∈ ReachableSuccessors(self ) :

∧ BetweenExclusive(self , candidate, succ)
∧ candidate 6= succ]

∧ unchanged 〈Predecessor , HasPredecessor〉

Stabilize(self )
∆
=

∧ HasJoined [self ]
∧ HasPredecessor [Successor [self ]]
Stabilizing requires that the successor’s predecessor lies closer,

∧ BetweenExclusive(Predecessor [Successor [self ]], self , Successor [self ])
and ends with it as the node’s next successor:

∧ Successor ′ = [Successor except ! [self ] = Predecessor [Successor [self ]]]
∧ unchanged 〈HasJoined , HasPredecessor , Predecessor〉

Notify(self )
∆
=

∧ HasJoined [self ]

Notification likewise requires that the successor doesn’t have a

predecessor, or that this node lies closer:

∧ ∨ ¬HasPredecessor [Successor [self ]]
∨ BetweenExclusive(self , Predecessor [Successor [self ]], Successor [self ])

Notification ends with the successor adopting the node as its predecessor:

∧ Predecessor ′ = [Predecessor except ! [Successor [self ]] = self ]
∧ HasPredecessor ′ = [HasPredecessor except ! [Successor [self ]] = true]
∧ unchanged 〈Successor , HasJoined〉

Figure 4.5: Initial TLA+ specification of joining, stabilizing and notifying



42 CHAPTER 4 SPEC IFICAT ION

These three actions, shown in Figure 4.5, turn out to be sufficient to specify
the simplified stabilization protocol.

4.3.4 Safety invariants
With the specification of the protocol in place, we specify the properties we
would like it to satisfy, beginning with the safety properties.

First, we verify the type safety of the specification. Since TLA+ is based on an
untyped logic, the conventional way of establishing type safety is by expressing
it as an invariant and passing it to the model checker. The invariant TypeOK (see
Appendix A) serves this purpose in our specification, verifying that successor
and predecessor pointers only point to valid node identifiers.

Next, we would like to verify that the protocol is deadlock free. We do not
need an explicit invariant to verify this, as TLC searches for deadlocks by
default. With the action definitions of Figure 4.5, TLC reports that the protocol
deadlocks once the network is in the ideal state. Since the network is ideal,
there are no possible improvements to make, so none of the actions are enabled.
This is purely a flaw in our specification, not in the protocol, since Chord nodes
should still perform network maintenance when the network is ideal. To model
this additional maintenance, we add a disjunct to the next-state action which
allows stuttering once the network has reached an ideal state.

Finally, we would like to verify that the protocol satisfies some network safety
properties. From the protocol description, we have a reasonable idea of what
constitutes an ideal network structure: every successor pointer is correct and
every node is the successor of exactly one node.

How to guarantee that a network eventually enters an ideal state is less ob-
vious. As part of her analysis, Zave argues [25] that four of the invariants
in Section 3.4 are absolutely necessary for the network to maintain eventual
reachability:

1. Part (1a): There must be at least one ring. If there are no rings, there is
at least one node without a successor, which means it cannot run stabilize
or perform any lookups.

2. Part (1b): There must be at most one ring. If there is more than one ring,
the rings become disjoint cycles, with no means of contacting nodes in
other rings.

3. Part (1c): At any time, every node must be either part of a ring or an
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appendage connected to one. If a member is neither, it has no way of
contacting the remaining members of the network, leading to a partition.

4. Part (4a): The members of a ring must be ordered. While the network
can function in a loopy state, the loss of identifier ordering breaks the
core assumption behind finger tables, potentially leading to linear lookup
times.

We phrase these properties in terms of our ReachableSuccessors operator defined
in Figure 4.4. For brevity, we say that node n can reach node x if it is possible
to reach x by following successor pointers starting from node n:

1. Part (1a): If there is at least one ring, there exists at least one node n
such that n can reach itself.

2. Part (1b): If there is at most one ring, the set of nodes that can be reached
is the same for every node which forms a ring.

3. Part (1c): If node n is part of or an appendage of the ring, it can either
reach itself, or a node s such that s can reach itself.

4. Part (4a): If the ring is ordered, all but one node that is part of a ring
has a node with a larger identifier as its successor.

The conjunction of these four conditions forms our network safety invariant
(ValidRing in Appendix A).

4.3.5 Liveness requirements
With the network safety invariants listed above, we can begin defining network
liveness properties. Core to the Chord protocol is the assumption that the
network maintains eventual reachability: it eventually converges to the ideal
state, so long as no node leaves the network and no new nodes enter.

This is formalized as Theorem IV.3 of [28]:

“If any sequence of join operations is executed interleaved with stabi-
lizations, then at some time after the last join the successor pointers
will form a cycle on all the nodes in the network.”

However, a Chord network can form a cycle and still be incorrect. It is possible
to have loopy [36] cycles that violate the assumption of ordered identifiers, as
in Figure 4.6. Thus, a stronger definition is needed.
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Figure 4.6: An example of a loopy ring. It is weakly ideal in that each node is the pre-
decessor of its successor, but it violates the assumption that the identifiers
are ordered over the ring.

For our liveness property, we use the definition of a strongly ideal ring [36] as
our ideal state:

• Every node is its successor’s predecessor. (A network satisfying this
condition only is called weakly ideal.)

• In addition, there doesn’t exist any node v such that v ∈ (u, u .successor )
while u and v are in the same ring.

This definition of an ideal network is the one employed in Zave’s specifica-
tion [74]. Zave confirms that Theorem IV.3 is correct in the case where no
failures occur, and further strengthens it by stating that

“In any execution state, if there are no subsequent joins, then eventu-
ally the network will become ideal and remain ideal.”

We express this theorem as the temporal formula

2(Valid ⇒ 32Ideal) (4.6)

which appears as RingEventuallyBecomesStronglyIdeal in the final specification
of synchronous Chord (see Appendix A).

With the protocol, safety and liveness properties specified, we now have a
complete, formally verifiable specification of pure-join Chord at the event
level.
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4.4 Modelling asynchronous messaging
With pure-join Chord formally specified at the event level, we can formulate a
specification with atomicity at the message level, allowing multiple concurrent
network events. In this specification, nodes can no longer learn about the
global state of the network through shared state, but must explicitly request
information through message passing.

To simulate asynchronous message passing between nodes, we specify our
message-passing layer in terms of adding and drawing records from unordered
sets, allowing the model-checker to thoroughly explore behaviors with out-of-
order message delivery. We maintain the assumption that communication is
reliable: messages may be delayed indefinitely, but they are never truly lost or
altered in transit.

4.4.1 Actions with asynchronous messaging
We begin by formally specifying the find-successor algorithm. Since we do not
include finger tables in our specification, we opt for the simplified algorithm
shown in Figure 3.3. We specify it in the recursive style suggested in the
technical report, where each “intermediate node recursively calls the lookup
procedure to resolve the query” [27].

This means that responsibility for a find-successor query is delegated across
multiple nodes, and there is no way for a node to determine the progress of
a lookup until a response arrives. If a node fails in the process of handling
a query, the query fails along with it. In our specification, we handle this by
letting nodes repeat lookups until they receive a response. Figure 4.7 shows
our TLA+ statement of the find-successor algorithm.

Then, we can restate the join algorithm in a fashion closer to the pseudocode
in Figure 3.6, with one notable difference: while the original pseudocode is
written in a Remote Procedure Call (rpc) style, where other nodes’ state is
retrieved implicitly, we specify actions so they explicitly pass messages between
nodes.

For instance, the join algorithm is specified as two separate actions: Join and
FinishJoin, shown in Figure 4.8. Join sends a find-successor request to a known
member of the network, while FinishJoin sets the successor pointer once a
response arrives. By specifying actions in this manner, we can confirm that
each action doesn’t change the state of more than one node.

We formulate similar statements of the stabilize and notify algorithms from
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module PureJoinChord
Recursively find the successor for a given identifier.

FindSuccessor(self )
∆
=

∧ HasJoined [self ]
∧ unchanged 〈Successor , Predecessor , HasJoined ,

HasPredecessor , PredecessorAnswers , PredecessorRequests ,
Notifications〉

∧ ∃Request ∈ SuccessorRequests [self ] :

If the key lies in the interval (n, successor(n)], the key belongs to node n’s successor:

if ∨ BetweenHalfOpen(Request .id , self , Successor [self ])
∨ self = Successor [self ]

then
Remove this query from the set of requests.

∧ SuccessorRequests ′ = [SuccessorRequests
except ! [self ] = @ \ {Request}]

Return the answer to the original sender.

∧ SuccessorAnswers ′ = [SuccessorAnswers
except ! [Request .origin] =
@ ∪ {[id 7→ Request .id , successor 7→ Successor [self ]]}]

else
Otherwise, pass this request to the node’s successor:

∧ SuccessorRequests ′ = [SuccessorRequests
except ! [Successor [self ]] =
@ ∪ {Request}, ! [self ] = @ \ {Request}]

∧ SuccessorAnswers ′ = SuccessorAnswers

Figure 4.7: TLA+ specification of the find-successor algorithm in Figure 3.3.
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module PureJoinChord
Join the network by requesting the successor of this node’s identifier

from a known member of the network:

Join(self )
∆
=

The only preconditions are that the node has not joined a network,

∧ ¬HasJoined [self ]
and is not in the process of joining:

∧Cardinality(SuccessorAnswers [self ]) = 0
Send a request to a known member of the network:

∧ SuccessorRequests ′ =
[SuccessorRequests except ! [Successor [self ]] =
@ ∪ {[origin 7→ self , id 7→ self ]}]

∧ unchanged 〈Successor , Predecessor , HasJoined ,
HasPredecessor , SuccessorAnswers , PredecessorAnswers ,
PredecessorRequests , Notifications〉

On receiving the successor for this node’s identifier,

set it as the successor:

FinishJoin(self )
∆
=

We ensure that this node has not joined a network already,

∧ ¬HasJoined [self ]
∧ unchanged 〈Predecessor , HasPredecessor ,

SuccessorRequests ,
PredecessorAnswers , PredecessorRequests ,
Notifications〉

and that another node has sent it a reply with its initial successor:

∧ ∃Answer ∈ SuccessorAnswers [self ] :
If it has, we find this node’s successor from the reply,

∧ Successor ′ = [Successor except ! [self ] = Answer .successor ]
and signal that it is part of the network:

∧HasJoined ′ = [HasJoined except ! [self ] = true]
∧ SuccessorAnswers ′ = [SuccessorAnswers except ! [self ] = @ \ {Answer}]

Figure 4.8: TLA+ specification of the join algorithm from Figure 3.6 with asynchronous
messaging.
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Figure 3.7. While our synchronous specification allows nodes to send notifica-
tions to each other freely, the asynchronous version obeys the pseudocode, and
demands that notifications only happen after a stabilization.

