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Abstract

Remote sensing of planetary surfaces is an effective method for gaining knowl-
edge of the processes that shape the planetary bodies in our solar system. This
is useful for uncovering the environment of the primordial solar system and to
study the current state of the upper crusts of the other planets in our neighbor-
hood. A recent 6-meter wavelength polarimetric radar map of the Moon [39]
showed unexpectedly low depolarized radar returns in two regions on the lu-
nar nearside. These two areas were a highland region between Mare Imbrium
and Mare Frigoris, and the highland area surrounding the Schiller-Zucchius
impact basin. These two regions showed characteristics unlike those of typical
highland regions of the lunar surface. So far, there has been no readily available
explanation for this observation. In this study, it is shown that the likely cause
is an increased loss tangent due to chemical differences in the first few hundred
meters of the lunar soil. We also show the absence of any coherent subsurface,
which could be the preserved remains of an ancient basaltic plain. We do this
by comparing the 6-meter polarimetric radar map to other relevant data sets: 1)
surface TiO5 and FeO abundance, 2) surface rock population, 3) radar maps of
the Moon with other wavelengths, and 4) visual spectrum images of the Moon.
The area near the Schiller-Zucchius basin was shown to be consistent with
other areas with similar surface chemical compositions, but the region between
Mare Imbrium and Mare Frigoris showed significantly lower mean power in
comparison to otherwise similar regions. While we can not conclusively de-
termine the cause, we hypothesize that the low radar return is explained by
an increased concentration of iron and titanium oxides in the volume beneath
the surface, potentially due to remnants of primordial lunar volcanism. The
results show that long wavelength polarimetric radar measurements of the
Moon are very powerful tools for studying the earliest stages of the evolution
of the Moon.
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Introduction

From the beginning of human history, man has been fascinated by the Moon.
Ancient religions and myths [42] have centered around the implications of a
full Moon; from the myth surrounding werewolves [44] to the magical powers
of herbal medicine mixed at exactly the right time in the lunar cycle.

Ancient scientists used the lunar phases to create calendars [8], and in more
recent times tide tables vital for sailing ships to enter the dock at the right
moment [45]. In our days, studies of the Moon allow us to gain insight in
planetary formation and increase our understanding of the Solar System.

Our Moon had a violent birth according to the Giant Impact hypothesis [6].
At an early stage of the Earth’s development, approximately 4.5 G.A (billion
years ago), it collided with Theia, a planetary object about the size of Mars.
This collision liquefied any hard surface that might have been present at the
time, and ejected large amounts of molten mantel material into space. Some
of this material rained down as a hailstorm of molten lava, and some was
flung out of the Earth’s orbit, becoming near-Earth asteroids. The remainder
became a short-lived ring system that eventually gathered to become our Moon.
This hypothesis is the currently accepted explanation for how the Earth-Moon
system came to be.

During the period from 4.5 G.A. to 3.8 G.A. the impact rate was much higher
than it is today, meaning that the upper crust of the rocky planets were con-
stantly being gardened by impact events. This era was called the late heavy
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Figure 1.1: This figure shows the radar map of the northern nearside as well
as an image mosaic from the Lunar Reconnaissance Orbiter Camera (LROC)
database with a similar projection. The area marked shows significantly re-
duced depolarized power compared to other highlands nearby. Map taken from
Vierinen et al. [39].

bombardment period. Approximately 3.8 billion years ago[6] the impact rate
declined significantly, and structure of planetary surfaces became more stable.
It is worth noting that the existence of the late heavy bombardment period is
a matter of ongoing debate in the scientific community[15].

On Earth, we have an atmosphere and tectonic activity constantly reworking
and reshaping the surface. Thus, we have lost much of the remnants of our
Earth’s primordial surfaces. These processes are absent in the lunar environ-
ment, allowing us to examine the remnants of the early development of the
lunar surface. Our Moon thus resembles a time capsule, which allows us to
peer further into the history of the Earth-Moon system.

The surface of the Moon can be divided into two distinct types; maria and
terrae. The bright grey fields (see figures 1.1 and 1.2) are anorthositic highlands
caused by the destruction of the early crustal formation in the proto-lunar
magma ocean. The light anorthosites would float on top of the heavier magma
as a loose layer of broken rock, growing thicker as the Moon cooled. Due to
mixing and gardening by impact events, the topography of this early landscape
was in constant flux. Highlands are also called terrae.
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Figure 1.2: Southern nearside from the same experiment as Figure 1.1. a) shows
an LROC mosaic projected around the south pole. Marked are the craters
Schiller and Schickard, as well as what appears to be an ancient impact basin.
b) shows a zoomed-in and rotated image of the area. c) shows the radar map,
and the impact basin denoted in b) is visible here as the dark circle in the lower
half of the image near 1000 km. Note the "halo” surrounding it with a reduced
power, marked with a white line.
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The dark basaltic areas are volcanic flow complexes caused by later upwellings
of magma after the decline of the impact rate. The frozen magma lakes are
also called maria, and are composed of denser, iron-containing basalts. Many
of the visible near-side maria are present in massive impact basins like Mare
Imbrium, where the lunar crust was excavated by an impactor approximately
the size of Wales (250 km diameter). These basaltic maria span the age of
3.8 G.A. to about 2 G.A., but meteorite fragments show the existence of lunar
basalts as early as 4.35 G.A.[37]. This could mean that volcanic events were
present earlier than previously assumed, but were destroyed by impacts.

Some areas of the Moon do not easily fit into the dichotomy of mare and terrae.
Cryptomare are basaltic structures caused by volcanic activity that have since
been covered by highland material [18], making them hidden from view. After
the discovery of cryptomaria, the mare coverage of the nearside increased by
3% of the total lunar surface area, from 17% to over 20%. One way of dating a
cryptomare is to identify the origin of the material covering it, as the impact that
ejected material onto the then-uncovered mare must necessarily have occurred
after the formation of the mare itself. Cryptomare allow us to investigate early
Lunar volcanism and early evolution of the Moon in in general. They could
potentially shed light on the question of what the mare creation rate was like
in the time before the decline in impact rates, as the covered structures might
be better insulated from further destruction by subsequent impact events due
to it’s thicker regolith?.

1.1 Main scientific question

The radar measurements that are the focus of this study are the longest
wavelength polarimetric inverse synthetic aperture radar measurements of the
Moon to date. They were produced with the Jicamarca Radio Observatory
(JRO) 6-meter wavelength radar in Peru [39]. The study identified two large
regions, where the radar return was found to significantly deviate from the
general pattern of mare and terrae. These two areas are the focus of this thesis
work.

Figures 1.1 and 1.2 depict the JRO radar measurement, and an visual spectrum
image of the Moon for the Northern and Southern hemisphere. The areas
of interest, where long wavelength radar reflectivity significantly deviates
from visual spectrum reflectivity is marked on the maps. Figure 1.3 shows
the same maps using orthographic projection. The first anomalous region
is located between Mare Frigoris and Mare Imbrium (F-I) in the Northern

1. Regolith: Upper layer of lunar surface



hemisphere. The other divergent region surrounds the ancient Schiller-Zucchius
(S-Z) impact basin. Both of these regions have significantly lower depolarized
radar return than other highland regions. As can be seen in the images, there
is a general high correspondence between visual albedo and depolarized radar
return.

The highlands generally have a high visual albedo while simultaneously being
easy for radar wavelengths to penetrate due to their low content of chemicals
that attenuate radio waves (TiO5 and FeO). The opposite is true for the maria,
with their high iron content and dark regolith. As a result, regions on the Moon
that are bright in visual images tend to provide high depolarized radar return,
while visually dark regions tend provide low radar return for long wavelengths.
However, for some reason, the two regions identified in the 6-meter radar maps
deviate from this general pattern.

The S-Z area has been studied before as it exhibited characteristics of being a
cryptomare [3]. The cryptomare in the region was discovered to have an area
approximately 6 % of the exposed mare surface, using the extent of dark halo
craters in the area. Our earlier work showed a significant reduction in power
in the ancient impact basin in this area, which supports the presence of a cryp-
tomare. Due to the large halo of reduced depolarized return we hypothesized
that the cryptomare might be much more extensive than previously found, as
an extensive cryptomare is one way to explain the reduction in power.

The F-I highland has not been previously discussed in the context of cryp-
tomaria. Neither has the region been discussed in the context of low depolar-
ized return for long-wavelength radar either. As cryptomaria are one of the
possible explanations of severely reduced depolarized power, we hypothesized
that this area may be a very large cryptomare.

In this work, we will seek to explain the physical mechanisms that could cause
the anomalously low radar return in the F-I and S-Z regions. We aim to study
the possible physical mechanisms that could cause the reduction in depolarized
power. If we are able to determine what causes the low depolarized return,
this could give further insight into the historical development of the area being
studied, and ultimately, the early evolution of the Moon and how radar remote
sensing can be used to explore the lunar environment.

