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Abstract: The main aim of the paper is damage detection at the microscale in the anisotropic
piezoelectric sensors using surface acoustic waves (SAWs). A novel technique based on the single
input and multiple output of Rayleigh waves is proposed to detect the microscale cracks/flaws in the
sensor. A convex-shaped interdigital transducer is fabricated for excitation of divergent SAWs in the
sensor. An angularly shaped interdigital transducer (IDT) is fabricated at 0 degrees and ±20 degrees
for sensing the convex shape evolution of SAWs. A precalibrated damage was introduced in the
piezoelectric sensor material using a micro-indenter in the direction perpendicular to the pointing
direction of the SAW. Damage detection algorithms based on empirical mode decomposition (EMD)
and principal component analysis (PCA) are implemented to quantify the evolution of damage in
piezoelectric sensor material. The evolution of the damage was quantified using a proposed condition
indicator (CI) based on normalized Euclidean norm of the change in principal angles, corresponding
to pristine and damaged states. The CI indicator provides a robust and accurate metric for detection
and quantification of damage.

Keywords: surface acoustic wave; empirical mode decomposition; principal component analysis;
condition indicator; interdigital transducer

1. Introduction

1.1. Single Input and Multiple Output

Single Input and Multiple Output (SIMO) and Multiple Input and Multiple Output (MIMO)
devices are mainly used in antenna technology for wireless communications [1]. There is growing
interest to implement SIMO technology along with orthogonal frequency division multiplexing for
high-data-rate underwater acoustic communication [2]. In SIMO, the multiple received signals are
able to provide the diversity gain by coherently combining all the signals of interest arriving from a
single source [3]. The SIMO and MIMO techniques are used for estimation of the direction of arrival
and localization of unknown sources [2,4–6].

The similar concept of SIMO and MIMO holds a promising feature in nondestructive evaluation
(NDE) using ultrasonic waves for identification and quantification of microscale damage in
piezoelectric sensors [7]. Ultrasonic guided waves and Rayleigh waves have been extensively used
for NDE applications such as mechanical characterization of the thin-film coating, delamination and
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debonding, and crack detection [8–15]. Continuous inspections of the structure are necessary for
ensuring timely maintenance and prevention of catastrophic failure [16,17].

1.2. Different Types of Transducers

In the last few decades, a significant number of nondestructive evaluation (NDE) and structural
health monitoring (SHM) techniques have been implemented for detecting the failure in critical
structures [11,18–21]. Guided waves such as Lamb waves, Love waves, and SAWs have been
widely used for local damage identification in structures [19,22–24]. Several experimental techniques
were implemented to identify and visualize defects/flaws using acoustic waves, such as ultrasonic
probes coupled with angle-adjustable Perspex wedges [25–27] and Hertzian contact transducers [28].
The noncontact ultrasonic transducers, such as air-coupled [29,30] and fluid-coupled [31] transducers,
and electromagnetic acoustic transducers (EMATs), are other possibilities to generate longitudinal
waves [9,32]. However, such transducers have low precision as they suffer from mechanical impedance
mismatch between the coupling fluid and the material. Another noncontact excitation and detection
technique is based on a pulse laser interferometer that has high precision for wave imaging [33–35].
Most recently, the scanning laser vibrometer has been employed for three-dimensional visualization
of acoustic wave interference with inclusions and damages in the metallic plates, piezoceramics,
piezocrystal and composite plates [36–39] or in plate-like structures [40]. Rabe and Arnold (1994)
have developed acoustic microscopy using atomic force microscopy for characterizing the surface
detection in the piezoelectric sensors [41]. However, these techniques are time consuming, expensive
and not suited for rapid detection of damage. Lead zirconate titanate (PZT) transducers deliver
excellent performance in excitation and detection of Lamb waves and have been employed for
damage/delamination detection [42–45]. The PZT-based excitation of guided waves is limited to
low-frequency actuation (typically <1 MHz). PZT usually exhibits certain nonlinear and hysteresis
behavior under large strains/voltages or at high temperatures.