4.4.2 Expanding the set of initial states
We previously assumed that the protocol started with a single initial state,
where the first node forms a single-node ring, and every other node tries to
join it. We now extend the set of initial states to encompass all valid network
configurations, and verify that none of them can lead to safety or liveness
properties being violated.

First, we must determine which network structures are valid initial configura-
tions. If we allowed any configuration of successor and predecessor pointers
as initial states, we could have initial states with successor pointers forming
disjoint cycles, violating invariant (1b) from Section 3.4.

Liben-Nowell et al. [36] point out that the graph formed by successor pointers
in a valid tree is equivalent to a pseudotree — a graph where every component
is a directed tree pointing towards a root cycle. Theoretically, we could specify
an algorithm to generate the set of all pseudotrees with N vertices, and use it
to construct the initial successor relation between nodes. Our literature search
did not uncover any way to accomplish this in TLA+.

A more straightforward approach is to consider every possible configuration
of successor and predecessor pointers while enforcing the safety properties,
simply discarding any initial states that do not satisfy them. This requires an
additional safety property to govern the predecessor pointers in the initial
state. Otherwise, the specification permits initial states where every node has
its predecessor pointer unset — preventing any progress — or states where
nodes’ predecessor pointers lead to nodes that aren’t part of the ring, leading
to disruption once nodes poll them during stabilization. In our specification,
an invariant requires that predecessor pointers are initially either empty, or
point to a node whose successor pointer leads back to the current node.

Another issue with this approach becomes apparent when model-checking. tlc
determines the set of possible initial states by enumerating every state and then
evaluating the safety properties. For our proposed scheme, which considers
every possible configuration of successor pointers, whether they are set, and
whether the predecessor pointer is set, this means evaluating NN · 2N · 2N

possible states. When testing the approach for our specification, tlc fails for
N > 5, reporting that there are too many initial states to evaluate.
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To allow us to verify the specification for N > 5, we introduce an option into
the specification to only analyze single-node ring configurations as initial states.
In these configurations, any of the N nodes can act as the initial single-node
ring, with the rest of the nodes joining it. This compromise allows us to model-
check the protocol for N > 5, at the cost of only examining part of the state
space.

4.4.3 Verifying liveness
Model-checking the new specification shows that the previous safety invariants
are maintained. There is no interleaving of messages that leads to a violation
of type safety, a deadlock, or a partitioning in the network.

However, the model checker fails when verifying that the ring eventually
becomes ideal, even for networks with N = 2 nodes. For N = 2, the model
checker reveals that our specification permits behaviors of the form

Node 1 stabilizes and requests node 2’s predecessor →
Node 2 responds with its predecessor, node 1 →

Node 1 finishes stabilization, maintains node 2 as successor →
Node 1 stabilizes and requests node 2’s predecessor →

· · ·

which leave the network in a valid state, but never progress to an ideal state:
node 2 is left without a predecessor, as it continuously responds to node 1
stabilizing instead of accepting its notification.

The underlying issue is that the protocol only specifies that stabilization occurs
“periodically”, and the resulting specification of Stabilize is underconstrained.
Once node 2 joins, Stabilize is always enabled for node 1, which means it must
happen by weak fairness. Changing the specification’s fairness condition to
strong fairness does not help, as node 2 accepting a notification and node 1
stabilizing are both continuously enabled actions.

We could solve this issue by introducing our own scheduling constraints through
auxiliary variables. For instance, we could track howmany messages each node
has sent, in order to determine when a node should be pause its own activity
in favor of resolving queries from other nodes. This allows us to guarantee
progress so long as nodes are “reasonably active”, at the cost of increasing the
complexity of the specification, introducing new assumptions, and potentially
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ignoring errors which arise from irregular scheduling.

Another option is to add a constraint on stabilization which depends on the
global state of the network, so that a node only runs stabilize if it is guaranteed
to improve the network. While this approach is less complex than introducing
scheduling constraints, it carries a similar risk of ignoring potential errors by
eliminating too many behaviors, and requires careful reasoning about which
constraints to apply.

Requiring that stabilization can only occur if there are no outstanding requests
or responses guarantees that the network eventually becomes ideal for 2 nodes,
but leads to a potential behavior with a deadlock for 3 nodes. Requiring that the
node only stabilizes when it has a non-ideal successor fails in a similar manner,
leading to deadlocking behaviors where a node cannot learn its predecessor
without an “unnecessary” stabilization.

Ultimately, we opt not to check liveness properties for the specifications with
asynchronous messaging, as we find it hard to guarantee progress without
simultaneously introducing unrealistic assumptions or needless complexity into
the specification. As a sanity-check for the specification, we instead include an
assertion that the ring never becomes ideal. When verifying the specification,
the model-checker shows that this assertion is violated, confirming that at least
one behavior leads to an ideal ring.

After restating the actions in terms of asynchronous message passing, leading
to the specification in Appendix B, we can now formally verify the protocol for
multiple concurrent network events.

4.5 Modelling fail-stop failures
Having introduced asynchronous messaging into our specification, we finally
turn our attention to modelling fail-stop failures.

We begin by replacing our earlier definition of successor pointers with successor
lists. Zave accomplishes this by introducing a second successor pointer, encod-
ing the successor list length directly into the specification. In our specification,
we use tuples to represent the successor lists, allowing their length to be set at
model-checking time.

Intuitively, it would seem like the simplest way to model fail-stop failures would
be to change the specification’s fairness condition to require weak fairness only
for certain nodes, leading to behaviors where nodes fail by stuttering and not
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performing any actions. However, this approach makes it impossible to specify
failure detection, which is integral to Chord’s fault-tolerance algorithms. By
design, TLA+ specifications cannot detect stuttering steps— otherwise, it would
be possible to write specifications which aren’t stuttering invariant.

Instead, we add a separate variable to the specification to track whether a
given node has failed, and introduce a separate action to mark a certain node
as failed. Once a node has failed, it can no longer perform any actions, as we
expect. This approach is also necessary to set up Chord’s failure model. Stoica
et al. make a probabilistic argument about the successor list length r , leaving
it up to the user to set a large enough r so that r consecutive nodes failing is
sufficiently unlikely. However, if our specification doesn’t place any constraints
on failure, the model checker simply returns a trace where r consecutive nodes
indeed do fail.

Zave solves this by turning the probabilistic guarantee into a deterministic
one[74], and only allowing nodes to fail if it should be possible for the network
to recover from the failure. A failure is not allowed to happen if it “would leave
another member with no live successor in its successor list” [25]. We adopt this
constraint for our specification as well.

We grant nodes perfect failure detection, and allow them to determine whether
any node has failed at any given moment. This violates our prior assumption
that nodes only learn about the network’s state through message passing,
but is necessary to let the safety properties remain verifiable for individual
states.

With successor lists and failure detection in place, we can finally specify the
fault-tolerance algorithms from Figure 3.8. The TLA+ specification of the
algorithms can be found as FixPredecessor, FixSuccessor and FixSuccessorList in
Appendix C.

After introducing fail-stop failures, failure detection and fault-tolerance mech-
anisms, we finally have a complete specification of the Chord protocol with
asynchronous message passing and fault-tolerance. This specification is in-
cluded in Appendix C.
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4.6 Verifying counterexamples to safety
properties

To verify Zave’s counterexamples to the claimed safety properties, we take a
two-pronged approach. We will both attempt to find our own counterexamples
throughmodel-checking our specification, and attempt to recreate the scenarios
outlined in her 2012 paper [25].

The latter approach requires showing that our specification allows specific se-
quences of steps ending in safety properties being violated. In essence, we want
to demonstrate that our specification admits a single particular behavior.

To accomplish this, we introduce an auxiliary time variable, and use it to
restrict the set of possible actions. We specify two actions Step and Done, which
respectively increments the number of steps taken, and ends in a stuttering
state once a certain number of steps have occurred. We then replace the next-
state relation with a disjunction over multiple Step actions, where each Step
is constrained by a particular action from the Chord protocol. If a step of the
proposed behavior violates the specification, the corresponding Step is disabled,
leading to a deadlock.

Figure 4.9 shows an example of this approach, which specifies a single trace
that verifies that a stabilization leaves a network in a valid state.

4.7 Summary
In this chapter, we have formally specified the Chord protocol with asyn-
chronous messaging and fault-tolerance.

We initially specified the protocol at a coarse-grained level, only permitting
a single network event to occur at any time. While this constraint would
be unreasonable to enforce in practice, it allowed us to formally specify key
concepts and properties, including identifier ordering, reachability, and network
ideality.

Next, we increased the granularity of the specification by rewriting actions
in terms of message passing between nodes. While the original pseudocode
implicitly retrieves state from other nodes, our specification of message passing
forces us to explicitly state when communication between nodes occurs.

Finally, we introduce fail-stop failures and fault-tolerance in the specification.
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module SingleBehavior

Verify that a stabilization leaves the network in a valid state.

Import actions and properties from the Chord specification:

extends Chord2003
assume N = 4
assume SuccessorsPerNode = 2
variables Time

Define the initial state for this trace.

ExampleInit
∆
=

∧ Time = 0
∧ Successors = 〈〈2, 3〉, 〈3, 4〉, 〈4, 1〉, 〈1, 2〉〉
∧ Predecessor = 〈4, 1, 2, 3〉
∧ HasJoined = 〈true, true, true, true〉
∧ HasPredecessor = 〈true, true, true, true〉
∧ HasFailed = 〈false, false, false, false〉
∧ SuccessorAnswers = [self ∈ ProcSet 7→ {}]
∧ SuccessorRequests = [self ∈ ProcSet 7→ {}]
∧ PredecessorAnswers = [self ∈ ProcSet 7→ {}]
∧ PredecessorRequests = [self ∈ ProcSet 7→ {}]
∧ Notifications = [self ∈ ProcSet 7→ {}]

Step(y)
∆
=

∧ Time = y
∧ Time ′ = y + 1

The specification can only terminate once y steps have passed.

Done(y)
∆
=

∧ Time = y
∧ unchanged 〈Time〉
∧ unchanged vars

The next-state action then lists the sequence of actions:

ExampleNext
∆
=

Verify that the network starts in a valid state:

∨ ∧ Step(0) ∧ ValidRing ∧ Stabilize(1)
∨ ∧ Step(1) ∧GetPredecessor(2)
∨ ∧ Step(2) ∧ FinishStabilize(1)
Verify that the network ends in a valid state:

∨ ∧Done(3) ∧ ValidRing

Counterexample
∆
= ExampleInit ∧ ✷[ExampleNext ]〈Time, vars〉

Figure 4.9: By introducing an auxiliary time variable, we can verify that our protocol
description admits a particular behavior.
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To ensure the model-checker does not return trivial failure scenarios, we
constrain failures to only occur when the network should be able to recover
from them. We also give nodes perfect failure detection to allow verification of
safety properties.

Additionally, we describe a method to verify that our specification admits a
particular behavior, letting us recreate specific counterexamples to Chord’s
claimed safety invariants.