This study is interdisciplinary; combining lunar geology and long wavelength
radar remote sensing. This study primarily focuses on ancient lunar volcanic
manifestations, cryptomare, which can be obscured or covered by geological
processes that have occurred at later times. Our primary methodology is ap-
plication of long wavelength radar, which is known to be a powerful tool for
probing the subsurface and discovering hidden features that are not otherwise
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obvious. On the Earth, long wavelength radar measurements have been used to
e.g., find subsurface aquifers buried beneath the Sahara desert [19] and to aid
archaeological discovery. In our case, long wavelength radar observations will
allow probing deep into the subsurface of the Moon, to study the subsurface
composition of the Moon.

1.2 Relevance for the Norwegian school system

The benchmarks of competency are what defines the knowledge and skills
students should acquire in the course of their education, which is defined
by the Norwegian Department of Education [38]. One of these benchmarks
for the high school science subject is: “forklare hvordan elektromagnetisk
straling fra verdensrommet kan tolkes og gi informasjon om verdensrommet”
(Utdanningsdirektoratet, 2013). This can be roughly translated as ”explain
how electromagnetic radiation from space can be interpreted and how it can
provide information about space”. This thesis relates to this in that it details
interpretation and informational content of EM waves in the context of radar
mapping. While the specific methods used here might be outside the scope
of the class, general knowledge of radar methods and mapping can be part of
achieving this competency.

The history and evolution of the solar system is something many students are
interested in. Using this interest to motivate and encourage students to both
learn science and enjoy the learning process can help recruitment to higher
levels of science education.

My father once told me a story about his high school music teacher that made
an impact on him. All the previous lessons in music would be a tired teacher
playing vinyls and lecturing the class about the origins and meaning behind
it. His new teacher once asked the class who had heard of the Ballad of Revolt
(Kjempeviseslatten). When none of the students had, the teacher played it
himself on the piano. My father said that knowing his teacher could actually
create music, not just talk about it while it played on vinyl made a great
and lasting impression on him. Therefore, while the subject matter in this
thesis might not relate very well to the specifics of competency directed by the
Department of Education, the knowledge and methods gained while working
to create it may help me inspire students in the same way.



LROC image LROC image
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Figure 1.3: A comparison of optical images from the LROC and depolarized
radar SAR images by Vierinen et al. Top left: image centered on the highland
region between Mare Imbrium and Mare frigoris. Top right: image centered
on the Schiller-Zucchius basin on the southern hemisphere. Bottom left: de-
polarized SAR image centered on the highlands between Mare Imbrium and
Mare frigoris. Bottom right: depolarized SAR image centered on the Schiller-
Zucchius basin.
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1.3 Overview of this work

In order to answer the reason for the mysterious radar dark regions on the
Moon, we have formulated several hypotheses that could explain the mea-
surements. In order to test these hypotheses, we have compared the 6-meter
wavelength radar maps with other auxiliary measurements of the Moon, which
provide information about the geological properties of the Lunar surface. We
have used visual images gathered by the Lunar Reconnaissance Orbiter Camera
(LROC), radar data gathered by the SELENE (also known as Kaguya) Lunar
Radio Sounder instrument, a 70-cm wavelength radar map with the Arecibo
radio telescope, and multi-spectral measurements of surface geochemical com-
position. We have also developed a radar scattering model to analyze how
radio propagation losses and resonant scatterers within a volume affects the
the measured radar cross section.

The structure of this thesis is as follows:

* Chapter 2: Background. This chapter provides the necessary background
information and organizes the previous research that will be used to
answer our question.

* Chapter 3: Method. This chapter describes the way in which we inves-
tigated our main scientific problem. Here we present three hypothetical
solutions and describe how we will test them.

* Chapter 4: Results and discussion. In this chapter, we present our findings
for each hypothesis and discuss what this implies for our main scientific
question.

* Chapter 5: Conclusions. We discuss our findings and relate them to
previous research. We also discuss what remains unanswered, and what
future work could done to reach closure on the remaining open questions.



Background

This chapter will present the background knowledge needed to understand
our main scientific question, and the methods we use to explore it. It contains
information about lunar geology and how the surface properties of the Moon
has changed through time. There is also a section on previous radar studies
on the Moon that are relevant to this work, as well as visual and multispectral
analysis. We will also describe the specifics of the Jicamarca experiment and
range-Doppler mapping.

2.1 Lunar Geology

The chemical composition of the Moon is almost identical to that of the Earth,
a fact supporting the “big splash” hypothesis of the origin of the Moon, where
Earth collided with a planetesimal called Theia, and a mixture of both objects
created both the Earth’s crust and the lunar crust. Since then, the lunar surface
has been shaped predominantly by impact events and early lunar volcanism on
the nearside, creating two distinct terrain types. These are the basaltic maria,
which are remnants of lava lakes, and the regolith highlands formed by the
destruction of a slowly cooling lithosphere suspended over a magma ocean in
the early history of the Moon.
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2.1.1 Surface Evolution

Figure 2.1 illustrates how the lunar surface is thought to have evolved over
time. In the early history, the lunar surface was not stable enough to form
a lithosphere! due to high temperatures and frequent impact events. Any
structure, either formed by impact events such as craters, basins, and impact
melts, or volcanic structures like basaltic flows, were destroyed by subsequent
impacts. Later, when impact events became less frequent and the Moon cooled
down, a lithosphere of broken rock formed, called the megaregolith. As the
cratering rate had declined, structures like volcanic flow complexes and large
impact basins were no longer being broken down and gardened. Due to this,
they survived, and are still visible today as the large dark regions on the near
side of the Moon.

2.1.2 Mare and Terrae

The terra and mare surface types of the Moon are generally very distinct
from each other, and tend to be similar to themselves. Terrae are composed of
anorthosites and tend to be heavily cratered. They are generally also at higher
elevations than the maria. The maria are composed of basalts and tend to be
less cratered than the highlands. There is a much larger extent of maria on
the nearside than the farside. They tend to be in low-lying areas like impact
basins.

Anorthosite is a rock type composed mainly of feldspar (K, Na, Ca)AlSi3Og.
This mineral composes the primary part of most rocky planet crusts, and is
composed of some of the most abundant elements in the Earth’s crust[i4].
This is particularly true for the Moon, where anorthosites account for nearly
all the visible crust aside from the basaltic mare. This has been determined
by physical samples brought back from the Apollo missions as well as mul-
tispectral imagery used to detect the surface composition [11]. Anorthosites
are characterized by being very light with a density between 2600 and 2800
g/L (in comparison, liquid iron has a density of 7874 g/L). During the early
differentiation of a planet, these minerals will readily float to the top of a
magma ocean, which is one of the proposed reasons why they are so common
in planetary lithospheres.

Basalts are a class of rocks which form when iron-rich magma originating from
within the depths of the Moon cools rapidly. They are fine-grained and dark,
and in the case of the Moon, generally have an iron content between 15%
and 23%. Lunar basalts are also classified by their titanium content into high-

1. litosphere: solid crust of unmolten, nonviscous material
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Figure 2.1: Visualization of lunar surface and megaregolith evolution over time
by Hartmann [17]. The dashed line represents the regolith production rate
over 100 My. The early crust was broken apart by impact events, leaving a
thick layer of broken or agglutinated rock. Volcanic structures were likewise
destroyed, until the cratering rate declined enough for structures to survive to
the current day. Note that x-axis does not have a constant scale. Figure used
with permission from author.
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titanium, low-titanium and very-low-titanium basalts, where the low titanium
variant is the most common on the Moon. These types of rock generally form
by volcanic eruptions expelling magma onto the surface, where it spreads and
cools relatively rapidly.

2.1.3 Structure of the Lunar surface

The lunar crust consists of several different layers, according to Heiken et al.
[20], see figure 2.2. Long wavelength radar will be more influenced by the large
scale ejecta layer since the majority of the volume probed by the wave will
be in this layer. While the exact size distribution of rocks in the lunar crust is
unknown, we assume that it does not change radically from one area to the
next. While highlands and maria can have significant differences in structure, it
is assumed that all highlands are relatively similar, and all maria are relatively
similar. This leads to the conclusion that the depolarized return in highland
regions primarily originates from rocks of varying size suspended in the lunar
crust. In order to further characterize the rocks that are of interest to us, we
created a simple model for the radar cross section of a volume filled with rocks
of different diameters, which will be presented in chapter 3.

2.1.4 Cryptomare

Cryptomaria are special cases for the lunar surface [18]. These are areas where
a basaltic mare has formed, but has been covered by highland materials at a
later time. According to Whitten and Head [41] there are four different types
of cryptomare, see figure 2.3.

