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Abstract
The focus of this thesis is to do ice-water classification on Sentinel-1 EW SLC
imagery using an unsupervised Mixture of Gaussian segmentation algorithm.
The classes are automatically labelled as sea ice or water based on the slope
of the observed brightness decay from near- to far-range, which is different
for sea ice and water. The aim of the thesis is twofold. In the first part, the
ability of seven features to separate between ice and water are evaluated. It
turned out that a combination of geometric brightness, cross-polarization ratio
and relative kurtosis gave highest accuracy - 99.29 %. In the second part, the
goal was to find the highest achievable, reliable resolution on the classified ice-
water maps. The purpose is to find out how little it is possible to multi-look and
still achieve high enough radiometric resolution to discriminate ice and water
in a satisfactory manner. It turned out that a resolution of 46x43 meter with
moderate accuracy is obtainable if swath 1 is omitted. This require SLC imagery.
Alternatively, 93x87m resolution with better ice-water separation and higher
accuracy can be obtained. The classified image can be used to derive other ice
information products, such as ice concentration. This was demonstrated both
with low and high resolution, and compared with hand drawn ice concentration
maps from the Meteorological Institute.
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1
Introduction
1.1 Motivation
Arctic sea ice has a global influence on the Earth’s climate, mainly by insulating
the relative warm ocean from the cold polar atmosphere and increasing the
surface albedo (Marshall and Plumb, 1989). Changes in sea ice extent can be
an important indicator of climate change, and the last decades we have seen a
transformation towards thinner and younger sea ice (Masson-Delmotte et al.,
2018) (Johannessen et al., 2006). This development enables ships and maritime
installations into new waters, which is of great interest for several different
industries, including oil, fishing and tourism. Increased traffic in Arctic waters
in the future is therefore expected. However, safe transportation in or near
ice-infested waters require knowledge about the location and condition of the
sea ice (Meier and Stroeve, 2008). Ice conditions in the Arctic are continuously
changing due to ice drift, up to 50 km per day (Johannessen et al., 2006),
and the temporal validity of ice maps is therefore generally short (Onstott
and Shuchman, 2004). Hence, reliable and frequent mapping of sea ice is
needed.

However, in situ data collection for ice maps is a demanding task in the Arctic
due to the hostile climate, the remoteness and - of cource - its immense size.
The use of optical sensors is also limited, as Arctic is under darkness for a longer
period of the year and clouds obscure the area near the ice edge about 70% of
the time (Onstott and Shuchman, 2004). Synthetic Aperture Radar (SAR) is an
active microwave remote sensing system that overcome these problems, as it
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2 CHAPTER 1 INTRODUCT ION

provides its own illumination, enabling it to provide large-scale, high-resolution
imagery under almost any weather and environmental conditions at any time.
SAR imagery is therefore an important source for studying climate change, as
well as biological-ecological and physical processes, and supporting navigation
of ships or other activities in ice-infested waters.

Sea ice can be separated fromwater in SAR images based on the variation in the
intensity of the backscattered radar signal. Generally, sea ice gives a stronger
return signal than water and will thus look brighter in the SAR image. There is,
however, some exceptions. Backscatter intensity from ice and water can take
a broad range of values, depending on many factors, including geophysical
properties of the ice/water, wind, temperature and precipitation. Thus, ice-
water separation is sometimes impeded by ambiguities, as different sea ice
types and open water can have similar backscatter signatures. In particular,
discrimination of rough water and multi-year ice, or calm water and smooth
first year ice, is often problematic as they have similar backscatter intensity
(Zakhvatkina et al., 2017). Accordingly, designing an automated ice-water
classification scheme is not a straight forward task, as a robust automated ice-
water classifier must be able to cover the broad variety of backscatter intensities
of sea ice and water under variable and changing surface conditions. For that
reason, sea ice concentration maps are currently primarily produced manually
by ice expert analysts (Zakhvatkina et al., 2019). The Norwegian Ice Service
produce ice concentration maps five days a week, which is a cumbersome
and time-consuming task. Efforts are being made to make reliable automatic
ice maps, but to the author’s knowledge there is no reliable automatic ice
concentration maps that is operational at present (Wang et al., 2016). There is
therefore a need to improve automatic ice-water classification.

A way to improve ice-water classification can be to add extra image characteris-
tics, or features, to the classification process (Zakhvatkina et al., 2017). Texture
features are widely used as extra features, as they consider not only the bright-
ness, but also the spatial variation in the image. Also, different combinations of
the polarimetric channels, i.e. polarimetric features, can be used. (Doulgeris,
2013) presented a method of extracting 6 polarimetric features by the extended
polarimetric feature space (EPFS) method. These features require quad-pol
data. Such data is not applicable for operational use, due to its narrow swath
width. Three of the features can, however, be extracted for dual-pol, which is
more useful for operational use to due its higher coverage (Scheuchl et al.,
2004). These features; geometric brightness, cross-polarization ratio and rela-
tive kurtosis, have been proven to workwell for separation between different ice
types (Fors et al., 2016), (Doulgeris, 2013). Their effectiveness to separate solely
between ice and water has not, to the author’s knowledge, been investigated to
the same degree. The first part of the thesis is to evaluate the effectiveness of
these features in ice-water classification. Moreover, two other features from the
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covariance matrix, that not is found too much information about in literature
when it comes to ice-water classification, are evaluated. These features are the
magnitude and angle of the HH-HV correlation (off-diagonals in the covariance
matrix), and their utility for ice-water separation will be investigated.

The second part of this project will be an investigation of spatial resolution of
ice-water classification. The spatial resolution of ice information products can
in some cases be crucial for ship routing. Requirements for sea ice information
for operational use are often defined into two types; tactical and strategical
(Scheuchl et al., 2004). Strategical ice information is used to assist ships in
preliminary route planning, and resolution is rather course (1 km). Tactical ice
information on the other hand, refers to the level of detail required to support
ship navigation in ice (Scheuchl et al., 2004). The main goal of tactical ice
information is to choose the optimal course through the ice, both by finding
leads and cracks in the ice, and by avoiding dangerous ice phenomena such as
intensive ice drift and ice bergs (Johannessen et al., 2006). The user require-
ments for such maps is strict when it comes to spatial and temporal resolution,
in order to capture small scale sea ice features. Tactical ice navigation should
therefore, according to (Johannessen et al., 2006), be based on satellite data
with a spatial resolution of 50-100 meters or better.

Sentinel-1 data, which is used in this project, is provided either as single-look
complex (SLC) or ground-range, multi-looked, detected (GRD) images. SLC is
superior to GRD when it comes to spatial resolution (93x87m vs 8-15x43m), but
suffers from speckle noise. The question is if SLC images, despite its noise, can
be used for ship navigation, where the requirement of spatial resolution is high,
or if the speckle makes the classified ice-water images useless. In that case,
how much do the classified image have to be multi-looked in order to be usable
for ship navigation. In other words, what is the best achievable resolution on
ice-water classification using SLC images, where the image interpretation and
classification is not disturbed too much by speckle.

1.2 Objective and contribution to the field
In this project, the objective is to do ice-water classification on Sentinel-1
Extra-wide SLC images in the Barents Sea, using an unsupervised mixture of
Gaussian segmentation algorithm and label the classes based on the slope of
the brightness decay from near- to far range of each class. The aim of the work
is twofold. The first is to evaluate the effectiveness of a set of features derived
from the covariance matrix. These features are geometric brightness, cross-
polarization ratio and relative kurtosis. In addition, correlation coefficients
between the two channels, in particular HH-HV correlation magnitude and
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angle, will be evaluated. The results of the ice-water classifications, using
different combinations of these features, will be evaluated by visual inspection
and compared with a ground truth to obtain an accuracy score. The second aim
is to investigate what is the highest achievable, reliable ice-water classification
resolution, that can be obtained using Sentinel-1 EW SLC images.

Specific tasks include

• Evaluating the utility of geometric brightness, cross-polarization ratio,
relative kurtosis, HH-HV correlation magnitude and HH-HV correlation
angle for ice-water classification.

• Determining what is the highest achievable resolution on ice-water clas-
sification, where the classified image not is corrupted too much by noise.

• Purpose a method for removing additive thermal noise from EW SLC
images in order to increase classification accuracy on ice-water maps.

• Make an ice-concentration map based on the classified ice-water image
and compare it to the manually drawn ice maps made by the meteoro-
logical institute.

These tasks will together, hopefully, contribute to the field both by providing an
approach to produce as accurate automatic ice-water classification as possible
and by explaining what is the highest spatial resolution achievable on ice-water
maps using Sentinel-1 EW SLC images.

1.3 Structure of thesis
Chapter 2 gives an introduction to SAR theory. This includes a brief introduction
to the basic SAR principles, the image geometry, the radar equation, resolution,
frequency, speckle, polarization, scattering and the TOPSAR technique.

Chapter 3 describes the physics behind SAR measurements of sea ice and water.

Chapter 4 describes the data and the area of interest.

Chapter 5 illustrates the method used in this thesis.
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Chapter 6 is a presentation of the results and a discussion

Chapter 7 is a conclusion.





2
SAR theory
2.1 SAR principles
Remote sensing is defined as the method of acquiring information about an
object or phenomena without coming into physical contact with it. For the
purpose of Earth observation, this is done by using air- or spaceborne sensors
to detect and measure electromagnetic radiation in the range from ultraviolet
to microwave, coming from the Earth. By studying properties of the radiation
such as intensity, frequency, phase and polarization, one can obtain valuable
information about the physical properties of the surface which can be used to
separate and classify different Earth features.