The generation and detection of bulk acoustic waves and Rayleigh waves in piezoelectric crystals
with the aid of an interdigital transducer (IDT) has attracted widespread scientific interest for signal
processing and filtering applications [46–48]. It was first introduced by Mortley [49], for transduction
and reception of bulk acoustic waves traveling through the volume of a crystal. The main advantages
of IDT over PZT ceramics are: mode selectivity, high excitation strength, wave directivity, small
footprint, high excitation frequency and relatively low cost [50–53]. Interdigital transducers (IDTs)
are typically used for excitation and detection of the surface acoustic wave in piezoelectric crystals
in the frequency range of 1–125 MHz [54,55]. IDT sensors are also used as strain gauge sensors and
guided wave sensors for evaluation of health and quantification of damage in the critical infrastructure.
Stoney et al., 2014 [56], Humphries et al., (2015) [57], and Hara et al., (2012) [58] have all developed
highly sensitive strain sensors using an SAW resonator for detection of damage in metallic structures
of aircraft carriers [59]. The IDT technique has been used to generate Lamb waves in polyvinylidene
fluoride piezoelectric polymer films (PVDFs) used for characterization of biological cells, polymers and
soft flexible electronics due to its low impedance. However, PVDF polymer transducers have limited
frequency bandwidth and low coupling with metallic structures due to impedance mismatch [60].

The IDT-based SAW sensors are assumed to be inherently healthy and occasionally calibrated
to compensate for error and noise arising from the harsh environmental conditions and temperature
fluctuations. For global damage detection, we realistically assumed that the IDT sensor and structural
system are inherently coupled. Harsh environmental conditions and extreme loadings such as
fatigue, corrosion and high temperature induce damage in the sensors and the structures. Sensors,
being sensitive, active devices, usually suffer more damage compared to the structure, and hence
acquire an ambiguous response. However, both in research and practice, limited considerations are
devoted to quantifying the health of the sensors. The error induced due to the degraded sensor is
often circumvented by correcting the acquired response by a baseline compensation factor. Instead of
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ignoring the performance deterioration of the sensors, we focused our efforts to detect the damage in
the sensors.

The main problem of a conventional IDT sensor is the generation of highly directional and
plane-parallel harmonic acoustic waves. The receiver strength of the SAW IDT placed in an angular
configuration suffers from losses due to dispersion and dissipation of energy along the thickness of the
media. Therefore, the evolution of surface flaw and defects in the off-center path of the conventional
IDT will remain undetected due to the low energy content of the diffracted wave. The limitation
of low detectability due to scattering and dispersion of the wave is circumvented by fabrication of
convex-shaped IDTs. Due to the convex geometrical shape of the IDT, the harmonic waves become
divergent and cover a maximum area with uniform energy content along the angular direction.
Previously, NDE evaluation of IDT sensors using an angularly placed SIMO with parallel IDT receiver
has been demonstrated [7].

The above-mentioned experimental techniques aim towards enhancing the detectability of the
damage. Most often, the damage is quantified by damage-sensitive features derived empirically
using statistical signal processing [19,61]. It is difficult to relate the statistically derived damage
index with the physical parameters derived from the theory of wave propagation. In the absence of
a theoretical framework, the damage-sensitive features become problem specific and irrelevant for
practical application.

1.3. Data Analysis and Evaluation Procedures

The raw data acquired by the IDT sensors behaves as a cryptic signal which does not provide direct
measure of damage. Hence, it is extremely important to extract and evaluate sensitive features from the
signals for quantification of damage. The selection of appropriate and sensitive features is determined
by the material under investigation, and the magnitude and type of damage. The commonly used
features are change in the resonating frequency, change in the peak amplitude, reduction in the energy
content of the signal, and change in the modal parameters such as mode shape and the eigenfrequencies
of the signals. The statistical damage-sensitive features in terms of statistical distance measures are:
Mahalanobis distance [62], Mahalanobis distance between phase space topology, and change in phase
space topology [63]. The time-series analysis methods such as Auto-Regressive and Auto-Regressive
with eXogeneous input models are popular methodologies for damage detection. The time-series
methods require data from healthy structures only during the training phase, and this is the main
advantage of these methods. The efficient system identification (SI) techniques utilize features derived
from wavelet transform, Hilbert–Huang transform, empirical mode decomposition (EMD), principal
component analysis (PCA) and so on. SI is challenging in a noisy environment and also for systems
possessing low energy. SI techniques work on the assumption that the effect of damage on any
system is linear, which is not the actual case. The above-mentioned techniques are mostly adopted on
vibration data of the structure to monitor its health. Here, we apply these techniques on ultrasonic
wave propagation data to monitor health of a piezoelectric crystal. The algorithm proposed in the
current work is a combination of EMD and PCA. The process of EMD gives the dominant intrinsic
mode function that has no noise and redundant information. This step helps to avoid false alarm,
as any redundant information, if present, will alter the eigenstructure of the signal even in the case of
no damage. Later, with the help of PCA, the change in the eigenstructure is evaluated and a sensitive
condition indicator is proposed. The condition indicator successfully identifies and quantifies the
damage present.