First are Copernicus-type cryptomare, which are created when an impactor is
large enough to pierce entirely through the basaltic slab, and excavate highland
material buried beneath the mare. This highland material is ejected and covers
the mare some distance around the crater.

Second are Balmer-type cryptomare. These are caused by several impact events
in highlands surrounding a mare. These impact events eject highland material
onto the mare, obscuring it from view.

The third and fourth type of cryptomare are proximal ejecta cryptomare and
distal ejecta cryptomare, which are both cases where an impact event in a
highland region scatters anorthositic material onto a basalt plain, concealing
it. The difference between these two classifications whether the impact event
occurred near the mare or far away from the mare. Note that this classification
is somewhat subjective and leaves room for interpretation.
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Figure 2.2: Layers in the lunar crust. The first layer is very fine dust which
might be 10m deep, followed by a layer of larger rocks from impact ejecta and
broken crust to a depth of about 2km. Below there is a layer of large rocky
blocks and displaced crust caused by subsurface movements, as deep as 10km.
The depth scale of these layers is highly uncertain and vary between estimates,
and no hard boundary has been detected, rather a gradual change with depth
[20].



14 CHAPTER 2. BACKGROUND

Copernicus-type Balmer-type Proximal Ejecta Distal Ejecta

Figure 2.3: This figure shows the four different classes of cryptomare. From
Serrano, personal communication, 2019.

After a cryptomare has formed, subsequent impact events that strike the cov-
ering regolith could excavate and reveal mare materials, which could assist in
discovering it. If subsurface materials aren’t brought to the surface, the area
will be erroneously classified as normal highlands. Observation methods that
penetrate deeper into the medium can detect the buried layer. Of these two
deviating regions identified in the JRO study, The S-Z region has been iden-
tified as a potential cryptomare. However, the much larger and more striking
Frigoris-Imbrium region had not previously been identified. This measurement
is the first observation of polarimetric low frequency radar return of the Moon,
providing valuable new information about the subsurface composition of the
Moon.

Lunar mare formation appears to have started very suddenly around 3.8 GY.
Primordial mare deposits from a time before this would show that the history of
lunar volcanism started before this. If a mare deposit is covered by ejecta from
an impact event, the mare deposit must necessarily have appeared before the
impact event. Cryptomare are then useful for dating the volcanic history of the
lunar landscape [41]. Cryptomare have previously been detected through dark
halo craters and chemical analysis of the regolith layer. Impact events in cryp-
tomare areas can penetrate the anorthositic cover and excavate mare basalts,
which can be seen in visual images and short-wave radar images. Chemical
composition can also be used to show the presence of basaltic materials in
the anorthositic layer. Mixing in the regolith cover of a cryptomare can drive
basaltic components to the surface, where it can be detected by multispectral
imaging. This method can also point to possible cryptomare regions if the
regolith has unusually large basaltic components not attributed to dark halo
craters or ejecta from mare impact events.

Lunar soil texture is modified by three processes. Impactors excavate several
times their own mass of lunar material, spreading it over the surrounding area.
This will mix the upper layers of the lunar surface, as well as breaking apart
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large structures such as boulders and mountains. Micrometeoroid impacts will
chip away at rocks and objects on the surface, but due to their small mass
won’t mix the regolith to a significant degree. Any impact event can also heat
the surface material, melting particles and forming agglutinate particles or
glass. Solar wind can also cause erosion of exposed surfaces. For this work, the
important aspects here are that large impact events bring large-scale detritus
from the deeper layers of the crust to the surface, and mix the composition
of upper soil layers with the deeper crust, while micrometeoroid impacts and
space weathering will wear down structure over time, forming a fine dust.

2.2 Lunar remote sensing

In this section, we discuss remote sensing techniques for observing the Moon.
We will discuss methods and techniques used for the Jicamarca observation in
more detail in a later section.

2.2.1 Visual Spectrum Imaging

As the Moon is tidally locked with Earth, only the nearside is visible from Earth’s
surface. With the invention of the telescope, the first attempts at mapping the
craters and ridges of the lunar surface began [10]. A lot of progress has been
done since then, notably by the soviet spacecraft Luna 3 [2] which was the first
to bring images of the lunar farside back to Earth. It was discovered that the
farside is significantly different than the nearside with the near-total absence
of mare formations.

Lunar satellite missions were also able to make more detailed images of the
Moon, which resulted in the more accurate surface maps both of visual albedo
and topography [26]. The NASA Lunar Orbiter 4 aided in the discovery of the
impact basin Schiller-Zucchius [16].

For this study, we have used images from the Lunar Reconnaissance Orbiter
Camera provided by the LROC Science Operations Centre team at the Arizona
State University, courtesy of Robinson et al. [32], Humm et al. [21], Mahanti
et al. [25], and Speyer et al. [35].

2.2.2 Multi-spectral imaging

Lunar surface chemical composition has been studied using wavelengths rang-
ing from the near infrared to ultraviolet [11]. Of interest in this thesis are
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Figure 2.4: Global map of titanium (TiO,) concentration of the lunar surface by
Sato et al. [34]. Any concentration below 2% is undetectable by this method.

global maps of TiO, and FeO content. These estimates are made by creating
multispectral reflectance images of the lunar surface, and comparing the re-
sulting reflection spectrum to the measured reflection functions of iron oxide
and titanium dioxide.

Sato et al. [34] has created a global estimate of the lunar surface titanium
content (see figure 2.4). It is worthy of note that highlands generally and
the radar-dark areas being investigated specifically have low enough titanium
content to be below detection limit. Mare Frigoris has very low titanium
content, where the majority is between o and 2 %. Both Mare Imbrium and
Sinus Iridum are on the low end of the scale, with the exception of the bright
red spot on the western edge of Mare Imbrium.

Iron content studies have been done by Lucey et al. [24]. As with titanium
dioxide, iron oxide is much more prevalent in the maria than the highland
regions, though there are detectable quantities also in the highlands, see figure
2.5. The Highland region near the Schickard crater has elevated iron content
with areas above 10 % by weight. In the north, the F-I region shows values
well above normal highlands, but not uniquely so. Mare Imbrium shows values
reaching 20 %, while Mare Frigoris is generally between 10 and 15 %. In
general, highlands show values that are between o and 5 %.

It is worthy of note that visual and multi-spectral studies are limited to only
the top layer, as light in the infrared and visual spectrum does not penetrate
an appreciable distance into the lunar regolith. This means that these studies
can only give an answer to what the chemical composition is like in revealed
regolith, which might be different from the chemical composition found in
the deeper layers of the lunar crust. It is therefore difficult to be certain that
calculated penetration depths are valid for longer wavelength radar studies, as
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Figure 2.5: Iron oxide content by weight across the lunar surface. Top of figure
shows the lunar nearside and bottom shows the farside. Note that the F-I region
has an iron composition between 5 and 10 % by weight, similar to the highland
region between Mare Imbrium and Lacus Somniorum, east of Montes Alpes.
To the south, there is an area surrounding the Schiller-Zucchius basin with
iron content around 10 %.
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the loss tangent of the medium could vary significantly as the signal penetrates
deeper into the crust.

2.2.3 Planetary radar studies of the Moon

Due to the challenges of making in-situ measurements of non-terrestrial sur-
faces, remote sensing is a useful tool for data collection. Radar measurements
can provide information about the albedo and scattering properties of the
surface being studied. This can then be used to infer other properties of the
surface, like roughness, structure, chemical composition and subsurface struc-
ture.

As radar allows a wide span of wavelengths, it is possible to explore these
properties at different scales. The roughness of a surface seen with 60 m
wavelength can be substantially different from the roughness of the surface as
seen with 12 cm wavelength.

A radar map of a planetary surface will contain information about the radar
cross section of the surface as seen from the radar. This will depend on both the
material and the structure of the surface [4]. Further information is contained
in the polarimetric information that can be obtained by recording orthog-
onal polarizations. This information can help differentiate which scattering
mechanism is responsible for the scattered power, based on which scattering
mechanism causes the different observed polarizations.

For our purposes, the polarization state of can either be polarized or depo-
larized, which represent the polarizations that maximize and minimize the
sub-radar point echo, respectively. This was done because we assumed the
sub-radar point is mirror-like, in which case the specular scattering mecha-
nism would dominate. Due to the smoothness of the lunar surface, we have
assumed that polarized returns are mostly comprised of surface scattering, and
the depolarized returns are mostly caused by volume scattering.

There have been multiple previous radar studies of the Moon on a variety of
wavelengths, starting shortly after the invention of radar [28]. The evolution
of planetary radar helped improve our current knowledge of the lunar surface
by investigating areas like the permanently shadowed craters near the poles
to look for water ice [36].

Earth-based radars have been used for a wide range of topics in the field of
planetary science. In 1964 a continuous-wave radar was used to determine the
rotation of Venus [7]s, and found the surprising result of retrograde rotation
with a period of 230 days. Radar measurements were also used to determine
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the progression of Mercury’s perihelion in an experiment that confirmed the
predictions of general relativity [29].

