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i

“Long cat, is long.” – Robert Pettersen

“Fått laksekrem på hjernen.” – Maren Sofie Ringsby

“Reality continues to ruin my life.” – Bill Watterson





Abstract
Following the birth of cryptocurrencies back in 2008, internet investment plat-
forms called exchanges were created to constellate these cryptocurrencies.
Allowing investors to sell and buy assets equitable and agile over a single
interface. Exchanges now have become popular and carry out over 99% of all
daily transactions, totaling hundreds of millions of dollars. Despite that ex-
changes handling enormous quantities of money, the industry remains mostly
unregulated.

As long as these exchanges remain unregulated, they are and will continue to
be susceptible to price manipulation schemes since they are legal to perform
by law. Over the years, exchanges have grown into an attractive field where
scammers execute various frauds that aims to leech assets from ordinary
investors. One particular scheme has risen in popularity over the years and
often observed at exchanges, and that is Pump-and-Dump. This scheme has a
history from all the way back in 1700 and is still active and troublesome for
investors today.

In this thesis, we present Limelight, a system that seeks to detect Pump-and-
Dumps in real-time using deep learning. Throughout this thesis, we retrieved,
prepared, labeled, and processed a dataset to train amodel that identifies Pump-
and-Dumps. With high accuracy, the model surpasses previously proposed
models in the detection of Pump-and-Dumps.
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1
Introduction
The value of cryptocurrencies has rapidly increased on the last years. In 2018
cryptocurrencies had a market capitalization of around $300 billion according
to CoinMarketCap, making it comparable to Denmark’s Gross Domestic Prod-
uct (gdp)[1]. Despite the high market capitalization, these cryptocurrencies
are mostly unregulated, including the investment platforms called exchanges
where investors trade cryptocurrencies and fiat money1. Due to the anonymity
and lack of regulation, this ecosystem has become an appealing field for con-
ducting illegal activities like terrorism, money laundering, customer theft, and
fraud [3].

Exchanges play a central role as they are popular among investors and carry
out 99% of all cryptocurrency transactions [4]. Unsurprisingly that makes
them vulnerable to scammers who seek to pray on the misinformed [1]. One
particular scam that has become popular in cryptocurrencymarkets over the last
few years is the price manipulation scheme Pump-and-Dump (p&d) [5]. p&d
involves artificially inflating the price of a cheap asset (pump) on an exchange
and selling the purchased assets at a higher price. Once the assets are sold
off, the price falls (dump) and the affected investors lose their money to those
who organized the scam [6]. Two researchers at the Imperial College London
revealed that at least two p&d schemes are executed daily on a cryptocurrency
market, producing roughly $7 million in daily trading volume [5].

1. Money made by the government[2]

1

https://coinmarketcap.com/


2 CHAPTER 1 INTRODUCT ION

As these scammers corrupt exchanges and deceive investors, people are now
reluctant to invest in cryptocurrencies due to mistrust and scepticism [7]. In
the last two years, a few articles [1, 5, 6, 8] have proposed various methods
for detecting p&ds, but none have yet proposed a model that detects p&ds in
real-time using deep learning. Detecting p&ds in real-time allows unethical
investors to improve upon their trading strategies by having the opportunity of
participating in p&ds. But it also allows exchanges to prevent p&ds, making
them more trustworthy.

The incentive of using deep learning is primarily because of the tremen-
dous amount of data cryptocurrency sources continuously produce. Machine
Learning (ml) is generally good at solving problems that have large-scale
datasets [9]. Secondly, detecting p&ds using a rule-based solution is tricky
with high-dimensional data, while deep learning has turned out to be very
good at it [10]. Third, deep learning completely outperforms traditional ml
methods as the scale of data increases [11, 12].

In this thesis, we present Limelight, a system that seeks to detect p&ds in real-
time using deep learning. Limelight retrieves, and stores live data seamlessly
from multiple cryptocurrency sources. The gathered raw data flows through
several enrichment stages to prepare the data for ml. In every supervised
learning problem, training a model requires prior knowledge of each sam-
ple, and because of the infeasibility of manually collecting p&ds, it uses an
anomaly detection algorithm to pinpoint suspicious time intervals in historical
data that may contain p&ds. To reduce the number of false anomalies, the
alleged anomalies goes through a manual filtering process. With both data and
labels, we define a labeled dataset to train a model that contains a network of
connected serialized layers where each layer incorporates a ml.

1.1 Problem Definition
A popular price manipulation scheme carried out on cryptocurrency exchanges
is p&ds. We investigate if we can construct a system, named Limelight, that
detects these in real-time using deep learning. Thus, our thesis statement
is:

Real-time classification of Pump-and-Dumps (p&ds) in cryptocurren-
cies can be done using deep learning.
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1.2 Methodology
The final report of the Task Force on the Core of Computer Science[13] define
the succeeding three major paradigms as the discipline of computing. The first
paradigm, theory, is rooted in mathematics and consists of four steps followed
in the development of a coherent, valid theory:

1. characterize objects of study (definition);

2. hypothesize possible relationships among them (theorem);

3. determine whether the relationships are true (proof);

4. interpret results.

The second paradigm, abstraction (modeling), is rooted in the experimental sci-
entific method and consists of four stages that are followed in the investigation
of a phenomenon:

1. form a hypothesis;

2. construct a model and make a prediction;

3. design an experiment and collect data;

4. analyze results.

The third paradigm, design, is rooted in engineering and consists of four steps
followed in the construction of a system (or device) to solve a given prob-
lem:

1. state requirements;

2. state specifications;

3. design and implement the system;

4. test the system.

This thesis adheres to the paradigms abstraction and design. We investigate our
thesis statement’s viability through constructing, experimenting, and analyzing.
By means of constructing, we design and implement a system Limelight, that
pursue to solve the stated problem. State requirements and specifications
advance and change throughout this thesis by experimenting with various
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designs. Testing the system involves analyzing Limelight’s abilities.

1.3 Context
This thesis is written in the context of Corpore Sano2, a center that conducts
joint research in the fields sports, medicine, and computer science. Our inter-
disciplinary research targets elite sports performance development and injury
prevention; preventive health care; large-scale population screen; and epi-
demiological health studies. In the field of computer science, we have a focus
on Research and Development (r&d) systems for monitorization, back-end
storage, ml, and analytics.

Two of our projects involves injury prevention and performance development
for the elite soccer players in Tromsø IL (til), our tightly partnered club.
With the systems Bagadus [14] and Muithu [15] currently deployed and used
at tils practices and games. Muithu is a portable video annotation system
that integrates real-time coach notations with related video sequences. While
Bagadus is a real-time prototype of a sports analytics application, it integrates
a sensor system, a soccer analytics annotations system, and a video processing
system using a video camera array. A prototype is currently deployed at Alfheim
Stadium in Norway, tils home ground.

In the wake of the interest in cryptocurrencies and blockchain technology,
Corpore Sano did a longitudinal study of this ecosystem’s most prominent
cryptocurrency, Bitcoin [16]. The study investigated how the scalability affects
the performance, and how the costs and fees are dependent. The study also
proposed two machine learning models that can predict the bandwidth of
scheduled transactions according to the fee payers are willing to offer, and the
expected revenue for miners according to the time spent mining.

Another blockchain related contribution from Corpora Sano is FireChain [17].
It combines a byzantine fault-tolerant gossip service and full membership, with
a proposal for blockchain systems that does not consume excessive energy.
This protocol is building upon FireFlies [18], an overlay network protocol. The
results show that FireChain is feasible, scalable, and use less power than other
blockchain related consensus protocols.

2. http://www.corporesano.no/

http://www.corporesano.no/
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1.4 Outline

Chapter 2 first describes three well-known software architectures we
use throughout this thesis. Then it describes cryptocurrencies and their
trading platforms, exchanges, and details about p&ds. Then, it briefly
describes deep learning and the structure of an artificial neural network.
Finally, it describes some related work in the detection of p&ds.

Chapter 3 presents the overview of Limelight, and details each compo-
nent, and Limelight’s different phases.

Chapter 4 covers the implementation of Limelight.

Chapter 5 evaluates Limelight’s prediction abilities.

Chapter 6 summarizes this thesis, presents Limelight’s results and con-
tributions, and outlines future work.





2
Background and RelatedWork
This chapter presents a theoretical background in various fields that are relevant
throughout this thesis. The first section describes the software architectures
we use during this thesis. The second section contains information regarding
cryptocurrencies, and their exchanges, and how Pump-and-Dump (p&d) or-
ganizers execute their scheme on these exchanges. The third section covers an
introduction to deep learning. Finally, the last section presents related work in
the detection of p&ds.

2.1 Software Architectures
A software architecture define the structure and relation between components
within a system, and it is developed as the first step toward designing a system
that has a collection of desired properties. An architectural view is abstract,
distilling away details of implementation, algorithm, and data representation
and concentrating on the behaviour and interaction of elements [19, p. 3].

7
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2.1.1 Master/slave
The term master/slave is through a quiet ongoing debate in the coding commu-
nity [20–22], as some may interpret it offensively and relate to the institution
of slavery. Our intention is not to insult anyone, but we are still using this term
because none have yet proposed a lasting substitution to it.

Master

SlaveSlave Slave

Figure 2.1: master/slave architecture. The master assigns tasks to the slaves. Soon as
the slaves complete their task, they either send the result to the master, or
the master gathers the result from them.

Nevertheless, In computer science, master/slave is a model for a communica-
tion protocol in which one process (master) controls one or more processes
(slaves) [23]. Figure 2.1 is an example that illustrates such a hierarchy with a
master and its three slaves. A typical design pattern in parallel computation
is where each slave is assigned a computational task from the master, and
they make the computation accordingly, then the master gathers the result
from them. This procedure continues as long as it is necessary. Some of the
advantages and disadvantages of this software architecture are:

Advantages

1. Synchronization pitfalls - the master is a single sequential process that
synchronizes with the slaves, which makes handling of typical pitfalls
like race conditions and deadlocks uncomplicated.

2. Horizontal scaling - the system scales by adding slave instances [24];
there is no upper limit of them. As slaves work in isolation without
synchronization, the bottleneck, is the master if it has too many slaves
to communicate with.

3. Faulty slave tolerance - if a slave crash, the system will continue to work,
but it will also result in partially executed work.

Disadvantages

1. Single Point of Failure (spof) - if the master crash, the whole system will
face downtime.
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2.1.2 Publish/subscribe
The Publish/Subscribe (pub/sub) interaction paradigm provides subscribers
with the ability to express their interest in an event or a pattern of events, in
order to be notified subsequently of any event. The publishers generate events
that match their registered interest. There are variations of these pub/sub
systems such as topic-based, content-based, and type-based [25], and it is infeasi-
ble to cover all of them, but, these systems do share some basic commonalities
which we will describe.

Message broker

Publisher

Publisher

Publisher

Message

Message

Message

Subscriber

Subscriber

Subscriber

Message

Message

Message

Figure 2.2: Publish/Subscribe architecture. The publisher sends events/messages to
the broker. The subscribers can expresses interest in specific events to the
broker. The broker propagates publishers events to these subscribers that
have previously expressed interest in said events.

In a basic pub/sub system (Figure 2.2), there are publishers, subscribers,
and a message broker. Where the publishers send messages containing some
information to the message broker’s event service system. The subscribers
can announce interest to the broker in which messages they want to receive.
Once the broker receives a message, it gets propagated to the subscribers that
have expressed interest in receiving those messages. The subscribers can also
unsubscribe.
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According to Amazon Web Services (aws) [26] and CodeKraft [27], the advan-
tages and disadvantages with pub/sub systems are:

Advantages

• Eliminate polling - the flow ofmessages provides significant advantages to
developers who build applications that rely on real-time events. Messages
allow instant, push-based delivery, eliminating the need for message
consumers to poll for new information and updates periodically.

• Dynamic targeting - the organization of data is more natural and less
error-prone. Instead of maintaining a roster of peers that an application
can sendmessages to, a publisherwill postmessages. Then,any interested
party will subscribe to its endpoint and start receiving these messages.

• Decouple and scale independently - makes the software more flexible.
Publishers and subscribers are decoupled and work independently from
each other, which allows scaling them independently.

• Simplify communication - communication and integration code is some
of the hardest code to write. The pub/sub model reduces complexity
by removing all the point-to-point connections with a single connection,
which will manage subscriptions to decide what messages should be
delivered to which endpoints.