The sensors used for Earth observation can be divided into two main types
based on its use of electromagnetic spectral regions; namely optical (UV to
infrared) and microwave, each having its limitations and capabilities for re-
mote sensing (Elachi and Van Zyl, 2006). The sensors can again be divided
into passive and active sensors. Passive satellites measure the natural radiance
coming from the Earth, whilst active satellites provide its own illumination and
can therefore be used regardless of sun illumination. Synthetic aperture radar
(SAR) is a type of system that belong to the class of active microwave imaging
systems. SAR works by employing an antenna to transmit a radar signal at a
given frequency towards a portion of the Earth’s surface and then record the
signal reflected back to the sensor. The backscattered energy is then used to
form an image of the illuminated surface. The stronger the backscatter signal

7



8 CHAPTER 2 SAR THEORY

from a certain area is, the brighter this area will appear in the image.

Most microwave sensors operate in the range from 1mm to 1m wavelengths.
These wavelengths are much longer than the size of particles and gases in
the atmosphere, and microwaves will therefore penetrate through cloud cover,
dust, haze and most weather conditions except for heavy rainfall. This property
is very important for remote sensing as it allows microwave sensors to be
used under almost any weather and environmental conditions, day or night
(Campbell and Wynne, 2011). SAR is therefore the premier sensor for a number
of different Earth observation applications.

2.2 Imaging geometry
As illustrated in fig 2.1, SAR is a side-looking system, i.e. it acquires images
by transmitting energy pulses perpendicular to the direction of the flight path
of the moving platform. This configuration is necessary in order to eliminate
right-left ambiguities that would occur for two symmetric equidistant points
for a nadir-looking system (Elachi and Van Zyl, 2006). Since the speed of
microwaves is known, a SAR system can precisely measure the distance to an
object by timing the delay between the transmitted and received signal (Camp-
bell and Wynne, 2011). The sensor illuminates narrow strips of the surface, and
these image strips are, as the satellite passes by, merged together to form a
two-dimensional image.

One dimension corresponds to the time difference between the transmitted and
received signal, in the direction called slant range. For convenience, however,
the signals can be converted to ground range format, where distances are
presented in their correct relative position on ground. The second dimension is
referred to as azimuth direction, equal to the along track. In this direction, the
signals can be separated using the Doppler history. This is possible because the
large beam width of the radar will illuminate and linearly traverse an object on
the surface for a lengthened period of time. The relative frequency of the signal
will then be high when the satellite moves towards a target and decrease as the
satellite moves away. During this period, the SAR collects information about
phase and Doppler shift that, through signal processing, allows for a synthetic
aperture to be created. If the source location of the signal in the azimuth
direction is known, the resolution in azimuth is as accurate as observing the
scene with an antenna the same size as the initial and final phases of the
satellite track (Elachi and Van Zyl, 2006). Thus, fine spatial azimuth resolution
can be achieved, even from space.
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Figure 2.1: Imaging geometry. Figure from (Chan and Koo, 2008)



10 CHAPTER 2 SAR THEORY

2.3 Radar equation
As mentioned, a radar works by transmitting microwave energy pulses into a
small range of angles and then records the backscattered signal coming from
different objects within the system’s field of view. The interaction of the energy
pulse with its targets, i.e. the relationship between the transmitted power Pt
and the incoming power Pg is, together with the characteristics of the radar,
described by the radar equation. To define this equation, we must first define
the total power incident on an object at ground level, given as

Pд =
PtAдGt

4πR2 (1)

where Pд is the power incident on the target, Pt is the transmitted power, Aд
is the effective area of the target and Gt is the antenna gain given as

Gt =
4πAt

λ2
(2)

The factor
1

4πR
represents the reduction in power density as slant range in-

creases.

Vice versa, the total power received by the sensor is given by

Pr =
Pд′AtGд

4πR2 (3)

where Pr represents the total received power at the sensor, At is the effective
area of the receiver, andGд represents the ground gain in the sensors direction.
Again, 4π represents the reduction in power density, now assuming that the
ground scatters power equally in all directions.

The equations (1) and (3) can be combined to determine a link between Pr
and Pt , which is known as the radar equation (for a monostatic system):

Pr =
G2
rσλ

2

(4π )3R4Pt (4)

Where λ is the operating wavelength and σ is the radar cross section (RCS),
that is, the ratio of the energy received by the sensor over the energy that
would have been received if the target had scattered in an isotropic fashion
(equally in all directions). The RCS is usually given is decibels, meaning that
positive numbers imply that the surface is focusing energy towards the sensor,
while negative numbers imply the opposite, that most of the energy is focused
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away from the sensor (Elachi and Van Zyl, 2006). This quantity incorporates
the slope, area, roughness and dielectric properties of the target into a single
factor, and is given as

σ = 4πr2

���−→Es ���2���−→El ���2 (5)
where Es and El is the power of the scattered and incident electromagnetic
waves, respectively, and r describes the distance between the sensor and the
target.

From the radar equation, it is clear that one can increase the received power by
increasing the antenna size A, or using shorter wavelengths λ. This is however
balanced by the fact that the atmosphere limits the available wavelengths and
large antennas are impractical to carry on aircrafts or satellites (Philpot and
Philipson, 2012).

2.4 Resolution
The resolution of a radar system can be defined as its ability to distinguish
between two objects separated by some minimum distance. If the two objects
are sufficiently separated, they are displayed in two different resolution cells
(pixels). Otherwise, the pixel will be a complex combination of the scattered
energy from the two objects (Onstott and Shuchman, 2004). When considering
SAR systems, it is important to distinguish between spatial resolution in range
and azimuth direction, due to the fundamental differences in the way the
images are acquired.

2.4.1 Resolution in range
Spatial resolution in range direction is a function of the effective pulse width
τ . This is because two objects on the ground can only be distinguished if the
echoes are received at different times. Since the pulse travels two ways, the
two objects can be separated if the distance is larger than

τ

2
. Thus, the range

resolution is given as

Ranдe resolution = c
τ

2
(6)

Where c is the speed of light, i.e. also the speed of the transmitted signal. From
the equation it is clear that radar pulse width should be as short as possible to
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achieve the finest resolution. However, shorter pulse width implies lower energy.
In order to maintain an energy level high enough to distinguish the signal from
the noise, the amplitudemust be increased. The equipment required to transmit
short, high-energy pulse is however hard to assemble. As a remedy, one can
instead use a “chirp” approach, where the short pulse with constant frequency
is replaced with a long pulse with modulated frequency. This method is utilized
by SAR. The signal can then be processed after reception to focus the pulse
to a much shorter value, which gives the same result as using a short pulse
throughout the system (Elachi and Van Zyl, 2006).

2.4.2 Resolution in azimuth
Before SAR, Real Aperture Radars (RAR) were used for air-borne remote
sensing. The azimuth resolution for RAR is given as

Xa =
hλ

Acos(θ )
(7)

Where h is the height above ground, λ is the wavelength, A is the antenna
length and θ the incidence angle. Such radars are, however, impractical for
remote sensing, since higher resolution only can be achieved by
1) Using shorter wavelengths, which is limited by clouds and atmosphere
attenuation, or
2) Increasing the antenna length, which is practically impossible as it requires
unrealistically long antennas, typically hundreds of meters long, in order to
achieve descent resolution from space.
SAR overcomes this problem by using the forward motion of the radar to
synthesize a longer antenna. It can be shown that an array of antennas lying
in a single line is equivalent to a single antenna moving along that line (Elachi
and Van Zyl, 2006). If we assume that the radar sensor is moving at a velocity
v with an antenna of length L, the antenna main beam footprint on the surface
will then be equal to

L′ = 2
λh

A
(8)
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Figure 2.2: Azimuth resolution

As the radar passes a given target, consecutive pulses are scattered in sequence
along the line of movement. These echoes are then processed together to
synthesize a linear array. From fig 2.2 it is clear that the maximum array length
that can be achieved is equal to L. The synthesized array will then have a beam
width given as

θs =
λ

L
=

A

2h
(9)

which results in a footprint on the ground given as

Xa = hθs =
L

2
(10)

corresponding to the azimuth resolution. The equation may seem counterin-
tuitive, as it suggests that the finest resolution is achieved by using a smaller
antenna. In addition, the resolution is independent of the height of the sensor.
The reason for this is that the farther away the sensor is, the larger will the
footprint on the ground be, and consequently a longer synthetic array and finer
resolution is achieved. The independence of height is caused by the fact that the
finer synthetic beam will counterbalance the increase in height exactly.

2.5 Frequency
SAR instruments operates in the microwave region with wavelengths from
approximately 1 mm to 1 m. The microwave region is further divided into
smaller bands as shown in table 2.1. The use of the bands K and Ka for Earth



14 CHAPTER 2 SAR THEORY

Radar Band Des-
ignation

Frequency Range (GHz) Wavelength Range (cm)

P 0.230-1 130-30
L 1-2 30-15
S 2-4 15-7.5
C 4-8 7.5-3.75
X 8-12.5 3.75-2.40
Ku 12.5-18 2.40-1.67
K 18-26.5 1.67-1.13
Ka 26.5-40 1.13-0.75

Table 2.1: Radar frequencies

observation is however limited, due to the influence of clouds and atmosphere
on such wavelengths. At 22 GHz, for instance, there is a water vapour absorption
band that reduces transmission to 85 % (Chan and Koo, 2008). The most
used bands for Earth observation from satellites are therefore P to Ku bands,
and primarily L, C, X and Ku (Dierking, 2013), all having an atmospheric
transmission close to 100 % (see figure 2.3).