Other useful results from planetary radar studies of the Moon are the detection
of buried layers in the nearside maria by Oshigami et al. [31], and Earth-based
radars have been used to measure the roughness of the lunar surface [13]

The radar maps most relevant to this thesis were done by Vierinen et al. [39]
and Campbell et al. [5]. These are polarimetric readings of the lunar surface
at 6 m wavelength and 70 cm wavelength, respectively.

Dielectric loss and the lunar soil

The dielectric loss of a material as a function of composition is of special interest
to us, when studying volume reflectivity of a radar map.

The lunar landscape has a clear dichotomy in the visual spectrum, with bright,
anorthositic highlands and dark, basaltic maria. This difference is also visible
in the depolarized radar return on 6 meter wavelengths, where highlands are
composed of fragmented, low-loss anorthositic materials which provides ample
opportunity for the wave to scatter back to the antenna, while the maria are
smoother, lossy terrains providing very little depolarized radar return.

The loss tangent [4] of lunar material was experimentally determined based
on samples gathered by the Apollo mission to be [20]:

tan 8 = 10(0-045[%Ti02+%Fe0]~2.754) (2.1)

In this equation, %FeO denotes for the iron oxide concentration by weight
and %TiO, the titanium dioxide content by weight. This relation was found
for 450 MHz, and a plot of measured loss tangents showed that there was a
minimum for the loss tangent function near 10 MHz. However, we were unable
to find an expression of the loss tangent corresponding to 6-meter wavelength.
According to Heiken et al. [20] the loss tangent for 5 MHz and 50 MHz waves
will be lower than what is found by the formula they present. If we assume a
loss tangent equal to what is found when using this formula, we can be sure
that we do not overestimate our penetration depth.

Penetration depth
The penetration depth of an EM wave can be defined as the depth at which

the field intensity of the wave is reduced to I(r) = 1/e - I(0). Since power
is the square of the electrical field, the power is then reduced to 1/e2. An
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electromagnetic wave’s intensity varies by distance as I(z) = I(0)- e~ %%, where

alpha is the attenuation factor. a distance p = 1/« is the depth at which the
amplitude of the signal has attenuated to 1/e. « is found by & = 47 /A-im(n(w)),
where im(n(w)) is the imaginary part of the refractive index for the frequency
of the signal. One issue with this calculation is that the refractive properties
of the Moon vary based on chemical composition, and the penetration depth
can vary from tens of meters to several kilometers with a 6m wavelength
wave.

Frequency (1) HTB e-fold | LTB e-fold | Highland e-fold
5 MHz (60 m) 160 m 380 m 4100 m
50 MHz (6 m) 16 m 38 m 410 m

430 MHz (70 cm) 1.9m 4.4 m 48 m

In table 2.2.3 we have calculated penetration depths for three different lunar
surface types at the three wavelengths that are of primary interest to our work.
In high-titanium basalts (HTB) the e-folding distance is generally extremely
low due to the high concentrations of both iron and titanium. Low-titanium
basalts (LTB) have longer penetration depths due to their comparatively lower
titanium content, while highlands have the longest penetration depths. It is
important to remember that the exact values will be unknown due to the
generally poor knowledge of how the chemical distribution varies by depth, as
well as the probable case where the model used to calculate the loss tangents
do not directly apply to the frequencies in question. In that regard, the 430
MHz estimate is the best, as it is close to the frequency used to create the
empirical model of loss tangent as a function of chemical composition.

Scattering law

The Hagfors scattering law describes the power spectrum of a smooth target
which is much larger than the radar wavelength as a function of the angle of
incidence [9]. The relation is stated as:

3/2
o(¢p) { ! } (2.2)

cos* ¢ + Csin? ¢

where C = (d’A/4h?)2. In this expression, ¢ is the power spectrum, ¢ is the
angle of incidence, and C is a measure of the scale of surface variations in
proportion to the wavelength.

Figure 2.6 shows a collection of scattering law measurements of the lunar
surface at varying wavelengths. The shape of the curve is determined by
the roughness of the surface in proportion to the wavelength. When the
wavelength increases, the returned power decreases faster as a function of
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Figure 2.6: A plot showing experimental estimates of the Hagfors scattering
law for the lunar surface, using delay as analog for angle of incidence, provided

by Evans and Hagfors [9].
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the angle of incidence. This is caused by the roughness of the surface, where
the longer wavelengths only probe large surface structures. The power in the
returned signal is primarily carried in the specular polarization, so structures
that effectively reduce the angle of incidence to zero in regions where the
surface tilts away from the receiver due to the curvature of the Moon will
significantly increase the returned power. An important quality of the scattering
law is that if expressed as the power spectrum as a function of the target depth
of a spherical target, each range gate will have the same area. If projected
by scattering angle or latitude, however, one must correct the area in this
projection.

2.2.4 Radio sounding

The Apollo missions already carried HF radio sounding instrument (ALE) to
study the subsurface of the Moon. Similar instruments have also been used
to study the subsurface of Mars (MARSIS, [22]). The most recent mission to
include an HF radio sounding instrument to study the surbsurface structure of
the Moon was onboard the Kaguya mission (LRS, [30]).

This radar used a 60 m wavelength single-polarization and scans in frequency
for pulse compression. The data used was processed to obtain the nadir echoes
showing slices of the lunar crust along the satellite’s path, which enables us
to see the apparent depth of reflections detected by the satellite. In figure
2.7 there is an example plot of LRS data, and drawn lines to show detected
subsurface reflections believed to be from continuous substrates.

In this study, we have used data from the Kaguya LRS instrument. As the radio
wave is not traversing the ionosphere, the interference issues experienced in
the JRO experiment is avoided. This allows it to use a 5 MHz wave, penetrating
even further into the lunar subsurface.

The LRS instrument is particularely suited to detecting subsurface structures
like basaltic layers or magma tubes, as these formations will have such a high
loss tangent that Earth-based radars will have trouble penetrating far enough
into the covering regolith to detect them, and will also have issues achieving a
resolution sufficient to resolve these structures.

One of the central themes of this thesis is the study of cryptomaria, as it
was presented as a possible explanation in our previous work. Therefore,
the subsurface probing ability of the LRS can prove a valuable tool for our
investigation in the S-Z and F-I regions. Potential subsurface structures detected
by the JRO study should also be visible to the 5 MHz wave. The addition of
a lower frequency to the span being investigated can also provide useful
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presence of subsurfaces in a) Mare Imbrium and b) Oceanus Procellarum.
Figure taken from [31].
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information about the depth at which the effect is present.

2.3 Jicamarca Inverse Synthetic Aperture Radar
Mapping

Jicamarca is a phased array radio telescope located outside Lima, Peru, coordi-
nates 11.95°S, 76.87°W with an elevation of 520 meters above sea level. It is run
by the Geophysical Institute of Peru, primarily for ionospheric measurements.
The radar has previously been used for lunar scattering law measurements[12] [23].
It consists of 18432 dipoles in a square arrangement of side-length 291 m.

The antenna is a phased array, which can be steered + 3° from it’s on-axis
alignment. However, the steering is analog and cannot be done on short enough
timescales to actively track the Moon. During the experiment, only the eastern
quarter was used to transmit at a peak power of 600 kW in order to increase the
beamwidth to 2° to increase the illumination time due to the lack of steering.
The map was created using the data gathered from the modules furthest north
and furthest south in order to achieve a 360.7 m interferometric baseline to
resolve the range-Doppler ambiguity. The East and West quarters were also
recording data, but have not been used for mapping purposes.

The radar transmits on a frequency of 49.92 MHz, which corresponds to a
wavelength of 6.01 m. The transmitter is capable of transmitting in any polar-
ization. In our experiment, the transmitted polarization was circular while the
radar received in orthogonal linear polarizations. A 169-bit transmit pulse was
used, which was formed using the Kronecker self-product of a 13-bit Barker
code, giving each pulse a total duration of 1.69 ms and a 10 ps baud length
[39]. This means that one can deconvolve the transmit pulse and transform the
1.69 ms signal into a 10 ys signal, compressing the energy of the signal. This
is done to increase signal-to-noise ratio of the Lunar echoes. The interpulse
period was 39 ms in order to keep the Moon from aliasing into the ionosphere
or the transmit pulse during the experiment.