The novelty of the proposed work is the demonstration of the SIMO technique using excitation
with a convex IDT for identification of macroscale damage in piezoelectric sensors. Employing SIMO
technology as acoustics sensors in structural health monitoring (SHM) will enhance the detectability
and rapid quantification of the damage in the piezoelectric crystal. Also, a new algorithm is proposed
using EMD and PCA techniques for signal decomposition and extraction of dominant features to
effectively and accurately quantify the damage in the piezoelectric crystal.
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2. Interdigital Transducer Fabrication

Interdigital transducers were fabricated on the LiNbO3 single crystal. This crystal was cleaned
using acetone, isopropanol and trichloroethylene for 15 min at a temperature of 70 ◦C. After that,
the wafer was cleaned using ultrasonic cleaning treatment for 10 min employing deionized water.
For removing the moisture content from the wafer, it was baked at 120 ◦C for 10 min. Later on,
the wafer was cooled at room temperature, and positive photoresist (SPR700) was applied to the
surface using spin-coating technique at 4000 rpm for 40 s. Later, the wafer was soft baked for 1 min
at about 9 ◦C. After soft-baking, the wafer was exposed to UV light (15 mW/cm2) for 10 s. Later on,
the sample was baked at 115 ◦C for 90 s in order to harden the photoresistor. The exposed area of the
resistor becomes soluble to the developer (MF26A, Austin, TX, USA).

This developing procedure continued until the section that was exposed to UV light was
completely etched (Sigma Aldrich 651818, Darmstadt, Germany). The wafer was sputtered with
0.02 µm of copper using the thermal sputtering technique. The fabricated IDT sensors were connected
using conductive epoxy. The schematic diagram of the IDT is shown in Figure 1.

Sensors 2018, 18, x FOR PEER REVIEW  4 of 19 

 

wafer was cleaned using ultrasonic cleaning treatment for 10 min employing deionized water. For 
removing the moisture content from the wafer, it was baked at 120 °C for 10 min. Later on, the wafer 
was cooled at room temperature, and positive photoresist (SPR700) was applied to the surface using 
spin-coating technique at 4000 rpm for 40 s. Later, the wafer was soft baked for 1 min at about 90 °C. 
After soft-baking, the wafer was exposed to UV light (15 mW/cm2) for 10 s. Later on, the sample was 
baked at 115 °C for 90 s in order to harden the photoresistor. The exposed area of the resistor becomes 
soluble to the developer (MF26A, Austin, TX, USA). 

This developing procedure continued until the section that was exposed to UV light was 
completely etched (Sigma Aldrich 651818, Darmstadt, Germany). The wafer was sputtered with 0.02 
µm of copper using the thermal sputtering technique. The fabricated IDT sensors were connected 
using conductive epoxy. The schematic diagram of the IDT is shown in Figure 1. 

 
Figure 1. (a) Schematic sketch of the Single Input and Multiple Output (SIMO) Inter Digital 
Transducers (IDT). Convex IDT, marked as single input on the left, three artificial surface defects in 
the middle of the single input and multiple output has been placed. Signals was received with 
angularly placed IDTs at 0°, −20°, and 20°, respectively; (b) is the optical image of the fabricated 
sensor; (c) is the experimental setup picture. 