Disadvantages

• Reliability - the broker might not notify the system of message delivery
status; so there is no way to know of failed or successful deliveries.
Tighter coupling is needed to guarantee this.

• Decouple and independence - despite that decoupling and independence
is an advantage, it can also be a disadvantage. Updating relationships
between subscribers and publishers can be a thorny issue, and publishers
do not know the status of the subscriber and vice versa.

• Broker dependence - the need for a broker, message specification, and
participant rules add some more complexity to the system.
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2.1.3 Pipeline
The pipeline architecture has received considerable attention since 1960, and
it is a form of embedding parallelism or concurrency into a system [28]. The
pipelining concept is also found in Central Processing Unit (cpu) architectures
to accelerate the execution of instructions. One can interpret a pipeline (Fig-
ure 2.3) as a processing bus with several stages running in parallel, where the
stage’s output is the next stage’s input. The final stage’s output is the whole
pipeline’s output.

S1 S2 S3 S4 S5 outputinput

Figure 2.3: pipeline architecture, where each stage output is the succeeding stage’s
input. Every stage executes in parallel.

According to [29], some advantages with pipelines are:

• Flexibility - computational stages are easy to replace.

• Extensibility - the system is partitioned into components, which makes it
easy to create new functionality.

• Scalability - each part of the computation is presented via a standard
interface. If any part of the pipeline have an performance issue, it is
possible to scale each component independently.

2.2 Cryptocurrency
Cryptocurrencies are digital or virtual assets, and they use cryptography as a
security and consistency mechanism [1, 30]. The majority of cryptocurrencies
are decentralized systems built on blockchain technology, a public tamper
proof transaction ledger. With blockchain, anyone can verify the consistency of
transactions without linking them to real-world identities. Satoshi Nakamoto is
the founder of the first and most prevailing cryptocurrency from 2009, namely
Bitcoin. In recent years, the number of other cryptocurrencies, often referred
to as altcoins, have increased dramatically, and at the time writing there are
over 2000 different cryptocurrencies [31]. Some popular altcoins are Ripple,



12 CHAPTER 2 BACKGROUND AND RELATED WORK

Ethereum,XRP, and Litecoin. The altcoins describe themselves as improvements
over Bitcoin, since Bitcoin face various complications which Subsection 2.2.1
details.

Traditional payment systems suffer from the inherent weakness of the trust
based model. Completely non-reversible transactions are not possible since
financial institutions cannot avoid mediating disputes. With the possibility of
reversal, the need for trust spreads making merchants prompt customers for
their confidential [32]. In contrast, cryptocurrency transactions are irreversible.
Bitcoin defines an electronic payment as a chain of digital signatures, where
each transfer are digitally signed with the previous transaction [32, 33]. Cryp-
tocurrency systems are pseudonymous; the public sees all the transactions, but
without being able to link them to real-world identities (Figure 2.4).

Identities Transactions Public

Figure 2.4: privacy model of Bitcoin. The transactions are public, as real-world identi-
ties are kept screened (source: [32]).

However, problems are originating from the privacy model of Bitcoin and the
majority of altcoins. According to [3], the emergence of cryptocurrencies has
raised significant concerns about potentially illegal activities, such as terrorism
and money laundering, customer theft, and fraud. The expansion of cryptocur-
rencies may also threaten the traditional money issuance system, question the
role of banks and other financial institutions in funds transfers, and present a
risk for financial stability in general.

2.2.1 Blockchain
A blockchain [34] is an ever growing list of blocks [34]. Blocks in a blockchain
consist of data and a hash pointer, a reference to and a cryptographic hash of
the previous block, see Figure 2.5. Whereas a regular pointer makes it possible
to retrieve a block’s location in memory, a hash pointer also makes it possible to
verify the integrity of the data. In other words, it is possible to check if the data
within a block have changed after creation. In the context of cryptocurrency,
blocks contain metadata and a series of transactions.

For nodes in cryptocurrency systems to solve the double-spending problem
and agree on the succeeding block of pending transactions, they all must agree
on a single block that comes next in line in the blockchain. The majority of
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block n-3

+ prev: H(blockn-4)

+ data

block n-2

+ prev: H(blockn-3)

+ data

block n-1

+ prev: H(blockn-2)

+ data

block n

+ prev: H(blockn-1)

+ data

H(blockn)

Figure 2.5: blockchain architecture. The blocks are structured like a list. A block in
the chain contains a reference to and a hash of its previous block.

cryptocurrencies use the consensus protocol Proof-of-Work (pow) to elect the
next block, which we define as follows: Miners collect broadcasted pending
transactions into a block; they are fussy and exclusively pick the transactions
with the highest fees [35, 36]. Then, the miners must solve a cryptographic
puzzle. They start hashing the new block with the hash of the previous block
until the digest is below a defined threshold. Each try is pseudo-stochastic, so
it requires indefinite attempts, and miners can flip a bit in the block-field nonce,
so they do not reuse the same digest. The first miner to solve the puzzle gets
a minting reward, by broadcasting the block with its signature to the other
miners who then add the new block into their blockchain. Statistically, systems
that use pow retain their integrity as long as honest nodes possess more than
50% of the total hashing rate in the system.

After the immense interest in cryptocurrency, the number of miners has sky-
rocketed. Which results in high electricity expenditure and longer verification
time of transactions due to the slower propagation time of blocks. The Bitcoin
miners electrical consumption alone can power five million U.S households,
and the emission of CO2 for producing the required electricity is 275 kilogram
per transaction [37].

As the number of miners escalates, the longer propagation time of blocks, thus,
the time-gap of where two or more block being proposed and integrated by
miners at the same time expand [36]. When miners have a different vision
of the blockchain, they have created a branch. Any branch is fixable though
producing the longest branch as the pow protocol looks at the longest branch as
the real main branch. The blocks that are mined but was cut off from the main
branch are invalid and called orphaned block. Also, because of the possibility
of orphaning, a rule of thumb in the verification of Bitcoin transactions is to
wait until a block with your payment is confirmed (buried under other blocks)
six times [38, 39] which is around one hour.
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2.2.2 Exchanges
Cryptocurrency exchanges are centralized online platforms where traders can
exchange cryptocurrency for another cryptocurrency or fiat1. They are market
makers that lists coins over bid-ask spreads [40]. A bid-ask spread is the amount
by which the asking price exceeds the bid price for an asset in the market. The
bid-ask spread is essentially the difference between the highest price that
a buyer is willing to pay for an asset and the lowest price that a seller is
willing to accept [41]. Currently, these exchange lack regulation2 which makes
them not trustworthy and susceptible to price manipulation schemes and con
artists [42, 43]. There are over 200 different cryptocurrency exchanges where
some of the most appealing are Coinbase, Binance, Bittrex, and Poloniex [44,
45], where Binance alone has a monthly trading volume of more than $20
billion [46].

Cryptocurrency exchanges list various symbol pairs denoting a base and quote.
The currency pairs compare the value of one currency to another - the base
currency versus the quote. It indicates how much of the quote currency is
needed to purchase one unit of the base currency [30]. For example, to trade
Ethereum (ETH) for Bitcoin (BTC), the symbol pair would be "ETH/BTC".

Trades on cryptocurrency exchanges happens internally on exchanges; every
coin is tokenized. Making trades to be off-blockchain [47], and in return, and
there is no need for verification as trades happens instantly. Traders seemingly
prefer to use multiple exchanges simultaneously, and transaction between
exchanges are registered on the cryptocurrency’s blockchain, see Figure 2.6.
Exchanges are contradictory to the incentive of decentralized cryptocurrencies,
as they are centralized. However, 99% of cryptocurrency trades still happen on
exchanges [4].

Market data
Before the internet, trading took place over the phone, and now in the post-
internet age, trading takes effect over an exchange’s Application Programming
Interface (api) [48] allowing any software to pull data and interact with the
exchange. apis are useful in terms of extracting data and do analytics with it
and for traders who have algorithmic models that are fueled by live data and
need to issue orders within milliseconds.

1. Money made by the government[2]
2. Application of law by the government
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Figure 2.6: illustrates that exchanges incorporate numerous cryptocurrencies into
their platform and that investors trade assets with exchanges’ tokens.

OHLCV
Graphical illustrations of price movements for specific time intervals goes by
the name kline or candlestick chart. Such graphs utilize a set of Open, High,
Low, Close, Volumes (ohlcvs) points, describing the trading trends in a time
window. Table 2.1 illustrates a candle in its crude form, and Figure 2.7 shows
processed ohlcvs values making a candlestick chart. A kline’s top and bottom
wicks represent the highest and lowest trade price in its time interval, while the
color portrays whether the closing price was higher or lower than the opening
price [1]. Candles can define trading trends in any time interval, but exchange’s
apimostly allows a discrete selection of timeframes that commonly range from
one minute to several days.

Timestamp Price Trading volume

Open High Low Close
2019-06-01 23:59:59 2006.2 2061.3 1926.2 1984.1 216304.7

Table 2.1: shows the structure of an ohlcvs value. The volume presents the number
of assets that were traded over a period. The price field denotes the highest
and lowest price that was recorded, as well as the price from where the
period started (open) to where it ended (close).
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Figure 2.7: A real p&d organized by the group Crypto Pump Island on 2019-02-10
19:00. The target symbol was GXS/BTC on the exchange Binance.

Order Book
An order book, also called market depth, is an electronic list of buy and sell
orders on an exchange for a specific symbol pair, see Table 2.2 [49]. Sell
orders are in an asks list in a descending order while buy orders are arranged
descendingly in a bids list [50, 51]. The order book is dynamic and constantly
change throughout the day as traders issue new orders. There are many ways
to interpret the information in an order book; for example, a massive imbalance
of buy orders versus sell orders may indicate a price increase due to buying
pressure [50].

Asks Bids
Price Volume Price Volume

[0.028 ... 0.14] [12.4 ... 3.1] [0.027 ... 0.018] [56.4 ... 1.45]

Table 2.2: shows the structure of an order book. The left side (askers) includes the
quantity of coins that are buyable, while the right side (bidders) are bids
that are waiting to be matched against buyable coins.

2.2.3 Pump-and-Dump
A p&d scheme is a type of fraud in which the offenders accumulate a com-
modity over a period. Then artificially inflate the price through means of
spreading misinformation (pumping), before selling off what they bought to
unsuspecting buyers at the higher price (dumping)[1]. After the emergence
of cryptocurrency trading, p&d has become a popular legitimate price ma-
nipulation scheme among scammers, who leach assets from the misinformed.
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Two researchers at the Imperial College London revealed that on average, at
least two p&d schemes are carried out daily, producing roughly $7 million in
daily trading volume [52]. Price increases of up to 950% have been witnessed,
demonstrating the amount of potential profit [53].

On the modern stock market, p&d organizers focus on penny or microcap
stocks, which are smaller companies that do not comply with the standards
to being listed on the more comprehensive exchanges [5, 54, 55]. Microcap
stock exchanges are not held to the same standard of regulation, which implies
that there are usually not as much information about the companies that are
listed, making them easier to manipulate. Misinformation about the stocks
is usually spread through email spam, which has a net positive effect on the
stock price [54]. It is illegal to run price manipulation schemes on regulated
markets, and there are multiple cases where participants in a p&d have been
prosecuted [1].

There is a slightly different approach for p&ds on the cryptocurrency market.
The pump is a coordinated, intentional, short-term increase in the demand
of a symbol pair [5], organized by dedicated groups. These groups are often
public channels in chat applications like Discord or Telegram and are joined by
naive traders, who believe they will become wealthy in a short amount of time.
There are designated web pages and forums that contains information and
statistics regarding groups’ p&d success, one of these pages are PumpOlymp3.
The number of members in some of the prominent groups have peaked at
around 200, 000 [56].

Pump Groups
In the cryptocurrency market, p&d organizers create groups in an encrypted
chatting application such as Telegram and Discord. They advertise themselves
through social media platforms and forums [6] as intriguing groups that ensure
profit with little or no risk of losing assets. The group admins start to organize
p&dwhen the group typically consists of over1 000 optimistic traders. Only the
admins are allowed to post messages in the group restricting regular members
to see the messages posted by the admins; this functionality is enabled by the
admins to avoid member interference [5].