The Doppler spread caused by the apparent lunar rotation is approximately 1.4
Hz. This means that the Moon can be assumed to have zero Doppler migration
or spread during a single 39 ms period. The total Doppler migration over the
entire observation period is also sufficiently small to be negligible.
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2.3.1 Pulse compression and deconvolution

When a radar pulse is scattered by a surface, properties of the signal are
changed. This mechanism is described by a convolution process, where the
signal T|[t] passes through the surface system S[¢]. The output signal is then
R[t] = T[t] = S[t] (see figure 2.10). T[t] is the transmitted pulse, S[t] is the
scattering function of the target body and R[t] is the returned signal. The
symbol * denotes convolution in the time domain. In order to remove the
transmit function from the returned signal, an inverse filter is used. Inverse
filtering is a process where deconvolution is done in the frequency domain as
pointwise division. This is done by Fourier transforming the obtained signal as
well as the transmit pulse, in order to manipulate the function in the frequency
domain. Fourier transforms are a process which expresses a time series as a
function of the various frequencies that together produce the sampled series.
The convolution theorem states that convolution in time domain is the same
as point-wise multiplication in frequency domain, and it follows that division
in frequency domain is deconvolution in time domain. Therefore the system
function is found as the division of the returned signal with the transmitted

signal:

R(w)

— = S(w). 2.

T@) (w) (2.3)
This function will then give information about the surface properties of the
Moon.

2.3.2 Range-Doppler mapping

When illuminating an object with a radio pulse, the distance to the object
illuminated is found through light travel time. Since the Moon is approximately
spherical, there will be a continuous ring of points centered on the sub-radar
point that are the same distance away from the observer. It is impossible to use
range information to distinguish any point on this ring from any other. The
motion of the object, relative to the observer, is found by a Doppler-shift in the
reflected wave. Since the Moon is rotating relative to the observer, one limb
will be approaching the radar array, while the other will be receding, once the
bulk range-migration is removed. This causes half of the lunar surface to have
a negative Doppler-shift, while the other half will be Doppler-shifted positively.
The Doppler shift is proportional to the motion towards the observer, and the
motion towards the observer is found by equation:

R, - cos(lon) - sin(lat) - w (2.4)

In this equation R, is the lunar radius, approximately 1738 km, lon is the
apparent rotational longitude (zero for sub-radar point) and lat is the apparent
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rotational latitude (zero for sub-radar point), while w is the apparent rotation
rate.

Figure 2.8: In the figure above, the range-Doppler ambiguity is demonstrated.
A spherical target is shown, rotating around the axis denoted B. A range cell
is shown as C, and a Doppler cell is shown as D. All points on a circle centered
on A will have equal range to the radar, and all points on a line parallel to the
rotation axis B will have equal Doppler shift. This means that for any point
on the upper half of the sphere, there will be a point on the lower half with
identical range and Doppler information, like points 1 and 2 denoted in the
figure.

2.3.3 Range-Doppler ambiguity

In figure 2.8, we see a spherical rotating target head-on. The sub-radar point
is denoted A, in the middle of the figure. B is the rotation axis. C is a band
located between two concentric circles of equal range, which is used to illustrate
a band of range-resolution. D is a band located between two lines of equal
instantaneous velocity away from the observer, which is used to illustrate a band
of frequency resolution. The points 1 and 2 each lie in the band D and the band
C, and therefore contain the same range and Doppler shift information, and
are therefore indistinguishable when looking solely at these variables. Every
resolution cell on the northern hemisphere will have a corresponding resolution
cell on the southern hemisphere with identical range-Doppler information,
causing the map to “fold” along the apparent equator unless the range-Doppler
ambiguity is resolved.

In order to resolve this ambiguity we use the Rogers and Ingall’s technique
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[33]. This is a method for resolving the range-Doppler ambiguity. This method
makes use of two antennae separated by a distance in the apparent north-south
direction of the target body. The distance from each antennae to points on
the target body will be slightly different, which will introduce a phase shift in
the measured field. This phase shift is smaller the closer the points are to the
Doppler equator, making it near impossible to resolve the area immediately
surrounding the Doppler equator.

D

Figure 2.9: Visualization of interferometric range-Doppler deambiguation. The
dashed lines are wavefronts of equal phase. The phase difference between
antenna A and antenna B is caused by the distance along the apparent rotation
axis denoted by D in the image. The phase difference will be different for the
north and south hemisphere, allowing one to differentiate ambiguous points
as in figure 2.8.

In 2.9 we see a visualization of the phase difference introduced by having two

antennae separated by a distance D in the apparent north-south direction.

2.3.4 Radio propagation

Since Jicamarca is near the equator, the radio wave is directed nearly normal
to the geomagnetic field. This means that the signals are Faraday rotated to
nearly linear polarizations.
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Another issue is the refractive properties of the ionosphere. When a radio pulse
passes through the ionosphere, it is refracted slightly, changing the frequency
by fractions of a hertz. This means that the returned signal has a Gaussian
distortion in the frequency domain, giving point-like targets, which should
only have one single Doppler shift, a Gaussian distribution of frequencies.
In order to combat the effects of this disturbance, we have used the a-priori
knowledge that the sub-radar point has no Doppler shift once the bulk motion
of the Moon has been removed. We convolved each pulse with a sinusoid with
the frequency spectrum found of the sub-radar point, thereby focusing the
entire lunar surface with this frequency spectrum. This will not be completely
accurate for the entire lunar surface due to spatial variations in the plasma
frequency, but it will remove a large portion of the ionospheric noise.

2.3.5 Range aliasing

Range aliasing occurs when sending multiple pulses with an inter-pulse period
(IPP) shorter than the pulse transmit time. After sending some number of
pulses, echoes will reach the receivers, but the observed range will “fold” such
that it is between o and ipp - ¢/2. In other words, the observed range is found
as mod(Ra, ipp - ¢/2), where Ra is the true range and c is the speed of light. In

Lunar surface S[t]

T[t] [t]

Range

Time TIt]*S[t]=R[t] A
Figure 2.10: Range aliasing and convolution

figure 2.10, a pulse T[t] is sent towards the Moon. This pulse is scattered from
the surface which has a system function S[t], then sampled as the returned
wave R[t]. Since the light travel time is significantly longer than the IPP, several
pulses are transmitted before each pulse is returned, causing range aliasing
(shown here as the time A). Observed range is found as the time A times the
speed of light C divided by 2. If there are other systems interfering with the
signal, these can show up as other horizontal lines or rectangles at some range.
In order to ensure that the sampled system is the desired one, the range alias
must not coincide with some other known system, such as the ionosphere. The
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Figure 2.11: This figure shows the movement of the Moon over the course of
the experiment with the aliased range in the y-axis. The blue line is the limb,
where the lunar surface curves out of view, and the orange line is the sub-radar
point. Neither aliases outside our acceptable range during the experiment.

total travel distance in one IPP is 5650 km. The Moon also migrates during the
observation period, and one must choose IPPs in such a way as to ensure that
it doesn’t migrate outside the clear region, see figure 2.11.

2.3.6 Radar resolution

While the theoretical range and frequency resolution would be approximately
2.5 km in the frequency direction and 1.5 km in the range direction, ionospheric
distortion and averaging has reduced the effective resolution to 15 km in
frequency and 20 km in range [39].

For a visualization of range resolution cells, see figure 2.12. As the surface
curves away, the range cells become progressively narrower due to the surface
aligning more closely to the radar look direction.
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Figure 2.12: As the angle of incidence grows, the circles that make up individual
range cells will be a shorter distance apart. This happens because as the surface
curves away, the ground becomes more parallel to the incoming radiation. In
this figure, this effect is displayed through the use of a constant range increment
at different places on the edge of a sphere.
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Figure 2.13: This figure shows the range variable across the lunar surface as a
function of latitude and longitude. Note that the center is shifted somewhat
south and west, so that we can see Mare Orientale as well as the area immedi-
ately surrounding the south pole. The north pole is hidden from view because
of this. This figure assumes that the Moon is perfectly spherical.
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Figure 2.14: This figure shows the Doppler-spread as function of latitude and
longitude. Here we can see the slight tilt of the rotation axis in that the east
and west Doppler "poles" are shifted slightly north and south in relation to
each other. The total Doppler spread is a little over 1 Hz. This figure assumes
that the Moon is perfectly spherical.

Figure 2.13 shows the spread of range along the radar line of sight over the lunar
nearside. Together with figure 2.14, which shows the Doppler variable across
the lunar nearside, one can convert between the range-Doppler representation
and a latitude-longitude projection (as in figure 1.3).

The mean and variance of the returned power also carries information. If an
area has high variance that might mean that the area contains multiple surface
types or has a low signal-to-noise ratio. In addition, if there is a low scatterer
population being probed by the wave, small variations in the scatterer density
will more severely affect the variance than in high scatterer population areas.
In order to determine these properties, one can create histograms of selected
areas and compare the width, shape and position of the distribution.

Bragg scattering is a mechanism where periodic variations in the refractive
index cause constructive or destructive interference of the returned signal. If
the refractive index has random variations, these variations can cause situations
where Bragg scatter occurs for small areas, adding a zero mean random variable
to the returned signal. Unless there are regular, periodic structures in or on
the lunar surface, Bragg scattering should not affect the mean returned power
over the entirety of the lunar surface.