The choice of band for SAR instruments is based on the purpose of the mission.
The interaction mechanism between the radar wave and the target depends,
among other factors, on the chosen frequency. This is due to the fact that
waves interact strongly with targets with geometry of the same size as the
radar wavelength. Also, the penetration depth of the incident wave is directly
proportional to the wavelength (Elachi and Van Zyl, 2006). Accordingly, shorter
wavelengths such as X band (λ ∼ 3 cm) will interact with smaller targets on
the ground and will have low penetration capability. The opposite is true for
longer wavelengths such as L band (λ ∼ 23 cm), which will interact with bigger
targets and have higher penetration depth. For sea ice monitoring, C-band
offers a compromise between penetration capability and surface roughness
sensitivity, and is therefore often the preferred frequency when it comes to
discriminating between different sea ice types (Hong and Yang, 2018).

2.6 Speckle
Speckle is an inherent characteristic of all coherent imaging systems, including
SAR. It is caused by the fact that each resolution cell consists of many separate
targets that are too small to be individually resolved by the radar beam. As a
result, the waves scattered from the many targets in each resolution cell will
add coherently, resulting in a single vector that represents the amplitude and
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Figure 2.3: Atmospheric transmission for different wavelengths. Figure from (Hender-
son and Lewis, 1998)

phase of the signal. This process results in

• Constructive interference when features are reinforced, resulting in white
pixels.

• Destructive interference when features are supressed, resulting in black
pixels.

The result is an unwanted “salt and pepper” pattern over the image, which may
reduce the effectiveness of target detection and image classification (Campbell
and Wynne, 2011). Speckle is therefore something we want to remove.

Figure 2.4: Speckle. Figure from (Lee and Pottier, 2009)

However, speckle is not considered as noise in the classical sense, but is rather
an intrinsic part of the signal that also carries information. Speckle can conse-
quently not be removed by e.g. increasing the transmission energy. One can,
however, reduce the effect of speckle either by multi-looking, which means
splitting the radar beam up into several parts and averaging them, or by spa-
tial filtering, which means replacing the pixel value with an average over a
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neighbourhood of pixels. The cost is, however, lower spatial resolution.

2.7 Polarization

Figure 2.5: Horizontally polarized wave in black and vertically polarized wave in red.
Figure from Canada Centre for Mapping and Earth Observation.

Electromagnetic waves are by Maxwell’s equations described as synchronized
oscillations of electric and magnetic fields propagating through space at the
speed of light. The two fields will, in a homogenous and isotropic media,
oscillate perpendicular to each other and to the direction of propagation. The
polarization of an EM wave denotes the orientation of the electric field of the
EM wave (Campbell and Wynne, 2011). SAR systems were originally designed
to transmit waves at either horizontal (H) or vertical (V) polarization and
receive at either horizontal or vertical polarization. Recent years, however,
some SAR systems have been developed to transmit and receive at different
polarizations by switching between each pulse. This gives the opportunity to
use the following configurations:

• HH – horizontal transmit and horizontal receive

• VV - vertical transmit and vertical receive

• HV – horizontal transmit and vertical receive

• VH – vertical transmit and horizontal receive

The first two channels are referred to as “co-polarized”, as they have the same
polarization. Oppositely, the two last is referred to as “cross-polarized” channels.
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Radar systems can be split into three polarization groups. The first one is single
polarization, which offers one of the co-polarized channels. The second is dual
polarization, which offers either the combinations (HH,HV) or (VV,VH). The
last one is quad polarization, which offers all four polarization modes, albeit
with a lower swath width than single- and dual polarization. Dual- and quad
polarization enables the user to measure polarization properties of the surface
in addition to the amplitude that can be measured from single polarization.
Since surface targets have unique polarization signatures in the same way that
they have unique spectral signatures, the type of polarization usedwill influence
the signature of the returned signal. Dual- and quad polarization products can
therefore give a deeper understanding about the complex scatteringmechanism
between the radar pulse and the target, and hence provide more accurate
detection and classification of surface features than single polarization.

2.8 Scattering
Any interface separating two media with different EM properties will affect
an EM wave incident on it (Elachi and Van Zyl, 2006). Usually the incident
wave is dispersed into different directions after interaction with a medium, a
process referred to as scattering. How the incident wave is scattered depends
on many factors, including physical size and orientation of the target, inci-
dence angle, polarization, dielectric properties of the target, and the surface
roughness relative to the wavelength of the incident wave (Elachi and Van Zyl,
2006).

The most important quantity for a SAR system is the intensity of the return sig-
nal. Amongst other things, this quantity is dependent on the surface roughness.
Higher roughness results in greater intensity on the return signal. Whether a
surface appears smooth or rough depends on the wavelength of the radar signal.
The roughness can be statistically described by its standard deviation around
the mean flat surface (Elachi and Van Zyl, 2006). The most used criterion to
describe the roughness of a surface is the Rayleigh criterion, given as

sh >
λ

8
cos(λi ) (11)

where sh is the standard deviation in surface height, λ is the wavelength
and θ is the incidence angle. The criterion states that a surface is rough if
this inequality holds. The criterion implies that a surface looks rougher when
illuminated with shorter wavelengths or smaller incidence angles.

Scattering can be divided into three main types; surface scattering, double-
bounce scattering and volume scattering. Having a basic understanding of
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these three scattering mechanisms is of great importance when working with
SAR images, as different sea ice types and water are subject to different
scattering mechanisms. Hence, the use of information about different scattering
mechanisms can be used to discriminate between different ice types and
water.

Figure 2.6: Surface scattering off the ice surface and volume scattering within the ice.
Figure obtained from(Nghiem et al., 1995)

Surface scattering
Surface scattering occurs when the incident wave is dispersed only once, and
is strongest in the co-pol channels (Cloude, 2010). It typically occurs between
two homogenous media, such as between air and ocean, when the surface is
relatively flat compared to the wavelength of the incident wave. The scattering
is then primarily a function of the surface roughness and water content of the
medium - the higher the water content, the higher the reflectivity. Usually, a
smooth target will appear dark in the SAR, as most of the radiation is scattered
in the specular direction (as long as it not is directly oriented towards the
sensor) (Moen et al., 2013). Oppositely, rough targets appear bright, as some
of the radiation is scattered back to the sensor.
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Double-bounce scattering
Double-bounce scattering is a type of scattering that occurs when the incident
wave is dispersed twice in the interaction process. This is typically caused by
dihedral corners, that can be found in buildings or ice edges. Targets that are
subject to double-bounce scattering usually appear very bright, as the majority
of the incident energy is directed back to the sensor.

Volume scattering
Volume scattering occurs when the transmitted wave penetrates into the target
where brine inclusions and cavities gives multiple random scattering (Moen
et al., 2013). This often occurs in multi-year ice, due to the volume geometry.
Penetration depth into the medium is inversely proportional to the radar
wavelength.

2.9 Scattering matrix
When the incident wave from a SAR system interacts with a scattering surface,
the characteristics of the surface can be obtained from a backscattering matrix.
For a quad-polarimetric system, a 2x2 matrix of complex scattering coefficients
Sxx is produced for each pixel. This is referred to as the Scattering matrix, or
Sinclair matrix, S, and relates the incident electric field Ei , referred to as the
Jones vector, to the scattered electric field Es by[

Esx
Esy

]
=
e−jkR

R

[
SHH SVH
SHV SVV

] [
Eix
Eiy

]
(12)

where k denotes the wave number and R is the distance between the sensor
and the target (Fors et al., 2016). The scattering matrix is then given as

S =

[
SHH SVH
SHV SVV

]
=

[��SHHe
jϕHH

�� ��SVHe
jϕVH

����SHV e jϕHV �� ��SVV e jϕVV ��] (13)
where |Sxx | is the amplitude and ϕxx the phase of the complex scattering
coefficients (Fors et al., 2016). For dual-pol systems, however, the scattering
matrix is reduced to a 2x1 Lexicographic vector, given as

S =

[
SHH
SHV

]
=

[��SHHe
jϕHH

����SHV e jϕHV ��] (14)
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The outer product of this vector is defined as the covariance matrix

C =
1
L

L∑
i=1

sis
∗
i
T
(15)

where L is the number of scattering vectors, si is the SLC vector for each pixel i
and ∗T is the Hermitian transpose (Fors et al., 2016). C can then be expressed
as

C =

[
〈SHHS

∗
HH 〉 〈SHHS

∗
HV 〉

〈SHV S
∗
HH 〉 〈SHV S

∗
HV 〉

]
(16)

where 〈·〉 is the ensemble averaging and ∗ denotes the complex conjugate.
Since the amplitude is related to the intensity via the equation

I = A2 (17)

means that, since 〈SHHS
∗
HH 〉 = IHH and 〈SHV S∗HV 〉 = IHV when d=2, the

covariance matrix can be expressed as

C =

[
IHH (SHHS

∗
HV )

2

(SHV S
∗
HH )

2 IHV

]
(18)

For many applications, one assume that HH and HV are uncorrelated, hence
(SHHS

∗
HV )

2 = (SHV S
∗
HH )

2 = 0. However, a part of this thesis is to investigate
whether these elements could contain any valuable information for ice-water
separation, and they are therefore assumed to be non-zero in this thesis.