Before a p&d, the group admins announce details regarding it a few days ahead.
The information they provide is the exact time and date, the pairing coin, which
is more or less always Bitcoin, and the exchange. With the information, the
member can buy sufficient funds on the targeted exchange in advance. The

3. https://pumpolymp.com/

https://pumpolymp.com/
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same day the p&d is scheduled, the admins purchase a commodity in the base
coin over a period without raising the price. Then they send out countdowns
and reminds the members of previous successfully p&ds to motivate them to
participate, and the rules during the upcoming p&d. According to [5], the
standard rules are.

1. Make sure to buy fast.

2. Shill⁴ the announced coin on social media to attract outsiders.

3. HODL⁵ the coin for several minutes to give outsiders the possibility of
joining.

4. Sell in pieces at profit, not in chunks.

When the admins announce the coin, each member tries to be the first to buy
the published coin to ensure profit before the inevitable inflation. If they are to
slow, they might buy at the peak and are unable to make a profit. The pressure
of being the first is high because the coin peak within seconds to max ten
minutes [56]. After they have bought a significant amount of the coin, they
shill, in an attempt to trick outsiders into buying it, allowing them to sell easier.
The misinformation varies, but some common tactics include false news stories,
non-existent projects, fake partnerships, or fake celebrity endorsements [56].
Simultaneously, the admins encourage the members to hold while they sell
off what they bought earlier on that day, making them maximize their profit
before the inevitable price dump. As soon as the first fall in price appears, the
members start to panic-sell. If the price dips below the start price, the second
wave of traders buys to bounce the price up to where it began allowing them
to gain a small profit [5].

Minutes to hours later, when the coin recover its initial state. The admins
publish results that showcase the members’ impact and the potential profit.
Figure 2.8 shows real messages from p&d organized by the pump group Crypto
Pump Island⁶, and the Figure 2.7 shows the impact.

Nevertheless, in the end, only the admins and a few members are profiting
from a p&d while the majority are loosing. So why are there still people
enthusiastic about partaking a p&d, given the risk of being ripped off by
the admins? Because people believe that there are greater fools out there,
who would buy the coins at an even higher price than their original purchase

4. Cryptocurrency jargon for "promote" or "advertise" coin.
5. Cryptocurrency jargon for Hold.
6. https://t.me/crypto_pump_island

https://t.me/crypto_pump_island
https://t.me/crypto_pump_island
https://t.me/crypto_pump_island
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price [5]. The greater fools theory is also what thrives many other price
manipulation schemes [57].

30 minutes left to pump on Binance. 18:30

15 minutes left to pump on Binance. 18:45

5 minutes left to pump on Binance. 18:55

Next post will be the coin name. 18:55

Coin name: gxs 19:00

Go go go.. 19:00

Buy and Hold. And sell in parts 19:01

Amazing... 19:02

Hope everyone gets profit. Good holding 19:05

Figure 2.8: messages from the telegram group Crypto Pump Island on 10 February
2019.

Characteristics
Detection of p&d schemes requires insights in their operations to have the
ability to identify patterns that occur during a p&d. Table 2.3, defined by two
researchers at the University College London [5], summarizes some of the
fundamental similarities and differences with respect to the target, tactic and
timescale of traditional penny stock and cryptocurrency p&d schemes. It clearly
shows that traditional and cryptocurrency p&d schemes target the same type
of markets, but the tactic and timescale differ. The lack of trust among members
in the pump groups can explain the short timescale of cryptocurrency p&ds,
as they all want their piece of the cake and sell as soon as they profit instead of
holding. All the spreading of misinformation must happen in real-time because
of the short time pressure.

Using these characteristics, the same two researchers [5] formulated criterion’s
that can be helpful when detecting p&d patterns in exchange data (Table 2.4).
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Traditional Cryptocurrency
Target Low market cap Low market cap

Low volume Low volume
Low price Low price

Lack of reliable information Lack of reliable information

Tactic Misinformation Real-time
Privately organized Public or private group scams

Timescale Medium (days to weeks) Short (Seconds to minutes)

Table 2.3: Characteristics of traditional and cryptocurrency p&d schemes. (Source:
[1]).

The indicators are split into breakout and reinforcers. The breakout indicators
point out patterns that are present during the beginning of a p&d. And the
reinforcers are external aspects to strengthening our confidence in an alleged
p&d. The signs (+) and (−) are a confidential boost; the former denotes an
increase while the latter denotes a decrease. The volume and price factors in
the breakout indicators are discussed with an estimation window, referring to
a collection of previous data points, of some user-specified length [5].
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Breakout indicators Real-time indicators Post-pump indicators
Volume Has the volume at the cur-

rent data point been sig-
nificantly higher than in
the estimation window?

Was there a decline in vol-
ume after the event win-
dow where a pump was
detected?

Price Has the price at the cur-
rent data point been sig-
nificantly higher than in
the estimation window?

Was there a decline in
price after the event win-
dow where a pump was
detected?

Reinforcers Temporal dimension
Market cap Is the market cap of the coin relatively low? (+)

Number of exchanges Whether the coin is listed on multiple exchanges
and the indicators only spike on one (+)
Whether the coin is listed on multiple and the indi-
cators spike on multiple exchanges (neutral)
Whether the coin is not listed on multiple exchanges
(+)

Symbol pair Whether the coin is trading for BTC or some other
cryptocurrency (+)
Whether the coin is trading for USD or some other
fiat currency (−)

Time Whether the coin pump is on the hour(+)

Table 2.4: Indicators of p&d per temporal dimension and indicator type (Source: [1,
5]).
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2.3 Deep Learning
Machine Learning (ml) is a fast-growing field in computer science. It refers
to the ability to make a computer recognize specific patterns in data using
various complex algorithmic models. In the broader field of Machine Learning
(ml), recent years have witnessed a proliferation of deep neural networks,
with fantastic results across various application domains. Deep learning is a
subset of ml that achieves excellent performance and flexibility that surpasses
conventional ml algorithms [58, 59].

A breakthrough in Machine Learning would be worth ten Microsoft.
- Bill Gates

As ml has become a buzzword and categorized as state of the art and "the
solution" for every kind of problem. However, it is important to remember
that ml is not always the optimal solution for every type of problem. There
are certain cases where rule-based solutions perform better than ml, cases
where we can directly predict values by using simple rules, computations, or
predetermined steps that are easily programmable [9]. So when should we use
ml? According to [9], we should use ml in following situations:

• When tasks cannot be adequately solved using deterministic rule-based
solutions. A considerable number of factors like features, patterns, corre-
lated features, etc., can influence the answer. When rules depend on too
many factors, and many of these rules overlap or need to be tuned very
finely, it quickly becomes complicated to define these rules accurately.

• When tasks do not scale, e.g., manual detection of spam mail, which will
be a tedious process if there are millions of emails. ml solutions are
effective at handling large-scale problems.

Algorithms in ml are commonly subdivided into two major paradigms, unsu-
pervised and supervised learning. In supervised learning, the algorithms require
data and prior knowledge of each sample, called labels or ground truth, while
the algorithms in unsupervised learning only need data. There are two ap-
proaches under supervised learning, regression, and classification. Both share
the same concept of using data to make a prediction. Classification problems
refer to the ability to recognize a discrete set of classes, while a regression
problem, estimates a value from input data.

Deep learning allows computational models that are composed of multiple
processing layers to learn representations of data with various levels of abstrac-
tion [10]. Each layer’s output is the connected layer’s input [58]. These deep
learning models learn like many other ml models, by iteratively minimizing
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a cost function to adjust its internal weights using a training dataset. When
the weights are appropriately adjusted, it evaluates its performance by making
classifications on a test data set. ml model facilitates the automatic classifica-
tion of data, which when deployed, removes the need for a person to classify
the data manually [58].

Considering the amount of p&d events in trading data, a p&d can be catego-
rized as an anomaly as it exists significant more regular trading activity than
p&ds. The choice of a deep neural network architecture in anomaly detection
methods primarily depends on the nature of input data. One distinguishes
input data into sequential data (e.g., voice, text, music, time series, protein se-
quences) and non-sequential data (e.g., images) [59]. Cryptocurrency sources
produce sequential data, more specifically time series data. Time series data
are linearly ordered sequence of values of a variable at equally spaced time
intervals [60]. Anomaly detection in multivariate time series data is a challeng-
ing task, but Recurrent Neural Network (rnn) and Long Short-term Memory
(lstm) networks are shown to perform well in detecting anomalies within
time series [59].

2.3.1 Neural Networks
A traditional ml model do not have any perception of its previous predictions,
and when working with non-sequential data, it is not needed. However, when
having sequential data, a point only yields information within a specific context.
For example, humans do not start thinking from scratch every second. When
we read an essay, we understand each word based on our understanding of
previous words. We do not throw everything away and start thinking from
scratch again. Our thoughts have persistence [61]. The same concept can be
applied to cryptocurrency markets; we do not know if the price of a coin has
increased unless we know the previous values. Hence, if we attempted to detect
p&d without having any perception of change in price, both humans and ml
algorithms would have a hard time detecting them.

An Artificial Neural Network (ann) (Figure 2.9) is a powerful learning model,
and it is one of the most frequently usedmodel [62] that achieve state-of-the-art
results in a wide range of supervised learning tasks [63]. A vanilla ann does
not have a perception of previous samples. Thus, it can not catch trends in data.
rnn is a type of network that has an internal state allowing it to set samples
in a specific context. Yet, a standard rnn suffers from vanishing and exploding
gradient problems [64]. lstm networks is a type of rnn that solves said
problems by using lstm cells instead of standard rnn cells. The structure of
lstm networks is similar to Figure 2.9, and compose of three different layers,
called input layer, hidden layer, and output layer.
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Figure 2.9: structures an artificial neural network. The passive cells in the input layer
propagate their input data x to the layer of cells in the hidden layer. From
there on, the cell’s output in each layer is the succeeding cell’s input in
the next layer until the output layer returns a prediction y.

The cells in the input layer are mostly passive, meaning they do not make any
calculations nor modifying the data, and the number of cells is equal to the
number of features in the data. Their task is to duplicate their received data
and propagate it to every cell in the first column in the hidden layer.

The hidden layer has no interaction with the outside of the network. Hence,
the name hidden [65, 66]. This layer can comprise multiple layers with an
arbitrary number of cells but with more cells, the complexity of the network
increase. Each cell’s algorithmic structure depends on the type of network we
want to build(ann,rnn), perceptron and lstm are two cells that are often used,
where lstm is good at detecting pattern in sequential data, while a perceptron
is good at detecting pattern in non-sequential. All cells have at least two things
in common; they all have an input and an output, and the output from one
cell is the succeeding cells’ input in the next layer.

The cells in the output layer take input from the last set of cells in the hidden
layer. Their algorithmic structure is similar to the cells in the hidden layer, but
their output is also the final prediction from the network.

One can build a more complex network than in Figure 2.9 by extending the
number of hidden layers, where each hidden layer composes of even more cells.



2.4 RELATED WORK 25
There is no limit in terms of layers and cell, but with a deeper network, then
the time it takes to propagate input data through the network increases. And
layers with too many cells suffer from the universal approximation problem [67,
68]. So, determining the number of cells and layers actually boils down to
multiple trial and error attempts.

2.4 Related Work
An article from International Conference on Advanced Computational Intel-
ligence (ICACI) 2016, presented a model that detects p&d schemes on the
stock market with 88% accuracy [69]. The article describes how badly p&d
schemes are executed and organized. And from the patterns a p&d scheme
leaves behind, the article proposed mathematical definitions based on level 2
order book data with a depth of 10 to generate a training set consisting of
buying and sell orders. The researchers implemented a feedforward neural
network and trained it with the generated dataset, and achieved an accuracy
of precisely 88.28%.

Two students from Standford Unversity recreated the stock market model [69]
and made it compatible with cryptocurrency exchanges in 2017. In their work,
they used level 1 order book data to generate a training set to train a neural
network and a Support Vector Machine (svm). They labeled the dataset by
identifying p&ds by comparing a market’s price movement to BTC. The final
test results of their models had an accuracy of 78.13% with svm and 82.5%
with the neural network. Their research is interesting, they show that the order
book alone is valuable, but they seem to ignore other relevant extractable data,
also entirely ignore data preparation. As a result, we achieved significantly
higher accuracy than them.