32

CHAPTER 2. BACKGROUND



Method

In this chapter, we will discuss the methods used to investigate what physical
properties caused the anomalously low depolarized radar return in the S-Z and
F-I regions, which where discussed in the introduction.

We have developed a model for subsurface volume scattering. With the help
of this scattering model, we have formulated three hypotheses that could
explain low radar reflectivity in the S-Z and F-I regions. We will discuss each
hypothesis in detail and discuss what methods can be used to prove or disprove
them.

3.1 Scattering model

In order to provide a first order model of subsurface volume scattering, we
will introduce a simple sphere packing model. This model includes inclusions
of different sizes, and also contains a uniform loss-tangent. As far as we are
aware, this is a novel technique for identifying the size categories of scatterers
responsible for depolarized return of the lunar surface, although it is possible
that others have created similar models before.

Using a simplistic sphere packing model it is possible to investigate what sizes

of inclusions contribute to volume scattering. This model assumes that scatters
within a volume are independent. By creating simplistic models for the density
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of spheres in a volume and the radar cross section of each sphere as a function
of their diameter, we can estimate what size of objects contribute most per unit
volume to the total depolarized return.

The number of particles of diameter d per unit volume is roughly proportional
to n = d3, assuming that the inclusions are evenly distributed in mass. If we
express the diameter in units of the wavelength illuminating the objects, there
are three different scattering regimes: Rayleigh scattering, resonant scattering
and optical scattering. If the objects are irregular, the resonant scattering
regime can be approximated with optical scattering. In our simple model, we
will only use Rayleigh or optical scattering. For Rayleigh scattering, the radar
cross-section (RCS) of each object can be approximated as ¢* = d°. In the
optical regime, the RCS of each object can be approximated as ¢* = d2. In
combination, we get an approximation of the total radar cross section of a unit
volume as 0, = no*. In the Rayleigh regime, this leaves us with o, = d°,
where d < 1, and in optical we get o, = d~!, where d > 1. By combining the
model for Rayleigh and optical scattering, we can study the radar cross-section
per unit volume as a function of object diameter. The volume scattering in
highland terrae can be assumed to be caused primarily by scatterers that have
a diameter of 0.14 — 1A.

As seen in figure 3.1, there is a sharp increase in RCS as the diameter of
the objects approach 0.2, and a more gradual decline as the objects again
grow in size. This happens because the number of objects compensates for the
reduced RCS per object for diameters just below the radar wavelength, but as
d decreases, the RCS decreases much faster than the number of objects in the
Rayleigh domain.

3.2 Hypotheses

The primary objective of this study was been to understand why certain regions
of the Moon appear radar dark in the 6-meter wavelength polarimetric radar
map. We start by formulating several plausible hypotheses and proceed to
analyse these potential explanations using other supporting data and modeling.
There are several mechanisms that could cause the reduced depolarized echo.
The three hypotheseswewill examine and discuss are as follows:

* Hypothesis 1: Lower than average spatial density of wavelength-scale
inclusions in regolith

* Hypothesis 2: Higher than average dielectric loss tangent in the regolith
in the regions
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Figure 3.1: A semi-log plot of total radar cross section of a volume of packed
objects by the diameter of the objects. Notice that the peak return is for a
volume of spheres with diameter near 0.2
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* Hypothesis 3: A substrate with shallow regolith cover

Each of these physical characteristics could explain the observed results, by itself
or in any combination, but could be differentiated with supporting datasets
and different investigation techniques.

3.2.1 Hypothesis 1: Low scatterer population

The depolarized portion of the returned power is mainly caused by resonant
scattering from buried objects. This is because the lunar surface is generally
smooth on the wavelength scale, and there are few opportunities for double-
bounce surface scattering. If a region has a significant reduction of available
scatterers with a diameter in the range of 0.1 — 1.04 in the volume probed by
the radar, the total depolarized radar cross section would be greatly dimin-
ished.
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Figure 3.2: Differences in rock population can cause differences in returned
depolarized power. Case A: high population of wavelength size scatterers. Case
B: low population of wavelength size scatterers. Case C: low population of
wavelength size scatterers, but high population of rocks below detection limit.

In figure 3.2, we see three different cases for rock populations in lunar regolith.
In A, there is an abundance of rocks that are comparable in size to the radar
wavelength, which results in a strong depolarized return from the area due
to resonant scattering. In B, there is a low population of rocks in general,
leading to lower depolarized return. In C, there is a high population of rocks
sufficiently small to be undetectable as well as a low population of wavelength-
scale rocks.

This hypothesis could be investigated by examining the returned echo. In a case
of low scatterer population, small variations in population can cause significant
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variations in returned echo power. In the case of an otherwise homogeneous
area with low mean echo power and high variance, this could be explained
through a low population of scatterers. Highly populated areas might be
entirely saturated with scatterers, due to the radar signal being almost entirely
reflected before it can penetrate deep enough to attenuate. Here, variations in
the depth of buried scatterers, relative to penetration depth, will have more
influence over returned power than variations in scatterer population.

We have also attempted to use model-based polarimetric target decompositions
to extract further information from our fully polarimetric dataset. This would
have involved using our a-priori knowledge and assumptions about the lunar
landscape to categorize which scattering mechanisms would cause certain
polarized states to infer regions where the different scattering mechanisms
dominated. This work would involve either adapting an already developed
decomposition model to the lunar environment or creating a new one from
scratch. We determined that a possible solution would be an adapted Freeman-
Durden target decomposition scheme where the canopy of cylindrical scatterers
in arbitrary orientations is replaced by spheres of variable size and ellipticity.
We realized that this work would be outside the scope of this thesis, and
abandoned the pursuit.

3.2.2 Hypothesis 2: High dielectric loss

If the chemical composition of the regions are significantly different from
otherwise similar areas such that the loss tangent is abnormally high, the radio
wave would attenuate faster and have fewer means of scattering favourably
back to the receiver. If the regions have higher iron oxide or titanium oxide
content than other similar areas, the volume scattering component of the radar
return would be lower. In figure 3.3 the effect of an increased loss tangent
on the available scatterers in a volume. The same pulse is transmitted into a
medium with loss tangents A or B, where A <B. When the penetration depth
decreases, the total number of scatterers in a rough medium also decreases,
which in turn affects the total depolarized power returned to the antenna. This
can cause the effects of a reduced penetration depth to appear similar to the
effects of a reduced population of scatterers.

In order to judge the validity of the second hypothesis, we can search for
areas with surface chemical compositions similar to the low-return areas.
If we can find highland areas with similar surface chemical properties, we
can then compare the depolarized radar return. In the case where there is a
strong correlation between the surface chemical properties and the depolarized
returned power, this will suggest that the areas identified as ”abnormally dark”
was misidentified and are actually "normally dark” for areas with their surface
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Figure 3.3: An increased loss tangent reduces penetration depth, and thereby
reduces the available population of scatterers. The dotted line represents
the penetration depth in standard regolith conditions, while the dashed line
represents the penetration depth of a high-loss regolith.

chemical properties. In the case where there is no such correlation, it will
suggest that attenuation due to surface concentrations of iron and titanium
are not enough to explain the loss of power.

Due to the possibility of a difference in the volume chemical composition and
the surface chemical composition, there can also be large differences in the loss
tangent as the signal propagates through the volume. The depth distribution of
lossy chemicals in these regions are, as far as we have been able to determine,
unknown. The current methods of measuring the chemical composition of
lunar soils are through physical samples and optical studies, which do not
penetrate deep enough into the soil to get a comprehensive view.

3.2.3 Hypothesis 3: Buried substrate

If the region has only a shallow regolith over a smooth slab, the volume
scattering component is reduced due to the smaller volume to scatter from.
This could be confirmed by other datasets, such as the Kaguya lunar sounder.
With the LRS instrument it is possible to create images of the subsurface beneath
the satellite as it passes over the lunar surface. A deep regolith is expected to
have either uniform backscatter in the entire depth, or a backscatter function
that depends on the depth beneath the surface. If there is a basaltic substrate,
the backscattered power should be much lower in this slab than in regolith, as
well as provide a recognizable reflection on the interface between the regolith
and the slab. If we can find areas where such a slab is present, we can compare
the images of a continuous slab beneath regolith and images of the anomalous
areas.
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Figure 3.4: If there is a slab of different material beneath the regolith, this will
affect the returned power. The shaded area represents a basaltic slab which is
internally smooth and has a high loss tangent.