5
Evaluation
In this chapter we present the results of model-checking our specifications. We
list the safety and liveness properties our specifications satisfy, and examine the
computational complexity of verifying them for different model parameters.
We also list Chord’s claimed safety properties, and whether they hold in our
specification. Finally, we discuss the implications of our findings.

5.1 Experimental setup
The specification was developed in the TLA+ Toolbox1 integrated development
environment (ide). It provides syntax highlighting, integrated typesetting of
TLA+ specifications, and an integrated model-checker. An image of the TLA+

Toolbox environment is shown in Figure 5.1.

To model-check the specification, we use the tlc model-checker [34]. tlc is
an explicit-state model-checker, which performs a breadth-first search over the
state space by explicitly enumerating individual states. It keeps all data on disk
and manually manages disk accesses, only using main memory as a cache. This
prevents memory from being a limiting factor when verifying specifications.
tlc is implemented as a Java application, allowing it to be invoked from the
command line or directly from the TLA+ Toolbox.

1. http://lamport.azurewebsites.net/tla/toolbox.html
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Figure 5.1: Screen capture of the TLA+ Toolbox IDE.

The tests were conducted with a Dell Precision T3610 workstation with an Intel
Xeon E5-1620 CPU with 4 processor cores, each clocked at a base frequency of
3.6 GHz, 64 GiB of DDR3 memory with a clock frequency of 1866 MHz, and a
500 GB Samsung 840 EVO solid-state drive (ssd) with a top sequential read
and write speed of 540 MB/s and 520 MB/s respectively.

The workstation runs version 19.42 of the Antergos3 Linux distribution, based
on version 5.0.9 of the Linux kernel, with all packages updated to the last
versions available at the time of writing. To verify the specification, we use the
version 2.13⁴ of the TLC model checker, running on version 1.8.0 212-b01 of
the 64-bit OpenJDK⁵ Java virtual machine (jvm).

5.2 Metrics
We will measure three metrics as part of verifying our specifications:

• The average runtime of model-checking a specification. For the syn-

2. Approximately. Antergos operates with a rolling-release scheme similar to the Arch distri-
bution it is based on.

3. https://antergos.com/
4. revision 14440ac
5. https://openjdk.java.net/

https://antergos.com/
https://openjdk.java.net/
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chronous specification, we also list separate runtimes for checking safety
properties only.

• The number of distinct states found by the model-checker. To avoid
exploring states more than once, tlc maintains probabilistic check-
sums [34] of states explored. After model-checking, tlc reports the
number of distinct states with unique checksums, giving a probabilistic
estimate of the size of the state space.

• The number of total states explored by the model-checker, including
previously explored states.

Our primary independent variable is the number of nodes N in the model.
As Zave checks the full protocol for rings up to size 7 [74], we would ideally
model-check the specifications for all 2 ≤ N ≤ 7. However, time constraints
force us to only check the model for N ≤ 6. Where checking the entire state
space is not possible, we also include the maximum trace length L of the
behaviors checked.

When possible, we run 5 trials to find the average runtime of model-checking
a particular model. The results list the standard deviations σ where rele-
vant.

5.3 Verifying synchronous Chord
We begin by verifying the synchronous Chord specification, checking both
safety and liveness properties. For all N from 2 to 5, we are able to check every
initial state that satisfies the safety properties. For N = 6, tlc fails, reporting
that it has too many initial states to check. To verify the protocol for N = 6,
we use the single-node ring configuration described in Section 4.4.2.

For every configuration tested, the synchronous Chord specification satisfies
the safety requirements. It is partially correct, deadlock free, and does not
allow any actions that lead to partitioning in the network.

The synchronous specification also satisfies the liveness requirements, and
shows that the network eventually reaches an ideal state. It also confirms
Zave’s pure-join correctness theorem, as the network stays in an ideal state
once it has been reached.

We compare the runtime of checking safety and liveness properties to that
of only checking safety properties. We use single-node ring configurations
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Figure 5.2: Comparison of the average runtime of model-checking the synchronous
Chord specification when verifying safety and liveness, against only veri-
fying safety properties.

as initial states for all N in this comparison, ensuring that the overhead of
generating initial states is negligible. The results of this comparison are shown
in Figure 5.2, and the runtimes are listed in Table 2 of Appendix D.

5.4 Verifying pure-join asynchronous Chord
We now model-check the pure-join Chord specification with asynchronous
messaging. Due to the issues described in Section 4.4.3, we only verify safety
properties for this specification.

For 2 and 3 nodes, tlc can explore every state of the protocol, from every
possible initial configuration. ForN ≥ 4, the state space becomes large enough
to make this intractable, restricting us to checking traces of finite length.

We model-check the specification for traces up to length L = 30. We set 30
steps as a maximum to model-check the specification in a reasonable time. We
also observe that most of our counterexamples to the claimed safety properties
reach a violation in less than 30 steps. On our workstation, model-checking
the specification with 5 nodes and 30 steps takes on average 38 minutes.
Figure 5.3 shows the relationship between the trace length and the time needed
to model-check the specification, based on the runtimes listed in Table 4 of
Appendix D.



5.4 VER IFY ING PURE- JO IN ASYNCHRONOUS CHORD 59

2 3 4 5 6
Nodes

100

101

102

103

Ru
nt

im
e 

(s
)

20 steps
25 steps
30 steps

Figure 5.3: Comparison of the average runtimes of checking the pure-join Chord
specification for behaviors up to 20, 25, and 30 steps. Note that the vertical
axis is logarithmic— the runtime increases exponentially with the number
of nodes.

Even without failures, the protocol violates one of the claimed safety properties
— specifically, part (4c) of Section 3.4, which states that “if node v is in the
appendageAu , then u is the first live cycle node following v”. The specification
allows the behavior from Figure 2 of [25],where two nodes concurrently attempt
to join a ring of size 2, leading to a scenario where a node remains an appendage
of its initial successor, even when the node following it is part of the ring.

The violation of this property leads to additional network maintenance, but
doesn’t lead to any critical errors. The safety properties that are critical to the
network structure—connectivity and identifier ordering— are satisfied by the
specification.

With no failures, we are able to verify that the protocol is partially correct and
deadlock free for networks up to 5 nodes and traces up to length 30. When
checking the specification for N = 6 and L = 30, tlc failed with an out of
memory (oom) error. At the time of the error, tlc explored traces up to length
28, and reported having explored 335 million distinct states.
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5.5 Verifying full Chord with fault-tolerance
We finally model-check the full specification of Chord, with fail-stop failures
and fault-tolerance algorithms based on the pseudocode by Liben-Nowell et al.
[36]. As with the pure-join specification, we only check behaviors of up to 30
steps, and only consider the subset of possible initial states where all but one
node join a single-node ring.

As originally specified, the protocol is not partially correct. Since neither join
nor stabilize check whether a node is live before adopting it as a successor, the
protocol allows behaviors where a node believes it is part of the network, but
has no live successor. This behavior is clearly incorrect, and violates our type
safety invariant. The same errors allow deadlocking behaviors.

After adding these checks, we verify that the protocol is partially correct and
deadlock free for networks up to 5 nodes and behaviors up to 25 steps. When
checking the full specification, tlc failed with oom errors when checking
behaviors up to 30 steps for 5 nodes, and up to 25 steps for 6 nodes.

The addition of failures and fault-tolerance algorithms increases the number of
possible states significantly, as shown in Figure 5.4. Accordingly, it also takes
longer to verify the protocol with fault-tolerance: model-checking the full
Chord specification for 4 nodes and behaviors up to 30 steps takes 121 minutes,
as opposed to less than 4 minutes for the pure-join specification. Figure 5.5
compares the time needed to verify the full Chord specification against the
synchronous and the pure-join Chord specifications, based on the average
runtimes listed in Appendix D, as Table 2, 4 and 6, respectively.

5.6 Claimed safety properties
Of the safety properties listed in Section 3.4,

1. Part (1a): “There is at least one ring” is violated by the protocol.

• Zave’s counterexample to this property relies on the stabilize algo-
rithm (see Figure 3.7) not checking whether a node is live before
adopting it as a successor. By removing this check from our spec-
ification, we find counterexamples to this property both through
model-checking, and through tracing the steps outlined by Zave.

2. Part (1b): “There is at most one ring” is violated by the protocol.
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Figure 5.4: Comparison of the state space for synchronous Chord, pure-join Chord,
and the full specification of Chord. For the latter two, we check behaviors
up to 20 steps.
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Figure 5.5: Comparison of the time needed to model-check the specifications of syn-
chronous Chord, pure-join Chord, and full Chord with fault-tolerance. For
the latter two, we check behaviors up to 20 steps. We use a logarithmic
vertical axis, as in Figure 5.3.
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• Here, we assume that stabilize in Figure 3.7 only alters the first
successor in the successor list, and doesn’t clear the rest of the list.
By letting FinishStabilize retain old entries in the list, we can find
violations through model-checking and through recreating Zave’s
counterexample.

3. Part (1c): “Every node is either part of the ring or an appendage of it.”
is violated by the protocol.

• Zave’s counterexample to this property relies on the join algorithm
(see Figure 3.6) not checking whether a node is live before adopting
it as the initial successor. By removing this check from our specifica-
tion, we find violations both through model-checking and through
recreating Zave’s counterexample.

4. Part (4a): “The cycle is non-loopy” is violated by the protocol.

• As in the counterexample against property (1b), we assume that
stabilize only alters the first pointer in the successor list. We recreate
Zave’s counterexample, but were unable to find the counterexam-
ple by model-checking, as it requires a model with 6 nodes (see
Section 5.4).

5. Part (4b): “For every node v in the appendageAu , the path of successors
from v to u is increasing” is violated by the protocol.

• We find violations both through model-checking and through recre-
ating Zave’s counterexample.

6. Part (5c): “if node v is in the appendageAu , then u is the first live cycle
node following v” is violated by the protocol.

• Wefind counterexamples to this safety property both throughmodel-
checking, and through recreating the sequence of events described
by Zave.

7. Part (5d): “if the successor list of [the successor of node u] skips over a
live node v , then v is not in the [successor list of node u]” is violated by
the protocol.

• We again assume that stabilize only alters the first pointer in
the successor list. Oddly, the figure depicting the counterexample
(Figure 4 of [25]) shows a scenario with 5 nodes, while the corre-
sponding counterexample in the Alloy specification only features 4
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nodes. We recreate the former counterexample, but were unable to
find it through model-checking.

5.7 Discussion
Figure 5.2 shows that model-checking liveness properties quickly becomes
slower than only checking safety properties. This result is expected, as Specify-
ing Systems [4] outright states that “checking liveness properties is a lot slower
than other kinds of checking”. This is due to inherent differences between
safety and liveness properties: safety properties can be evaluated against indi-
vidual states, whereas liveness properties only make sense for behaviors with
multiple states.

This also means that the process of checking safety properties lends itself very
well to parallelization. tlc verifies safety properties by having multiple worker
threads fetch states from a thread-safe queue, evaluate them, and push new
potential states to the back of the same queue [34].