2.10 TOPSAR
The Terrain Observation with Progressive Scans SAR (TOPSAR) technique
is used to achieve wide swath coverage, and is utilized by Sentinel-1 on the
interferometric wide swath mode and extra wide swath mode. This method
acquires images by steering the beam both in range direction and backward to
forward in the azimuth direction for each burst (Veci, 2015). TOPSAR is superior
to the old ScanSAR method, as it achieves the same resolution and coverage,
but with a more uniform signal-to-nose ratio (SNR) and distributed target
ambiguity ratio (DTAR) (Veci, 2015). Sentinel-1 EW SLC products consists of
one image per sub-swath for each polarization, for a total of ten images per
product, where each sub-swath is processed as a separate SLC image. Mosaic
operation is then required to merge together the sub-swaths into one image.
This can create "seams" between each subswath,which is particularly noticeable
in cross-pol over dark areas.
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Figure 2.7: TOPSAR scanning geometry. Figure obtained from (Park et al., 2017).





3
SAR measurement of Arcticsea ice
This chapter discusses the SAR measurements of sea ice. The purpose is to
give a brief introduction to the underlying physics that makes it possible to use
active microwave sensors to obtain information about sea ice and water from
satellites. This includes a brief introduction to sea ice, including its dielectric
properties.

3.1 Introduction to sea ice
Between 11 and 15 % of the Earth’s surface is covered by sea ice (Onstott, 1992).
Sea ice is a mix of frozen water, liquid brine inclusions, solid salts, microalgae,
trace elements, gases and other impurities (Hunke et al., 2011), and is formed
when the sea surface is cooled to a temperature of about -1.8C, given that the
water has a salinity of about 33 ppt (Onstott and Shuchman, 2004).

Sea ice goes through different stages of development during its formation, with
the rate of ice growth being highest in the beginning and slowing down as it
increases in thickness. Sea ice can take many different forms depending on
temperature and wind conditions. The World Meteorological Organization has
defined a common nomenclature of sea ice based on its age and thickness.

23
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These classes are (Krokan, 2018):

New ice

New ice is a common denomination on recently formed sea ice. This type of ice
consists of ice crystals that is weakly frozen together, and has a distinct form
only when floating. New ice can be splitted into several subclasses based on
its stage of development:

Under calm conditions, the uppermost part of the sea water will freeze into a
very thin and smooth ice layer. in presence of wind and waves, the thin layer
will suspend into the water and form frazil ice. If wind and waves persists, the
frazil ice will further coagulate into a soupy layer called grease ice, and after a
while, clumps called shuga will form. When the shuga has grown to a thickness
of about 1 cm, it will harden into what is referred to as pancake ice.

Nilas ice

When sea ice is formed under persisting quiescent conditions, it is charac-
terized according to its visual properties, which also is directly related to its
thickness.

Nilas ice has a matt surface and is up to 10 cm in thickness. It is described by
its thin, elastic crust which easily is bended on waves. Subdivisions includes
dark nilas, which is under 5 cm and very dark in color, and light nilas, which
is more than 5 cm and is bright in color.

Young ice

Young ice, with a thickness of 10-30 cm, is described as ice in the transition
stage between nilas and first-year ice. Subdivisions includes grey ice from 10
to 15 cm, and grey-white ice from 15-30 cm.

First-year ice

Sea ice that is thicker than 30 cm and not more than one winter’s growth is
referred to as firstyear ice. It typically has a thickness up to 2 meters, and may
be subdivided into thin first-year ice from 30-70 cm, medium first-year ice from
70-120 cm and thick first-year ice over 120 cm.

Multi-year ice

Ice that has survived a summer melt season is known as multi-year ice, and has
typically a thickness ranging from 2 to 4 meters, with ridges up to 20 meters
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(O’Connell, 2011). Multiyear ice can also be distinguished from first-year ice by
its lower salt content and its thicker snow cover (typically 0.4m for MYI and
0.1m for FYI).

3.2 Electromagnetic properties of sea ice and
ocean

A SAR signal is scattered off the sea ice either by surface or volume scattering
(Dierking, 2013). The relative contribution from each of the scattering mech-
anisms is highly dependent on the relative permittivity (ϵ) of the medium,
describing its dielectrical properties, and is defined as

ϵ = ϵ ′ + jϵ ′′ (19)

where the real part ϵ ′ characterizes how easy the incident wave penetrates into
the medium, and the imaginary part jϵ ′′ describes the electromagnetic loss of
the material (Onstott and Shuchman, 2004). Typically, the bigger the dielectric
constant, the less is the penetration, and stronger is the backscattering, resulting
in a brighter feature in the SAR image.

The relative permittivity and loss of water is high, typically ϵ ′ > 40 and ϵ ′′ > 4
due to the high polarity of water molecules (Onstott and Shuchman, 2004).
However, when sea water freezes, the permittivity is considerably reduced, as
frozen water do not have the same rotational possibility as liquid water. Sea
ice will typically have values for ϵ ′ of 3 to 5, and jϵ ′′ of 0.1 to 1.0 (Onstott and
Shuchman, 2004).

3.3 Backscatter of sea ice and ocean
Even though images generated by SAR’s can look similar to those generated by
passive optical systems, the principals behind these two acquisition methods
are completely different. An optical system is using a lens or mirror system to
steer radiation from the ground onto a two-dimensional array of detectors. The
angular relationship is then maintained between two targets on the ground
and on the image. The received signal for an optical system is mainly a function
of

1) Solar illumination
2) Atmospheric attenuation
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3) The interaction mechanism between the radiation and the surface, which is
on a molecular level, i.e. vibrational and electronical energy transitions.

SAR systems, on the other side, "sees" the surface in a fundamentally different
way than optical sensors. SAR systems use the time-lag between the echoes
backscattered from different targets to separate them from each other in range
direction, and the Doppler history to separate them in the azimuth direction.
The received signal for a SAR system is, according to (Onstott and Shuchman,
2004), a function of

1) Polarization
2) Frequency
3) Incidence angle
4) Scattering characteristics of the illuminated area. This includes physical ice
properties such as salinity, temperature, surface roughness, surface inclination,
snow layers and presence of water (Sandven et al., 2006).

SAR backscatter of sea ice

Sea ice is predominantly subject to two types of scattering; surface- and
volume scattering (Dierking, 2013). Typically, both types occur simultaneously,
but depending on surface properties, one of them can be negligible compared
to the other. Smooth surfaces, such as newly formed ice (nilas or young ice)
are mainly dominated by specular reflection, and will therefore appear dark
in the SAR images. However, the growth of small scale surface features, such
as frost flowers, can significantly increase the backscatter intensity over ice
(Dierking, 2013). Backscatter values are also highly dependent on topographic
features like ridges. A surface inclined towards the radar will give a strong
return signal.

Volume scattering occurs if some of the incident wave is transmitted into the
sea ice and redirected back and forth by volume inclusions up to the surface
again. Volume inclusions, such as air bubbles and brine pockets, are found in
multi-year ice, but can also occur in younger ice (Dierking, 2013). However,
the volume scattering is reduced if the surface is wet due to melting at higher
temperatures, as melt-water may penetrate the volume inclusions and re-freeze
(Dierking, 2013).

SAR backscatter of ocean

The penetration of SAR microwaves in ocean is typically only a few millimetres
into the topmost layer, due to high absorption and scattering losses. The use
of SAR imaging of the ocean is therefore limited to the ocean surface and
the immediate subsurface (Elachi and Van Zyl, 2006). SAR is in particular
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sensitive to the small (mm to cm-scale) wind-induced surface waves with the
same wavelength of the incoming signal, called Bragg waves. When these
waves match the projection of the transmitted microwave onto the local ocean
surface, wavefronts scattered from different portions will be in phase and add
constructively, resulting in a strong backscatter signal (Onstott and Shuchman,
2004).

The backscattered signal of ocean is a function of the wavelength, orientation,
and the tilt of the waves compared to the SAR. For calm ocean, the surface
will be generally smooth and specular reflection away from the sensor will
dominate. Rough sea, on the other hand, will result in increased backscatter
as more energy is reflected back to the sensor.

Under influence of higher winds, ocean can appear as bright or even brighter
than sea ice at co-polarisation, while it remains dark at cross-polarisation. Ice-
water separation under such conditions are therefore easier at cross-polarisation
(Dierking, 2013).

The choice of polarization also plays a role. Ocean clutter is typically more
suppressed at HH than VV (Hong and Yang, 2018). HH is therefore better suited
for measuring ocean. Anyhow, using Sentinel-1, HH/HV is also usually the only
available polarization over the Arctic, as Sentinel-1 is usually preprogrammed
to this mode over this area.

Separating sea ice and ocean in SAR images

Sea ice appear different than ocean in SAR images because they have different
backscatter signature. In particular, sea ice typically gives stronger return
signal than water. However, there are several factors that can disturb image
interpretation in SAR images,which then again can cause sea ice to be classified
as water and vice versa. The main reasons are:

1) Speckle. This phenomena is discussed in 2.5. High amount of speckle implies
lower radiometric resolution and thus lower ice-water separability.

2) Thermal noise. Additive thermal noise in the HV channel in TOPSAR
images varies in both range and azimuth and includes three main features:
burstwise variation (scalloping), elevation angle-dependent range variation
and discontinuities between subswaths (Park et al., 2017). Thermal noise can
be characterized as white noise, that is, with symmetric Gaussian distribution
with constant spectral density for all bandwidths and zero mean (Freeman,
1993). Thermal noise is seldom a problem in co-polarization bands, as the
backscatter intensity is strong enough to screen the variations in thermal noise.
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In cross-polarization bands, however, thermal noise can be a serious problem,
as backscatter generally is much weaker (Park et al., 2017). This is particularly
a problem over water, where the return signal usually is extra weak. The result
is a noise floor throughout the image where any signal below this floor not will
be distinguishable from the thermal noise level (Onstott, 1992). Some of the
thermal noise can, however, be removed from SLC images by using the "thermal
nosie removal" function in Sentinel Application Platform, but the result is loss
of phase information.