In figure 3.4 there is a slab of basaltic material beneath regolith. This slab has
a very low population of volume scatterers and has a significantly higher loss
tangent than the regolith covering it. If the regolith covering the slab is shallow
enough that the radio signal would normally penetrate into the slab, the lack
of scatterers and high loss tangent will mean that the returned power will be
lower than would be expected for an area without a shallow basalt slab. The
interface between the regolith and the basalt will also reflect a certain amount
of power back, but the volume of basalt will be expected to return much less
power than regolith, and attenuate the signal at a greater rate.
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Results and discussion

In this chapter we present the results of our analysis of the three hypotheses in-
troduced in the previous chapter. We will present the results of each hypothesis
and discuss them in turn.

In figure 4.1 there is a scattering law measurement scaled by the total projected
area available for each resolved range gate as a function of the angle of inci-
dence assuming the Moon is perfectly spherical. The depolarized component
is initially about 20dB lower than the polarized component, but decreases less
significantly with angle of incidence, resulting in approximately equalizing near
the limb. Some of the depolarized power near the subradar point is caused by
crosstalk, where polarized power is interpreted as depolarized power by the
instrument.

Depolarized power does not depend as much on the angle of incidence as

the polarized power, which supports our reasoning that the depolarized radar
returns primarily originate from volume scattering events.

4.1 Hypothesis 1: Low scatterer population
In figure 4.2 we see histograms of the radar return of five different areas on

the lunar nearside, marked on a cylindrical projection in figure 4.3. As we
can see, there is a significant difference in the mean brightness in the F-I
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Figure 4.1: Area corrected scattering law measurement from the same radar
data as the SAR maps created by Vierinen et al. [39]. Note that both the
polarized and depolarized return is dependent upon the angle of incidence,
though the depolarized return is less affected. The polarization ratio decreases
significantly from the subradar point to the limb. Note that 10 points on both
edges were discarded due to noise.



43

region (figure 4.2 1) and the highland area with a comparable FeO surface
content (figure 4.2 2). There is also a large difference in the brightness variance
between these areas and the southern hemisphere highland region (figure 4.2
4). The Schiller-Zucchius basin has a lower variance than the northern areas
and a lower mean than southern highlands. Oceanus Procellarum (figure 4.2
5) has both low variance and very low mean. This is possibly due to high loss
tangent and consistently thin regolith, leading to low penetration depth and
low rock variance. This could also be the result of low signal-to-noise ratio,
combined with the averaging done when processing the signal. This would
cause near-Gaussian noise.

Rock abundance was investigated by Bandfield et al. [1], and the F-I region
appears to have a small reduction of rocks which are between o.5sm and 1m in
diameter, while the S-Z region appears to have a slightly higher than average
rock population. This means that rock scarcity is a possible contributor to the
low return in the F-I region, but the increased rock population in the S-Z region
would suggest a higher depolarized return if the buried rock population is
proportional to the surface rock population. The variations in rock population
are small, and we can’t be certain that the volume rock population is correlated
with the surface rock population. Lunar surface texture is dependent on the age
of the surface, where older surfaces will have fewer rocks due to weathering
effects. This adds in the difficulty of showing that scatterer population is a
significant contributor to the low depolarized return, as surface rock population
measurements might form a false view of the buried rock population

Neither area is drastically different from other areas in regards to their visible
rock populations. The northern low return region has slightly lower rock
concentration than normal for highland areas, while the southern low return
region is slightly higher than normal. This, combined with models of lunar
subsurface structure, means that it is unlikely that the results can be explained
through a lack of scatterers in the region. It is important to note, however, that
space weathering and micrometeorite impacts only affect the topmost layer of
the lunar soil, and larger impact events are required to reveal and mix deeper
layers. This means that for older surfaces that have not recently been excavated
by any large impact events, there might not be a correlation between surface
rock populations and buried rock populations[27].

4.2 Hypothesis 2: High dielectric loss

Due to our inability to identify the prevalence of iron and titanium in the
deeper layers of the lunar surface, we must rely on surface measurements to
estimate volume loss tangents. This might cause erroneous conclusions if the
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surface layer has a significant difference in chemical composition to the rest of
the volume probed by the radar.

In figure 4.4 enhanced-contrast reprojected images of Campbell’s 7ocm map
and LROC images in the same projections. On the left, we see that at 70 cm,
the northern terrae region has significantly reduced depolarized backscattered
power. Due to the difference in penetration depth, if the reduced echo power
is caused by the same mechanism as in the 6 meter map, it must be present in
the upper layers of the soil. This could be due to a reduced penetration depth
caused by chemical differences or a depletion of rocks in the size range of 7
cm to 600 cm, which would be the predominant source of volume scattering
in both maps. This seems unlikely, but we cannot rule it out without more
sophisticated measurements. The area is surrounded on three sides by maria,
and shows a higher than normal FeO concentration for terrae. If the surface
composition is representative of the volume composition, this will cause a
reduced penetration depth.

While the radar-dark area has a high surface FeO content, another area further
east beyond the mountain range Montes Alpes has a similar surface iron
content, but also much higher depolarized radar backscatter, both in 70 cm
and 6m. This suggests that there are differences in the volume probed by
the radio wave in these areas. The difference could be the volume chemical
composition, where the high backscatter region has a thin layer of high iron
content on the surface, but a volume composition closer to standard lunar
highland soils.

The S-Z area is seen on the right side of figure 4.4. The Schickard crater is
visible in the top left of the marked area as a dark blur, and the center of the
ancient impact basin is visible in the middle. These areas correspond well to the
darkest parts of the same area in figure 1.2, but the darkened halo surrounding
the ancient impact basin is not visible. This implies that the halo seen in the 6
meter map is caused by something beyond the reach of the 70 cm wave.

The Kaguya LRS radar instrument probes a volume 10 times deeper than the
Jicamarca telescope, assuming no frequency dependence in the loss tangent.
This means that the near-surface volume has a smaller effect on the total
returned signal. It should also be noted that the LRS only measures one
polarization with a low incidence angle, leaving the signal dominated by
specular returns from the surface. Despite this, the LRS data will provide
useful information about the deeper volume of the lunar crust. It helps indicate
how deep the cause of the anomalous depolarized radar return runs by showing
whether or not the disturbance also affects the 60 m wavelength returns.

However, the dark area identified in the 6 m map appears similar in all respects
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to other highland areas in our maps based on the Kaguya data. We mapped
both surface power (see figure 4.5) and subsurface (1000 m) power (see figure
4.6), as well as the ratio between the two (see figure 4.7).

In figure 4.5 we have plotted the surface echo for each latitude and longitude
for which there was data. Due to the low incidence angle, the maria have a
stronger specular reflection than highlands. Here, the F-I region appear similar
to other highland areas. Another noteworthy feature is that surface slopes are
not accounted for, leaving dark rings around large impact features, like mare
Orientale.

In figure 4.6 we have plotted the returned power from 1000 meters below
the surface echo. Few features are visible, and the northern highland area is
entirely unremarkable. In the south, the crater Phocylides appears to be very
bright. This could possibly be due to echoes from the crater rim folding over the
crater floor. If we misidentified a side echo from the crater rim as the surface,
echoes from the bottom of the crater could possibly be interpreted as subsurface
echoes, distorting the result. As there are few areas with these abnormal bright
spots, there is no reason to think that this distortion is widespread, and the
effect can be disregarded.

In figure 4.7 we see the ratio of subsurface to surface power. Here, we can see
the maria as dark surfaces with the highlands up to 10 dB higher in power.
Again, the areas we are investigating appear to not be significantly different
from other highland areas to the LRS instrument’s 60 m radar.

None of the global plots of LRS data show any significant difference from the
radar-dark areas identified by Vierinen et al. [39]. This suggests that the volume
probed by the LRS is relatively similar for all the highland regions. One possible
reason for this is that the loss tangent formula was empirically determined for a
different frequency. If the loss tangent depends significantly on frequency, this
could lead to problems when comparing maps made with various wavelengths.
To our knowledge, no estimate for the loss tangent of lunar soils at 5 MHz as
a function of chemical composition currently exist. If we assume that the loss
tangent does not change radically in the span of frequencies we are working
with, this suggests two different properties of the medium. The first is that the
mechanism which caused the reduction in power does not significantly affect
the polarization expected for specular scattering. The other alternative is that
the mechanism is most present in the upper layers of the soil. This is because
the wavelengths used each penetrate a different volume of the soil. While the
70 cm wave will be dominated by approximately the first 3.5 m, this layer isn’t
as influential on the 6 m wavelength scale. Rather, the 6 meter wavelength
signal will be dominated by the first 30 m. Therefore, changes in the volume
are sampled at a different depth with different wavelengths.
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4.3 Hypothesis 3: Buried substrate

By using the techniques described by Oshigami et al. [31], we have searched for
buried substrates in the northern highlands. We attempted to map the areas
with continuous subsurface reflections in both longitude and latitude, but
discovered that only a small fraction of the anomalously dark areas contained
such signatures. Only near the edges of highland terrae and mare basalts were
these structures common. East of the crater Foucault in the eastern edge of the
F-I region there was a clear continuation of the basaltic surface beneath a layer
of highland material, see figure 4.8.