Kleinberg and Kamps from the University College London [1] defined specific
patterns in p&ds and how they differ from the stock market. Also, they pro-
posed a novel anomaly detection approach based on a set of criteria for locating
suspicious transaction patterns on cryptocurrency exchanges. The most bal-
anced parameters for their algorithm resulted in about 1.6 p&ds per market
per day, for a total of 2150 p&ds over 20 days of data. Moreover, 75% of the
alleged p&ds were found to have corresponding price dumps. They state in
their conclusion; Ultimately, it is the hope that the information presented in
this paper is useful for further research into the detection of this fraudulent
scheme [1]. For us, this article proved to be indeed helpful as we use their
anomaly detection algorithm to find p&ds. Also, the p&d patterns they define
is essential in terms of the features we need to possess.
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Researchers from the Imperial College London wrote an article that analyzes
features of pumped markets and market movement of coins before and after
p&ds [5]. They implemented a predictive Random Forest model that gives the
likelihood of each possible currency being pumped prior to the actual pump
event. With a probability curve of slightly over 0.9, the model exhibits high
accuracy and is indicative of the probability of a coin being pumped. This
article has actually received a lot of recognition and attention [52, 53, 70] on
media platforms that cover cryptocurrencies. Their research in terms of how
the organizer tends to build up p&ds was invaluable for us when generating
features. They also presented their model’s feature importance, and the most
prominent feature is a coin’s capitalization.



3
Limelight’s Design
This chapter presents Limelight’s design. First, it briefly describes the system
and all the components within it. Then, it goes further into details regarding
every component in terms of their structure, function, and intent. Finally, it
describes the two phases Limelight has.

3.1 Overview
We are modeling Limelight as a Machine Learning (ml) pipeline with some
few extensions. Limelight is designed to extract raw data from numerous
cryptocurrency sources and transform it into valuable features in order to
classify Pump-and-Dumps (p&ds). The term ml pipeline can be misleading
as it implies a one-way flow of data when some elements in the pipeline are
cyclical and iterative where every iteration intends to improve the accuracy of
the model [71]. An illustration can be seen in Figure 3.1.

The first step in the pipeline pulls data over the internet from sources that has
information regarding p&ds in cryptocurrencies. The data is mostly incomplete
by lacking trends or being unprocessed, making it potentially challenging to
train a model and obtain good results. This process is tedious because sources
tend to have different request rates, Application Programming Interfaces (apis),
and the data can have various formats like JavaScript Object Notation (json)
or Extensible Markup Language (xml).

27
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Figure 3.1: Limelight’s architecture. The first processing stage in the pipeline is the
data retriever, and it pushes data to the feature engineering and data
cleansing stage to prepare the data forml. Historical data that spans over
the period where data is collected gets fetched and pushed through an
anomaly detection algorithm that detects p&ds. The labeled data gets
first preprocessed, then either pushed to train a model or, if deployed, to
straightly to a trained model that can make predictions.

The next step branches the retrieved data in two, live and historical data. Since
we are trying to detect p&ds in real-time we need to store live data continuously.
When we have captured a compelling amount of p&ds, we use an anomaly
detection algorithm [1] to detect p&ds in the gathered live data. This algorithm
is not compliant with live data, so we need to pull aggregated historical data
that span throughout the collected live data. As previously mentioned, anomaly
detection algorithms tend to have a high number of false positive compared to
true positive. Thus, we need to remove these false positives and keep the true
positive manually.

The input data ultimately determine the performance of a ml deep learning
model [58]. Training a model with the raw gathered live data is ineffective.
Hence, we need to define a new convenient dataset containing features created
by processing the collected live data; this is a highly critical process and will
later determine the classification performance of the deep learning model. The
gathered live data also need to undergo a cleansing process as a portion of it
presumably are not relevant p&d information.

With filtered anomalies containing p&d, we create a labeled dataset and
train our model. Obtaining good classification results depends, as mentioned,
on the features, but also how we decide to preprocess the dataset. Typical
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preprocessing strategies include dimensionality reduction and normalization.
Having a labeled preprocessed dataset, we can finally begin to train the deep
learning model. This a cyclical and a long process, as it requires many trial
and error attempts to find the optimal weights for the model. In each cycle, we
store the model’s weights because it is not always the case that each iteration
will improve the classification performance of the model.

For applications to utilize Limelight, they need to select a model and let live
data flow through the same processing stages as the dataset that was used to
train the model.

3.2 Internal Components
3.2.1 Retrieving Data
Every problem that is solved using ml requires data. The more data, the
better the results will be when training a model. As previously mentioned,
cryptocurrency sources like exchanges produce time series data containing,
e.g., price and volume of a coin. The data is continuously produced in a limited
amount with proportion to time.

Since we want to detect p&ds on exchanges in real-time, the nature of the data
we want to make classifications on is live fine-grained data so that the model
can detect them as early and accurately as possible. Aggregated historical
data is too coarse-grained because exchanges generally only allow a discrete
time interval selection of data where the smallest is typically one minute. The
duration where they start to where they peak varies from a few seconds to a
maximum of ten minutes [1, 52], and the ability to make accurate predictions
with one-minute data is questionable.

Training a model in real-time by pulling data is impractical because it will not
be labeled. In addition, sources can only produce a limited amount of data at
a time which will create a bottleneck of data supply to the model. To cope
with these problems, we have to pull and store current live data continuously;
this is a time-consuming process for we have to wait until we have captured
enough p&d events before we can start training. If anything fails, we may have
to start all over again as we are missing out on trends, which results in noisy
data.

From the reinforcers field in Table 2.4, we see that we have to fetch data from
various sources. An exchange alone does not produce data regarding a coin’s
capitalization, nor a coin’s price on a different exchange. Sources other than
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exchanges produce such metadata of coins, while exchanges only produce
internal trading data.

Master Slave Approach
We shape our data retriever like a master/slave model. Figure 3.2 is an example
that illustrates our data retriever with a master and its three data-pulling
slaves. Each slave in our data retriever is assigned a source that can e.g. be
an exchange. The communication between slaves and the master is as follows.
The master broadcasts a pull signal to the slaves, and they pull the data from
their assigned source. Then the master gathers the data from them and parses
it, and augments all the data into a single sample. Each sample the master
generate gets stored. This procedure takes effect in a fixed interval. By letting
the master signalize the slaves to retrieve data simultaneously, we collect clean
time-series data where each sample’s time gap is circa equal.

Slave0 Slave1 Slave2

Master 

DataDataData

Source0 Source1 Source2 

Figure 3.2: Limelight’s data retriever. The slaves are assigned a source. The master, in
a fixed interval, broadcasts a pull signal to the slaves, and the slaves fetch
data from their designated source. Soon as the slaves complete their task,
the master gathers the result from them.

Collecting Trading Data From Multiple Markets
Previous work in detection of p&ds [1] estimated that 1.6 p&ds is carried out
daily per market, and this raises several problems. First, multiple exchanges
have the same market, and we can not know which exchange they target unless
we have prior knowledge from their p&d group. Second, gathering data from a
single market is inadequate, the data retriever would with an estimate capture
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48 p&d occurrences, if it gathered every p&d event on a single market for a
whole month. Training a model with 48 p&d instances is inadequate.

To alleviate these problems, we collect data for all markets from a single
exchange to make sure we obtain as many p&d events as possible. We assume
the p&d pattern remain the same across markets. Otherwise, we may run
into trouble when training our model by having too few samples with various
patterns. Also, by training themodel using data from all themarkets generalizes
the model, whichmakes the model compliant to newmarkets who are excluded
during training.

Feature Description
From the p&d indicators described in Table 2.4, we define a set of features in
Table 3.1. We believe that these features contain the necessary information for
a model to detect p&ds. Features like a coin’s capitalization are available at
CoinMarketCap, while trading data like order book and Open, High, Low, Close,
Volume (ohlcv) values are available at exchanges. A specific feature that is
challenging to attain is aggregated Open, High, Low, Close (ohlc) values
from multiple exchanges, as this requires us to request multiple exchanges
simultaneously and aggregate the data.

Feature Description
ohlcv Latest ohlcv values.
ohlcv multiple ex-
changes

Aggregated ohlcv values from multiple exchanges.

Order book Level 1 (aggregated price and volume) order book
with a depth of 5.

Order book imbal-
ance

The imbalance between bids and asks orders and
quantity.

Coin capitalization
ratio

Coin capitalization ratio.

Volume traded Base and quote volume traded for the last 24 hours.
number of trades Number of completed trades for the last 24 hours.
bid and ask price Best bid and ask price for the last 24 hours.
bid and ask volume Best bid and ask quantity for the last 24 hours.
Average price Average price for the last 24 hours.
symbol-pair ex-
change rate

The rate of howmany exchanges that lists the symbol-
pair.

Time Unix timestamp.

Table 3.1: Features we believe are fundamental in the detection of Pump-and-Dumps.

https://coinmarketcap.com/
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3.2.2 Preparing Data
Data preparation is an important task. In practice, it has shown that data clean-
ing and preparation takes approximately 80% of the total data engineering
effort, as it requires solid domain knowledge of the subject. Data preparation
comprises those techniques concerned with analyzing raw data to yield quality
data. Some of the techniques are; data collecting, data integration, data trans-
formation, data cleaning, data reduction, and data discretization [72].

Because of this, we fetch data from multiple markets to create a generalized
model; we must prepare the data and make it equally scaled. Markets are
distinct, and they have different trading price and volume, which makes pre-
dictions with these raw numerical values nonviable. If a p&d occurs on a coin
with a low cost, and the price is increasing at 300%. Despite the high increase
and profit, the coin is still almost worthless compared to other expensive coins,
and the numerical price increase do not necessarily need to be that high. On
the other hand, if the price of an expensive coin increase with only 1%, the
numerical value can still be high despite the low percentage increase. Since
the model is generalized, it is weighing each market equally. So using raw data
like the price is infeasible, as a low price change in an expensive market reflects
a massive change in a cheap market. Thus, we must transform all these raw
market specific values to values that are general across markets.

Data Cleansing
Data cleaning, also called data cleansing or scrubbing, deals with detecting and
removing errors, inconsistencies, and unproductive features from data in order
to improve the quality of data [73]. Fetched data from exchanges includes
additional features not defined in Table 3.1. These features are removed as they
add nothing of value. Instead, they increase the number of dimensions and
makes the data more complex.

Markets with little or no activity may have intervals containing zero-data. For
example, if no investors have bought or sold assets in a specific interval, the
exchanges tend to set the trading values to zero. These zero-values create
significant spikes in the trend which we must address; otherwise, they disrupt
the data. Besides, having zero-data does not make any sense, if the price is
recorded to be zero, it means that the coin is free, which it is not.

We substitute every value that is zero by linearly interpolating each of them. Lin-
ear interpolation involves estimating a new value by connecting two adjacent
known parameters with a straight line [74]. These two known parameters are
non-zero values that are adjacent on each side of the zero-value. Thus, we form
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Equation 3.1 with the known parameters (x1,y1) (previous non-zero value)
and (x2,y2) (next non-zero value), y is the new value for some zero-value in
point x .

y = y1 + (x − x1)
y2 − y1
x2 − x1

(3.1)

Feature Engineering
Feature engineering is the process of using domain knowledge of the data
to create features that make ml algorithms work. Feature engineering is
fundamental to the application of machine learning and is both challenging
and expensive, but when done correctly, it can result in wonders [75].

Processing Order Book
As previously mentioned in subsubsection 2.2.3, p&d organizers invest in the
market before the p&d without raising the price. We believe that the order
book in said market oscillates before the pump, and especially during the pump.
Therefore, we calculate an imbalance between sell and bid orders; this is a
multidimensional problem considering an order book contains both a list of
prices along with its volume, as we saw in Table 2.2. Equation 3.2 reduces this
multidimensional problem to a single value. p and v is respectively the lists of
prices and volumes, and the annotations a and b denotes ask and bid orders.
If Equation 3.2 yields a value between (0, 1), it emphasize the bidders, if it
yields a value between (1,∞] then askers, and if it yields 1 the order book is
balanced.

imbalance =


pa1
...
pan

 ·
[
va1 . . .v

a
n
]


pb1
...

pbn

 ·
[
vb1 . . .v

b
n
] = 〈Pa ,Va〉〈Pb ,Vb〉

(3.2)
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Processing Trading Data
We process trading data such as price and volume by calculating the Percentage
of Change (poc). By doing this, we transform these values in each market to
the same scale, and eliminate the need for the model to adjust to raw values.
For example, if the coin ETH increase by $10 from a starting value of $100,
and the coin ADA increase by $5 from a starting value of $50, then both coins
increase by 10%.

pct(x ,vγ ) =
x −vγ

x
(3.3)

We define the function pct as in Equation 3.3 to calculate the poc. It calculates
the percentage change in point x concerning a previous value v with a time
lag γ . We consider x and v to be a single value like the price or volume,
while γ indicates moving backward in time from point x . We must be vigilant
when using this technique, if the data contains values that are zero, we might
perform a zero-division that can clutter with the data unpredictably. However,
since we scrubbed the data first and removed zero-values, this should not be a
concern.