3) Incidence angle dependency. Operational sea ice charting require wide
swath imagery. Sentinel-1 EW images covers about 400 km in range direction,
and are thus acquired over a broad range of incidence angles (from 19 °to 47
°). The incidence angle affects the interaction between the incident microwave
and the surface, producing a decay in backscatter intensity from near- to far
range which disturbs image interpretation and classification (Doulgeris and
Cristea, 2018). This intensity decay, which is much stronger in co-pol than
cross-pol, is usually greater than the between-class variation (Doulgeris and
Cristea, 2018). This can result in segmentation of homogenous classes along
the range direction. The decay rate is typically different for different terrain
types. Usually, the decay rate is much steeper for water than for sea ice. An
incidence angle correction should therefore, ideally, take this into account, that
is, applying different incidence angle correction for different terrain types.

4) Variable and changing surface conditions. Another problem is the overlap
in backscatter intensity of ice and water, as both classes can take a broad range
of values depending on many factors. For example can high winds cause open
water to give a strong backscatter signal similar to sea ice. Oppositely can excep-
tionally smooth sea ice act as specular scatterers and thus look similar to ocean.

In order to separate sea ice and water correctly, these four problems must
be taken care of. Generally, speckle is reduced though multi-looking, thermal
noise is reduced by pre-processing techniques or increasing the transmission
power and the effect of incidence angle is reduced by different incidence angle
corrections. The variable and changing surface conditions are hard to deal
with, but adding extra features may improve the separation.
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Data and area of interest
4.1 Sentinel-1
The Sentinel-1 satellite constellation consist of two polar orbiting SAR satellites
working in the same orbit 180 degrees’ phase shifted to each other. The satellites
are operating in C-band with the capability to acquire data in (HH, HV) or
(VV,VH) polarization. Each satellite has a repeat cycle of 12 days; hence the
constellation repeats it’s orbit in 6 days, but more frequent the higher the
latitude. Sentinel-1 utilizes four different acquisition modes; stripmap (SM),
wave mode (WV), interferometric wide swath (IW) and extra wide swath (EW).
Images can be downloaded for free at scihub.copernicus.eu. These images are
available either as single-look complex (SLC) or ground-range detected (GRD)
images.

Single-look complex products (SLC)

SLC images consist of a series of burst focused SAR data, provided in the slant
range by azimuth imaging plane. The data has been geo-referenced using orbit
and altitude data from the satellite. Each pixel in the image is represented as
a complex number that contains both phase information and the magnitude
of the backscattered signal. The SLC products are processed to obtain a single
look in both dimensions, using the full available signal bandwidth (Bourbigot
et al., 2016). SLC resolution varies from near to far range due to the incidence
angle and the slant geometry, but is constant in range for each sub swath.
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Ground-range, multi-looked, detected products (GRD)

GRD images consists of focused SAR data, lying in the ground range by azimuth
surface. The data has been detected, multi-looked and converted to ground
range by an Earth ellipsoid model. The result of multi-looking is that speckle
is reduced, but at the cost of lower spatial resolution. Phase information is
also lost through multi-looking. Each pixel is represented by the detected
magnitude.

Type Resolution Pixel spacing Number of looks ENL
SLC 7.9x43 to 15x43 m 5.9x19.9 m 1x1 1
GRD 93x87 m 40x40 m 6x2 10.7

Table 4.1: SLC vs GRD

The pixel spacing for SLC above is given in slant range. In range direction,
however, the pixel spacing corresponds to swath width divided by number of
of pixels in range. Hence, roughly 400 km divided by approximately 40 000
pixels, which is equal to about 10 m. Thus, pixel spacing is ∼ 10x20m in range
x azimuth.

4.2 Study area
The area is located in the Barents sea, south-east of Svalbard. At the time of the
year of which the image is acquired, that is, the end of the winter, Arctic sea
ice is at its maximum extent. During winter and spring, the ice edge is often
located in this area. This is therefore a particularly relevant area for ice-water
classification, as fishing vessels, oil installations and tourism are dependent on
reliable ice maps when going into these waters.
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Figure 4.1: Area of interest
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Figure 4.2: Ice concentration map from the Norwegian meteorological institute over
the study area
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4.3 Data
An extra wide, Sentinel-1 SLC image, acquired 6. April 2018 05:09:55, was
download from Copernicus. This scene was found to be especially useful for
this project, as it comprised water and sea ice over all incidence angles. This
makes it easy to obtain the incidence angle decay for both sea ice andwater over
all incidence angles. Is also seems to consists of both calm, smoothwater close to
the ice edge and rougher water further out, in addition to different types of sea
ice. From yr.no, the temperature at Longyearbyen for that particular day was
measured to -13.5 °C. Even though this is some distance away from the study
area, we assume that similar conditions are here, that is, cold temperatures
and no melting.

Figure 4.3: The image showed "in colors", where red=HH intensity, green=HV inten-
sity and blue=0





5
Method
In this section, the method used in this project is described. This includes
the pre-processing steps, the segmentation and labelling part, the accuracy
calculation and the production of ice-concentration maps.

5.1 Pre-processing
Some pre-processing steps have to be carried out before working with the
images. These were performed using the Sentinel Application Platform (SNAP)
developed by ESA, and included radiometric calibration and de-bursting (merg-
ing the subswaths together). It is also common to include a noise removal step
in SNAP, but this was omitted as it also removes phase information. Multi-
looking was performed using MATLAB, and resulted in multi-look complex
(MLC) data in covariance matrix format. All features were extracted from this
matrix.

5.1.1 Radiometric calibration
The power of the backscattered signal that a SAR sensor receives is not limited to
the interaction of the transmitted signal with the target only, but also accounts
for factors such as the antenna gain, system loss and effective aperture of
the signal. This introduces a radiometric bias in the signal, which makes it
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inadequate for quantitative use of SAR data (El-Darymli et al., 2014).

The intention of radiometric calibration is to convert the pixel values in the SAR
image from the biased backscattered signal to being represented by the Radar
Cross Section (RCS) and the backscatter coefficient, which is directly related
to the backscatter of the scene. This step is necessary when comparing data
from different sensors, or data from the same sensor that has been acquired
under different conditions.

Sentinel-1 images come with Look up tables (LUT) that allows for three calibra-
tions: σ0, βo and γ0. The calibration used in this thesis is σ0, and gives the RCS
per unit area in the ground-range direction. βo is the RCS per unit area in the
slant range, and is known as the radar brightness coefficient. γ0 is the RCS per
unit area in the incident wavefront, that is, perpendicular to the slant-range
(El-Darymli et al., 2014).

Figure 5.1: Shows the relationship between the three calibration coefficients. Figure
from (El-Darymli et al., 2014)

5.1.2 Multi-looking
Multi-looking is performed by using a sliding window technique to replace
each pixel value with the average value of the window being slided over. The
purpose is to reduce speckle, and thus increase the radiometric resolution, i.e.
the separability between each class. In other words, we want to reduce the
within-class variation such that there is less overlap between classes. There is,
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however, a trade-off between radiometric and spatial resolution. Multi-looking
has a blurring effect, as smaller targets is mixed up in the smoothing process,
and spatial resolution will therefore decrease with number of looks.

Figure 5.2: The effect of multi-looking

5.1.3 Log-transformation
Logarithm transformation is applied to all features except EPF5. The purpose
is to spread out the data such that distinct classes are visible. This step is often
necessary in order to separate classes from each other.

Figure 5.3: The effect of log-transformation
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5.2 Feature extraction
A set of 7 features is used in this project. All are extracted from the covariance
matrix

C =

[
〈SHHS

∗
HH 〉 〈SHHS

∗
HV 〉

〈SHV S
∗
HH 〉 〈SHV S

∗
HV 〉

]

An overview of the features is presented in table 5.1.

Feature Type
MLI1 HH intensity Single-channel intensity
MLI2 HV intensity Single-channel intensity
EPF1 Geometric brightness Polarimetric
EPF2 Cross-polarization ratio Polarimetric
EPF3 Relative kurtosis Statistical
EPF4 HH-HV correlation magnitude Polarimetric
EPF5 HH-HV correlation angle Polarimetric

Table 5.1: Features used in this project

5.2.1 Intensity features
The single-channel intensities IHH and IHV are based on one backscatter
intensity only. They are found in the diagonal elements in the covariance
matrix (Fors et al., 2016), and is defined as

IHH = 〈|SHH |
2〉

IHV = 〈|SHV |
2〉
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Figure 5.4: Multi-looked intensities (MLI) and their histograms

5.2.2 Polarimetric features
Polarimetric features combine information from two or more channels, i.e. it
requires dual- or quad-pol data. Polarimetric features can characterize the
polarimetric signature of sea ice and water. This enables improved physical
interpretation of the scattering properties of the targets. Of the 7 features, we
have defined EPF 1, 2, 4 and 5 as polarimetric features, while EPF3 is defined
as a statistical feature, as it can be derived from single-channel data. The
polarimetric features are:
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Figure 5.5: Extended polarimetric features (EPFS) and their histograms

Geometric brightness
The geometric brightness represents the total multi-variate intensity (Moen
et al., 2013), or the total power received by the two channels, and is given
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as

B = d
√
det(C)

where d is the dimensionality of the input, hence 2 for dual-pol, and C is the
covariance matrix. The span, i.e. the sum of the two intensities, could in theory
be used instead of the determinant, and presumably give similar, or possibly,
even better results. However, only the determinant was tested in this thesis,
due to time constraints.