On the other hand, evaluating liveness properties requires examining every
possible behavior, not just individual states. To verify liveness properties, tlc
uses a concurrent algorithm [75] based on Tarjan’s strongly connected compo-
nents algorithm [76]. It identifies strongly connected components in the state
graph, and uses them to infer possible behaviors — if a set of states form a
strongly connected component, the specification may allow behaviors which cy-
cle through those states indefinitely. This is the case with our pure-join Chord
specification, which allows behaviors where one node stabilizes an infinite
number of times, preventing the other nodes from making progress.

Our naive approach to generating initial states means that we potentially only
explore a subset of the state space when verifying the protocol for larger N .
This is a significant weakness in our specification. Since tlc finds its initial
states by “generating and checking all possible states satisfying the initial
predicate” [34], solving this in the specification would mean constructing the
set of possible pseudotrees directly, rather than by process of elimination. We
could alternatively modify tlc to permit a larger set of initial states, or use
module overriding [4] to invoke Java code from tlc, potentially letting an
external utility generate the initial configurations.

From Figure 5.3, we see that modelling messaging between nodes leads to
state space explosion, with the state space increasing exponentially with the
number of nodes. Verifying the entire state space quickly becomes impractical,
forcing us to use bounded model-checking instead. This means that we no
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longer prove — in the strict sense — that the safety properties hold. Instead,
we make the inductive argument that we have explored enough states that a
violation of safety properties is sufficiently unlikely.

tlc failing due to oom errors is surprising, as we expected it would keep states
on disk. We suspect that the state queue itself is being kept in main memory,
and that the sheer number of states is causing ooms. We use the default
settings set by the TLA+ Toolbox IDE when model-checking the specifications,
which in our case set the heap size of the jvm to 4770 MB, and allocated
10726 MB of “offheap memory”. Allocating more memory for the jvm may be
a potential solution to the oom errors, but as tlc only explored behaviors up
to 27 steps before failing, doing so could simply delay the error.

Figure 5.4 and 5.5 show that modelling fault-tolerance only exacerbates these
issues. Model-checking the full specification with 4 nodes takes several minutes
for behaviors up to 25 steps, and over 2 hours when using 30 steps. This problem
is worsened by several states being identical in all but the node identifiers,
since the identifier space is rotationally symmetric. This can be seen clearly in
Figure 5.6, which shows the state graph of the synchronous Chord specification
for 2 nodes. Regardless of which node joins the other, the process of joining
and stabilizing is identical.

To reduce the state space, TLA+ allows symmetry reduction [77], which marks
certain states as equivalent by making identical processes interchangeable.
TLA+ accomplishes this by letting specifications define symmetry sets [4], which
are sets that should be equivalent under permutation. Unfortunately, due to
the identifier ordering requirement, the set of identifiers cannot be permuted
arbitrarily. Thismeans that our specification cannot take advantage of symmetry
reduction directly.

We were able to show that the full Chord specification admits all of Zave’s
counterexamples to the claimed safety properties. Due to the size of the net-
works involved, we were unable to find counterexamples to certain properties
through model-checking. Most of the safety property violations arise from the
separation of network maintenance from fault-tolerance: none of the papers
specify how to integrate stabilize with successor lists, or account for nodes
failing during a stabilization.

5.8 Summary
In this chapter, we formally verified our specifications of the Chord protocol
through model-checking. We began by model-checking the synchronous speci-
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Figure 5.6: TLA+ Toolbox visualization of the state space for synchronous Chord with
2 nodes. Regardless of whether node 1 or 2 joins the other, the process for
reaching an ideal network (the bottom state) is identical.
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fication, where only one network event takes place at a time, and no failures
occur. Under these assumptions, the protocol is partially correct, deadlock free,
and does not lead to any partitioning in the network.

We then model-checked the pure-join Chord specification with asynchronous
messaging. While we were able to explore the entire state space of the protocol
up to N = 3, larger N lead to state space explosion, restricting us to only
checking traces of a certain length. For traces up to length L = 30, we verify
that the protocol is partially correct, deadlock free, and doesn’t partition the
network, so long as no failures occur.

Finally, we check the full specification of Chord with fail-stop failures. While
the specification maintains partial correctness, the introduction of failures leads
to scenarios with deadlocks and violations of safety properties.

We were able to find violations of all of Chord’s claimed safety properties. We
recreated all of Zave’s counterexamples, but could not demonstrate all of them
through model-checking the specification ourselves, due to the scale of the
networks involved.
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Related work
One of the earliest applications of formal analysis to peer-to-peer network
algorithms is the work of Borgström et al. [78], who examined the DKS [79]
distributed hash table. To verify the DKS lookup protocol, they apply the
CCS [80] process calculus to show weak bisimilar equivalence between the
specification and their implementation. They demonstrate that their implemen-
tation satisfies the specification, by showing that it admits the same actions
and system states as the specification does. However, their analysis assumes
a static network configuration, and disregards the possibility of node arrivals
and departures.

Zave’s initial analysis of a simplified “pure-join” Chord protocol with no node
failures bears similarities to the work by Bakhshi and Gurov [1], which models
pure-join Chord in the π -calculus. Similar to Borgström et al., Bakhshi and
Gurov establish a weak bisimilarity between Chord’s stabilization protocol and
its specification, and show that the protocol eventually settles the network into
a ring topology after every node has joined the network.

The Chord protocol has been used previously as a testbench for formal veri-
fication methods. In 2015, Zave [68] also formally specified the Chord proto-
col in the Promela [81] specification language, and verified it with the Spin
model checker. The Spin model simulates concurrent processes communicat-
ing through message queues, in a similar fashion to our TLA+ specification.
Comparing it to the Alloy specification, Zave finds that the Spin model suffers
from state space explosion — checking the model for 5 nodes “aborted after
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using 300 gigabytes of memory”. While one of the purported advantages of
Spin over Alloy was its ability to check liveness properties, the vast state space
made it infeasible to use Spin’s liveness verification for the model.

Killian et al. [82] tested their MaceMC model checker with an implementation
of Chord. However, they did not uncover the protocol issues uncovered by
Zave [74]. They also enforce the property that “a node’s predecessor is itself
if and only if its successor is itself”. This property would prevent any node
from joining a single-node ring, suggesting that their implementation does not
implement the protocol as originally specified.

Yabandeh et al. [83] also use a Chord implementation to test their CrystalBall
model checker. CrystalBall explores the state space concurrently with the
execution of the implementation to predict potential states the implementation
can take on, and blocks events which could lead to a safety property violation.
As such, they do not aim to find protocol errors, but instead attempt to avoid
them. They also enforce the safety property Killian et al. suggest, which leads
us to believe they do not implement the original Chord protocol either.

As it was principally designed to reason about distributed and concurrent
systems, there exists a significant body of literature on applying TLA+ to formal
verification of distributed systems. Several distributed algorithms have been
formally specified in TLA+, such as the consensus algorithms Disk Paxos [84],
Egalitarian Paxos [85] and Raft [86].

In our case, the most relevant work is the 2011 work by Lu et al. [87] employing
TLA+ to model the Pastry [88] distributed hash table. Pastry, like Chord,
operates with a ring topology and identifier space, and provides a logarithmic
bound on the number of hops necessary to look up a particular key.

However, instead of associating keys with the node succeeding it in the identifier
order, as Chord does, Pastry associates keys with the node whose identifier lies
numerically closest. This leads to a routing algorithm where nodes maintain
routing tables of other nodes sharing the same identifier prefix, along with leaf
sets containing their immediate neighbors in the identifier space. To achieve
better network locality, Pastry nodes additionally maintain neighborhood sets
of geographically close nodes.

Lu et al. model the Pastry join and lookup protocols in TLA+, demonstrating
both liveness and “correct key delivery”, showing that only one node is respon-
sible for any given key. They initially take a model-based approach, verifying
the protocol with TLC to find counterexamples to their invariants. After finding
and correcting the counterexamples, they construct a deductive proof of correct
key delivery in the TLAPS proof system.
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In 2018, Azmy et al. [89] found that this TLAPS proof depended on unproven
axioms and occasionally erroneous assumptions. By replacing incorrect assump-
tions and substituting others with proven lemmas, they were able to give a full
correctness proof.

6.1 State space reduction techniques
The primary issue our specification faces is state space explosion. State space
explosion is a problem inherent to model-checking, as complexity-theoretic
arguments show that it is unavoidable in the worst case [16]. Despite this,
several techniques for state space reduction have been developed. One well-
known technique is partial order reduction [90], which identifies events that do
not affect each others’ execution, and uses the information to avoid exploring
certain behaviors. Another key technique is symbolic model-checking [91],
which represents the state space symbolically instead of explicitly, allowing
multiple states to be subsumed and verified simultaneously.

Recent work has been focused on applying SAT and SMT solvers [92] to perform
bounded model-checking [93]. By using a symbolic state space representation,
SMT solvers can refute safety properties by directly solving for a finite-length
counterexample, speeding up model-checking substantially. Ongoing work by
Konnov et al. [94] implements a bounded model-checker for TLA+ specifica-
tions.

Another potential avenue for dealing with state space explosion is to move
model-checking to devices with highly parallel architectures. For instance, Wijs
et al. [95] implement a model-checker running on gpus, finding that their
highly parallel architecture allows significant speedups. Cho et al. [96] likewise
implement a model-checker for field-programmable gate arrays (fpgas), and
report similar speedups, but opt for a probabilistic “swarm verification” solution
due to the limited on-chip memory on the fpga.





7
Conclusion
This thesis has presented a formal specification of the Chord distributed hash
table in TLA+. The protocol was first specified at a high level, with no con-
currency or failures. The specification was then gradually refined, leading to
a full specification of the protocol with asynchronous messaging and fault-
tolerance.

Modelling asynchronous messaging allows the protocol to be specified in a
fashion close to the pseudocode published in the 2003 ton Chord paper [28],
albeit with explicit messaging between nodes instead of implicit sharing of
state.

This thesis reproduces the results of Zave’s [25] analysis of the Chord protocol,
showing both that model-checking the TLA+ specification uncovers violations
of Chord’s claimed safety properties [36], and that the specification admits the
counterexamples presented by Zave.

7.1 Concluding remarks
Our specification is unfortunately plagued by state space explosion. The state
space of the specification increases exponentially with both network size and
behavior length, limiting model-checking to small networks and short traces.
While TLA+ offers certain state space reduction techniques, we were unable to
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take advantage of them.

Despite this limitation,we found formal verification useful to validate high-level
designs on a small scale. This process rests on the small-scope hypothesis [97],
which states that most system errors can be found by testing the system for
all inputs within some small scope. In analyzing fault reports from distributed
systems, Yuan et al. [98] found that most of the reported failures required less
than 4 events to reproduce, corroborating this hypothesis. Zave [68] provides
additional evidence, arguing that at most 6 nodes were necessary to model the
counterexamples for Chord’s claimed safety properties. This suggests that while
model-checking may not lead to conclusive proofs of a system’s correctness, it
can still be a valuable tool for verifying system designs.