Processing Time
According to [5], the time is essential when classifying p&ds. They are typically
executed on the hour (6:00, 7:00, etc.) because organizers usually does not
choose a random time. Data retrieved from sources are getting timestamped,
and we can take advantage of these timestamps to check whether data was
generated at the hour or not. The function xδ transforms a Unix timestamp1
to a value in the interval [0, 1). The closer xδ is to the margins, the closer the
time is to the hour, but since 0 and 1 symbolizes the same, we have to process
it further before we can use it as a valuable feature.

xδ (xunix) =
xunix mod 3600

3600
(3.4)

1. Unix timestamp is a way to track time as a running total of seconds since the Unix Epoch,
January 1st, 1970.
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Figure 3.3: Gaussian distribution t from Equation 3.5 with the parameters σ = 0.1
and µ = 0.5. The curve describe how close a given time-parameter x is
on the hour (6:00, 7:00, etc.).

t(xδ , µ,σ ) =
1

√
2πσ 2

e−
xδ −µ
2σ 2 , where

{
µ = 0.5
σ = 0.1

(3.5)

We define a Gaussian distribution function t (Equation 3.5) with the parameters
µ = 0.5 and σ = 0.1 which creates the graph illustrated in Figure 3.3. The
graph shows when given t a xδ close to 0 or 1 (6:00, 7:00, etc.), t returns a
value close to 0, but when given 0.5 (6:30, 7:30, etc.) it returns a value close
to 4. t demonstrate that we can separate data by how close it was generated
to the hour. Also, we can always tweak σ to adjust the width of the curve
Adjusting the curve allows us to be more strict, the wider the curve, the more
strict.

3.2.3 Collecting Pump-and-Dumps
Manually collecting p&d events from chat applications to label our collected
data. seems infeasible in the long run. Although Livshits and Xu [5] hand-
picked 220 pump-events from July to November in 2018 from 358 different
Telegram groups to train a Random Forest model, they still missed a lot of other
executed p&d schemes as there are numerous chatting applications and private
organizers [76]. Also, searching for p&d events is a time-consuming process,
and incorrect labeling occurs when we lack membership to all of p&d groups,
which results in suboptimal prediction capacity [77]. We also have to be aware
of whether a p&d was successfully executed or not; labeling failed attempts
as positive only contributes to label noise. Instead of manually collecting p&ds
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from groups in chatting applications, we believe that it is possible to hand-pick
p&ds by reasoning abductively with the help of an anomaly detection algorithm
to pinpoint suspicious time intervals in historical data.

The anomaly detection algorithm identifies local contextual anomalies based
on fixed recent history called a sliding time window. A sliding window is a
period that stretches back in time (lag factor) from the present containing
events at specified intervals. The event intervals can overlap with each other,
or they can be disjunct. As events exceed the lag factor, they fall out of the
sliding window, and they are no longer matching against the rules applied to
the sliding window [78]. With a sliding window, we can compare values in a
given period, contrary to using single values, which alone does not yield much
information in sequence data.

The anomaly detection algorithm is proposed by Kleinberg and Kamps [1],
which is inspired by previous research in Denial-of-Service (dos) attacks [79].
It is a threshold based technique to find a suspicious increase in price and
volume of a coin. If the price and volume in a specific interval are higher than
some threshold, then the interval is flagged as anomalous and warrants further
investigation.

Price Anomaly
We compute the price anomaly threshold by the simple moving average listed
in Equation 3.6. µpγ of ohlcv values denoted x with a lag factor γ multiplied
with a given percentage increase ϵp . We consider x and γ as ohlcv objects,
and x −γ indicates moving backwards in the sliding time window by a factor of
γ [1]. If the highest registered price in x ’s period is greater than the computed
threshold, we flag the period as anomalous.

µ
p
γ (x) =

∑x
i=x−γ xclose

γ

price_anomaly(x) =

{
True if xhiдh > ϵp · µ

p
γ (x)

False otherwise
(3.6)
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Volume Anomaly
Calculating the volume anomaly threshold is almost identical to calculating
the price anomaly. We are only substituting xclosinд and xhiдh with xvolume .
The resulting formula is listed in Equation 3.7.

µvγ (x) =

∑x
i=x−γ xvolume

γ

volume_anomaly(x) =

{
True if xvolume > ϵv · µ

v
γ (x)

False otherwise
(3.7)

Filtering Anomalies
Anomaly detection algorithms have a high false alarm rate [80], which makes
them difficult to use. And since we want to use the anomalies we collected to
train a model with, it is imperative to remove false p&ds. Otherwise, training
a model with false p&ds will make the model perform poorer, and result in
even higher occurrences of false positives. Therefore, we manually remove all
the false-positive anomalies, but removing them requires prior knowledge of
p&ds, which we do not have.

The anomaly detection algorithm checks whether p&ds occurs in a specific
interval. We visualize one-minute klines that span over intervals that are
flagged anomalous. By plotting these values we can compare them to real
p&ds, like the ones seen in Figure 2.7. A market’s capitalization, if the pairing
coin is BTC, is also helpful when filtering p&d. E.g. if the anomaly detection
algorithm flagged a suspicious interval in the ETH-BTC market, and it visually
looks like a p&d, then it still would with a high likelihood not be a p&d as
ETH is the coin with the second highest capitalization [81]. As this would
break the pattern where the organizers target coin with low capitalization.
Further helpful characteristics regarding p&ds is described in Table 2.3 and
Table 2.4.

Labeling Pump-And-Dumps
With the new generated features from collected data and filtered anomalies
containing p&ds, we can label the new features and define a dataset. But
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first, the filtered anomalies are still intervals where a p&d occurred, and not
precisely when it occurred. So, we need to precisely define where every p&d
started and ended, before labeling.

Because the purpose of p&ds is to raise the price of an asset, the point where
the price change is highest in an interval is where the p&d peaked. If we have
the peak of a p&d, we can search from the peak and down the descending
slopes on each side of it. Left side will be the pump and the tight side will
be the dump. From each side, we search until the change in price is equal or
smaller than 0. Finally, when have defined the start and end of every p&d,
we label all the new features positive where there are p&ds, and negative
otherwise.

3.2.4 Deep Learning
This section describes the model we use to detect p&ds, and how we process
data, trains the model, and which metrics we should use to evaluate the model.
These steps are an iterative process, where each iteration tend to improve the
model.

Preprocessing
Before training amodel with the generated dataset,we transform the dataset by
normalizing the features as they have various scales. Then, a common technique
is to normalize the input data. Normalization creates new values from the
dataset, but still maintain the general distribution and ratios in the source data
while keeping values within a scale applied across all used features [82]. Also,
normalization of data occasionally improves the performance of the model by
accelerating convergence speed of its weights during training [83, 84].

There are several ways to normalize data, and the normalization technique
used may have an impact on the performance of the model. Since p&ds are
anomalies, some features like percentage change in price and volume will
make them look like outliers in the data. A traditional method called min-
max normalization is repeatedly used in detection of outliers [85, 86]. This
technique provides a linear transformation of the data [87], allowing us to
keep the distance ratio, and it scales every value into the range [0, 1].

x ′i j =
xi j −min(x j )

max(x j ) −min(x j )
(3.8)
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Equation 3.8 is the min-max normalization formula for a coefficient xi j in
a dataset x . x j represents a column in a dataset with samples as row vec-
tors.

Model
The model type we use to detect p&d is a Long Short-term Memory (lstm)
network, illustrated in Figure 3.4. This network contains lstm cells in the
hidden layer as we want the cells to have an internal state to remember the
trend in data. We modeled the detection of p&ds as a binary classification
problem, it is either positive (p&d) or negative (not p&d). Thus, in the output
layer we only require a single perceptron to make the final classification.

Input layer Hidden layer

i1

in

.

.

.

Output layer

o1

x1

xn

y1

LSTM1

LSTMm

.

.

.

Figure 3.4: structure of our model. The passive cells in the input layer propagate their
input data x to the first hidden layer that compose of lstm cells. Then
the cell’s output in the hidden layers is the cell’s input in the output layer.
The last cell yields a prediction y.

Training
Before we start to train our model, we have to split the dataset into two sets, a
training set, and a test set. The training set will we use to train the model, and
the test will we use to evaluate the model. There is also a validation set that is
used to fine-tune the hyperparameters during the training, but since there are
so few p&d samples, we choose to avoid using a validation set and use those
p&d samples we have to train our model and evaluate it.



40 CHAPTER 3 L IMEL IGHT ’S DES IGN
As previously mentioned, p&ds are anomalies, and that results in a significant
class imbalance between positive and negative samples, which, when trained
will make the model to overfit to the negative class and more or less ignore
the positive class, it entirely depends on the distribution of them. Also, the
academia is split concerning the definition, implication and possible solutions
to this problem [88] making it currently ambiguous how to properly deal with
it.

Pump-and-
Dump

Not Pump-and-
Dump

Pump-and-
Dump

Not Pump-and-
Dump

Pump-and-
Dump

Pump-and-
Dump

Pump-and-
Dump

Pump-and-
Dump

Orginal Dataset New Dataset

Figure 3.5: Oversampling (source[89]). Involves duplicating a minority class (p&d)
until the size is equal to the majority class (not p&d).

We believe that we can solve our imbalance problem by using a technique
called oversampling, which Figure 3.5 illustrates. Oversampling gathers all
the samples from the minority class and duplicates them until the amount is
approximately equal to the majority class. There is also a technique called
undersampling, that select random samples into a subset from the majority
class until the size is equal to the number of samples in the minority class, but
by using the oversampling technique, we can train our model with the whole
dataset. With a balanced dataset, we can finally train our model.

Depending on the size of the dataset and number of epochs, training a model
takes a really long time. Thus, after each training, we store the model and all
its weights and other internal parameters.

3.3 Phases
Till now, in this chapter, we have described each component in Limelight. As
we mentioned in Chapter 2, when we have trained a model, we can feed the
model with real-time data and it will classify whether the given data is a p&d
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or not. This allows us to dismiss numerous components which are not needed
anymore. They only need to be present during the training phase. So we can
divide Limelight into two phases, a training phase, and a deployment phase.
In the training phase, Limelight depends on all the components except the
application box in Figure 3.1. In the deployment phase, there are only a few
components needed.

3.3.1 Deployment
Figure 3.6 illustrates the components that are needed in this phase. The first
component, the data retriever, function precisely like described above, it fetches
data and pushes it further down the pipeline. The next two stages need to
retain their internal parameters from the training phase. Otherwise, the model
will classify input data that is processed differently from what it was trained
with.

Data retriever

Cryptocurrency
 sources

Feature
engineering and

data cleaning

Data
Models

Weights

Preprocessing Application

Figure 3.6: deployment pipeline. The data retriever fetch data and pushes it further
to create new features. The new features get normalized and given to the
application. With data and a model, the application can make a prediction.

In order for applications to use Limelight, they need to select a model that was
generated during the training phase. With both a trained model and real-time
data, they can potentially predict whether the given input data is a p&d or
not.
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Implementation ofLimelight
This chapter describes the implementation of Limelight. Firstwewill go through
the programming language and modules we use. Then we will detail the
implementation of each component.

We implement Limelight in the programming language Python, which is a
powerful high-level scripting language that is excellent for building prototypes
and conducting experiments. It has an extensive standard library, in addition
to an active community which provides specialized software that implements
various protocols, Application Programming Interfaces (apis), etc. It has roots
in the following programming paradigms, procedural, object-oriented, and
functional. In recent year, it has climbed to the very top of the most popular
programming language according to PYPL1 [90].