Cross-polarization ratio
The cross-pol ratio is given as

Rcr =
〈SHV S

∗
HV 〉

B

In our case with d=2, it will be equal to Rcr =
IHV
B

. This feature provide a

relative measure of volume scattering versus surface scattering (Lubin and
Massom, 2006). It is considered to be useful for discriminating between ice
types and determining ice age (Moen et al., 2013).

HH-HV correlation magnitude
The magnitude of the correlation between HH and HV is defined as

|ρ | =
��〈SHHS

∗
HV

〉��
This feature’s ability to discriminate between ice and water is not found much
information about in the literature.

HH-HV correlation angle
The HH-HV correlation angle is defined as

∠ρ = ∠(〈SHHS
∗
HV 〉)

and represents the phase difference between HH and HV channels. This
feature is not found much information about neither. Phase difference could
however, in theory, be used for discriminating between surface and volume
scattering.
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5.2.3 Statistical feature
Relative kurtosis
Relative kurtosis (RK) is defined as

RK =
1
L

1
d(d + 1)

L∑
i=1

[
s∗i
TC−1si

]
and is a measure of non-gaussanity, that is, how equal the data distribution is to
a Gaussian distribution. For Gaussian data, the RK is equal to 1. Data with high
kurtosis is associated with a sharp peak, quick drop and heavy tails (Moen et al.,
2013). Large values of RK are likely for deformed ice and inhomogeneous areas
(Fors et al., 2016). RK can be calculated both for single-pol and multi-pol.

5.3 Segmentation
The segmentation was done using an unsupervised feature-based mixture
of Gaussian segmentation algorithm, developed by Anthony Paul Doulgeris
at CIRFA. This model integrates the incidence angle dependency into the
probability density function, and thus manages to account for the incidence
angle variation that occurs in wide swath SAR images. By doing it this way,
instead of as a global pre-processing correction method, one can account
for the incidence angle decay for each class, and thus get a more precise
correction.

Figure 5.6: K-means vs Mixture of Gaussian. Image from (Wikipedia contributors,
2019)

A mixture of Gaussian model is superior to segmentation models such as k-
means, because it takes the variance into consideration. In k-mean clustering,
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one assumes that the data is spherical. This hard assignment might often
lead to misclassification (see figure 5.6), as it assumes equal class variations,
which is not the case for sea ice and water. While k-means finds k to minimize
(x − µk )

2, a Gaussian mixture use expectation maximization to find k to

minimize
(x − µk )

2

σ 2 . In other words, in cases were there is uncertainty about

the data and which class they belong, mixture of Gaussian is often a good
clustering algorithm.

Figure 5.7: HH intensity histogram for our data indicates three natural Gaussian dis-
tributed classes. Mixture of Gaussian segmentation is therefore expected
to work fine.

Doulgeris’ mixture of Gaussian model assumes that all data points in the data
set belong to a mixture of a fixed number of Gaussian distributions along
constant incidence angle azimuth lines (Doulgeris and Cristea, 2018). The
mean values can then be expressed as a linear function of the incidence angle:
ak +bkθ , where ak is the interception,bk is the slope and θ the incidence angle.
When including the class weights πk and this linear function, the probability
density function is given as:

pX ,θ (x ,θ ) =
M∑
k=1

πk
1

(2π )d/2 | Σ |1/2
e
−
1
2
(x−(ak+bkθ ))T Σ−1(x−(ak+bkθ ))

Hence, each class is a function of three parameters: covariance Σk , slope bk
and intersection ak . The parameters can be estimated using the Expectation-
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Maximization equations:

ak =

∑n
i=1 zikxi − bk

∑n
i=1 zikθi∑n

i=1 zik

bk =

∑n
i=1 zikθixi − ak

∑n
i=1 zikθi∑n

i=1 zikθ
2
i

Σk =

∑n
i=1 zik (xi − (ak + bkθi ))(xi − (ak + bkθi ))

T∑n
i=1 zik

Where zik is the membership weights.

After segmentation, a Markov Random Field (MRF) smoothing method is
applied to the segmented image. This is done in order to to make the classes
look more homogeneous, which simplifies the interpretation of the classified
image (Doulgeris, 2013).

5.4 Labelling
The segmentation algorithm used in thesis clusters the image into different
regions based on the distribution of the pixel values. It does not, however,
give any physical meaning to the different classes, i.e. telling what each class
actually is. The purpose of this thesis is to do ice-water classification. Hence,
each class in the segmented image must be assigned to either water or sea
ice.
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Figure 5.8: Right: Segmented image based on HH andHV intensity. Left: HH intensity
as function of incidence angle of the segmented image.

The segmentation algorithm used in this thesis outputs the pixel values of each
segmented class as a function of incidence angle, example shown in figure
5.8. It also outputs the slope of each class. Since we know that slope of HH
intensity is much steeper for water than for sea ice, this property can be used
to determine whether each class is water or sea ice.

Inspecting the HH intensity slope of different classes for different images, it
was clear that the slope usually was between -0.8 and -0.10 db/1◦ for water,
and between +0.1 and -0.3 db/1◦ for sea ice. Thus, by setting a threshold
somewhere between these values, classes are labelled as water if the slope
is steeper than this threshold, or else it is sea ice. In this project, different
thresholds were investigated, but -0.6 db/1◦ worked finemost of the time.

5.5 Accuracy assessment
An accuracy assessment was performed on the classification results, as we
wanted a quantitative score on how good the classification was, not only visual
inspection.
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A ground truth image was made by manually selecting homogeneous areas
of either sea ice and water on the SAR image, using the roipoly function in
MATLAB. Most of the ocean was selected, and four areas within the ice that
seemed to contain sea ice only. Ideally, optical images should have been used
for validation, but this was omitted due to time constraints.

The accuracy was then calculated by comparing the classified image with the
ground truth pixel-to-pixel-wise, and simply counting the number of correctly
classified pixels, using a for-loop in MATLAB, and then dividing the number
of correctly classified pixels with the total number of pixels in the ground
truth.

Figure 5.9: On top: Ground truth, where sea ice is white, water is grey. Compared
with EPF1 on the bottom.

5.6 Ice concentration estimation
Sea ice concentration describes the relative amount of ice compared to some
reference area. Ice concentration maps issued by national ice services is ex-
pressed in tenths of area coverage (Armstrong, 1972). Sea ice concentration
is an important tool for navigators to determine potentially passable leads
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and openings in the ice. It is also important in a scientific manner, as it helps
determine a number of other important climate variables such as extent and
volume. In this thesis, the ice concentration was calculated using a 12x12
sliding window technique over the classified ice-water image. The ice concen-
tration then corresponded to the fraction of ice pixels divided by total pixels
in the window. Using the same scale and standard ice chart color code as the
national ice service, the ice was classified as following

• Open water = 0-1/10 (white)

• Very open drift ice = 1-4/10 (blue)

• Open drift ice = 4-7/10 (turquoise)

• Close drift ice = 7-9/10 (green)

• Very close drift ice = 9-10/10 (yellow)

• Fast ice = 10/10 (red)





6
Results and discussion
This section consists of four parts. The first part is a feature evaluation, where
the ability of the features described in section 5.2 to separate sea ice from
water is evaluated. This is followed by an investigation of resolution in ice-
water classification. Furthermore, it turned out that thermal noise was a big
problem in the classified images. Therefore, a simple method to remove some
of the thermal noise from EW SLC images is presented in the third part. Finally,
ice concentration maps are created, based on the ice-watermaps, and compared
to the hand drawn ice concentration map from the meteorological institute for
the same date and area.

6.1 Experiment 1: Feature selection
In this section, the ability of different combinations of features to discriminate
between sea ice and water, is presented. These features are HH and HV inten-
sity, geometric brightness, cross-pol ratio, relative kurtosis and magnitude and
angle of the HH-HV correlation. First, the results of using intensity features
only is presented. This is followed by a brief discussion on where we find
misclassified pixels and what they are caused by. Furthermore, the results of
using the extended polarimetric features is presented. The idea is that they will
improve ice-water classification, and hence remove some of the misclassified
pixels.

49
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Classification is based on the image described in section 4.3. The scene is
multi-looked with a 60x20 filter with a stepping size of 22x44 in azimuth and
range, resulting in a spatial resolution of 930x870m with a pixel spacing of
440x440m, which is the same order of size as the hand drawn ice maps from
met.

6.1.1 Classification based on single-channel intensities

Figure 6.1: Ice-water classification based on both intensities

Total accuracy of the ice-water classifier using both single-channel intensities
is 98.36 %, which is acceptable. There are, however, some misclassification,
and by taking a look on the classified image, it is clear that three different
phenomena causes the misclassification.

1) Thermal noise over water. The effect of thermal noise is much stronger
over water, as the backscattered signal is much weaker then over sea ice. Thus,
bright lines occurs between the swaths. The result is that the bright pixels is
classified as sea ice instead of water.
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Figure 6.2: Misclassification due to thermal noise

2) Wind conditions over open water. In this case, an area that looks like smooth,
quite open water, based on visual inspection of HH and HV intensity images,
was misclassified as sea ice.

Figure 6.3: Water misclassified as sea ice due to wind conditions

3) Sea ice misclassified as water. This happened several places within the sea
ice. In one case, illustrated in figure 6.3, some of the darker sea ice, located
between bright sea ice, was misclassified as water.
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Figure 6.4: Darker sea ice surrounded by bright ice is misclassified as water

6.1.2 Classification based on EPF 1 and EPF 2
Total accuracy of the ice-water classifier using EPF 1 (Geometric brightness)
and EPF 2 (Cross-polarization ratio) was 97.31 %. Hence, accuracy was lower
than using intensities. Seemingly, misclassification due to thermal noise is a
bigger problem using EPF 1 and EPF 2 than using the intensity features. From
visual inspection, this appears to be the main reason of why the accuracy is
lower. Apart from that, the results are rather similar.