Figure 1. (a) Schematic sketch of the Single Input and Multiple Output (SIMO) Inter Digital Transducers
(IDT). Convex IDT, marked as single input on the left, three artificial surface defects in the middle of the
single input and multiple output has been placed. Signals was received with angularly placed IDTs at
0◦, −20◦, and 20◦, respectively; (b) is the optical image of the fabricated sensor; (c) is the experimental
setup picture.
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3. Experimental Setup and Surface Flaw Generation

SIMO IDTs were fabricated on the LiNbO3 single crystal (Figure 2). The Lamb waves were excited
using a curved single-input IDT, and detected signals were received using multiple receivers that were
fabricated as a SAW sensor on the LiNbO3 crystal. The interspacing distance between two electrodes
and the width of the electrode were kept constant.

Figure 2. A schematic diagram of the experimental setup of the SIMO IDTs using acoustic waves.

The multiple receiver electrodes were placed at angles of 0◦, 20◦ and –20◦ with respect to the
sender electrode. Ideally, it is rather challenging to generate any controlled surface cracks/flaws on a
piezoelectric crystal. Therefore, to mimic a surface defect to hinder the Lamb waves’ propagation on the
sample, conducting silver paint was spin-coated in between the sender and the receiver IDTs. Using a
spin-coater, thickness variation within the preferred area can be controlled by adjusting the spin speed,
time, and viscosity of the liquid. Variations in material properties such as surface and bulk defects
lead to wave scattering, magnitude-dependent conversion of energy from fundamental to harmonic
frequencies in a nonlinear medium, or losses due to viscous contaminants on the surface [64]. The size
of the deposit is much bigger than the wavelength of the monitored acoustic waves. The viscous
properties of the binding component of the silver paint induce attenuation of acoustic waves, which
are additionally strongly scattered by the silver flakes exhibiting a large acoustic mismatch with the
binding component. In this way, the deposit from conductive silver paint acts as attenuating and
scattering media for acoustic waves at the selected frequency [65,66].

Dimensions of the surface flaws are 25 × 3 × 0.75 mm3 for the first surface flaws. For the second
damage state/flaws, a similar dimension of silver paint was spin-coated on the exactly opposite side
of the first flaws. In order to observe the effect of the further defect, a third damage state with a
similar dimension has been implemented just beside the first flaws. After inserting every damage
state, data were recorded for all the IDT sensors. The received signals from the reference state were
compared with that of the damaged state. An arbitrary signal generator (Agilent 81150A, Studio City,
California, USA) was used to excite the electrodes with a broad-banded pulse (second derivative of
a Gaussian). The signal used for excitation and its frequency content are shown in Figure 3. All the
experiments were performed in a thermally insulated chamber to avoid the temperature fluctuation
during the experiments.

The current induced on a counter-side electrode was then amplified by a transimpedance amplifier
(FEMTO DHPCA-100, FEMTO® Messtechnik GmbH, Berlin, Germany). This amplifier converts the
current into a voltage according to an adjustable amplification factor, which in the final signal chain,
is digitized by the oscilloscope (Yokogawa DLM 6054, Yokogawa Test and Measurement corporation,
Mitaka, Tokyo, Japan) after averaging over 256 pulse shootings. For all the measurements, the output
of the signal generator was adjusted to provide 5 volts peak to peak, which turned out to be sufficient
for producing a good signal-to-noise ratio after averaging over 256 pulse shootings. For the reference



Sensors 2018, 18, 2017 6 of 19

and for the damaged state, guided Lamb waves were generated by a single curved sender, and at the
same time, signals were received with several interdigital transducers angularly placed. The signal
was received by the IDT sensor placed at 0◦ corresponding to the reference, and a damaged case is
shown in Figure 4.Sensors 2018, 18, x FOR PEER REVIEW  6 of 19 
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Figure 4. The signal received by IDT sensor placed at 0◦ orientation corresponding to reference and a
damage case (here the damage case considered is corresponding to three surface flaws).

The frequency content of the first wave packet received by IDT sensors is shown in Figure 5.
The wave packets considered here are highlighted by the rectangular window in Figure 4. The damage
introduced in the LiNbO3 crystal will alter the frequency content of the received signal. The change in
frequency content can be a potential indicator of damage. In the present case, due to damage, there is
no significant change in the frequency content of the received signal, as shown in Table 1. Therefore,
there arises a need for a potent and robust condition indicator. In the present work, based on principal
component analysis and empirical mode decomposition, a robust damage detection algorithm is
proposed. The following sections explain briefly the building blocks of the proposed algorithm.
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Table 1. Maximum frequency content of the windowed signal for reference and a damage case
corresponding to IDT sensors mounted at 0◦ orientation; 20◦ orientation and −20◦ orientation.