Python has an interpreter, a program that executes code. Each python inter-
preter has a Global Interpreter Lock (gil), which is a mutex that protects
access to Python objects, preventing multiple threads from executing Python
bytecodes at once. This lock is necessary mainly because of CPython’s memory
management is not thread-safe [91]. And because of the gil, using a single
interpreter to run code in parallel is impossible. To run parallel code in python,

1. Popularity of Programming Languge
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https://www.python.org/
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we must initate multiple interpreters.

The modules we use are all available from PyPI2, a python software repository,
and they are installable by using PyPI’s package installer pip. The following
modules are used in Limelight:

• ccxt - package containing a uniform api that implements numerous
exchanges.

• keras - high-level deep learning network framework.

• numpy - fundamental scientific computing module.

• pandas - library containing data structures and data analysis tools.

• matpotlib - plotting library.

• time-series - module for working with time-series data.

• scikit-learn - tools for data mining and analysis.

• python-binance - Python implementation of the exchange Binance.

• CoinMarketCapAPI - Python implementation of the cryptocurrency
tracking site CoinMarketCap.

4.1 Data Retriever
We implement Limelight’s data retriever as a master/slave architecture like
described in Subsection 2.1.1. The master is the main process, and the slaves
are threads. Hence, the master and the slaves are running inside a single
interpreter. The slaves are assigned a source, and they continuously pull data
from the markets as long as they do not exceed their designated source request
rate. Then, in a fixed interval, the master collects data from the slaves. All the
slaves are distinct objects, but they implement the same interface, allowing the
master to exploit the concept of polymorphism when retrieving data from the
slaves.

2. Python Package Index
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Code Listing 4.1: Data retriever’s slave interface

class Slave(Thread):
def __init__(self, markets):
def header(self):
def start(self):
def stop(self):
def row(self, market):

code listing 4.1 is the interface each slave implements. The initializer method
__init__ initialize the internal state of each slave, and the argument markets
is a list of markets the slaves need to fetch data from. start and stop makes
the slave start and stop retrieving data. start method spawns a daemon that
continuously retrieves data that gets cached in memory. header returns a list
of feature names in metadata that gets extracted from the markets, while row,
parse and return the latest cached data from a given market. As long as the
daemon run and fetch data, the cache will always contain the latest data.

The execution flow of the data retriever begins with the master fetching coins
paired with BTC from Binance. Then, the master initializes slaves with those
markets. After the initialization, the master fetches each slaves list of headers
to define the structure of the data, and have prior knowledge of data retrieved
from its slaves. All the headers are augmented into a single header and stored
as the first row in a file that identifies a market, creating a data frame like
Table 4.1. The headers are defined as c and the data/feature as f . Then, the
master and slaves go into an iterative phase where each iteration, the master
retrieve the freshest data from its slaves’ cache. The data then gets parsed
such that each feature f gets appended to their corresponding file and column
c.

c1 c2 . . . cn
1 f1,1 f1,2 . . . f1,n
2 f2,1 f2,2 . . . f2,n
...

...
...
. . .

...
m fm,1 fm,2 . . . fm,n

Table 4.1: A dataframe can be thought of as a dictionary-like container. Where the
columns c, are names and represents keys, while the features f are values
that are mapped to a column.

Naming and storing features in a dataframe is user-friendly in terms easy
access to features. It is practical when processing the data by indexing features
by name, instead of indexing the features numerically, which is a hassle as we
would need to remember what each index means.
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4.1.1 Sources
We implement three slaves who are assigned different sources. The first slave is
pulling data from the exchange Binance by using the module python-binance;
the second slave is pulling data from multiple exchanges with the help of
the module Ccxt. Finally, the third slave pulls data from the cryptocurrency
tracking site CoinMarketCap by using a module we create.

Binance
The exchange Binance provides various type of services through their api. We
only need the newest trading data regarding the initialized markets. We use
their WebSocket api that takes form as a pubsub client where Binance pushes
data to us. The first function that we subscribe to is the ticker service, a 24-
hour rolling window containing statistics for a symbol that gets pushed every
second [92]. code listing 4.2 shows a ticker JavaScript Object Notation (json)
response, and this response is retrieved for each market we subscribe to. In
the ticker response, there are Open, High, Low, Close, Volume (ohlcv) values
for the past 24-hour and other additional features that may prove themselves
valuable in the detection of Pump-and-Dumps (p&ds).

Code Listing 4.2: Ticker response from Binance.

{
"e": "24hrTicker", // Event type
"E": 123456789, // Event time
"s": "BNBBTC", // Symbol
"p": "0.0015", // Price change
"P": "250.00", // Price change percent
"w": "0.0018", // Weighted average price
"x": "0.0009", // First trade(F)−1 price
"c": "0.0025", // Last price
"Q": "10", // Last quantity
"b": "0.0024", // Best bid price
"B": "10", // Best bid quantity
"a": "0.0026", // Best ask price
"A": "100", // Best ask quantity
"o": "0.0010", // Open price
"h": "0.0025", // High price
"l": "0.0010", // Low price
"v": "10000", // Base asset volume
"q": "18", // Quote asset volume
"O": 0, // Statistics open time
"C": 86400000, // Statistics close time
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"F": 0, // First trade ID
"L": 18150, // Last trade Id
"n": 18151 // Total number of trades

}

Furthermore, we also want the order book from Binance, who has proved to
be valuable by two researchers at Standford as they were able to detect p&d
with an accuracy of around 80%. So, in addition to subscribing on the ticker
symbol, we also subscribe to Binance’s depth function. This function will return
a response equal to code listing 4.3.

Code Listing 4.3: Depth response from Binance.

{
"lastUpdateId": 160, // Last update ID
"bids": [ // Bids
[
"0.0024", // Price
"10" // Quantity

]
],
"asks": [ // Asks
[
"0.0026", // Price
"100" // Quantity

]
]

}

Ccxt
The second slave uses the ccxt module, which provides a uniform api access
to numerous exchanges. We use this module to fetch Open, High, Low, Close
(ohlc) values across exchanges. There is a complication by using this module
because it provides uniform access to over 100 exchanges, which becomes
troublesome when the slave is initiated with the markets it has to fetch data
from, andwe do not have any prior knowledge of exchanges’ markets, yet.

To abbreviate with this problem, we first create a reverse map, that maps
markets to a list of exchanges. This was done by initiating all the exchanges
from the ccxt module and request all the exchanges’ markets and map every
market to a list of exchanges. Furthermore, we defined a Publish/Subscribe
(pub/sub) system illustrated in Figure 4.1, that enables synchronization of
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Figure 4.1: exchanges illustrate publishers; they extract market data that gets propa-
gated to the broker. The subscribers can express interest in specific markets
to the broker. And the broker forwards data from the publishers to the
subscribers.

request issued to exchanges. From the Figure 4.1, the exchanges (threads)
illustrate publishers that fetch market data and propagates it to the broker.
Subscribers (threads) can issue interest in a specific market to the broker.
The broker synchronizes with exchanges and makes sure them issues request
simultaneously. When all the exchanges have propagated their response to the
broker, it aggregates all the data from each coin. And finally, the broker pushes
the data to the subscribers by using a callback function which was given when
the subscribers first issued their interest in a market. Subscribers just wait for
the master to request data from their cache.

The method we use to extract market data from ccxt’s uniform api is the ticker
function, which contains similar information given by Binance, but we only
use the ohlc values. With the reverse map we created, we also estimate the
ratio of how many exchanges that lists a specific market as this feature was
explicitly described in Table 2.3 as a p&d characteristics.

CoinMarketCap
The final slave retrieves data from CoinMarketCap, which is a popular cryp-
tocurrency tracking site and contains statistics regarding a coin’s capitalization,
circulation, etc. We must use CoinMarketCap’s private api as they recently dep-
recated their public api. Using their private api requires an api key for user
identification. With the api key, CoinMarketCap are able to track users request
rate, which is troublesome as their request limit to a free subscription is low,
only 333 request daily is allowed to issue. They have defined a severe complex

https://coinmarketcap.com/
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request system. Where a user has a load of credits, and the amount of credit
one has, depends on the type of subscription one has. A user also has a daily,
weekly, and monthly request rate system, which also depends on the type of
subscription on have.

There are some Python modules in existence that allows one to extract data
from CoinMarketCap, but they completely ignore the request system, which
when used will be problematic as we continuously will exceed the request limit
and credit system, which ultimately results in a permanent ban from using
their api.

Thus, we create a module that supports throttling of requests, which adjusts to
both the credit system and the number of requests one can issue. And we cache
every request in an SQLite database because CoinMarketCap mostly provides
data that rarely or slightly change, and the cache functionality comes with an
exceed factor.

These are the four endpoints at CoinMarketCap:

• Cryptocurrency

• Exchanges

• Globals

• Tools

We use the modules requests, requests_cache, and ratelimit. The requests
module for making requests to CoinMarketCap’s api. Requests_cache is a
monkey patch to the request module, and caches every request made by it. The
ratelimit allows us to define function decorators that restricts the number of
function calls within an interval.

This slave fetches data from the endpoints, cryptocurrency and global. In the
global endpoint, we use the global-metric function that contains the total
market capitalization of all coins. And in the cryptocurrency endpoints, we
fetch cryptocurrencies’ latest market data that contains fields like capitalization,
which says how a coin is worth. CoinMarketCap does provide market data, but
since we cache every request and the request limit is limited to 333 a day, we
can not use it as it results in us using stale trading data.
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4.2 Data Preparing
After gathering enough data, we start to prepare it for Machine Learning
(ml). Each market has a file containing data from the sources we recently
described. And since we prepare the data in the files equally, we can speed up
the operations by processing the files in parallel. Each file we have to process
can be small in general, but combining them all, they become quite large, and
it is infeasible to load them all into memory. Hence, we only process a fixed
number of files in parallel.

We parallelize every operation by creating, yet again, a master/slave structure
where the master process spawns the same number of child processes (slaves)
as there are markets. The slaves are initialized with a market, a semaphore to
control the number of processes to run inside a critical section, and a queue
to signalize back to the master when it’s done. Inside the critical section, the
child loads the dataset, execute the desired operation, and stores the result.
After the slave leaves the critical section, it signalizes back to the master. The
slaves use the module Pandas to load the datasets into a dataframe. With a
data frame, a slave can index features by their column name, which makes it
convenient when we do cleansing and feature engineering.

The first operations involve cleansing the data. We cleanse by removing cor-
rupted files. We also remove the features that are not needed, e.g, in code
listing 4.2, the constant categorical field symbol are not needed when classify-
ing p&d. The last cleansing process we do is to interpolate the data. Values
involving price and volume gets linearly interpolated as we describe in Chap-
ter 3.

The second series of operation we do is to create new features. We calculate
the Percentage of Change (poc) like described in Chapter 3 on all the values
we interpolated. Then we create new features from using the timestamp that
we added along with the data when it was stored. Finally, we create a new
feature that describes the imbalance of the order book.

4.3 Collecting pump-and-dumps
We implement the anomaly detection algorithm to detect anomalous intervals
contains p&d, this algorithm was described in Chapter 3. The algorithm marks
an interval anomalous if there is a significant increase in price and volume in
that period compared to the previous periods. We can not use the anomaly
detection algorithm with the real-time data that was collected, as this data is
not compliant with the algorithm. Instead, we retrieve historical ohlc data
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from Binance that span over the period we gathered data.

This algorithm uses sliding a window containing a fixed number of ohlcv
values. We created a sliding window module which wraps around a python
list. The list has fixed size, and when adding new elements to the list, the
last element will be removed, just like a fixed size First In, First Out (fifo)
structure.

code listing 4.4 illustrates a response from Binance that contains historical
ohlc values. With these values and a sliding window, we start to continuously
add ohlcv values that span over the period we collected data. And we itera-
tively calculate whether the newest added ohlc is an anomaly compared to
the other ohlcv values in the window. The fields that we use from code list-
ing 4.4 are close and high to calculate whether the price surpasses a specified
threshold, while we use the field volume when calculating whether volume
exceeds a specified volume threshold.

Code Listing 4.4: Historical kline response from Binance.