Figure 6.5: Ice-water classification using EPF 1 and EPF 2 (Geometric brightness and
cross-pol ratio
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6.1.3 Classification based on EPF1, EPF2 and EPF3
By also using EPF3 (relative kurtosis) together with EPF1 and EPF2, the ac-
curacy increased from 97.31 % to 99.29 %. Hence, a solid improvement. The
apparent reason is that a majority of the misclassified pixels between the
swaths, probably related to thermal noise, now are classified correctly. Apart
from some misclassified pixels between swath 1 and 2, the image looks more
or less correctly classified over both sea ice and ocean.

Figure 6.6: Ice-water classification based on EPF 1, 2 and 3

6.1.4 Classification based on EPF 4 and EPF 5
The classification results based on magnitude and angle of HH-HV correlation,
alone and together, are presented below. The magnitude (EPF 4) gives rea-
sonably good separation between ice and water, except for swath 1, which is
more or less completely classified as ice. Presumably, omitting swath 1, using
all other four swaths could give decent results. The angle (EPF 5), on the other
hand, seems to consists mainly of random noise, and does not tend to give any
good separation between ice and water.
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Figure 6.7: On top: Ice-water classification based on EPF 4 and 5, respectively. Bottom:
On EPF 4 and EPF 5 together.

6.1.5 Classification based on EPF1, EPF2, EPF3, EPF4 andEPF5
The ice-water classification using all five EPF’s have an accuracy of 99.27 %. In
other words, almost the same as using EPF 1, 2 and 3. Hence, adding EPF 4 and
5 does not tend to have any big impact on the classified result. The use of EPF
4 and 5 does, however, due to the random nature of EPF 5, introduce some new
noise. The noise is not a big problem in the classified ice-water image. It is,
however, highly visible in the segmented image, as shown in figure 6.9.
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Figure 6.8: Ice-water classification based on all EPF’s

The segmentation results:

Figure 6.9: Segmentation results based on all EPF’s
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6.1.6 Results
Features Ice-water classification accuracy
MLI 1 (HH) 93.45 %
MLI 2 (HV) 90.66 %
MLI 1 (HH) and MLI 2 (HV) 98.36 %
EPF 1 97.15 %
EPF 2 89.78 %
EPF 3 93.39 %
EPF 1 and EPF 2 97.31 %
EPF 1, EPF 2 and EPF 3 99.29 %
EPF 1, EPF 2 and EPF 4 98.30 %
EPF 1, EPF 2 and EPF 5 98.14 %
EPF 1, EPF 2, EPF 4 and EPF 5 97.61 %
EPF 1, EPF 2, EPF 3 and EPF 4 98.62 %
EPF 1, EPF 2, EPF 3, EPF 4 and EPF 5 99.27 %

Table 6.1: Classification accuracy for different combinations of features

6.1.7 Concluding remarks of experiment 1
• In most cases, using two or more features at the time gives significantly

higher classification accuracy than using only one feature as input.

• Ice-water classification on the intensities (MLI 1 and 2) gave slightly
better results than using geometric brightness and cross-pol ratio (EPF 1
and 2), due to less thermal noise.

• Relative kurtosis (EPF 3) tend to increase the separability between ice
and water and remove some of the thermal noise.

• Ice-water classification based solely on HH-HV correlation magnitude
(EPF 4) suffers from noise in swath 1, but gives good ice-water separation
if swath 1 is omitted.

• HH-HV correlation angle (EPF 5) does not contain any meaningful
information when it comes to ice-water septation.

• The segmentation algorithm has several different hyper-parameters, such
as number of looks, stepping size and sub-sampling, which needs to
be tuned to obtain optimal performance of the classifier. Due to time
constraints, these were only tested for a few values. Presumably, an even
higher accuracy would be achieved by tuning these to the optimal values.
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• Only the features ability to distinguish between ice and water is con-
sidered in this project. If the goal was to distinguish between ice types,
different results are expected. EPF4, for instance, seems to have good
separability between ice and water, but not necessarily between different
ice types.

6.2 Experiment 2: Resolution investigation
The purpose of this experiment is to find the best achievable resolution on
ice-water maps based on Sentinel-1 EW imagery, where noise not is a disturbing
factor. The idea is to investigate whether it is possible to obtain ice-water maps
with good enough resolution for tactical navigational use. This requires, in
order to detect leads and cracks in the ice, a resolution in the order of 50-100
meter or better (Scheuchl et al., 2004). Such resolution is not achievable with
GRD images (87x93m). Hence, a SLC image with 15x43 m resolution, the
same as before, is used. The question is if the high resolution of SLC can be
utilized, or if it has to be multi-looked down to the same resolution as GRD
in order to remove speckle and increase the radiometric resolution enough to
separate ice and water adequately. As illustrated in section 5.1.2, the overlap
between classes is decreasing with number of looks. Hence, with few looks, the
overlap between classes is expected to be significant, and lower classification
accuracy is anticipated. In other words, spatial and radiometric resolution are
inversely proportional. This is therefore a question of trade-off: how little
can we multi-look and still achieve high enough radiometric resolution to
discriminate ice and water in a satisfactory manner?

The experiment is conducted by multi-looking the previously used SLC image
with various number of looks, and sub-sampling it to about half the pixel
spacing of the spatial resolution. This is done in order to not lose information
due to under-sampling (Nyquist). MLI 1 and 2 are used as features. Note: SLC
images lies in the slant-range and has a spatial resolution of 8-15x43m from
near- to far-range. The resolution varies in slant range but is constant in range
direction for each swath. For GRD images, the resolution is 93x87 meters in
range and azimuth, Thus, since the resolution using 6x2 looks is 93x87m in
range, the resolution using 1x1 looks must be ∼ 93/6 x 87/2 ≈ 15x43 m. The
spatial resolution is slightly different for each swath, but for simplicity’s sake,
15x43m is assumed to be the resolution for the entire image in range and
azimuth.
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6.2.1 Results
Looks(1x1), stepping(1x1) = res(15x43m), pixel spacing(20x10m)
Without any smoothing or stepping, the classified images consisted only of one
class. Hence, the classifier did not manage to separate ice from water at all.
15x43m resolution ice-water maps is thus not achievable, at least not with the
segmentation algorithm used in this thesis.

Looks(3x1), stepping(1x2) = res(46x43m), pixel spacing(20x20m)

Figure 6.10: Ice water classification with resolution of 46x43 m

Classification on images with 46x43 meter gave an accuracy of 86.03 %. Since
the radiometric resolution is pretty low with so few number of looks, there is
still some overlap between sea ice and water. This is particularly a big problem
in swath 1, where a lot of the water is classified as sea ice and vice versa. In
the other four swaths, the classification result is better, although the noise is
still a disturbing factor, especially over the sea ice. By excluding swath 1 from
the classification, accuracy increases to 96.39 %, albeit with a reduction in
coverage from 400 km to about 320 km. This reduction is, however, necessary
if such resolution is wanted, as swath 1 is more or less useless.
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Looks(6x2), stepping(2x4) = res(93x87m), pixel spacing(40x40m)

Figure 6.11: Ice water classification with resolution of 93x87 m

Classification accuracy with 93x87 meter resolution is 97.03 %, which is good.
The noise also seems to be considerably reduced over sea ice. There is still some
noise left in the first swath and in the transition between the other swaths. By
excluding swath 1, the accuracy increases to 98.57 %. Presumably, by using
some thermal noise removal technique, most of the misclassified pixels would
have been removed, and the accuracy would be even higher.
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Number
of looks
(azxrg)

Spatial res-
olution

Stepping Pixel spac-
ing

Accuracy of
classifier

Accuracy
omitting
swath 1

3x1 46x43 m 1x2 20x20 m 86.03% 96.39%
6x2 93x87 m 2x4 40x40 m 97.03% 98.57%
12x4 186x194 m 4x8 80x80 m 97.29% 97.68%
18x6 279x264 m 7x14 140x140 m 97.53% 97.99%
36x12 558x516 m 14x28 280x280 m 97.64% 97.86%
60x20 930x870 m 22x44 440x440 m 98.33% 98.44%

Table 6.2: Classification accuracy for different resolutions

Looks(12x4), stepping(4x8) = res(186x194m), pixel spacing(80x80m)

Figure 6.12: Ice water classification with resolution of 186x194 m

The accuracy with 186x194 meter resolution is 97.29 %, i.e. not that much
better than the previous. There is some less misclassified pixels in swath 1.
However, some new misclassification between swath 2 and 3 has arisen. For
that reason, the accuracy without swath 1 is actually lower for this resolution
than for 93x87 meter resolution.



6.2 EXPER IMENT 2: RESOLUT ION INVEST IGAT ION 61

Figure 6.13: Ice-water classification accuracy as a function of azimuth resolution

6.2.2 Concluding remarks of experiment 2
• In most cases, but in particular for ice-water maps with high resolution,

better accuracy is achieved by omitting swath 1. The cost is, however,
that the coverage is significantly reduced.

• Classification directly on the SLC image, without any multi-look, is not
possible, as all pixels are classified to the same class.

• It is possible to achieve ice-water maps with a resolution down to 46x43
meters. This can be obtained only from SLC images. The high resolution
of these maps permits for detection of leads and cracks in the ice. The
maps are, however, suffering from misclassification related to noise, es-
pecially in swath 1, which is more or less useless. By omitting this swath,
quite high accuracy is achieved. The map is, however, possibly not reliably
enough for tactical use, as the amount of speckle over the sea ice still is
significant.
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• 93x87m resolution ice-water maps seems like the best achievable reliable
resolution. There is still some noise in these maps, but the majority of
it could probably be removed by some thermal noise removal technique.
These maps could be made using GRD, without any extra multi-look.