IDT Sensors Fabricated at

0◦ Orientation 20° Orientation ◦ Orientation

Reference state 3.58 MHz 3.5 MHz 3.46 MHz
Damaged state—3 3.45 MHz 3.42 MHz 3.4 MHz

% change in frequency 3.63 2.2 1.77

4. Algorithm for Damage Detection

4.1. Principal Component Analysis

Principal component analysis (PCA) is a statistical method that finds combinations of variables or
factors that describe major trends in data. It is closely related to proper orthogonal decomposition [67]
and singular value decomposition [68]. The main advantage of this method is to reduce the dimensions
of multivariate data and retain important information. The overall variation in all the PCs and the
original data set is the same [69].

In batch-wise PCA, the data matrix X ∈ Rn x m is initially modified to a zero-mean matrix
X ∈ Rn x m , where X = X − E(X), n is a number of samples, m is number of variables and E(X) is
mean of the data matrix. Once zero mean data is obtained, the covariance matrix C is calculated as:

[C]m x m =
1

n− 1
[
X
]T

m x n

[
X
]

n x m (1)

The covariance matrix is then processed with eigenanalysis to obtain the matrix P where columns
of P =

[
p1, p2, p3 . . . pm

]
are eigenvectors of C and the diagonal matrix λ with eigenvalues of C.

[C]m x m[P]m x m = [λ]m x m[P]m x m (2)

The eigenvectors corresponding to smaller eigenvalues are least important and are eliminated.
Only the first r eigenvectors corresponding to dominant eigenvalues are selected as PCs.
The transformed data set Y after projection in a new space will be r-dimensional:

[Y]n x r =
[
X
]

n x m [P]m x r. (3)
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The transformed data reduces the computational effort without much loss of information.
The projection of Y back to the original data set is YPT, and as some eigenvectors are eliminated
in the process of PCA it introduces a residual error matrix:

[E]n x m =
[
X
]

n x m− [Y]n x r[P]
T
r x m. (4)

The flowchart of PCA algorithm is represnted in Figure 6.

Figure 6. Flowchart representing important steps of principal component analysis.

4.2. Empirical Mode Decomposition

A recorded time history signal x(t) will always contain an inevitable part, referred to as noise.
Hence the recorded signal will be an amalgamation of the true signal s(t) and noise n(t)

x(t) = s(t) + n(t) (5)

In the case of nonlinear and nonstationary processes, even though the frequency and time-scale
of signal and noise are distinct, it is very difficult to separate noise with the help of conventional
filters. Under such circumstances, empirical mode decomposition (EMD) is a useful tool [70].
EMD decomposes a recorded signal into monocomponent signals referred to as intrinsic mode
functions (IMFs). The definition of the local mean of two envelopes is quite vague [71]. For a
particular ∈, the requirement can be written as:

IMF∈(t) =
1
∈

∫ t+ ∈2

t− ∈2
IMF(r)dr = 0. (6)

An IMF is symmetric, possesses unique local frequency content, and no two IMFs have the same
local frequency content at the same time. The evaluation process of IMFs, which satisfies the two
important assumptions, is as follows: An IMF candidate for the high-frequency content is determined
by foremost fitting a cubic spline over all local minima to construct a lower envelope; an upper envelope
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is created in an exact fashion. Both the envelopes should cover the whole signal, and their mean is m1.
The difference between signal and mean is h1 = X(t) −m1. The signal h1 is most commonly referred
as a proto-mode function (PMF). This PMF has to be processed further to get the true IMF with help of
a repetitive processing known as ‘sifting’, where h1 is treated as data and sifting is repeated to get:

h2 = h1 −m2. (7)

The success of EMD depends on the stopping criteria of sifting. Standard deviation (SD)
Equation (8) is one of the ways to stop sifting; as soon as the SD value reaches 0.2–0.3,
sifting should stop.