Using formal verification as a design aid, and not solely as a method of establish-
ing a system’s correctness, also forestalls the criticism that formal specification
leads to duplication of work. Once a formal specification is in place, it can
serve as a blueprint for the implementation, speeding up the implementation
process.

The violations of Chord’s claimed safety properties arise from ambiguous
wording in the paper, and from treating fault-tolerance as a separate component
of the protocol. By formally specifying and verifying the protocol, we were
able to clear up ambiguity, uncover implicit assumptions, and identify errors
arising from deficiencies in the fault-tolerance design.

7.2 Future work
Finally, we identify opportunities and potential improvements for the specifi-
cation:

Other model-checkers We would like to verify our specification against
other model-checkers. Two promising candidates are ProB [99], which can
interpret and verify TLA+ specifications through a translation layer by Hansen
and Leuschel [100], and BmcMT by Konnov et al. [94],which performs bounded
model checking of TLA+ with an SMT solver. The specification may have to be
adapted for these tools: unlike TLA+, B builds on a strongly typed logic, and
BmcMT does not yet support all of the features tlc does.

Initial states Our formal specification is limited by a naive approach to
enumerating initial states, which leads to tlc failing due to the sheer number
of possible states. It may be possible to enumerate valid states directly, or to
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invoke an external utility to generate initial states before letting tlc verify
them.

Implementation Finally, we would like to build an implementation of
Chord on top of our specification. One promising lightweight approach is
model-based trace checking, as suggested byHoward et al. [101],which integrates
loggingwith formal verification. By using the specification to add tracing code to
significant events, it is possible to infer the behavior of the implemented system.
Then, by methods similar to the one presented in Section 4.6, it is possible to
show that the specification admits the behavior of the implementation.
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module SynchronousChord

Models pure-join Chord with no node failures and synchronous communication,

such that at most two nodes are communicating at any given time. This permits very straight-

forward definitions of actions, at the cost of introducing unrealistic assumptions.

extends Integers , FiniteSets , Sequences , TLC
constants

N , The number of nodes in the model

UseInitialRing false if we should examine all possible configurations of successor pointers

assume FiniteNodesAssumption
∆
= N ∈ Nat \ {0}

assume UseInitialRingAssumption
∆
= UseInitialRing ∈ boolean

Use ascending natural numbers for the node identifiers,

since the consistent hashing scheme is irrelevant to the stabilization protocol: like the original
SIGCOMM paper, we assume that the key space is large enough that identifier collisions are
unlikely.

ProcSet
∆
= 1 . . N

variables Successor ,
Predecessor ,
HasJoined ,
HasPredecessor

vars
∆
= 〈Successor , Predecessor , HasJoined , HasPredecessor〉

We begin by defining convenience predicates

to deal with identifier order.

BetweenInclusive is true if x ∈ [a, b] (mod N ).

BetweenInclusive(x , a, b)
∆
= ((x − a)%N ) ≤ ((b − a)%N )

BetweenExclusive is true if x ∈ (a, b) (mod N )

BetweenExclusive(x , a, b)
∆
=

∨ ∧ ((x − a)%N ) ≤ ((b − a)%N ) ∧ x 6= a ∧ x 6= b

Caveat: in the case where a = b, as in a one-node ring,

we want to interpret (a,b) as spanning the entire interval:

∨ ∧ a = b

Determine which nodes are reachable from node x by following successive

successor pointers. Since TLC doesn’t permit evaluating recursive operators over potentially

infinite sequences, we explicitly bound the depth to the

number of reachable nodes, which is N for an N -node ring.

ReachableSuccessors(x )
∆
=

let recursive Reachable( , )
Reachable(n, i)

∆
=

if i = 0 ∨ ¬HasJoined [n]
then {}
else Reachable(Successor [n], i − 1) ∪ {Successor [n]}

in Reachable(x , N )
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Define the network safety invariants, as they are needed to determine

the set of initial states:

A node x forms a ring if it can reach itself through following successor pointers, starting from
itself:

FormsRing(x )
∆
= x ∈ ReachableSuccessors(x )

A node is an appendage of the ring if it can reach at least one node forming

a ring by following successor pointers:

IsRingAppendage(x )
∆
=

∃ succ ∈ ReachableSuccessors(Successor [x ]) : FormsRing(succ)

The Chord network should have at least one ring:

AtLeastOneRing
∆
= ∃ x ∈ ProcSet : FormsRing(x )

The Chord network should have at most one ring: the set of nodes reachable

through successor pointers should be equal for all nodes which form rings.

AtMostOneRing
∆
= ¬∃ x ∈ ProcSet :

∧ FormsRing(x )
∧ ∃ y ∈ ProcSet :

∧ FormsRing(y)
∧ReachableSuccessors(x ) 6= ReachableSuccessors(y)

In an ordered ring, only one node should have a successor with a

smaller identifier than its own.

OrderedRing
∆
=

let ring
∆
= choose x ∈ ProcSet : FormsRing(x )in

∧ ∀ self ∈ ReachableSuccessors(ring) :
∨ self < Successor [self ]
∨ ¬∃n ∈ ReachableSuccessors(ring) : n > Successor [n] ∧ self 6= n

The four invariants above are necessary to maintain correctness:

ValidRing
∆
=

∧ AtLeastOneRing
∧ AtMostOneRing
∧ ∀ self ∈ ProcSet : IsRingAppendage(self )
∧OrderedRing

We allow any initial configuration which maintains the safety invariants.

For N > 5, TLC fails if we attempt to enumerate all possible combinations of successor and
predecessor pointers to find initial states - the UseInitialRing setting instead uses a smaller set of
initial states, where one node forms a ring and the rest join it.

Init
∆
= ∧ if UseInitialRing

then
∧ ∃Start ∈ ProcSet :

∧ Successor = [self ∈ ProcSet 7→ Start ]
else
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∧ Successor ∈ [ProcSet → ProcSet ]
∧ Predecessor = [self ∈ ProcSet 7→ 1]
∧HasJoined ∈ [ProcSet → boolean ]
∧HasPredecessor = [self ∈ ProcSet 7→ false]
∧ValidRing

Next, we define the actions making up the Chord stabilization protocol:

Nodes join the network by learning the successor node for their identifier from a member of the
network, and setting it as their successor.

Join(self )
∆
=

∧ ¬HasJoined [self ]
∧HasJoined ′ = [HasJoined except ! [self ] = true]

After joining, there are no nodes lying

between this node’s identifier and its successor’s:

∧ Successor ′ = [Successor except ! [self ] =
choose succ ∈ {Successor [self ]}

∪ ReachableSuccessors(Successor [self ]) :
∧ ¬∃ candidate ∈ ReachableSuccessors(self ) :

∧ BetweenExclusive(self , candidate, succ)
∧ candidate 6= succ]

∧ unchanged 〈Predecessor , HasPredecessor〉

Each nodes periodically stabilize, setting the successor’s predecessor

as its new successor if it lies closer in identifier order.

Stabilize(self )
∆
=

∧ HasJoined [self ]
∧ HasPredecessor [Successor [self ]]
∧ BetweenExclusive(Predecessor [Successor [self ]], self , Successor [self ])
∧ Successor ′ = [Successor except ! [self ] = Predecessor [Successor [self ]]]
∧ unchanged 〈HasJoined , HasPredecessor , Predecessor〉

After a notification, a node similarly determines whether to adopt its

predecessor’s successor as its new predecessor:

Notify(self )
∆
=

∧ HasJoined [self ]
∧ ∨ ¬HasPredecessor [Successor [self ]]

∨ BetweenExclusive(self , Predecessor [Successor [self ]], Successor [self ])
∧ Predecessor ′ = [Predecessor except ! [Successor [self ]] = self ]
∧ HasPredecessor ′ = [HasPredecessor except ! [Successor [self ]] = true]
∧ unchanged 〈Successor , HasJoined〉

Joining, stabilizing and notifying are sufficient to specify

the stabilization protocol:

Node(self )
∆
=

∨ Join(self )
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∨ Stabilize(self )
∨ Notify(self )

We define one safety invariant, the type invariant:

TypeOK
∆
= ∧ ∀ self ∈ ProcSet : Successor [self ] ∈ ProcSet

∧ ∀ self ∈ ProcSet : Predecessor [self ] ∈ ProcSet
∧ ∀ self ∈ ProcSet : HasJoined [self ] ∈ boolean
∧ ∀ self ∈ ProcSet : HasPredecessor [self ] ∈ boolean

Next, we define liveness properties.

In a weakly ideal ring (as defined in the 2002 paper by Liben-Nowell et al.), every node is the

predecessor of its successor, and the network is stable.

RingIsWeaklyIdeal
∆
=

∀ self ∈ ProcSet :
∧ HasJoined [self ]
∧ HasPredecessor [self ]
∧ Successor [Predecessor [self ]] = self

RingEventuallyBecomesWeaklyIdeal
∆
= ✷(ValidRing ⇒ ✸✷RingIsWeaklyIdeal)

In a strongly ideal ring, there are additionally no nodes between a node

and its successor:

RingIsStronglyIdeal
∆
=

∧ RingIsWeaklyIdeal
∧ ∀ self ∈ ProcSet :

∧ ¬∃ v ∈ ProcSet : BetweenExclusive(v , self , Successor [self ])

Zave’s pure-join correctness theorem states that any valid network state

will eventually progress to an ideal one, and remain in it:

RingEventuallyBecomesStronglyIdeal
∆
= ✷(ValidRing ⇒ ✸✷RingIsStronglyIdeal)

We add a disjunct to the next-state action to allow stuttering once

the network is strongly ideal, avoiding a deadlock error:

Next
∆
= (∃ self ∈ 1 . . N : Node(self ))

∨ ∧RingIsStronglyIdeal ∧ unchanged vars

We use weak fairness as the specification’s fairness condition:

Spec
∆
= ∧ Init ∧✷[Next ]vars

∧ ∀ self ∈ 1 . . N : WFvars(Node(self ))
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module PureJoinChord
Models the pure-join Chord stabilization algorithm

as specified in the 2001 SIGCOMM paper, using asynchronous communication between nodes.

extends Integers , FiniteSets , Sequences , TLC
constants

N , Number of nodes in the model

UseInitialRing false if we should examine all possible configurations of successor pointers

assume FiniteNodesAssumption
∆
= N ∈ Nat \ {0}

assume UseInitialRingAssumption
∆
= UseInitialRing ∈ boolean

ProcSet
∆
= 1 . . N

We amend the previous specification to include unordered sets

representing the messages sent between nodes:

variables Successor ,
Predecessor ,
HasJoined ,
HasPredecessor ,
SuccessorAnswers ,
SuccessorRequests ,
PredecessorAnswers ,
PredecessorRequests ,
Notifications

vars
∆
= 〈Successor , Predecessor , HasJoined , HasPredecessor ,

SuccessorAnswers , SuccessorRequests ,
PredecessorAnswers , PredecessorRequests ,
Notifications〉

BetweenInclusive is true if x ∈ [a, b] (mod N ).