[
[
1499040000000, // Open time
"0.01634790", // Open
"0.80000000", // High
"0.01575800", // Low
"0.01577100", // Close
"148976.11427815", // Volume
1499644799999, // Close time
"2434.19055334", // Quote asset volume
308, // Number of trades
"1756.87402397", // Taker base volume
"28.46694368", // Taker quote volume

]
]

As we have previously mentioned, anomaly detection algorithms tend to have
a high occurrence of false positive compared to true positive. So we remove
the false positives anomalies by first plotting finer-grained ohlcs values over
the periods that were flagged anomalous in each market. Then, removing
the anomalies that we believe is not a p&d, while retaining the anomalies
that we believe is a p&d. We plot the ohlc values by using the matplotlib
module.

After filtering p&ds, we label the features that we have created. We use the
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same master/slave method, which we used during the feature engineering
stage. Where each process is initiated with a semaphore and queue, but also
the p&d anomalies. To label the dataset, slaves loads its assigned dataset and
identify the interval where the p&d occurred, and find the points where the
most significant change in price percent happened. From the highest point, we
label the points as positive from where the change in percent was positive until
it becomes negative.

4.4 Deep Learning
We normalized each market using the min-max method described in Chapter 3.
We have to process the data over two iterations, in the first iteration, we iterate
over all the markets to find the largest and smallest value in the features. Then,
in the second iteration, we normalize the features.

To create a balanced dataset, we undersample the data. So, we first have to
collect all the positive samples from the datasets. Then we select random neg-
ative sequences from them until the number of negative and positive samples
are approximately equal.

We use the deep learning library Keras for building the model, and the first
layer contains Long Short-term Memory (lstm) cells and the output layer
contains a single perceptron. Training a lstms network requires us to reshape
our 2D input data, into a 3D shaped matrix. The 3D shape represents matrices
inside a matrix. A sample in a 3D space is a matrix containing a batch of vectors
within a time lag. Then the third dimensions is a batch of these new samples.
After shaping the data, we can finally train our model.



5
Evaluation
This chapter evaluates Limelight. It first describes how the experiment was
executed. Then, we present the results. Finally, we discuss the results and
propose potential improvements.

5.1 Experimental Setup
We started the experiment by retrieving real-time data from 138 different
markets throughout33 days,where everymarkets’ pairing coinwas Bitcoin. The
interval between data points was 5 seconds, which resulted in approximately
570 000 samples per market. Over these days, we collected in total 47GB of
data. The sources that we used to fetch data from were those we presented
in the Chapter 4, namely Binance, CoinMarketCap, and aggregated data from
Ccxt.

Table 5.1 contains details regarding every feature that were fetched. The
operation column describes how we processed features. We cleaned the data
by removing features that we believed was unproductive and those were tagged
as Removed. The features tagged Percentage of Change (poc), was calculated
by interpolating the respective values between samples. We chose 10 minutes
for the time lag, due to the period where a Pump-and-Dump (p&d) start
to where it peak is around 10 minutes as described in Chapter 2. The field
Imbalance and Time are processed like described in Chapter 3.
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Source Symbol Feature Description Operation
Local dt Local timestamp Time
Binance e Event type Removed
Binance E Event time Removed
Binance s Symbol Removed
Binance P Price change percent None
Binance p Price change PoC
Binance w Weighted average price PoC
Binance x First trade(F)-1 price PoC
Binance c Last price PoC
Binance Q Last quantity PoC
Binance b Best bid price PoC
Binance B Best bid quantity PoC
Binance a Best ask price PoC
Binance A Best ask quantity PoC
Binance o Open price PoC
Binance h High Price PoC
Binance l Low Price PoC
Binance v Base asset volume PoC
Binance q Quote asset volume PoC
Binance O Statistics open time Removed
Binance C Statistics close time Removed
Binance F First trade ID Removed
Binance L Last trade ID Removed
Binance n Total number of trades PoC
Binance ap_[0 − 4] 5x depth - asks price PoC
Binance av_[0 − 4] 5x depth - asks volume PoC
Binance bp_[0 − 4] 5x depth - bids price PoC
Binance av_[0 − 4] 5x depth - asks volume PoC
Binance dep Depth imbalance Imbalance
ccxt oc Aggregated open price PoC
ccxt hc Aggregated high price PoC
ccxt lc Aggregated low price PoC
ccxt cc Aggregated close price PoC
ccxt ic Exchange to market rate None
CoinMarketCap cap Capitalization rate None

Table 5.1: features that were retrieved and used to train our model.
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We used the anomaly detection algorithm which we previously described in
Chapter 3 to pinpoint p&d intervals. We fetched Open, High, Low, Close,
Volume (ohlcv) values that span over the period we collected data, and these
ohlcv values had an interval of one hour. The threshold parameters we chose
for the algorithm was a price increase of 1.10 and a volume increase of 3.00,
and the time lag we chose was 6 hour. By using this algorithm we were able
to identify in total 280 anomalies. Of these anomalies we removed 80 that
seemed false.

Figure 5.1a shows three p&d anomalies we believe was true, while Figure 5.1b
shows three p&d anomalies we believe was false. In Figure 5.1a the price
suddenly increases by approximately 20%. This sudden increase only lasts for
a few minutes before the price dumps straight down to what it was before the
increase. These price characteristics are precisely like the p&d patterns we
previously defined in Table 2.3.

Figure 5.1b on the other hand, show anomalies that we did not believe was
p&ds. And it seems like the price fluctuates substantially, and the price does
indeed fluctuate, but the scale in these charts is different from the other. The
difference between the lowest and the highest price was around 5% in these
charts. If any of these allegedly false p&ds was true, then these fail in raising
the price significantly and suddenly.

To create a dataset, we used the anomalies to label the collected data. The
generated dataset was then normalized using the min-max normalization
method. We split the dataset into a training set and a test set. The training
set consisted of 75% of the dataset, which resulted in data from 104 markets,
while the test set contained the remained 25% of the markets, which resulted
in 33 markets. The training dataset was undersampled in order to create a
balanced dataset.

The model used was a Long Short-term Memory (lstm) network, where the
hidden layer contained a single layer with 50 lstm cells. Each cell had a time
lag of 10 points, which resulted in 50 seconds of memory as the interval be-
tween each sample is 5 seconds. We also added dropout to prevent over-fitting
as lstm cells tend to frequently overfit their training data [93]. The output
layer contained a single perceptron. The optimizer we used was adam, which
is an extension to stochastic gradient descent [94]. The optimizer has shown
that a model’s weights converges faster [95]. The network was trained with
the training set over 5000 epochs with the batch size set to 10. To define the
performance of the network, we classified all the samples in the test dataset
and rounded the probabilistic prediction to either 0 (p&d) or 1 (not p&d).
The computer we used to train our model with had the following specifica-
tions:



56 CHAPTER 5 EVALUAT ION

15:00:00 16:00:00 17:00:00 18:00:00
Time

0.0000054

0.0000056

0.0000058

0.0000060

0.0000062

0.0000064

Pr
ice

SNT-BTC

SNT-BTC

14:00:00 15:00:00 16:00:00 17:00:00
Time

0.0000105

0.0000110

0.0000115

0.0000120

0.0000125

0.0000130

Pr
ice

AST-BTC

AST-BTC

14:00:00 15:00:00 16:00:00 17:00:00
Time

0.000200

0.000205

0.000210

0.000215

Pr
ice

EDO-BTC

EDO-BTC

(a) Anomalies that seemed like a p&d.

15:00:00 16:00:00 17:00:00 18:00:00
Time

0.000216

0.000218

0.000220

0.000222

0.000224

0.000226

Pr
ice

MDA-BTC

MDA-BTC

17:00:00 18:00:00 19:00:00 20:00:00
Time

0.000945

0.000950

0.000955

0.000960

0.000965

0.000970

0.000975

0.000980

Pr
ice

EOS-BTC

EOS-BTC

04:00:00 05:00:00 06:00:00 07:00:00
Time

0.000126

0.000128

0.000130

0.000132

0.000134

Pr
ice

STEEM-BTC

STEEM-BTC

(b) Anomalies that not seemed like a p&d.

Figure 5.1: Visualization of 6 out of 280 anomalies that were collected. The three
anomalies on the right were later removed as those were believed to be
false, while the three on the left was kept as they seemed legitimate.
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• GPU - Nvidia GeForce GTX 770
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5.2 Results
We use a confusion matrix as the first metric to evaluate the performance of
our model. A confusion matrix is structured like Table 5.2 and it shows the
number of correct and incorrect classified samples, and it helps us defining
further metrics. True positive, tp, is the number of samples that are correctly
classified as p&d, while true negative, tn, is the number of samples that are
correctly classified as not p&d. f p are samples that are incorrect classified as
p&d, and false negatives, f n, are samples that are p&d, but classified as not
p&d. p and n are the true total numbers of samples in each class, while p ′ and
n′ are the total numbers of predicted samples in each class. Finally, N is the
total number of samples.

Predicted class
True class Positive Negative Total
Positive tp: true positive f n: false negative p
Negative f p: false positive tn: true negative n
Total p ′ n′ N

Table 5.2: confusion matrix. The diagonal (true) are correctly classified samples. Anti-
diagonal (false) are misclassified samples.

As we see in Table 5.3, the test and training datasets are greatly imbalanced.
Only 8 821 samples are p&ds, while 18 321 816 samples are normal trading
data. In our test dataset, over one of every 2 000 sample was positive. Table 5.3
contains the aggregated results of every market we tested the model on. The
confusion matrix of each market will be presented later in this chapter.

From Table 5.4,we see metrics that can be used to define the performance of our
model. The metric accuracy and error, are contrary measures. Accuracy is the
percentage of samples classified correctly, and error is the percentage of samples
misclassified. The results of these are 97.82% and 2.17% respectively.

The tp-rate is the ratio of correctly classified p&d samples. When given a
positive p&d sample, then there is a 89.67% chance of classifying it correctly.

Predicted class
True class Positive Negative Total
Positive 7 910 911 8 821
Negative 388 795 17 933 021 18 321 816

Total 396 705 17 933 932 18 330 637

Table 5.3: Limelight’s confusion matrix. In total 17 933 932 samples were correctly
classified against 396 705 misclassified samples.
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Name Formula Result
error (f p + f n)/N 0.0217

accuracy (tp + tn)/N 0.9782
tp-rate tp/p 0.8967
fp-rate f p/n 0.0212

sensitivity tp/p 0.8967
specificity tn/n 0.9787
recall tp/p 0.8967

precision tp/p ′ 0.0199

Table 5.4: Limelight’s performance. The various metrics are definable through using
the confusion matrix in Table 5.3.

The fp-rate is similar, when given a negative sample, there is a 2.12% chance
of classifying it positively. These two measures are visualized using a Receiver
Operating Characteristic (roc) curve in Figure 5.2. It gives us a visual perspec-
tive of the performance of the model. Ideally, a classifier has a tp-rate of 1 and
an fp-rate of 0, and a classifier is better the more its curve gets closer to the
upper-left corner. The closer the curve is to the diagonal, we make as many true
decisions as false ones which is the worst case [96, p. 563]. The Area Under the
Curve (auc) score is the rate of successful classifications [97]. Our roc curve
and auc shows that our model has accurate predictable capabilities.

The sensitivity and specificity is the ratio of classifying a positive or negative
sample correctly. The sensitivity is the percentage of classifying a positive p&d
sample correctly, which is 89.67%. The specificity is the opposite and is the
percentage of classifying a negative sample correctly, which is 97.87%.

The metrics shown until now proves that the model has acceptable predictable
capabilities. However, the metrics that reveal the flaws of our model are the
measures recall and precision. Recall is precisely like the tp-rate and sensitivity,
and is the percentage of classifying a positive sample correctly. Precision on
the other hand, is the percentage of samples that are classified as p&d and are
correct. In our case 1.99%. So whenever our model predicts a p&d, there is
only a 1.99% that it is correct, and this results in quite a few false alarms.

F-score is a common metric that relies on recall and precision. The formula is
listed in Figure 5.3. An ideal F-score is 1, and the worst is 0. The measure is
flexible in a way that allows us to emphasize recall and precision differently by
adjusting the parameter γ . When γ gets closer to 0, the more we emphasize
precision, and when γ is 1 we emphasize them equally, and finally when
γ is over 1, we emphasize recall more. And as we see, when emphasizing
precision most by giving γ = 0.5, the score yields only 0.0247. When equally
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Figure 5.2: ReceiverOperating Characteristic describe our classifier performance using
a curve. A classifier is better the more its curve gets closer to the upper-left
corner. And on the diagonal, it makes as many true decisions as false ones.
The Area Under the Curve represents the rate of successfully classifying a
sample.