SD =
T

∑
t=0

[ ∣∣{ hk(t) − hk−1(t)
}∣∣2

h2
k(t)

]
(8)

As soon as the stopping criterion is satisfied, the sifting process is halted; if sifting ends after ‘k’
repetitions, then our first IMF is:

c1 = hk. (9)

This IMF is further subtracted from the signal to obtain a residue r1 = X(t)− c1. The above
procedure of evaluating IMFs is repeated until rn becomes a monotonic function from which no further
IMF can be evaluated.

r1 − c2 = r2,
.
.
.

rn−1 − cn = rn

(10)

The final residue may be different than zero, even if the data has a zero mean. To get a signal from
IMFs, the following relation works:

X(t) =
n

∑
i=1

ci+rn. (11)

The entire process of EMD is represented in a flowchart presented in Figure 7.

4.3. Algorithm for Defect Detection

(1) Acquire the signal and form a response data matrix
(2) With help of EMD get IMFs corresponding to each signal of response data matrix. Then after,

select the dominant IMF for each signal with help of energy and correlation-based approach.
(3) Process all the 2-dimensional combinations of response matrix by PCA and evaluate principal

components (PCs) for each. Repeat the above process for baseline as well as damage states.
(4) Evaluate the condition indicator (CI) based on change in the angle of PCs. The detailed

explanation of CI is in Section 5.2. The CI successfully segregates damage state from healthy state,
it also quantifies the defect.

The above-mentioned algorithm is explained in detail considering the example presented in the
current work:

(1) The piezoelectric crystal is excited by a broadband pulse and the response is acquired by three
IDT sensors mounted. The acquired data forms a response data matrix [A] of size N × 3, where
N is total number of samples acquired, and the numeric 3 is due to three IDT sensors.

A =

 x1 y1 z1
...

...
...

xN yN zN


N x 3
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The EMD of each column vector of matrix A will result in multiple IMFs corresponding to each:

EMD(

x1
...

xN

) =

 {IMF 1x}
...

{IMF mx}

,

where m is the number of IMFs obtained after EMD and {IMF 1x} is a row vector.

The next step is to calculate energy and correlation of each monocomponent IMF. The IMF
corresponding to maximum correlation and energy is selected as the dominant IMF. In the
present case, E{IMF 1x} < MF2x} > MF3x}> · · ·> MFmx}, the results for correlation are the
same. Therefore, the second IMF is selected as the dominant IMF.

(2) In this step, we form all the possible two-dimensional combinations of the response matrix, and
process it by PCA. Considering the response matrix of the current work, the three variables will
lead to three two-dimensional combinations:

C− 1 =

 x1

M
xN

y1
M
yN

, C− 2 =

 y1
M
yN

z1

M
zN

, C− 3 =

 x1

M
xN

z1

M
zN

,

where C-1, C-2 and C-3 represent combination one, combination two and combination three,
respectively.

The PCA of a combination will give its principal components and principal angles. The detailed
explanation of PCA is given in Section 4.1. θd and θref are principal angles corresponding to a
damaged case and healthy (reference) case, respectively.

(3) Using the value of principal angle for reference and damaged cases, we evaluate the condition
indicator (CI) proposed in the current work.

CI =

√√√√∑ (θd−θref)
2
i

∑ (θref)
2
i

where i is number of combinations of data.

In the present case, the value of i = 3, as mentioned in step three. The flowchart of the entire
algorithm is presented in the Figure 8.

The minimum dimensions of the response matrix for the proposed algorithm to work is two.
This is because the current work is based on PCA. Based on the concept of PCA, the order of the
response matrix shall be at least N × M, where N is the length of the response signal and M is the
minimum number of discrete sensors. There is no limitation for the maximum dimensions of the
response matrix. However, in any SHM framework, our goal is to detect damage and abnormality
using the smallest number of sensors. In cases where the dimensions of the response matrix are higher,
it will lead to a higher number of combinations for PCA. The large dimension of the response matrix
will only increase the computation time.
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Figure 7. Flowchart representing the sequential steps of empirical mode decomposition.
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5. Results and Discussion

The response signals captured by IDT sensors placed angularly on the piezoelectric crystal
(Figure 1) are collected for different states, that is, the pristine state and the damaged states.
The following section explains the results and conclusions for damage quantification based on the
proposed algorithm. Initially, we discuss the selection of the dominant IMFs based on two different
approaches. Further, we discuss an approach based on PCA to obtain the principal components.
Lastly, a condition indicator is proposed to quantify the damage induced in the LiNbO3 sensors.
The condition indicator is based on a change in angle between PCs of the healthy and damaged states.