BetweenInclusive(x , a, b)
∆
= ((x − a)%N ) ≤ ((b − a)%N )

BetweenHalfOpen is true if x ∈ (a, b] (mod N ).

BetweenHalfOpen(x , a, b)
∆
=

∧ ((x − a)%N ) ≤ ((b − a)%N ) ∧ x 6= a

BetweenExclusive is true if x ∈ (a, b) (mod N )

BetweenExclusive(x , a, b)
∆
=

∨ ∧ ((x − a)%N ) ≤ ((b − a)%N ) ∧ x 6= a ∧ x 6= b
∨ ∧ a = b

We keep the safety properties from the synchronous Chord specification

(see Appendix A):

ReachableSuccessors(x )
∆
=

let recursive Reachable( , )
Reachable(n, i)

∆
=

if i = 0 ∨ ¬HasJoined [n]
then {}

1



else Reachable(Successor [n], i − 1) ∪ {Successor [n]}
in Reachable(x , N )

FormsRing(x )
∆
= x ∈ ReachableSuccessors(x )

IsRingAppendage(x )
∆
=

∃ succ ∈ ReachableSuccessors(Successor [x ]) : FormsRing(succ)

ConnectedAppendages
∆
=

∀ self ∈ ProcSet : IsRingAppendage(self )

AtLeastOneRing
∆
= ∃ x ∈ ProcSet : FormsRing(x )

AtMostOneRing
∆
= ¬∃ x ∈ ProcSet :

∧ FormsRing(x )
∧ ∃ y ∈ ProcSet :

∧ FormsRing(y)
∧ReachableSuccessors(x ) 6= ReachableSuccessors(y)

OrderedRing
∆
=

let ring
∆
= choose x ∈ ProcSet : FormsRing(x )in

∧ ∀ self ∈ ReachableSuccessors(ring) :
∨ self < Successor [self ]
∨ ¬∃n ∈ ReachableSuccessors(ring) : n > Successor [n] ∧ self 6= n

ValidRing
∆
=

∧ AtLeastOneRing
∧ AtMostOneRing
∧ ConnectedAppendages
∧OrderedRing

To be a valid initial state, at least one node must have

a predecessor pointer set. To ensure we only explore initial states which are reachable through
normal operation, we also require that nodes’ predecessor pointers are either unset, or lead to
nodes leading back to them.

ValidInitialPredecessors
∆
=

∧ ∃ p ∈ ProcSet : HasPredecessor [p]
∧ ∀ p ∈ ProcSet :

∨ ¬HasPredecessor [p]
∨ ∧ Successor [Predecessor [p]] = p

∧ HasJoined [Predecessor [p]]

Since exploring every possible configuration of successor

pointers quickly leads to a state space explosion, allow exploring a subset of the initial states

where one node forms a single-node ring:

InitialRing
∆
=

∧ ∃Start ∈ ProcSet :
∧ Successor = [self ∈ ProcSet 7→ Start ]
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∧ Predecessor = [self ∈ ProcSet 7→ Start ]
∧HasJoined = [self ∈ ProcSet 7→ self = Start ]
∧HasPredecessor = [self ∈ ProcSet 7→ self = Start ]

Init
∆
=
∧ if UseInitialRing

then InitialRing
else
∧ Successor ∈ [ProcSet → ProcSet ]
∧ Predecessor ∈ [ProcSet → ProcSet ]
∧HasJoined ∈ [ProcSet → boolean ]
∧HasPredecessor ∈ [ProcSet → boolean ]

∧ SuccessorAnswers = [self ∈ ProcSet 7→ {}]
∧ SuccessorRequests = [self ∈ ProcSet 7→ {}]
∧ PredecessorAnswers = [self ∈ ProcSet 7→ {}]
∧ PredecessorRequests = [self ∈ ProcSet 7→ {}]
∧ Notifications = [self ∈ ProcSet 7→ {}]
∧ ValidRing
∧ ValidInitialPredecessors

Next, we introduce new actions and amend previous ones to

pass messages instead of retrieving the state directly.

Recursively find the successor for a given identifier.

FindSuccessor(self )
∆
=

∧ HasJoined [self ]
∧ unchanged 〈Successor , Predecessor , HasJoined ,

HasPredecessor , PredecessorAnswers , PredecessorRequests ,
Notifications〉

∧ ∃Request ∈ SuccessorRequests [self ] :

If the key lies in the interval (n, successor(n)], the key belongs to node n’s successor:

if ∨ BetweenHalfOpen(Request .id , self , Successor [self ])
∨ self = Successor [self ]

then
Remove this query from the set of requests.

∧ SuccessorRequests ′ = [SuccessorRequests
except ! [self ] = @ \ {Request}]

Return the answer to the original sender.

∧ SuccessorAnswers ′ = [SuccessorAnswers
except ! [Request .origin] =
@ ∪ {[id 7→ Request .id , successor 7→ Successor [self ]]}]

else
∧ SuccessorRequests ′ = [SuccessorRequests

except ! [Successor [self ]] =
@ ∪ {Request}, ! [self ] = @ \ {Request}]
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∧ SuccessorAnswers ′ = SuccessorAnswers

Join the network by requesting the successor of this node’s identifier

from a known member of the network:

Join(self )
∆
=

∧ ¬HasJoined [self ]
∧Cardinality(SuccessorAnswers [self ]) = 0
∧ SuccessorRequests ′ =

[SuccessorRequests except ! [Successor [self ]] =
@ ∪ {[origin 7→ self , id 7→ self ]}]

∧ unchanged 〈Successor , Predecessor , HasJoined ,
HasPredecessor , SuccessorAnswers , PredecessorAnswers ,
PredecessorRequests , Notifications〉

On receiving the successor for this node’s identifier,

set it as the successor:

FinishJoin(self )
∆
=

∧ ¬HasJoined [self ]
∧ unchanged 〈Predecessor , HasPredecessor ,

SuccessorRequests ,
PredecessorAnswers , PredecessorRequests ,
Notifications〉

∧ ∃Answer ∈ SuccessorAnswers [self ] :
∧ Successor ′ = [Successor except ! [self ] = Answer .successor ]
∧HasJoined ′ = [HasJoined except ! [self ] = true]
∧ SuccessorAnswers ′ = [SuccessorAnswers except ! [self ] = @ \ {Answer}]

Periodically verify a node’s immediate successor,

and tell the successor about the node, using the algorithm from Figure 7 of the SIGCOMM paper.

Stabilize(self )
∆
=

∧ HasJoined [self ]
∧ unchanged 〈Successor , Predecessor , HasJoined , HasPredecessor ,

SuccessorAnswers , SuccessorRequests ,
PredecessorAnswers ,
Notifications〉

∧ PredecessorRequests ′ = [PredecessorRequests except ! [Successor [self ]] =
@ ∪ {[origin 7→ self ]}]

Return the node’s current predecessor.

GetPredecessor(self )
∆
=

∧ HasJoined [self ]
∧ HasPredecessor [self ]
∧ unchanged 〈Successor , Predecessor , HasJoined , HasPredecessor ,

SuccessorAnswers , SuccessorRequests ,
Notifications〉

If there is a request, return our current predecessor:
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∧ ∃Request ∈ PredecessorRequests [self ] :
∧ PredecessorRequests ′ =

[PredecessorRequests except ! [self ] = @ \ {Request}]
∧ PredecessorAnswers ′ =

[PredecessorAnswers except ! [Request .origin] =
@ ∪ {[id 7→ self , predecessor 7→ Predecessor [self ]]}]

Once the node has received its successor’s predecessor,

determine whether it is a closer successor, adopting it as our new successor if it is.

FinishStabilize(self )
∆
=

∧ HasJoined [self ]
∧ unchanged 〈Predecessor , HasJoined , HasPredecessor ,

SuccessorAnswers , SuccessorRequests ,
PredecessorRequests〉

∧ ∃Answer ∈ PredecessorAnswers [self ] :
if

∨ BetweenExclusive(Answer .predecessor , self , Successor [self ])
then

∧ Successor ′ = [Successor except ! [self ] = Answer .predecessor ]
∧ PredecessorAnswers ′ =

[PredecessorAnswers except ! [self ] = {}]
∧ Notifications ′ = [Notifications except ! [Answer .predecessor ] =

@ ∪ {[origin 7→ self ]}]
else

∧ Successor ′ = Successor
∧ PredecessorAnswers ′ =

[PredecessorAnswers except ! [self ] = {}]
∧ Notifications ′ = [Notifications except ! [Successor [self ]] =

@ ∪ {[origin 7→ self ]}]

Accept a notification from another node

which thinks it might be our predecessor.

Notify(self )
∆
=

∧ HasJoined [self ]
∧ unchanged 〈Successor , HasJoined ,

SuccessorAnswers , SuccessorRequests ,
PredecessorAnswers , PredecessorRequests〉

∧ ∃Note ∈ Notifications [self ] :
∧ if

∨ ¬HasPredecessor [self ]
∨ BetweenExclusive(Note.origin, Predecessor [self ], self )
then
∧ HasPredecessor ′ = [HasPredecessor except ! [self ] = true]
∧ Predecessor ′ = [Predecessor except ! [self ] = Note.origin]
∧ Notifications ′ = [Notifications except ! [self ] = @ \ {Note}]
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else
∧ unchanged 〈HasPredecessor , Predecessor〉
∧ Notifications ′ = [Notifications except ! [self ] = @ \ {Note}]

Node(self )
∆
=

∨ FindSuccessor(self )
∨ Join(self )
∨ FinishJoin(self )
∨ Stabilize(self )
∨GetPredecessor(self )
∨ FinishStabilize(self )
∨ Notify(self )

Next
∆
= (∃ self ∈ 1 . . N : Node(self ))

Spec
∆
= ∧ Init ∧✷[Next ]vars

∧ ∀ self ∈ 1 . . N : WFvars(Node(self ))

TypeOK
∆
=

∧ ∀ self ∈ ProcSet :
∧ Successor [self ] ∈ ProcSet
∧ Predecessor [self ] ∈ ProcSet
∧ HasJoined [self ] ∈ boolean
∧ HasPredecessor [self ] ∈ boolean
∧ IsFiniteSet(SuccessorAnswers [self ])
∧ IsFiniteSet(SuccessorRequests [self ])
∧ IsFiniteSet(PredecessorAnswers [self ])
∧ IsFiniteSet(PredecessorRequests [self ])
∧ IsFiniteSet(Notifications [self ])

As a sanity check, test that we can reach a weakly ideal ring.

Checking the NoRingBecomesIdeal invariant should return a violation.