There are no indications that there is a large buried surface spanning most of the
F-I region which could cause the discrepancy in the radar return according to
data gathered from the Kaguya lunar sounder instrument. It is also noteworthy
that to the 6om Kaguya beam, the area is not notably different from other
highland areas. Both the surface echo and subsurface echo power is comparable
to other highland regions, suggesting that the deep volume of the region is not
significantly different from other highland areas at sMHz.

We also investigated for buried surfaces in the Schiller-Schickard area, which
is claimed by Whitten et al. [41] to be a cryptomare. We were unable to
find continuous substrates in the area of reduced depolarized radar return.
This indicates that the Kaguya instrument may not be suitable for cryptomare
detection. One possibility is that the covering regolith is shallow enough that it
becomes hard to distinguish between the surface reflection and the subsurface
reflection. The 6 m wavelength SAR map shows a reduced depolarized power
return in this area, but this alone is not conclusive, due to the high iron content
in the soil in this area.
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Figure 4.2: This image shows histograms of the depolarized radar return in
five selected regions of the Moon. 1: The F-I region, excluding obvious craters
and visible mare. 2: Highland area east of Mare Frigoris with comparable Fe-
content to 1. 3: S-Z region. 4: Highland area on the southern hemisphere, east
of the crater Tycho. 5: mare area in Oceanus Procellarum with very few visible
craters.
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Figure 4.3: This figure shows the approximate locations used to create the
histograms in figure 4.2.
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Figure 4.4: This figure shows reprojections of the 70 cm depolarized SAR map
made by Campbell et al. [5]. The F-I region is shown in the SAR map in the
top left, LROC image on the bottom left. On the right is the S-Z region. 70 cm
data from NASA PDS.
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Figure 4.5: Global map of surface echo power gathered by the LRS instrument.
Here, the smooth maria show a strong return, while the comparatively rough
highlands show returns several decibels lower. Note that the white strips are
areas with no data, and the solid blue or yellow lines are possibly caused by
errors in the data gathering process.
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Figure 4.6: Global map of subsurface power, gathered from 1000m below what
we found as the surface echo. There is very little to distinguish maria from
terrae, and very few features are recognizable.
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Figure 4.7: This is the ratio of the subsurface power to the surface power.
Here, highlands are identified by their significantly higher ratio than maria.
Again, there is little difference between the potential cryptomare areas being
investigated and other highland areas.
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Figure 4.8: The leftmost part of this figure shows a strong, continuous echo
from beneath a highland deposit over the south-western edge of Mare Frigoris,
near the crater Foucault. This echo is continuous in both latitude and longitude

until it is disrupted by the crater, and continues east of the crater.
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Conclusions

In order to shed more light into the mysteriously low radar return in the M-I and
S-Z regions, we have explored a number of other Lunar datasets, including 70
cm polarimetric radar maps, multi-spectral FeO and TiO, abundance maps, and
LRS 60 meter wavelength radar returns. Each of them provides additional clues
to the physical properties of the regions. We have also investigated volume radar
scattering with a simple resonant scattering model which we have developed.
In this chapter we will seek to interpret our results and determine what our
findings mean in the context of the fields of radio remote sensing and lunar
volcanic history.

5.1 Our findings
We explored three hypotheses:

* Hypothesis 1: Lower than average spatial density of wavelength-scale
inclusions in regolith

* Hypothesis 2: Higher than average dielectric loss tangent in the regolith
in the regions

* Hypothesis 3: A substrate with shallow regolith cover
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Hypothesis 1 and hypothesis 2 are hard to confirm or disqualify, as both could
present very similar results for depolarized radar backscatter. In our compar-
isons of several datasets of physical properties of the lunar surface in both
regions, we have found no direct evidence that there is a significantly dimin-
ished population of volume scatterers in either area. Neither have we found a
convincing suggestion as to how this would occur in only these areas on the
Moon. We therefore conclude that there is no apparent reason to believe that
there is a lack of scatterers with diameters spanning the range of 7 cm to 12 m
in the entire F-I region, but we can not conclusively rule it out.

We have not found a model based on empirical evidence for the relationship
between rock population on the surface and the volume rock population.
Despite this, the low variance in surface rock population in large areas lead
us to believe that a lack of available volume scatterers is not the cause of the
reduced depolarized return.

Hypothesis 3 was considered the most falsifiable, as a continuous subsurface
structure should appear on the maps created from the Kaguya LRS data. No
such structures were detected, and as such it appears very unlikely that these
caused the reduced depolarized power.

Hypothesis 2 then appears to be the most likely cause of the reduced depo-
larized return, as we were able to detect increased concentrations of lossy
chemicals in both regions. The estimates for FeO and TiO, concentrations in
the Frigoris-Imbrium area are comparable to other regions with significantly
higher depolarized returns. Surface concentrations of iron and titanium are
not enough to explain the reduced power in this area, and some other factor
must be introduced in order to explain these results. It could be an increase in
the subsurface concentration of loss-causing chemicals, but we cannot say for
certain.

If the Frigoris-Imbrium highland area was an ancient basaltic deposit that
appeared while the cratering rate was still sufficiently high to break apart
surface structures, the low return could be caused by the increased iron and
titanium content of broken basalts being mixed with ejecta from highland
areas surrounding it. The basaltic gravel was then buried by ejecta from large
impacts in the surrounding area, like the impact which formed the Imbrium
basin. Later, the cratering rate reduced, and volcanic flow complexes were
no longer shattered, and the maria surrounding the area formed. This would
cause the deeper crustal layers to have a higher loss tangent than otherwise
similar highland areas, thus explaining the reduced power.

While investigating our main scientific question we also found an area near the
craters Harpalus and Foucault that displayed interesting qualities (see figure
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4.8). This area is a mound of highland material which appears to have been
connected to the main highland region south of Mare Frigoris. This mound
appears to have a subsurface reflection that is a continuation of the Mare
Frigoris basalt plain. This may indicate that this mound was supplanted on
Mare Frigoris after the event that led to it’s formation. This appears to be
either a distal or proximal ejecta type cryptomare. We have not identified
which impact could have provided the material that makes up this mound,
making it hard to determine it’s classification. While we cannot say that the
surface reflecting the Kaguya signal must be basalt, it appears to have similar
qualities as the exposed mare surface when interacting with the 60 m wave.
We therefore posit that this is a cryptomare formation.

5.2 Suggestions for further work

In order to conclusively determine the cause of the deviating results found
both in the JRO study and the 70-cm map by Campbell, modelling of the
subsurface rock distribution, both in size, quantity, and chemical composition
should be done. One method of achieving such a task would be large-scale
mining operations to uncover each layer of the lunar subsurface (see figure
2.2) and empirically determine a size distribution of buried lunar rocks. This is
obviously impractical and massively expensive, and so alternative methods of
inquiry are required.

Model-based target decomposition could help ascertain the various scattering
mechanisms that dominate the different areas and terrains of the lunar surface.
We attempted this, but we ran out of time. If a model of a volume with randomly
oriented elliptical inclusions could be created, we might be able to use this to see
which scattering mechanisms or characteristics change in the Frigoris-Imbrium
highland, and from this further specify what the physical characteristics of the
volume would be to provide the observed results. Anne Virkki worked with
models that might be applicable [40], but we were not aware of this fact untill
very late in the working process.

Computer modelling can also assist in predicting the physical conditions that
would lead to similar results. If a detailed computer model that incorporated
the various environmental variables in the lunar landscape (e. g. loss tangent
distribution by depth, scatterer population and characteristics like size and
ellipticity, surface roughness, dielectric properties such as permittivity and
permeability, etc.) were created, one could investigate which set of lunar crustal
conditions produce similar effects with full-wave simulations to model the
scattering of 6 m wavelength radar waves. The results of such simulations
could then help direct future research.
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Another important model which would help significantly in future interpre-
tations and maps of the lunar surface is a more comprehensive model for the
loss tangent of lunar materials. While the samples returned from the Apollo
missions have been used to create an empiric model for the loss tangent at
450 MHz, it would be useful to expand the range of frequencies for which
this model of the loss tangent of lunar surface materials based on chemical
composition is valid.

It would also be advantageous to acquire a larger spread in the frequencies
used to investigate the volume. Due to the fact that each frequency will probe a
different volume and particle size distribution, this can be used to investigate the
thickness of the anomalous layers or which particle size distribution is present in
the volume. Due to the difficulty of penetrating the ionosphere at frequencies
lower than so MHz, expanding into lower frequencies would require more
satellite missions. It would then be advantageous to make the satellites capable
of transmitting and receiving in two orthogonal polarizations such that the
data is usable for polarimetric analysis, like model-based decomposition.
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