5.1. Empirical Mode Decomposition of Response Signals

The response signals from the receiver IDTs are decomposed into their intrinsic mode functions
(IMFs) with the help of the EMD technique explained in Section 4.2. Each of the IMFs generated
represents an inherent timescale characteristic of the original signal, and these are monocomponent
signals. Figure 9 shows the dominant IMFs for pristine state signals received by all the IDT sensors.
In order to accurately quantify the damage induced in the piezoelectric crystal, the response signals
are analyzed through their dominant IMFs. The dominant IMF is one that has maximum energy and
correlation with the original signal; also, it has no vague information (e.g., high-frequency noise).
The selection of the dominant IMF is done by two different approaches, namely, an energy-based
approach and a correlation-based approach.
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5.1.1. Energy-Based Approach

The first approach is the average energy content of the IMF, which can be calculated in discretely
sampled signals as:

E(xj(t)) =
∑N

i=1
∣∣xj(ti)

∣∣2
T

, (12)

where xj(t) represents the jth IMF of the measured signal x(t), T is the total duration of the signal and
N is the total number of data points. The energy content in an IMF would be directly proportional to
its contribution towards the original signal.

5.1.2. Correlation-Based Approach

The second approach evaluates the correlation between the original signal and each of the IMFs.
The IMF that has a maximum correlation with the original signal is selected as the most dominant IMF.
The correlation coefficient is calculated as

Λ(x(t), xj(t)) =
Cx(t)xj(t)

σx(t)σxj(t)
, (13)

where x(t) and xj(t) represent the original signal and its jth IMF, Cx(t)xj(t), is the covariance between
x(t) and xj(t), σx(t) and σxj(t) are the standard deviations.

The energy and correlation of IMFs calculated using the above procedure are normalized with
respect to the maximum value and then represented in percentage, as shown in Figure 10. The most
strongly contributing IMFs according to the above two criteria are the ones that possess a maximum
percentage of energy and correlation. The dominant IMFs are considered instead of the original
response signal for further analysis. This step allows de-noising of the signal and facilitates removal of
ambient disturbances.

Once the dominant IMFs are selected for the reference and damaged states, they are used to
quantify damage using principal component analysis as explained in the following section.
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5.2. Principal Component Analysis of Dominant Intrinsic Mode Functions

The IDT sensors’ angular arrangement for our experiment provides three response signals from the
0◦ (center sensor), 20◦ (left sensor) and –20◦ (right sensor) orientations embedded in the piezoelectric
sensor. Assuming X to be the response matrix for a given state of the piezoelectric crystal (i.e., reference
or damaged state), the columns of matrix X consist of the response signal received by all the IDT
sensors. For PCA, instead of the original response matrix, we form another matrix, XIMF. The columns
of XIMF consist of the dominant IMFs corresponding to each column of the response matrix X.

In the present case, we have one healthy and three damaged-state response data matrices that lead
to four different XIMF matrices. The damage is induced by a macro surface flaw in the lithium niobate
(LiNbO3) piezoelectric crystal. The following section provides a quantitative representation of the
damaged states with respect to the reference state by means of PCA. PCA is a tool for realizing a given
set of data in a transformed set of coordinates which enables reducing inherent redundancy in the
data. The transformed coordinates are a combination of the original coordinates, and are uncorrelated
with each other. This tool helps in revealing the principal structure of data, which can be exploited as a
damage quantification tool.

Consider the matrix XIMF of dimensions n x m, where n is the number of observations and m
is the type of observed data (dimension of PCA); we get the covariance matrix ([C]m x m) of XIMF.
Now, as explained in Section 4.1, the eigenanalysis of the covariance matrix gives the principal
components (PCs). Equation (2) represents the eigenanalysis of the covariance matrix ([C]m x m), where
the columns of [P] are PCs.