RingIsWeaklyIdeal
∆
=

∀ self ∈ ProcSet :
∧ HasJoined [self ]
∧ HasPredecessor [self ]
∧ Successor [Predecessor [self ]] = self

NoRingBecomesIdeal
∆
= ¬RingIsWeaklyIdeal
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module Chord2003
Models the pure-join Chord stabilization algorithm

as specified in the 2003 Transactions in Networking paper, with fault tolerance algorithms based on
pseudocode from the 2002 analysis by Liben-Nowell et al. The specification models asynchronous
communication

between nodes and fail-stop failures.

extends Integers , FiniteSets , Sequences , TLC
constants

N , Number of nodes in the model

SuccessorsPerNode, Length of nodes’ successor lists

UseInitialRing false if we should examine all possible configurations of successor pointers

assume FiniteNodesAssumption
∆
= N ∈ Nat \ {0}

Assume that the successor lists are of finite length:

assume FiniteNumberOfSuccessors
∆
= SuccessorsPerNode ∈ Nat \ {0}

assume LessSuccessorsThanNodes
∆
= SuccessorsPerNode ≤ N

assume InitialRingBoolean
∆
= UseInitialRing ∈ boolean

ProcSet
∆
= 1 . . N

variables Successors ,
Predecessor ,
HasJoined ,
HasPredecessor ,
HasFailed ,
SuccessorAnswers ,
SuccessorRequests ,
PredecessorAnswers ,
PredecessorRequests ,
Notifications

vars
∆
= 〈Successors , Predecessor , HasJoined , HasPredecessor , HasFailed ,

SuccessorAnswers , SuccessorRequests ,
PredecessorAnswers , PredecessorRequests ,
Notifications〉

BetweenInclusive is true if x ∈ [a, b] (mod N ).

BetweenInclusive(x , a, b)
∆
= ((x − a)%N ) ≤ ((b − a)%N )

BetweenHalfOpen is true if x ∈ (a, b] (mod N ).

BetweenHalfOpen(x , a, b)
∆
=

∧ ((x − a)%N ) ≤ ((b − a)%N ) ∧ x 6= a

BetweenExclusive is true if x ∈ (a, b) (mod N )

BetweenExclusive(x , a, b)
∆
=

∨ ∧ ((x − a)%N ) ≤ ((b − a)%N ) ∧ x 6= a ∧ x 6= b
∨ ∧ a = b

The safety properties must be rephrased to take failing nodes into account.
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HasLiveSuccessor is true if there is at least one live successor in

the successor list of node x .

HasLiveSuccessor(x )
∆
=

∃ succ ∈ 1 . . Len(Successors [x ]) : ¬HasFailed [Successors [x ][succ]]

PickFirstLiveSuccessor is the index of the first live successor

in the successor list of node x .

PickFirstLiveSuccessor(x )
∆
=

choose succ ∈ 1 . . Len(Successors [x ]) :
Pick a live successor,

∧ ¬HasFailed [Successors [x ][succ]]
such that there are no live successors earlier in the list:

∧ ¬∃ cand ∈ 1 . . Len(Successors [x ]) :
∧ ¬HasFailed [Successors [x ][cand ]]
∧ cand < succ

If node x is live, FirstLiveSuccessor is the identifier of the first live

successor in the successor list of node x . If node x has failed, FirstLiveSuccessor is the node’s

own identifier.

FirstLiveSuccessor(x )
∆
=

if ¬HasFailed [x ]
then Successors [x ][PickFirstLiveSuccessor(x )]
else x

ReachableSuccessors is now the set of nodes reachable from node x

when failed nodes are pruned from the successor lists. If node x has failed, ReachableSuccessors

is the empty set.

ReachableSuccessors(x )
∆
=

let recursive Reachable( , )
Reachable(n, i)

∆
=

if i = 0 ∨ ¬HasJoined [n] ∨ HasFailed [n] ∨ ¬HasLiveSuccessor(n)
then {}
else Reachable(FirstLiveSuccessor(n), i − 1)

∪ {FirstLiveSuccessor(n)}
in Reachable(x , N )

FormsRing(x )
∆
=

∧ HasLiveSuccessor(x )
∧ x ∈ ReachableSuccessors(x )

IsRingAppendage(x )
∆
=

∧ HasLiveSuccessor(x )
∧ ∃ succ ∈ ReachableSuccessors(FirstLiveSuccessor(x )) : FormsRing(succ)

We disregard failed nodes when determining whether property (1c) is

satisfied:
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ConnectedAppendages
∆
= ∀ self ∈ ProcSet :

∨ IsRingAppendage(self )
∨ HasFailed [self ]

AtLeastOneRing
∆
= ∃ x ∈ ProcSet : FormsRing(x ) ∧ ¬HasFailed [x ]

AtMostOneRing
∆
= ¬∃ x ∈ ProcSet :

∧ FormsRing(x )
∧ ∃ y ∈ ProcSet :

∧ FormsRing(y)
∧ReachableSuccessors(x ) 6= ReachableSuccessors(y)

In an ordered ring, only one node should have a live successor with a

smaller identifier than its own.

OrderedRing
∆
=

∧ let ring
∆
= choose x ∈ ProcSet : FormsRing(x ) ∧ ¬HasFailed [x ]in

∧ ∀ self ∈ ReachableSuccessors(ring) :
∨ self < Head(Successors [self ])
∨ HasFailed [Head(Successors [self ])]
∨ ¬∃n ∈ ReachableSuccessors(ring) :

∧ n > Head(Successors [n])
∧ self 6= n
∧ ¬HasFailed [Head(Successors [n])]

ValidRing
∆
=

∧ AtLeastOneRing
∧ AtMostOneRing
∧ ConnectedAppendages
∧OrderedRing

ValidInitialPredecessors
∆
=

∧ ∃ p ∈ ProcSet : HasPredecessor [p]
∧ ∀ p ∈ ProcSet :

∨ ¬HasPredecessor [p]
∨ ∧ Head(Successors [Predecessor [p]]) = p

∧ HasJoined [Predecessor [p]]

InitialRing
∆
=

∧ ∃Start ∈ ProcSet :
∧ Successors = [self ∈ ProcSet 7→ 〈Start〉]
∧ Predecessor = [self ∈ ProcSet 7→ Start ]
∧HasJoined = [self ∈ ProcSet 7→ self = Start ]
∧HasPredecessor = [self ∈ ProcSet 7→ self = Start ]

Init
∆
=
∧ if UseInitialRing

then InitialRing
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else
∧ Successors ∈

{[p ∈ ProcSet 7→ 〈initialSuccessor [p]〉] :
initialSuccessor ∈ [ProcSet → ProcSet ]}

∧ Predecessor ∈ [ProcSet → ProcSet ]
∧HasJoined ∈ [ProcSet → boolean ]
∧HasPredecessor ∈ [ProcSet → boolean ]

∧ HasFailed = [self ∈ ProcSet 7→ false]
∧ SuccessorAnswers = [self ∈ ProcSet 7→ {}]
∧ SuccessorRequests = [self ∈ ProcSet 7→ {}]
∧ PredecessorAnswers = [self ∈ ProcSet 7→ {}]
∧ PredecessorRequests = [self ∈ ProcSet 7→ {}]
∧ Notifications = [self ∈ ProcSet 7→ {}]
∧ ValidRing
∧ ValidInitialPredecessors

Recursively find the successor for a given identifier.

FindSuccessor(self )
∆
=

∧ ¬HasFailed [self ]
∧ ¬HasFailed [Head(Successors [self ])]
∧ HasJoined [self ]
∧ unchanged 〈Successors , Predecessor , HasJoined ,

HasPredecessor , HasFailed , PredecessorAnswers , PredecessorRequests ,
Notifications〉

∧ ∃Request ∈ SuccessorRequests [self ] :
if ∨ BetweenHalfOpen(Request .id , self , Head(Successors [self ]))

∨ self = Head(Successors [self ])
then

∧ SuccessorRequests ′ = [SuccessorRequests
except ! [self ] = @ \ {Request}]

∧ SuccessorAnswers ′ = [SuccessorAnswers
except ! [Request .origin] =
@ ∪ {[id 7→ Request .id , successor 7→ Head(Successors [self ])]}]

else
∧ SuccessorRequests ′ = [SuccessorRequests

except ! [Head(Successors [self ])] =
@ ∪ {Request}, ! [self ] = @ \ {Request}]

∧ SuccessorAnswers ′ = SuccessorAnswers

Join(self )
∆
=

∧ ¬HasFailed [Head(Successors [self ])]
∧ ¬HasJoined [self ]
∧Cardinality(SuccessorAnswers [self ]) = 0
∧ SuccessorRequests ′ =

[SuccessorRequests except ! [Head(Successors [self ])] =
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@ ∪ {[origin 7→ self , id 7→ self ]}]
∧ unchanged 〈Successors , Predecessor , HasJoined , HasFailed ,

HasPredecessor , SuccessorAnswers , PredecessorAnswers ,
PredecessorRequests , Notifications〉

On receiving the successor for this node’s identifier,

set it as the successor:

FinishJoin(self )
∆
=

∧ ¬HasJoined [self ]
∧ unchanged 〈Predecessor , HasPredecessor , HasFailed ,

SuccessorRequests ,
PredecessorAnswers , PredecessorRequests ,
Notifications〉

∧ ∃Answer ∈ SuccessorAnswers [self ] :

Ensure the node is live before adopting it as a successor.

Necessary to avoid violating ConnectedAppendages.

∧ ¬HasFailed [Answer .successor ]
∧ Successors ′ = [Successors except ! [self ] = 〈Answer .successor〉]
∧ HasJoined ′ = [HasJoined except ! [self ] = true]
∧ SuccessorAnswers ′ = [SuccessorAnswers except ! [self ] = @ \ {Answer}]

Periodically verify a node’s immediate successor,

and tell the successor about the node, using the algorithm from Figure 7 of the SIGCOMM paper.

Stabilize(self )
∆
=

∧ ¬HasFailed [Head(Successors [self ])]
∧ HasJoined [self ]
∧ unchanged 〈Successors , Predecessor , HasJoined , HasPredecessor ,

HasFailed , SuccessorAnswers , SuccessorRequests ,
PredecessorAnswers ,
Notifications〉

∧ PredecessorRequests ′ = [PredecessorRequests except ! [Head(Successors [self ])] =
@ ∪ {[origin 7→ self ]}]

Return the node’s current predecessor.

GetPredecessor(self )
∆
=

∧ HasJoined [self ]
∧ HasPredecessor [self ]
∧ unchanged 〈Successors , Predecessor , HasJoined , HasPredecessor ,

HasFailed , SuccessorAnswers , SuccessorRequests ,
Notifications〉

∧ ∃Request ∈ PredecessorRequests [self ] :
∧ PredecessorRequests ′ =

[PredecessorRequests except ! [self ] = @ \ {Request}]
∧ PredecessorAnswers ′ =

[PredecessorAnswers except ! [Request .origin] =
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@ ∪ {[id 7→ self , predecessor 7→ Predecessor [self ]]}]

Once the node has received its successor’s predecessor,

determine whether it is a closer successor, adopting it as our new successor if it is.