• Thus, if the requirement is a reliable ice-water map with full coverage,
SLC is not necessary. The highest possible reliable resolution can be
achieved from GRD.

6.3 Experiment 3: A proposed method for
thermal noise removal over ocean in EW SLC
images

Thermal noise accounts for the majority of misclassified pixels in the classified
ice-water image. Hence, removing the thermal noise will significantly increase
the classification accuracy. The noise varies along both range and azimuth
direction throughout the HV intensity image. On the classified images, however,
the effect of thermal noise is that water is misclassified as sea ice in the
transition between the five swaths. Since thermal noise is additive, one can
assume that the signal consist of two components; the actual signal component
+ the thermal noise component. Thus, by estimating the contribution of the
thermal noise component and subtracting it from the signal, the actual signal
component can be obtained. Since thermal noise only is a problem between
the swaths in the classified image, that is, at the end of each swath in range
direction, only this area needs to be considered. In particular, by inspecting
the image, it turns out that the following incidence angles in the HV intensity
image is disturbed by thermal noise:

• between 27.65 °and 28.51 °

• between 32.7 °and 34.3 °

• between 38.6 °and 39.05 °

• between 42.65 °and 43.38 °

The proposed thermal noise removal method works as follows:

• The area corrupted with thermal noise, that is, between the incidence
angles described above, is located.
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• The average of these pixels is then calculated for each line in range
direction, for each of the four noise corrupted areas.

• Next, the average of the 10 neighbouring pixels to the noisy pixels is
calculated for each line, for each of the four noise corrupted areas. The
neighbouring pixels are considered as noise free.

• The noise component is then obtained by subtracting the noise free pixels
from the noisy pixels.

• The final step is to subtract the noise from the noisy pixels.

Pseudo-code:

i n cAng leLe f t = [27.65 , 32.72 , 38.63 , 42 .65] ;
incAngleRight = [28.51 , 34.35 , 39.05 , 43 .38] ;

image = HV i n t e n s i t y ;

f o r j =1:4

fo r i=a l l p i x e l s in azimuth

Noisy p i x e l s = mean( image ( i , ( incAng leLe f t ( j ) : incAngleRight ( j ) ) ) ) ;

Normal p i x e l s = mean(10 p i x e l s next to noisy p i x e l s ) ;

Noise = noisy p i x e l s − normal p i x e l s ;

Noise co r rec ted p i x e l s = noisy p i x e l s − noise ;
end

end

6.3.1 Results
To demonstrate this, an ice-water classification based on MLI 1 and MLI 2 with
60x20 multi-look and 22x44 stepping, resulting in 930x870 meter resolution
with pixel spacing of 440x440 meter is used.
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Figure 6.14: The effect of noise removal
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6.3.2 Concluding remarks of experiment 3
• The accuracy increased from 98.33 % to 99.70 % using the described

noise removal method. Still there is some noise left, but the result is
much better.

• Presumably, this is a generic method and should work for all SLC images
which is multi-looked to the same level, as the thermal noise supposedly
is located in the same area in every image; i.e. at the end of each swath
in range direction.

• The method was also applied to image with high resolution, but did not
provide a satisfactory result. Probably because the noise is much more
dominant and spread out over the swaths.

6.4 Experiment 4: Ice concentration maps
Tactical sea ice information products are needed, occasionally, to solve chal-
lenging tasks of navigation in the ice. The main users of this information are
ships and icebreakers. Such information should be high resolution imagery,
delivered as quickly as possible, preferably within a few hours after acquisi-
tion (Johannessen et al., 2006). Hence, there is no time for time-consuming
hand drawing. In addition, the resolution of hand drawn maps is to low for
tactical use. For that reason, tactical navigation is today mainly based on direct
use of SAR images overlaid geographical coordinate grid (Johannessen et al.,
2006). This requires that the navigator is trained in order to interpret the im-
ages correctly. However, as discussed in section 3.3, there are some challenges
with direct interpretation of single-channel SAR intensities. Thus, derived ice
information products, such as sea ice concentration, could in some cases be
useful, and easier for the end-user to interpret. In the following section, two
sea ice concentration maps, derived from the classified ice-water images, are
presented; one with high resolution,meant for tactical navigation, and one with
low resolution, meant for strategical navigation or scientific purposes. They are
compared with the hand drawn maps from the Meteorological Institute to see
if there is any difference.

6.4.1 Results
First, the high-resolution sea ice concentration map (93x87 m) is presented.
Unfortunately, the thermal noise is strong for high-resolution imagery, and the
proposed noise removal technique did not manage to remove it in this case.
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The noise is therefore a big problem in this image.
As seen in figure 6.17, the high-resolution ice concentration map is able to pick
up details such as leads in the ice that not can be seen in the hand drawn maps.
These leads can be useful for ship navigation. However, the noise problem
needs to be sorted out first.

Figure 6.15: Ice concentration map with 93x87 m resolution

Figure 6.16: 93x87 Ice concentration map vs hand drawn from Met
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Figure 6.17: Showing small-scale features that only is visible in the high-resolution
ice concentration map
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Next, the low-resolution sea ice concentration map (930x870 m) is pre-
sented.

Figure 6.18: Ice concentration map based on ice-water classification with 930x870 m
resolution

Figure 6.19: Hand drawn vs 930x870 m ice concentration map
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6.4.2 Concluding remarks of experiment 4
• The high-resolution sea ice concentration map (93x87 m) shows a lot

more details in the ice than the hand drawn maps, such as leads and
cracks that can be utilized for ships. However, the maps suffers from
thermal noise, which needs to be corrected if these maps are to be used
operationally.

• The low-resolution map is less bothered with thermal noise, but shows
less details in the ice. It is actually fairly similar to the hand drawn, except
some misclassified sea ice in the water, and some misclassified water in
the sea ice. However, the hand drawn maps also has some mistakes.
For instance, it does not pick up the open water up in the left corner.
An important difference between these maps is that the automatic ice
concentration map can be processed within a few minutes and delivered
in near real time to the ships, while the hand-drawn normally is available
several hours after the image is taken.





7
Conclusion
7.1 Summary
This thesis was about ice-water classification on Sentinel-1 EW SLC imagery
in the Barents Sea. The aim of the thesis was to evaluate the utility of seven
different features for ice-water classification, and thereafter to find the highest
achievable, reliable resolution on the ice-water maps. For the first question,
it turned out that the highest accuracy was achieved by using the extended
polarimetric features geometric brightness, cross-pol ratio and relative kurtosis,
with a classification result of 99.29 %. The misclassified pixels were mainly
related to thermal noise that occurs at the end of each swath in range direc-
tion. Presumably, the accuracy would be close to 100 % if an efficient thermal
noise removal method was applied to the image. A simple method to remove
this noise was proposed, and gave increased accuracy for the low-resolution
classified image. For high-resolution imagery, however, this method must be
adjusted in order to work. Moreover, two features that is not found much infor-
mation about in the literature; HH-HV correlation magnitude and angle, was
evaluated. From the results it seems like HH-HV correlation magnitude shows
clear separation between ice and water, except for swath 1, and could possibly
increase ice-water separability together with the other features, but only if
swath 1 is omitted. This feature does not, however, increase the separability
between ice types. HH-HV correlation angle, on the other hand, seems useless
both for separating ice and water and between ice types.

71
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For the second question, it turned out that the highest achievable resolution
on ice-water maps from Sentinel-1 EW images is 46x43, but only if swath 1 is
omitted, as this swath is heavily corrupted by thermal noise when few looks
are applied. This resolution requires SLC data. There is, however, still some
noise-related misclassification in this map over the sea ice. Thus, if reliable
maps are required, a 93x87 meter resolution map is possibly the best choice,
as this contains considerably less noise. This can be obtained both from SLC
and GRD images. Furthermore, the classified image can be used to derive other
ice information products, such as ice concentration. This was demonstrated
both with low and high resolution. Again, the noise is a problem that needs
to be sorted out if reliable high resolution ice concentration maps are to be
generated.

7.2 Further work
• There are many improvements that can be done to further increase

the ice-water classification accuracy. As mentioned several times, an
efficient thermal noise correction on SLC images, that preserves phase
information, is the most important factor that could improve the accuracy.
Then, tactical sea ice concentration maps with a resolution of 93x87 m
could be delivered to ships and off-shore activities in near real time.

• It would also be interesting to test if other features, such as texture fea-
tures from the grey-level co-occurrence matrix or spatial autocorrelation,
could improve the ice-water separation further. Many of them have al-
ready been investigated for sea ice classification. For separating solely
between ice and water, however, the amount of studies are limited. The
optimal combination of features that separates purely between ice and
water is yet to be determined.

• This project focused on ice-water classification under winter conditions.
The results would, presumably, be different for the summer. The same
study should therefore be done during summer also.

• It would be interesting to compare the classification method with other
classification methods. For example, how good is this unsupervised classi-
fication method compared to a supervised Bayesian classification method.
Supervised classification is typically more time-consuming, but gives of-
ten better results.

• Only one image was used in this thesis. More reliable results would be
obtained if more images were used.
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• The ice concentration maps could probably be used to determine the
location of the ice edge, for example by saying that the ice edge is where
the ice concentration is 50%. One could then create a time series of the
ice edge based on several images separated in time, and see how the ice
edge has moved in the Barents Sea during the last years or decades.
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