Fβ = (1 + β2) ·
precision · recall

(β2 · precision) + recall
,


F0.5 = 0.0247
F1 = 0.0389
F2 = 0.0912

Figure 5.3: F-score

emphasizing them by giving γ = 1, the score increase slightly, and finally, when
emphasizing recall most the score is 0.0912.

Table 5.5 shows the confusion matrix of each classified market. We colorize
the cells to visualize the performance of the model. The green cells on the
diagonal contain the number of correctly classified samples, and the color
intensity illustrates the percentage of correctly classified samples in its class.
The red cell on the anti-diagonal consist of the number of misclassified samples
and the color intensity represents the percentage of misclassified samples in
its class. The intensity in white cells has a split meaning, it is a positive sign
on the anti-diagonal (red), but a negative one on the diagonal (green).
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WABI-BTC MITH-BTC ETH-BTC
376 36 0 2 0 0

23 440 531 622 26 798 528 675 0 555 474

XRP-BTC BTT-BTC OST-BTC
0 0 0 0 488 53
0 555 474 3 400 552 074 8 705 546 228

CDT-BTC GNT-BTC TRX-BTC
407 51 375 105 0 0

18 303 536 713 20 994 534 000 289 555 185

MTH-BTC DLT-BTC SC-BTC
487 16 584 85 0 0

12 032 542 939 19 223 535 580 7 234 548 240

SNT-BTC XEM-BTC VIB-BTC
323 40 0 0 674 7

8 138 546 973 914 554 559 22 358 532 435

MTL-BTC HC-BTC STORM-BTC
477 36 251 188 0 0

29 687 525 274 5 213 549 822 14 995 540 479

INS-BTC LUN-BTC NXS-BTC
0 1 792 57 0 0

7 032 548 439 12 443 542 182 6 554 548 920

TNB-BTC NPXS-BTC ZRX-BTC
441 3 0 0 0 0

47 144 507 886 3 381 552 093 10 138 545 336

VET-BTC RCN-BTC ETC-BTC
0 0 487 26 160 30

1 321 554 153 10 697 544 264 2 890 552 394

SNM-BTC SKY-BTC LOOM-BTC
1 209 55 141 44 0 0

21 950 532 260 14 423 540 866 1 485 553 989

CVC-BTC PHX-BTC PPT-BTC
238 74 0 1 0 1

8 393 546 769 13 211 542 262 6 010 549 463

Table 5.5: confusion matrices of the 33 tested markets.
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5.3 Discussion
To interpret the results, we need to define the potential consequence of mis-
classifications. So, to push it to the extreme, assume our real job was to classify
whether a patient has cancer or not. The model we use to predict cancer has
already been trained and does have accurate predictions, but like many other
models, it is not entirely flawless, and occasionally it makes an incorrect prog-
nosis of cancer. At some point in the future, the model makes a wrong decision,
and it predicts that a patient has cancer, while the patient is actually cancer free.
The consequence is that the patient is starting treatment, but it can also have
other side effects that impact the patient in a somatic and psychological way,
but the patient will continue to live. If we turn the table, and the model predicts
that a patient does not have cancer, while the patient truly has. Then, at some
point in the future, the patient will die of cancer, which is an unforgivable
fault made by the model. This example only clarifies the potential harm of
misclassifications, and it is not like that a patient will die from misclassifying
p&ds.

So to apply the consequence of misclassifications in the detection of p&ds.
Assume that, an exchange uses our model to detect p&ds in order to ban users
that participate in them. As we have seen, our model is not perfect, it makes
wrong decisions occasionally, and at some point in the future, our model makes
a wrong decision and incorrectly predicts a p&d. Subsequently, the exchange
could ban a set of investors from using their platform. And by banning investors
on false terms the exchange’s credibility will be undermined, and have many
additional long-term consequences for them. On the other hand, missing p&ds
are not harmful. Despite that, some investors avoid getting banned, but they
might not be so lucky if they ever try again.

From the opposing point of view, the consequence of misclassifications for
investors are slightly different from exchanges that seek to prevent p&ds. As
investors incentive is to buy early in a p&d and sell when the coin peak. And
if they buy on false terms, it is not catastrophic; they will not lose their assets.
Most likely, there was only a small increase in the price that made the model
issue a false p&d, which can actually prove to be profitable. Also, occasionally
missing a p&d is not critical, it only results in being passive during a p&d, and
one does not lose assets of being passive, but one does skip out on potential
profit.

As we saw from our results, all the metrics except the F-score and precision
performs excellent and surpasses other models that detect p&ds. However,
The F-score and precision illustrate a fatal flaw in our model, and as the
model currently stands, deploying it will be remarkably hard as there would
be too many false alarms. There are ways to adjust the precision but at a cost.
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Improving it will with a high likelihood cost us our current tp-rate and make
that worse, but due to the nature of the metrics, increasing precision will also
increase other measures. As changing the precision either increase the true
positives or decrease false positives.

Increasing true positives in our case can make precision worse. We must try
to make the model fit to additional positive samples simultaneously, and there
are over 2 000 more negative samples. So, our angle should be to decrease the
false positives, in order to increase precision, but that may result in a decrease
of true positives.

To adjust the false positives, we can be more strict when classifying, as men-
tioned in end of Section 5.1, we rounded each prediction. Probabilities over 0.5
is classified as negative, while probabilities under 0.5 are classified as positive.
If the prediction is precisely on the 0.5 threshold, then the model can not
separate it, but these cases are scarce, and a case that is often entirely ignored.
However, the point is that we can adjust this 0.5 threshold in terms of how
strict we want to be. By lowering this threshold, we can be more strict; we can
be more sure of whether it genuinely is a p&d or not. This method is also very
flexible as the threshold is simple to adjust and do not require us to train our
model again.

Othermethods to adjust false positives is to train ourmodel with an imbalanced
dataset that inclines the negative class. This method is not preferred as it
requires us to retrain our model over and over again to evaluate it. This
method was also our first trial, which when evaluated resulted in 99.99%
accuracy. However, there was only one problem. It could not recognize any
p&ds; it classified all samples as negative and had a tp-rate of 0%.

We also tried to adjust the loss-cost of each class during training, such that it
favored positive over negative. This method was error-prone and incredibly
hard to control as we had to guess how much our model’s weights should
change during training.

Ultimately, before using Limelight, one should consider the various conse-
quences of misclassifying and then adjust the decision threshold accordingly
to minimize misclassifications in one class.
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Conclusion
Since the emergence of cryptocurrencies, exchanges have and still play a central
role in the cryptocurrency ecosystem. With over 99% of all trades happening
on exchanges, one can say that they are an appealing platform for investors
despite that they are mostly unregulated. Unregulated investment platforms
attract scammers who organize various price manipulation schemes like Pump-
and-Dumps (p&ds), and this have become troublesome on exchanges as the
scammers produce in total $7 million in daily trading volume.

Our thesis statement was to detect p&ds in real-time by using deep learning,
and we did so by designing and implementing Limelight. We modeled it
like a Machine Learning (ml) pipeline, where the first stage collected data
from Binance, CoinMarketCap, and aggregated data from Ccxt. Then, with
the collected data we defined a new dataset by cleaning and engineering new
features of it. To label our dataset we used an anomaly detection algorithm
to pinpoint p&ds, and to reduce the occurrences of false p&ds we manually
removed them. With a labeled dataset, we normalized it, and trained a Long
Short-term Memory (lstm) network.

To train our lstm network, we collected data over a period of 33 days result-
ing in total 47GB of data. The anomaly detection algorithm pinpointed 280
anomalies over the period we collected data, and from these anomalies we
removed 80 false p&ds. The lstm network we trained has an accuracy of
97.82% and an Area Under the Curve (auc) of 0.979.
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6.1 Contributions
We published two packages on PyPi, CoinMarketCapAPI and timeseries.
The former extracts data from the cryptocurrency tracking site CoinMarket-
Cap, and the latter works with time series data. Both modules can be easily
installed with PyPi’s package install pip. There are unit tests for both modules,
and integration tests for the CoinMarketCapAPI module as this module have
multiple dependencies. We used pytest, a testing framework in Python, to
execute all the tests and calculate the percentage of code that was covered. In
the timeseries package, we were able to cover 100% of the module, while in
the CoinMarketCapAPI, we were able to cover 86%. The following tables show
code statistics regarding Limelight, CoinMarketCapAPI, and timeseries.

The following tables shows lines of code in each project, and it was calculated
by using a tool called loc. Noticeably, docstrings in Python is counted as code
lines and not as a comments.

Language Files Lines Blank Comment Code
Python 13 2 371 383 26 1 962

Markdown 1 108 27 0 81
Makefile 1 35 10 0 25

Text 1 3 0 0 3
Sum 16 2 517 420 26 2 071

Table 6.1: Lines of code - CoinMarketCap module

Language Files Lines Blank Comment Code
Python 5 207 48 6 153

Markdown 1 48 13 0 35
Makefile 1 29 8 0 21

Sum 7 284 69 6 209

Table 6.2: Lines of code - Timeseries module

Language Files Lines Blank Comment Code
Python 39 2 026 377 156 1 493

Makefile 1 32 9 0 23
JSON 1 10 0 0 10
Text 1 3 0 0 3

Markdown 1 1 0 0 1
Sum 43 2 072 386 156 1 530

Table 6.3: Lines of code - Limelight
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Dataset
Another notable contribution is the two datasets we have produced during
the thesis. The first dataset contains raw data that are directly extracted from
Binance, CoinMarketCap, and aggregated data from multiple sources, and
is available at https://bit.ly/2Wpkfws. The second dataset, the one we used
to train our lstm network and produce the presented results, is available
at https://bit.ly/2Ex0GYJ. Hopefully, these two datasets becomes useful for
researchers that also seeks to detect p&d events.

6.2 Concluding Remark
Through designing, implementing, and evaluating Limelight, we prove that it
is feasible to detect p&ds in real-time using deep learning. With an accuracy
of almost 98% the model achieves a very high accuracy. Unfortunately the
imbalance in the datasets gives us a low precision of 0.2%, but the consequences
of mispredicting is not necessarily negative.

Besides creating Limelight, we implemented two other Python modules that
we published on PyPI, and shared two datasets that can be further used in the
detection of p&ds.

6.3 Future Work
Improvement Suggestions
Labeling p&d samples in the dataset, is and will remain problematic as long
as we do not have any prior knowledge regarding whether a p&d actually
happened or not. Optimally, knowing every p&d event that happen during
the phase where Limelight collects data allows us to label the samples with a
higher precision, which results in more accurate results. Hence, if some publish
accurate and detailed p&d events, or if we improve the anomaly detection
such that we get more accurate measures, then we can also be more precise
when labeling samples.

In this thesis, Limelight only uses a few features from CoinMarketCap. We
only used those features we genuinely believed is useful in detecting p&d.
Since this is not a problem that can be easily solved, more features may
improve the performance of the model. Thus, we can utilize more data from
CoinMarketCap in the future. The same can be applied to the cryptocurrency

https://bit.ly/2Wpkfws
https://bit.ly/2Ex0GYJ
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source that aggregate data from multiple sources, we can probably extract
more data from it than just Open, High, Low, Close (ohlc) values.

A typical preprocessing stage is to reduce the number of dimensions in the
data. Because of the huge class imbalance and that samples are timeseries
data, we have to be careful when reducing dimensions. A method that we
believe is optimal when reducing dimensions is a method called backward
selection.

Applications
We see a crossroad when it comes to usage of Limelight, either be ethical or
unethical. Exchanges can be ethical in terms of preventing p&ds by allowing
Limelight to detect them in real-time and punish or blacklist those investors
that participate them. Such that their investors are buying and selling assets
on the same terms, instead of a few investors deceiving others and profit from
them.

Investors can both be ethical or unethical. They can decide to participate in
p&ds by buying assets early in the p&d and sell when the coin peak, however,
this requires Limelight to detect them very early in order to profit from this
technique. Investors can also use Limelight ethically by preventing investing
when a p&d occurs, such that they do not lose any assets, but not profiting
from it either.
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