FinishStabilize(self )
∆
=

∧ HasJoined [self ]
∧ unchanged 〈Predecessor , HasJoined , HasPredecessor , HasFailed ,

SuccessorAnswers , SuccessorRequests ,
PredecessorRequests〉

∧ ∃Answer ∈ PredecessorAnswers [self ] :

Ensure the node is live before adopting it as a successor.

Necessary to avoid violating AtLeastOneRing .

∧ ¬HasFailed [Answer .predecessor ]
∧ if BetweenExclusive(Answer .predecessor , self , Head(Successors [self ]))

then
Clear the successor list on adopting a new successor.

∧ Successors ′ = [Successors except ! [self ] =
〈Answer .predecessor〉]

To keep old successor list entries when stabilizing,

replace the lines above with

∧ Successors′ = [Successors except ! [self ] =

〈Answer .predecessor〉 ◦ Tail(Successors[self ])]

∧ PredecessorAnswers ′ =
[PredecessorAnswers except ! [self ] = {}]

∧ Notifications ′ = [Notifications except ! [Answer .predecessor ] =
@ ∪ {[origin 7→ self ]}]

else
∧ Successors ′ = Successors
∧ PredecessorAnswers ′ =

[PredecessorAnswers except ! [self ] = {}]
∧ Notifications ′ = [Notifications except ! [Head(Successors [self ])] =

@ ∪ {[origin 7→ self ]}]

Accept a notification from another node

which thinks it might be our predecessor.

Notify(self )
∆
=

∧ HasJoined [self ]
∧ unchanged 〈Successors , HasJoined , HasFailed ,

SuccessorAnswers , SuccessorRequests ,
PredecessorAnswers , PredecessorRequests〉

∧ ∃Note ∈ Notifications [self ] :
∧ ¬HasFailed [Note.origin]
∧ if

∨ ¬HasPredecessor [self ]
∨ BetweenExclusive(Note.origin, Predecessor [self ], self )
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then
∧ HasPredecessor ′ = [HasPredecessor except ! [self ] = true]
∧ Predecessor ′ = [Predecessor except ! [self ] = Note.origin]
∧ Notifications ′ = [Notifications except ! [self ] = @ \ {Note}]
else
∧ unchanged 〈Successors , HasPredecessor , Predecessor〉
∧ Notifications ′ = [Notifications except ! [self ] = @ \ {Note}]

Instead of specifying fail-stop failures by permitting stuttering, we add

a separate action which verifies that the failure should be possible to recover from, and marks the

node as failed:

Fail(self )
∆
=

For a failure to be recoverable, every node except the failing one

should have at least one live node in its successor list after the failure:

∧ ∀member ∈ ProcSet :
∨member = self
∨ ∃ x ∈ 1 . . Len(Successors [member ]) :

∧ Successors [member ][x ] 6= self
∧ ¬HasFailed [Successors [member ][x ]]

∧ HasFailed ′ = [HasFailed except ! [self ] = true]
∧ unchanged 〈Successors , Predecessor , HasJoined , HasPredecessor ,

SuccessorAnswers , SuccessorRequests ,
PredecessorAnswers , PredecessorRequests ,
Notifications〉

FixPredecessor (AKA “flush”)

detects that a node’s predecessor has failed, and marks it as no longer having a predecessor:

FixPredecessor(self )
∆
=

∧ HasFailed [Predecessor [self ]]
∧ HasJoined [self ]
∧ HasPredecessor [self ]
∧ HasPredecessor ′ = [HasPredecessor except ! [self ] = false]
∧ unchanged 〈Successors , Predecessor , HasJoined ,

HasFailed , SuccessorAnswers , SuccessorRequests ,
PredecessorAnswers , PredecessorRequests ,
Notifications〉

FixSuccessor (AKA “update”)

detects that a node’s immediate successor has failed, and replaces it with the next successor in

the list:

FixSuccessor(self )
∆
=

∧ HasJoined [self ]
∧ HasFailed [Head(Successors [self ])]
∧ Successors ′ = [Successors except ! [self ] = Tail(Successors [self ])]
∧ unchanged 〈Predecessor , HasJoined , HasPredecessor , HasFailed ,
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SuccessorAnswers , SuccessorRequests ,
PredecessorAnswers , PredecessorRequests ,
Notifications〉

FixSuccessorList (AKA “reconcile”)

periodically fetches the successor list from the immediate successor, prepends the successor to it,

and adopts it as the node’s own successor list:

FixSuccessorList(self )
∆
=

∧ ¬HasFailed [Head(Successors [self ])]
∧ HasJoined [self ]
∧ Head(Successors [self ]) 6= self
∧ let

SuccessorListLength
∆
=

if Len(Successors [Head(Successors [self ])]) < SuccessorsPerNode
then Len(Successors [Head(Successors [self ])])
else SuccessorsPerNode − 1

NextSuccessorList
∆
= Successors [Head(Successors [self ])]

in
∧ Head(NextSuccessorList) 6= Head(Successors [self ])
∧ Successors ′ = [Successors except ! [self ] =

〈Head(Successors [self ])〉 ◦
SubSeq(NextSuccessorList , 1, SuccessorListLength)]

∧ unchanged 〈Predecessor , HasJoined , HasPredecessor , HasFailed ,
SuccessorAnswers , SuccessorRequests ,
PredecessorAnswers , PredecessorRequests ,
Notifications〉

Node(self )
∆
=

We introduce a conjunct to ensure that failed nodes cannot perform any actions:

∧ ¬HasFailed [self ]
∧ ∨ FindSuccessor(self )

∨ Join(self )
∨ FinishJoin(self )
∨ Stabilize(self )
∨GetPredecessor(self )
∨ FinishStabilize(self )
∨Notify(self )
∨ Fail(self )
∨ FixPredecessor(self )
∨ FixSuccessor(self )
∨ FixSuccessorList(self )

RingIsWeaklyIdeal
∆
=

∀ self ∈ ProcSet :
∨ HasFailed [self ]
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∨ ∧HasJoined [self ]
∧HasJoined [Predecessor [self ]]
∧Head(Successors [Predecessor [self ]]) = self

Next
∆
= (∃ self ∈ 1 . . N : Node(self ))

∨ ∧RingIsWeaklyIdeal ∧ unchanged vars

Spec
∆
= ∧ Init ∧✷[Next ]vars

∧ ∀ self ∈ 1 . . N : WFvars(Node(self ))

TypeOK
∆
=

∧ ∀ self ∈ ProcSet :
∧ Len(Successors [self ]) > 0
∧ Len(Successors [self ]) ≤ SuccessorsPerNode
∧ ∀ s ∈ domain Successors [self ] : Successors [self ][s ] ∈ ProcSet
∧ Predecessor [self ] ∈ ProcSet
∧ HasJoined [self ] ∈ boolean
∧ HasPredecessor [self ] ∈ boolean
∧ IsFiniteSet(SuccessorAnswers [self ])
∧ IsFiniteSet(SuccessorRequests [self ])
∧ IsFiniteSet(PredecessorAnswers [self ])
∧ IsFiniteSet(PredecessorRequests [self ])
∧ IsFiniteSet(Notifications [self ])

NoRingBecomesIdeal
∆
= ¬RingIsWeaklyIdeal
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Appendix D: State space
and average runtimes of
model-checking

N Total states Distinct states
2 33 13
3 224 84
4 2 111 682
5 26 567 7 024
6 401 572 87 407

Table 1: The number of states explored while verifying the synchronous Chord speci-
fication.
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N Avg. runtime (safety) σ Avg. runtime (liveness) σ
2 0.88s 0.02s 0.94s 0.01s
3 0.95s 0.01s 1.12s 0.01s
4 1.21s 0.02s 1.82s 0.04s
5 1.93s 0.04s 5.35s 0.19s
6 6.93s 0.05s 52.53s 2.57s

Table 2: Comparison of the runtimes of model-checking the synchronous Chord speci-
fication for safety properties only, against verifying both liveness and safety
properties.

N L Total states Distinct states
2 20 37 517 1 312
2 25 100 684 1 872
2 30 177 574 1 936
3 20 437 266 27 282
3 25 2 506 629 125 824
3 30 12 163 540 477 690
4 20 3 034 213 216 384
4 25 26 968 628 1 622 588
4 30 209 402 748 10 592 532
5 20 16 222 521 1 146 755
5 25 187 111 209 11 904 540
5 30 1 974 722 673 107 611 235
6 20 70 692 663 4 815 750
6 25 992 188 816 63 801 288
6 30 oom oom

Table 3: States explored when model-checking the asynchronous Chord specification
for N nodes, and behaviors of at most L steps. In rows marked with oom,
tlc terminated with an out-of-memory error.



N L Avg. runtime σ
2 20 0.89s 0.02s
2 25 1.07s 0.03s
2 30 1.21s 0.04s
3 20 1.61s 0.04s
3 25 3.84s 0.10s
3 30 13.46s 0.29s
4 20 4.70s 0.06s
4 25 30.19s 0.14s
4 30 227.21s 4.43s
5 20 19.76s 0.10s
5 25 217.30s 2.70s
5 30 2295.16s 12.39s
6 20 87.83s 0.55s
6 25 1223.78s 4.34s
6 30 oom oom

Table 4: Average runtimes of model-checking the pure-join Chord specification with
asynchronous messaging, using N nodes and traces of at most L steps.

N L Total states Distinct states
2 20 131 371 8 205
2 25 612 782 29 519
2 30 1 690 334 53 588
3 20 2 246 573 157 524
3 25 23 455 738 1 510 831
3 30 199 674 510 12 646 103
4 20 24 236 717 1 581 652
4 25 378 960 098 21 606 228
4 30 4 921 828 001 239 886 960
5 20 191 830 736 11 142 260
5 25 3 875 024 159 205 088 440
5 30 oom oom
6 20 1 246 704 792 64 090 212
6 25 oom oom
6 30 oom oom

Table 5: States explored when model-checking the full Chord specification with fault-
tolerance, using N nodes and behaviors of at most L steps. In rows marked
with oom, tlc terminated with an out-of-memory error.



N L Avg. runtime σ
2 20 1.32s 0.04s
2 25 1.99s 0.06s
2 30 3.40s 0.25s
3 20 4.31s 0.07s
3 25 32.83s 0.30s
3 30 217.14s 3.20s
4 20 37.65s 0.63s
4 25 548.45s 9.07s
4 30 7263.81s 105.43s
5 20 310.06s 2.42s
5 25 6181.17s 45.69s
5 30 oom oom
6 20 2198.87s 41.83s
6 25 oom oom
6 30 oom oom

Table 6: Average runtimes of model-checking the full Chord specification with fault-
tolerance mechanisms, using N nodes and traces of at most L steps.
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