The PCs obtained using PCA are an important indicator of the underlying eigenstructure of the
data. In our case, we monitor the changes in the eigenstructure of the matrix XIMF corresponding to
the reference and damaged states. This step is pursued on the reasoning that a change in the state of
the piezoelectric crystal will distort the eigenstructure of the response signal. The distortion in the
eigenstructure of the data is quantified based on the changes in the angle of the PCs obtained from
PCA. Let θref, θd1 , θd2 and θd3 be the angles of PCs with respect to the reference axis corresponding to
the healthy and three damaged states, respectively (Figure 11).

In the present case, as the total number of IDT sensors receiving signal is three, the total
number of combinations for two-dimensional PCA is three, as explained in Section 4.3. The three
IDT sensors shown in Figure 1 are represented as left (20◦), right (–20◦) and centre (0◦) sensors.
Therefore, the possible three combinations for PCA are combination one: left and centre, combination
two: right and centre, and combination three: right and left.
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Figure 11. Principal components corresponding to healthy and damaged states for: (a) combination
one; (b) combination two and (c) combination three.

For all three combinations of the measured signal matrix, θref, θd1 , θd2 and θd3 are computed as
shown in Figure 11. Based on the measurements of θref, θd1 , θd2 and θd3 , a condition indicator (CI) is
proposed as follows:

CI =

√√√√∑ (θd−θref)
2
i

∑ (θref)
2
i

(14)

where i is total number of combinations of data matrix
The values for the CI have been tabulated in Table 2.
From the value of CI, we can clearly see that case damage-3 reflects more severe damage compared

to damage-1 and damage-2. This parameter helps us to gauge the relative degree of damage induced
in the material for the different damage states of our experimental study.

Table 2. Quantitative changes in Condition indicator for various damage scenarios.

Damage Cases Damage-1 Damage-2 Damage-3

CI values 0.391 0.405 0.587
% change in CI - 3.5 50.12

6. Conclusions

The outcome of this paper is to quantify the surface flaws in the anisotropic piezoelectric single
crystal (LiNbO3) using PCA and EMD. The surface aberration of the sensors is created using parallel
surface flaws. The incubation of surface flaws/damage at the macro scale act as a precursor to the
macroscale effect, which is an indicator of the evolution of damage. The SIMO technique has been
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employed for excitation of convex shape evolution of the wave. In this study, the divergent IDT sender
generates the convex-shaped wave field in the LiNbO3 crystal. For structural health assessment of
the piezoelectric sensor, Rayleigh wave signals were acquired at different angles through angularly
placed IDTs on the surface of the LiNbO3 crystal. In the healthy scenario, the convex-shaped wave
field possesses the same intensity at equidistant points from its source, whereas the presence of a
defect in the perpendicular direction of wave propagation leads to a significant scattering of the convex
wave, resulting in a loss in the amplitude and energy of the signal. Therefore, the waves received
by the IDTs are low in magnitude and energy, and this makes it more difficult to fetch information
of excited modes and monitor the health of the crystal. The proposed algorithm implements EMD
on the received wave and segregates dominant modes as the dominant IMFs. Subsequently, the IMF
is processed by the proposed damage detection algorithm to evaluate the condition indicator. The
manifestation of damage and its evolution is quantified with help of the change in the value of the
condition indicator (CI). The value of the CI corresponding to damaged cases of the present work are
0.39, 0.40 and 0.58. Instead of determining the exact size of the surface flaw, we quantify the magnitude
of the damage with the help of CI. The relative change in magnitude of CI reflects the manifestation
and severity of damage. The proposed framework is capable of quantifying the damage in the form of
surface flaws with help of a condition indicator that could be applicable for various SHM frameworks.
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List of Notations

x(t) Acquired signal
xj(t) jth IMF of the signal x(t)
T total duration of the signal
N the total number of data points
C Covariance matrix
E Residual error matrix
Cx(t)xj(t) covariance between x(t) and xj(t)

σx(t) standard deviation of x(t)
σxj(t) standard deviation of xj(t)
X Response matrix
X Zero mean response matrix
XIMF Matrix consisting of IMFs corresponding to response matrix
LiNbO3 Lithium Niobate
θref Principal angle corresponding to reference case
θdi Principal angle corresponding to damage-i case
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